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Abstract

This paper examines constraints and preferences employed by people in learning decision
rules from examples, and in constructing classifications of observed objects. Results from four
different experiments with human subjects are analyzed and compared with those obtained
from two Al inductive learning programs, INDUCE and CLUSTER, developed at the
University of Illinois. These results indicate that human rule inductions and classifications
tend toward greater specificity than would be expected if conceptual simplicity were the key
preference. Such a bias may be explained by the fact that greater specificity, and thus
greater the number of conjunctively linked assertions in the hypothesis, both maximizes the
number of inferences that may be drawn from it, and protects the hypothesis against

overgeneralization.

A significant correspondence has been observed between results {rom people and from
the inductive programs investigated. One difference was that people tended to emphasize
category validity (probability of some property, given a category) as contrasted with cue
validity (probability of a category, given a property), to a greater extent than did the
INDUCE program. The results of conjunctive conceptual clustering performed by CLUSTER

seem to correspond well to the results obtained from human subjects.

The study seems to have a doubly positive effect. From the cognitive science viewpoint,
ﬁhe experiments with people and the analysis of performance of inductive learning programs
present new clues for building a better cooperative model of human inductive processes. From
the artificial intelligence viewpoint, the research reveals interesting new ideas for improving

the current inductive learning programs.



CONSTRAINTS AND PREFERENCES IN INDUCTIVE LEARNING:

An Experimental Study of Human and Machine Performance

I. Introduction

Probably the most impressive fact about inductive learning is not that it occurs
naturally in intelligent systems, but rather that it does not get out of hand. Any limited set
of experiences will be consistent with an unlimited set of possible inductive generalizations.
To give but one example, the next item in the sequence 1, 2, 4 might justifiably be 5
(increasing integers not divisible by 3) 8 (as in the equation a,.,= 2¢,, a,= 1), 14 (as in
Gy =0n,—, + 2,0,= 1), A(asin 1, 2, 4, A B, D), or really anything. Therefore, a major
issue concerns which of these possible inductive generalizations of given facts are preferred by
people. This issue has become particularly salient with the advent of computer programs
capable of inductive learning (e.g., see Michalski, Carbonell, & Mitchell, 1983, for a recent
review). Aside from the general issue of how to form useful inductive generalizations, an
important research topic for studies of human-computer interaction is the extent to which

humans and computer programs form compatible inductive generalizations.

This paper is concerned with two types of inductive learning: rule induction from
examples, and the construction of category partitionings ("clustering"). The search for
contraints and preferences associated with these processes raises two related questions. First,
given that experiences may be partitioned in a virtually limitless variety of ways (the set of
potential partitionings of n objects increases factorially with n), why do we have the
categories we have and not others? Second, how do we select among the large set of potential

rules that can describe any particular classification or partitioning? Presumably only some of



the possible partitionings and some of the possible rules are natural for human beings.

Why look for constraintsaf Our explicit assumption is that some rule inductions
associated with partitions of entities are natural and others are awkward or unnatural. One
possibility is that naturalness is strongly context—dependent; i.e., it varies with the specific
contents of the entities under consideration. On that view, it simply is not possible to
develop formal, universal constraints and preferences on rule induction, or they might have
to be stated at a level too general to be useful. A more optimistic attitude is that fairly
universal constraints or biases on rule inductions exist, and that they might provide
important general principles for the question of how intelligent systems structure their

experiences,

A more specific reason for seeking constraints and preferences on inductive
generalizations concerns the compatibility between human and computer inductive learning.
Inductive learning programs in artificial intelligence (AI) can be thought of as "expert
systems” that can suggest new meaningful groupings of observations or generate descriptions
of given classes of observations. If these new groupings or descriptions are to be useful, they
must be understood. Therefore, it is essential that the groupings be described in a way that
is compatible with human biases or descriptive preferences (for an example involving
practical results from automated induction of descriptions of soybean diseases, see Michalski
& Chilausky, 1980; Mozetic and Michalski, 1986). Conversely, constraints derived from

human data provide candidate principles for Al programs.

Although the present studies are exploratory, they are motivated in part by principles
derived from both Al and cognitive psychology. The next section describes some of these

principles.



II. Candidate Constraints and Preferences

Cognitive psychologists have generated a large body of data on classification learning
from examples and on the difficulty of learning different types of rules. In rule learning
experiments, the experimenter creates a stimulus partitioning that conforms to some
prespecified rule, and the data of interest concern the speed with which subjects converge on
that rule. There has not been a concomitant interest in the situation where a partitioning
admits of many possible rules, and the major issue is what forms and types of rules are
developed from experience. Nonetheless, if there is a close link between ease of learning and
naturalness, then one may be able to use results on learning difficulty to generate candidate

biases in rule induction. Several factors that seem to influence the inductive learning process

are considered below:

1. Preference for simple rules. It is true almost by definition that simple rules are easier
to learn than complex ones. In fact the notion of simplicity or parsimony is so well engrained
in the scientific community that one might wonder if any other preferences are needed.

Simplicity, however, is a very elusive concept.

Informally speaking, rule simplicity is the inverse of conceptual complexity, where
complexity reflects the tiﬁe expended and resource costs, i.e., "mental eflort,” needed to
employ the rule in decision making. One problem with this definition is that, fer the same
task, mental eflort may differ with practice, background knowledge, and other contextual
factors. If simplicity is defined only in terms of mental effort and cannot be specified in
advance, then it becomes a dependent rather than an independent variable. For simplicity to

provide a meaningful constraint on inductive learning it must be operationally defined.



In one attempt to be specific about simplicity, Neisser and Weene (1962) posited some
basic logical operations (i.e., conjunction, disjunction, negation), and defined simplicity in
terms of the number of operations needed to describe a partitioning. They also found that
ease of learning was directly related to simplicity so defined. To the extent that one can
specify which operations are basic, one can test the idea that simplicity provides a useful
constraint on rule induction (see also Pinker, 1979). Because simplicity can change with the
language of descriptions employed, it is important to evaluate simplicity within a theoretical

framework that specifies basic operations and elementary concepts. .

2. Preference for conjunctive rather than disjunctive rules. Rosch and her associates
have persuasively argued that real-world categories are formed to exploit clusters of
correlated attributes (Mervis & Rosch, 1981; Rosch, 1975, 1978). For example, animals with
feathers are very likely to have wings and beaks, whereas animals with fur are very unlikely
to have wings and beaks. In other words, correlated attributes carry information that
permits one to go from knowledge of some attributes to predictions about others. An
organism sensitive to these correlated or co—occurring attributes would find conjunctive
concepts or rules more natural than disjunctive concepts or rules. Another important
advantage is that conjunctive class descriptions allow one to determine properties of an

object from knowledge of its class membership.

There is a fair amount of experimental evidence that conjunctive rules are easier to
learn than disjunctive rules (Haygood & Bourne, 1965). Bourne (1974) has proposed that the
relative difficulty of conjunctive and disjunctive rules arises from pre—experimental biases or
preferences that favor conjunctive concepts, but results of experimental tests of this idea have

either contradicted it (e.g., Dominowski & Wetherick, 1976) or suggested that biases may not



be consistent over stimulus types {Reznick & Richman, 1976). Therefore, although the
preponderence of evidence suggests that conjunctive rules are easier to learn than disjunctive

rules, the support for this claim is far from universal.

3. Sensibivity fo cue validity. Cue validity has long played a part in theories of
perceptual categorization (e.g., Beach, 1964). The validity of a given cue or property is
defined as the probability that an entity is a member of a given category. For the special
case where cue validity is equal to unity, a cue is said to be suffictent (though it may not be
necessary) for determining category memhership._ The basic idea is that organisms are
sensitive to properties or cues which allow them to make correct categorizations. Elio and
Anderson (1981) noted that people seemed especially sensitive to sufficient features in
classification learning. As applied to rule induction in categorization, features entering into
inductions should tend to be those that discriminate between categories. For example,

having hollow bones has greater cue validity than being of a particular size in differentiating

birds and mammals.

4. Sensitivity to category validity. Category validity is defined as the logical converse of
cue validity, namely, as the probability that an entity has some property or cue given that it
belongs to a category (Tversky, 1977). For the apecial case where category validity is equal
to unity, a cue or feature may be said to be necessary (though it may not be sufficient) for
category membership. To see that category validity is not the same as cue validity, one may
note that category validity does not take into account whether a feature or cue is possessed
by members of alternative categories. For example, having two legs has no cue validity with
respect to differentiating birds from people. Category validity is similar to the correlated

attribute principle in that it focuses on inferences that can be made from knowledge of



category membership. As applied to rule induction, one might speculate that features

entering into inductions will tend to be those that are widespread within a category.

5. Preference for positive over negative properties. There is 2 substantial body of
evidence suggesting that people have difficulty in processing negative information (e.g.,
Wason & Johnson-Laird, 1972). In the Neisser and Weene (1962) framework, negative
assertions always involve extra operations that increase the task complexity. An exception to
the suggestion that negatives always involve more complexity is internal disjunction. For
example, the description "East or West ;.'-r North" might be summarized more efficiently as
"not South.” In any event, one might expect people to prefer descriptions (rules) which
minimize or do not involve negative features or properties, Recent studies show that this
holds specifically in cases when subjects use a verbal problem representation. Subjects using

a mental imagery strategy apparently are not affected by the negation. (Hunt, 1983).

These five candidate preferences do not add up to a theory of induction. Rather, they
reveal an unsettled state of affairs. The various factors may trade—off against or complement
each other. An immediate question concerns how one ought to express contraints associated
with rule induction. Specifically, one may think of constraints as directly determining the
result or outcomes of induction or they may act indirectly by being embodied in the process

of rule induction.

