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Abstract

DEVELOPMENT OF LAGRANGE MULTIPLIER ALGORITHMS FOR TRAINING
SUPPORT VECTOR MACHINES

Mayowa K Aregbesola, PhD

George Mason University, 2022

Dissertation Director: Igor Griva

The Support Vector Machine (SVM) is a supervised learning method that is widely

used for data classification and regression. SVM training times can be significant for large

training dataset. In pursuit of developing efficient optimization techniques for training

SVM with very large datasets, the decomposition method is often used, where the SVM

problem is broken into a series of SVM sub-problems. The subset of elements used in

each decomposition step, called a working set, needs to be selected efficiently while working

toward the goal of finding the full SVM solution.

SVM training time can be further reduced by using parallel processing, allowing the

training algorithms to run faster and more reliably. In this work, we used the Augmented

Lagrangian Fast Projected Gradient Method (ALFPGM) and the Nonlinear Rescaling Aug-

mented Lagrangian (NRAL) are used for training the SVM subproblems. We developed and

implemented parallel algorithms for training SVM and we used optimized matrix-vector,

matrix-matrix operations, and memory management to speed up the ALFPGM and NRAL

algorithms.



We proposed new working set selection (WSS) schemes to select the working sets used

in the SVM decomposition. The results obtained using the proposed WSS show faster

training times, while achieving a similar classification error compared to other approaches

found in the literature. Numerical results showing SVM training times and classification

errors obtained using the ALFPGM and NRAL methods are compared with the results

obtained using LibSVM (sklearn.svm.SVC), a widely used SVM solver. Numerical results

show that faster training times were achieved using NRAL over LibSVM for large dataset

SVM problems while achieving similar and in some cases smaller training data classification

errors.



Chapter 1: Introduction

Machine learning is the discipline of learning models from data using computers. Machine

learning problems are divided into two broad categories; supervised and unsupervised learn-

ing problems. Learning is called supervised when the training data are labeled examples,

otherwise it is called unsupervised. In supervised learning, a mapping function that maps

an input to an output based on known input-output pairs, called training set, is learned.

Supervised learning problems can be grouped into regression and classification problems.

In classification, the output variable is a category or class, such as a binary classification.

Whereas in a regression problem, the output variable is a real value or continuous output.

Unlike supervised learning, unsupervised learning uses unlabeled data. After training a

classifier from labeled data, a machine can decide on the class of new data it has never

seen before with high accuracy. Models learned by supervised learning fall largely into two

broad categories: classifiers and predictors.

Support Vector Machines (SVM) is a widely used supervised learning technique that is

used to build classifiers and predictors. Support vector machines (SVMs) are among the

most established machine learning algorithms. SVMs were initially developed for binary

classification where the output of the learned function is either positive or negative [2–4]

and have been extended and used for regression [5] and Rank learning [6]. SVMs works

excellently well when there is a clear margin of separation between the different classes.

Additionally, SVMs are effective in high-dimensional spaces and in cases where the number

of dimensions is greater than the number of samples. SVMs can capture complex, nonlinear

decision boundaries with good generalization to previously unseen data. In other words,

they have low generalization errors. SVM Multiclass classification can be achieved by

combining multiple binary classifiers using the pairwise coupling method [7, 8].
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Two special properties of SVMs are that they achieve high generalization by maximizing

the margin, and they support efficient learning of nonlinear functions using the kernel trick

[1]. One of the main characteristics of SVMs is that the problem is a convex quadratic

programming (QP) problem. Thus, the global minima can be found and the problem

is readily solvable using quadratic programming techniques. Secondly, the resulting data

classifier can be specified completely in terms of its support vectors and kernel function

type. Details on the mathematical formulation of SVM are provided in Chapter 2.

SVM Solvers

The Lagrangian dual of the SVM classification problem is a convex quadratic optimization

problem. The SVM solution is the optimum of a well-defined convex optimization problem

[1, 9]. SVM training requires solving a large-scale convex quadratic optimization problem

that has a dense Hessian of the objective function. Due to the convexity of the SVM training

problem, finding a global solution is guaranteed as long as the Karusch-Kuhn-Tucker (KKT)

conditions are satisfied. Therefore, computational efficiency and memory requirements are

generally the two main factors to consider when choosing a particular optimization algo-

rithm [9]. General-purpose high-performance optimization packages (MINOS, LOQO, and

MATLAB) used to solve quadratic programming problems were initially used to find a so-

lution to SVM problems. However, as Bottou et al. [9] pointed out, there are differences,

however, between the SVM problem and the usual quadratic programming benchmarks.

• Quadratic optimization packages were often designed to take advantage of the sparsity

in the quadratic part of the objective function. Unfortunately, the SVM kernel matrix

is rarely sparse. Sparsity occurs, however, in the solution of the SVM problem, as the

number of Support Vectors(SVs) is often much smaller than the number of training

samples.

• The specification of an SVM problem rarely fits in memory. The kernel matrix coeffi-

cient must be cached or computed on the fly. Vast speed-ups are achieved by accessing

2



the kernel matrix coefficients with care.

• Generic optimization packages sometimes do extra work to locate the optimum with

high accuracy. The accuracy requirements for a learning problem are unusually low.

Since the 1990s, there have been many attempts to develop efficient algorithms for SVM

training. First, interior point methods (IPM) [10] have been used. Interior point methods

(IPMs) that require solving linear systems of equations such as [10,11]. Later, the nonlinear

rescaling principle has lead to exterior points methods introduced by R. Polyak [12] has been

shown to be competitive with IPM [13,14].

The interior and exterior point methods are based on solving the m-dimensional linear

systems of equations, where m is the number of training examples. Therefore, they are

efficient for training SVM only up to a few thousand data points. The design of many

initial SVM solvers assumes that the full kernel matrix is readily available. Calculating

the complete kernel matrix is expensive and unnecessary, so the decomposition methods

[15–17] were designed to overcome this difficulty. In pursuit of training SVM on larger

data sets, decomposition methods such as sequential minimal optimization (SMO) [18]

gained popularity due to their low memory usage requirement and efficiency. Decomposition

methods address the full-scale dual problem by solving a sequence of smaller quadratic

programming sub-problems. Instead of updating all variables α in the dual space, each

iteration of the decomposition method optimizes a subset of αi, i ∈ β, and leaves the

remaining coefficients αj , j /∈ β unchanged. Most SVM solvers in recent years have been

using decomposition techniques to speed up SVM.

There are some challenges that arise when using decomposition.

• Selecting the optimum SVM sub-problem for each iteration to ensure a fast training

time.

• Solving the sub-problem optimally.

• Updating the SVM problem gradient with the newly computed variables α.
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Sequential Minimal Optimization was proposed by Platt[19], where a working set size

of 2 is iteratively selected and the target function is optimized with respect to them. The

SMO is one of the most widely used SVM solvers. It has good convergence properties and

is easily implemented. The key point is that for a working set of 2 the optimization sub-

problem can be solved analytically without explicitly invoking a quadratic optimizer. The

biggest advantage of this method is that the derivation and implementation are astoundingly

simple. However, the drawback is that pairs of training data optimized in this way must

be iterated many times. Details on the SMO can be found in the following works [19–22].

In each iteration, the SMO heuristically selects two variables (αi, αj) and solves the SVM

subproblem using a closed-form solution. The Sequential Minimal Optimization algorithm

selects the working set using the maximum violating pair scheme [19] and for each working

set, the solution is found. Much of the entire SMO algorithm is dedicated to heuristics

to choose which pairs αi and αj to optimize to minimize the objective function as much

as possible. For large data sets, this is critical to the speed of the algorithm, as there are

m(m− 1)/2 possible choices for αi and αj , and some will result in much less improvement

than others.

LibSVM ([22–24]), a very popular tool for training SVM, implements a variant of this

method. In general, any small number of variables may be optimized at once, with working

set size representing a trade-off between work per iteration and the number of iterations

required. LibSVM utilizes the steepest feasible descent approach for selection of the working

set and introduces kernel caching and shrinking strategies to accelerate the speed of SVM

training. However, it costs a lot of time to select the working set for decomposition and

SMO. In each of the optimization iterations, the two approaches should update the entire

training set and select the current working set, which contributes to minimize the objective

function in the current step.

Working set selection using 2nd order statistics [23] has been used for working set selec-

tion and is now the most widely used working set schemes. There have been several works

[25–27] that have attempted to further speed up SMO algorithms by having them run in a
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parallel architecture.

Most parallel SVM implementations for multicore or GPU systems use the explicit

parallelization approach on 2-pair decomposition methods [22,28–31]. in Sha et al. [32] in-

troduced a multiplicative update rule for SVM optimization problem that uses large matrix-

vector multiplications in each iteration, and Chapelle [33], proposed a primal formulation

for the least squares hinge loss which results in matrix-matrix and matrix-vector opera-

tions. Both works ([32,33] are cases of implicit parallelization by reducing the kernel SVM

optimization to dense linear algebra operations.

There are several parallel implementations of SVM solvers based on two-pair decom-

position aimed at multicores. Some methods attempt to extract the existing parallelism

from the SMO-based approaches [34, 35], including a simple modification of LibSVM that

computes kernel matrix entries in parallel with OpenMP. Other approaches attempt to do

some restructuring of the problem. Increasing the size of the working set (originally two

variables in SMO) exposes additional parallelism, as several dual variables are optimized

at each iteration [36–38], as well as optimizing nested working sets [39]. Another common

approach is to partition the training set, optimize the partitions in parallel, and combine

the resulting solutions [26,40–43].

Likewise, all previous attempts to accelerate the training of kernelized SVM on GPUs

have been direct implementations of a 2-pair decomposition method such as SMO. GPU

SVM offloads the computation of kernel matrix rows to the GPU using the CUBLAS library

and computes KKT condition updates on the GPU with explicitly parallelized routines[30].

Carpenter et al. [29] demonstrated a similar approach and demonstrated the results. In

recent times, however, some further attempts to improve the SMO have led to the ap-

pearance of decomposition methods that use larger working sets than does the SMO (e.g.

GTSVM [31] and the IPSMO-2 algorithm in [27]). GTSVM takes the strategy of increasing

the working set size of dual variables to 16 to better utilize GPU resources. However, they

focused only on datasets whose kernel matrices can fit into computer memory. IPSMO-2
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allows a selection of a larger size of a working set to fit comfortably in an operating memory

of a node of a high-performance computing (HPC) multi-node system.

On the other hand, in the last decade, fast gradient methods related to the family of

optimal first-order methods introduced by Nesterov [44], have gained their popularity. Beck

and Teboulle analyzed the convergence of the FISTA algorithm [45, 46]. Later, R. Polyak

established convergence bounds for fast projected gradient methods (FPGM) [47, 48]. In

particular, he analyzed the FPGM convergence for solving a nonnegative least squares

problem. The theory developed in [48] can be used to justify the convergence of the FPGM

for the minimization of a general convex quadratic function for bounded variables.

Training SVM requires solving a large-scale convex quadratic problem with a linear

constraint and simple bounds for variables. Therefore, the fast projected gradient method

is a natural choice for solving the SVM problem, since projection on the set defined by

simple bounds is computationally inexpensive. The linear constraint can be enforced with

the help of the augmented Lagrangian method. The theoretical analysis of the corresponding

augmented Lagrangian Fast Projected Gradient Method can be found in [49]. Similarly,

Polyak et al. have studied Nonlinear Rescaling with SVM [50]. We hope to extend these

works by applying decomposition techniques and studying how the algorithm performs in

relation to SMO.

Good tutorial introductions to SVM training methods can be found in [1,5,8, 9,22,51].

Contributions

In this work, we have considered a new approach to training SVM different from the 2-

pair decomposition approach by using the decomposition technique with a working set size

greater than 2. The hypothesis is that by increasing the number of pairs to more than 2, we

can, by using efficient quadratic solvers, reduce the overall training time of SVM. Numerical

results have demonstrated faster training times with working set size greater than 2. To

solve the decomposition problem, we have used the Augmented Lagrangian Fast projected

6



gradient method (ALFPGM) and Nonlinear Rescaling Augmented Lagrangian (NRAL) as

the quadratic problem solver. The goal is to utilize improved computing capabilities and

cheaper memory storage to reduce SVM training times for large training dataset SVM

problems.

Our contributions in this work come in four parts.

� We developed an improved ALFPGM for training SVM using decomposition tech-

niques. We have developed and implemented ALFPGM with high-performance com-

puting techniques to reduce training time. We compared different FISTA algorithms

in ALFPGM for SVM training. To the best of our knowledge, no one has used ALF-

PGM for SVM training using decomposition methods. We have seen works like Han

et al. [52] and Bloom et al. [14] that used FISTA based algorithms for SVM training

for small data set problems whose kernel matrices fit into the computer memory.

� We developed Nonlinear Rescaling Augmented Lagrangian (NRAL) with newton for

the SVM decomposition solution. We have developed and implemented NRAL with

high performance computing techniques to reduce training time. Previous works like

Polyak et al. [50] have studied Nonlinear Rescaling with SVM. The difference with our

work, is that we have applied the decomposition techniques and have expanded the

area by studying how the algorithm performs with different decomposition methods

and working set sizes.

� We proposed and developed working set selection schemes (WSS3,WSS4,WSS7,WSS8)

to select the p pairs elements of the working set where p > 2 to reduce SVM training

times. Previously, Maximum Violating Pair (MVP) and working set selection using

second-order statistics have been used for working set selection. Some works such as

[27] have used pairs p > 2 in the selection of the working set. In this thesis, we present

four new working set selection schemes.

� Finally, we studied how different parameter selections affect the SVM training time

7



and classification errors. We examined how the choice of p pairs affects the overall

training results and gave recommendations on choosing the optimal parameters.

Contents

This thesis is structured as follows. Chapter 2 reviews the mathematical formulation

of SVM. Chapter 3 presents the decomposition technique and the selection of working

sets. Chapter 4 discusses quadratic optimization problems and different FISTA algorithms.

Chapter 5 discusses the Augmented Lagrangian Fast Projected Method (ALFPGM) and

Nonlinear Rescaling Augmented Lagrangian (NRAL) for SVM problems. Chapter 6 presents

numerical results, and finally chapter 7 discusses our conclusions.
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Notation

To facilitate the reading of this thesis, here are some important notations.

D : dataset

xi : n-dimensional real vector

yi the binary class to which the point xi belongs (1 or −1)

m: size of training samples

n: dimension of the samples feature

nD: Number of decomposition steps

nSv: Number of support vectors

nBSv: Number of border support vectors

w : weights vector

α: Lagrange multipliers vector

b : bias term

Q : kernel matrix

B : working set

e : the vector of all ones

C: regularization parameter

9



Chapter 2: Support Vector Machine

A Support Vector Machines (SVM) is a supervised classification technique that is used for

learning classification and regression. SVMs were originally developed for classification [4]

and have been used for regression [5]. The original form of SVM is a binary classifier in which

the output of the learned function is either positive or negative. Multiclass classification

can be implemented by combining multiple binary classifiers using the pairwise coupling

method [7, 8]. Two special properties of SVM are that they achieve high generalization

by maximizing the margin and that they support efficient learning of nonlinear functions

using the kernel trick [1]. A.1 shows a comparison between the run-time and accuracy of

different machine learning classifiers in the scikit-learn machine learning tool. SVM in the

examples presented have lower training and testing data misclassification errors.

Hard-Margin SVM Classification

In a binary classification scenario, a classifier seeks to separate training data into two cate-

gories. SVMs perform classification by finding a hyperplane that separates or differentiates

the two classes. The training set is said to be linearly separable when there exists a lin-

ear hyperplane that separates the classes of all training examples. When a training set is

linearly separable, there are an infinite number of separating hyperplanes. To archive an ac-

curate classification, Vapnik and Lerner [53] proposed to choose the separating hyperplane

that maximizes the margin; distance the hyperplane and the closest example. A hyperplane

like that, if found, is likely to correctly classify unseen or the testing dataset.

If the datasets D in the training set are mathematically expressed as follows:

D = {(x1, y1) , (x2, y2) , . . . , (xm, ym)} ,

10



Figure 2.1: Hyperplanes separating data [1]

where xi is an n-dimensional real vector, yi is either 1 or −1 denoting the class to which

the point xi belongs. The SVM classification function f(x) is

f (x) = w · x− b, (2.1)

where w is the weight vector and b is the bias.

In the binary classification case, to correctly classify the training set, f(x) must return

positive numbers for positive class data and negative numbers otherwise, for every point xi

in D,

f (x) =

 w · xi − b > 0 if yi = 1, and

w · xi − b < 0 if yi = −1
.

The conditions are restated as follows.

yi (w · xi − b) > 0, ∀ (xi, yi) ∈ D. (2.2)

As shown in Fig. 2.1, there are many hyperplanes (f (x)) that can be drawn. If there

exists a linear function f that correctly classifies every point in D is called linearly separable

[1]. In this case, (2.2) can be written as

11



Figure 2.2: Maximizing the margin [1]

yi (w · xi − b) ≥ 1, ∀ (xi, yi) ∈ D. (2.3)

Note that (2.3) includes the equality sign, and the right side becomes 1 instead of 0.

If D is linearly separable (every point in D satisfies (2.1)) then there exists an f(x) that

satisfies (2.3). This is because if there exist w and b that satisfy (2.3), they can always be

rescaled to satisfy (2.3). The distance from the hyperplane to a vector xi is formulated as

|f(xi)|
‖w‖ . It is desired to obtain the hyperplane that maximizes the geometric distance to the

closest datasets. Thus, the margin becomes

margin =
|1|
‖w‖

because when xi are the closest vectors, f(x) = 1 (2.3). The closest vectors that satisfy

(2.3) with the equality sign are called support vectors.

Maximizing the margin becomes minimizing ‖w‖. The training problem in an SVM

becomes a constrained optimization problem as follows:

12



min
w, b

f (w) =
1

2
‖w‖2,

s.t. yi (w · xi − b) ≥ 1 ∀ (xi, yi) ∈ D.

(2.4)

SVM Constrained Optimization Problem

The constrained optimization problem (2.4) is called a primal problem[1, 54]. It is char-

acterized as follows:

• The objective function (2.4) is a convex function of w.

