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Abstract

The increasing cost of building, operating, managing, and maintaining state-of-the-art sili-

con manufacturing facilities has pushed several stages of the semiconductor device’s manu-

facturing supply chain offshore. However, many of these offshore facilities are identified as

untrusted entities. Processing and fabrication of ICs in an untrusted supply chain poses a

number of challenging security threats such as IC overproduction, Trojan insertion, Reverse

Engineering, Intellectual Property (IP) theft, and counterfeiting.

To counter these threats, various hardware design-for-trust techniques have been pro-

posed. Logic locking, as a proactive technique among these techniques, has been introduced

as a technique that obfuscates and conceals the functionality of IC/IP using additional key

inputs that are driven by an on-chip tamper-proof memory.

Shortly after introducing the primitive logic locking solutions, a very strong Boolean

attack, the Satisfiability (SAT) attack. It was shown that the SAT attack could break all

previously proposed primitive locking mechanisms in almost polynomial time. To thwart

the strength of SAT attack, researchers have investigated many directions, such as formu-

lating locking solutions that significantly increase the number of required SAT iterations,

or formulating the locking solutions such that it is not translatable to a SAT problem.

However, further investigations demonstrated that some of these locking techniques are

vulnerable to other types of attacks such as Signal Probability Skew (SPS) attack, re-

moval attack, approximate-based attack(s), bypass attack, and Satisfiability Module The-

ories (SMT) attack. In addition, these techniques suffer from very low output corruption.

Hence, an unactivated IC behaves almost identical to an unlocked IC with exception of one

or few inputs.



Recent obfuscation schemes have leveraged reconfigurable logics to alleviate various

hardware security threats. In this report, first we will introduce LUT-Lock, which demon-

strate that how using reconfigurable logics, e.g. Look-Up-Tables (LUTs) can provide re-

silience against such powerful attacks, i.e. SAT attack and its derivations. LUT-Lock

obfuscates a netlist while embedding several key features that make the obfuscation a hard

problem for state of the art attacks with particular attention to Satisfiability (SAT) Attacks.

To develop this defense mechanism, we have identified several key features that increase the

difficulty of obfuscation for SAT attacks. We illustrate how by utilizing each feature during

the obfuscation, the SAT problem becomes harder. We propose LUT-Lock algorithm which

combines all features, providing the best defense against SAT attacks. Then we demonstrate

that how routing and logic blocks can be used for building SAT-hard solutions, which is

thoroughly discussed in this report, is to significantly increase the run-time of each iteration

of the SAT solver. We explore the characteristics and principles of designing this SAT-hard

obfuscation solutions, using reconfigurable logic and routing blocks, where the goal is to

exponentially increase the time required for each iteration of the SAT attack. As a strong

representative member of this class of obfuscation techniques, we introduce Full-Lock. The

Full-Lock is constructed using a set of cascaded fully programmable logic and routing blocks

(PLR) networks that replace parts of the logic and routing in the desired netlist. The PLRs

are SAT-hard instances designed to construct a desired ratio between the number of clauses

and the number of variables with PLRs are translated to their Conjunctive Normal Form

(CNF). The cascaded and non-blocking design of PLR pushes the SAT solver’s algorithm

to build a very deep decision tree and to spend significant time in hopeless regions of the

decision tree, causing a significant increase in each iteration of SAT attack.



Chapter 1: Introduction

1.1 Why Hardware Obfuscation

The cost of building a new semiconductor fab was estimated to be $5.0 billion in 2015,

with large recurring maintenance costs [3], and sharply increases as technology migrates to

smaller nodes. To reduce the fabrication cost, most of the manufacturing and fabrication is

pushed offshore [3]. However, many of the offshore fabrication facilities are considered to be

untrusted. Manufacturing in untrusted foundries has raised concern over potential attacks

in the manufacturing supply chain, with an intimate knowledge of the fabrication process,

the ability to modify and expand the design prior to production, and an unavoidable access

to the fabricated chips during testing. Accordingly, fabrication in untrusted foundries has

introduced multiple forms of security threats from supply chain including that of overpro-

duction, Trojan insertion, Reverse Engineering (RE), Intellectual Property (IP) theft, and

counterfeiting [4].

To counter these threats, various hardware design-for-trust techniques have been pro-

posed, including watermarking, IC metering, split manufacturing, IC camouflaging, and

logic locking [4]. The watermarking and IC metering techniques are passive protection

models that could be used to detect overproduction or illegal copies, however, they cannot

prevent IP theft or overproduction. The Camouflaging techniques use logic gates (or other

physical structures such as dummy vias) with high structural similarity, that are indistin-

guishable from one another to protect against reverse engineering. However, camouflaging

is only effective against post-manufacturing attempt(s) of reverse engineering, while it pro-

vides no limitations against a foundry’s attempt at reverse engineering, as a foundry has

access to all masking layers and is not trapped by structural ambiguity for being able to

logically extract a netlist. The obfuscation (logic locking) [5] on the other hand, introduce
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limited programmability by inserting key programmable gates to hide or lock the function-

ality. By using obfuscation, the target chip produces the correct output only when the key

inputs are correct, and the unlock keys are almost stored in a tamper-proof non-volatile

memory. However, as a more resilient solution can be managed remotely to avoid storage of

key inside the chip [6]. The purpose of obfuscation is to protect against RE at an untrusted

foundry. By using obfuscation, even by having all mask information, the attacker cannot

generate the correct functionality of a circuit without the correct key values, and such key

values are not shared with the manufacturer.

1.2 Challenges in Hardware Obfuscation

Shortly after the introduction of first published obfuscation schemes, a new and powerful

attack based on Boolean Satisfiability (SAT) was formulated and revealed [7]. In this at-

tack model, the attacker has access to a reverse engineered but obfuscated netlist, and a

functional and unlocked chip. Using this attack model, the formulated Boolean Satisfia-

bility Attack (SAT Attack) can effectively break all previously proposed logic encryption

techniques, including random insertion (RLL), fault-analysis (FLL), interference-based logic

locking (SLL), and logic barriers [5,8–10]. The SAT solver iteratively eliminates sets of in-

correct keys and finds the correct key within a small time, and unlike Brute force attack

that requires attack time exponential with respect to the number of inputs, its execution

time grows almost polynomially. Existing SAT attack, which can be modeled with query-

by-disagreement (QBD) or uncertainty-sampling, minimizes the number of queries (inputs)

required to learn (deobfuscate) the target function (obfuscated logic). Also, SAT attack

terminates when no more disagreeing inputs can be found, at which time the attack guar-

antees to find the correct key. However, to defend against powerful SAT attacks, different

obfuscation schemes have been proposed, such as SARLock and Anti-SAT [11,12]. However,

further research illustrated that some of these locking schemes are vulnerable to other types

of attacks such as Signal Probability Skew (SPS) and removal attacks [13].
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1.3 Hardware Obfuscation using Reconfigurable Logic

A plethora of work have focused on utilizing reconfigurable logic such as LUT-based ob-

fuscation as a defense against reverse engineering (RE) attacks [8, 14–16]. In LUT-based

obfuscation, the design is partially mapped to LUTs, for example, if a 2-input AND gate

has to be obfuscated using LUT of size 2, one can set the configuration bits of the LUT to

‘0001’ as per the truth table of the AND gate. The partial mapping of the circuit results

in a design implementation that is a hybrid of custom (ASIC) and programmable (FPGA)

styles. Besides, reconfigurable bits can be stored in non-volatile memory (NVM) such as

magnetic tunnel junction (MTJ). These, stored bits are highly susceptible to be lost during

RE de-layering process. With the incorrectly configured LUT block, the design will remain

unintelligible, which will refrain the attacker from understanding the functionality of the

design.

