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Abstract

This paper presents an exploratory study on the applicability of machine learning techniques to large-scale data
communication networks. Specifically, the study addresses the problems of learning two types of decision rules:
diagnostic rules for fault recognition, and prediction rules for fault prevention. The methodology of applying to these
problems the AQ15 inductive learning program is described and illustrated by examples. The input to the learning
program is in the form of intemet events. Experimental results have shown a significant potential of the proposed
methodology in this area.
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1. Introduction

Determining rules for diagnosing faults in communications networks is a difficult problem, even for well-trained network
engineers. Network engineers typically learn rules for fault diagnosis only after experiencing recurrent patterns in
network behavior. Symptoms in the form of network event messages and network statistics must be observed just prior
to the occurrence of faults and failures, and must be recorded with precision.

The problem of learning such diagnostic rules is compounded in complex internets by the occurrence of many types of
symptoms, and the presence of many types of devices from which reports of those symptoms are generated, each of
which may use a different communication protocol. An internet usually consists of several networks with heterogencous
architectures. Such a system of diverse components is supposed, however, to be functionally integrated so that a
message sent from one point can reach any other point in the network, Different internet architectures have been
developed. An example of an internet is presented in Figure 1. The figure shows an architecture of the campus-wide
network designed and used by Computer Sciences Corporation at its Virginia Technology Center.

These networks pass very large volumes of messages. A message is a transmission of information from one point in the
network to one or most destinations. Due to their complexity, the diagnosis and resolution of faults in such networks is
a major problem. When a network experiences a fault, e.g., a message does not successfully reach its destination, an
event is created within the network. The number of these fault and anomaly events per month in even a moderately sized
network, can exceed tens of thousands.

It is difficult for any one person to know all of the types of events that may be experienced within a internet; it is even
more difficult for a person to determine all of the plausible causes of such events in the context of specific event
situations.In this context a promising and important idea is to apply modern machine learning to this problem This paper
presents an approach to machine learning of rules from example events that occur within an internetted network
operation. The approach is based primarily on the AQ15 machine learning program (Michalski, 1986a). This learning
approach is presented at the end of this section. Before the approach can be understood, the concepts of faults, failures and
errors, and the causes of network malfunctions are presented. These concepts are described in the following sections.

2. Network Malfunctions

Data communications networks send data from one device to others in the network by packets. A packet is a sequence of
bits, organized into data fields, that contains one or more messages, and a header and trailer of control information.
Whenever a malfunction is detected by the system, an event message is generated. An event message may indicate a
fault, a failure, or an error (FFE) within the network.

For the purpose of this paper, the FFEs are defined as follows. An error in a communication network is a single
unsuccessful transmission of a message. For example, an error may be caused by clectrical interference which
momentarily disrupts the message. This type of error can be corrected within the protocol of the network, simply by
retransmission of the message. Errors do not usually result in prolonged loss of communication. A fault is a more
severe error. Severity is defined by error count. If the error count exceeds an error threshold, then a fault has occurred. A
fault may be caused, for example, by an overloaded network. The receiving node may be operating normally, but may not
be prepared to acknowledge the incoming message due (o network traffic. Faults can cause long term loss of
communication, and can not normally be comrected by the network protocol. A failure in a data communications network
is defined as the most severe type of malfunction. Failures occur when there exists a complete loss of communication
with one or more points in the network. Failures usually canse long term communication 10ss. An example of a failure
is hardware failure at a specific node in a network. Failures can also be caused by environmental factors. A common
example is power failure due to a storm.

3. Causes of Network Malfunctions

As indicated above, a network malfunction can be due to a number of causes. Such causes can be internal or extemnal.
Internal causes are of two types: due to a physical device, or due to a software problem. Physical device causes are either
of electronic or mechanical nature. Software problems occur in one or more software components, each identified as a
discrete configuration management item. If an FFE is caused by a software element, it is usually by an error in the
software design or in the implementation of the software within specific devices on the network.
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for collection of the types used in this research.
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Software element causes are usually a result of human error during either software design or implementation, or in
configuring the operational software within the internet. An example of the latter is an error in a timing parameter in a
communication software element loaded into a device that prevents the normal functions of the communication protocol
and disallows expected communication with other devices in a network.