• The constraints are linear in w.

We can solve the constrained optimization problem using Lagrange multiplier methods

[55]. Given a constrained optimization problem, we can construct another problem, called

dual problem. The dual problem has the same optimal value as the primal problem, but

with Lagrange multipliers providing the optimal solution. Primal optimization of nonlinear

SVM has also been used [33,56,57].

The Lagrange function is

L(w, b,α) =
1

2
‖w‖2 −

m∑
i=1

αiyi(w
Txi + b− 1),

where the nonnegative auxiliary variables α are called Lagrange multipliers. The solution

to the constrained optimization problem is determined by the saddle point of the Lagrange

function L(w, b,α), which must be minimized with respect to w and b. Thus, differentiating

L(w, b,α) with respect to w and b and setting the results equal to zero, we obtain the

following two optimality conditions:

The derivatives

13



∂L(w, b,α)

∂w
= w −

m∑
i=1

αiyixi = 0, ⇒ w =
m∑
i=1

αiyixi, (2.5)

∂L(w, b,α)

∂b
= −

m∑
i=1

αiyi = 0, ⇒
m∑
i=1

αiyi = 0. (2.6)

The solution vector w is defined in terms of an expansion that involves the m training

examples.

The dual problem is as follows.

max
α

L(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj(x
T
i xj).

s.t. α ≥ 0,

m∑
i=1

yiαi = 0.

(2.7)

The dual problem is entirely in terms of the training dataset. The function L(α) to

be maximized depends only on the input patterns in the form of a set of dot products

{xi · xj}m(i,j)=1

Having determined the optimum Lagrange multipliers, denoted by α∗i , the optimum

weight vector w∗ can be calculated using (2.5).

w∗ =
∑
i

α∗i yixi. (2.8)

According to the property of the Karush-Kuhn-Tucker (KKT) conditions of optimization

theory [1], the solution of the dual problem α∗i must satisfy the following condition:
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α∗i
{
yi(w

Txi − b)− 1
}

= 0 for i = 1, 2, . . . ,m (2.9)

and either α∗i or its corresponding constraint yi(w
Txi − b)− 1 must be nonzero. The opti-

mal variables α∗i will be nonzero (or nonnegative from (2.7)) when xi is a support vector or

yi(w
Txi − b)− 1. xi whose corresponding coefficients αi are zero will not affect the optimal

weight vector w∗ due to (2.8)[1]. The optimal weight vector w∗ will depend only on the

support vectors, whose coefficients are positive.

The bias b is computed using the support vector xi:

b∗ = w∗ · xi − yi.

The classification function f(x) of (2.1) now becomes

f (x) =
∑
i

αiyixi · x− b. (2.10)

Soft Margin - Linear nonseparable case

When the data are of a linear nonseparable case, the optimization problem (2.4) will not

have a solution. A soft-margin SVM allows for a mislabeled dataset while still maximizing

the margin [1]. The method introduces slack variables ξi, which measure the degree of

misclassification.

Using a slack variable ξ ≥ 0


wTxi + b ≥ 1− ξi, for yi = 1,

wTxi + b ≤ −1 + ξi, for yi = −1,

ξi ≥ 0 ∀i.
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The primary problem is as follows.

min
w, b, ξ

Q(w, b, ξ) =
1

2
‖w‖2 + C

m∑
i=1

ξi

s.t. yi(w
Txi + b)− 1 + ξi ≥ 0, i = 1 · · ·m,

ξi ≥ 0, ∀i.
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The Lagrangian and its derivatives are

L(w, b,α,µ) = 1
2‖w‖

2 + C
m∑
i=1

ξi −
m∑
i=1

αi (yi(w · xi − b)− 1 + ξi)−
m∑
i=1

µiξi,

∂L(w,b,α,µ)
∂w = w −

∑m
i=1 αiyixi = 0, ⇒ w =

∑m
i=1 αiyixi,

∂L(w,b,α,µ)
∂b = −

∑m
i=1 αiyi = 0,⇒

∑m
i=1 αiyi = 0,

C − αi − µi = 0.

The dual problem is as follows.

max
α

Q(α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj(x
T
i xj)

s.t. 0 ≤ αi ≤ C,

αTy = 0.

(2.11)

Neither the slack variables ξi nor their Lagrange multipliers appear in the dual problem.

The dual problem for the case of nonseparable patterns is similar to that for the simple case

of linearly separable patterns except for a minor but important difference. The objective

function Q(α) to be maximized is the same in both cases. The nonseparable case differs

from the separable case in that the constraint 0 ≤ αi is replaced with the more stringent

constraint 0 ≤ αi ≤ C. Except for this modification, the constrained optimization for the

nonseparable case and the computations of the optimum values of the weight vector w and

bias b proceed in the same way as in the linearly separable case.

Using the KKT conditions defined by

α∗i
{
yi(w

Txi − b)− 1 + ξi
}

= 0 for i = 1, 2, . . . ,m.

µiξi = 0 for i = 1, 2, . . . ,m.
(2.12)

17



Figure 2.3: Linear nonseparable case [1]

Eq. (2.12) is a rewrite of (2.9) except for the replacement of the unity term (1 − ξi).

µi are Lagrange multipliers that have been introduced to enforce the nonnegativity of the

slack variables xii for all i. At the saddle point, the derivative of the Lagrange function

for the primal problem with respect to the slack variable xi is zero, the evaluation of which

yields

αi + µi = C. (2.13)

Combining (2.12) and (2.13),

ξi = 0, if αi ≤ C,

ξi ≥ 0, if αi = C.

We can graphically display the relationships between αi, ξi, and C in Fig. 2.3.

Datasets outside the margin will have αi = 0 and ξi = 0 and those on the margin line

will have C > αi > 0 and still ξi = 0. Datasets within the margin will have αi = C. Among

them, those correctly classified will have 0 < ξi < 1 and those misclassified points will have

ξi > 1.

Calculating b can be done by taking advantage of the KKT conditions in Eq. (2.12)

[58,59]. These KKT conditions imply that at the point of the solution, the product between

the dual variables α and the constraints must be equal to zero.
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Kernel Trick for Nonlinear Classification

If the training data are not linearly separable, there is no linear hyperplane that can sepa-

rate the classes. To learn a nonlinear function, linear SVM must be extended to nonlinear

SVM for the classification of nonlinearly separable data. The process of finding classifica-

tion functions using nonlinear SVM consists of two steps [1]. First, the input vectors are

transformed into high-dimensional feature vectors where the training data can be linearly

separated. Then, SVM are used to find the hyperplane of maximal margin in the new fea-

ture space. The separating hyperplane becomes a linear function in the transformed feature

space but a nonlinear function in the original input space.

Let x be a vector in the n-dimensional input space and ϕ (·) be a nonlinear mapping

function from the input space to the high-dimensional feature space. The hyperplane rep-

resenting the decision boundary in the feature space is defined as follows.

w · ϕ (x)− b = 0,

where w is a vector that denotes the hyperplane can map the training data in the high-

dimensional feature space to the output space, and b is the bias. Using the ϕ (·) function,

the weight becomes

w =
∑

αiyiϕ (xi).

The decision function of becomes

f (x,α) =

m∑
i

αiyiϕ (xi) · ϕ (x)− b,

the dual problem of the soft-margin SVM (2.11) can be rewritten using the mapping function

on the data vectors as follows:
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f (α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjϕ (xi)ϕ (xj). (2.14)

The calculation of the inner product in the transformed feature space seems quite com-

plex and suffers from the curse of the dimensionality problem [1]. To avoid this problem,

the kernel trick is used. The kernel trick replaces the inner product in the feature space

with a kernel function K in the original input space as follows.

K (u,v) = ϕ (u)ϕ (v) .

Mercers theorem proves that a kernel function K is valid if and only if the following condi-

tions are satisfied, for any function ψ(x) [20]:

∫
K (u,v)ψ (u)ψ (v)dxdy ≤ 0

where
∫
ψ(x)2dx ≤ 0.

Mercers theorem ensures that the kernel function can always be expressed as the inner

product between pairs of input vectors in some high-dimensional space. Therefore, the

inner product can be calculated using the kernel function only with input vectors in the

original space without transforming the input vectors into high-dimensional feature vectors.

The dual problem is now defined using the kernel function as follows:

min
α

f (α) =
1

2

m∑
i=1

n∑
j=1

αiαjyiyjK (xi,xj)−
m∑
i=1

αi

s.t. ci (α) = αi ≥ 0, i = 1 · · ·m,

cm+i (α) = C − αi ≥ 0, i = 1 · · ·m.

(2.15)
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K(·, ·) is computed in the input space and no feature transformation will be performed,

or no ϕ(·) will be calculated. The kernel function is a kind of similarity function between

two vectors where the output of the function is maximized when the two vectors become

equivalent [1]. SVM can learn a function from any shape of data beyond vectors (such as

trees or graphs) as long as a similarity function can be computed between any pair of data

objects.

The derivative of Eq. (2.15) is

∇f (α) = Qα− e, (2.16)

where matrix Q,

Q = yiyjK (xi,xj) . (2.17)

Examples of Kernels

1. Radial basis function kernel

K(xi,xj) = exp(γ||xi − xj ||2).

2. Scalar product Kernel

K(xi,xj) = 〈xi,xj〉.

3. Polynomial Kernel

K(xi,xj) = (xi · xj + 1)d.

4. Sigmoid
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K(xi,xj) = tanh(κxi · xj + ρ).

Computation of the kernel values

Although the calculation of the n2 components of the kernel matrix Kij = K(xi,xj) seems

to be a simple quadratic complexity task, a more detailed analysis reveals a much more

complicated picture [9].

• Computing kernels is expensive - Computing each kernel value involves comput-

ing the similarity between large data that represent the features. The calculation of

kernel values often accounts for a significant amount of the total training time.

• Computing the full kernel matrix is wasteful - The expression of the gradient

(Eq. (2.16)) depends only on the kernel values Kij that involve at least one support

vector (the other kernel values are multiplied by zero). The remaining kernel values

that belong to the nonsupport vector have no impact on the solution. To determine

which kernel values are actually needed, efficient SVM solvers compute no more than

15% to 50% additional kernel values[9].

• The kernel matrix does not fit in memory - When the number of examples

grows, the kernel matrix Kij becomes very large and cannot be stored in memory.

Kernel values must be computed on the fly or retrieved from a cache of often accessed

values[22]. The cache hit rate of the cache values of the kernel matrix becomes an

important factor in how long the training time is[9].

Summary

In this chapter, we have described the SVM supervised learning technique. We have a sum-

mary of the SVM solvers used for training SVM. We describe the kernel trick for nonlinear

classification. We describe some of the challenges of training Support Vector Machines. The
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optimization techniques described in the next chapter can be used to find a solution to the

SVM quadratic problem.
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Chapter 3: SVM Quadratic Programming problem

SVM Quadratic Programming problem

A SVM Quadratic Programming problem (2.15) is

min
α

f(α)

s.t. gi (α) = 0, i = 1, · · · , q,

cj (α) ≥ 0, j = 1, · · · , p

(3.1)

for α ∈ Rn, f , gi, cj : Rn → R, and f is quadratic and gi, cj are linear functions. gi (α) =

0, i = 1, · · · , q is the equality constraint and cj (α) ≥ 0, j = 1, · · · , p, the inequality

constraint. Griva [54], Boyd [60], and Wright [61] provide details on different approaches

for solving problems with inequalities or equalities constraints. I will discuss the Augmented

Lagrangian Method Fast Projected Gradient Method ALFPGM and Nonlinear Rescaling

Augmented Lagrangian (NRAL) technique.

Augmented Lagrangian Method

An Augmented Lagrangian Method [62,63] iteratively minimizes an Augmented Lagrangian

function with respect to its primal variables and then updates its dual variables. Aug-

mented Lagrangian function similarities to penalty methods [54, 64] in that they replace a

constrained optimization problem by a series of unconstrained problems and add a penalty

term to the objective; the difference is that the augmented Lagrangian method adds yet

another term, designed to mimic a Lagrange multiplier. The unconstrained objective is the
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Lagrangian of the constrained problem, with an additional penalty term (the augmenta-

tion). Iteration continues until the first-order optimality condition is satisfied. An example

of an Augmented Lagrangian function is

Aµ (α, λ) = f (α)− λT g (α) +
1

2
µg(α)T g (α) ,

where Aµ is a Lagrangian with a penalty term.

An Augmented Lagrangian method iterates

αs+1 = arg min
α∈Rm

Aµ (α, λs) ,

λs+1 = λs − µg (αs)

(3.2)

over s until ∇Aµ (αs, λs) ≈ 0. Bertsekas describes Augmented Lagrangian methods in

his book [65]. Conn et al. [66] addressed computational issues related to Augmented

Lagrangian techniques using an early version of the LANCELOT solver. Augmented La-

grangian techniques avoid ill-conditioning, but they perform an unconstrained minimization

at each step, which can be lead to using a lot of steps to arrive at the solution. The so-

lution to αs+1 ≈ arg min
α∈Rm

Aµ (α, λs) can be found using first order methods like the Fast

Projected Gradient Method.

The parameter µ should be large enough so that the augmented Lagrangian function

has a local minimizer in α. If µ is too small, then the unconstrained subproblem may not

have a solution[54].

Gradient Projection Methods

To find the solution to αs+1 ≈ arg min
α∈Rm

Aµ (α, λs) in Eq. (3.2), first order like gradient

projection methods like the ISTA (Iterative Shrinkage-Thresholding Algorithm)and FISTA

(Fast Iterative Shrinkage-Thresholding Algorithm) [45, 67] methods minimizes functions of
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the form

F (α) = f(α) + g(α), (3.3)

where

α ∈ RN ,

f : RN → R : smooth, convex continuously differentiable with Lipschitz continuous

gradient L(f): ‖∇f (α) − ∇f (ᾱ)‖2 ≤ L(f)‖α − ᾱ‖2 for every α, ᾱ ∈ RN where

L(f) > 0 is the Lipschitz constant for ∇f (α) and

g : RN → R : continuous, convex, but possibly non-smooth function.

The basic idea of the iterative shrinkage algorithm is to build at each iteration a regular-

ization of the differentiable linearized function part in the objective [45]. In each iteration,

these algorithms calculate

αi = pL(αi−1 − ti∇f(α)), (3.4)

where

pL(α) = arg min
α

F (α) (3.5)

and ti is the step-size parameter. From definition of proximity operator, when g(α) = 0

then the above Eq. (3.9) is given as

αi = αi−1 − ti∇f(α) (3.6)

for minimizing the function with a Lipschitz continuous gradient L(f). On the other hand,

if f(α) = 0, then Eq. ((3.4)) reduces to

αi = pL(αi−1), (3.7)
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for minimizing non-differentiable function. Such schemes are called as forward-backward

proximal splitting ([68]). with forward scheme as a gradient step using f(α) and the back-

ward or implicit scheme using the function g(α). There are two variants of FISTA and

ISTA; One with a fixed step size t and the other with varying step size ti or backtracking.

Previous works have compared the FISTA and ISTA. Fast Iterative-Shrinkage Thresholding

Algorithm (FISTA) is the faster version of the ISTA algorithm that preserves the simplicity

of ISTA. FISTA’S theoretical and practical rate of convergence of FISTA is significantly

better than ISTA [45]

FISTA with fixed step length

Fast Iterative-Shrinkage Thresholding Algorithm (FISTA) is the faster version of ISTA

algorithm which also preserves the simplicity of ISTA. FISTA’S theoretical and practical

rate of convergence of FISTA is significantly better than that of ISTA [45].

Algorithm 1 FISTA with Constant Step size

Require: α0 ∈ RN , L := L(f).
k := 0
t := 1
ᾱ := α0
repeat

αk := pL(yk)

tk+1 :=
1+
√

1+4t2k
2

ᾱk+1 := αk +
(
tk−1
tk+1

)
(αk −αk−1)

k := k + 1
until convergence.

The error in the kth iteration with respect to the true minimum α∗ is bounded as

F (αk) − F (α∗) ≤ O
(
1/(k + 1)2

)
. FISTA algorithm converges with a convergence rate

O(1/k2) as discussed in the classical work of [69] and Theorem 4.4 in [45].
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MFISTA

The sequence of function values generated by FISTA is not necessarily nonincreasing. A

monotone version of FISTA called MFISTA, which is a descent method and has the same

convergence rate as FISTA. MFISTA necessitates the computation of the objective function

F (.) which can be expensive.

Algorithm 2 MFISTA with constant Step size

Require: α0 ∈ RN , L := L(f).
k := 0
t := 1
ᾱ := α0
repeat

zk := pL(yk)

αk ∈ RN , F (αk) = min(F (zk),F(αk−1))

tk+1 :=
1+
√

1+4t2k
2

ᾱk+1 := αk +
(

tk
tk+1

)
(zk −αk) +

(
tk−1
tk+1

)
(αk −αk−1)

k := k + 1
until convergence.
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Restart FISTA

A common observation when running an accelerated method is the appearance of ripples

in the trace of the objective value. Restart FISTA was developed to address this issue and

was shown to improve the convergence rate of the accelerated gradient [70]. It is a heuristic

technique that restarts the algorithm whenever a condition on the objective function value

is met.

Algorithm 3 Restart FISTA with constant step size

Require: α0 ∈ RN , L := L(f).
k := 0
t := 1
ᾱ := α0
repeat

αk := pL(yk)

tk+1 :=
1+
√

1+4t2k
2

ᾱk+1 := αk +
(
tk−1
tk+1

)
(αk −αk−1)

k := k + 1
Restart if (ᾱk −αk+1)T (αk+1 −αk) ≥ 0, then ᾱk = αk.

until convergence.

RADA FISTA and GREEDY FISTA

In [67], Restarting and Adaptive FISTA (RADA) and GREEDY FISTA were proposed.

They were designed to improve RESTART FISTA. Like RESTART FISTA, they do not

require the computation of the objective function f for each iteration. According to [67],

both offer a compromise between FISTA and MFISTA.