LUT-based obfuscation has been previously visited by few researchers. The work in [8]

suggest using LUTs for obfuscation and provides several replacement strategies to secure a

netlist. However, the proposed mapping algorithms are not resilient against SAT attacks,

and are only evaluated in terms of power, performance and area (PPA) overhead, while

the claim on the security of these schemes is made solely base on inability to readout the

content of LUTs after reverse engineering. The work in [14] proposed a STT-LUT-based

obfuscation with three different LUT placement algorithms. This work further focuses on

PPA impact of their solution and illustrates that utilizing STT-based LUTs could reduce

the PPA impact. However, the proposed solution does not consider its resiliency against

SAT attack. As a part of this report, we introduce LUT-Lock, which obfuscates a netlist

while embedding several key features that make the obfuscation a hard problem for state

of the art attacks with particular attention to Satisfiability (SAT) Attacks. To develop

this defense mechanism, we have identified several key features that increase the difficulty

of obfuscation for SAT attacks. We illustrate how by utilizing each feature during the

obfuscation, the SAT problem becomes harder. We propose LUT-Lock algorithm which
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combines all features, providing the best defense against SAT attacks.

1.4 SAT-Hard Instances via Configurable Logic and Routing

Although engaging LUTs in LUT-Lock makes the obfuscation solution resilient to SAT at-

tack, our study on the existing reconfigurable logic obfuscation schemes shows that most of

the LUT-based techniques impose almost prohibited PPA overhead that is not acceptable.

In fact, among the previously proposed reconfigurable logic obfuscation schemes, we in-

vestigate LUT-based obfuscation and observe that in the LUT-based obfuscation, utilizing

large-size LUTs guarantees the security against state-of-the-art SAT attacks, but at the cost

of significant PPA overheads. Hence, only using reconfigurable logic cannot be considered

as a promising solution for hardware obfuscation.

In general, to thwart the strength of SAT attack, researchers have investigated two main

directions

1. formulating locking solutions that significantly increase the number of required SAT

iterations (inputs to be tested)

2. formulating the locking solutions such that it is not translatable to a SAT problem.

The first approach in which formulating obfuscation and locking solutions significantly

increase the number of SAT iterations was assumed to be a perfect anti-SAT solution, such

as SARLock, Anti-SAT, SFLL, and LUT-Lock [11, 12, 15, 18]. In extreme case, using these

techniques, each tested input (each iteration) invalidates a single key combination. Hence,

by using these techniques, a SAT attack, similar to a brute force attack, faces an expo-

nential runtime. However, further investigations demonstrated that some of these locking

techniques are vulnerable to other types of attacks [19] such as Signal Probability Skew

(SPS) attack [13], removal attack [20], approximate-based attack(s) [21], bypass attack [22],

and Satisfiability Module Theories (SMT) attack [23]. In addition, these techniques suffer

from very low output corruption. Hence, an un-activated IC behaves almost identical to an
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unlocked IC with exception of one or few inputs.The second approach investigated by re-

searchers was formulating obfuscation and locking mechanisms that were not translatable to

SAT problems. Example of such techniques includes the use of cyclic Boolean logic for lock-

ing [24] or behavioral locking of the logic [25]. The cyclic obfuscation creates combinational

cycles in the design. This invalidates the Directed Acyclic Graph (DAG) nature of logic and

forces a SAT attack to either be trapped in an infinite loop or to generate an incorrect key

upon termination [24]. Alternatively, in [25], a behavioral (non-Boolean) locking scheme

was introduced where the locking mechanism targeted the setup and hold properties (tim-

ing properties) of the circuit. However, shortly after the introduction of these obfuscation

techniques, researchers revealed stronger and more advanced modeling and attack solutions

such as cycSAT [26], and Satisfiability Module Theories (SMT) attack [23] that were able to

model the cyclic or behavioral locking into a SAT or SAT+theory solvable logic problems.

A new (and third) direction for building SAT-hard solutions, which is thoroughly discussed

in this paper, is to significantly increase the runtime of each iteration of the SAT solver.

The only existing solution that somewhat fits this category is the Cross-lock [27], in which a

one-time programmable interconnect mesh is used to obfuscate the routing of a netlist, and

the resulting obfuscated netlist substantially increase the runtime of each iteration of the

SAT attack. However, we will illustrate that obfuscation solution in [27], although a step

in the right direction, is not a strong solution in this space, and by following the principles

and design guidelines discussed in this paper, it is possible to construct obfuscated circuits

that translate into far harder SAT circuits than Cross-lock.

As the second part of this report, in Section 3 we explore the characteristics and princi-

ples of designing this new category of SAT-hard obfuscation solutions, where the goal is to

exponentially increase the time required for each iteration of the SAT attack. As a strong

representative member of this class of obfuscation techniques, we introduce Full-Lock [28].

The Full-Lock is constructed using a set of cascaded fully programmable logic and routing

blocks (PLR) networks that replace parts of the logic and routing in the desired netlist. The

PLRs are SAT-hard instances designed to construct a desired ratio between the number of
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clauses and the number of variables with PLRs are translated to their Conjunctive Normal

Form (CNF). The cascaded and non-blocking design of PLR pushes the SAT solver’s algo-

rithm to build a very deep decision tree and to spend significant time in hopeless regions of

the decision tree,causing a significant increase in each iteration of SAT attack.
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Chapter 2: LUT-Based Obfuscation for for ASIC and FPGA

2.1 LUT-based obfuscation in FPGA

In an FPGA solutions the hardware resources are are fixed and is designed independent of

a given netlist. Hence by nature, state of the art FPGAs provide a large pool of resources

to be applicable to a wide range of applications, resulting in a large number of non-utilized

LUTs after mapping a netlist to the FPGA. For instance, the study in [29] depicts the

utilization of Altera Cyclone V after mapping a diverse set of benchmarks of various scale

and complexity to this FPGA, and reported that FPGA utilization is typically low. This

phenomenon was coined as FPGA-Dark-Silicon [29]. These unmapped and unutilized LUTs

are freely available and could be used for obfuscating a to-be-mapped netlist. Hence, LUT-

based obfuscation in FPGAs could be considered as utilizing unused LUTs, or using larger

than needed LUTs, where the connectivity and impact of additional logic is controlled using

keys. The process of using LUTs in FPGA for the purpose of logic obfuscation is illustrated

in in Fig. 2.1(b), where some of 2-input (or 3-input) logic gates could be mapped to a LUT

of larger size (e.g. size 4 or 5). Then, the additional inputs can be taken from the output

of an internally implemented Non-Linear Feedback Shift Register (NLFSR) or a Physical

Unclonable Function (PUF) [30]. In addition, by changing the ordering of inputs based

on the key inputs (generated by PUF), the obfuscated circuit possibilities increases. Lets

assume a PUF is used. In this case, each FPGA has a unique PUF response. By knowing the

PUF response ahead of time, the bitstream will load the LUTs with proper values and will

transmit the directives for connecting the known PUF outputs to the proper LUT inputs and

switch box select lines. However, the PUF values will not be transmitted in the bitstream.

This missing key values serve as the obfuscation key in LUT based obfuscation. Also note

that the bitstream in this case is unique for each FPGA, as each FPGA has a unique PUF

7
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Figure 2.1: (a) Original circuit (b) Modified using configurable switches + PUFs (NLFSRs).

response. In this case, even if the bitstream is leaked, the PUF response remains unknown,

making the problem similar to ASIC flow, where after reverse engineering the obfuscated

netlist is available, but the keys are unknown.

2.2 LUT-based obfuscation in ASIC

In ASICs, utilizing LUTs for obfuscation can lead to the considerable area and delay over-

head. In the CMOS implementation of LUTs, the area overhead of the memory elements

in a LUT exponentially increases as a function of its input size. Hence, the imposed area

overhead limits the number of LUTs that could replace regular gates in a netlist. In ad-

dition, the performance/delay requirements constrain the placement of LUTs in timing

critical and near timing critical paths. However, with the introduction of STT and MTJ

based LUTs [14, 31] and the promise of integration of STT and MTJ/pMTJ-based LUTs

into the same CMOS process, the area overhead of LUTs is expected to sharply reduce.

