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ABSTRACT 

ENDOGENOUS NETWORK FORMATION: EXPERIMENTS AND METHODS 

Rong Rong, Ph.D. 

George Mason University, 2013 

Dissertation Director: Dr. Daniel Houser 

 

This dissertation develops both substantive and methodological themes on the 

topic of social networks. Substantively, I conduct experimental studies based on the game 

theoretical models that describe network formation in various settings. Methodologically, 

I review the procedure of cluster analysis that could be used to discover the nature and 

the number of behavioral rules used by individuals in network environments.  

 

Chapter 1: Growing Stars: A Laboratory Analysis of Network Formation 

The acquisition and dispersion of information often occurs through social 

networks (Jackson, 2009).  Empirical and theoretical findings suggest that efficient 

information dispersion networks take the form of a star: small numbers of agents gather 

information for distribution to larger groups. Controlled randomized tests, however, have 

typically found little evidence of star network emergence. An exception is Goeree et al 

(2009), which reports reliable star network formation in an environment that includes ex 
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ante heterogeneous agents. While heterogeneity may explain network formation in some 

environments, in others it may play a smaller role. Here we show that specific 

institutional environments promote star network formation in the presence of ex ante 

homogeneous agents. Especially effective institutions include investment limits and the 

“right-of-first-refusal,” both of which add stability to the decision environment. At the 

level of individual behavior, we find these institutions to encourage rational decision 

making and positive habit formation.  

 

Chapter 2: Money or Friends: Social Identity and Truth Telling in Networks 

Communication between departments within a firm may include deception. 

Theory suggests that small difference in monetary incentives explains why lying to 

outgroup members may be strategically optimal (Crawford and Sobel, 1982; Galeotti et 

al, 2012). In natural environments, however, social incentives also play an important role 

in determining the information people choose to share or to withhold. Unfortunately, little 

is known about how monetary and social incentives interact to determine truth-telling. 

We design a laboratory experiment to address this question. We found that absent social 

identity, players’ choices are mostly consistent with the theoretical predictions. 

Interestingly, the effect of identity is asymmetric: sharing the same identity does not 

promote truth-telling but holding different identities reduces truthfulness. We find that 

identity has an overall detrimental impact on truthfulness. These results have important 

implication for intra-organizational conflict management, suggesting that only by 
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strengthening identity at the level of the organization can one create a positive impact on 

communication among different departments. 

 

Chapter 3: Exploring Network Behavior using Cluster Analysis  

Cluster analysis organizes a complicated data set into small number of groups 

based on patterns of similarity. It can be used to discover data structures without 

requiring strong ex ante assumptions about the properties of the data. Decision data from 

laboratory experiments are often generated by complex behavioral rules that can be 

difficult to specify a priori. These data may particularly benefit from clustering methods. 

This paper reviews key procedures and algorithms related to cluster analysis and 

discusses how to choose among clustering methods to analyze experimental data. 

 



11 

 

CHAPTER ONE: GROWING STARS: A LABORATORY ANALYSIS OF 

NETWORK FORMATION 

I. Introduction  
How information is acquired and subsequently dispersed among people is widely 

studied in economics (Rogers, 1995). In many relevant contexts it occurs through 

networks of agents (Jackson, 2009). Empirical and theoretical findings suggest that 

efficient information networks take the form of a star: small numbers of agents gather 

information and then distribute it to a larger group (Weimann, 1994; Bala and Goyal, 

2000; Galeotti and Goyal, 2010). Despite the theoretical advances, one persistent 

challenge has been to discover conditions under which star networks emerge within 

controlled laboratory environments. One way to generate star networks reliably is to 

incorporate ex ante agent heterogeneity (Goeree, et al, 2009). Although able to explain 

the formation of star networks in many cases, ex-ante heterogeneity is perhaps less 

important in other naturally occurring network environments (Feick and Price, 1987; 

Conley and Udry, 2010). Our paper addresses network emergence from an alternative 

perspective. We build features of naturally occurring institutions into our experiment 

design, and find them successful at promoting star networks with ex-ante homogeneous 

agents.  

Early work on star networks dates to the 1950s. In their pioneering paper, Katz 

and Lazersfeld (1955) coined the term “opinion leaders” to describe a small subset of 
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highly connected people
1
. Half a century later, studies continue to provide empirical 

support for the existence of opinion leaders in politics and marketing (Weimann, 1994; 

Katz and Lazersfeld, 2006). Opinion leaders clearly make a difference. For instance, 

empirical evidence has shown that words from opinion leaders boost sales of consumer 

products (Godes and Mayzlin, 2009), contribute to the prevention of AIDS (Kelly et al, 

1992), and transmit political thought and ideas (Roch, 2007). Given the importance of the 

opinion leaders in disseminating information, people in both the private and public 

sectors are eager to identify them (Iyengar et al, 2008). A better understanding of the 

formation and growth of star networks, which can be thought of as stylized opinion 

leader networks, would facilitate such efforts
2
.  

 Theoretical studies of star networks have shown that under certain conditions star 

networks emerge as efficient and stable equilibria (Bala and Goyal, 2000; Galeotti and 

Goyal, 2010
3
). Requirements include that network goods are non-rival and that agents are 

able to form links unilaterally
4
. These conditions are easily implementable in laboratory 

                                                 
1
 The concept of “influentials” can largely be used interchangeably (Merton, 1968; Gladwell, 2000). 

2
 Research on star networks also connects to the empirical literature on so-called scale-free networks, where 

the majority of nodes have only a small number of links while a small number of nodes are highly linked. 

Examples of scale-free network include scientific citation networks, coauthor networks, internet Pagerank 

networks, among others. The star network we study is a special case of a scale-free network.  
3
 Some non-game-theoretical models of star network formation build upon preferential attachment and 

study the behavior of large networks (Barabasi and Albert, 1999; Jackson and Rogers, 2007). A direct test 

of those models needs validation of its behavioral assumptions, which is difficult to achieve with a lab 

experiment. 
4
 Jackson and Wolinsky (1996) discussed two cases in which those two conditions are lacking. They found 

that network efficiency and stability is hard to achieve under regular payoff functions. 
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studies and are attractive in the sense that they are features of many environments where 

information dispersion is important
5
.  

To investigate star-network formation, economists have collected laboratory data 

in various network environments (Callander and Plott, 2005; Falk and Kosfeld, 2003; 

Goeree et al, 2009). Loosely speaking, in a typical network formation experiment, players 

decide how to form “links” with other players in light of the benefits those links confer. 