Physical causes must be resolved at the field repairable unit (FRU) level within a particular device within some subnet of
the internet. The cause is considered to be field repairable if a field engineer con travel to the location in the network
where the cause of the problem exists, and can repair or replace a device, or perform some other corrective action at that
location. Often large data communications networks have a field engineering activity that has the responsibility of fixing
problems of this type.

A cause and effect relationship is reported at different levels of abstraction within an internet; the level of abstraction that
is most useful for network management is the level necessary to enable the (1) dispatch of network resources, whether
human or electronic, to the source of the problem and (2) resolution of the problem. This high abstraction level
supports the categorization of events into decision classes, e.g., malfunctions caused of (1) overload, (2) device fault,
failure or error, (3) error in network configuration, or (4) transmission failures caused by environmental factors. Figure 2
illustrates types of malfunctions that occur in data communication networks.

Overload is of two types; wither the network is overloaded in general, or a specific device gets two much of the network
traffic. A special type of network overload is channel capacity overload; a special type of device overload is memory
buffer overloading within a specific device.

Device fault, failures and errors fall into one of two categories: Hardware or software. For the purpose of this paper, a
hardware malfunction includes device not ready and device not capable (design inadequacy) states, and physical FFEs.
Examples of physical FFEs are error in carrier sense, and device jabber, both problems that occur in networks with local
area network architectures. Software malfunctions occur in system and application software, including communications
protocol software. A special type of communication protocol software malfunction is a backoff error; a special type of
application software malfunction is a database integrity etror.

Configuration FFEs include inappropriate design, e.g., connection network devices in a wrong configuration, and
specification of parameters that are inconsistent among the devices within the configuration, Address errors are a type of
parameter error; examples of address error sources are gateway routing tables and terminal devices.

Transmission FFEs can be caused by one of the above categories, or by environmental causes. Environmental causes
include degeneration of electrical power quality, environmental interference brought about by physical network
configuration, or temperature or humidity levels that exceed the equipment's tolerance.

4, Network Events

A network event is a description of the status of the network. Network events are vectors of attribute values. The
specific choice of network attributes depénds on network type and the type of information deemed imporiant. In section
(section 8) is a table of the SNMP variables used in the experiments reported in this paper. The variables are only a
fraction of the total number available, The following is an examplé of a network event:

ifOperStatus ifInDiscards iflnErrors ipIanirEnors ipInAddrEmors ipForwDatagrams
up 100 40 1300 22 10

5. Learning Diagnostic Rules from Malfunctions

Network events describe FFE situations that are unique to a particular implementation of a particular network architecture
and protocol. One goal of machine learning from internet events is to generalize patterns common to groups of events
from within an internet such that the event causes can be more readily diagnosed and rectified. Patterns are found in
correlations between multiple events, and data elements (including statistical data) stored within devices in the network.
Rules can be formulated from these patterns to abduce the cause from an FFE. This research is also focused on discovery
of rules that can be stored to predict future network failure from patterns that occur within a network operation prior to
network failure. For both diagnosis and prevention, these mles can be stored in a knowledge base which can be processed



by an expert system. Such an expert system can provide assistance to network operators and engineers in fault
prediction, diagnosis and resolution within these large, complex data communications networks (Mathonet, et al 1987,
Goffauz, et al 1989).

Learning processes can be categorized into synthetic or analytic types of learning (Michalski, 1989). The categorization
is based on the types of inference mechanism used in the leaming process. Synthetic learning is inductive in nature,
whereas analytic learning is deductive in nature. Deduction is the process of inferring a fact from general rules and other
facts. Induction is the process of inferring hypotheses which explain given facts. Deduction is truth-preserving, but
induction is falsity preserving, i.e., if any fact was false, the hypotheses generated will also be false.

This research effort uses a synthetic (inductive) learning approach based on a constructive induction technique. The two
primary types of synthetic learning are leamning from examples and learmning by observation.

(1) Learning from Examples: Learning from examples is also called supervised leaming. Each examples is identified as
being either a positive example or a negative example of what is to be leamed. Examples can be presented to the
machine leaming program all at once (“batch learning™) or the examples can be presented to the machine learning
program as they occur. The latter form is called incremental learning, and is particularly relevant to our problem, as
events occur continuously in data communications networks.

AQ has been applied to learning rules for diagnosis of soybean diseases (Michalski, et al 1980; Michalski, et al 1981).
The AQI15 program performs incremental learning of decision rules from examples and is a good candidate for our
application.