Integration of CMOS and MTJ/STT devices makes it possible for a larger number of LUTs

to be implemented given a fixed area overhead. Using LUTs for obfuscation in ASICs is

straightforward: selected cells are removed and replaced by LUTs. The functionality of

cell remains hidden to the manufacturer. LUTs are then programmed after fabrication in

a trusted testing facility.
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2.3 Proposed LUT-Lock Obfuscation Algorithm

Our proposed LUT-Lock algorithm combines several key features, each enhancing its ability

to resist against SAT attacks. In this section, we first explain each key feature, and then

propose the LUT-Lock algorithm that combines all features into a comprehensive solution.

In the result section of this paper, we illustrate how by adding each key feature, the resiliency

of obfuscated netlist against SAT attack increases, proving that the resiliency gained from

adding this features are orthogonal to one another.

2.3.1 FIC: Focusing on the Fan-In Cone of minimum number of primary

output

The first criteria for selection of candidate gates is derived from the observation that higher

output corruption reduces resiliency of obfuscation solution against SAT attacks [11, 12].

Hence, by mapping the LUTs such that it affects the minimum number of primary outputs

(POs), the degree of output corruption reduces, increasing the strength of obfuscation

against SAT attacks. To achieve this, we limit the LUT insertion to the fan-in cone of

smallest possible set of primary outputs (best case being single output), and we refer this

algorithm as FIC. Note that FIC LUT-replacement still corrupts other outputs, as the

intersection of fan-in cones of different outputs is not empty. In addition, the number of

gates in the intersection of fan-in cones increases as we move from outputs toward inputs.

Hence the obfuscation should be designed to replace the closest cells to the selected output

first. This could be achieved by means of a Breadth First Search (BFS). In order to avoid

timing violation due to replacing a gate with LUT, we estimates the delay of all timing paths

through a gate selected for replacement. If the estimated delay is more than predefined

threshold (e.g. 10% delay overhead), the allowance of replacement for this candidate will

be revoked, and next candidate will be checked for replacement. After replacing all gates

in the current Fan-In Cone, a new primary output will be selected.

In FIC algorithm, the output pin(s) selected for obfuscation should meet two conditions:
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(1) Total Positive Slack (TPS) of all timing paths leading to that primary output(s) should

be large. This is because replacing a gate with LUT incurs additional delay in every timing

path that passes through that gate. Hence, we need available timing slack for replacement

of faster logic gates with slower LUTs. (2) it must have a large fan-in cone size, giving us

more candidate gates for replacement. Fig. 2.2(a) illustrates the FIC replacement strategy.

Between the two outputs, i.e. g8 and g9, g9 is not selected, as it contains the largest number

of timing critical paths. When using BFS for gate selection, FIC selects gates {G8 and

G5} or {G8, G5, G2, and G4} when its asked to replace 2 or 4 gates respectively. For

large circuits, we define two coefficients (α and β) for prioritizing these two conditions to

generate a cumulative weight which helps selecting the best candidate output. For this

purpose, we normalize the TPS (into TPS*) and FIC (into FIC*) with respect to their

maximum possible values in the given circuit. Then using α.TPS* + β.FIC*, we obtain

the cumulative weight for the FIC selection process.

2.3.2 HSC: Focusing on Higher Skew Gates in FIC

Our investigation on the hardness of many tested LUT placement strategies revealed that

the cells with higher Signal Probability Skew (SPS) at their output are better candidates

for obfuscation. The SPS at the output of a gate is defined as |Pr(0) − Pr(1)|, with Pr(1)

and Pr(0) being the probability of having a 1 or 0 at the output of the gate respectively.

The SPS of a gate is a measure of its controllability using primary inputs. The higher the

SPS, the lower the controllability of the respective gate. Hence, selecting a high SPS output

gate lowers the chances of SAT solver selecting an input that tests the output of that gate.

With this observation, the second step of our proposed algorithm is to modify the FIC to

perform the gate selection based on its measure of gate’s output (higher) skew probability.

In this modified FIC algorithm, which is now referred to as HSC, the gate selection strategy

is modified as follows: within the Fan-In cone of selected output(s) based on FIC, the

replacement priority is given to gates with higher SPS; In HSC, when a gate is selected for

obfuscation, its fan-in gates will be added to the list of gates that could be visited in the

10
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Figure 2.2: Gate selection process based on various sub-algorithms.

next search for gate replacement, and the gates with the highest SPS will be selected among

all gates in the list. Similar to FIC algorithm, each gate replacement candidate should pass

the timing check, otherwise ignored. HSC replacement flow is illustrated in Fig. 2.2(b). In

the first invocation of HSC, fan-in cone of gate G8, for satisfying the FIC requirements, is

selected and is obfuscated. For the 2nd gate selection, HSC has three candidates G2, G5,

and G4. Based on the skew probability of wires, as illustrated in Fig. 2.2(b), G4 with SPS

of 0.5 is selected over G5 and G2 with SPS of 0.5 and zero respectively. For the 3rd gate

selection, HSC appends the fan-in gates of G4 (Here is primary inputs and will be ignored!)

as candidate gates for replacement along with G2 and G5. Hence, among these 2 gates, G5

is selected for having the higher SPS.

2.3.3 MFO-HSC: Focusing on gates with Minimum Fan-Out

As mentioned previously, lowering the output corruption increases the difficulty of the SAT

attack [11,12]. Although we develop FIC in the first step, the probability of having a fan-in

cone with no common gate with other fan-in cones is close to zero. Separating the fan-in

cones of different outputs could be achieved by replicating common gate, however this will
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result in a large area overhead. In order to limit the primary output corruption without

exploding the area, we introduce another sub-algorithm in which we give obfuscation priority

to candidate gate with lowest fan-out. We refer to this gate selection strategy as MFO-HSC.

In MFO-HSC algorithm, a BFS search is first deployed (FIC), visiting all candidate gates

at the current breadth, and gate(s) with a minimum number of fan-outs will be selected.

Whenever a tie between two or more gates is observed, the gate with the highest SPS is

selected. When a gate is obfuscated, its fan-in gates are added to the list of candidate

gates that will be visited in the next gate selection. Similar to FIC, each gate replacement

candidate should pass the timing check, otherwise ignored. Fig. 2.2(c) depicts how the

MFO-HSC works; Similar to FIC, the fan-in cone of g8 is selected for obfuscation and G8

is obfuscated. Based on BFS, the next candidates are G5, G2, and G4. The gate G2 is

selected over G5 and G4 for having fan-out of 1. The fan-in of G2 is then added to the

candidate gates for the next visit. In this figure, the fan-in of G2 are primary inputs, and

they are ignored, and the the next candidate gate is only G5.

2.3.4 MO-HSC: Focusing on Gates with least impact on POs

Based on our observation in MFO-HSC, there are some gates that have more than one

fan-out, but they only affect one output. For instance, as it can be seen Fig. 2.2(c), the

fan-out of g4 is 2. However, it affects only g9. This observation led us to introduce a similar

but more efficient sub-algorithm, which is called MO-HSC. In this sub-algorithm rather

than looking at the fan-out of the candidate gates, we count the number of outputs that

are connected to each candidate gate. MO-HSC requires additional parsing and processing,

however it further reduces the output corruption as a result of obfuscation. Similar to

MFO-HSC, the tie between two candidate gates (for affecting an equal number of outputs)

is broken using SPS of respective gates. Each time a gate is selected for its obfuscation,

the fan-in of the gate is added to the list of candidate gates to be considered for the next

gate selection. Similar to FIC algorithm, each gate replacement candidate should pass the

timing check, otherwise ignored. MO-HSC is illustrated in Fig. 2.2(d), where after selecting
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the G8 based on FIC selection policy, the gate G2 is selected over G5 and G4 for impacting

smaller number of outputs.