These studies generally, however, did not succeed in discovering star networks
6
. To our 

knowledge, the single exception is Goeree et al (2009), which finds star networks to 

emerge reliably in the presence of ex ante heterogeneous agents.  

Ex ante heterogeneity may help to explain the emergence of networks in many 

environments (e.g., co-authorship), but may not be the entire solution in other naturally 

occurring network environments (Feick and Price, 1987; Conley and Udry, 2010). For 

this reason, we thought it important to investigate institutional effects on star network 

formation with ex ante homogeneous agents. 

Our focus is institutions that add “stability” to the decision environment, in the 

sense of reducing period-to-period changes in one’s choice. Note that agent heterogeneity 

can accomplish this. The reason is that people who have an advantage in investing or 

linking may be more likely to do so repeatedly, and others may be more able to form 

accurate expectations about their play. Institutions can also play this role in principle, and 

                                                 
5
 Knowledge generated in academia is one example. Open source software is another example. This 

excludes cases where information is protected by IPR and dispersion of that information requires bilateral 

agreements such as those found in some enforceable contracts. 
6
 Falk and Kosfeld (2010) found equilibrium “wheel” networks to emerge, but were not able to observe the 

formation of equilibrium star networks. 
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thus promote the emergence of star networks. To test this possibility, we collect data 

from laboratory experiments under the following institutions:  

(1) Sequential decisions. Sequencing is a feature of invitations on Facebook or 

Twitter, among others. They regularly ask current users to invite their friends to join the 

site, and then those friends ask their friends. It is plausible that sequential moves can 

mitigate unnecessary “trial and error” and therefore stabilize period-to-period decisions.  

(2) Investment limits (or budget constraints). Budget constraints are present in all 

natural environments where information dispersion is important. There are the usual 

expense constraints in R&D projects (Dimasi et al, 2003; Dimasi and Grabowski, 2007), 

or sometimes government policies simply rule out multiple investments in the same area 

(Tran, 2009). Moreover, when personal relationships are involved, investments may face 

natural constraints with regard to time or distance (Marsden and Campbell, 1984).  

 (3) “Right of first refusal” (which we often denote by RFR). In contracts, RFR 

ensures that investors are able, should they desire to do so, to continue their investments. 

This stability allows for long-term planning by both the investor as well as others in the 

environment who are impacted by the presence of such investments. In addition, RFR 

emerges regularly whenever economic outcomes favor persistent investments in one 

agent rather than a spreading of resources among multiple agents. For instance, families 

in developing countries may offer higher education only to one child while keeping 

others siblings with minimum mandatory education. The predictability of an investor’s 

identity may promote coordination and facilitate star network formation.  
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The key finding of our paper is that, in the presence of these environment-

stabilizing institutions, stars reliably emerge in the presence of ex ante homogeneous 

agents. In particular, in both simultaneous and sequential decision environments, we find 

that combining investment limits with RFR generates robust star networks. As noted 

above, these findings complement those of Goeree et al (2009) by helping to explain the 

emergence of star networks in environments where agent heterogeneity may play a 

smaller role. 

The remainder of the paper is organized as follows: The next section briefly 

reviews the theoretical and experimental literature on network formation. Section 3 lays 

out the theoretical background of the study. Section 4 presents the experimental design 

and procedure, and sets up the hypothesis. Section 5 reports experimental results. Section 

6 explores decision making patterns at the individual level, and how those patterns are 

impacted by the institutional environment. Section 7 concludes. 

II. Literature Review 

II.1 Theoretical work on star network formation 
Many theoretical studies have attempted to shed light on the process of network 

formation in general (Jackson, 2003), and recently specific theoretical progress has been 

made on understanding the conditions under which star networks can form (Bala and 

Goyal, 2000; Bramoulle et al, 2004; Galeotti and Goyal, 2010). For all the cases that we 

study in this paper, equilibrium star networks are also efficient. Star networks feature 

asymmetry in equilibrium actions by participants, because it pays to send links when 

others invest and vise versa. Note that this environment is characterized by “strategic 
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substitutes”, and includes in general both anti-coordination games and games related to 

public goods provision
7
.  

An early paper by Bala and Goyal (2000) studied an environment with non-rival 

network goods and the possibility of forming links unilaterally. They found that star 

networks emerge in equilibrium only when the benefit of information flows between two 

agents regardless of who sends the link
8
. Their study was followed by Bramoulle et al 

(2004), who examined network formation in an anti-coordination game. They found that 

the shape of the equilibrium network need not be a star; with the exact network shape 

depending on the cost of link formation. More recently, a study by Galeotti and Goyal 

(2010) extended the model of Bala and Goyal (2000) by endogenizing the choice to 

invest. Their study showed that star networks emerge in equilibrium as well
9
. These 

advances of course leave open the question of whether the conditions required by theory 

are sufficient to generate star networks reliably in a controlled laboratory environment. 

II.2 Experiments on star network formation 

Despite the abundance of empirical evidence describing the existence of star 

networks
10

, we are aware of only four experimental studies on star network formation 

(Callander and Plott, 2005; Falk and Kosfeld, 2003; Berninghaus et al, 2007; Goeree et 

al, 2009
11

). Falk and Kosfeld (2003) tested the theory of Bala and Goyal (2000). In 

particular, they studied whether and how equilibrium networks can form under “one-

                                                 
7
 Bramoulle and Kranton (2007) discussed public goods provision in exogenerous networks extensively. 

8
 If a link sender receives information from a link receiver, then the equilibrium network is a wheel. 

9
 Galeotti and Goyal (2010) predicts peripheral-sponsored stars, while center-sponsored stars are predicted 

in the decay free model of Bala and Goyal (2000) and Bramoulle et at (2004). 
10

See Katz and Lazarsfeld (1955), Rogers (1995), Valente (1995) 
11

 Experimental studies on endogenous networks other than stars include Deck and Johnson (2004), Ule 

(2005), Corbae & Duffy (2008), Knigge & Buskens (2010), Berninghaus et al (2011). 
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way” and “two-way” information flows. In contrast with theoretical predictions, they 

found that when information flows two ways the network fails to converge to a star. They 

concluded that the need for asymmetric strategies combined with inequality aversion 

might contribute to the difficulty in realizing star networks. 