The SPARC machine learning program (Michalski, et al 1987) has been applied to learning patterns over time. Some of
the problem domains that SPARC has been applied to are learning robot action sequences, predicting the motion of an
oscillating spring, and discovering rules in the card game Eleusis. A management information base (MIB) is a database
of information compiled from a data communications network. A MIB typically contains descriptions of all devices
within a network (or internet), and operation data specific to each device. SPARC may be applied to this data to discover
event correlations, and patterns of events that can be used for prediction.

(2) Learning by Observation: Learning from observation is unsupervised. Learning from observation in an intemnet
environment is more limited than learning from examples. For one reason, the internet network event is limited because
the information content provided in network event messages is limited. The information is limited to the set of event
names and associated information provided by particular network and device designs. Learning the causes of faults
requires knowledge of causes, e.g. network malfunction. The cause is often not determined until several hours after the
event has occurred; information on cause usually is not available until a problem report is submitted by the network
operator or field engineer that successfully rectified the problem.

Major progress has been made in algorithms that support learning by observation. This approach has been used for
conceptual clustering of concepts into generalization trees. A classic example is the machine learning program
CLUSTER/2 that has been applied to classification of folk songs from examples (Michalski, et al 1983;.Stepp, 1983).

Learning by observation has applicability to internetted networks. The concepts conveyed by an event message may be
common among a variety of networks, devices and software programs. Conceptual clustering provides a means of
determining commonality in the types of network entities that generate a particular network message type.

Another interesting application of leaming by observation in a communications network is to learn sequences of patterns
that occur over time. The advantage of this approach is that a sequence of network events can be used to predict a future
network event, Consider the following situation that was experienced repeatedly in a local area network. A device d1
that connects fiber optic cable of a local area network nl to a router device d2 was observed burning-up. Within a few
minutes prior to burnout other events were observed in the network. First, network traffic increased, followed by
increased error rates from d1 and d2. The pattern is summarized as follows, with the A symbol representing increase and
Malf representing a malfunction:

Atraffic, nl) Aerrors, d1) emors, d2) malf(burnout, d1)



In future situations involving the same types of network and devices, this sequence of events can be used to predict
impending malfunction of the network, i.e., burnout. The SPARC machine leaming program (Michalski, et ai 1987)
learns sequences and is being investigated for learning sequences of network events of this type.

Finally, a machine learning approach also investigated by this research is the discovery of numerical regularities that
occur in communications networks prior to network performance degradation or failure. The concept of threshold has
been widely applied to communications networks. Thresholds can be used to indicate unacceptable numbers of network
errors, and thresholds are an important predictor of network performance degradation or impending network failure. For
example, in a local area network, excessive network traffic can also cause network performance degradation. Discovery of
numerical regularities from network statistics such as traffic and error counts is an import application area. A machine
learning program that has been successful in discovery of numerical regularity is ABACUS (Falkenhainer, et al 1986).
ABACUS has rediscovered Ohm’s Law, Stoke’s Law, the Law of Conservation of Energy and Kepler’s Law, and analyzed
chemical compound data. ABACUS is a candidate program for discovery of numerical regularities in MIB data collected
from communications networks.

6. Method using AQ Algorithm

Figure 3 illustrates an approach (based on the AQ15 learning program) to machine learning using network event
messages, MIB data and problem reporis. Learning takes place from network event data that is collected directly from the
network, and from information collected by field engineers and network operators. In most cases a network operator
observes a network event, diagnoses the cause and creates a problem report to document the event and cause. In cases
where field repair is required, a field engineer rectifies the cause, and documents it in a problem report. The sequence of
three major steps is summarized.

1. Collection 2. Representation 3. Rule Generatioin

network event ——
messages Event descriptions _
MIB data T Sequences of Leaming
atttributes and event Program rules
PIOblem reportS  smmmm—— values description

Figure 3. Tllustration of the steps for generation of rules for diagnosis of network malfunctions.
Each network event example is described using information collected from a network event
message, MIB data, and a problem report.

(1) The first step of this approach is to collect network event information. Collection results in the description of an
example of a network malfunction and the network symptoms prior to or shortly after the malfunction. Internet event
attributes include a name and a description of the event, the event source, network and device states, and an abstract
classification of the type of network malfunction. Event information is derived from a network management system ,
and problem reports, created by network operators and field engineers. The MIB is a database of network states and
statistics collected by network software at predetermined intervals of time. The problem reports provide additional
attributes collected by network operators and engineers that further characterize the event and cause.