2.3.5 NB2-MO-HSC: Avoiding Back-to-Back insertion of LUTs

The back-to-back obfuscation of gates with LUTs suffers from the increased number of key-

possibilities as a result of the provided freedom in exploiting gate conversion based on De

Morgans’s Laws. For instance, as it can be seen in Fig. 2.3, the back-to-back obfuscation

of the function (A∨B)∧ (C ∨D), using 2-input LUTs, could have 4 different combinations

of programmable logic based on De Morgans’s Laws. So, the number of correct keys from

the intended 1 increases to 4. Each additional gate obfuscated in the fan-in of this logic

cone, creates another set of possibilities after application of De Morgans’s law, leading to

exponential increase in the number of valid keys, a phenomenon that we refer to as correct

key explosion. Depending on the growth rate of the set of valid-keys and the number of

keys, obfuscating more gate may even reduce the obfuscation strength. This is illustrated

in Fig. 2.4 where execution time of a SAT solver, and a number of generated keys per

each inserted LUT for the benchmark C5315 of ISCAS-85 is plotted. The LUTs are placed

back-to-back, hence, insertion of each LUT increases the number of keys. The plot focuses

on the insertion of 38th to the 45th LUT. The insertion of 41st and 42nd LUT, produces a

large number of new keys (around 104) based on De Morgan gate conversion possibilities.

Hence, the SAT solver execution time doesn’t increase. On the other hand, replacement of

gate 40 produces far less number of new keys (in range of 10s). Hence the growth of the set

of candidate/possible keys exceeds the growth rate of correct keys, significantly increasing

the run-time of SAT solver. From this key observation, we need to suppress the growth-rate

of correct keys from exploitation of De Morgan’s gate conversion laws. So, we introduce

another algorithm, NB2-MO-HSC, which implements this restriction by avoiding back-to-

back obfuscated, keeping the set of correct keys at a minimum. In this gate replacement

strategy, we first select the candidates in FIC using no back-to-back constraint. Then,

the selection among the candidates is made based on candidate gate’s connectivity to the
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minimum number of outputs. If there is a tie among candidates, the SPS of candidate gates

determines the selection. As soon as a gate is selected, the NB2-MO-HSC searches the

fan-in of the selected gate, skips one logic level (no back to back), and adds the fan-in of all

skipped gates to the set of candidate gates for the next gate selection. Similar to FIC, each

gate replacement candidate should pass the timing check, otherwise ignored. As illustrated

in Fig. 2.2(e), the application of NB2-MO-HSC results in the selection of G8 and G3 as

first two gates to be obfuscated.

The Algorithm 1 captures the detail implementation of the proposed Lut-Lock obfus-

cation flow implementing the NB2-MO-HSC policy. As mentioned previously, the overall

structures of MFO-HSC and MO-HSC are the same, and since MO-HSC provides slightly

more resilient behaviour and also more possible candidates during each iteration, we embed

MO-HSC in the proposed LUT-Lock algorithm.

2.4 Experimental Setup

For benchmarking the proposed LUT-Lock algorithm, we used a farm of desktops equipped

with Intel Core-i5 processor and 8GB of RAM. For a fair comparison, and to reduce the

impact of the operating system background processes, we dedicated one machine to each

SAT solver at a time, and installed Ubuntu Server 16.04.3 LTS operating system in shell

mode. We used the largest ISCAS-85 benchmarks (C2670, C3540, C5315, C6288, and

C7552) to show the effectiveness of the proposed algorithm. We employed the Lingling-

based SAT attack described and developed by [7]. We measured the SAT solver execution

(a) OR-AND (b) NOR-NOR (c) Custom1 (d) Custom2

Figure 2.3: Gate conversion using De-Morgan’s law.
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Algorithm 1 LUT-Lock: Implementing NB2-MO-HSC for LUT-based netlist obfuscation

1: α = β = 0.5; . α: TPS coeff, β: FIC size coeff;
2: γ = 0.1 . γ: feasible delay overhead
3: max delay thr = γ×CriticalPath;
4: MaxSize FIC = Max TPS = 0; . Total Positive Slack (TPS);
5: Forbidden output list = []
6: outputs list = find outputs(Circuit C );
7: for each (output in outputs list) do
8: if (output not in Forbidden output list) then
9: current FIC = BFS(output);

10: for all (paths in current FIC ) do
11: Current TPS = TPS Calc(current FIC, paths);
12: Current Weight = α×Current TPS + β×sizeof(current FIC )
13: Max Weight = α×Max TPS + β×MaxSize FIC
14: if (Current Weight > Max Weight) then
15: candidate output = output ;
16: MaxSize FIC = sizeof(BFS(candidate output));
17: Max TPS = Current TPS ;

18: candidate list = Forbidden list = [];
19: candidate list.append(candidate output);
20: while (num of obfuscated < target no) do
21: if (candidate list == φ) then
22: Forbidden output list.append(candidate output)
23: go to line 5
24: else
25: current candidate = candidate list[0] ;
26: if (delay estimate(current candidate) < max delay thr) then
27: replace LUT(current candidate);
28: current candidate childlist = current candidate.child;
29: Forbidden list.append(current candidate childlist);
30: for each (current child in current candidate childlist) do
31: if (current child.child not in Forbidden list) then
32: candidate list.append(current child.child)

33: sort list(candidate list, min out impact);
34: for all (candidate list members with equal min out impact) do
35: sort list(candidate list, skew probability);

36: else
37: remove current candidate;
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Figure 2.4: Impact of B2B Insertion on Correct Key Pool Size and SAT Runtime (C5315).

time by increasing the number of obfuscated gates from 1 to 200. A run-time limit of

1.1× 104 seconds was set for the SAT solver.

2.5 Results and Discussion

In order to show the effectiveness of each key feature of the proposed algorithm, we compared

the execution time of SAT solver on circuits which are obfuscated based on these sub-

algorithms. We also compare the effectiveness of the proposed LUT-Lock with that of

previous work in STT-LUT [14] and Reconfigurable barriers [8].

As illustrated in Fig. 2.5 the SAT solver’s execution time increases as the replacement

algorithm evolves from Random replacement to FIC to HSC to MFO-HSC to MO-HSC

to MB2-MO-HSC, illustrating the orthogonal improvement of added features in providing

resiliency against SAT attacks. The LUT-Lock algorithm, implementing the NB2-MO-HSC

replacement policy, combines all key features and provides a close to exponential increase

in the execution time of SAT attack with respect to the number of obfuscated gates.

As illustrated in Fig. 2.5, the execution time of the SAT solver, although increases

steadily, faces small variation. The variation in the execution time is the result of (1)

random nature of SAT solver in selecting DIPs from run-to-run, and (2) rate of growth in

the size of valid keys (as a result of gate conversion using the application of De Morgan’s

laws, as explained in section 2.3.5), compared to the rate of growth in the number of possible
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Figure 2.5: SAT Runtime in Presence of LUT-Lock (NB2-MO-HSC).

keys. A poor selection of candidates for obfuscation results in a faster growth in the number

of valid keys, reducing the overall effectiveness of obfuscated netlist against the SAT attack.

As illustrated, the LUT-Lock has the least variation, as it eliminates the explosion of the

set of valid keys by preventing back-to-back gate obfuscation.

Table 2.1 captures the fitted function of execution time for different sub-algorithms and

LUT-Lock, where x denote the number of obfuscated gates. As illustrated in this Table, the

LUT-Lock (NB2-MO-HSC) poses an exceptionally more challenging SAT problem compare

to other obfuscation scheme. Table 2.2 compare the execution time of SAT attack, across
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selected number of ISCAS 85 benchmarks, once obfuscated by random LUT insertion and

once using LUT-Lock. As illustrated, despite random policy, the SAT execution time grows

exponentially when LUT-Lock policy is adopted.

Table 2.1: Exponential Regression on SAT Runtime.

Percentage RND FIC HSC MFO-HSC MO-HSC NB2-MO-HSC

1% 0.52784 2.3776 2.7616 2.632 1.9992 12.6224

2% 1.50576 14.1 16.6904 15.5616 16.5524 320.892

3% 2.9336 351.9444 122.232 2320.2128 2234.1712 2684.6368

5% 7.132 2246.175 2303.346 4509.764 4480.4504 8804.928

10% 17.4492 4768.544 6642.756 8802.2448 8803.548 time-out

Exp. 

Reg. 