Callander and Plott (2005) also tested Bala and Goyal (2000) in the lab. They 

considered various conditions that differed in terms of the linking cost, as well as the 

value of information. They also examined the impact of having network agents with 

heterogeneous payoff structure, an issue unaddressed by the model. Their main finding 

was that star networks did not consistently emerge under theoretical conditions, and that 

even introducing payoff heterogeneity did not lead to systematic formation of star 

networks. Consequently, they report that “significant and persistent inefficiency” is a 

feature of all of their network environments. 

Berninghaus et al (2007) provided yet another test of Bala and Goyal (2000) but 

focused on the comparison between discrete and continuous time environments. In the 

discrete environments, their results show that players have a tendency to reduce network 

distance over time. However, the overall average frequency of star networks found in 

their data (11.33%) is no greater than what we found in our baseline environment.
12

  

In light of the complications with generating star networks, and following 

Callander and Plott (2005), Goeree et al (2009) explored whether common knowledge of 

agent heterogeneity combined with two-way information flows might promote star 

networks. They reported that: (1) compared to homogeneous agent treatments, 

                                                 
12

 Due to the design of the continuous environments in their study as well as Berninghaus et al (2006), the 

results cannot be compared to data from discrete environments.  
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significantly more stars are observed when agents’ payoffs are heterogeneous
13

; and (2) 

perfect information about the nature of heterogeneity plays an important role in 

facilitating the coordination on star networks.  

Like the above studies, we explore what conditions may facilitate the emergence 

of star networks. But in contrast, our study emphasizes the importance of homogeneous 

agent assumption and explores how institutional characteristics may impact network 

formation. 

While Callander and Plott (2005) and Goeree et al (2009) demonstrated the 

importance of individual heterogeneity in network environments, there may be some 

environments where individual differences play a smaller role. For instance, information 

about heterogeneity may not always be easily available in natural environments, due to 

the fact that it goes unobserved. Indeed, substantial empirical research on market mavens 

has found no differences between the observable characteristics of agents who play 

different roles in the network (Feick and Price, 1987; Geissler and Edison, 2005; 

Wiedman et al, 2001; Williams and Slama, 1995). Others have pointed out that obtaining 

information about the costs and benefits of other network agents in agricultural 

environment may be difficult, given that people have an incentive to conceal their private 

information (Conley and Udry, 2010). Moreover, ex ante agent heterogeneity is not 

required by theory for star network emergence
14

.  

                                                 
13

 According to their experimental data, heterogeneous link costs do not seem significantly to promote star 

network formation. 
14

 Jackson and Lopez-Pintado (2011), Larrosa and Tahme (2011), and Vandenbossche and Demuynck 

(2010), developed models with heterogeneous agents. However, none of these relate to incentives 

associated with information acquisition or diffusion; therefore, the predictions generated from those models 

are not star-shaped networks. Galeotti et al (2006) developed models showing that star networks are an 
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In view of the fact that individual-level information is costly and sometimes 

infeasible to obtain, and to avoid introducing artificial focal points, we design our 

experiments to include ex ante homogeneity. We investigate conditions under which ex 

ante identical agents will take asymmetric equilibrium actions to establish efficient and 

stable star networks. 

III. Theoretical Background  
Our study is based on the model of network game in Galeotti and Goyal (2010). 

In their model, a group of identical rational agents face the choice of either investing in 

information or obtaining it less expensively by linking to another who currently invested 

in information. The level of investment by agent i is discrete
{0,1}ix 

. The set of links 

sent by agent i is denoted by a vector 1 1 1( ,..., , ,..., )i i ii ii ing g g g g 
, where 

1ijg 
 if player 

i sent a link to player j. Linking choices are then combined to determine the directed 

network structure 1 2( , ,..., )ng g g g
15. The key assumptions of the model are that 

information is non-rival and flows both ways across network links.16  

The non-directed version of the network is denoted by g , where 

max{ , }ij ij jig g g
 for each agent i and j. Define 

( ; ) { : 1}ijN i g j g 
as the set of agents 

                                                                                                                                                 
equilibrium in environments where agents have heterogeneous benefits for information, while under 

heterogeneous costs stars are no longer equilibrium. 
15

 A directed graph is a graph where the edges are associated with a direction. 
16

 These assumptions are important due to the fact that they closely characterize certain situations of 

information dispersion in natural environments. For example, knowledge about agricultural technology is 

mostly non-rival, and could be shared between personal connections of farmers regardless of the linking 

direction. 
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to whom i has sent a link and 
( ; ) { : 1}ijN i g j g 

as a set of agents with whom i has 

been connected. The payoff to agent i is 

( ; )

( , ) ( ) ( ; )                              (1)i i i i j i

j N i g

x g f x x cx N i g k


   
 

where 0c  reflects the unit cost of purchasing the non-rival goods, ix
 refers to 

the number of unit player i purchased, 0k   is the cost of sending one link and 
( ; )N i g

 

refers to the cardinality of the set ( ; )N i g  .  

Different specifications for f define different types of games. In this paper, we 

follow Galeotti and Goyal (2010) and assume f is a step function 

( ) 1       if    1
                                                                         (2)

( ) 0      if    <  1

i i

i i

f y y

f y y

 


  

where ( ; )

i i j

j N i g

y x x


  
. The above return function 

( )if y
 resembles the payoff 

structure of best shot game in the widely studied public good games literature. The 

advantage to using a step function is that it provides sharp equilibrium predictions that 

can be more easily tested in the laboratory
17

.  

It can be shown that every equilibrium of the network best shot game is a star 

network when k c  (Galeotti and Goyal, 2010)
18

. The intuition is as follows: if in 

equilibrium the sole investor deviates and does not invest, then the group obtains no 

information, implying a lower payoff for everyone including the investor. Similarly, if a 

person who has linked to the investor deviates by not linking, choosing to link to another 

                                                 
17

 Instead of star network, the general prediction is a so-called core-peripheral network, where a few 

interconnected agents invest in information and the rest of agents connect to them. A star network is a 

special core-peripheral network with a single agent core. 
18

 When k c , the unique equilibrium is an empty network. 
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(who in equilibrium cannot have the information), or becoming an investor oneself, in all 

cases such deviations clearly lead to lower payoffs. Therefore, the star network is a Nash 

equilibrium. Note also that all star network equilibria in the best shot game are efficient 

(in the sense that equilibria are not Pareto ranked). This feature of the network best shot 

game, as well as its clean equilibrium predictions, leaves it ideal for laboratory testing. In 

the following section we detail our design, which follows the network best shot game 

closely. 