(2) The second step is to represent the event description as a sequence of atiributes and values. The problem report is
parsed for attributes and values that further characterize the event, and the event is assigned to a decision class of cause,
i.e. type of network malfunction. The characteristic description describes where the message originated, the
characteristics of the event as conveyed by the internet message, the object of the message, and properties of the network
at the time of event occurrence,



(3) The third step is to generate rules from the event descriptions using the AQ15 inductive learning program. The goal
of this leaming is to generate rules capable of diagnosing network faults. In some cases the rules can be used for
predicting network fanlts and failures.

The possible causes of the network events message are known, and are categorized into decision classes prior to learning,
Each network event is a member of some decision class, i.e., a positive example of that decision class. A negative
example is one that does not belong to the decision class. The AQ15 inductive learning program generalizes decision
rules by covering all positive examples within a decision class, and none of the negative examples.

7. A Brief Review of the AQ Algorithm

BRecause the AQ algorithm is used as an important module of this method, for completeness, we provide a brief
description of it. The AQ algorithm generates the minimum or near minimum number of general decision rules
characterizing a set of instances, as originally described in (Michalski 1969; Michalski and McCormick 1971).

1. A single positive example, called a seed, is selected and a set of most general conjunctive descriptions of this example
is computed (such a set is called a star for the seed). Each of these descriptions must exclude all negative examples,

2. Using a description preference criterion a single description is selected from the star, called the "best’ description. If this
description covers all positive examples, then the algorithm stops.

3. Otherwise a new seed is selected among the unexplained (uncovered) examples, and steps 1 and 2 are repeated until all
examples are covered.

The disjunction of the descriptions selected in each step constitutes a complete, consistent and general description of all
examples. The preference criterion used in selecting a description from a star is expressed as a list of elementary criteria
that are applied lexiographically and with a certain tolerance. The criteria may be simplicity of description (measured by
the number of variables used), cost (the sum of the given costs of the individual variables), or other criteria (Michalski
and Larson, 1978).

The description of a class is expressed using the variable-valued logic system 1 (VL 1), which is a multiple-valued logic
propositional calculus with typed variables (Michalski, 1974). A class description is called a cover. A cover of a concept
is a disjunction of complexes describing all positive examples and none of the negative examples. A complex is a
conjunction of selectors, which is the simplest statement in VL 1. A selector relates a variable to a value or a disjunction
of values, for example [temperature = cold, warm], or [x < 5]. The general form of a selector is:

[L #R]

where L, called the referee, is an attribute, and R, called the referent is a set of values in the domain of the attribute in L.,
# is a relational symbol which can be one of the following: =, <,>,>=<=,<>.

8. Experiments and Results

In an attempt to judge the applicability of machine learning o network fault management, several preliminary
experiments were devised. The data for these experiments was derived from a simulated network. The first siep in
designing this experiment was determining the general characteristics of the attributes used to describe the solution space.
The network domain provides a large amount of data in myriad formats. Both data and format are dependent on the
network protocol used.

For this network the SNMP protocol was chosen and a subset of the data elements provided by the SNMP MIB was
selected to be utilized in our experiments, These SNMP data elements were the atiributes that described a network event
to our learning program. Each data element could assume a value and was considered as a variable. Most of the data

elements were counters.

The SNMP variables are presented in Table 1, Each variable’s name and a brief description is given, along with the set
of values that it could assume. Only one variable had nominal values, and the other nine had real or continuous values,
with different ranges. These ranges were created for the experiments.



A network configuration was designed that was complex enough to be a valid test of our method, while at the same time
conceptually simple enough to verify the results. The network consists of 5 nodes as shown in Fig. 4. Node 5 (NJ) is
the SNMP Network Management Station, which queries the other nodes’ MIB. Given this network model we determined
what network event messages the network operator would receive from the Network Management Station if certain faults
or failures occurred in the network. An event was simply a characterization of the state of a node in our network, using
the SNMP variables as attributes.