The majority of psychological research has been directed at constraints stated in terms
of products or outcomes. Keil (1981) offers some cogent arguments and evidence for the view
that one should look for domain-specific constraints developed in terms of structures (or
products) rather than processes. Keil takes the somewhat uneven picture on the relative

dificulty of different types of rules as supporting the futility of looking for domain-general



constraints.

Qur position is compatible with Keil's, although in some respects it is the logical
converse. We agree with Keil in that if one is committed to developing constraints in terms
of particular structures or outputs, then such constraints will very likely be doman-specific.
The focus of our present work, however, is the claim that if one is looking for domain—general
constraints, then they should be embodied in the process of forming models of performance.
To some extent, the distinction between process and output is artifical in that the two must
necessarily be intimately linked, Pragmatically, however, there is a clear difference. The on
focus products reflects the faith that output constraints will form a coherent picture. This
may arise because there is a many-to—one mapping between alternative underlying processes
and outputs, or because domains limit the set of plausible processing mechanisms. In
contrast, the focus on processing principles carries with it the conviction that coherence more
readily emerges [rom process constraints. For example, it may be possible to account for the
mixed picture on the relative difficulty of conjunctive versus disjunctive rules in terms of a
single underlying processing model. The danger associated with this commitment to
processing principles is that one will formulate models which are too narrow and task-
specific. Although any small set of experiments is likely to be susceptible to this latter
criticism, we believe that our studies do illustrate the value of looking for processing

constraints.

Our rationale for seeking such constraints is that this seems to be the natural way to
evaluate relationships among the above candidate preferences that we have just discussed.
Unfortunately, there is no extant psychological model that provides an account of how people

construct categories or provide inductive generalizations or rules for preclassified categories.



Research on inductive learning Iin Al however, has proposed answers to the questions we have
been considering in the form of working computer programs. One major purpose of the
present paper is to examine the extent to which the preferences embodied in these Al
programs also act as preferences for human rule induction. That is, we will treat these
programs as a first approximation to a paychological theory of rule induction. As will be
seen, there are numerous parallels between candidate preferences derived from cognitive
psychology and biases incorporated into these programs. The second major purpose in our
comparison of human and machine rule induction is to see if processing principles from
human rule induction provides any clues for the enhancement of methods embodied in

machine inductive learning.

Although there are numerous inductive learning systems (see e.g., Dietterich and
Michalski, 1981, 1983 for a detailed review) we will primarily concentrate on two particular
programs, INDUCE AND CLUSTER. There are three main reasons for our choice. One is
that stimulus materials which we employed require structured descriptions, and many Al
systems do not have descriptive languages that are this powerful. The second reason is that
INDUCE and CLUSTER were specifically designed with the criterion of human
comprehensibility in mind (the rules should make sense or seem natural to people; see
Michalski, 1980, 1983 a,b), and, therefore, they seem like particularly good candidates for
psychological models. The third reason is more pragmatic and not specific to CLUSTER and
INDUCE. It is not feasible to provide a description of the algorithms associated with each
inductive learning program because to illustrate our approach requires far more detail than
otherwise might be provided. In the general discussion we will provide a more detailed

summary of the adequacy of other Al induction programs as psychological models. First,
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however, we turn our attention to INDUCE and CLUSTER.
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[II. Constraints in the INDUCE and CLUSTER programs

A.INDUCE

Since Michalski's program, INDUCE, is designed to provide inductive generalizations
that are biased in such a way as to be comprehensible by people, it can be thought of as a
psychological model embodying conjectures about what is natural for people. This program
performs a heuristic search through a space of possible symbolic descriptions which in turn
are generated by the application of various inference rules to the initial observational
statements. The following paragraphs describe INDUCE in a general way and the reader is

referred to Michalski (1980, 1983 a,b) for a more detailed, technical presentation of INDUCE.

To see how INDUCE works, it is helpful to have a specific example in mind. Figure 1
shows the set of trains that was used in the first experiment. The trains differ in numerous
properties such as wheel color, car shape, and load shape. The five trains on the left are said
to be Eastbound, and the five trains on the right are said to be Westbound. The task for
INDUCE, as well as our experimental participants, is to come up with a simple rule that
could be used to determine whether a train is Eastbound or Westbound. It should be obvious
that there is a large set of candidate rules, ranging from a disjunction of descriptions of
individual examples to the most general possible assertion about each set of trains. The issue

of interest is whether or not the [orms of rules people develop are similar to those constructed

by INDUCE.
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Description of Rules. The initial input to INDUCE consists of a set of observational
statements characterizing each example. For instance, each car of the train may be described
as being long or short, as having a particular shape, and so on. These elementary descriptors,
attributes, functions or predicates may be nominal (e.g., sex), linear (e.g., length), or

hierarchically structured (e.g., shape, with values such as triangle, square, polygon, ete.).

The descriptors used in the input data are not necessarily the final descriptors used in
inductive assertions. In the process of formulating inductive generalizations INDUCE applies
various inductive inference rules to develop general descriptions of the initial observational
statements. These inductive rules can be classified as either selective or constructive,
Selective inference rules directly incorporate descriptors used in initial concept descriptions.
Examples of selective rules include turning constants into variables, (e.g., replacing red by any
color), dropping conditions (assuming that some property is irrelevant), and closing intervals
(e.g., il entities have values of either four or six on some dimension, then this operation would
transform the description to "value between 4 and 6"), creating internal disjunction (e.g.,
“value 4 or 5 or 6"), and climbing generalization tree for hierarchically structured variables
(e.g., transforming “Chicago or Dekalb or Peoria" into the city in "Illinois”). Negative
descriptors are not normally employed except in two situations. The first situation is when a
negative descriptor yields a more succinct expression. For exémple, given a choice between
"triangle or rectangle or pentagon or ellipse or circle” and "not square,” the latter description
would be used. The second situation occurs when using the generalization rule called
eztension against. If example A is positive, and example B is negative, then the rule creates
the negation of any property in B that is not shared by A. Such a negation is the most

general assertion describing A and excluding B (Michalski, 1983), called eztension against.
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Constructive generalization rules involve creating new descriptors not present in the
original observational statements. For example, there is a counting rule that creates
descriptors measuring the number of occurrences of the same term or attribute value in a
description (e.g., two red circles). Another rule, generating chain properties, creates
descriptors characterizing ordered relationships, such as “frst,” "middle” or "last” in a series.
Other constructive generalization rules exploit descriptor interdependence, such as might be
present when attributes are correlated. For particular domains, the user may suggest

additional constructive generalization rules.

General Algorithm. INDUCE begins with a set of descriptions of entities, then selects a

target concept (say, the Eastbound trains) and proceeds as follows.

1. An example called the "seed”, is randomly selected from the target set, i.e., the set of

examples representing the target concept.

2.  The seed is then described in alternative and most general ways, so that they may apply
to as many other examples of the target set as possible, but not to examples of the
contrasting category. In the process of generating these descriptions, both selective and

constructive generalization rules are applied.

3. Descriptions on the candidate list are tested .I'ar consistency and completeness. A
description is consistent if it does not apply to any members of the contrast set (i.e., it
has no counter-example). This is equivalent to cue validity being equal to unity, if the
entire description is treated as a single cue. A description is complete if it applies to all
members of the target category. This is equivalent to a description having a category

validity of unity. Descriptions that are consistent and complete represent alternative
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solutions and are saved.

4. Alternative descriptions are evaluated in terms of a preference criterion which can be
varied (and will be described below). A list of the k most preferred descriptions is

developed (the candidate hypothesis list).

5. If no admissable solution appears from the initial candidate list, then attention focuses
on descriptions that are consistent but not complete. In this event, the best description
(e.g., the one covering most of the events) is saved, the target set is reduced to those

examples not covered by the saved description, and the process reverts to step 1.

8. The disjunction of all generated descriptions is a consistent and complete concept
description. Since the process starts with a single example of a concept and any single
example can always be characterized by a conjunctive expression, the solutions have a
bias toward conjunctions. It may not always be the case that a single conjunctive
statement will be complete and consistent; therefore, the general form of solutions will

be a disjunction of conjunctive descriptions.

The Preference Criterion. The quality of any particular consistent and complete
description (condidate description) may be evaluated according to multiple criteria. Two
major criteria that INDUCE considers are simplicity, and the "fit" between examples and a
description. The measure of simplicity may involve costs of measuring attributes, the
memory requirements, and the number of descriptors and operators used in the generated
inductive assertion. Simplicity encourages short, general, and easily computed descriptions.
The notion of fit is designed to avoid overly general rules, and to a large extent is in

opposition to simplicity. Fit refers to how well an inductive assertion matches the examples



16

of the target set, [t reflects the amount of uncertainty that any given object description
satisfying the inductive assertion corresponds to an actual example. For example, il the
t.;lrget set contained a small red triangle and a large red triangle, and the contrast set
consisted of a blue circle and a green triangle, then the solution "red and triangle” would have

a better fit (and be less general) than the assertion "red.”