IV. Experiment design and hypothesis  
Our experiment is designed to examine how naturally-occurring institutions affect 

star network formation with ex ante homogenous agents. Institutional characteristics such 

as sequential decisions, investment limits and the RFR often coexist with star networks. 

We conjecture that these institutional characteristics may be important conditions for the 

formation of star networks in naturally occurring environments. Our laboratory study 

brings these institutional features into a controlled laboratory setting and examines the 

effect of each on star network formation. 

IV.1 Experiment Design 

IV.1.1 General Environment 
Our design is based on the best shot game introduced in the appendix of Galeotti 

and Goyal (2010). This modification leads to the sharp prediction that a star network is 

the unique Nash equilibrium configuration, and is also efficient. To the best of our 

knowledge, our study is the first to examine the network formation process where agents 

make simultaneous linking and information investing decisions. 
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Each experimental session includes 16 subjects randomly divided into four 

groups. All subjects participate in three stage games. Each stage game consists of a 

random number of rounds
19

. Groups are fixed during each stage game, and each group 

member holds a unique ID: J,K,L or M. We avoid using “A” as an ID because it may be 

focal
20

. 

In each round, decision-makers decide whom to link to among the other three 

group members and also whether to purchase information. If a participant purchases 

information, she pays a cost of E$0.9 and earns the value of information, E$3, with 

certainty. On the other hand, if a player decides to send a link to another player, she pays 

a cost of E$0.5 per link. When a subject links to another subject who has purchased 

information, the subject who chooses to link also earns E$3. Subjects who link to other 

subjects that have not purchased the information pay a cost of E$0.5, but earn nothing. 

Costs and payoffs remain fixed throughout all three stage games and all treatments.
21

. 

Subjects submit their decisions using the decision screen (see Appendix A, Fig. 

1). Then, a display screen informs all players of the current network outcome and each 

group member’s payoff (see Appendix A, Fig.2).  

Within each of the three stage games, the payoff is determined by the 

accumulated earnings over all rounds. Players are informed about their own stage payoff 

                                                 
19

 There are always at least 4 rounds per stage. After round 4, the game has a random stopping probability 

of 0.04 at any given round. To keep control over the length of the real experiment, we use the 

predetermined length 16, 44 and 24 for experimental stages I, II and III respectively. Those numbers are 

generated using a randomization device. Each practice stage includes 8 rounds. 
20

 Some have suggested that the first mover J might also be in a focal position. It turns out that, for all 

treatments, J is not statistically more likely to be the center of the star than any of the other positions 

(p<0.195 in all bivariate comparisons across all treatments, two-sided Mann-Whitney tests) 
21

 These parameter values ensure that the equilibrium and efficient networks are star-shaped. 
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at the end of each stage. They are also reminded that they will be re-matched with players 

with whom they have not played previously, and that their stage payoff will not be 

carried over to the new stage. Each subject’s earnings for the experiment are determined 

by one randomly-determined stage game.  

IV.1.2 Treatment Design 
Within the general experimental environment described above, we study the 

effects of three institutional characteristics of network formation. We examine sequential 

decisions and investment limits on network formation, both individually and jointly, 

using a two-by-two treatment design. A fifth treatment then studies the effect of the 

“right of first refusal.” 

In a two-by-two design, we vary the sequence of decisions in one dimension to be 

either sequential or simultaneous. In simultaneous treatments, subjects from the same 

group make their decisions at the same time, not knowing what other subjects would 

choose. In sequential treatments, only one subject makes a decision per round. Players 

make decisions according to the alphabetical order of their ID (first J, then K, then L and 

finally M) with full knowledge of the choices made by earlier decision makers. Further, 

players earn money even on rounds for which they do not make a decision, with their 

payoff determined by their most recent previous choice in combination with the choices 

of others
22

.  

The second dimension of our design varies the existence of investment limits. 

Absent investment limits, players can invest in information and links at will, 

                                                 
22

 Note that in relation to the simultaneous game, participants make fewer decisions in the sequential game. 

This is done to ensure that payoff incentives remain identical between the simultaneous and sequential 

games.  
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independently of other players’ decisions. With investment limits, the following three 

conditions hold: (i) in each round, each player can either send a link or invest in 

information, but cannot do both; (ii) each player can send at most one link; and (iii) at 

most one player can invest in information at any given time. We refer to the treatment 

without investment limits as the “baseline”, and denote treatments with investment limits 

as “limits.” 

Notice that Seq_L and Seq_B differ in two ways: while investment is limited in 

Seq_L, it also implies the “right of first refusal”, by which we mean that a person who 

currently invested in information has the right to continue his/her investment. The reason 

is that in Seq_L, a subject who has invested in information will continue to hold it until 

their next decision, and nobody else will be able to invest in additional information. 

Consequently, the only way they can lose the information is if they give up the 

information. It follows that comparing Seq_L to Seq_B measures the total effect of the 

investment limits combined with the RFR.  

While these two effects cannot be separated in our sequential environment, it is 

possible to achieve separation in a simultaneous setting. To do this, we construct a fifth 

treatment that builds on Sim_L but eliminates the RFR. In any given round, agents who 

choose to invest in information will have an equal chance to obtain the information, 

regardless of whether he/she invested the information in the previous round
23

. This 

treatment is denoted as “simultaneous-limits with no RFR” (Sim_L_NoRFR).  

                                                 
23

 In Sim_L, if a previous investor chooses to invest, he/she will be able to continue the investment with 

100% certainty. The first period investor is randomly determined if multiple players choose to invest. 



25 

 

In summary, we investigate network formation in five treatments that differ in 

terms of the sequence of moves, whether investment is limited, and the existence or 

nonexistence of the RFR. We list the properties of these five treatments in Table 1. 

 

Table 1 Properties of Treatments 

Treatment Decision sequence Investment limits? RFR? 

Seq_B Sequential N N 

Seq_L Sequential Y Y 

Sim_B Simultaneous N N 

Sim_L Simultaneous Y Y 

Sim_L_NoRFR Simultaneous Y N 

 

IV.2 Equilibria and Hypotheses  

IV.2.1 Equilibria prediction24 
For all three simultaneous treatments (Sim_B, Sim_L and Sim_L_NoRFR), the 

stage-game equilibrium is identical to the one described in Section III and in Galeotti and 

Goyal (2010). It is easy to see that adding investment limits to this environment does not 

change the equilibrium predictions, because these limits only rule out certain non-

equilibrium actions. Similarly, the existence of the right of first refusal does not affect the 

stage game equilibrium predictions since it only makes it (weakly) more likely for people 

to hold beliefs consistent with equilibrium outcomes. 