Name Description Values
ifOperStatus Current operational state of the interface up, down
ifinDiscards Number of inbound packets which were chosen to be discarded (even

though no errors had been detected) to prevent their being deliverable | 0-1000
to a higher-layer protocol :

ifInErrors Number of inbound packets that contained errors preventing them
from being deliverable to a higher-layer protocol 0-100
ipInHdrErrors Number of input datagrams discarded due to errors in their Internet
Protocol headers (including bad checksums, format errors, time-to-live { 0-2000
exceeded, etc.)

ipInAddrErrors Number of input datagrams discarded because the Intemet Protocol
address in their header’s destination field was not a valid address tobe | 0-1000

received at this entity
ipForw Number of input datagrams for which this entity was not their final
Datagrams Internet Protocol destination, and an atlempt was made to find a route | 0-2000
to forward
ipOutNoRoutes Number of Internet Protocol datagrams discarded because no route
could be found to transmit them to their destination. 0-250
ipReasmPFails Number of faifures detected by the Internet Protocol re-assembly
_ algorithm (for whatever reason: timed out, errors, etc) 0-400
icmplnErrors Number of Internet Control Message Protocol messages which the
entity received but determined as having errors (bad checksums, bad 0-300
length, etc.)
icmpInTime Number of Internet Control Message Protocol Time Exceeded
Excds messages received 0-500

Table 1 - SNMP Variables Used in Experiments

N1 -0 N3

N3

N2 -O N4

Figure 4 - Network used for experiments




For example, if Node 1 (N1) went down, the operator need only to check the ifOperStatus parameter for that node. In
most cases however, the description of network status during or after a fault or failure has occurred is more complicated.
Four faults/failures were postulated. The faults were either a noisy line or an intruder breaking into the network. The
failures were either a modem down or the interface to the node down.

A number of errors were generated on the network and corresponding network event messages were created. These events
consisted of attribute vectors which were assigned to one of the faults/failures indicated above or to a normal class. This
yielded a total of 5 classes. These preclassified events were given to AQ1S5 in it’s batch learning mode

Initial results were poor because the generated rules consisted of complicated disjunctions of values. For example rules of
the following form were produced [iflnDiscards = 308, 896]. A more useful rule would be [ifinDiscards=high]. In order
to achieve this generalization of values we initially hand-scaled the data. With these new values better rules were
produced. Automatic scaling was then implemented. This is a simple scaling which partitions the total range into equal

sub-ranges. The calculated scaled value replaced the original value and the AQ algorithm proceeded to construct
discriminant descriptions of the error classes as it normally would.

In the first experiment the leaming set consisted of 5 classes (4 error-status classes and 1 normal-status class) described by
5 attributes (the first 5 listed in Table 1). There were between 2 and 4 events per class for the 4 error classes and 20
events in the normal class. The rules produced from this learning data are shown in Figure 5. The values in experiment
1 were partitioned into 4 levels: very_low, low, high and very_high.

Modem Down :: > [ifOperStaus=up}{ipInAddrErrors = very_high]

Noisy Line  :: > [ifInerrors = high ..very_high]

Node Down ;> [ifOperStatus = down]

Node Down : > [ipInHdrErrors = low, very_high]

Normal Status :: > [ifInDiscards = very_low..low]

[ifInErrors = very_low]
[ipInaddrErrors = very_low ..low] or
[ifInDiscards = very_low]

[ifInErrors = very_low..low]

Figure 5 - Rules produced in experiment 1 describing
network status

In the second experiment the learning set consisted of the same 5 classes, but this time there were 10 attributes (those
listed in Table 1). Once again there were between 2 and 4 events per class for the error classes and 20 events for the
normal class. The rules produced from this learning data are shown in Figure 6. T he values in experiment 2 were

partitioned into 6 levels: ext_low, very_low, low, high, very_high, ext_high,
Modem Down :: > [ifInErrors = very_low]

Noisy Line :: > [ifReasmFails=low,very_high..ext_high]
[icmpInErrors = high..ext_high]

Node Down ;> [ifOperStatus = down]

Intruder .+ > {ipInHdrErmors = low, ext_high]

Nomnal Status :: > [ipInaddrEsrors = ext_low]
[icmpInErrors = exi_low..low]

[icmpInTimeExcds = ext_low..high]

Figure 6 - Rules produced in experiment 2 describing
network status



8. Discussion of Results

The results demonstrate that characteristic descriptions of network events can be used to generate rules for fault diagnosis,
1.¢., abduction of cause from network event descriptions. The experiments demonstrate machine learning from an internet
operation. The experimental data used for the experiments produces interesting rules. The learned rules are not trivial,
and not intuitively obvious. Furthermore, the machine learning program generated the rules within seconds, much faster
than a person can generalize rules from the same data. '

Learning from examples, whether by human or machine, is prone to errors from two sources. The first is from learning
with incomplete, imprecise or incorrect information. The second source of error is the generalization process. Errors of
the second kind can be avoided by using a well-founded machine learning program, Errors of the first kind are expected
and tolerable because only a small portion of the learning space is covered by a set of example events; a covered event
space would need to account for all possible event situations, a condition not often met.