The descriptions are ranked using a preference criterion based on a "lexicographical
evaluation functional.” It is an ordered list of “criterion-tolerance” pairs supplied by the
user where each criterion on the list represents one elementary attribute characterizing
candidate assertions. The program offers a collection of elementary criteria from which the
uQer selects the most relevant for the current problem. The list represents a set of successive
hurdles for candidate assertions to meet until the best one is selected or all hurdles have been
met. Associated with each criterion is some tolerance value that defines the threshold for
meeting the criterion. The preference function is similar to Tversky's (1972) elimination by
aspects model for choice behavior. The importance of any one eriterion is determined by its
rank in the list (the higher, the more important) and by its folerance (the greater the
tolerance, the less stringent the criterion). Since the user supplies the criterion-tolerance
pairs, the preference criterion is fairly flexible. For example, by appropriate ranking of
simplicity and fit one can produce either characteristic descriptions, which focus on properties
common to a class, or diseriminant descriptions, which focus on properties necessary to

differentiate between classes,

The parallels between the constraints drawn [rom cognitive psychology and those
associated with INDUCE are quite close. INDUCE has a notion of simplicity, embodies a

bias favoring conjunctive descriptions, and generally avoids negative features. The issue of
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cue validity versus category validity corresponds to the difference between discriminant and
characteristic descriptions. INDUCE embodies certain constraints and parameterizes others
in terms of its preference criterion function. Although one can readily imagine that relative
importance or weighting would vary considerably as a function of task factors, it is an
empirical question whether or not consistent patterns or preferences in ranking criteria

associated with human inductive generalizations are observed.

B. CLUSTER

Our other main interest here is in constraints and preferences associated with the
construction of classifications, as opposed to creating rules characterizing preclassified sets of
entities, as done by INDUCE. In this case people are given a set of stimuli, and asked to sort
them into categories in a way that seems sensible. Michalski and his associates (e.g.,
Michalski & Stepp, 1983; Stepp & Michalski, 1986) have developed a program for
constructing category classifications (sorting) called CLUSTER. When CLUSTER is
presented with a set of descriptions of objects and asked to put them into k classes, it
construets k clusters of objects, and describes each cluster by a single conjunctive statement.
Like INDUCE, CLUSTER has a preference function incorporating the criteria of similarity
and fit, and current versions of CLUSTER have both selective and constructive generalization
rules. The psychological implications of CLUSTER are analogous to those of INDUCE: if
people follow the same constraints as CLUSTER they will prefer category partitionings that

can be described conjunctively, and these descriptions will not necessarily beé determined

exclusively by simplicity.

The CLUSTER program works by converting the problem of clustering into a sequence

of rule construction tasks. To illustrate this program very briefly, assume that the number of
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desired clusters is k. The program randomly selects k objects (seeds) from the population,
and treats them as hypothetical representatives of the k classes. The program then develops k
mutually disjoint general conjunctive descriptions, one for each seed, which together cover
the whole population, and score best on the clustering quality evaluation criterion. Next, sets
of objects covered by each description are determined, and from each set a new seed is
selected. In one implementation the seeds selected alternate between those which are central
in obtained clusters, and those occupying an extreme position in clusters. This produces
more rapid convergence to quasi-optimal clusters. The algorithm then reverts to the first

step. This process repeats until a stable clustering is determined.
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IV. Overview of Experiments

The preceding analysis of constraints and preferences in inductive learning suggests a
research strategy. First of all, evidence is needed bearing on the validity and importance of
these candidate constraints on rule induction in classification. If more than one factor
emerges as important, then followup studies can be targeted at the relative performance of

each factor. A related question will be how general any constraints prove to be across tasks.

In the present studies the program INDUCE is used both to operationally define
simplicity and as a model of human performance. To the extent that INDUCE captures
people’s inferences, it will receive support as a psychological model, and will provide a
framework for evaluating the relative importance of different factors influencing the
naturalness of inductions. I the processes associated with people’s development of inductive
generalizations show systematic differences from INDUCE, then these differences can be used
either to modify INDUCE (if the differences involve factors that may provide useful
constraints on induction or increase comprehensibility), or to develop psychological models of
people’s inductive generalizations (in the event that the differences are that people depart

from what is useful or optimal).

Experiment 1

The first experiment was exploratory and employed a combination of classification
construction (sorting) and rule induction tasks. The stimulus materials consisted of the 10
trains shown in Figure 1. Participants were initially asked to arrange the trains into any
number of groups (classes) in a way that made sense to them. They were then asked to

describe the basis for their classifications. Next, participants were asked to perform two
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additional classification construction tasks. The first had the constraint that there should be
exactly two categories of equal size (of five members each). The second was identical to the
initial unconstrained task except that participants were told that they could employ an "else”
category for trains that did not fit any of their preferred groupings. Finally, participants
were told that the 5 trains on the left side of Figure 1 were Eastbound, that the trains on the
right side were Westbound, and that their task was to come up with a rule that could be used

to decide il a new train was East- or Westbound.

There were several objectives in this initial study. We were interested 'm. the
relationship between classification constructions and descriptions of them, particularly for the
initial task when participants did not know they would be asked to provide justifications for
their groupings. In particular, the experiment provided a data base of descriptions that could
be used to evaluate the adequacy of the generalization rules associated with CLUSTER and
[NDUCE. To sharpen this comparison, half of the participants were told which [eatures were
relevant (the same ones as used in the initial input to INDUCE) and hall were not. If human
rule inductions correspond to those of INDUCE, then processing constraints associated with

INDUCE will be supported.

Method

Subjects. The subjects were 64 undergraduates (male and female) attending the
University of Illinois, who were paid for their participation in the experimental session which
lasted about one hour. The participants were randomly assigned to either the Standard

group or the Informed group.
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Stimuli. The stimulus materials consisted of the drawings of 10 trains shown in Figure

1. The trains were mounted on 7.6 cm by 12.7 cm index cards. As may be seen in Figure 1,

the trains eould differ in the number and shape of cars, in their tops and loads, and in the

pumber and color of their wheels.

Procedure. The experimental procedure consisted of three classification construction

tasks followed by a rule induction task. Participants were tested individually. Details of

these procedures were as [ollows

Free Classification. For the initial task participants were asked to carefully look over
the trains and then to put them into groups in a way that made sense to them. After

this free classification was completed, each participant was asked for the basis of his or

her groupings.

Constrained Category Consiruction. For the next task, participants were asked to put
the trains into two equal-sized groups in a way that made sense. Then participants

were asked again to justify their partitionings.

Free Classification with "Else” Category. The last partitioning task was identical to the
first, except that participants were told that they could have a "junk"” category for

trains that did not fit in with other groups.

Rule-Induction. For the rule induction task, participants were presented with the two
groups of trains corresponding to the left and right half of Figure 1 and told that one
group was Eastbound and the other Westbound. They were told that their task was to
come up with a rule that could be used to decide if a train was East— or Westbound.

Participants performing these tasks were divided into the Standard and the Informed
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group.

Participants in the Standard condition were not presented with any description of the
trains. Participants in the Informed condition were told at the start of the experiment that
the following set of attributes was relevant: shape of cars, number of cars, length of cars,
number of loads, shape of loads, type of car top (open or closed), number of wheels, and color

of wheels (white or black).

Results

Because of a procedural error the data from one of the participants in the Informed
condition could not be used. The results will be presented separately for each of the sortings

and the rule induction test.

Free Classification. Most of the participants constructed groups of trains on the basis of
a single property although a significant minority used a conjunction of properties. No one

described their sorting as involving a disjunction of properties. A breakdown of partitioning

strategies is shown in Table 1.}

Of the partitionings based on a single property, number of cars was the predominant
basis for classification, accounting for about three-fourths of the unidimensional groupings.
The relation between bases for classification and number of categories was straightforward.
For example, people sorting on the basis of number of cars created three groups
corresponding to 2, 3, or 4 cars in a train. Sorting by wheel color typically involved three

groups: wheels all black, wheels all white, and wheels mixed in color.

1 A more detailed descripbion of these daka is available upon request.
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There were few, if any differences between the Standard and the Informed condition.
The possible exception is that in partitions based on a conjunction of properties six persons in
the Standard condition but only one in the Informed condition used some combination of car
position (first, middle, last) with another property. Car position was not given as a relevant
dimension to participants in the Informed condition. The CLUSTER program was not given
car position as a descriptor but it could produce it as a descriptor using the Generating Chain
Properties Rule (Michalski, 1983). Finally, none of the descriptions involved negative

. properties or attributes.

Constrained Category Construction. When participants were asked to sort the trains
into equal-sized groups, they continued to employ single properties or conjunctions of

properties. A breakdown of reported sorting strategies is shown in Table 2.

There were no obvious differences between the Standard and Informed conditions. Color
of engine wheels was the most common basis for sorting in both groups. The presence or
absence of a particular shape (e.g., rectangles) was the next most popular strategy among
people using a single property. One participant in each condition sorted on the basis of
whether or not the loads on a train were all different. This strategy would be captured by
constructive generalization rules in CLUSTER (e.g., Stepp & Michalski, 1984). We were
unable to understand the partitionings of two participants in the Standard condition because
the partitions and their descriptions did not seem consistent. One of these descriptions
mentioned number of cars and the other mentioned simple versus complex trains without

elaborating on the basis of this complexity.

Slightly more than a fourth of the participants used a combination of properties. For

example, the partition might be defined in terms of whether or not there was a circle load in
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the last car. An equal number of people in both conditions (4) used conjunctions involving
car position. Finally one participant in the Standard condition used a disjunctive description.
Negative properties were not mentioned except where an entire category was defined by
exclusion from the alternative category. No participant sorted the trains in a manner

corresponding to Eastbound and Westbound categories in Figure 1.