For two sequential treatments (Seq_B and Seq_L), it is necessary to modify the 

stage game into its extensive form. It is easy to show that, under the parameter values as 

                                                 
24

 Our experiment includes repeated games with a random stopping rule, but we focus only on the analysis 

of the stage game equilibria as it is easy to show that a sequence of stage-game Nash equilibrium strategies 

is also a subgame-perfect equilibrium in the repeated game. NE strategies other than those found in the 

stage game might exist in repeated game environments (as demonstrated by Folk Theorems). It is beyond 

the scope of this paper to provide a characterization of these additional equilibria. 
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specified above, the unique subgame perfect Nash equilibrium for the extensive form 

game occurs when the first mover invests, and each subsequent player links to that 

investor. Further, because investment limits only rule out certain non-equilibrium play, it 

is straightforward to verify that this remains the unique SPNE in this case as well. 

Similarly, RFR would not alter the equilibrium prediction. 

All in all, all five treatments in our study share a common equilibrium: the star 

networks. 

IV.2.2 Hypothesis  
We expect to see a positive effect on star network formation in environments that 

include sequential decisions, investment limits, and the “right of first refusal”
25

. To 

measure the effect, we first construct a measure of equilibrium frequency. We count a 

network graph as a star if and only if there is one member who chooses to invest in 

information and the other three agents send exactly one link to the sole investor. For each 

stage of the experiment, equilibrium frequency is calculated by dividing the total number 

of star networks by the total number of rounds in that stage game. Then, for each 

treatment, the mean frequency of star networks is calculated by averaging the measure 

over all the partner-matched repeatedly-played stages.  

In light of the above discussion, we expect the mean frequency of star to follow 

the order below (where XFreq
 denotes the frequency of star networks in treatment X):  

                                                 
25

 The effects can be demonstrated in multiple ways. We discuss a particularly intuitive measure 

of equilibrium frequency in the text. Further discussion of network stability and individual rationality can 

be obtained from the authors on requests. 
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Hypothesis 1.1 Sequential decisions increase the frequency of star networks:  

Seq_B Sim_B Seq_L Sim_LFreq Freq ;Freq Freq                      (3)   

Hypothesis 1.2 investment limits and the RFR combined increase the frequency of 

star networks:  

Sim_L Sim_B Seq_L Seq_BFreq Freq ;Freq Freq                         (4)   

Hypothesis 1.3 In simultaneous environments, RFR alone increases the frequency 

of star networks:  

Sim_L Sim_L_NoRFRFreq Freq                                      (5)  

Hypothesis 1.4 In simultaneous environments, investment limits alone increases 

the frequency of star networks: 

Sim_L_NoRFR Sim_BFreq Freq                                  (6)  

We select these three institutions because we believe they will stabilize the 

decision environment, therefore we also hypothesize that when sequential moves, 

investment limits and the “right of first refusal” are present, subjects change their 

decisions less often. Since each player makes four decisions per period (one purchasing 

and three linking decisions), we determine the percent of choices an individual changes 

between rounds. The percentages of changed choices are then averaged over each stage, 

and this average is our measure of stability. We hypothesize this mean percentage of 

changed choices will be ordered as follows (where XChange
denotes the percentage of 

choice change in treatment X): 

Hypothesis 2.1 In sequential treatments, subjects make less choice changes in 

environments with investment limits and the RFR than in baseline:  

_ _                                  (7)Seq L Seq BChange Change  
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Hypothesis 2.2 In simultaneous environments, subjects make the least choice 

change in environments with investment limits and the RFR. Subjects make the most 

choice changes in baseline: 

_ _ _ _                        (8)Sim L Sim L NoRFR Sim BChange Change Change   

IV.3 Experimental Procedure 
The experiment sessions were conducted between December 2010 and March 

2011 in the ICES laboratory at George Mason University. Subjects were recruited via 

email from registered students at George Mason University. Each subject participated in 

only one session and none had previously participated in a similar experiment.  

In total, 160 subjects participated in the computerized experiment programmed 

with z-Tree (Fischbacher, 2007). Each experimental session lasted between 120 and 150 

minutes. Subjects’ total earnings were determined by the Experimental Dollars (E$) 

earned at the end of the experiment, which were then converted at a rate of E$3 per US 

dollar. The average earnings were $25.28, ranging from a maximum of $53 to a 

minimum of $8 across all sessions.  

In all treatments, before a session started, subjects were seated in separate 

cubicles to ensure anonymity. They were informed of the rules of conduct and provided 

with detailed instructions. The instructions were read aloud. In order to guard against 

confusion, after subjects finished reading the instructions, they were asked to complete a 

quiz. An experimenter checked their answers. Then the experiment worked through the 

quiz questions on a white board in front of the laboratory. The experiment began after all 

subjects confirmed they had no further questions.  
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We ran 2 sessions for each treatment condition. Thus, in the end, we obtained 672 

network graphs for each treatment (excluding the practice stage). Most of our analysis 

assumes 24 observations (eight groups each of which plays three stage-games with 

perfect strangers) for each treatment. 

V. Results 
We present results in the order of hypotheses listed in Section IV.2.2. First, we 

discuss results concerning the frequency of star networks. Then we investigate the 

stability of choices: how often individuals change their linking and investing decisions.  

 

 
Figure 1 Mean frequency of star networks (in %) by treatment 

*Note: standard error shown in marks 

 

 The mean frequency of star networks in each of our treatments is shown in 

Figure 1. It is clear from this figure that star networks emerge at different rates, with 

baseline treatments displaying the lowest frequency of star networks. More formally, our 

findings are as follows:  
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Result 1. (Test of hypothesis 1.1) Sequential decisions do not increase the 

frequency of star networks. 

 We found star networks to emerge with frequency 12.6% and 12.7% in Sim_B 

and Seq_B, respectively (p=0.667
26

). On the other hand, when investment limits and the 

RFR are both present, 53.5% of networks formed in Seq_L are star shaped in comparison 

to 65.3% in Sim_L; this is also insignificant at standard levels (p=0.054).  

Result 2. (Test of hypothesis 1.2) More star networks emerge when 

investment limits combined with the RFR are present. 