(Ae
Bx

)

A = 0.2065

B = 0.8875

A = 38.769

B = 0.9961

A = 15.238

B = 1.217

A = 191.691

B = 0.7687

A = 182.622

B = 0.7783

A = 0.352

B = 3.518

RND FIC HSC MFO-HSC MO-HSC

NB2-MO-HSC

(LUT-Lock)

A = 0.2065

B = 0.8875

A = 38.769

B = 0.9961

A = 15.238

B = 1.217

A = 41.252

B = 1.316

A = 38.644

B = 1.339

A = 0.352

B = 3.518

Exponential 

Regression 

(Ae
Bx

)

Table 2.2: SAT Runtime on LUT-Lock with Different Percentages.

Circuits RND

c2670

c3540

c5315

c6288

c7552

1%

Lut-Lock RND

2%

RND

3%

RND

5%

RND

10%

0.18 0.876 0.5 1.388 0.93 1.924 2.41 24.64 3.48 time-out

0.6 1.244 1.07 6.12 2.25 988.2 2.66 time-out 5.29 time-out

0.5 9.052 1.21 115.012 1.66 941.02 3.93 time-out 12.04 time-out

0.57 23.508 2.14 1299.04 6.12 time-out 15.7 time-out 251.6 time-out

0.79 28.432 2.61 182.9 3.71 492.04 11.1 time-out 264.9 time-out

Lut-Lock Lut-Lock Lut-Lock Lut-Lock

Figure 2.5 visualizes the growth in the execution time of SAT attack, for two of ISCAS-85

benchmarks obfuscated using various LUT replacement policies. Other benchmarks have

similar behaviour and are omitted for lack of space. In addition to replacement policies

discussed in this paper, the SAT resiliency of replacement policies in prior work, namely

STT-LUT [14] and Reconfigurable barriers [8] are captured in this figure. From this figure,

the SAT resiliency of prior work is close to that of random replacement, showing slow growth

in SAT attack execution time with respect to the number of inserted gates, where the Lot-

Lock replacement policy clearly shows a much faster exponential increase in difficulty. As

illustrated, in both benchmarks, with only 20 replaced LUTs, the LUT-Lock obfuscated

netlist is as resilient as the netlist produced by [14] and [8] replacement policy when using
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10X (200 gates) the number of gates. And by increasing the number of gates, the SAT

resiliency of LUT-Lock insertion policy still grows exponentially.
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Chapter 3: SAT-hard Instances via Configurable Logic and

Routing

3.1 A New Perspective of SAT Hardness

A SAT attack, in each of its iterations, finds a Discriminating Input Patterns and rules

out one or more incorrect key value(s). Hence, many SAT-resilient locking schemes tried

to weaken the pruning power of one DIPs, making sure each DIP can only rule out one

incorrect key. This forces the number of needed iterations to exponentially increase with

respect to the number of keys as a mean of exponentially increasing the required execution

time of the SAT attack, although, the execution time of each iteration of SAT solver could

be quite short.

The strength of SAT solvers come from their Conflict-Driven Clause Learning (CDCL)

ability. In each iteration of the SAT attack, a new SAT problem is defined. The goal of

the SAT solver is to finds a satisfying value for all its literals. The literal values are either

assigned or derived. Each assignment of value to a literal pushes the solver down into one

of the branches of its decision tree implemented using a recursive call. During this recursive

procedure, if the solver reaches a state where the derived value of a literal is different from

its previously derived or assigned value, a conflict is detected. This is when the solver

investigates how the conflict was driven, identifies a set of literal assignments that cause the

conflict, and generates a clause that prevents the identified literal assignment. The newly

learned conflict-clause is then added to the original problem set, aiding the solver to prune

its decision tree and to avoid reaching the same conflict in the future. Then, the decision

tree is backtracked a safe point prior to the conflict.

Davis-Putnam-Logemann-Loveland (DPLL) algorithm (or one of its derivatives), which

is used to perform CDCL, is illustrated in Algorithm 2. Each SAT iteration invokes the
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DPLL function. In addition, DPLL may also call itself. As it can be seen in line 12 and

16, new recursive call adds a new variable, l or l̄, to Φ. Hence, an increase in the number

of recursive calls (line 12 and 16) increases the complexity of the next DPLL call. So,

the number and complexity of recursive DPLL calls could be a dominant factor for each

invocation of SAT solver (a SAT Attack iteration).

Algorithm 2 DPLL Algorithm Pseudo-code

1: function DPLL(Φ)
2: if Φ has an empty clause then
3: return ”UNSAT ”;

4: if Φ is [] then . Φ is empty
5: SATassign ← Current Assignment;
6: return ”SAT ”;

7: if Φ contains a unit clause l then . Unit Propagation
8: Φ ← Φ - all clauses with l;
9: Φ ← Φ with eliminating all l̄;

10: return DPLL(Φ);

11: if Φ contains a pure literal l then . Purification
12: return DPLL(Φ ∪ l);
13: if DPLL(Φ ∪ l) is SAT then . Branching
14: return ”SAT ”;
15: else
16: return DPLL(Φ ∪ l̄); . (One more level in Tree)

The runtime of a SAT attack could be obtain from:

TAttack =
N∑
i=1

T (i) =
N∑
i=1

(t+ TDPLL(Φ)) (3.1)

A difficult problem requires a very large runtime. The first solution is weakening the DIP

and increasing the number of iteration (N) to a very large number [11, 12, 15, 18]. In spite

of very shallow DPLL recursive tree, and for having a very large N these solution exhibit

resistance against SAT attack. However, this type of defense, as suggested previously is

prone to SPS [12], Approximate-based [21], bypass [22], and possibly removal attack [20].

Based on the discussion on DPLL, an alternative solution is smaller N but larger recur-

sive trees. Hence, as illustrated in equation 3.2, the attack time could also increase beyond
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acceptable if the number of recursive calls (M) grows to a very large number.

TAttack =

N∑
i=1

(t+ TDPLL(Φ)) '
N∑
i=1

M∑
j=1

(TAvg
DPLL) 'MN × TAvg

DPLL (3.2)

The very strong aspect of this form of building SAT-hard solutions is that (1) the prob-

lems posed at each iteration of SAT attack is a SAT-hard problem, (2) the output corruption

of this methods is significantly higher than obfuscating solution relying on increasing the

N, (3) it is not susceptible to SPS, removal or approximate attack.

Motivated from this discussion, in this paper we present the Full-Lock. Full-Lock is able

to considerably and exponentially increase the number (M) and computational complexity

(TAvg
DPLL) of recursive calls in DPLL function via replacing some of the logic and routing in

the circuit by one or more SAT-hard obfuscation instance(s) in the circuit.

3.2 Full-Lock

Many SAT-hard problems (instances) are introduced annually in SAT competition. These

problems aim to trap Davis-Putnam-Logemann-Loveland (DPLL) or generate extremely

complex and time-consuming computational models for this algorithm. Although, none of

them is directly convertible to a logic circuit, feature and tricks used in these SAT-hard

problems could be used in designing SAT-hard circuit (SATC) obfuscation problems.

In [1], the SAT hardness of formulas produced using fixed-length clause generator was

investigated. This work concluded that ”For formulas that are either relatively short, in

which the number of clauses per variable is less than 3, or relatively long, in which the

number of clauses per variable is larger than 6, DPLL finishes quickly, but the formulas of

medium length, between 3 to 6, take significantly longer”. This is because formulas that have

few clauses are under-constrained, and have several satisfying assignments. Providing under

constrained clauses to the algorithm 3.1 increases the chances of one satisfying assignment
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to be found early in the search using unit propagation or purification. Note that these

two steps of DPLL algorithm are used to simplify the size of formula before branching,

while branching assigns a value to an unassigned variable, making the DPLL tree one level

deeper. Formulas that have many clauses on the other hand are over-constrained. In over-

constrained clauses, the contradictions are found easier and the search is quickly concluded.