The stopping criterion for all of the above algorithms is given as

∣∣∣∣f(αk)− f(αk−1)

f(αk−1)

∣∣∣∣ < ε, (3.8)

where ε is some arbitrarily small quantity (usually < 10−8).

Error at the kth iteration with respect to the true minimum α∗ is bounded as F (αk)−

29



Algorithm 4 RADA with constant step size

Require: α0 ∈ RN , L := L(f).
k := 0
t := 1
ᾱ := α0
repeat

αk := pL(yk)

tk+1 :=
1+
√

1+4t2k
2

ᾱk+1 := αk +
(
tk−1
tk+1

)
(αk −αk−1)

Restarting if (ᾱk −αk+1)T (αk+1 −αk) ≥ 0
r = ηr and ᾱk = αk

r = ηr, tk = tk and ᾱk = αk

k := k + 1
until convergence.

Algorithm 5 GREEDY FISTA with constant step size

Require: α0 ∈ RN , L := L(f).
k := 0
t := 1
ᾱ := α0
repeat

αk := pL(yk)

tk+1 :=
1+
√

1+4t2k
2

ᾱk+1 := αk +
(
tk−1
tk+1

)
(αk −αk−1)

Restarting if (ᾱk −αk+1)T (αk+1 −αk) ≥ 0, then ᾱk = αk.
Safeguard if ‖αk+1 −αk‖ ≥ ‖α1 −α0‖, then µ = max(ηµ, 1/L). k := k + 1
until convergence.
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F (α∗) ≤ O
(
1/k2

)
[45].

Modified Barrier Method

To solve inequality-constrained optimization problems, Polyak introduced modified barrier

methods [71]. Similar to Augmented Lagrangian methods, modified barrier methods ex-

plicitly use dual variables to avoid the ill-conditioning seen in classical barrier methods.

The modified barrier method iteratively minimizes a modified barrier function with respect

to its primal variables and then updates its dual variables. Iteration continues until the

solution is found. An example of a modified barrier function is the logarithmic modified

barrier function

Lµ (α,ν) = f (α)− 1

µ

p∑
i=1

νi log (µci (α) + 1).

The modified barrier method iterates

αs+1 ≈ arg min
α∈Rm

Lµ (α,νs) ,

(νs+1)i =
(νs)i

µci(αs+1)+1

over s until ∇L(αs,νs) ≈ 0 and νici(α) ≈ 0, i = 1, · · · p. This method will converge for a

fixed µ > 0, so it avoids the ill-conditioning of the Hessian seen in classical barrier methods.

One problem with the modified barrier method is that the modified barrier function is not

defined for all real numbers, which can lead to numerical difficulties.

Nonlinear Rescaling Method

Polyak and Teboulle [12] introduced the nonlinear rescaling method as a generalization

of the modified barrier method. The nonlinear rescaling method transforms the objective

function and the constraints of a given constrained optimization problem into another prob-

lem which is equivalent to the original one. A nonlinear transformation parameterized by
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a positive scalar parameter and based on a smooth sealing function is used to transform

the constraints[12]. The method consists of sequential unconstrained minimization of the

classical Lagrangian for the equivalent problem, followed by an update of the Lagrange mul-

tipliers. The nonlinear rescaling method transforms the constraints ci(α) to an equivalent

set using a class of functions with the following properties [12]:

ψ (0) = 0, ψ′ (t) > 0, ψ′ (0) = 1, ψ′′ (t) < 0,

ψ′ (t) ≤ a
(t+1)

−ψ′′ (t) ≤ b
(t+1)2

 t ≥ 0, a > 0, b > 0

For µ > 0, the equivalent problem to (3.1) is

min
α

f(α)

s.t.
1

µ
ψ (µci (α)) ≥ 0, i = 1 · · · p

(3.9)

and the Lagrangian of the equivalent problem is

Lµ (α,ν) = f (α)− 1

µ

p∑
i=1

νiψ (µci (α)).

Similar to the modified barrier method, the nonlinear rescaling method can solve (3.1)

by minimizing the Lagrangian for the equivalent problem for fixed µ > 0 and updating the

multipliers ν. So the nonlinear rescaling method iterates

αs+1 ≈ arg min
α∈Rm

Lµ (α,νs),

(νs+1)i = ψ′ (µci (αs+1)) (νs)i, i = 1, · · · , p
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over s until the solution is found. The nonlinear rescaling method will converge without

increasing the scaling parameter µ, so it avoids the ill-conditioning seen in classical barrier

methods.

Nonlinear Rescaling Augmented Lagrangian (NRAL) Technique

For problems with equality and inequality constraints, Griva and Polyak [13,72] introduced

the Nonlinear Rescaling Augmented Lagrangian (NRAL) technique. The NRAL technique

combines the nonlinear rescaling method for inequality constraints [12, 71] with the Aug-

mented Lagrangian method for equality constraints [62, 63]. The NRAL technique is a

multiplier-based method that avoids the ill-conditioning seen in classical penalty and barrier

methods by exploiting dual variables, or multipliers, as a driving force for the convergence

of the methods to the solution.

The NRAL technique solves the problem (3.1) by constructing an equivalent problem

in which the constraints are rescaled by a function ψ : −∞ ≤ t0 < t < t1 ≤ +∞ such that

ψ(t) has the following properties:

ψ (0) = 0, ψ′ (t) > 0, ψ′ (0) = 1, ψ′′ (t) < 0,

ψ′ (t) ≤ a
(t+1)

−ψ′′ (t) ≤ b
(t+1)2

 t ≥ 0, a > 0, b > 0.

For µ > 0, the following problem is equivalent to the original problem:

min
α

f(α)

s.t. gi (α) = 0, i = 1, · · · , q,

1

µ
ψ (µci (α)) ≥ 0, j = 1, · · · , p.

(3.10)
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In [73] the transformation ψ was chosen as

ψ (t) =

 log (t+ 1) t > −0.5

−2t2 + log (.5) + .5 t ≤ −0.5

Griva and Polyak [72] actively used this transformation for solving nonlinear optimiza-

tion problems using the nonlinear rescaling method. The Augmented Lagrangian for this

equivalent problem is

Lµ (α, λ,ν) = f (α)− λT g (α)− 1

µ

p∑
i=1

νiψ (µci (α)) +
µ

2

q∑
j=1

(gi (α))2,

where and µ > 0 is the scaling parameter, λ ∈ Rq and ν ∈ Rp are dual variables.

As a multiplier-based method, the NRAL technique minimizes the Augmented La-

grangian for the equivalent problem with respect to the primal variables, and then updates

the dual variables, or multipliers. If (αs, λs,νs) is a current iterate of the NRAL technique,

then the next iterate (αs+1, λs+1,νs+1) is found by solving the unconstrained minimization

problem.

αs+1 = arg min
α∈Rn

Lµ (αs, λs, νs)

and updating the multipliers;

νs+1
i = νsi ψ

′ (µci (αs+1
))
, i = 1, · · · , p,

λs+1
j = λsj − µgj

(
αs+1

)
, j = 1, · · · , q.

At each iteration of the NRAL technique, any unconstrained minimization routine can

be used to find arg min
α∈Rm

Lµ (αs, λs,νs). If (α∗, λ∗,ν∗)is the solution, then for µ large
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enough, under second-order optimality conditions, the iterates (αs, λs,νs) derived using

the NRAL technique will converge to the solution linearly.

Although the NRAL technique can avoid the ill-conditioning seen with penalty and

barrier methods, since it converges for a fixed bounded scaling parameter, it still requires

solving a minimization problem at each iteration, which can be computationally expen-

sive. Also, increasing the scaling parameter at each iteration can help convergence, but

ill-conditioning may occur if the scaling parameter becomes too large.

Summary

In this chapter, we have described the use of Langrage multiplier methods to solve the

SVM quadratic programming problem. We described the Augmented Lagrangian Fast Pro-

jected Gradient Method (ALFPGM). We described various Gradient Projection Methods or

FISTA. We described the Nonlinear Rescaling Augmented Lagrangian (NRAL) technique.

The next chapter will address the problem of solving the SVM problem for large data set

problem where the kernel matrix is large.
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Chapter 4: Working set selection method for SVM

Decomposition

The SVM problem with the kernel trick is

max
α

f(α) =
m∑
i=1

α∗i −
1

2

m∑
i=1,j=1

yiα
∗
i yjα

∗
jK (xi,xj)

s.t. α∗i = αi,

0 ≤ α∗i ≤ C, i = 1, · · · ,m,

∑
i

yiα
∗
i = 0.

(4.1)

The m × m kernel matrix K in Eq. (4.1) is often dense and large; thus, a memory

shortage prohibits the formation of Q and keeping it in memory, thus making it difficult to

solve the SVM problem when the number of training data points is large. Decomposition

methods [23,74–76] based on selection of working sets play an important role in training a

large-scale SVM. These methods consider only a small subset of data per iteration, which

requires less memory usage.

A subset B of the dataset called the working set is chosen to be optimized while the

rest of the variables remain fixed. Instead of updating all the coefficients of the vector α,

each iteration of the decomposition method optimizes a subset of the coefficients αi, i ∈ B

and leaves the remaining coefficients αj , j /∈ B unchanged.

The SVM problem with the selected working set B becomes

36



max
α

f(α) =
n∑
i=1

α∗i −
1

2

n∑
i=1,j=1

yiα
∗
i yjα

∗
jK (xi,xj)

s.t. ∀i /∈ B α∗i = αi,

∀i ∈ B 0 ≤ α∗i ≤ C, i = 1, · · · ,m,

∑
i

yiα
∗
i = 0.

(4.2)

We can define a matrix Q = yiyjK (xi,xj), i = 1, · · · , n, j = 1, · · · , n.

Eq. (4.2) becomes

max
α

f(α) =
n∑
i=1

α∗i −
1

2
α∗iQα

∗
j

s.t. ∀i /∈ B α∗i = αi,

∀i ∈ B 0 ≤ α∗i ≤ C, i = 1, · · · ,m,

∑
i

yiα
∗
i = 0.

(4.3)

Starting from a coefficient vector α we can compute a new coefficient vector α∗ by adding

an additional constraint to the dual problem (2.15) that represents the frozen coefficients.

We can rewrite (4.2) as a quadratic programming problem in variables αi,i∈B and remove

additive terms that do not involve optimization variables α∗:
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max
α

∑
i∈B

α∗i

1− yi
n∑

j /∈B

yjα
∗
jK (xi,xj)

− 1

2

∑
i∈B

∑
j∈B

yiα
∗
i yjα

∗
jK (xi,xj)

s.t.
∑
i∈B

yiα
∗
i = −

∑
j /∈B

yjα
∗
j ,

∀i ∈ B 0 ≤ α∗i ≤ C, i = 1, · · · ,m.

(4.4)

Each iteration selects a working set and solves the corresponding sub-problem using

any suitable optimization algorithm. The gradient is efficiently updated by evaluating

the difference between the old gradient and new gradient and updates the variables. The

algorithm stops when it achieves the optimality criterion. All these operations can be

achieved using only the kernel matrix rows whose indices are in B.

The definition of (4.2) ensures that F (α∗) ≥ F (α). The question is then to define a

working set selection scheme that ensures that the increasing values of the dual reach the

maximum.

Since each iteration involves onlyB columns of the matrixQ, the decomposition methods

use the operating memory economically [75]. The algorithm repeats the select working

set then optimize process until the global optimality conditions are satisfied. While B

denotes the working set with variables l, N denotes the non-working set with variables

(m− l). Then α, y, and Q can be written as:

α =

 αB

αN

 , y =

 yB

yN

 , Q =

 QBB QBN

QNB QNN

 , Qij = yiKijyj .

The optimization subproblem can be rewritten.
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min
αB

1

2

[
αT

B αT
N

] QBB QBN

QNB QNN


 αB

αN

− [ eTB eTN

] αB

αN


s.t. αT

ByB + αT
NyN = 0,

0 ≤ αB ≤ C

(4.5)

with a fixed αN, this is the same as

min
αB

1

2
αT

BQBBαB + αT
Bχ

s.t. αT
ByB +Gk = 0,

0 ≤ αB ≤ C,

(4.6)

where χ = QBNαN − eB and Gk = αT
NyN .

The reduced problem (4.5) can be solved much faster than the original problem (4.2).

The resulting algorithm is shown as Algorithm 4.

Algorithm 6 Decomposition method
1: while global minimum not reached do
2: find working set B
3: find αB for working set B using a quadratic problem solver.
4: Update the gradient
5: Update α with αB

Working set selection methods

The selection of the working set is critical to the success of the decomposition technique.

Below we describe a working set selection (WSS) method that was developed by Keerthi et

al. [18, 21] called the maximum violating pair method.
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Working set selection WSS −MV P

The KKT condition of (4.6) shows that there is a scalar b such that

yt = 1, αt < C ⇒ (Qα− e)t + b ≥ 0 ⇒ b ≥ −(Qα + e)t = −∇f(α)t,

yt = −1, αt > 0 ⇒ (Qα− e)t − b ≤ 0 ⇒ b ≥ (Qα + e)t = ∇f(α)t,

yt = −1, αt < C ⇒ (Qα− e)t − b ≥ 0 ⇒ b ≤ (Qα + e)t = ∇f(α)t,

yt = 1, αt > 0 ⇒ (Qα− e)t + b ≤ 0 ⇒ b ≤ −(Qα + e)t = −∇f(α)t,

(4.7)

where f(α) ≡ 1
2α

TQα− eTα and ∇f(α) is the gradient of f(α).

This can be rewritten as

∇f(α) + byt ≥ 0, if αt < C,

∇f(α) + byt ≤ 0, if αt > 0.

Alternatively, it can be stated that a vector α is a stationary point of (4.7) if and only

if there is a number b and two nonnegative vectors ρ and θ such that

∇f(α) + byt = ρ− θ,

ρtαt = 0, θi (C − αt) = 0, ρt ≥ 0, θt ≥ 0, t = 1, . . . ,m.

Consider the sets:

Iup (α) ≡ {t | yt = 1, αt < C or yt = −1, αt > 0} ,

Ilow (α) ≡ {t | yt = −1, αt < C or yt = 1, αt > 0} .
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Then we have the following.

i ∈ arg maxt∈Iup(α) {−yt∇f(α)t},

j ∈ arg mint∈Ilow(α) {−yt∇f(α)t}.
(4.8)

The Most Violating Pair (MVP) algorithm selects a pair with i and j from (4.8). The

MVP unfortunately does not converge for all cases in practice. Fan et al. [23] improved on

the MVP which by using second order information. This is shown in Algorithm 8.

Algorithm 7 WSSMV P Most Violating Pair
1: p = number of pairs
2: BJ = ∅
3: Iup (α) ≡ {t | yt = 1, αt < C or yt = −1, αt > 0}.
4: for k = 0, 1, 2, . . . , p do
5: ik = Arg maxt ∈ Iup (α)

6: Ilow (α) ≡ {t | yt = −1, αt < C or yt = 1, αt > 0} .
7: find ji = Arg mint ∈ Ilow (α)

8: if Ji 6= ∅ then
9: B = B ∪ ik ∪ Ji

Working set selection WSS − 2ndOrder

The Most Violating Pair (MVP) unfortunately does not converge for all cases in practice.The

selection of the working set is critical to the success of the decomposition technique. Fan

et al. [23] improved on the MVP method by using second-order information.

Let us define

qt(α) = −yt∇f(α)t.

From (4.7) and (4.8) follows the inequality

qi(α) ≤ qj(α). (4.9)

Eq. (4.8) implies that α is a feasible and optimal solution of (4.7) at a stationary point of

(4.7). The largest difference qi − qj for the pair that most violates (4.9) is compared with
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the accuracy requested of the solution. It is used in the stopping criteria of Algorithm 2.

Let us define the quantities:

aij = Kii +Kjj − 2Kij > 0,

âij =

 aij , if aij > 0,

τ

bij = qi(α)− qj(α) > 0,

where τ is a small positive number. Then one can select

i ∈ Arg max
t∈Iup(α)

{qt(α)} , (4.10)

and

j ∈ Arg min
t∈Ilow(α)

{
−b2it
âit

: qt(α) < qi(α)

}
. (4.11)

In Yang et al. [74], another higher-order working set selection was proposed where

j ∈ Arg min
t∈Ilow(α)

{
−b2it
âit

: qt(α) < qi(α)

}
, (4.12)

and i is slected as (4.10).

The sequential minimal optimization algorithm (SMO) uses a single pair B = {i, j}.

The schemes described below show that multiple p working pairs can be selected.

To obtain p working pairs, the p indices i are chosen from Iup and the corresponding

j are selected from Ilow. This is a generalization of the SMO algorithm [18, 19] described

as IPSMO-2 algorithm in Wei et al. [27]. The SMO algorithm selects a single pair of

data points as a working set, while IPSMO-2 selects larger working sets containing p pairs

in general. The rule of how pairs are selected is based on the maximum KKT violation,
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similar to that of SMO.

Algorithm 8 WSS2nd Working set selection using second order information
1: p = number of pairs
2: BJ = ∅
3: Iup (α) ≡ {t | yt = 1, αt < C or yt = −1, αt > 0}.
4: for k = 0, 1, 2, . . . , p do
5: ik = Arg maxt ∈ Iup (α)

6: Ilow (α) ≡ {t | yt = −1, αt < C or yt = 1, αt > 0} ..
7: find ji = Arg mint ∈ Ilow (α)

{
−b2it
âit

: qt(α) < qi(α)
}

using WSS second order.

8: if Ji 6= ∅ then
9: B = B ∪ ik ∪ Ji

Suppose that p pairs working set are chosen from the data as the working set for each

decomposition iteration. The data points is ∈ Iup, s = 1, . . . , p are selected in the same

way as in WSS using (4.10).

For each i ∈ Iup, select ji ⊂ Ilow using (4.11).

ji = Arg min
t∈Ilow(α)

{
−b2it
âit

: qt(α) < qi(α)

}
.

The stopping criteria is

max {−yt∇f (α) | yt = 1, αt < C or yt = −1, αt > 0}

−min {−yt∇f (α) | yt = −1, αt < C or yt = 1, αt > 0} < ε,

where ε is a user-defined accuracy value.