Free Classification with "Else” Category. Almost every participant used a different
classification principle when they were allowed to employ a miscellaneous category from the
one they used on the initial {ree classification. In addition, every participant put at least one
train into the else category. Both of these results probably arise from implicit task demands
rather than some intrinsic property associated with being able to use a junk category. One
major change which does not appear to be a function of implicit expectations is that the
predominant basis fur surting shifted from being based on a single property to a combination

of properties. A breakdown of these data is shown in Table 3.

The increased use of conjunctions of properties was associated with an increased variety
of property combinations. For example, participants used combinations of load shapes,
combinations of car shapes, and load shapes in same versus adjacent cars. Descriptions
involving combinations could be readily incorporated into INDUCE. Car position was used
by more participants in the Standard condition (8) than in the Informed condition (2). Ne

descriptions involved negative properties and no one employed a disjunctive description.

East-West Rule. The rule inductions provided the most straightforward test of

INDUCE. The results are summarized in Table 4.
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The task proved to be quite difficult. Two people in each condition discovered a simple
classifier based on the number of different loads. About a third of the participants employed
conjunctions of properties. A large majority of conjunctive rules made use of negative
properties. About half of the participants used a disjunctive description, the most popular of
which was the simple rule that Westbound trains have two cars or a jagged top. Many of the
disjunctive descriptions, however, were fairly elaborate and involved conjunctions of
properties ;a part of the disjunctive rule. When negative properties were part of these
complex disjunctions, they usually (but not always) were associated with the conjunctive part
of them. Finally, a few participants were unable to come up with rules and either gave
partial rules or detailed descriptions of particular trains. Three participants in the standard

condition and four in the informed condition gave rules that did not perfectly partition the

trains. A complete list of rules is given in the Appendix (Table Al).

Overall, the results are generally consistent with INDUCE. The one exception is that
people tended to begin with rules that had counterexamples (e.g., three or more cars) and
then eliminate the counterexamples by using negative properties (as in the rule, East: three
or more cars and not jagged top). As will be seen, this pattern is consistent with the fairly
straightforward processing model for rule induction to be considered next. This processing
model is very similar in spirit to INDUCE. It also reflects, on a small scale, Kuhn’s notion of
a paradigm shift (Kuhn, 1962}, That is, when observations do not fit the current theory

(description) a very common strategy is to attempt to patch up the current theory and only

when these modifications become too unwieldy is the theory abandoned.?

Rick Lathrop from MITAI Laboratory suggested bhis relationship to Kuhno's ideas.



Theoretical Analysis

A Process Model for Rule Induction. It is convenient to characterize performance in
terms of consistency and completeness. Recall that consistency refers to descriptions that
have no counterexamples but may not cover all known members of a category, whereas
completeness refers to descriptions that cover all members of a category but may have
counterexamples (apply to members of alternative categories). Current versions of INDUCE
lock for consistent and complete descriptions (“candidate hypotheses”) but give more weight
to consistency than completeness. The data from human subjects are best accounted for by
the idea that completeness may be more important than consistency in the initial phases of
rule formulation. Therefore, not only is it the case that consistent rules are modified to make

them complete but also complete rules are modified to make them consistent.

One way to formalize these ideas about consistency and completeness is in terms of the
following process model: People focus on one category and begin by looking for a descriptor
that spans the positive set and does not apply to any counterexample. If one is found, then a
simple rule can be generated. If no single descriptor works, because there are
counterexamples, then one of two strategies may be applied. If there are numerous
counterexamples, then people may look for combinations of properties (e.g., "X and Y") that
span the set but do not generate counterexamples. If there are only a few counterexamples,
then people may attempt to eliminate them by negating properties of the counterexamples
not present in the positive set. For example, a person may notice that all Eastbound trains
have a triangle load but that two Westbound trains also do. This description is complete but
not consistent. They might then look for combinations of properties that apply to the East

but not the West trains. For example they might consider the rule "triangle load in nonlast
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car,” but that rule would still have a counterexample. Next a person might consider
properties true of these two Westbound trains that are not shared by the East trains. For
example, they might notice that the two West train counterexamples have a long car with
two white wheels and then generate the rule "Eastbound trains have a triangle load and not

long cars with two white wheels."

The other main possibility is that a descriptor has no counterexamples but fails to span
the positive set. In that event people form a disjunction using the initial descriptor and then
confine attention to the reduced positive set and the contrast set. For example, they might
notice that only Westbound trains have two cars, and then focus on differences between the
remaining two Westbound trains and the Eastbound trains. They might notice that l;.he
remaining West trains both have jagged tops and generate the rule "Westbound trains have
two cars or a jagged top.” This part of the process model is functionally equivalent to

INDUCE and the above rule is one of those that INDUCE actually discovers.

This account seems quite consistent with the present results. The descriptor, number of
different loads, was apparently not very salient (it would involve a constructive rule for
INDUCE) and few participants found the simple rule based on it. As judged by the initial
free sorting, number of cars was quite salient and many people found the simple disjunction,
number of cars and jagged top. According to this process model, negative descriptors (e.g.,
not jagged top) should be part of conjunctions and not part of disjunctions. This held for 17
of the 20 cases where negative descriptors were used. The three exceptions seem to be cases
where the reference (positive) set and the contrast (counterexample) set shifted at some point
during the rule search. Two exceptions were of the form "not triangle or triangle and...” and

the third was "not dark engine wheels or dark engine wheels and...." In this model the
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. relative number of disjunctive and conjunctive rules would depend on the exact structure of
the trains and the salience of the associated descriptors. In general, however, because people
are assumed to initially focus on properties that members of the positive set have in common,

conjunctive rules are likely to result.

Relation to INDUCE. In general the people’s rules were quite similar to those produced
by INDUCE. Both INDUCE and many participants appeared to discover consistent but not
complete descriptors and then confine attention to the reduced positive set and the contrast
set. This would produce disjunctive rules where one or more parts of the disjunction might
consist of a conjunction of descriptors (again, see Table Al in the Appendix for a detailed
listing of rules). The descriptors in the rules were gither consistent with the original
deseriptions given to INDUCE or could be readily produced by constructive generalization

rules.

The largest difference between solutions given by people and by INDUCE is that a fair
number of people appeared to find descriptors that were complete but not consistent and then
remove the inconsistencies by negating properties that were unique to these counterexamples
(for example, the rule that East trains "have a triangle load and not three circular loads and
not a jagged top"). The current implementations of INDUCE focus on a list of consistent
{but not necessarily complete) descriptions but do not allot similar attention to complete (but

not consistent) descriptions,
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Discussion

The category constructions, their descriptions, and the rule inductions were consistent
with at least some of the biases outlined in the introduction. The partitionings were
predominately either on the basis of a single property or on a conjunction of properties. This
is consistent with the principles of simplicity, category validity, and a preference for
conjunctions over disjunctions, all of which are embodied in CLUSTER. The descriptions of
these partitionings did not involve negative properties. The informed group did not confine
itself to the original list of properties but their new descriptors were consistent with the

constructive generalization rules associated with CLUSTER and INDUCE.

The rule induction data revealed both disjunctions and negative properties. The
negative properties almost always were part of conjunctive descriptions and fit quite well
with both INDUCE and a less formal process model that assumes that when people find a
descriptor that spans a set but is consistent with some members in the contrast set, they
attempt to eliminate these counterexamples by developing a rule based on negating their
properties. Disjunctive descriptions arise when a salient descriptor has no counterexamples
but fails to span the positive set. The only significant difference between INDUCE and the
informal process model is that the former places more emphasis in its typical parameter
settings on consistency than completeness in the process of developing solutions. By setting
the parameters associated with the preference criterion differently, more importance can be
attached to completeness, but current versions of INDUCE do not have an intermediate stage
where complete but not consistent solutions are saved. Although in principle INDUCE could
be modified along these lines, for present purposes it will be most convenient to describe our

results both in terms of INDUCE and the less formal fn’acm model. It should be kept in
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mind, however, that the two models are highly similar and embody almost identical biases in

rule induction.

Experiment 2

Although the first experiment was useful by being complicated enough to give INDUCE
and CLUSTER a serious test, the study did not provide any strong contrasts among
alternative constraint principles. The second experiment Wwas concerned only with rule
induction. It was designed to pit conjunction and category validity against disjunction and
cue validity. The stimuli were simplified trains shown in Figure 2. The experimental task
was to come up with a basis for determining whether a train was Eastbound or Westbound.
As in the first experiment, there are many possible inductive generalizations consistent with
Figure 2 and the main question is which of these people prefer. We were particularly
interested in the relative preponderance of conjunctive and disjunctive rules. For example,
Eastbound trains can be described either by the rule "long car and triangle load in car” or by
the rule "open car or white wheels on car.” The conjunctive rule combines two properties
each having high category validity and lower cue validity and the disjunctive rule combines
two properties each high in cue validity and lower in category validity. The two types of
rules are equally simple but the program INDUCE predicts that conjunctive solutions will be
more frequent than disjunctive solutions. Although the various train properties are not
counterbalanced, it would be hard to explain rule preferences in terms of the salience of
stimulus dimensions. For example, if car length and load type were salient it might produce
a bias for conjunctive rules involving Eastbound trains but it also ought to produce a

corresponding bias for disjunctive rules (West = short car or circle load) involving
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Westbound trains.

It should be noted that this prediction of a bias toward rule constituents that have high
category validity is not a property of all inductive learning algorithms. For example, one
might imagine a process model which initially computes the cue validity of each descriptor,
orders descriptors first by cue validity and secondly by category validity, and then develops
rules by going down the list of descriptors until s rule is created which is consistent and
complete. Whenever no single descriptor was both consistent and complete, disjunctive rules
would be produced. A related algorithm would determine the information value (rnthe-r than
the cue validity) of candidate test properties and develop a discrimination net with the most
informative test occupying each node in the network. This is the procedure embodied in the
ID3 technique of Quinlan (1975,1979). In the present task the consistent-but-not—complete
and complete-but-not-consistent descriptors are mirror images of each other, so there is no

reason to expect a preference for one type of rule over the other, according to Quinlan’s

framework.