Sim_L generated 65.3% of star networks, while only 12.6% of networks in 

Sim_B are star shaped. This difference is significant (p< 0.001). Agents in Seq_L form 

star networks 53.5% of time. When compared with the 12.6% in Seq_B, the difference is 

again significant (p< 0.001). Thus, our data provide clear evidence supporting the 

positive impact of investment limits and the RFR on star network formation. 

Result 3. (Test of hypothesis 1.3) The RFR promotes star network formation 

in simultaneous decision environments. 

The right most two bars in Figure 1 correspond to Sim_L and Sim_L_NoRFR. 

The only difference between these two treatments is that the RFR is present in the former 

but absent in the latter. In Sim_L star networks emerge at a rate of 65.3%
27

. The 

frequency in Sim_L_NoRFR treatment (32.4%) is significantly lower than this (p 

                                                 
26

 Unless otherwise indicated, all p-value refer to two-tailed Mann-Whitney tests. 
27

 The frequency of star networks found here, 65.3%, is at least as high as any of the star-network 

frequencies reported by Goeree et al (2009) under ex-ante agent heterogeneity. 
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=0.0016). This is evidence that the RFR alone promotes star networks in simultaneous 

environment.  

Result 4. (Test of hypothesis 1.4) In simultaneous environments star 

networks emerge more frequently with than without investment limits. 

Sim_L_NoRFR generates star networks at a rate of 32.4%, while the frequency in 

Sim_B is 12.6% (p=0.0034). Thus, investment limits alone promote star networks in 

simultaneous environment.  

The following section investigates the stability of individual choices. The mean 

percentage of changed decisions between period t-1 and t is plotted in Figure 2 by 

treatment condition.  

 

 
Figure 2 Mean percentage of choice change by treatment 

 

Result 5. (Test of hypothesis 2.1)Among the two sequential treatments, 

institutions that generate more equilibrium networks also exhibit greater choice 

stability. 
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The average percentage of choice change in Seq_B and Seq_L is 16.11% and 

13.19% respectively. The difference between them are statistically significant (p=0.001) 

Result 6. (Test of hypothesis 2.2)Among the three simultaneous treatments, 

institutions that generate more equilibrium networks also have exhibit greater 

choice stability. 

Players in Sim_B change on average 27.99% of their choices each period, 

significantly higher than the frequency of change, 17.13%, in Sim_L ( p=0.0035). Players 

in Sim_L_NoRFR make 23.85% of their choices per period. This is higher than Sim_L 

(p=0.0254) and lower, although not statistically significantly, than Sim_B (p=0.1546). 

 VI. Behavioral Rules  
The purpose of this section is to draw inferences about the behavioral rules of 

individuals in our various treatments. Our maintained assumption is that behavioral rules 

in all treatments are formed using elements from a menu of information that are finite and 

identical, but that different treatments lead to rules that differ at the level of usage on the 

information. Without ex ante knowledge of what kind of rules may exist, we use cluster 

analysis to detect them
28

. Compared to regressions, cluster analysis can better explore 

patterns within a complex environment where the classification structure may not be well 

defined. It allows us to explore behaviors among individuals without the need to pre-

define the nature or number of possible rules (see also Houser et al, 2004). For the 

purpose of this study, we implement k-means cluster algorithm. 

                                                 
28

 Cluster analysis, as a numerical method for classification, serves the function of organizing a large and 

complicated data set into a smaller number of groups of objects. Cluster analysis is widely used in fields 

such as astronomy, biology and marketing, and increasingly in economics (Fisher, 1963; Hirschberg et al, 

1991; Houser, et al, 2004). 
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Our analysis proceeds in two steps. First, we estimate for each individual the 

parameters that characterize the way they make decisions given information. Then, we 

use cluster analysis to group similar individuals into behavioral rules. In particular, we 

run a linear regression for each individual with the decision to invest (or not) as a binary 

dependent variable, on a constant, a dummy for whether investing is rational and an index 

characterizing the subjects investing behavior in the previous two rounds (see also 

Kurzban and Houser, 2005). Then, we use the k-means algorithm to cluster these 

estimates into groups of behavioral rules. We repeat the above analysis for the linking 

decision. 

VI.1 Behavioral rule parameters 
The independent variables we include in our regressions are meant to capture a 

person’s: (i) base rate willingness to invest or link to others (captured by the regression’s 

constant); (ii) consistency with individual rationality (captured by the a dummy variable 

that takes value one if it is optimal to invest (or link)); and (iii) propensity to form a 

“habit” of choice in the sense that they do what they did before (captured by the variable 

indicating the lagged decisions for the past 2 rounds). Equations 3 and 4 specify our 

regression equations for investing and linking respectively: 
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The above regressions are repeated for each individual. We end up with 142 and 

152 subjects in our sample for the investing and linking regressions, respectively
29

. Each 

individual’s estimates can be represented by a point in 3-space (See Appendix B).  

VI.2 K-means clustering  
We implement our k-means cluster analysis, as well as cluster number selection, 

using R. Based on the C-H index, we find three clusters in both investing and linking 

decisions
30

 (See Appendix C).  

 

                                                 
29

 We drop 18 subjects for the investing decisions analysis, as there is zero variation in their dependent 

variables. For the same reason, we drop 8 subjects for the linking decisions analysis. 
30

 Decision rules for investing and linking differ both in interpretation and range of measurement. Hence, 

we discuss them separately. 
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Figure 3 Projections of Estimates from Investing Decision 
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a) Investing decisions 

The three panels of Figure 3 are the three 2-space projections of the estimates 

1 2 3{ , , }  
 from regression on investing decisions (Equation 9) into corresponding 2-

space. Each point represents an individual’s estimates from his/her investing decisions 

regression. Points with the same marker belong to the same cluster.  

It is clear from visual inspection that our clusters are well-separated. To provide 

statistical evidence on the strength of this separation, we analyze the separation along 

each independent variable’s axis. Mann-Whitney tests find significant differences 

between all pairs of clusters in each axis (p<0.001), with the exception of the constants in 

the triangle and round clusters.  

Not only are the clusters clearly separated, the location of the clusters also carries 

meaningful interpretation in our sample. Table 2 provides the mean estimate for each 

independent variable and for each cluster, and also reports whether that mean is 

significantly different from zero.  