Working set selection implementations

Limiting the search space for Iup and Ilow

One of the challenges we had with the use of dual decomposition WSSMV P and WSS2nd

is that a particular data set point can be selected multiple times in different iterations of

decomposition in the working set, often increasing the SVM training time. If there is a
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way to control this, we hope to get a faster training time. We propose the minmaxlimiter

algorithm with the following changes:

• We made a change to exclude elements of α that no longer change. ‖αt −αt−1‖ > δα.

αt−1 is the value of αt in the previous iteration. Where αt ∈ B and δα is a user defined

threshold.

• We added another parameter minAlphaOpt, which is the minimum number of times

a data index is used in working set. After this threshold, if the αi,i=1,··· ,m value is 0

or C, then that data point index is no longer considered

• We also introduce a parameter maxAlphaOpt, which is the maximum number of times

we want a data set in our decomposition rounds.

minAlphaOpt = ∞ and maxAlphaOpt = ∞ will result in considering every α in every

iteration.

Algorithm 9 minmaxlimiter
1: p = number of pairs
2: BJ = ∅
3: if (αt − αt−1 > δα) & (IterCount(αt) < maxAlphaOpt) then

4: if (IterCount(αt) < minAlphaOpt) then

5: Iup (α) ≡ {t | yt = 1, αt < C or yt = −1, αt > 0}.
6: Ilow (α) ≡ {t | yt = −1, αt < C or yt = 1, αt > 0} ..
7: αt−1 is the previous iteration of α.

Working set selection minAlphaCheck

WSSMV P is easier to implement and runs faster than WSS2nd, which requires calcula-

tion of the kernels for the evaluation of (4.11). On the good side, WSS2nd is guaran-

teed to converge. A modification to WSS2nd is the introduction of parameter we will

call minAlphaCheck. This is used to reduce the search space of j in (4.11) to the first

minAlphaCheck in the sorted Ilow set. The experimental results show that this converges

and is faster than WSS2nd.
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Algorithm 10 WSSminAlphaCheck
1: p = number of pairs
2: BJ = ∅
3: Iup (α) ≡ {t | yt = 1, αt < C or yt = −1, αt > 0}.
4: for k = 0, 1, 2, . . . , p do
5: ik = Arg maxt ∈ Iup (α)

6: Ilow (α) ≡ {t | yt = −1, αt < C or yt = 1, αt > 0} ..
7: I∗low ⊂ Ilow, α in top minAlphaCheck in sorted −yt∇f(α)t

8: find jik = Arg mint ∈ I∗low (α),
{
−b2it
âit

: qt(α) < qi(α)
}

using WSS second order.

9: if jik 6= ∅ then
10: B = B ∪ ik ∪ jik

Working set selection (WSSminCount)

WSSminCount uses a different heuristic method to determine the working set. The method

seeks to use all data points first before selecting any previously selected data points are

reused. At the beginning, a counter for all α is set to zero; whenever an αi,i=1,··· ,m is used

in the working set, the counter is incremented by one. A global counter minCount is also

started at 0. This counter is only incremented after all the alphas have been used in the

decomposition rounds or there are no more possibilities of adding an alpha to the B. The

WSSminCount rule is described as Algorithm 11.

Algorithm 11 WSSminCount
1: p = number of pairs
2: BJ = ∅, IUp = ∅, Ilow = ∅
3: while IUp = ∅, Ilow = ∅ do
4: if (αt − αt−1 > δα) & (IterCount(αt) < maxAlphaOpt) then

5: if (IterCount(αt) < minCount) then

6:
Iup (α) ≡ {t | yt = 1, αt < C or yt = −1, αt > 0} ,
Ilow (α) ≡ {t | yt = −1, αt < C or yt = 1, αt > 0} . .

7: I∗low ⊂ Ilow, α in top minAlphaCheck in sorted −yt∇f(α)t
8: if IUp = ∅, Ilow = ∅ then
9: minCount = minCount+ 1
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Combining all the WSS algorithms discussed in Algorithms 7 - 11, we have the com-

binations shown in Table 4.1. WSS0 and WSS4 are the same as described in [27]. Our

contribution to the selection of the working set are the proposed methods WSS1, WSS2,

WSS3, WSS5, WSS6,WSS7 and WSS8 methods. We will evaluate the performance of

each method with numerical examples.

WSS WSS Type Limit type used Parameters

WSS0 WSSMV P

WSS1 WSSMV P WSSminmaxlimiter minAlphaOpt, maxAlphaOpt =∞

WSS2 WSSMV P WSSminmaxlimiter minAlphaOpt, maxAlphaOpt

WSS3 WSSMV P WSSminCount minCount, minAlphaOpt, maxAlphaOpt

WSS4 WSS2nd

WSS5 WSS2nd WSSminAlphaCheck, WSSminmaxlimiter minAlphaCheck

WSS6 WSS2nd WSSminAlphaCheck, WSSminmaxlimiter minAlphaCheck, minAlphaOpt, maxAlphaOpt =∞

WSS7 WSS2nd WSSminAlphaCheck, WSSminmaxlimiter minAlphaCheck, minAlphaOpt, maxAlphaOpt

WSS8 WSS2nd WSSminAlphaCheck, WSSminCount minAlphaCheck, minCount, minAlphaOpt, maxAlphaOpt

Table 4.1: WSS combination used in analysis

Summary

In this chapter, we have described decomposition techniques for solving SVM problems and

some working set selection methods in the literature. We have proposed new methods for

selecting a working set where a multiple number of working set pairs p > 2 are selected for

each decomposition problem. The numerical results comparing the working set selection

schemes are provided in Chapter 6.
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Chapter 5: Implementation of Lagrange multiplier SVM

solvers

To efficiently solve large-scale SVM problems, there are two important parts:

• The selection of the working set B.

• Solving the subsequent decomposition problem.

The time to determine a working set is in many cases longer than the time to find the

solution for the SVM subproblem for that working set (see Fig. 5.1 and 5.2). Hsu and Lin

[77] have also shown that if C is large and the Hessian matrix Q is not well-conditioned,

the decomposition methods converge very slowly. Thus, it is important to use an efficient

working set selection scheme while trying to train the SVM.

Recently, trends in computer architecture have been moving towards increasingly par-

allel hardware [78]. Most CPUs feature multiple cores, and general purpose graphics pro-

cessing units (GPUs) that can execute thousands of parallel threads on their hundreds of

throughput-optimized cores. Both parallel frameworks offer enormous raw power and have

the potential to provide huge speedups; however, to utilize each type of parallel thread effec-

tively, algorithms must be carefully decomposed and optimized in fundamentally different

ways [79]. GPUs are based on a Same Instruction Multiple Data (SIMD) architecture, this

requires that all threads within one block execute the exact same instructions, whereas

multi-core CPUs have much fewer threads with no such restriction. A CPU core on the

other hand is designed for very complex control logic that optimizes the execution of sequen-

tial programs. A GPU core which is relatively light weight is optimized for data-parallel

tasks with simpler control logic, focusing on the throughput of parallel programs [80].
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Figure 5.1: Comparison between WSS time and ALFPGM time for webdata wXa WSS0

On a high level, there are two different approaches to parallelizing algorithms; explicit

and implicit approaches [79]. In the explicit approach, an algorithm is parallelized by

finding the independent components of the algorithm which can be run in parallel and

encodes this parallelism using some appropriate explicitly parallel language or library such

as OpenMP (for multicores), MPI (for clusters), CUDA or OpenCL (for GPUs). In the

implicit approach, the algorithm is expressed as a series of operations that are known to

be highly parallel and for which highly optimized parallel libraries already exist for most

platforms. Examples include libraries for dense linear algebra operations such as PLASMA

[81] and Intels MKL [82] for multicores; MAGMA [81], and CuBLAS [83] for GPUs and

PDE solvers such as PETSc [84].

For this work, we have used high performance computing techniques to speed up the

48



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

28
0

28
9

29
8

30
7

31
6

32
5

33
4

34
3

35
2

36
1

37
0

37
9

38
8

39
7

40
6

41
5

42
4

43
3

44
2

45
1

46
0

46
9

47
8

Ti
m

e

Number of Decompositions

wss_time alfpgm_time

Working set selection time

SVM subproblem solution time

Figure 5.2: Comparison between WSS time and ALFPGM time for webdata wXa WSS4

two aspects of getting the SVM solution; the selection of the working set B and solving the

subsequent decomposition problem. We looked at using parallel multiprocessing to speed

up areas of the code that can be parallelized explicitly. The Intel oneAPI Math Kernel

Library (MKL) was utilized for it’s high performance math routines. It has BLAS (Basic

Linear Algebra Subprograms) optimized for Intel processors. Additionally, we looked at the

use of graphical processing units GPU to speed up the algorithm.

To select the working set, we have used the working set selection schemes described in

Table 4.1 using Algorithms 7 - 11. The kernel needs to be computed in all cases. The next

section describes how we computed the kernel matrix.
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Kernel matrix computation

The cache technique is used to store previously computed rows to access them when the same

kernel value needs to be recomputed. The amount of cached kernel is a selectable parameter.

We have used the same Least Recently Used (LRU) LRU strategy that LibSVM uses, and

it is a good basis for comparing the results obtained using the SVM training methods.

Previous discussions [27, 85] have been held on the ineffectiveness of the LRU strategy.

However, that is beyond the scope of this work.

To compute the Kernel matrix, Linear operations using the Intel MKL are used. A row

of the kernel matrix can be computed efficiently using

xxi = 〈xi, xi〉

Kj = X × xj

Ki = exp (xxi + xxj − 2Kj) , j = 1 · · ·n

Intel MKL’s cblas dgemv is used to compute y := α ∗A′ ∗ x+ β ∗ y.

1 void getK i ( svm problem ∗alfpgm prob , double ∗K i , i n t i ) {

2 double ∗Ktemp ;

3 i n t j ;

4 i n t cached length = get data ( alfpgm prob , i , &Ktemp) ;

5 i f ( cached length < alfpgm prob−>nData ) {

6

7 i f ( alfpgm param . use cache type == 1) {

8 f o r ( j = 0 ; j < alfpgm prob−>nData ; j++) {

9 Ktemp [ j ] = alfpgm prob−>K[ g e t t r i i n d e x ( i , j ) ] ;

10 }

11 } e l s e {

12 double ∗Xi ;

13 Xi = &alfpgm prob−>X[ i ∗ svm param . nFeatures ] ;

14

15 double ∗K = ( double ∗) ( c a l l o c ( alfpgm prob−>nData , s i z e o f ( double ) ) ) ;

16 double xdot = alfpgm prob−>Xdot [ i ] ;

17 cblas dgemv ( CblasRowMajor , CblasNoTrans , alfpgm prob−>nData ,

18 svm param . nFeatures , 1 . 0 , alfpgm prob−>X,

19 svm param . nFeatures , Xi , 1 , 0 , K, 1) ;
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20 #pragma omp p a r a l l e l f o r d e f a u l t ( none ) shared ( xdot , svm param , Ktemp , K, al fpgm prob ) p r i va t e ( j )

schedu le ( guided )

21 f o r ( i n t j = 0 ; j < alfpgm prob−>nData ; j++) {

22 Ktemp [ j ] = exp (

23 −svm param .gamma

24 ∗ ( xdot + alfpgm prob−>Xdot [ j ] − 2 ∗ K[ j ] ) ) ;

25 }

26 f r e e (K) ;

27 }

28 }

29 memcpy( K i , Ktemp , s i z e o f ( double ) ∗ alfpgm prob−>nData ) ;

30 }

Listing 5.1: Kernel row computation

OpenMP parellel for is used to compute kernel values.

1 void getK i ( svm problem ∗alfpgm prob , double ∗K i , i n t i ) {

2 double ∗Ktemp ;

3 i n t j ;

4 i n t cached length = get data ( alfpgm prob , i , &Ktemp) ;

5 i f ( cached length < alfpgm prob−>nData ) {

6

7 i f ( alfpgm param . use cache type == 1) {

8 f o r ( j = 0 ; j < alfpgm prob−>nData ; j++) {

9 Ktemp [ j ] = alfpgm prob−>K[ g e t t r i i n d e x ( i , j ) ] ;

10 }

11 } e l s e {

12 double ∗Xi ;

13 Xi = &alfpgm prob−>X[ i ∗ svm param . nFeatures ] ;

14

15 double ∗K = ( double ∗) ( c a l l o c ( alfpgm prob−>nData , s i z e o f ( double ) ) ) ;

16 double xdot = alfpgm prob−>Xdot [ i ] ;

17 cblas dgemv ( CblasRowMajor , CblasNoTrans , alfpgm prob−>nData ,

18 svm param . nFeatures , 1 . 0 , alfpgm prob−>X,

19 svm param . nFeatures , Xi , 1 , 0 , K, 1) ;

20 #pragma omp p a r a l l e l f o r d e f a u l t ( none ) shared ( xdot , svm param , Ktemp , K, al fpgm prob ) p r i va t e ( j )

schedu le ( guided )

21 f o r ( i n t j = 0 ; j < alfpgm prob−>nData ; j++) {

22 Ktemp [ j ] = exp (

23 −svm param .gamma

24 ∗ ( xdot + alfpgm prob−>Xdot [ j ] − 2 ∗ K[ j ] ) ) ;

25 }

26 f r e e (K) ;

27 }

28 }
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29 memcpy( K i , Ktemp , s i z e o f ( double ) ∗ alfpgm prob−>nData ) ;

30 }

Listing 5.2: Individual kernel matrix value computation

Gradient ∇f update

Selection of the working set requires the calculation of the gradient ∇f .

∇f(α, λ) = Qα + (q − e)− (λ− µ
m∑
i=1

yiαi)y

Using the method described in [22], the delta changes in αB, ∆αB after each decompo-

sition is computed, and this is used to update ∇f(α)i. To further simplify our solution, at

the start of the algorithm, ∇f(α)i = yi. The gradient is updated after each decomposition.

∇f(α)i = (∆αBQBB + ∆αBQBN ) yB (5.1)

1 void updateF ( double ∗minusF , svm problem ∗alfpgm prob , const double ∗H B BN ,

2 double ∗alpha , const double ∗ a l p h a d i f f e r e n c e s v e c t o r ) {

3 double max val = −DBL MAX;

4 double min val = DBL MAX;

5 in t i , idx ;

6 double ∗alphaHVec = ( double ∗) ( c a l l o c ( alfpgm prob−>nData , s i z e o f ( double ) ) ) ;

7 cblas dgemv ( CblasRowMajor , CblasTrans , alfpgm param . nWss ,

8 alfpgm prob−>nData , 1 , H B BN , alfpgm prob−>nData ,

9 a l p h a d i f f e r e n c e s v e c t o r , 1 , 0 , alphaHVec , 1) ;

10 {

11 f o r ( i = 0 ; i < alfpgm prob−>nData ; i++) {

12 idx = alfpgm prob−>wss index [ i ] ;

13 minusF [ idx ] −= alfpgm prob−>y [ idx ] ∗ alphaHVec [ i ] ;

14 }

15 }

16 f o r ( i = 0 ; i < alfpgm prob−>nData ; i++) {

17 i f ( ( alfpgm prob−>a c t i v e [ i ] ) ) {

18 i f ( alfpgm prob−>y [ i ] > 0) {

19 i f ( ! i s upper bound a lpha ( alpha [ i ] ) ) {

20 max val = fmax ( max val , minusF [ i ] ) ;

21 }
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22 i f ( ! i s l ower bound a lpha ( alpha [ i ] ) ) {

23 min val = fmin ( min val , minusF [ i ] ) ;

24 }

25 }

26 i f ( alfpgm prob−>y [ i ] < 0) {

27 i f ( ! i s l ower bound a lpha ( alpha [ i ] ) ) {

28 max val = fmax ( max val , minusF [ i ] ) ;

29 }

30 i f ( ! i s upper bound a lpha ( alpha [ i ] ) ) {

31 min val = fmin ( min val , minusF [ i ] ) ;

32 }

33 }

34 }

35 }

36 f r e e ( alphaHVec ) ;

37 alfpgm prob−>gap = ( max val − min val ) ;

38 }

Listing 5.3: Updating the gradient of ∇f(α)

GPU implementation

A challenge with GPU is the movement of data between the host system and the device

(GPU). GPUs have a smaller memory in comparison to the host system. Our analysis shows

that most of the time is spent in the selection of the working set described below. This

makes the GPU inappropriate for constant matrix computation.

Augmented Lagrangian - Fast Projected Gradient Method for

SVM

Let {(x1,y1), . . . , (xm, ym)} be a set of m labeled data points where xi ∈ Rn is a vector of

features and yi ∈ {−1, 1} represent the label that indicates the class to which xi belongs.

To train the SVM, we need to find α∗ = (α∗1, . . . , α
∗
m)T that solves the following problem:
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min
α

f(α) = −
m∑
i=1

αi +
1

2

∑
i,j

αiαjyiyjK(xi,xj)

s.t.

m∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . ,m.

(5.2)

The matrix Q with elements Qij = yiyjK(xi, xi) is positive semidefinite but usually

dense. Therefore, a large number of training points m result in significant operating memory

requirements, leading to inefficiencies for many general purpose optimization algorithms.

A relatively simple and efficient method, ALFPGM, that is capable of training medium-

size SVMs with up to a few tens of thousands of data points was proposed in [86]. The

algorithm takes advantage of two methods:

• an augmented Lagrangian method [62, 63] used to satisfy the only linear equality

constraint and

• a fast projected gradient method or FISTA (Algorithms 1-5) to solve a minimization

problem on box constraints [45,48,67]

The ALFPGM projects the dual variables onto the “box-like” set: 0 ≤ αi ≤ C, i =

1, . . . ,m.