Method

Subjects. The subjects were 66 male and female undergraduates attending the University
of Nllinois who participated in this experiment in partial fulfillment of course requirements in
introductory psychology. Participants were run in groups of 10 to 15 and the experiment

lasted about 10 minutes.
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Stimuli. The stimulus materials consisted of six trains placed on a single sheet of paper
as shown in Figure 2. The trains differed from each other in color of car wheels, car loads,
car length, car top, engine door and window color, and engine wheel color. A given property
either was true of all members of one class but had counterexamples in the contrast category,
or was true of only some members of one class but had no counterexamples. These two types

of properties can be thought of as maximizing category validity and cue validity, respectively.

Procedures. Participants were given the sheet of gix trains and their East-West
designation and asked to examine them. ;I‘hey were told to come up with a basis for
classification that could be used to predict whether a new train would be Eastbound or
Westbound and that, at a minimum, the basis for ¢classification should properly classify the

six trains on the sheet.

Reaults

There was some ambiguity as to whether a basis for classifying both sets of trains was
needed or whether one set could be defined by exclusion. Out of 66 participants, three gave a
criterion characterizing only one of the sets. The remaining 63 people provided some basis
for classifying each set, but there is reason to believe that the primary focus was on
Eastbound trains. In scoring descriptions or rules for whether or not they could be used to
successfully classify the trains, one finds that for 17 participants the East classification
principle was adequate but the West one incomplete, whereas for only 3 participants the
West principle was adequate and the East incomplete. For 7 participants both the East and
West classification principles were incomplete. Also, the instructions did not specifically ask

for statement of a decision rule and a significant number of people, 27, only provided a list of
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descriptors that might be useful in classifying trains.

Overall, people showed a very strong preference for conjunctive rules. Since it was
possible for people to give different forms of classification rules for the East and West sets,
the details supporting this generalization are a little complicated. Altogether, 34 people gave
a conjunctive rule for East trains, and of these, 20 also gave a conjunctive rule for West
trains, 5 gave a disjunctive rule for West trains, and 7 simply gave a description of West
trains but no rule that could be used to classify the trains. One person gave a disjunctive
rule for both East and West trains and three people gave a disjunctive rule for one set (2
West, 1 East) and did not provide a basis for classilying the alternative set. Two people gave
both a conjunctive and disjunctive rule for East Trains and a disjunctive rule for West trains.
As a whole, then, the rule statements showed a strong bias for conjunctive over disjunctive

rules.

A further breakdown of classification principles offered by participants is shown in Table
5. Conjunctive rules predominate over disjunctive rules. More than the minimum necessary
to classify the trains was contained in 21 of the 57 conjunctive rules. For example, a typical
East rule was "long cars and triangle load and black rectangles on engine.” This implies that
the people were not focusing exclusively on discriminant descriptions. Only two rule
statements mentioned negative features and both of those cases appear to embody the

Extension Against principle {e.g., West: circle or short; East: not circle and not short).

The descriptions also seem consistent with a conjunctive bias-or at least a preference for
category validity over cue validity. A very large majority of the descriptions mentioned
properties that members of a set had in common (maximizing individual property category

validity) compared with those possessed by some members of a set that were not present in
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the contrast set (maximising individual property cue validity).

These results cannot be explained simply in terms of component salience. Although
there is some evidence that people tended to use rules based on car length and load type, the
dimensions employed in rules varied with whether the trains were East or West. Overall, 93
percent of the East rules mentioned car length or load type but only 27 percent of the West
rules mentioned car length or load type. It appears that the form of the rule, conjunctive
versus disjunctive, influenced performance much more than the salience of component

properties.

Discussion

The main results of this experiment are in terms of both descriptions and rule
statements and they form a coherent picture. Although both rules were equally complex in
terms of number of descriptors and operators, people showed a strong bias for conjunctive
rather than disjunctive rules. The comman. properties entering into conjunctions maximize
component category validity (probability of the property given the category) in contrast with
the discriminative properties of disjunctive rules which maximize component cue validity
(probability of the category given the property). For the protocols giving descriptions rather

than rules there was a corresponding bias for commeon over discriminating properties.

This bias for conjunctive rules and common properties is consistent with INDUCE and
the less formal process model outlined earlier. This bias arises from the assumption that the
first stage in rule induction involves generating a description of properties that members of a
set have in common and then refining it to exclude counterexamples. For the trains in Figure

2 the conjunction of two descriptors (e.g., dark wheels, closed top) has no counterexamples
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and a simple conjunctive rule can be discovered. The task of finding common properties
should have been and apparently was easier than in the first experiment because fewer, less
complex trains were employed. The resuits are inconsistent with the idea that properties are
ordered by cue validity alene or information value alone and then developed into rules (by,
for example, generating a discrimination net). Ordering by cue validity predicts a bias [or

disjunctive rules and ordering by information value predicts no bias.

Although a bias for conjunctive rules and for component category validity are closely
associated, they are not indistinguishable. For instance, if a single descriptor is complete but
has a counter—example and the counter—example has a distinet, salient property, then one
ought to see oppertunistic conjunctions based on negating that property. We gave an
additional 22 subjects the rule induction task involving the trains in Figure 2 but we added a
smokestack to either the West train that had a triangle load (for half the subjects) or to the
West train that had a long car. This change led to 11 simple or redundant. conjunctive rules
and, more importantly, 6 opportunistic conjunctive rules of the form “triangle load and not
smokestack” or “long car and not smokestack” which may represent an opportunistie
disjunction. The data from these additional subjects suggest that the tendency to conjoin

properties within a category does not eliminate opportunistic conjunctions and disjunctions.

Aside from supporting one of the key assumptions of INDUCL, the results of this
experiment show that rule induction is guided by more than simplicity or parsimony. Many
of the rules contained more than the minimum number of necessary descriptors, which, in the
framework of INDUCE, suggests that "fit" also influences inductive generalizations. These
observations are also in accord with a bias toward characteristic deseriptions over

discriminant descriptions. This preference for fit to data (or, in other words, avoiding
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excessive 5euera.lisatiuns] comes at the cost of simplicity but it has the benefit that the
descriptions list the inferences about properties that can be reliably drawn from knowledge of

category membership.

Experiment 3

The third experiment used the same trains as the second and also was concerned with
rule induction. The difference was that the examples were not presented all at once, but
sequentially one by one. The examples were trains and participants had to learn to classify
each of the 6 trains as East— or Westbound. At the end of learning, participants were asked
for their basis of classification (i.e., the rules they had learned). The main question concerns
how the rules will change under this sequential presentation procedure, which places more

demands on memory than the simultaneous presentation used in Experiment 2.

In terms of our descriptive model for inductive generalization the learning procedure
might make it more difficult to discover properties that are complete or consistent. If a
person finds a property that is complete but not consistent (e.g., long for East trains has one
counterexample), they might treat the counterexample as an exception and eliminate by
describing it in detail. This might lead to a rule like "Trains with long cars are Eastbound
except if they have a circle load.” Another possibility is that a descriptor might be found
which is consistent but not complete (e.g., the descriptor, "Westbound trains are short"). In

that event, attention should focus on the remaining West train and one might see a rule like
"Westbound trains are short or long with a circular load."? Note that such a rule is different

from the rule "Westbound trains are short or have a circular load " because it specifically

combines circular load with long car. The descriptive model, then, is consistent with

“The underlining of various sections of rule statement is designed bo facilitate proper parsing, since stalements like "short or long
with a eircular load” are ambiguous.
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disjunctive rules but for the trains in Figure 2 at least one part of the disjunction should

contain a conjunctive description.

Method

Subjects. The subjects were 20 male and female undergraduates attending Emory
University who participated in this experiment in partial fulfillment of course requirements in

introductory psychology.

Stimuli. The stimulus materials consisted of the six trains shown in Figure 2 which were
individually mounted on index cards. The stimuli were otherwise identical to those used in
Experiment 2. For half the subjects the trains on the left side of Figure 2 were in the East
category and the train on the right side were in the West category, and for the other hall of

the subjects this assignment was reversed.

Procedures. Each participant was tested individually. They were told that they would
see trains differing in a number of properties and that their task was to learn to correctly
classify the trains as Eastbound or Westbound. The individual cards were presented in a
random order, subject to the constraints that a given train was never presented twice in a

row and a given category never appeared more than four times in a row.

The experimenter first ran through the set of six trains twice and gave the correct
category assignment as each card was presented. Thereafter the cards continued to be
presented one at a time and the subject said whether they thought the train was in the East
or West category and then was told whether they were correct or incorrect. There was a
briel pause between every two runs and training continued until a participant was correct for

each train in a block of two such runs. When the training criterion was met, the



experimenter asked the subject to explain their criterion for classifying the trains as East or
West. In addition to this general question, participants were specifically asked if they focused

on one of the two categories.

Results

Every participant met the learning criterion and the overall average number of errors to
criterion (calling an Eastbound train Wutbouna or vice versa) was 7.50. The solutions were
generally in accord with our general processing model and INDUCE. All but 3 of lthe 20
participants focused on one of the two categories. The solution types are summarized in
Table 6. With two exceptions, the solutions were conjunctive, involved a consistent
descriptor disjunctively combined with conjunctive description to make the rule complete, or
involved a complete descriptor combined with a conjunctive description of the counter—
example to make the rule complete. One person simply memorized the trains and another
described a configural property involving openess and brightness. Of the 23 solutions stated,
14 included redundant features. An example of this is the rule that West trains are short or

long with a circular load when "short or circular load" was equally accurate.