 

Table 2 The Mean of Estimates from Regression on Investing Decision 

 Square Cluster Triangle Cluster Round Cluster 

Rational to invest 0.8190 

(0.0000) 

0.3411 

(0.0000) 

-0.0978 

(0.0054) 

Lagged choice -0.0408 

(0.1480) 

0.1745 

(0.0000) 

0.0782 

(0.0120) 

Base rate(constant) 0.0175 

(0.2589) 

0.0137 

(0.7066) 

0.4279 

(0.0000) 

Number of subjects 57 46 39 
Note: p-value from Wilcoxon signed-rank test in parentheses 
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Based on the results from Table 2, we summarize the characteristics of the three 

clusters that define the three behavioral rules used by our subjects.  

 We define the cluster indicated with round markers as the “Rational” type. 

People that belong to this cluster are guided by the rationality of the current opportunity 

to invest. They focus less on their past choices, and their base rate of investing is near 

zero.  

We define the cluster indicated by triangle markers as the “Habit” type. Subjects 

in this cluster are guided by rationality, but relatively less than the Rational type. Instead, 

their current decisions follow closely their past decisions.  

We define the cluster indicated by square markers as the “Dogmatic” type. We 

find that these subjects have the highest base rate of investing among all three types. 

We now investigate how the institutional characteristics in our various treatments 

affect the type of behavioral rules subjects use. Table 3 reports the frequency of types by 

treatment.  

 

Table 3 Number of Individuals in each Treatment and each Type According to Investing Decisions 

 Seq_B 

12.6% of star 

Seq_L 

53.5% of star 

Sim_B 

12.7% of star 

Sim_L 

65.3% of star 

Sim_L_NoRFR 

32.4% of star 

“Rational” 

Round 

9 

(31.03) 

23 

(92.00) 

0 

(0.00) 

3 

(11.11) 

22 

(70.97) 

“Habit” 

Triangle 

8 

(27.59) 

2 

(8.00) 

3 

(10.00) 

24 

(88.89) 

9 

(29.03) 

“Dogmatic” 

Square 

12 

(41.38) 

0 

(0.00) 

27 

(90.00) 

0 

(0.00) 

0 

(0.00) 

Total 

 

29 

(100.00) 

25 

(100.00) 

30 

(100.00) 

27 

(100.00) 

31 

(100.00) 
Note: percentage in parenthesis 
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As noted above, star networks emerge in fewer than 13% of our two baseline 

treatments (Seq_B and Sim_B). This low level of star network formation coincides with a 

concentration of Dogmatic type subjects (41.38% and 90% respectively). That is to say, 

having a concentration of players using the Dogmatic investing rule is not conducive to 

star network formation. 

On the contrary, for the Seq_L treatment, which generates a relatively high 

percentage of star networks, the large majority of subjects (92%) choose to behave 

rationally. The other highly effective treatment, Sim_L, generates 65.3% of star 

networks. Its success at generating star network coincides with a high level of Habit 

typed subjects (88.89%), a few Rational subjects (11.11%) and no Dogmatic subjects.  

The Sim_L_NoRFR treatment generates a medium level of star networks 

(32.4%). No subject in this treatment belongs to the Dogmatic type. In particular, most of 

them (70.97%) follow rational behavioral rules.  
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Figure 4 Projections of Estimates from Linking Decision  

 

b) Linking decisions 

Similar to the above analysis, the three panels of Figure 4 project each 3-vector 

estimate 1 2 3{ , , }  
 from regression on linking decisions (Equation 10) into 

corresponding 2-space.  

Again, we find clear visual separation between our clusters from estimates on 

linking behavior, and Mann-Whitney tests support significant differences between all 

pairs of clusters on all three axes (p<0.001), again with the exception of the estimates of 

the constants between the round and triangle clusters (p=0.5279).  
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Interestingly, the location of the clusters closely resembles those found for 

investing decisions. Consequently, we assign the same labels, Rational, Habit and 

Dogmatic, for each of these clusters as well. Table 4 reports the mean of each estimate 

for each cluster and the Wilcoxon signed-rank p-value for the test of whether the cluster’s 

mean is significantly different from zero.  

 

Table 4 The Mean of Estimates from Regression Analysis of Linking Behavior 

 Round cluster Triangle cluster Square cluster 

Rationality 0.7746 

(0.0000) 

0.2693 

(0.0000) 

-0.0461 

(0.2112) 

Lagged choice -0.0187 

(0.4091) 

0.2179 

(0.0000) 

0.0745 

(0.0041) 

Base rate(constant) 0.1735 

(0.0000) 

0.1331 

(0.0000) 

0.6980 

(0.0000) 

Number of subjects 37 75 40 
Note: p-value from Mann-Whitney test in parenthesis 

 

Based on the characteristics of the three clusters described in Table 4, we define 

three behavioral rule types as follows: 

We define the round cluster to be a “Rational” type. People who belong to this 

cluster make decisions that are guided largely by the rationality of their current choice.  

We define the triangle cluster as a “Habit” type. People in this cluster make 

choices that resemble their previous choices.  

We define the square cluster as a “Dogmatic” type. Subjects in this group send 

links to others at a high base rate (69.8%, statistically significantly higher than either of 

the other types (p<0.001)). 
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To see how institutions interact with types, we report types by treatment in Table 

5. We were surprised that the clusters found in the linking analysis resemble so closely 

the clusters found in our analysis of investing behaviors. In both cases, the two baseline 

treatments with the lowest frequency of star networks also have the highest percentage of 

subjects belonging to Dogmatic type (40.63% and 60% for Seq_B and Sim_B 

respectively). 

Result from Seq_L shows that the majority of subjects are the Rational type. And 

while Sim_L has the most frequent star network formation, it also has a high percentage 

of Habit type subjects.  

 

Table 5 Number of Individuals in Different Treatments and Types According to Linking Decisions  

 
Seq_B 

12.6% of star 

Seq_L 

53.5% of star 

Sim_B 

12.7% of star 

Sim_L 

65.3% of star 

Sim_L_NoRFR 

32.4% of star 

“Rational” 

Round 

13 

(40.63) 

20 

(71.43) 

0 

(0.00) 

2 

(6.67) 

2 

(6.25) 

“Habit” 

Triangle 

6 

(18.75) 

4 

(14.29) 

12 

(40.00) 

24 

(80.00) 

29 

(90.63) 

“Dogmatic” 

Square 

13 

(40.63) 

4 

(14.29) 

18 

(60.00) 

4 

(13.33) 

1 

(3.13) 

Total 
32 

(100.00) 

28 

(100.00) 

30 

(100.00) 

30 

(100.00) 

32 

(100.00) 
Note: percentage in parenthesis 

 

To investigate the relationship between the behavioral rules players use when 

making linking or investing decisions, Figure 5 plots the percentage of players belonging 

to each type in linking decisions conditional on each type in investing decisions
31

. 78% of 

                                                 
31

 Note that by construction, players in the investment-limits treatments who make rational investing 

decisions also necessarily make rational linking decisions. This is true only for the players who behave 
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subjects that are the Habit type in investing decisions are also Habit type in linking 

decisions. Similarly, there is substantial overlap among participants classified as Rational 

and Dogmatic between linking and investing decisions. Indeed, a Pearson Chi-square test 

rejects that type classifications are independent between investing and linking decisions 

(p<0.001). 