Using the following definitions

f(α) =
m∑
i=1

αi(qi − 1) + 1
2

∑
i,j
αiαjyiyjK(xi,xj)

g(α) =
m∑
i=1

yiαi +Gk

(5.3)
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and the bounded set:

Box = {α ∈ Rm : 0 ≤ αi ≤ C, i = 1, . . . ,m} , (5.4)

the optimization problem (5.2) can be rewritten as follows:

min
α

f(α)

s.t. g(α) = 0,

α ∈ Box

(5.5)

The augmented Lagrangian is defined as

Lµ(α, λ) = f(α)− λg(α) +
µg(α)2

2
, (5.6)

where λ ∈ R the Lagrange multiplier that corresponds to the only equality constraint and

µ > 0 is the scaling parameter.

The augmented Lagrangian method is a sequence of inexact minimizations of Lµ (α, λ)

in α on the Box set

α̂ ≈ α(λ) = argmin
α∈Box

Lµ(α, λ) (5.7)

followed by updating the Lagrange multiplier λ :

λ̂ = λ− µg(α̂). (5.8)

For the stopping criteria for (5.7), we use the following function that measures the

violation of the first order optimality conditions of (5.7):
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Ω(α, λ) = max
1≤i≤m

Ωi(α, λ), (5.9)

where

Ωi(α, λ) =


|∇αLµ(α, λ)i| 0 < αi < C,

max {0,−∇αLµ(α, λ)i} αi = 0,

max {0,∇αLµ(α, λ)i} αi = C.

(5.10)

The inner FPGM(FISTA) loop is terminated when min(‖g(α)‖,Ω(α, λ)) < ε

For the final stopping criteria for the augmented Lagrangian method, we use µ(α, λ) =

max {Ω(α, λ), |g(α)|} , which measures the violation of the optimality conditions for (5.10).

Algorithm 12 Augmented Lagrangian-Fast Projected Gradient Method - No decomposi-
tion case
Initialization

1: α[0] ∈ Rm (starting point, not necessarily feasible) α[0] = 0

2: λ[0] ∈ R (initial ”guestimate” of Lagrange multiplier vector) λ[0] = 0

3: µ0 > 0 (initial value of scaling parameter)

4: ε > 0 (Required accuracy)

5: 0 < θ < 1
6: δ ≥ 1
7: rec = max {Ω(α, λ), |g(α)|}

Run the Augmented Lagragian Algorithm

1: while rec > ε do
2: find α : Ω(α, λ) ≤ θ ∗ rec using FPGM

3: λ = λ− µg(α)

4: rec = min(rec,Ω(α, λ))

5: k = δk
Run the FPGM
1: procedure FPGM
2: Input (α, λ)

3: Set ᾱ = α, t = 1 Select L > 0
4: while Ω(α, λ) > θ ∗ rec do

5: Set α̂ = PBox(α− 1
L
∇αLµ(α, λ)).

6: Set t = 0.5(1 +
√

1 + 4t2).

7: Set α = α̂ + t−1
t

(α̂− ᾱ).

8: ᾱ = α̂, t = t .
9: Output α̂.

1: procedure PBox
2: for i = 1, . . . ,m do
3: if αi < 0 then
4: αi = 0
5: if αi > C then
6: αi = C
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The fast projected gradient method (FPGM) requires estimation of the Lipschitz con-

stant L > 0 of the gradient ∇αLµ so that the inequality.

‖∇αLµ(α1, λ)−∇αLµ(α2, λ)‖ ≤ L ‖α1 − α2‖ (5.11)

holds for any α1, α2 ∈ Rm [14, 45, 48]. The gradient and the Hessian of Lµ(α, λ) are as

follows:

∇αLµ(α, λ) = Qα+ (q − e)− (λ− µ
m∑
i=1

yiαi)y,

∇2
ααLµ(α, λ) = Q+ µyyT .

(5.12)

where Q is an m by m matrix with the elements Qij = yiyjK(xi, xi), i = 1, . . . ,m, j =

1, . . . ,m, y = (y1, . . . , ym)T , e = (1, . . . , 1)T .

Since Lµ is of quadratic form with respect to α,

Lµ =
∥∥Q+ µyyT

∥∥ ≤ ‖Q‖+mµ (5.13)

where the matrix spectral norm is the largest singular value of a matrix.

Algorithm 5 describes the ALFPGM. This algorithm, as described, does not use any

decomposition or working set selection technique. It uses all training data points and serves

as a reference for comparison with a more advanced algorithm that takes advantage of

working sets. The convergence of Algorithm 5 is established in [49].
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Working set selection for ALFPGM

We extend the above algorithm by using the decomposition algorithms described in Table

4.1 using Algorithms 7 - 11 The SVM problem becomes

min
αB

1

2
αT

BQBBαB + αT
BqBN

s.t. αT
ByB + gk = 0,

0 ≤ αB ≤ C.

(5.14)

where qBN = QBNαN − eB and gk = αT
NyN

Algorithm 13 SVM ALFPGM Decomposition
1: ∇f(α) = y
2: while global minimum not reached do
3: find working set B
4: find the Kernel submatrix Q = QBB +QBN
5: find αB for working set B using the ALFPGM.
6: ∇f(α)i = (∆αBQBB + ∆αBQBN ) yB
7: Update α with αB

Implementation of ALFPGM

CPU implementation

The ALFPGM, being a first-order method, uses vector-vector and matrix-vector multipli-

cations. This makes it ideal for use in parallel computing environments using linear algebra

libraries such as BLAS numerical libraries.

The ALFPGM implemented and tested on a Linux workstation with two Intel R© Xeon R©

2.50GHz each with 12 cores, 64 GB RAM. Each processor has its own memory interface

and is connected to half of the installed RAM, totaling 64GB.
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FISTA procedure

For the inner FPGM procedure, we evaluate the FISTA algorithms described in Algorithms

1-5. The are suitable to be vectorized and parallelized. The updates and the projector

operations are well suited for parallelizing using multiple cores or a GPU.

The operations below were implemented using OpenMP parallel for.

xk := pL(yk),

tk+1 := 1 +

√
1+4t2k
2 ,

yk+1 := xk +
(
tk−1
tk+1

)
(xk − xk−1).

Computing the Lipschitz constant L

The fast projected gradient method (FPGM) requires estimation of the Lipschitz constant

L.

Let the symmetric m × m matrix Q have an eigenvalue, λ1, the largest eigenvalue of

a magnitude much larger than the remaining eigenvalues. The largest eigenvalue can be

efficiently computed using the power method. Let λ1 be the dominant eigenvalue of A and

v = c1x1 + · · ·+ cnxn an arbitrary vector such that c1 6= 0. Then

Qkv = c1λ
k
1x1 + · · ·+ cnλ

k
nxn

= λk1[c1x1 + c2(λ2/λ1)kx2 + · · ·+ cn(λn/λ1)kxn]

(5.15)

with v(k) = Qkv/λk1 = c1x1 + c2(λ2/λ1)kx2 + · · ·+ cn(λn/λ1)kxn︸ ︷︷ ︸
∆k

.

The vector v(k) converges to c1x1. Moreover, ||∆k|| = ||v(k) − c1x1|| ≤ const · rk where

r = |λ2/λ1| < 1.

Therefore, the vectors Qkv (obtained by the powers of A) will align in the direction of

the dominant eigenvector x1 as k →∞. The number r characterizes the speed of alignment,
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i.e. the speed of convergence ||∆k|| → 0. Note that if c2 6= 0, then

||v(k+1) − c1x1||/||v(k) − c1x1|| → r.

The number r is called the convergence ratio or the contraction number. The largest eigen-

value of Q does not need to be accurate, a good estimate is sufficient. So, from (5.13) above,

the Lipschitz constant L does not exceed λ̂1 +mµ i.e.

L ≤ λ̂1 +mµ (5.16)

where λ̂1 is the maximum eigenvalue of Q obtained using the power method.

1 double computeL ( svm problem ∗alfpgm prob , double ∗HBB) {

2 in t i , j ;

3 double eig max = −DBL MAX, l d i f f = DBL MAX, zprev ious ;

4 double Hx ;

5 double ∗ z e i g , ∗ x e i g ;

6 z e i g = ( double ∗) ( c a l l o c ( alfpgm param . nWss , s i z e o f ( double ) ) ) ;

7 x e i g = ( double ∗) ( c a l l o c ( alfpgm param . nWss , s i z e o f ( double ) ) ) ;

8 f o r ( j = 0 ; j < alfpgm param . nWss ; j++) {

9 x e i g [ j ] = ( double ) ( rand ( ) ) / ( double ) ( (RAND MAX) ) ;

10 }

11 whi le ( l d i f f > . 0 1 ) {

12 zprev ious = eig max ;

13

14 eig max = 0 ;

15

16 #pragma omp p a r a l l e l d e f a u l t ( none ) shared (HBB, alfpgm param , z e i g , x e i g ) reduct ion (+ : Hx)

reduct ion (max : eig max )

17 {

18 #pragma omp f o r p r i va t e ( i , j ) schedu le ( s t a t i c )

19 f o r ( i = 0 ; i < alfpgm param . nWss ; i++) {

20 Hx = 0 ;

21 f o r ( j = 0 ; j < alfpgm param . nWss ; j++) {

22 Hx += (HBB[ i ∗ alfpgm param . nWss + j ] ) ∗ x e i g [ j ] ;

23 }

24 z e i g [ i ] = Hx ;

25 eig max = fmax ( eig max , fabs (Hx) ) ;

26 }

27 }
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28

29 f o r ( i = 0 ; i < alfpgm param . nWss ; i++) {

30 x e i g [ i ] = z e i g [ i ] / eig max ;

31 }

32 l d i f f = fabs ( eig max − zprev ious ) ;

33 }

34 f r e e ( z e i g ) ;

35 f r e e ( x e i g ) ;

36 return ( eig max ) ;

37 }

Listing 5.4: Computing the Lipschitz constant

NRAL for SVM

To solve the SVM problem, we need to find the optimal variables α∗ = (α∗1, . . . , α
∗
m)T that

solve the following decomposition problem:

min
αB

1

2
αT

BQBBαB + αT
BqBN

s.t. αT
ByB + gk = 0,

0 ≤ αB ≤ C.

(5.17)

where qBN = QBNαN − eB and gk = αT
NyN

The NRAL technique solves the problem expressed in (5.17) by constructing an equiva-

lent problem in which the constraints are rescaled by a function ψ : −∞ ≤ t0 < t < t1 ≤ +∞

such that ψ(t) has the following properties:

ψ (0) = 0, ψ′ (t) > 0, ψ′ (0) = 1, ψ′′ (t) < 0

ψ′ (t) ≤ a
(t+1)

−ψ′′ (t) ≤ b
(t+1)2

 t ≥ 0, a > 0, b > 0
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For µ > 0, the following problem is equivalent to the original problem:

min
αB

1

2
αT

BQBBαB + αT
BqBN

s.t. αT
ByB + gµ = 0,

1

µ
ψ (µαB (x)) ≥ 0, j = 1, · · · , p.

(5.18)

NRAL converges for any fixed scaling parameter µ > 0 due to the Lagrange multipliers

update [12].

In [73] the transformation ψ was chosen as

ψ (t) =

 log (t+ 1) t > −0.5

−2t2 + log (.5) + .5 t ≤ −0.5

The Augmented Lagrangian for this equivalent problem is

Lµ (α, λ,ν) = f (α)− λT g (α)− 1

µ

p∑
i=1

νiψ (µci (α)) +
µ

2

q∑
j=1

(gi (α))2

where α ∈ Rp and λ ∈ Rq are dual variables.

The NRAL technique finds the next iterate (αs+1, λs+1,νs+1) is found by solving the

unconstrained minimization problem

αs+1 = arg min
α∈Rn

Lµ (αs, λs,νs)

where (αs, λs,νs) is a current iterate and updating the multipliers
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λs+1
i = λsiψ

′ (µci (xs+1
))
, i = 1, · · · , p.

νs+1
j = νsj − µgj

(
xs+1

)
, j = 1, · · · , q.

At each iteration of the NRAL technique, any unconstrained minimization routine can be

used to find arg min
α∈Rn

Lµ (αs, λs,νs). If (α∗, λ∗,ν∗)is the solution, then for µ large enough,

under second-order optimality conditions, the iterates (αs, λs,νs) derived using the NRAL

technique will converge to the solution linearly.

The gradient and the Hessian of Lµ (α, λ, µ) are as follows

∇αLν (α, λ, ν) = Qα+ (QBNαN − eB)− (λ− νg(α)) y − λLiψ′ (ναi) + λUiψ
′ (ν (C − αi))

∇2
ααLν (α, λ, ν) = Q + νyyT − νλLiψ′′ (ναi)− νλUiψ′′ (ν (C − αi))

(5.19)

Each iteration uses Newton’s method to find the minimum of each NRAL step.

H = ∇2Lµ (α, λ,ν)

G = ∇Lµ (α, λ,ν)

∆α = −H \G.

α̂ = α + ∆α

(5.20)

The LAPACK library in Intel’s MKL [82] is used to obtain ∆α in (5.20). The decompo-

sition technique is used for the SVM problem similar to ALFPGM. The selection of working

sets described earlier in Algorithms 7 - 11 is used. After each decomposition solution, the

gradient update technique described earlier (5.1) is used to update the gradient.

1

2 double dotProduct ( double ∗vecA , double ∗vecB , i n t n) {

3 double dotP = cb la s ddot (n , vecA , 1 , vecB , 1) ;

4 re turn ( dotP ) ;

5 }
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Algorithm 14 Nonlinear Rescaling Method
Initialization

1: α[0] ∈ Rm (starting point, not necessarily feasible) α[0] = 0

2: λ[0] ∈ R (initial ”guestimate” of Lagrange multiplier vector) λ[0] = 0

3: µ0 > 0 (initial value of scaling parameter)

4: ε > 0 (Required accuracy)

5: 0 < θ < 1

Run the NRAL Algorithm

1: while rec > ε do
2: find α : Ω (α, λ,ν) ≤ θ ∗ rec using Newton

3: νs+1
i = νsi ψ

′ (µci (xs+1
))
, i = 1, · · · , p

4: λs+1
j = λsj − µgj

(
xs+1

)
, j = 1, · · · , q

5: rec = min (rec,Ω (α, λ))

Run the Newton
1: procedure Newton
2: Input (α, λ,ν)

3: Set ᾱ = α, t = 1 Select L > 0
4: while Ω(α, λ,ν) > θ ∗ rec do

5: H = ∇2Lµ (α, λ,ν)

6: G = ∇Lµ (α, λ,ν)

7: ∆α = −H \G.

8: Use Armijo line search to get α̂
9: Output α̂.

Armijo Line Search

1: β is the step size reduction factor.

2: Start with ηk = s, β < 1, σ < 1

3: If f(αk + ηk∆αk) + σηk(−∇f(αk)T∆αk) < f(αk)

4: then STOP
5: else ηk ←− βηk and repeat

6

7 void compute hess ian ( i n t nWss , double mu, double ∗H, double ∗Q, double ∗y wss ,

8 double ∗ lambda l , double ∗ a lpha wss nra l , double ∗ lambda u ) {

9

10 //HN = Q + mu∗( Aeq 2 ) − mu ∗ diag ( lambda l .∗ g e t h p s i (mu∗alpha ) + lambda u .∗ g e t h p s i (mu∗(C −

alpha ) ) ) ) ;

11 double kappa = nral param . kappa ;

12 double C = svm param .C;

13 #pragma omp p a r a l l e l f o r d e f a u l t ( none ) shared (Q, H, y wss , mu, kappa , nWss , lambda l , lambda u )

p r i va t e (k , j ) schedu le ( guided )

14

15 f o r ( i n t k = 0 ; k < nWss ; k++) {

16

17 f o r ( i n t j = 0 ; j < nWss ; j++) {

18 H[ k ∗ nWss + j ] = Q[ k ∗ nWss + j ] + mu ∗ y wss [ j ] ∗ y wss [ k ] ;

19 }

20 H[ k ∗ nWss + k ] += ( kappa

21 − mu

22 ∗ ( lambda l [ k ] ∗ g e t h p s i v a l (mu ∗ a lpha ws s n ra l [ k ] )

23 + lambda u [ k ]
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24 ∗ g e t h p s i v a l (

25 mu ∗ (C − a lpha ws s n ra l [ k ] ) ) ) ) ;

26

27 }

28 }

Listing 5.5: Computing ∆α = −H \G

Summary

In this chapter, we have described the implementations of the selection methods for the

working set described in Chapter 4. We have described the gradient update performed

after each decomposition. We have also described the implementation of ALFPGM and

NRAL.
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Chapter 6: Numerical examples SVM training using WSS

selection

Numerical Results

ALFPGM and NRAL were first prototyped in MATLAB to get a sense of the perfor-

mance of the algorithms. Subsequently, they were implemented in C++ and optimized using

specialized linear algebra routines in Intel MKL and parallel programming paradigms in

OpenMP. All test results reported in this section were performed on a desktop with dual

Intel R© Xeon R© 2.50GHz, 12 Core processors that share 64 GB of computer memory. We

selected the data listed in Tables 6.1 and 6.2 from the University of California, Irvine (UCI)

Machine Learning Repository [87] and https://www.openml.org/. The data are for binary

classification with cases where the classes are balanced and unbalanced.

A learning problem must have a measure that explains how well an algorithm performs

the task. A universal goal for any (batch) supervised learning algorithm is generalization,

which estimates how well the algorithm will perform on future data [88]. The generalization

performance of a supervised learning algorithm is limited by three sources of error:

• The approximation error that measures how well the exact solution can be approxi-

mated by a function implementable by our learning system,

• The estimation error which measures how accurately we can determine the best func-

tion implementable by our learning system using a finite training set instead of the

unseen testing examples. The estimation error is determined by the number of training

examples and the capacity of the family of functions[9].

• The optimization error which measures how closely we compute the function that

best satisfies whatever information can be exploited in our finite training set.
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According to Steinwart [89], well-designed compromises lead to estimation and approx-

imation errors that scale between the inverse and the inverse square root of the number of

examples [89]. Optimization algorithms, on the other hand, are mainly focused on designing

algorithms whose error decreases exponentially or faster with the number of iterations. The

training time for each iteration grows linearly or quadratically with the number of training

dataset. According to Bottou et al. [9], it is often desirable to use poorly regarded optimiza-

tion algorithms that trade asymptotic accuracy for lower iteration complexity. Asymptotic

performance, i.e. how quickly the accuracy of the solution increases with computing time,

is critical to accessing the performance of any learning algorithm. For this work, we will

focus on the classification error in comparing between the SVM training algorithms dis-

cussed. The same training data are supplied to all algorithms, i.e. they are solving the

same problems. Therefore, the classification error obtained from misclassifying the training

data can be used to evaluate the performance of the algorithm.