Discussion

The main effect of switching to a learning paradigm appeared to be to make it more
difficult to discover sets of consistent and complete descriptors. The predominant strategy
was to select a single descriptor and narrow it by conjunctively describing the counter-
example (in the case of a complete but not consistent descriptor) or to extend it by describing
the additional train (in the case of a consistent but not complete description). Furthermore a

majority of solutions contained redundant components and there were not cases in which the
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most simple disjunctive solution was given. Frequently, these redundant components were
associated with descriptions that applied to a single train, either to include it or to exclude it.
It is not cllear whether this form of redundancy differs in any fundamental way from the type
of redundancy noted earlier. This pattern of results is consistent with INDUCE and the

general processing model outlined earlier.

Experiment 4

Although the results of the second and third experiments were clearcut, they are based
on ; singie set of stimulus materials. This experiment used verbal descriptions of two
categories of hypothetical people in the rule induction task. The abstract structure is again
such that comparison can be made between conjunctive rules derived from properties that are
complete but not consistent and disjunctive rules derived from properties that are consistent
but not complete. One reason for anticipating a different pattern of results with verbal
materials is that combinations of properties might be much less salient. A second [actor
varied was whether or not the two properties that could be conjoined into a disjunctive or
conjunctive rule were adjacent in the descriptions. Again, nonadjacent descriptions may
favor consistency and disjunctive rules because it may be difficult to integrate information

that is spatially separated.

Method

Subjects. The subjects were 54 male and female undergraduates attending the
University of Illinois who participated in the study in partial fulfillment of course
requirehents in introductory psychology. Participants were run in groups of 3 to 4 and the
experiment lasted about 10 minutes. The subjects were either assigned to a condition where

relevant dimensions were adjacent (Adjacent Group, n=30) or nonadjacent (Nonadjacent
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Group, n=24).

Stimuli. The stimulus materials consisted of descriptions of two groups of six people
placed on a single sheet of paper partitioned by group. Each description consisted of a value
on each of six dimensions: Marital Status (Single or Married), Education (M.A. or B.A.),
Sports (Golf or Tennis), Music (Rock or Jazz), Employment [Sell'aemp]oyed or Corporation)
and Hobby (Painting, Photography, or Ceramics). For four of the six dimensions a given
value was true of all members of one class but had two counterexamples in the contrast
category, or was true of some (four) members of one class but had no counterexamples. The

former properties have maximal category validity and the latter have maximal cue validity.

It was possible to combine two complete but not consistent descriptors to form a valid
conjunctive rule or to combine two consistent but not complete descriptors into a disjunctive
rule. The relevant dimensions involved in either type of conjoining were either adjacent (first
and second, third and_faurth, or fifth and sixth) or nonadjacent (first and fourth, second and
fourth, third and fifth, second and fifth). An example from the Nonadjacent condition is
shown in Table 7. The two possible rules of central interest for the left category in Table 7
are "M.A. and Rock” versus "Golf or Sell-employed” and for the right category are “Tennis
and Corporation” versus "B.A. or Jazz." Although each participant saw the same abstract
structure, several different randomizations of positions and properties were employed to

realize this abstract structure.

Procedure. Participants were given the sheet of twelve descriptions and their left—right
grouping and asked to read them over carefully. They were told to come up with a basis for
classifying the two groups that could be used to describe the groups and to determine the

correct category membership for any new descriptions. For the Adjacent Group the pair of
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consistent descriptors or the pair of complete descriptors was always adjacent and for the

Nonadjacent Group there was at least one intervening descriptor between the two members

of a potential pair (see Table 7).

Results

The results were generally the same as for the second experiment — there was a strong
preference for conjunctive rules based on complete but non consistent descriptors over
disjunctive rules derived from consistent but not complete descriptors. In the Adjacent
Group 21 people gave a conjunctive rule and only 2 2 disjunctive rule. Of the remaining six
people, three simply listed relevant properties, one gave a very complex (and incorrect) rule
and two integrated the dimensions into a composite personality statement {e.g., dependent
versus independent people). All together, there were 34 conjunctive rules given and only 5
disjunctive rules. For 8 of the 34 conjunctive rules additional properties were mentioned,
again suggesting that rules are not strongly constrained by simplicity. On three occasions
only a single property was mentioned for a rule and in each case this was a complete but not

consistent property.

The rule induction task proved to be more difficult for the Nonadjacent Group but the
main pattern of resuits was the same. Eleven of the people gave incomplete rules which can
be further classified as consisting ol a necessary feature (two people}, a sufficient feature (one
person), and both a necessary and sufficient feature (five people). Three people integrated the
dimensions into a composite personality statement and the last person gave no rule. At the

level of rules all 20 were conjunctive and 5 of these included an additional property.
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Discussion

The switch from simple trains to verbal descriptions of people did not change the
preference for conjunctive rules based on complete properties over disjunctive rules based on
consistent properties. Furthermore, although the Nonadjacent condition dramatically
reduced the proportion of people coming up with a successful rule (from 80 percent to 46
percent), it dod not diminish this preference for conjunctive over disjunctive rules (it went

from 88 percent to 100 percent).

This evidence that category validity plays an important role in rule induction
apparently has at least modest generality. We found no evidence that components are

ordered by information value alone or cue validity alone and then developed into rules.
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Table 1.
Bases for classification on the initial clustering in Experiment 1. The number in the table
refers to the number of participants using a particular clustering strategy. The numbers in
parenthesis under partitioning bases give the modal category sizes associated with each
strategy. Thus (3)(3)(4) refers to partitioning into three categories of respective sizes of 3, 3,
and 4 trains.
Basis for Partitioning Standard MethodInformed Method

(# of people) (# of people)

Single Property

Number of Cars . 16 19

(3) (3) (4)

Color of Wheels 3 5

(1) (4) (5)

Car Shape 3 0

(8)(2)

Load Shape 1 0

(1) (4) (5)

Number of Loads 0 2
Total Single 23 26

Conjunction of Properties

Number of cars and engine wheel color 1 3
(1)(1)(2)(2)2)(2)
Number of cars and car shape 1 1
(3)(3)(2)(2)
Number of loads per car 1 0
(4)(8)
Car position and type of load 5 ]
(4)(6) '
Car position and car shape 1 1
(2)(8)

Total Conjunction 9 5

Total Participants 32 31
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Table 2.
Basis for classification on the constrained clustering task

particular strategy.

Condition

Basis for Partitioning

where two equal-sized groupings
were created in Experiment 1. The numbers refer to the pumber of participants using a

Standard MethodInformed Method

(# of people) (# of people)
Single Property
Color of Engine Wheels 13 g
Wheel color 1 4
Load Shape
Shape vs Mot 4 2
All Different vs Not 1 1
Number of Loads 1 3
Car Shape
Rounded vs Straight 1 1
Other
Number of Cars (loosely) 1 0
Simple vs Complex Trains 1 0
Total Single 23 19
Conjunction of Properties
Load Shape and Car position 4 4
Car Shape and Load Shape 4 2
Car Length and Car Top 0 2
Number of Cars and Car Top 0 1
Number of Cars & Engine Wheel Color 0 2
Load Shape & Wheel Color 0 1
Total Conjunction 8 12
Disjunction of Properties
Number of Cars or Wheel Color 1 0
Total People 32 31
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Table 3.
Basis for classification on the [ree sorting with an "else” category in Experiment 1. The
numbers in the Table refer to the number of participants using a particular strategy.

Standard MethodInformed Method
(# of people) (# of people)

Basis for Partitioning

Single Property

Number of Cars 2 0
Wheel Celer 1 10
Number of Loads 1 1
Load Shape 1 1
Car Shape 0 1
Number of particular Load Shapes 3 1
Number of Wheels ' 2 0
Total Single 10 14
Conjunction of Properties

Car Position and Shape 6 1
Car Top and Wheel Color 1 1
Car Position and Load 2 1
Car Shape and Loads 3 3
Car Shape and Number of Wheels 0 1
Car Length and Shape 1 1
Number of Cars and Shape 1 1
Number of Cars and Loads 0 1
Number of Cars and Wheel Color 0 2
Combinations of Load Shapes 3 4
Load Shape in Same vs Adjacent Cars 3 0
. nmber of Cars and Shapes Order 0 1
 wmbinations of Car Shapes 2 0
Total Conjunctive 22 17

Total People 32

L)
-
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Table 4.

Breakdown of solutions
refer to the number of participants giving a

Solution Type
Simple Property

Number of Different Loads
(East: 3 or more different loads)

Conjunction of Properties

Positive Features only
(e.g. East: triangle load
and 3 or more loaded cars)

With Negative Features
(e.g. East: 3 or more cars
and triangle load and not
jagged car top)

Disjunction of Properties

Simple (e.g. West: two cars
or jagged top)

Disjunction of Conjunction Positive
properties only (e.g. 2 cars or long
cars and 2 white wheels)

Negative properties included (e.g.
East: at least 1 black wheel on
engine and not 3 circular loads or
(diamond shape load and not black
wheels)

Mixed Types (e.g. East;
conjunctive, West; disjunctive)

Other (e.g. partial rules,
descriptions of the various trains

to rule induction task in Experiment 1. The numbers in the Table

particular type of rule.
Standard MethodInformed Method

2 2

2 2

8 7

Conjunction Total 10 9
12 5

1 9

4 1

Digjunction Total 17 15
1 2

2 3

Total People 32 31
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Table 5.
Bases for classification provided by participants in Experiment 2. The numbers refer to the
number of participants for a given classification basis. The numbers in parentheses are the
number of descriptions that would not successfully classify the trains.