The rules produced by the machine learning program are generalized; the rules can be applied to new events produced by
the internet. Because generalization is the process of dropping conditions, the rules are not always correct or complete.
By definition, rules are considered to be incomplete when the attributes describing them do not constitute a complete
characteristic description. The more nearly complete the characteristic description, the more complete the rules.
Characteristic event descriptions can be achieved by selecting attributes that precisely and completely describe the network
event, e.g., attributes that describe the state of the device, and network, at the time of the event. Device and network
state information is often stored within the MIB as attributes and values that describe aspects of network and device
states. The MIB can be used to characieristically describe the state of the network at a certain time by “snapshotting”
selected attributes from the MIB and adding them to the event description,

9. Conclusion and New Research Topics

The proposed method of applying machine learning to create descriptions of network malfunctions performed well in
experiments. Clear, concise descriptions were quickly calculated for a number of network states including: modem-down,
noisy-line, node-down, intruder and normal-status. These descriptions were derived from vectors of SNMP variables
which characterized the state of the network. In the two experiments reported in this paper, only a fraction of the available
SNMP variables and possible network error states, were considercd. Further experiments will increase both the
complexity of the network from which the experimental data are derived, and the number of SNMP variables used in the
description space.

There are numerous extensions to this research to make it more efficient and practical. The most promising approaches
are 1.) to use constructive induction to produce more concise network descriptions 2.) to utilize positional information
for a better representation and 3.) to utilize temporal information for a better representation.

Constructive induction could discover concepts that are not contained within event examples. Concepts such as
thresholds or ratios of network attributes are very useful for diagnosing specific causes of faults. These concepts are
critical to characterizing symptoms that occur before network degradation or failure. These concepts can also be used to
generalize rules for use in a broad number of similar, but not identical, FFE situations caused by the same type of
malfunction within the network,

An example of a useful ratio is rho. Rho is a measure of network throughput and is computed by dividing network
utilization by network capacity. When rho exceeds and acceptable threshold level, network performance begins to
degrade. Rho also represents the percentage of network capacity that can be utilized before traffic congestion will
contribute to a communication failure. Given the concept of rho, the following could be induced from the network event
information:

If the network type is local area network, and
the event type 18 direct memory overrun, and

the threshold of rho is exceeded,
Then a plausible cause is device overload.

10



The concept of rho, or some other relationship of network attributes can be derived using constructive induction. In one
method currently being researched, the rule learning program may be instructed to discover ‘useful’ ratios of given
attributes. The program uses a generate and test method to discover these relationships. In another method, ratios that are
thought to be useful, but are not present in the original data can be explicitly defined for the program. The program
calculates the value of this ratio for all the data automatically.

The second extension to the current research involves using positional information, Currently, positional information is
not included. There are some network faults that cannot be captured by such a simple representation. For example an
increase in traffic to a particular node may be due to the failure of nearby nodes. The AQ leamning program currently being
used can not use multiple-place predicates such as connected-to, which are suitable for capturing positional information.
The INDUCE program (Michalski and Stepp, 1986b) is able to use such predicates and in fact has been used to derive
general rules for the structure of chemical compounds from examples, These chemical structures are very similar in
representation to network graphs.

The third extension to this work involves reasoning about time. As in the case of positional information, temporal
information is not included in the data. We propose to tag each dynamic attribute value with a time stamp. Given this
information useful derived atiributes such as rates in error counts could be identified. In addition some temporal ordering
of events can be done such as ‘eventx before eventy’. Once these trends are identified they may become a part of even
more elaborate diagnosis or predictive rules.

Finally, we plan to test this approach on a large number of FFE event examples. This large number of examples is
necessary (o determine the precision and correctness of this method for of a wide variety of internet states. The goal of
this research is to develop a method sophisticated and robust enough so that an engineered and fielded machine learning
system can be implemented as part of a data communications network. |
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