SAT hardness of medium length formulas is higher than under or over-constrained for-

mulas. This is because they only have relatively few (if any) satisfying assignments. Hence,

throughout the search and after assigning values to many variables, many empty clauses

will be generated. This results in a deep DPLL recursive tree for testing each assumption

[32]. Fig. 3.1 demonstrates the number of recursive calls made by DPLL for solving the

formula for fixed-length 3-SAT formulas, where the ratio of clauses to variables is varied

from 2 to 8. As illustrated, the ratio from 3 to 6 provides much higher DPLL calls, and 4.3

clauses per variable is the best ratio, generating the most computational challenging SAT

instances with the highest number of DPLL calls. For example, a 100-variable 300-clause

instance (clause/variable = 3 ”under-constrained”), or a 100-variable 5000-clause instance

(clause/variable = 50 ”over-constrained”) is easily solvable within few seconds. However,

the SAT solver takes a very long time solving a 3-SAT instance which is constructed with

100 variables and 450 clauses. From this discussion, an obfuscated circuit is SAT-hard when

its Conjunctive Normal Form (CNF) has medium-length clauses with a ratio of clauses to

variables between 3 to 6 (best if close to 4)

3.2.1 Logarithmic Networks for SAT-Hardness

Table 3.1 lists the Tseytin transformation [34] of various logic gates into their respective

CNF expression. From this table, only XOR/XNOR and MUX have 4 clauses per gate. This

is when the clauses to variables ratio is 1 and 4/3 in MUX and XOR/XNOR respectively.

In spite of the observation that for a single gate the XOR/XNOR has a larger clause to

variables ratio, MUXes provides a better building block for constructing SAT-hard circuits.

This is because: (1) with no unit propagation and purification, for having four variables,
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Figure 3.1: Median Number of Recursive DPLL Tree Pruning/Backtracking for Random 3-SAT Formulas
[1].

Table 3.1: Tseytin Transformation of Basic Logic Gates.

Gate Operation CNF (sub-expression)

C = AND(A,B) C = A.B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
C = NAND(A,B) C = A.B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
C = OR(A,B) C = A+B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
C = NOR(A,B) C = A+B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)
C = BUFF(A,B) C = A (A ∨ C) ∧ (A ∨ C)
C = NOT(A,B) C = A (A ∨ C) ∧ (A ∨ C)
C = XOR(A,B) C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)
C = XNOR(A,B) C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)
C = MUX(S,A,B)C = A.S +B.S (S ∨A ∨ C) ∧ (S ∨A ∨ C) ∧ (S ∨B ∨ C) ∧ (S ∨B ∨ C)

a MUX can make the recursive DPLL tree one level deeper, (2) unit propagation and

purification steps in DPLL algorithm provide more simplified and smaller formula using

enhanced Gaussian elimination while the contribution of XOR/XNOR gates are much higher

[35]. Hence, MUXes needs more DPLL recursive tree prunings/backtrackings compared to

XORs/XNORs. Moreover, since unit propagation and purification satisfy less formula, the

clause to variable ratio will increase while MUXes have more contribution.

The next step for building a SAT hard problem, and to push the clause to variable

ratio to the desired range of 3 to 6 (4.3 as the best), is preventing the propagation and
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Logic 2

Logic 3

Figure 3.2: N -by-M switch-boxes for Building Hard Satisfiable Instances [2].

purification from simplifying the circuit before branching into recursive DPLL tree. This

could be achieved by building a switching network using MUXes, where none of the variable

related to a given MUX in a switching network could be resolved, unless their cascaded

variables (related to cascaded MUXes in the original circuit) are resolved, a requirement

that is recursively continued. This would prevent purification and simplification prior to

reaching the leaves of the decision tree, as each variable in an intermediate layer of switching

network is cascaded, while pushing up the clause to variable ratio to the desired range.

This is consistent with the finding in the [37], in which investigating Boolean formulations

of global detailed interconnect constraints, authors concluded that the CNF of symmetric

switching networks is a hard problem for SAT solvers. In addition, using N -by-M switch-

boxes, with back-to-back interconnection, illustrated in Fig. 3.2 creates hard satisfiable

instances that trap even the best solvers in hopeless regions of their solution space for a

long time before a satisfying solution can be found [2].

In Full-Lock we achieve this by constructing a key-configurable logarithmic-based net-

work (CLN) for obfuscation of routes. For this purpose, we create small and lightweight

switch-boxes (SwB) that are implemented easily using only MUXes. These small and

lightweight SwBs allow us to create large logarithmic switching (log2N) network to (1)

increase the clauses to variables ratio using MUXes that are independently interconnected

back-to-back (cascaded) to each other, and (2) benefit from the hardness of switch-boxes

while the power, performance, and area overhead remains reasonable.

Across all switching networks, a set of self-routing logarithmic networks, log2N networks,

provides configurable interconnection with less overhead compared to conventional networks

such as mesh or crossbar. There are numerous self-routing networks in this category, such as
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Figure 3.3: Shuffle-based Blocking CLN with N = 8.

banyan, baseline, shuffle, etc. Fig. 3.3 demonstrates a simple implementation of a 8×8 CLN

using the blocking shuffle network [38]. This CLN is constructed using small SwBs, where

each SwB is built using MUXes. In each SwB the outputs can be an arbitrary permutation of

the inputs. In addition, as shown, we add key-configurable inverters for each wire, allowing

an output to be shuffled and negated based on the key value. The CLN has N inputs, and

due to its structure N is a power of 2. Numbers of SwBs in a CLN depends on the number

of inputs as well as the model of log2N networks. In all aforementioned blocking CLN, the

number of SwBs is the same, i.e. N/2 ∗ logN , and the only difference between them is the

topology of SwBs interconnections.

The previously discussed self-routing logarithmic networks are blocking networks as they

cannot propagate all permutations of their inputs to the outputs. In the result section of this

paper, we illustrate that the blocking feature of these networks, eliminate a large number

of permutations and significantly reduce the SAT hardness of these networks. This could

change by building a non-blocking network.

According to [39], a non-blocking logarithmic network is characterized by LOGN,M,P .

In this equations N denotes the number of inputs/outputs, M is the number of extra

(cascaded) stages, and P indicates there are P − 1 additional copies vertically cascaded.

Exploration on N , M , and P shows that the minimum feasible values of P and M , which
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Figure 3.4: Almost Non-Blocking CLN, LOG8,1,1.

makes the network strictly non-blocking, results in constructing a much larger network than

a blocking CLN. As an instance, for N = 64, these values are M = 3 and P = 6. It means

that a LOGN,M,P , with N = 64, has more than 5× area overhead compared to a blocking

CLN with the same input size, i.e. N = 64.

To substantially increase the permutations possibilities without incurring large area over-

head, we used the near non-blocking logarithmic network suggested in [39] for constructing

a key-Configurable Logarithmic-based Network (CLN). This network is able to generate not

all, but almost all permutations, while it could be implemented using a LOGN,log2(N)−2,1

configuration, meaning it has only log2(N) − 2 extra stages and no additional copy. Fig.

3.4, demonstrates an example of such an almost non-blocking CLN with N = 8. As it can

be seen, the topology of SwBs interconnections is different with shuffle-based, shown in

Fig. 3.3. This topology is a banyan-based interconnection that matches with our proposed

LOGN,log2(N)−2,1.

Since an almost non-blocking CLN has only log2(N)−2 extra stages, its area and power

overhead is roughly 2x compared to a blocking CLN with the same N . However, this almost

non-blocking CLN is far more resistant against SAT attack compared to a blocking network.

For example, an N=64 input non-blocking CLN allow only 5 iterations of SAT attack to

be completed within 2×106 seconds, while the same size blocking network resist the SAT
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attack for only ∼17 Seconds, or a much larger blocking network of N = 512 inputs (4 times

the number of inputs, 16 times the area) complete 6 iterations of SAT attack in 2×106

seconds.

3.2.2 Strongly Twisted CLN into LUT/Logic

CLN provides an interconnect locking scheme that is able to generate a SAT-hard instance

which significantly increases the execution time for each SAT iteration. However, in order to

enhance this strength, and especially resist against other types of attacks, such as removal

attack, we try to twist CLN into the logic of the gates around it. For this purpose, we

suggest two methods. First, as was mentioned, we add key-configurable inverters within

CLN. These inverters allow us to combine the CLN with the logic of the gates leading its

inputs. In fact, both logic and interconnect locking is embedded into the CLN. For instance,

suppose that one of the inputs of CLN is derived using an OR gate. So, we can change it

to NOR, and configure the CLN to generate its negate on its corresponding output. These

key-configurable inverters within CLN allow us to change the logic of the gates leading it.