Comparison of SVM training times using ALFPGM and NRAL-Newton

with results obtained using MATLABs QuadProg

The first set of experiments to test the performance of the algorithms is to obtain the

SVM training times using the Augmented Lagrangian Fast Projected Gradient Method

(ALFPGM) and Newton Nonlinear Scaling (NRAL-Newton) were compared with SVM

training times obtained using MATLAB’s QuadProg. The results of numerical experiments

with ALFPGM and NRAL-Newton were implemented in MATLAB c© 2020b. The results

obtained were compared with the highly optimized interior-point method (IPM) that comes

with MATLAB’s QuadProg. For both ALFPGM, NRAL-Newton, and the IPM, we compare

the efficiency of the SVM training with and without the decomposition method. WSS4 was

used as the decomposition technique.

For testing, we have selected 20 binary classification training data sets (Tests 1-20 in

Tables 6.1 and 6.2) with a number of training examples ranging from 100 to 19,020. In all

cases, the data were normalized and C = 100 was used for all tests. The scaling parameter
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µ used for all experiments is µ = 0.1 for ALFPGM and µ = 250 for NRAL-Newton. The

accuracy of the solution was selected ε = 10−5. The γ values in Table 6.1 were selected

using a grid search in γ using the cross-validation technique [22,90].

Table 6.1: Data used for testing (Tests 1 - 17).
test m n # -1 # 1 γ Description

1 Arcene 100 10000 44 56 0.500 ARCENE’s task is to distinguish cancer versus normal

patterns from mass-spectrometric data. This is a two-

class classification problem with continuous input vari-

ables. This dataset is one of 5 datasets of the NIPS 2003
feature selection challenge.

2 Balance Scale 625 4 288 337 0.500 Balance scale weight & distance database

3 BanknoteAuthentication 1348 4 610 738 0.500 Data were extracted from images that were taken for the

evaluation of an authentication procedure for banknotes.

4 BreastCancerWisconsin 569 30 357 212 0.500 Diagnostic Wisconsin Breast Cancer Database

5 CNAE9DataSet 1052 856 112 940 0.500 This is a data set containing 1080 documents of free text

business descriptions of Brazilian companies categorized

into a subset of 9 categories

6 ContraceptiveMethodChoice 1390 9 614 776 2.000 Dataset is a subset of the 1987 National Indonesia Con-
traceptive Prevalence Survey.

7 Dexter 600 20000 300 300 0.500 DEXTER is a text classification problem in a bag-of-word

representation. This is a two-class classification problem

with sparse continuous input variables. This dataset is

one of five datasets of the NIPS 2003 feature selection
challenge.

8 dorothea 800 100000 78 722 0.500 DOROTHEA is a drug discovery dataset. Chemical com-

pounds represented by structural molecular features must

be classified as active (binding to thrombin) or inactive.

9 eegEyeState 14980 14 8257 6723 0.500 The data set consists of 14 EEG values and a value indi-
cating the eye state.

10 EpilepticSeizureRecognition 11500 178 2300 9200 0.500 This dataset is a pre-processed and re-

structured/reshaped version of a very commonly used

dataset featuring epileptic seizure detection.

11 GasSensorArrayDrift 13910 128 5491 8419 0.500 This archive contains 13910 measurements from 16 chem-
ical sensors utilized in simulations for drift compensation

in a discrimination task of 6 gases at various levels of con-

centrations.

12 HabermanSurvival 289 3 210 79 0.500 Dataset contains cases from study conducted on the sur-

vival of patients who had undergone surgery for breast
cancer

13 HCVEgyptian 1385 29 668 717 0.500 Egyptian patients who underwent treatment dosages for

HCV about 18 months. Discretization should be applied

based on expert recommendations; there is an attached

file shows how.

14 HumanActivityRecognition 4224 561 2163 2061 0.500 Human Activity Recognition database built from the

recordings of 30 subjects performing activities of daily

living (ADL) while carrying a waist-mounted smartphone

with embedded inertial sensors.

15 MadelonDataSet 2600 500 1300 1300 0.500 MADELON is an artificial dataset, which was part of the

NIPS 2003 feature selection challenge. This is a two-

class classification problem with continuous input vari-

ables. The difficulty is that the problem is multivariate

and highly non-linear.

16 magictelescope 19020 11 12332 6573 0.500 Data are MC generated to simulate registration of high

energy gamma particles in an atmospheric Cherenkov tele-
scope

17 PageBlocksClassification 5473 10 4889 514 2.000 The problem consists of classifying all the blocks of the

page layout of a document that has been detected by a

segmentation process.
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Table 6.2: Data used for testing (Tests 18 - 30).

test m n # -1 # 1 γ Description

18 Seeds 210 7 70 140 0.500 Measurements of geometrical properties of kernels belong-

ing to three different varieties of wheat. A soft X-ray

technique and GRAINS package were used to construct

all seven, real-valued attributes.

19 StatSatLog 4435 36 961 3474 0.500 Multi-spectral values of pixels in 3x3 neighbourhoods in

a satellite image, and the classification associated with

the central pixel in each neighbourhood. Classification is

based on red soil.

20 ZeroPenDigits 7494 16 3715 3779 0.500 Digit database of 250 samples from 44 writers

21 webdata wXa 36974 123 8874 28100 1.000 https://www.openml.org/d/350

22 2d planes 26714 10 13369 13345 2.000 https://www.openml.org/d/727

23 bank-marketing 45211 16 5289 39922 2.000 https://www.openml.org/d/1461 The data is related with

direct marketing campaigns of a Portuguese banking in-

stitution. The marketing campaigns were based on phone

calls. Often, more than one contact to the same client

was required, in order to access if the product (bank term

deposit) would be (or not) subscribed.

24 riccardo 18201 4295 3201 15000 0.500 https://www.openml.org/d/41161

25 fried 40768 10 20341 20427 5.000 https://www.openml.org/d/901

26 nomao 32062 118 22251 9811 5.000 The dataset has been enriched during the Nomao Chal-

lenge: organized along with the ALRA workshop

27 electricity 45312 8 19237 26075 5.000 This data was collected from the Australian New South
Wales Electricity Market. In this market, prices are not

fixed and are affected by demand and supply of the mar-

ket. https://www.openml.org/d/151

28 Run or walk information 88588 6 44365 44223 1.000 This dataset is gather to detect whether a person is run-

ning or walking based on deep neural networks and sensor

data collected from iOS devices

29 vehicleNorm 98528 101 49264 49264 1.000 Vehicle classification in distributed sensor networks.
https://www.openml.org/d/1242

30 numerai28.6 96320 21 48658 47662 1.000 Encrypted Stock Market Training Data from Numer.ai

Tables 6.3-6.4 provide the numerical results for SVM training with ALFPGM, NRAL,

and an interior point method (IPM) native to MATLAB; QuadProg. Table 6.3 shows

the results without the use of the decomposition method, that is, all data points are used

simultaneously. In this case, the full m×m matrix Q is computed once and stored in memory

as long as it can fit in memory. Table 6.4 shows the results of the SVM training using the

selection method WSS4 to test the performance of the 3 methods. For all of the dataset, the

tables 6.4 and 6.5 show the number of training data points (m) and the number of features

(n), the number of iterations (nIter) to get the SVM solution, training time, classification

error in classifying the training dataset (Err) and a final objective function value, (Objval).

Furthermore, the columns nDcmp in Table 6.4 are the number of decomposition iterations,
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that is, the number of selections of a working set and the subsequent SVM subproblem

solution fining sequence. All simulation scenarios were averaged over 10 runs.

Fig. 6.1 shows the ratios of training times between ALFPGM and IPM without decom-

position. Values smaller than 1.0, shown in red, indicate that the ALFPGM was faster, i.e.

it took more time of the IPM to train an SVM for a particular data set, while values less

than 1.0, shown in blue, indicate that the IPM was faster. Similarly, Fig. 6.2 shows the

training times ratios between IPM and NRAL without decomposition. Fig. 6.3 shows the

training times ratios between ALFPGM and NRAL. Fig. 6.4 shows the comparison of the

training time histogram for IPM, ALFPGM, and NRAL.

0.01 0.1 1 10

1

18

12

4

7

2

8

5

3

13

6

15

14

19

17

20

10

11

9

16

Training times ratio ALFPGM/IPM

Cases where 
ALFPGM is faster 
are shown in Red 
and when IPM is 
faster shown in 
Blue

Figure 6.1: Comparison between ALFPGM and IPM without decomposition. (MATLAB)
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Fig. 6.1 shows that ALFPGM outperforms QuadProg IPM for most training problems
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without decomposition, especially when the number of training data is large. The cases

where IPM was better, the time difference was in fractions of a second. Similarly, Fig. 6.2

shows that NRAL outperforms QuadProg IPM for most training sets without a decompo-

sition scheme. As the Kernel Matrix gets larger, the condition number of the kernel matrix

is important in determining the number of steps needed for IPM and NRAL iterations. It

was observed that whenever the condition number of the matrix is large, i.e. the matrix

is approaching singularity, it takes longer to find a solution using IPM and NRAL. Fig.

6.3 shows the comparison of the time between training times using NRAL and ALFPGM

without a decomposition scheme. ALFPGM in most cases outperformed NRAL.

Table 6.5 shows the relative efficiency of the WSS4 decomposition scheme in the ab-

sence of decomposition for the ALFPGM, NRAL and IPM. In all three methods, using

decomposition, all the schemes showed reduced training times. Fig. 6.6 and 6.12 show the

normalized training time, i.e., the training time divided by the number of training sam-

ples. The trend for 6.6 suggests that as the training samples grow larger, the normalized

training time will increase. Fig. 6.12 on the other hand, has a flatter trend as the number

of training data increases. This is a desired characteristic, as it means that we can train

larger set SVM problems with an expected runtime that varies linearly with the number

of training data. The results (Fig. 6.4-6.9) suggest that for training data sets within hun-

dreds of points using no decomposition method is justified, while for larger problems using

decomposition methods is preferable. This is of immense benefit since we can decompose

large-set problems into smaller-set problems and solve each decomposition efficiently. This

is the approach that will be used for the optimized high performance C++ implementation.

Our focus will be on selecting the working set and efficiently solving the SVM subproblem.
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Using decomposition gave smaller overall training times compared to training without

decomposition. NRAL performed best in terms of overall training time compared to IPM or

ALFPGM. When all 3 algorithms took similar number of decomposition iterations, NRAL

performed best, then ALFPM overall. In most of the cases, NRAL outperformed ALFPGM.

This is expected, as ALFPGM is a first-order method. The appeal of using the ALFPGM

algorithm is its simplicity. In the next section, we will see how optimizing the implemen-

tation of the algorithm can reduce runtime. Part of our investigation includes finding ways

to speed up the algorithm.
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Figure 6.7: Comparison between ALFPGM and IPM with decomposition WSS4 (MAT-
LAB).
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C++ Implementations Results

With the promising results of the MATLAB simulations, the next step is C++ Implementa-

tions. The goal is to further reduce the training time using high performance C++ libraries

and to run SVM on large set problems. The implementation will be optimized for larger-

scale problems versus the rudimentary implementation done in MATLAB.

Comparison between different WSS schemes for ALFPGM

As mentioned above, the time to find the working set is often longer than the time to find the

subsequent solution for the working set (see Fig. 6.13 - 6.15). In this section, we compare

the timings for the different proposed WSS schemes; WSS1, WSS2, WSS3, WSS5, WSS6,

WSS7 and WSS8. timeWSS is the time it takes for form the decomposition subproblems.

nDcmp is the number of decompositions required to meet the exit criteria. timeALFPGM

is the time the algorithm spent solving the SVM subproblem.

Test 21 was used to benchmark the performance of all the working set selection schemes,

as it is sufficiently sized. In all cases, the maximum number of decompositions was set to

10000. The following parameters were usedWSSminAlphaCheck = min(.1m, 100), minAlphaOpt =

15, maxAlphaOpt = 20. The results in Table 6.5 show that all the schemes gave the same

training error. However, WSS2, WSS3, WSS7, and WSS8 have a different final objective

value. WSS0 performed slightly better compared to WSS4 as it does not need to per-

form all the kernel computations necessary for the second-order WSS schemes. For some

problems like the case we have here, it is okay to exit the decomposition iterations early.

WSS2, WSS3, WSS7 and WSS8 gave a similar classification error as the other schemes

(WSS1, WSS4 and WSS5) and the computation was stopped earlier. That is, by limiting

the number of optimizations α, we can achieve a faster training time while maintaining the

same classification error percentage. Fig. 6.15 shows the comparison between timeWSS , the

time to find the working set, and timeALFPGM , the time to find the subsequent SVM sub-

problem solution. Fig. 6.16 shows the comparison between the number of outer iterations
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(Augmented Langragian iterations) and the inner FPGM iterations. The number of inner

iterations is relative to the number of outer iteration calls, which depends on the number of

decomposition rounds. These data suggest that by reducing the number of decompositions

needed, as we have done, we can reduce the overall training time.

Table 6.5: WSS timing versus ALFPGM timing for test 21 (100 pairs)
WSStype nD timeWSS timeALFPGM nInnIter nOutIter nWss Err Objval Time s

WSS0 1668 98.0722 2.445647 170819 5509 200 4.59 -350686 103.9413

WSS1 1682 92.17027 2.368635 171071 5520 200 4.59 -350686 97.81993

WSS2 1695 95.40773 2.358085 169706 5713 200 4.59 -347960 101.0755

WSS3 1696 95.61518 2.445585 169725 5717 199.9268 4.59 -347960 101.4111

WSS4 1734 89.87098 2.251358 172270 5762 200 4.59 -350686 95.49283

WSS5 1652 90.21417 2.363027 170275 5320 200 4.59 -350686 95.88432

WSS6 1664 87.27448 2.316799 170456 5454 200 4.59 -350686 92.79675

WSS7 1709 91.0776 2.308469 170065 5815 200 4.59 -347894 96.75294

WSS8 1710 87.75037 2.492563 170084 5819 199.9263 4.59 -347894 93.58626
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Table 6.6: WSS timing versus ALFPGM timing for Test 28 (100 pairs)
WSStype nD timeWSS timeALFPGM nInnIter nOutIter nWss Err Objval Time s

WSS0 6370 918.1699 37.35849 3442773 31736 200 0.03 -26753.4 981.8407

WSS1 2274 549.8224 9.955537 928624 11284 197.5117 0.07 -23741.6 569.4888

WSS2 2250 452.4246 10.194 922860 11188 198.5273 0.07 -23741.5 472.114

WSS3 2258 512.6824 12.18969 894725 11190 197.9078 0.06 -23746.8 534.1555

WSS4 4962 648.3794 26.11965 2511810 24530 200 0.03 -26753.4 694.6812

WSS5 4970 639.154 27.17421 2543404 25452 195.8962 0.03 -26753.4 686.6167

WSS6 2274 319.5706 9.654415 897438 11261 197.4483 0.06 -24475.2 338.6523

WSS7 2253 326.5483 9.913783 950054 11340 198.1137 0.06 -24473.1 345.7599

WSS8 2267 312.8918 12.22372 901042 11387 196.0733 0.06 -24383.8 334.4376

Another test was performed using Test 28. Similarly, WSSminAlphaCheck = min(.1m, 100),

minAlphaOpt = 150, maxAlphaOpt = 200. Unlike test 21, tests WSS0, WSS4 and WSS5

in Test 28 (Table 6.6) take a long time and iterations to arrive at the right solution before

stopping. WSS1, WSS2, WSS3, WSS7 and WSS8 have the fastest times with a similar
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classification error (0.05 vs. 0.03). minAlphaOpt and maxAlphaOpt need to be selected

based on the total number of sample data m and the number of pairs p. This is particu-

larly important for large dataset problems. It is important to ensure that α are well tested

with other α values before they are no longer used in the WSS process. A good number

of start with is minAlphaOpt = max(5, m10p), maxAlphaOpt = max(15, m10p). Table 6.6

suggests that for very large data set problems where there are many decomposition steps

and minAlphaOpt are large, we can get faster training time using WSS2, WSS3, WSS7 or

WSS8.
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Figure 6.17: Performance improvements with using Multiprocessing Test 24 (18201 data
points 4295 features)

ALFPGM results improvements with multiprocessing

We investigated the scalability performance of ALFPGM. We compared the training time

with the number of processors used for the training. Fig. 6.17 shows the training time
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versus the number of processor threads used in the training. The biggest gains were up to

using 12 processors, and then there were diminishing returns. This is an expected trend in

parallel programming. There is a major benefit in going from one processor to two; there

is a not as great but still substantial benefit in going from two processors to four. However

after a number of processors, the real-time reduction in adding more processors is very small

compared to the substantial increase in resource consumption.

ALFPGM - Comparison of using different number of pairs p

In this section we tried to find the optimum p to use for ALFPGM. We used Tests 16,

25 and 30 and varied the number of pairs. In all cases, we used WSS7. The results are

presented in Tables 6.7 - 6.9 and Fig. 6.18 - 6.20. The results suggest that for ALFPGM

the optimum number of pairs is 100 ≤ p ≤ 20.
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Figure 6.18: ALFPGM - Classification time for different number of pairs p - Test 16.

There are several factors that come into play when varying the number of pairs p.
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1. The size of p determines the amount of time it takes to find the size of the working

set. The larger the size of p, the longer it takes to find the working set.

2. The smaller the size of p, the more the number of decompositions needed to solve the

SVM problem.

3. The larger the size of p, the longer it takes to solve the SVM subproblems.

4. The larger the size of p, the greater the probability that the Hessian matrix of the

SVM subproblem may be degenerate.