East West
Rule
Conjunctive
Simple 17 (2) 19 (4)
Redundant 17 4
Disjunctive 0 g (1)
Both 2 0
Description
Common properties 20 (8) 24 (17)
Distinctive Properties 4 3(1)
Commoen and Distinctive Properties 7(1)

None 2 1
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Table 6.
Bases for classification provided by participants in Experiment 3. The numbers refer to
number of solutions for a given type and since 3 of the 20 participants said they had paid
equal attention to both categories the total number of solutions is 23. The underlinings for
the rule statements are intended to help parse the rule components.

Basis for Classification Number of Solutions
Conjunctive rule

Simple 6
(e.g. East: Long and triangle load)

Redundant 1
(e.g. East: Two wheels and
triangle load and not short)

Consistent descriptor plus conjunction 11
(e.g. East: open top or closed top
and clear rear wheels)

Complete descriptor plus conjunction 3
to eliminate counterexample

(e.g. East: Long cars and not long

with dark wheels and a circular load)

Memorized Individual Trains 1
Configural 1

("East trains looked more open
and bright")
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Table 7.
An example of the classification materials used in Experiment 4. Each cluster of descriptors
corresponds to an individual. In this example the dimensions relevant to a simple disjunctive
or conjunctive rule are nonadjacent (1st and 4th or 2nd and 5th).

Category A
Married
M.A.

Golfl

Rock
Self-employed
Ceramics

Married

M.A.

Tennis

Rock
Self-employed
Painting

Married

B.A.

Golf

Rock
Sell—employed
Photography

Married
M.A.

Golf

Rock
Corporation
Ceramics

Married
M.A.
Tennis
Rock
Corporation
Painting

Married

B.A.

Golf

Rock
Self—employed
Photagraphy

Category B
Married

B.A.

Tennis

Jazz
Corporation
Ceramics

Single

B.A.

Golf

Rock
Corporation
Painting

Single

B.A.

Tennis

Rock
Corporation
Photography

Single

B.A.

Tennis

Jazz
Corporation
Ceramics

Single

B.A.

Golf

Jazz
Corporation
Painting

Married

B.A.

Tennis

Jazz
Corporation
Photography
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V1. General Discussion

The set of experiments in the present paper form a coherent pattern. The first study
found that people's category cuﬁatructiuns and rule inductions were quite similar to those
associated with two corresponding Al inductive learning and generalizaton programs,
CLUSTER and INDUCE. People appear to set out to find descriptors that will span the
target category without applying to examples from contrasting categories. If an assertion is
consistent (covers no counter-examples) but not complete (does not span the target category),
it is retained, attention shifts to the members of the target category not covered by the
original assertion, and new assertions are sought that are consistent and complete for the
reduced set (i.e., they form a disjunction). This is precisely how INDUCE wo;-ks. The second
major possibility is that an assertion will be complete but not consistent. In this event,
people focus on the counter-examples and attempt to eliminate them by specializing their
description, which can be done by negating properties that are true of the counter—examples
but not for the positive examples. In support of this interpretation, negations (e.g., not
triangular) appear almost exclusively with conjunctive rules, One may mention that by
appropriate parameter settings INDUCE may be able to capture this emphasis on
completeness, though in its current implementation INDUCE places more stress on
consistency in the process of developing solutions. Finally, the similarity of performance of
participants given the list of descriptors and those who were not, provides support for the
selective and constructive generalization rules associated with INDUCE. People did not
confine themselves to the original descriptive language and neither do CLUSTER and

INDUCE.
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The second study showed that people are far more likely to develop conjunctive rules
with complete but not consistent descriptors than disjunctive rules with consistent but not
complete descriptors. In addition, many rules derived by subjects contained redundant
components. This observation is consistent with the idea that degree of "fit" to data and not
just simplicity influences people's inductive generalizations. The third study used a learning
procedure, and again component completeness (category validity) appeared to be more
important than component consistency (cue validity), No participant gave a simple
disjunctive rule. Instead, rules took one of three forms: (1) simple conjunctive, (2)
disjunctive based on a consistent but not complete description supplemented by a description
of the remaining example (e.g., "short or long with a circular load"), and (3) conjunctive
based on a complete but not consistent descriptor supplemented with a description of the
remaining counter—example. Again, a majority of the rule statements included more than the
minimum necessary descriptions. The fourth study indicated that category validity continues

to be important when the stimulus materials consist of verbal descriptions of people.

Relation to Al Models

We have concentrated on the program INDUCE for reasons given in the introduction.
As a psychological process model INDUCE fares rather well. Although it manifests a bias for
conjunctive solutions it does allow for disjunctive solutions of the form we have been
referring to as "opportunistic disjunctions,” It’s main shortcoming as a psychological model
is that it does ot contain an algorithm for "opportunistic conjunctions” where complete but
not consistent rules are modified by negating properties of counter-examples. Although both
types of opportunistic rules lack the elegance of a simple conjunctive description they do offer

certain advantages. First of all, most concepts probably do not have singly necessary and
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jointly sufficient properties (see Medin & Smith, 1984, for a recent review) and, therefore,
would allow for simple conjunctive rules. A second, related reason for allowing for
opportunistic rules in Al programs is that it would provide better immunity to noisy or
partially inconsistent data. The first part of opportunistic rules would not be affected by a

few inconsistencies or counter—examples.

Other Al programs fare less well as psychological models. In part, this is to be expected
in that they were not intended to be models for human rule induction. The reasons why
these alternative induction procedures do not mirror the human data are varied. First of all,
some programs do not provide for disjunction or constructive generalization rules (e.g.,
Mitchell, 1977). Although other programs employ constructive generalization rules (e.g.
Winston, 1975; Hayes-Roth & MecDermott, 1978) they contain no mechanisms for
representing disjunctions. Most of the programs that do allow for disjunctions (e.g., Quinlan,
1975, 1979) assume that a discrimination net ordered by information value is developed to
construct rules. These programs could not predict the strong preference for conjunctive rules
and component category validity over disjunctive rules and component cue validity that was
particularly salient in the second and third experiments. Finally, to our knowledge no Al
program makes provision for the opportunistic conjunctions that were fairly prevalent in our

human rule induction data.

Generality

The generality of the present results is certainly open to question. So far we have
sampled from a small set of stimulus materials, procedures, and category structures. Yet to
be determined is the extent to which we are studying fairly general processing constraints as

opposed to constraints associated with our particular tasks and stimulus materials. Even if
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we are sanguine with respect to general constraints, we know little about the range of
flexibility available to people in comparison with that of INDUCE and CLUSTER. By
changing the preference criteria, we can easily cause INDUCE to give simplicity priority over
fit. It would be surprising il people demonstrated this range of flexibility in processing, if
only because of time and memory limitations. On the other hand, people may manifest a
deeper form of Aexibility such that their performance falls outside that available to INDUCE

and CLUSTER even when all the parameters in the programs are free to vary.

As one approach to the issue of ht-:man fexibility, we have conducted followup work
using a rule induction task and employing the trains from the first experiment. The main
independent variable was that instead of labeling the trains as East— or Westbound, different
labels and cover stories were presented. For example, a participant might be told that the
categories were trains run by smugglers versus legal trains, or trains constructed by creative
versus uncreative children, or trains that travel in mountainous versus Aat terrains. Our
preliminary data suggest that these different labels influence rule inductions in systematic
ways but these systematic changes are compatible with INDUCE and the general process
model. As one example of a change, the mountainous versus fat terrain labels make it much
more likely that a participant will come up with the rule that the trains in one category have
three or more different loads. In addition, certain salient properties that are readily linked to
labels may lead participants to rules suggesting a greater bias toward consistency. For
example, when the smuggler category included the train carrying a diamond-shaped load, a
participant might give a rule of the form "diamond shaped load load. Finally, for these more
meaningful categories, we have some evidence that participants are more likely to tolerate

rules which either are incomplete or have counter—examples.
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Although one could probably demonstrate that a semantically-rich but syntactically-
awkward rule will be preferred to a semantically-impoverished but syntactically-simple rule,
such a demonstration is unlikely to constitute a powerful constraint on the generality of the
present results. In most domains of interest semantic considerations may narrow down the
set of properties which might enter into inductive generalizations but still leave an
innumerable set of possible inductions. ﬁmu-ng this set, syntactic considerations may play a
powerful role. Of course, syntax and semantics may not be orthogonal. In novel domains,
syntactic constraints may guide the search for semantically meaningful properties — 2
complete but not consistent descriptor is a good candidate for a mecessary property and a

consistent but not complete descriptor may turn out to be a sufficient property.

The Importance of Category Validity

Probably the most striking result was the emergence of category validity as a significant
factor in rule inductions. The preference for conjunctive over disjunctive rules in the second
and third studies may be seen as deriving from an opportunistic combining of complete but
not consistent descriptors. Again, we hasten to add that stating constraints in terms of
products or outputs derives from the underlying processing model we have outlined combined
with the particular category structures employed. With different processing demands and
alternative category structures the same processing model that continues to give an
important role to category validit,y may give rise to a preponderance of disjunctive rather

than conjunctive rules (e.g., Experiment 1).