So, even removing CLN and finding the correct permutation provided by CLN will not

generate correct functionality. In addition, since adding these inverters has no impact on

simplification steps in DPLL, i.e. unit propagation and purification, the clause to variable

ratio generated by CLN will not change.

Second, we replace the gates preceding the CLN with small Spin Transfer Torque- (STT)-

based LUTs with the same input. Combining CLN with LUTs provide a fully Programmable

Logic and Routing blocks (PLRs) that bears a resemblance to FPGA architecture. From

SAT attack perspective, since each LUT will be translated to MUXes, for a LUT with R

inputs, it adds up to R level to recursive DPLL tree. Moreover, since LUTs are directly

connected to the output of CLN, these extra R level will be added to the large recursive

DPLL tree of CLN. Hence, by massively increasing the size of recursive DPLL tree of CLN

using small LUTs, PLR boosts the security of Full-Lock against SAT.

It should be noted that we use STT-based LUTs that are similar in functionality to
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Figure 3.5: Power, Delay, and Area of STT-LUT and Standard Cells in 28nm CMOS.

FPGAs, however, they provide significantly higher speed running at GHz frequency, near

zero leakage power, high thermal stability, and highly integrative with CMOS [15]. Since,

each gate, located at the output of CLN, will be replaced with a LUT with the same input

size, investigation on sizes of gates in different benchmarks such as ISCAS-85 and MCNC,

shows that the maximum fan-in size is 5. It means that the largest required LUT has 5

inputs. Hence, using STT-based LUTs with a maximum size of 5 relatively has no delay

overhead compared to CMOS-based basic gates. In addition, the power and area overhead

is considerably low in these LUTs with size less than 5. As shown in Fig. 3.5, LUTs with

size 2, 3, 4, and 5, have negligible overhead compared to CMOS-based basic gates. In

addition, the size of all gates leading the CLN can be decreased to be 2. For instance, an

AND3 gate can be changed to two AND2 while the outputs of one of them is an input for

the second one. Hence, the overhead of STT-LUT can be even lower while only LUTs with

size 2 is required.

3.2.3 Inserting SAT-hard PLRs into Design

Using these PLRs provides a big advantage compared to other locking schemes. Since

inserting a PLR in a circuit provides a SAT-hard instance in the circuit, it is not required

to employ a specific insertion to enhance the strength of PLRs. However, due to the
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Figure 3.6: PLR Insertion Example.

topological structure of circuits it may be beneficial to have an insertion policy. But, we

demonstrate that even using random insertion/replacement strategy for these PLRs creates

extremely large recursive DPLL tree that makes the circuit resilient against SAT.

Additionally, in comparison with Cross-lock [27] that is a layout-based interconnect

locking scheme, Full-Lock has no restriction on selection of wires and logic gates to replace

them with PLRs. In Cross-lock, since they used high-density cone-based selection strategies,

such as k-cut and wire-cut, to decrease the possibility of using removal attack, it has a

restriction in selecting the wires to insert the crossbar. However, since we strongly twisted

the CLN into the logic of the gates leading and preceding the selected wires, even removing

the CLN using removal attack does not generate correct functionality. Hence, there is no

limitation for wire selection in Full-Lock.

Fig. 3.6 demonstrates two simple examples that how Full-Lock inserts PLRs in the
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circuit. As shown in Fig. 3.6(a) and (b), the selected gates are highlighted in red, i.e. g14,

g15, g16, and g17. Since these gates have no impact on each other, replacing them with

PLR, including CLN and LUTs, does not generate any cycle in the design. However, Fig.

3.6(a) and (c) show that replacing the gates, which are highlighted in blue, i.e. g2, g5, g7,

and g9, generates cycle in the circuit. Additionally, some of the leading gates of CLN is

changed (negated), all highlighted in purple, i.e. g5, g12, gnew in Fig. 3.6(b), and g1, g6 in

Fig. 3.6(c), which shows that how twisting leading gates into CLN is working. For instance,

g5 in Fig. 3.6(a), an XOR, has been replaced with g5 in Fig. 3.6(b), an XNOR. In this

case, CLN will recover the functionality of this gate using key-configurable inverters that

are embedded into CLN.

3.3 Experimental Results

To show the efficiency of Full-lock, it is evaluated using different SAT-based attacks, in-

cluding SAT for acyclic [7, 40], cycSAT for cyclic [26], and AppSAT for approximate-based

[21], all implemented in C++, and were run on a Dell PowerEdge R620 equipped with Intel

Xeon E5-2670 2.50GHz and 64GB of RAM.

3.3.1 Blocking vs. almost non-Blocking CLN

As was mentioned previously, Since not all but almost all permutations can be generated

using non-blocking CLN, LOGN,log2(N)−2,1, it is far more resistant against SAT attack

compared to a blocking network, especially with less power/performance/area overhead.

We evaluate a shuffle-based CLN and an almost non-blocking with different sizes using

SAT. As it can be seen in Table 3.2, increasing the CLN size, exponentially increases SAT

execution time for either blocking or almost non-blocking. However, the SAT execution

time is at least one order of magnitude higher in almost non-blocking. In addition, SAT is

not able to break almost non-blocking CLN with a size larger than N = 64, however, for

blocking CLN, it is easily broken for all sizes less than N = 512.

31



Table 3.2: SAT RunTime on shuffle-based Blocking CLN.

CLN Size (N) 4 8 16 32 64 128 256 512

Shuffle-based Blocking CLN

SAT Iterations 7 8 9 13 15 27 28 TO

SAT Execution Time (Seconds) 0.01 0.04 0.22 1.22 17.4 154.7 2329.3 TO

Almost non-Blocking CLN

SAT Iterations 14 18 25 32 TO TO TO TO

SAT Execution Time (Seconds) 0.01 0.15 2.35 79.18 TO TO TO TO

TO: Timeout = 2× 106 Seconds

Table 3.3: PPA and SAT-Resilience of Blocking and almost non-Blocking CLNs.

CLN Area (um2) Power (nW ) Delay (ns) SAT-Resilient

Shuffle (N = 32) 10.1 448.1 0.82 7
LOG32,3,1 17.8 2137.5 0.98 7

Shuffle (N = 64) 22.8 1071.1 0.89 7
LOG64,4,1 38.6 8451.4 1.06 X

Shuffle (N = 128) 50.8 2503.6 0.93 7

Shuffle (N = 256) 113.6 5791.4 0.99 7

Shuffle (N = 512) 254.3 2308 1.04 X

Since CLNs is the main part of PLRs as a SAT-hard instance that have medium length

clauses while translated to CNF, the execution time of each iteration is significantly high,

particularly for large sizes that cannot be broken using SAT. For blocking CLN with size

N = 512 and non-blocking with size N = 64, after 2×106 Seconds, the number of completed

iterations in SAT is only 7 and 5, respectively. It means that, on average, each iteration at

least takes 2.8× 105 Seconds in blocking and 4× 105 in almost non-blocking CLNs.

Table 3.3 demonstrates power/area/delay of blocking and almost non-blocking CLNs

for different sizes using Synopsys generic 32nm educational libraries. As it can be seen, the

incurred overhead by the smallest almost non-blocking CLN, which is resilient against SAT

(N = 64), is approximately one-third of the smallest SAT-resilient blocking CLN (N = 512)

in terms of power consumption. Additionally, the overhead imposed by CLN is significantly

low compared to area and power of even small-scale benchmark circuits.

32



3.3.2 Full-Lock Security Against Various Attacks

As was mentioned previously, in Full-Lock, the gates and their driving wires will be selected

randomly to be replaced with PLRs. After selecting the required wires and their leading

gates, Full-lock replaces them with PLR. Furthermore, the logic of some gates leading the

selected wires will be negated. One or few PLR(s) can be added into the design based on

the design criteria in terms of power/area/delay or security.