Table 6.7: ALFPGM results for Test 16 with varying nPairs
ALFPGM Time

nPairs Time (s) Err nSv Objval Iterations nD

2 123.804721 0 18905 -8577.31 418040 30973

4 69.483926 0 18905 -8577.31 140079 15327

6 44.3587575 0 18905 -8577.31 74424 10127

8 36.1464555 0 18905 -8577.31 48375 7600

10 31.739852 0 18905 -8577.31 28573 6018

12 28.865686 0 18905 -8577.31 25424 5036

14 26.272481 0 18905 -8577.31 23297 4273

16 24.756381 0 18905 -8577.31 26796 3722

18 24.0292085 0 18905 -8577.31 15480 3374

20 22.5715785 0 18905 -8577.31 13764 3001

22 21.8276955 0 18905 -8577.31 12206 2671

24 21.6393575 0 18905 -8577.31 11374 2480

26 20.6966755 0 18905 -8577.31 10510 2296

28 21.091971 0 18905 -8577.31 10067 2193

30 20.6824865 0 18905 -8577.31 9318 2030

40 20.09519 0 18905 -8577.31 7030 1533

50 19.734837 0 18905 -8577.31 5657 1238

60 20.1373165 0 18905 -8577.31 5611 1031

70 21.220922 0 18905 -8577.31 3529 876

80 21.2192915 0 18905 -8577.31 2798 750

90 20.9901475 0 18905 -8577.31 2484 660

100 21.591046 0 18905 -8577.31 2370 614

150 21.3120485 0 18905 -8577.31 1469 388

200 20.3956925 0 18905 -8577.31 1162 279

250 20.5481675 0 18905 -8577.31 1000 219

300 20.1807495 0 18905 -8577.31 929 183

350 21.7772445 0 18905 -8577.31 1251 166

400 20.6398145 0 18905 -8577.31 1314 132

450 21.7796 0 18905 -8577.31 1280 118

500 21.074534 0 18905 -8577.31 1774 105
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Figure 6.19: ALFPGM - Classification time for different numbers of pairs p Test 25.
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Figure 6.20: ALFPGM - Classification time for different numbers of pairs p - Test 30.
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Table 6.8: ALFPGM results for Test 25 with varying nPairs
ALFPGM Time

nPairs Time (s) Err nSv Objval Iterations nD

2 593.8708415 0.05 10867 -15727.2 1206607 99430

4 350.6830495 0.09 10872 -16725.6 475283 54164

6 228.1724265 0.03 10945 -16610.2 228739 31475

8 185.2587545 0.02 10969 -16817.8 148488 22825

10 138.738265 0 11117 -17598.1 96789 15919

12 116.5954155 0 11132 -17592.2 71915 12367

14 120.585538 0 11121 -17598.2 66548 11795

16 114.68055 0 11124 -17598.1 57884 10494

18 99.606217 0 11132 -17581.7 45585 8602

20 97.4593705 0 11138 -17580.3 40768 7855

22 98.276515 0 11136 -17579.1 36672 7232

24 101.0070185 0 11144 -17572.6 33741 6756

26 100.576808 0 11161 -17567.5 31190 6321

28 103.105102 0 11164 -17566.5 29144 5909

30 104.710064 0 11158 -17555.9 27015 5494

40 112.2581095 0 11174 -17536.7 21195 4334

50 109.6898605 0 11225 -17512.2 17002 3502

60 106.2746085 0 11227 -17478.1 14355 2982

70 106.137575 0 11245 -17456.8 12239 2592

80 130.1329695 0 11141 -17573.5 13302 2875

90 104.638106 0 11273 -17394.3 9013 2050

100 132.1765945 0 11160 -17560.4 10448 2394

150 142.9638765 0 11200 -17537.3 7043 1722

200 158.803399 0 11225 -17490.2 5824 1445

250 161.12544 0 11230 -17444.3 4805 1177

300 174.417873 0 11254 -17406.2 4343 1028

350 167.45417 0 11271 -17375.4 3984 873

400 200.115672 0 11270 -17364.7 4467 838

450 200.303497 0 11303 -17342.4 5234 765

500 227.1943725 0 11329 -17333.9 6730 756
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Table 6.9: ALFPGM results for Test 30 with varying nPairs
ALFPGM Time

nPairs Time (s) Err nSv Objval Iterations nD

2 1481.921126 0 96300 -49857.5 328275 70958

4 855.79962 0 96304 -49916.9 130546 34978

6 664.7104145 0 96304 -49916.9 78143 23214

8 595.7563115 0 96304 -49916.9 54384 17532

10 519.3031835 0 96304 -49916.9 32714 14060

12 505.133634 0 96304 -49916.9 26678 11738

14 463.1722295 0 96304 -49916.9 23418 10160

16 444.3332525 0 96304 -49916.9 21237 8870

18 435.456936 0 96302 -49912.7 20293 8083

20 427.0975085 0 96304 -49916.9 16641 7335

22 398.6321075 0 96304 -49916.9 14542 6576

24 401.0065995 0 96304 -49916.9 13165 6028

26 389.885153 0 96304 -49916.9 12138 5638

28 367.571654 0 96304 -49916.9 11087 5167

30 375.2423985 0 96304 -49916.9 10624 4961

40 343.3429125 0 96304 -49916.9 7837 3684

50 329.586473 0 96304 -49916.9 6323 2928

60 334.875853 0 96304 -49916.9 5439 2545

70 323.034733 0 96304 -49916.9 4848 2225

80 330.184603 0 96304 -49916.9 4272 1973

90 317.8700565 0 96304 -49916.9 3752 1706

100 350.464458 0 96304 -49916.9 3593 1653

150 366.0834735 0 96304 -49916.9 2659 1226

200 336.5929005 0 96304 -49916.9 1902 871

250 364.5629655 0 96304 -49916.9 1644 743

300 332.916956 0 96304 -49916.9 1398 555

350 319.4398085 0 96304 -49916.9 1562 466

400 317.690327 0 96304 -49916.9 1922 411

450 323.781645 0 96304 -49916.9 2584 365

500 331.097487 0 96304 -49916.9 3397 331

Next, we present results for different number of working set pairs; 10, 50, 100, 200 and

250 for small to mid-sized SVM problems (Tests 1-24). It can be stated that in terms of

few iterations and reduced classification errors, WSS2, WSS3, WSS7 and WSS8 are the

desired working set selection schemes to use. Figs. 6.21 - 6.22 further show that WSS2,

WSS3, WSS7 and WSS8 performed the best in terms of training classification errors and

training times. WSS0 and WSS5 clearly performed the worst. It is also observed that for

ALFPGM, the number of decompositions reduces with the number of pairs used. However,

the more pairs used, the more the time used in computing the working set. It is important to
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strike a good balance between the choice of the number of decompositions and the number

of points. The relationship between them is observed to be inversely related. We have

observed that for ALFPGM from Figs. 6.18 - 6.21, 100 ≤ p ≤ 250 are good choices for p

for the test problems when using WSS2, WSS3, WSS7 and WSS8.
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Figure 6.21: Training time comparison between WSS types and nPairs p
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Comparison between different Inner FPGM Procedures

The next section to optimize after selecting the working set, is to efficiently solve the SVM

subproblem in the fastest amount of overall training time and classification errors. In this

section, we present results of using different FISTA algorithm discussed in Algorithms 1 -

5.

Results from Table 6.10 and Fig. 6.23 show the performance difference between the

different inner FISTA variants. There’s a significant performance loss by using MFISTA

chiefly due to the time cost of computing F (zk). Although there isn’t much difference

between other FISTA variants, GREEDY gives the least training time overall and then

RESTART FISTA. It can be concluded that GREEDY FISTA is preferred to other FISTA

methods as it provides the fastest training time and classification time.
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Figure 6.24: Comparison between Fista types - Classification errors - Time (100 Pairs)
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NRAL-Newton results

We performed a similar experiment done using ALFPGM to train Test 21 and 28 using the

NRAL algorithm. Tables 6.11 and 6.12 again demonstrate that WSS2, WSS3, WSS7 and

WSS8 performed best in terms of training errors and training times. Results in Table 6.11

show that WSS schemes WSS0, WSS4 and WSS5 were unable to train the data in Test 21

in 20,000 decomposition steps. For the rest of the analysis, WSS2, WSS3, WSS6, WSS7

and WSS8 also performed well in experiments with Test 28.

Table 6.11: NRAL-Newton results for Test 21 (100 pairs)
WSStype nD timeWSS timeALFPGM nIter nWss Err Objval Time s

WSS0 20001 868.3539 109.3493 179275 200 23.41 -60663.5 1013.191

WSS1 1591 90.24955 4.812982 7763 200 4.59 -350686 98.35881

WSS2 1591 87.93712 4.801774 7763 200 4.59 -350686 95.93165

WSS3 1630 100.0099 5.0227 7875 199.9091 4.59 -350686 108.3271

WSS4 20001 801.6258 102.4543 179266 200 23.41 -59880.9 939.5642

WSS5 20001 812.2638 101.73 179253 200 23.07 -101701 949.0619

WSS6 1746 88.81728 5.068855 7992 200 4.59 -350686 97.17176

WSS7 1746 88.39174 5.123011 7992 200 4.59 -350686 96.82016

WSS8 1710 90.72546 5.086147 7932 199.9684 4.59 -350686 99.15875

Table 6.12: NRAL-Newton results for Test 28 (100 pairs)
WSStype nD timeWSS timeALFPGM nIter nWss Err Objval Time s

WSS0 20001 2291.143 295.0557 510747 200 0.03 -26221.2 2669.789

WSS1 2280 670.9629 30.76834 55159 195.0031 0.03 -25678.3 711.1401

WSS2 2228 452.9826 30.29251 54536 198.6053 0.03 -25678.3 492.5575

WSS3 2590 712.2013 30.02383 53216 196.4828 0.03 -25722.7 752.7499

WSS4 20001 2306.779 367.7518 707220 200 0.03 -26753.4 2754.798

WSS5 7347 929.5055 127.3393 233074 199.9088 0.03 -26753.4 1086.555

WSS6 2285 316.9574 28.38766 50332 199.2811 0.03 -25679.6 354.8905

WSS7 2289 339.0514 27.7065 50456 199.3024 0.03 -25679.6 376.2853

WSS8 2289 330.2781 29.74468 53514 199.0009 0.03 -25750.8 369.5336
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NRAL-Newton results improvements with multiprocessing

We investigated the performance of NRAL with different number of processors. Fig. 6.26

shows the training time versus the number of processor threads used in the training. In all

number of processor cases, we used WSS7. The biggest gains similar to using ALFPGM

were up to using 12 processors, and then there were diminishing returns as expected while

using parallel programming.
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Figure 6.26: Performance improvements with using Multiprocessing Test 24 (18201 data
points 4295 features)

NRAL - Comparison of using different number of pairs p

In this section we tried to find the optimum p to use for NRAL. We used Tests 16, 25 and

30 and varied the number of pairs. In all cases, we used WSS7. The results are presented

in Tables 6.13 - 6.15 and Fig. 6.28 - 6.29. The results suggest that for NRAL the optimum

number of pairs is between 10 and 50. In Fig. 6.27, the training time increased when
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p > 150, this is because it took longer to solve the linear system needed by the Newton

method as the subproblem matrices became larger. For Test 25, the condition number

of the matrices was larger with larger p.

0

20

40

60

80

100

120

140

-50 50 150 250 350 450 550

Tr
ai

ni
ng

 T
im

e

nPair

Figure 6.27: NRAL - Classification time for different pairs - Test 16.
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Table 6.13: NRAL-Newton results for Test 16 with varying nPairs
NRAL

nPairs Time (s) Err nSv Objval Iterations nD

2 116.402254 0 18905 -8577.31 58646 30945

4 67.644663 0 18905 -8577.31 30681 15338

6 43.397424 0 18905 -8577.31 20241 10119

8 36.709577 0 18905 -8577.31 15086 7542

10 31.384651 0 18905 -8577.31 12020 6009

12 28.915261 0 18905 -8577.31 9849 4921

14 27.437907 0 18905 -8577.31 8570 4284

16 24.798495 0 18905 -8577.31 7483 3740

18 24.320789 0 18905 -8577.31 6721 3359

20 24.503561 0 18905 -8577.31 6000 2999

22 21.802208 0 18905 -8577.31 5464 2731

24 21.290395 0 18905 -8577.31 5062 2530

26 21.527157 0 18905 -8577.31 4624 2311

28 21.244577 0 18905 -8577.31 4364 2181

30 20.5716 0 18905 -8577.31 4122 2060

40 19.745366 0 18905 -8577.31 3060 1529

50 20.1519 0 18905 -8577.31 2488 1243

60 20.906937 0 18905 -8577.31 2052 1025

70 21.302046 0 18905 -8577.31 1777 887

80 22.127741 0 18905 -8577.31 1532 765

90 22.156554 0 18905 -8577.31 1374 686

100 22.237453 0 18905 -8577.31 1209 602

150 22.818557 0 18905 -8577.31 819 396

200 22.6635 0 18905 -8577.31 616 296

250 23.853368 0 18905 -8577.31 489 233

300 24.181126 0 18905 -8577.31 413 194

350 26.533043 0 18905 -8577.31 357 167

400 25.048355 0 18905 -8577.31 295 135

450 27.806044 0 18905 -8577.31 260 120

500 26.149542 0 18905 -8577.31 231 103
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Figure 6.28: NRAL - Classification time for different pairs - Test 25.
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Table 6.14: NRAL-Newton results for Test 25 with varying nPairs
NRAL

nPairs Time (s) Err nSv Objval Iterations nD

2 345.6106605 0 11138 -17599.1 171523 57713

4 211.7964885 0 11148 -17599 82153 31283

6 167.3644555 0 11190 -17598.8 64745 22417

8 140.941653 0 11191 -17597.1 59011 17575

10 128.3091945 0 11292 -17596.1 57314 14786

12 121.274775 0 11376 -17594.5 51603 12751

14 110.5670705 0 11208 -17590.2 41474 10935

16 104.652108 0 11187 -17588.4 38514 9672

18 103.92649 0 11181 -17583.7 37127 8819

20 101.1201545 0 11198 -17580.1 35153 8023

22 100.5937265 0 11166 -17580.6 32804 7374

24 103.4124165 0 11181 -17569.2 31746 6821

26 102.9410355 0 11192 -17568.3 30255 6399

28 104.704052 0 11179 -17560.3 28844 5942

30 105.373458 0 11186 -17560.3 27431 5608

40 115.6930665 0 11219 -17529.9 22966 4353

50 119.831452 0 11233 -17511.3 20387 3557

60 123.2320655 0 11265 -17485.3 17374 3035

70 128.9847075 0 11273 -17464.6 16217 2656

80 127.085432 0 11281 -17437.3 14667 2349

90 133.9062045 0 11302 -17417.6 13734 2122

100 135.398295 0.01 11317 -17383.8 12565 1938

150 159.8662785 0.01 11359 -17291.2 9286 1348

200 171.947201 0.03 11417 -17170.1 7691 1059

250 209.2557645 0.04 11492 -17062 6527 878

300 220.6572745 0.05 11488 -16935.4 5611 737

350 291.185642 0.06 11533 -16865.9 4948 652

400 285.2023365 0.07 11565 -16795.2 4543 579

450 364.198881 0.06 11621 -16699.6 4164 527

500 354.3726735 0.06 11645 -16645.5 3875 485
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Table 6.15: NRAL-Newton results for Test 30 with varying nPairs
NRAL

nPairs Time (s) Err nSv Objval Iterations nD

2 1435.049495 0 96304 -49916.9 161068 70128

4 856.850389 0 96304 -49916.9 83233 34923

6 665.953668 0 96306 -49916.9 61243 23268

8 581.189752 0 96306 -49916.9 43342 17455

10 520.864897 0 96308 -49916.9 31937 14043

12 488.572578 0 96305 -49916.9 25423 11705

14 459.533196 0 96308 -49916.9 24948 9971

16 442.942795 0 96306 -49916.9 22643 8798

18 446.479111 0 96311 -49916.9 18954 7945

20 414.068777 0 96307 -49916.9 18279 7120

22 397.868199 0 96309 -49916.9 14246 6418

24 410.61023 0 96310 -49916.9 13844 6026

26 391.48879 0 96311 -49916.9 12682 5548

28 385.121373 0 96309 -49916.9 11326 5104

30 364.710254 0 96307 -49916.9 12115 4775

40 351.016469 0 96312 -49916.9 8332 3601

50 330.934029 0 96309 -49916.9 6462 2867

60 324.956495 0 96312 -49916.9 6117 2415

70 323.789219 0 96311 -49916.9 5285 2073

80 308.067251 0 96310 -49916.9 4455 1813

90 319.501155 0 96310 -49916.9 4089 1637

100 307.41373 0 96310 -49916.9 3835 1489

150 314.267004 0 96312 -49916.9 2805 990

200 310.617533 0 96313 -49916.9 2617 756

250 312.509337 0 96312 -49916.9 2179 606

300 315.741056 0 96312 -49916.9 1897 501

350 362.599668 0 96312 -49916.9 1735 443

400 335.358444 0 96311 -49916.9 1445 382

450 362.354545 0 96313 -49916.9 1433 344

500 374.846995 0 96313 -49916.9 1379 306

It is observed (Fig. 6.31), that a smaller number of pairs (10-50) performed best for

NRAL. One reason for this is that finding the solution to the linear system in the subproblem

that uses the newton solution takes longer to find with a larger number of pairs p values.
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Comparison between LibSVM, NRAL and ALFPGM

We compared the performance of NRAL and ALFPGM with LibSVM implemented in

sklearn.svm.SVC [24] that uses the SMO algorithm. All 3 methods computed the kernels

on the fly and use a similar LRU kernel caching strategy. Tables 6.16 shows the comparison

of results between LibSVM, NRAL, and ALFPGM using WSS7 respectively. It has classi-

fication error (Err), training time (time), number of decompositions (nDcmp) and number

of support vectors (nSv). Fig. 6.31 shows that the training time comparison between Lib-

SVM, NRAL and ALFPGM for each of the 30 tests using WSS8. Fig. 6.32 shows the

classification error comparison between LibSVM, NRAL and ALFPGM. Fig. 6.34 - 6.36

show the relative training times between LibSVM, NRAL and ALFPGM. The data points

are arranged in the descending order of the number of training data m. Fig. 6.34 shows

the ratios of training times between NRAL and ALFPGM. The values smaller than 1.0,

shown in red indicate that the NRAL was faster, that is, it took more time for ALFPGM to

train an SVM for a particular data set, while the values less than 1.0 shown in blue indicate

that the ALFPGM was faster. Similarly, Fig. 6.35 shows the training time ratios between

NRAL and LibSVM. Finally, Fig. 6.36 shows the training time ratios between ALFPGM

and LibSVM.