There is still the question of whether these results on category validity have any
significant generality. We think there are two strong reasons for thinking that they do. One

is that our tasks are heavily biased toward discriminating rather than characterizing the
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categories and, therefore, heavily biased toward cue validity. Still, category validity emerged
as a very significant factor and il that is true in the present circumstance, it ought to be even
more true in the more general case where characterizing and understanding categories are
more important. The second support for generality derives from some related research in

diagnostic classification.

One domain that may be particularly relevant to the present studies is the diagnostic
classification associated with medical problem solving. Some recent research in this area can
be interpreted as supporting the importance of category validity. One fairly elaborate study
by Fox (1980) employed 2 task where an initial symptom was presented and the person
performing in the task could either make a diagnosis or perform tests for additional
symptoms. Both the symptoms and diseases were realistic and the participants were third,
fourth, and filth year medical school students. All symptoms were associated with more than
one disease and the probability of a symptom given a disease could and did vary from disease
to disease. The medical students received extensive training on this task until their
performance was asymptotic, Fox (1980) analyzed the sequential tests for symptoms in terms
of a production system model and he did not directly consider the role of cue and category
validity. There was one case, however, where the presenting sysmptom narrowed down the
set of possible diseases to two and where some of the additional symptoms had approximately
same informative value but varied in category validity. Specifically, one sympton was
associated with one disease half the time (probability of symptom/disease = .50) and never
appeared with the other disease, whereas another symptom was associated with the first
disease three-fourths of the time and appeared with the second one—fourth of the time.

Because the diseases did not appear equally often the first symptom had a slightly greater
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information value but the second had a higher category validity. The results showed that the
symptom with the higher category validity was tested for far more frequently than the other
(33 out of 41 occasions). This suggests the influence of category validity is not confined by

meaningless stimuli, short tasks, and naive subjects.

A related study with first—year house officers (Wolf, Gruppen, & Billi, 1985) also
suggests the cue validity is not the sole factor determining diagnostic classification. Woll et
al. used a highly simplified task but one that tends to underline their results. The medical
personnel were presented with cards labeled with two diseases (A and B) and two symptoms
and given information about the prevalence of one of the symptoms in one of the disease
categories. Participants were allowed to select one of the other three sources of information.
To determine cue validity, one would need to test for the prevalence of the given symptom in
the alternative disease category. Only a minority of the house officers (24 percent)
consistently selected this optimal diagnostic information. Most of the nonoptimal choices
were testing for the alternative symptom in the initial disease category. In genmeral, if
physicians organize their medical knowledge in terms of diseases and the likelihood that
different symptoms are associated with them, then category validity may play a more
important role in induction and diagnostic reasoning. Eddy’s (1982) recent review of
probabilistic reasoning in clinical medicine showing that people often act as if cue validity is

the same as category validity is consistent with this suggestion.

Relative emphases on cue versus category validity have different implications for which
procedural variations should optimize learning. Consider a classification learning task
involving two categories where in the initial phases of learning the examples from alternative

categories are either randomly intermixed or blocked by category (i.e., all the examples of one
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category appear before the examples of the other category). To determine cue validity, one
needs to have a contrast category so mixing examples should facilitate learning. On the other
hand, acquiring information about category validities ought to be facilitated when examples
are blocked by categories. Although there is not a great deal of evidence bearing on the
relative effectiveness of these two training procedures the data which do exist show that
learning is considerably more efficient under blocked rather than mixed presentation for beth

rule-based (Whitman & Garner 1963) and fuzzy categories (Murphy, 1984).

The present findings, along with results from the studies just reviewed, undermine the
idea that people classify and form inductive generalizations by computing cue validity or
information value and then developing something like a discrimination net model. On the
other hand, cue validity is not totally ignored. For example, although the rules given for the
trains in Experiment 2 were often redundant, they did not include properties that were true
of all members of both categories (i.e., those with zero cue validity). In addition, one might
readily imagine that rule redundancy could readily be decreased (or increased) by different
instructions or task demands. The results do suggest, however, that category validity plays a
more significant role than impllied by previous accounts of rule induction. Given that this
pattern of results apparently holds for medical diagnosis and classification learning, where the
emphasis is on discrimination, it ought to be even more powerful for natural object categories
where the emphasis is often on the inferences which can be derived from knowledge of

category membership.

Implication for Constraints

The models we have been discussing suggest some fairly general biases or constraints on

rule inductions. If we take as our starting point the vague notion that the only constraint
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needed is that people prefer simple rules to complex rules, then we can claim considerable
progress. First of all, simplicity is not the whole story. Whether we define simplicity in
terms of number of operators or complexity of descriptors, our experiments demonstrate
inductive generalizations are influenced by factors other than simplicity. People show strong
preferences among equally simple rules and their rules very frequently contain more than the
minimal content needed to discriminate between the eategories. And it is not the case that
this lack of parsimony arises from people’s failures to discover simple rules. In a large
number of cases people stated rules that could be made more simple by dropping conditions.
These and other observations support the idea that people’s inductions are also influenced by
the concept of fit or degree of specificity. The concept of fit implies that rule inductions may
tend toward greater apeciﬁciifr than the most simple and general discriminating rules. One
could think of this emphasis on fit as protecting the system from drawing generalizations that
are too broad and difficult to recover from. Also, the fit biases descriptions toward including
the maximum number of correlated descriptors in one conjunctive statement. This bias
toward correlated attributes allows for convenient representation of inferences which may be
drawn from category membership and may set the stage for causal linkages among

descriptors.

Our process models also embody other constraints. According to these models, one
cannot specify independent of particular structures whether conjunctive or disjunctive rules
are more likely to predominate. It is the case, however, that processes such as initially
searching for completeness and then modifying descriptions to insure consistency will provide
powerful biases In rule inductions and allow one to make predictions about the relative

preponderance of disjunctive and conjunctive rules for any particular structure. That is, the
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constraints are embodied in the process model for performance and nof in some abstract

statement of the gener;:I difficulty of different types of rules.

The notion that constraints are embodied in process models suggests a future direction
of research. The difference in rule statement between the second and third studies versus the
fourth study shows that demands on memory associated with learning procedures provides an
additional source of constraints. A more detailed model for human rule induction that
included a limited working memory would provide a framework for exploring additional

constraints on human rule induction.
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AFPPENDIX

Table A.1
List of solutions to the East-West rule problem in Experiment 1, An asterisk indicates that

the rule will not perfectly partition the trains.

Solution Type

S5imple Property
1) East: 3 or more different loads

Conjunctions of Properties

1) East: triangle load and 3 or more
loaded cars

2) East: short car and closed top

3) West: less than 3 load types and
last car with 2 wheels

4) East: 3 or more cars and triangle
load and not jagged top

5) East: 3 or more cars and not
jagged top

6) East: 3 or more cars and triangle
load and not triangle load in non
first rounded car

7) East: triangle load and not 3 circle
loads and not jagged top

8) East: 3 or more cars in first car
open and not jagged top and not two
identical cars

9) East: 3 or more cars and all loaded
and no two cars identical

10) West: Long car and white wheel
and not carrying triangle load

11) West: Long car and white wheels and
(no loads or two small rectangles
three circles or a large rectangle
as loads)

12) East: Triangle load and not in last
car and nonengine wheels all same color

13) West: Two or fewer black wheels and
not. hexagon or oval car and not short
rectangular car with closed top

Disjunction of Properties
1) West: 2 cars or jagged top
2) West: 2 card or (long cars and

Standard Method
(# people)

10

Informed Method
(# people)
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2 white wheels)

3) West: not triangle load or
{triangle and 2 white wheels)

4) West: two cars or 2 identical
cars or only lst car wheels black

5) West: (Clear engine wheels and
not an oval shaped car) or three
circular loads

6) West: triangle in 2nd car or
second with closed top

7) East: (At least one black engine
wheel and not 3 circular load) or
diamond shaped load

8) West: No dark engine wheels or
(not white engine wheels and circular
loads in first car)

9) West: Not triangle load or (triangle
load and last two cars of same type
open)

10) East: (triangle load in first car
and first car open top) or (triangle
load in second ear and second car
closed top)

11) East: (four cars and one with closed
top) or (3 cars and two with elosed
top)

12) East: (Long cars and black wheels)
or (triangle load and closed tops)
or (triangle load in first car)

13) East: (3 cars with all white car
wheels and black engine wheels) or
(4 cars with all black wheels or
diamond load) or (3 cars and
inverted triangle load)

14) East: (at least one engine wheel
colored and first car open) or (all
wheels white and second car with
triangle load)

15) East: (at least one engine wheel
colored and three or four cars) or
(engine wheels white and four cars
and one oval shaped car)

16) East: (triangle load and open top
in first car) or triangle load and
closed top in second car)

17) West: (Engines with all white wheels)
or (black engine wheels and open

1*

ll

It

ll
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last car with triangle load)

18) West: (middle car closed with clear
wheels) or two cars adjacent to
middle have wheels of different
color)

Mixed Types
1) East: four or more cars and load and

not jagged top

2) East: four cars and open top
West: two cars or (jagged top and
long rectangular car and short
rectangular car)

Other
1) Single property plus very detailed
descriptions of various trains
2) Detailed descriptions of either East
or West trains

li

-1!

1#
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lity that an entity is a member of a category given that it has some property) to a
greater extent than did che AI programs. More generally, the results show that human
inductive generalizations tend toward greater specificity than would be expected if
conceptual simplicity were the key constraints on inductions. This bias toward

specificity may be due to the fact that this criterion both maximizes inferences that
may be drawn from category membership and protects rule induction systems from

developing overgeneralizations.
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