Security Against SAT-based Attack

Since random insertion is implemented for inserting PLRs in Full-Lock, it may generate

cycle into the design. So, cycSAT has been used instead of SAT to support having potential

cycles in locked circuits. In addition, to check resiliency against approximate-based attack,

the cycSAT is enabled using AppSAT to extract the approximate key and corresponding

error rate. Table 3.4 shows cycSAT execution time while different numbers of PLRs with

different sizes have been inserted into ISCAS-85 and MCNC benchmark circuits. As it can

be seen, for all circuits, having three PLRs contain 32×32 CLNs makes all locked circuit

resistant against SAT. However, for each benchmark circuit, even smaller PLRs can break

cycSAT.

In order to show the SAT-hardness of PLRs, we explore different sizes/numbers of PLRs

to find the smallest size and the smallest number of PLRs (the lowest power/area overhead)

that is required to provide resiliency against SAT. Table 3.5 shows the best solution of Full-

Lock in terms of area/power/delay for each benchmark circuits. As shown, in all benchmark

circuits, Full-Lock needs smaller/fewer PLRs compared to the required numbers of crossbar

in Cross-Lock. As an instance, in apex4, only having two PLRs with a 32×32 CLN and

another PLR with a 8×8 CLN can break SAT while its timeout is set to 2×106 Seconds.

However, for the same circuit, Cross-Lock inserts 11 32×36 crossbars to make it resilient

against SAT.

In addition, in order to show that PLRs are SAT-hard instances that significantly in-

crease the number (M) and computational complexity (TAvg
DPLL) of DPLL calls in each SAT
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Table 3.4: SAT Runtime on Full-Lock with Different Sizes of PLRs.

Circuit 16×16 32×32

1 2 3 4 1 2 3

c432 28.8 1506.8 TO TO TO TO TO
c499 40.7 786.2 TO TO TO TO TO
c880 34.1 847.6 TO TO TO TO TO
c1355 64.9 1158.3 TO TO TO TO TO
c1908 45.5 1022.6 TO TO TO TO TO
c2670 79.8 1766.2 11791.5 184993.6 TO TO TO
c3540 67.2 429.6 7924.7 TO TO TO TO
c5315 66.8 887.2 5748.1 TO TO TO TO
c7552 90.3 1109.4 7638.6 66808.2 273367.4 TO TO

apex2 38.4 633.1 TO TO TO TO TO
apex4 40.1 348.9 3670.9 18539.1 58467.6 380449.5 TO

i4 55.8 1604.8 TO TO TO TO TO
i7 84.6 1330.8 TO TO TO TO TO

TO: Timeout = 2× 106 Seconds
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Figure 3.7: Average Clauses to Variables Ratio for Different Logic Locking Schemes.

iteration, we calculate the average clauses to variables ratio using MiniSAT for different

logic locking schemes during deobfuscation. As it can be seen in Fig. 3.7, clauses to vari-

ables ratio in Full-Lock is 3.77. However, for all other methods this value is much lower.

Across all logic locking schemes, LUT-Lock and Cross-Lock have higher clauses to variables

ratio. Since LUT-Lock uses key-programmable LUTs for obfuscation, the translated CNF

is MUX-based. However, since they have no back-to-back connection, the depth of MUX

tree is low, which results in reducing the value of this ratio. The only technique with a

close clauses to variables ratio is Cross-Lock, which is an interconnect locking with a tree

of MUX. However, this ratio is almost 4 (3.77) in Full-Lock.
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Table 3.5: PLRs Size in SAT-resilient Full-Lock compared to Cross-Lock.

Circuit # Gates # I/Os Full-Lock Cross-Lock [27]

c432 160 36/7 2×16×16 + 1×8×8 1×32×36
c499 202 41/32 2×16×16 + 1×8×8 1×32×36
c880 386 60/26 2×16×16 + 1×8×8 1×32×36
c1355 546 41/32 2×16×16 + 1×8×8 2×32×36
c1908 880 33/25 3×16×16 2×32×36
c2670 1193 157/64 1×32×32 3×32×36
c3540 1669 50/22 3×16×16 + 1×8×8 3×32×36
c5315 2307 178/123 3×16×16 + 2×8×8 3×32×36
c7552 3512 206/107 1×32×32 + 1×16×16 3×32×36

apex2 610 39/3 2×16×16 + 1×8×8 2×32×36
apex4 5360 10/19 2×32×32 + 1×8×8 11×32×36

i4 338 192/6 2×16×16 + 1×8×8 1×32×36
i7 1315 199/67 2×16×16 + 2×8×8 3×32×36

Security Against Removal Attack

As was mentioned previously, Cross-lock [27] as a layout-based interconnect locking scheme,

used high-density cone-based selection strategies, such as k-cut and wire-cut, to decrease the

possibility of using removal attack, which restricts in selecting the wires to insert the cross-

bar. However, since the logic of the gates leading each CLN can be negated, even having the

possibility of removing CLN, and finding the functionality of LUTs does not produce correct

functionality, which shows that Full-Lock has no vulnerability against removal attacks.

Security Against Algebraic Attack

CLN can be expressed as an affine transformation function of the data input X, of the form

y = A ·X + B, where A is an N ×N matrix and B is an N × 1 vector, with all elements

dependent on the key input. Although recovering A and B is not equivalent to finding

the key input, it may enable the successful deobfuscation of CLN. Since Full-Lock replaces

the the preceding gates of selected wires with LUTs, it cannot be transformed to an affine

function. So, it is safe against SAT-based algebraic attacks.
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Chapter 4: Conclusion

To counter hardware security threats, such as IC overproduction, Trojan insertion, Reverse

Engineering, Intellectual Property (IP) theft, and counterfeiting, logic locking, as a proactive

technique, has been introduced that obfuscates and conceals the functionality of IC/IP

using additional key inputs that are driven by an on-chip tamper-proof memory. Shortly

after introducing the primitive logic locking solutions, a very strong Boolean attack, the

Satisfiability (SAT) attack. It was shown that the SAT attack could break all previously

proposed primitive locking mechanisms in almost polynomial time. To thwart the strength

of SAT attack, researchers have investigated many directions, such as formulating locking

solutions that significantly increase the number of required SAT iterations, or formulating

the locking solutions such that it is not translatable to a SAT problem.

Recent obfuscation schemes have leveraged reconfigurable logics to alleviate various

hardware security threats. In this report, first we introduced LUT-Lock, which demon-

strates that how using reconfigurable logics, e.g. Look-Up-Tables (LUTs) can provide

resilience against such powerful attacks, i.e. SAT attack and its derivations. LUT-Lock

obfuscates a netlist while embedding several key features that make the obfuscation a hard

problem for SAT attack. To develop this defense mechanism, we have identified several key

features that increase the difficulty of obfuscation for SAT attacks. We illustrated how by

utilizing each feature during the obfuscation, the SAT problem becomes harder. We pro-

pose LUT-Lock algorithm which combines all features, providing the best defense against

SAT attacks. Then we demonstrated that how routing and logic blocks can be used for

building SAT-hard solutions, which is thoroughly discussed in this report, to significantly

increase the run-time of each iteration of the SAT solver. We explored the characteristics

and principles of designing this SAT-hard obfuscation solutions, using reconfigurable logic

and routing blocks, where the goal is to exponentially increase the time required for each
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iteration of the SAT attack. As a strong representative member of this class of obfuscation

techniques, we introduced Full-Lock. The Full-Lock is constructed using a set of cascaded

fully programmable logic and routing blocks (PLR) networks that replace parts of the logic

and routing in the desired netlist. The PLRs are SAT-hard instances designed to construct

a desired ratio between the number of clauses and the number of variables with PLRs are

translated to their Conjunctive Normal Form (CNF). The cascaded and non-blocking de-

sign of PLR pushes the SAT solver’s algorithm to build a very deep decision tree and to

spend significant time in hopeless regions of the decision tree, causing a significant increase

in each iteration of SAT attack.
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