Similarly to previous results, Fig. 6.33 shows that NRAL outperforms ALFPGM in

training time to obtain a similar classification error. ALFPGM being a first-order method,

it takes a while to converge in relation to the NRAL. In the few cases where ALFPGM

outperformed NRAL, it was a fraction of a second, thus the performance gains were insignif-

icant. Fig. 6.35 shows a comparison between NRAL and LibSVM for the same accuracy

values. NRAL outperformed LibSVM especially in the cases where the number of data

points were high. Analysis of a case where LibSVM outperformed NRAL, Test 27 shows

that NRAL found more support vectors and achieved a lower classification error. In the

other significant cases, in Tests 22 and 23, LibSVM outperformed NRAL. Overall, NRAL
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outperformed LibSVM as a whole considering all 30 test cases. Fig. 6.37 shows the normal-

ized training time, that is, training time divided by the number of training data sizes for all

3 methods. It clearly shows the training time reduction achieved by NRAL over LibSVM

and ALFPGM.

Table 6.16: ALFPGM, NRAL, LibSVM (scikit-learn) comparison - WSS7
ALFPGM LibSVM NRAL

Test m n Err Time (s) nD nSv Objval Err Time (s) nD nSv Objval Err Time (s) nD nSv Objval

01 100 10000 0 0.053843 12 100 -49.28 0 0.1615 296 100 -49.28 0 0.052339 11 100 -49.28

02 625 4 0 0.039404 10 97 -359.79 0 0.0103 2239 97 -359.79 0 0.133891 49 98 -359.79

03 1348 4 0 0.112512 20 418 -68.5117 0 0.0323 1316 412 -68.5116 0 0.394534 79 420 -68.5087

04 569 30 0 0.105108 11 569 -262.212 0 0.0247 1068 569 -262.212 0 0.07197 26 569 -262.212

05 1052 856 0 0.24199 15 1052 -199.872 0 0.9447 3109 1052 -199.872 0 0.231731 51 1052 -199.872

06 1390 9 2.3 0.391218 30 1390 -7043.52 2.3 0.0889 2534 1390 -7043.52 2.3 0.312791 92 1390 -7043.52

07 600 20000 0 0.201107 2 600 -300 0 4.3104 300 600 -300 0 0.250618 6 600 -300

08 800 100000 0 9.431559 10 800 -140.787 0 61.7233 1970 800 -140.79 0 9.584948 31 800 -140.79

09 14980 14 0 12.56972 198 14980 -7411.46 0 37.2218 47701 14980 -7411.46 0 11.08935 933 14980 -7411.46

10 11500 178 0 10.24101 175 11500 -3679.4 0 136.5733 35819 11500 -3679.4 0 7.805595 716 11500 -3679.4

11 13910 128 0 8.156131 168 4154 -914.7 0 11.6995 9575 4121 -919.284 0 6.736714 474 4188 -913.705

12 289 3 2.08 0.052789 8 261 -1340.6 2.08 0.0065 645 261 -1340.6 2.08 0.115762 31 261 -1340.6

13 1385 29 0 0.204953 16 1385 -691.624 0 0.1126 3443 1385 -691.623 0 0.177235 57 1385 -691.624

14 4224 561 0 1.080599 23 4224 -2110.03 0 9.9981 10791 4224 -2110.77 0 1.287923 186 4224 -2110.77

15 2600 500 0 0.29068 7 2600 -1300 0 3.1951 1300 2600 -1300 0 0.277331 26 2600 -1300

16 19020 11 0 22.13577 294 18905 -8577.31 0 52.3462 62399 18905 -8577.31 0 20.14508 1240 18905 -8577.31

17 5473 10 0.19 2.288623 87 5403 -2912.06 0.19 0.9113 11283 5403 -2912.06 0.19 1.455357 219 5403 -2819.44

18 210 7 0 0.037389 9 95 -58.4927 0 0.0034 287 96 -58.4927 0 0.08296 25 100 -58.4927

19 4435 36 0 1.149865 53 4435 -1505.53 0 1.1494 11628 4435 -1505.53 0 1.206499 228 4435 -1505.53

20 7494 16 0 1.072134 21 7494 -3744.29 0 3.3169 16031 7494 -3746.73 0 2.0713 292 7494 -3746.73

21 36974 123 4.59 100.483 843 36974 -347874 4.59 1215.305 110026 36974 -350686 4.59 115.5645 3439 36974 -347782

22 26714 10 4.41 46.60157 485 26714 -231591 4.41 55.2686 39953 26714 -244605 4.41 42.49623 1934 26714 -233782

23 45211 16 0 77.09719 508 45211 -9340.53 0 213.2611 96930 45211 -9340.53 0 84.99471 1987 45211 -9340.53

24 18201 4295 0 139.096 275 18201 -5175.65 0 7870.151 49244 18201 -5175.65 0 124.434 1094 18201 -5175.65

25 40768 10 0.2 81.7774 659 11701 -16033.5 0 166.716 79748 11123 -17599.1 0 113.7619 3351 11255 -17458.1

26 32062 118 0.27 59.22488 630 20998 -15232.9 0.15 399.0199 49785 21016 -20231.4 0.31 58.60276 1752 21153 -13074.5

27 45312 8 0.92 337.4581 2551 32681 -120386 0.7 336.2932 170816 32571 -135219 0.87 325.8839 8624 32788 -119744

28 88588 6 0.05 359.1051 1223 43391 -25071.8 0.03 521.7201 122003 43331 -26753.4 0.05 329.9529 3868 43442 -24589.2

29 98528 101 0.05 932.8615 1251 98411 -55816.7 0.03 5231.517 166893 98390 -56792.7 0.03 664.5909 3325 98393 -56647.4

30 96320 21 0 133.8112 327 96302 -49869.2 0 1056.651 138749 96304 -49916.9 0 326.0516 2857 96304 -49916.9

Total time 2337.372 17389.73 2249.817
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Table 6.17: Variation in data set size m and training time ratio with LibSVM

Training time Ratio

Test Size LibSVM/ALFPGM LibSVM/NRAL

m < 10000 0.383452 0.200755

10000 < m < 40000 3.048019 3.415291

40000 < m < 80000 1.616816 1.463441

80000 < m 3.020349 2.808884

In Table 6.17, the average normalized training time is calculated for different categories

of size of the working set m. When m < 10000, LibSVM outperforms NRAL and ALFPGM

with decomposition. An argument can be made that for such a small number of p, LibSVM

is preferred or NRAL without decomposition should be used. Our focus is on training large

data set problems, in which case according to the numerical results (Table 6.17), NRAL

outperformed LibSVM in terms of training time for cases where m is large. Additionally,

as mentioned above, in some of the cases where LibSVM gave a faster time, the LibSVM

solution gave a higher classification error than the SVM solution obtained using NRAL.

We evaluated the testing error, classification error and training times using NRAL,

ALFPGM and LibSVM for ijcnn1 and w8a test and training data from LibSVM dataset.

The results are shown in Table 6.18.

Table 6.18: Classification and testing error ijcnn1 using ALFPGM, NRAL and LibSVM

Test method nWss Err test err total seconds Objval

LibSVM 0 4.13 165.05485 -5464.916478

ijcnn1 NRAL 7 0 4.11 81.77327 -5456.129607

ijcnn1 ALFPGM 7 0 4.13 83.67837 -5463.847787

49,990 training data (45137 +1, 4853 -1). 22 features in data points.

91,701 testing data (8712 +1, 82989 -1).

https://www.csie.ntu.edu.tw/ cjlin/LibSVMtools/datasets/binary.html
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Table 6.19: Classification and testing error w8a using ALFPGM, NRAL and LibSVM

Test method nWss Err test err total seconds Objval

LibSVM 0.83 0.91 143.4498 -100856.712082

w8a NRAL 7 0.84 0.93 65.8715 -98818.20693

w8a ALFPGM 7 0.88 0.95 93.3837 -66389.65889

49,749 training data (1479 +1, 48270 -1). 22 features in data points.

14,951 testing data (454 +1, 14497 -1).

https://www.csie.ntu.edu.tw/ cjlin/LibSVMtools/datasets/binary.html

We tested the performance or NRAL and LibSVM for a very large dataset. We se-

lected binary classification data from https://www.openml.org/; Agrawal1 with 1,000,000

instances and 10 features. LibSVM took approximately 13.4 hours to train the data, while

NRAL with p = 40 took approximately 8 hours to train the data. This is a significant

reduction in training time.

Table 6.20: NRAL (40 Pairs) vs LibSVM for very large dataset

m 1000000

n 9

Err Time Objval nD nSv

LibSVM 0.08 48402.69684 -1105728.522271 2735718 180447

NRAL (40 Pairs) 0.08 28942.82873 -892233.474715 36088 183222

Summary

In this chapter, we have presented numerical results. We have presented and discussed

the results from using the different working set selection schemes. We have evaluated the

performance of ALFPGM using different project gradient methods and presented numerical

results. The numerical results show that MFISTA generally gives the least training time and
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classification error. We have shown the relative performance of NRAL and ALFPGM versus

the widely used LibSVM (sklearn.svm.SVC). Numerical results for NRAL and ALFPGM

applied to the SVM indicate that ALFPGM and NRAL are feasible training algorithms for

SVMs. In many of the cases presented, especially when training large dataset problems,

NRAL and ALFPGM trained the SVM faster than LibSVM with similar classification error,

training time and objective value.
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Chapter 7: Concluding Remarks

In this thesis, we investigated the question of efficiently training of Support Vector Ma-

chines (SVM) using Lagrangian multipliers methods. We studied the Nonlinear Rescaling

Augmented Lagrangian (NRAL) and the Augmented Lagrangian Fast Projected Gradient

Method (ALFPGM) methods for Support Vector Machine training, two Lagrangian mul-

tipliers methods. We improved on previous work that utilized some form of ALFPGM

and NRAL and adapted them for support vector machine training using high performance

computing techniques and SVM decomposition techniques. We proposed better working

set selection schemes to define the SVM decomposition sub-problem. Highly optimized

linear algebra routines were used in the implementation to speed up some of the computa-

tions. Numerical results indicate that the developed NRAL solver is competitive with the

widely used SVM solver, LibSVM. In many cases especially for the large SVM problems,

NRAL outperformed LibSVM achieving faster training times while having similar or lower

classification error rates.

To train large SVM problems, it is our recommendation to use NRAL over LibSVM.

Using pairs p in the working set reduced the number of decomposition iterations needed

to solve the SVM problem. By using an efficient solver like NRAL, we have been able to

outperform LibSVM especially for those cases with large training data sizes with training

data greater than 80,000.

We proposed different working set selection schemes for p pair decomposition problems.

Working set selection takes a large portion of the training time thus it is important to

optimize working set selection. Numerical results for the proposed working set selection

methods showed training time was reduced for all problems solved in comparison to working

set methods established in the literature. We have shown that in some examples α selection
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can be truncated early without a compromise in the overall results and this leads to a

significant reduction in training time. The WSS selected is important for the performance

of the SVM training solution. It is our recommendation to use the proposed WSS7 and

WSS8 in working set selection where p > 2 pairs are selected. This can be used with

ALFPGM and NRAL or any other non dual decomposition SVM training algorithms that

require a working set size of more than 2. Numerical results indicates that the optimal

choice of the number of pairs in the working set p for NRAL is 10 - 50 pairs while the

recommended number of pairs for ALFPGM is 100-250 pairs.

We evaluated the performance of ALFPGM using different project gradient methods.

Numerical results show that Greedy FISTA gave faster training time while achieving the

same or lower classification error. Monotone FISTA (MFISTA) requires the computation of

the minimized function thus requiring more resources and it gave the longest training time

and there is no advantage to using it. It is recommended based on the numerical results

not to use MFISTA for the inner fast projected optimization in the ALFPGM technique.

RADA and Restart FISTA also gave comparable training times as Greedy FISTA which

had a slight edge over them in terms of overall training time.

NRAL showed a 2x faster training time than LibSVM that has been modified to use

parallel processing for very large training dataset. ALFPGM shows promising results in

finding the SVM sub problem solution. It is slower than LibSVM and NRAL. However, it

is a simpler algorithm to implement. ALFPGM needed more inner iterations to find the

solution to SVM sub problem in comparison to NRAL. If the computations can be made

faster, ALFPGM shows promising outlook for solving training SVM. A large part of the

training time goes in to working set selection. To further reduce the training time, the focus

of optimizing the SVM training problem should be the working set selection.
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Future work

The results of this thesis provide a strong foundation for future work in SVM training using

Lagrange multiplier methods with decomposition using multiple pairs working selection. It

is our take that if the WSS can be further improved for multiple pair selection, the total

training time will be significantly reduced. This can be done by efficiently computing kernel

values and using a different cache scheme to store previously computed kernels.

The choice of the number of pairs p is important as it determines the number of de-

compositions. Our work has indicated a range of values based on numerical results for the

optimal value of p. A future work area will be to optimally determine the number of pairs

p based on the size of the problem.

Selecting optimal values of WSSminAlphaCheck and minAlphaOpt used in WSS3, WSS4,

WSS7, WSS8 needs to be further explored. Finding the optimal values for this parameters

based on the input data are still open questions.

Graphics processing units are getting cheaper and they are also incorporating larger

memory and faster clock speed. The use of GPU should be revisited in future to consider

the possibility of computing the kernel matrix on the GPU. The ALFPGM and NRAL

algorithms can also be implemented on the GPU. ALFPGM will particularly benefit from

using GPU as the mathematical operations are simple matrix operations.

Summary of research contributions

This thesis has contributed to the field of supervised machine learning by exploring the use

of decomposition method and using Langrange multiplier algorithms to solve the SVM sub-

problem. We have revisited the SVM problem that is currently mostly solved using dual

decomposition methods. We have presented new faster working set selection algorithms

that have been demonstrated to reduce the SVM training time.

In summary, the work described in this thesis made the following contributions:

� Developed an improved ALFPGM algorithm with SVM Decomposition solution. We
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have developed and implemented ALFPGM with high-performance computing tech-

niques to reduce training time. We compared different FISTA algorithms in ALFPGM

for SVM training. To the best of our knowledge, it is a first attempt to use ALFPGM

with decomposition for SVM training. So far FISTA has been used only for training

small datasets whose kernel matrices can fully fit in the computer memory.

� Developed Nonlinear Rescaling Augmented Lagrangian (NRAL) with newton for SVM

Decomposition solution. We have developed and implemented NRAL with high per-

formance computing techniques to reduce training time. Previous works like [50] have

studied Nonlinear Rescaling with SVM . The difference with our work is that we

have applied the decomposition techniques and have expanded the area by studying

how the algorithm performs with different decomposition methods. Numerical results

shows that the NRAL method developed trained large set SVM problems faster than

the widely used LibSVM that is used for training SVM.

� Proposed and developed working set selection schemes (WSS3,WSS4,WSS7,WSS8)

for selection of p number of pairs where p > 2 to reduce SVM training times. Pre-

viously, maximum violating pair (MVP) and working set selection using 2nd order

statistics have been used for working set selection. Some works like [27] have used

p > 2 pairs in the working set selection. We recommend four new working set selection

schemes to be used for training non dual working set SVM training algorithms.

� Finally, we studied how different parameters selections affect the SVM training time,

as well as the classification errors. We examined how the choice of pairs p affects the

overall training results and gave recommendations on choosing the parameters.

Conferences and Publication

We have published and presented the following works in the course of working on this thesis.

� M. Aregbesola and I. Griva, Augmented Lagrangian fast projected gradient algorithm
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with working set selection for training support vector machines, J. Appl. Numer. Op-

tim, vol. 3, no. 1, pp. 320, 2021. [Online]. Available:http://jano.biemdas.com/archives/1224

[91].

� Training large data set SVM with Augmented Lagrangian - Fast Projected gradient

method, 2021 INFORMS Annual Meeting, October 2021

� Numerical Experiments with training support vector machine on midsized data sets

with Lagrange multipliers methods, 2020 INFORMS Annual Meeting, November 2020
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Appendix A: Appendix

A.1 SVM and Other classifiers

A comparison of a several classifiers in Scikit-learn were done using w3a and w8a. SVM

shows a high generalization accuracy, i.e. lower testing data miss-classification error.

Table A.1: scikit-learn run for tests w8a and w3a

Method Classification Error Classification Error Training Time Testing Time (s)

w8a

Nearest Neighbors 98.73 98.64 6.1426 1041.2021

RBF SVM 99.17 99.09 92.0694 133.3093

Decision Tree 97.67 97.52 0.3225 0.3828

Random Forest 97.03 96.96 0.1057 0.1911

Neural Net sgd 98.45 98.37 213.4776 213.8627

AdaBoost 98.2 98.23 6.9574 9.4515

Naive Bayes 76.1 75.95 0.253 0.5879

QDA 48.75 49.06 1.252 2.0009

w3a

Nearest Neighbors 98.57 97.32 0.1559 86.5544

RBF SVM 99.25 98.27 0.9608 7.2794

Decision Tree 98.13 97.62 0.0272 0.0773

Random Forest 97.21 97.12 0.0299 0.1032

Neural Net sgd 97.09 97.02 21.3974 21.7364

AdaBoost 98.51 97.91 0.5837 2.6098

Naive Bayes 95.13 94.29 0.0211 0.2778

QDA 98.6 97.97 0.4131 1.0216

A.2 Source Code

The source code for this thesis is available at https://github.com/optimcode/svmsolvers
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