 

 
Figure 5 Frequency of Each Type in Investing Decision Conditional on Types in Linking Decision 

 

VII. Conclusion 
Star networks emerge naturally in many social environments, and theory indicates 

star network equilibria are efficient. Based on a model suggested by Galeotti and Goyal 

(2010), we study star network formation in the laboratory. Previous studies indicate that 

                                                                                                                                                 
perfectly rationally in the investment-limits treatments. Our design does not otherwise imply any 

correlation between the behavioral rules followed by players when making linking or investing decisions. 
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persistent star networks emerge in the lab, but only under ex ante agent heterogeneity 

(Goeree et al, 2009). This contrasts with natural environments, where star networks 

frequently emerge even when agents are ex ante homogeneous (Feick and Price, 1987; 

Conley and Udry, 2010). We conjectured that sequential decisions, investment limits, and 

the “right of first refusal,” may stabilize the decision environment and promote the 

emergence of star networks, even in the presence of ex-ante homogeneous agents.  

Our main finding is that investment limits and the “right of first refusal” promote 

star network formation. In comparison to baseline treatments, we find that environments 

with those features realize increased star-network frequency and decision stability.  

In order to shed light on the impact of institutions at the individual level, we use a 

cluster analysis to draw inferences about behavioral rules used by participants in different 

environments. We find players clearly separate into clusters using “Rational”, “Habit” 

and “Dogmatic” rules. Moreover, “Rational” and “Habit” are used more often in the 

presence of institutions that promote star networks. Further, we were comforted in 

finding that type-classifications for investing and linking decisions were tightly 

correlated, arguing for the validity of this behavioral characterization.  

It is worthwhile to note that Falk and Kosfeld (2003) and Georee et al (2006) 

discovered the importance of inequality aversion in preventing star networks from 

forming under standard theoretical conditions. This suggests that finding approaches to 

subsidizing investors might promote star network formation. In our environment, 

investors earn less per round than linkers, yet stars form in our environment absent 
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subsidies
32

. One explanation may be that institutions that enhance decision stability allow 

participants to rotate their network position and thus maintain a high level of overall 

network efficiency while concurrently equalize earnings. 

It seems clear that focal points can improve coordination and promote the 

emergence of star networks. Goeree et al (2009) may have in part provided such a focal 

point by assigning heterogeneous payoff functions. Our study shows that focal points in 

network environments may emerge endogenously. This finding could be of value 

especially when policy makers are either unwilling or unable to assign focal points to 

specific people.  

Our focus on ex-ante homogenous agents is both an advantage and a limitation of 

our research. One important question we are unable to address is whether the successful 

institutions we discovered might promote the “right” star in the presence of 

heterogeneity, in the sense that the person best suited to be in the center is most likely to 

hold that position. Similarly important is to understand how attitudes towards risk and 

uncertainty impact the particular star formed under different institutional arrangements. 

Would those with a greater tolerance for risk be more likely to become a star’s center? 

Designing studies to answer these questions would be valuable next steps towards a 

deeper understanding of the formation and efficiency of social networks in natural 

environments.  

 

                                                 
32

 The standard deviations of payoff in Seq_L, Sim_L and Sim_L_NoRFR are 7.05, 7.12 and 7.02, 

respectively. They are significantly lower at 1% level pairwisely compare to the ones in Seq_B and Sim_B 

(10.48 and 9.05 respectively). 
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Appendix A. Z-tree experimental interface 
 

 
Figure 6 An example of the decision screen 
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Figure 7 An example of the display screen 
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Appendix B. 3-space Plot for Individuals’ Estimates by Treatment 
 

 
Figure 8  Investing decisions 

 

 
Figure 9 Linking decisions 

 

Note: different markers represent different treatments 

■ -- Seq_B ; ▲ -- Seq_L; ● -- Sim_B; ♦ -- Sim_L; ○ -- Sim_L_NoRFR 
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Appendix C. 3-space Plot for Individuals’ Estimates by Cluster 
 

 
Figure 10  Investing decisions 

 

 
Figure 11 Linking decisions 

 

  



49 

 

CHAPTER TWO: MONEY OR FRIENDS: SOCIAL IDENTITY AND 

DECEPTION IN NETWORKS 

I. Introduction 
Groups with different financial incentives often deceive each other. Within a firm, 

for example, people from different departments often manipulate the information they 

send to each other so that the executive decisions could be in favor of themselves. This 

phenomenon has been discussed often in popular writings (Cloke and Goldsmith, 2000; 

Cowan, 2003; Tobak, 2008) and studied widely in the field of industrial and 

organizational psychology as well as management (Colb et al, 1992; Rahim, 2000; Dreu 

and Galfand, 2007; Conrad and Poole, 2011; Miller, 2011). It exists at many important 

industries including high-tech research and development, mass media, health care, etc 

(Gupta et al, 1985; Eckmen and Lindlof, 2003; Pirnejad et al, 2008). In one recent case, 

Apple’s CEO, Tim Cook, has to issue his official apology to the users of the Map 

application as Apple’s marketing team has made promises that could not be fulfilled by 

its engineering team. The results of misinformation can be detrimental to an organization. 

The above cases can be described by sender-receiver games, which are 

environments characterized by two groups of people with misaligned monetary 

incentives. The seminal work by Crawford and Sobel (1982) describes a one sender and 

one receiver case (it is also called strategic information transmission game, or cheap talk 
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game)
33

. Many other studies have looked into the variation of this model, but not until 

Galeotti, Ghiglino and Squantani (2011), players either make decision as a sender or as a 

receiver, but never both
34

. Galeotti et al (2011) look at N player communication in a 

networked setting where one can send cheap-talk messages to others and also received 

messages from others. Their model generates sharp predictions when the players are 

divided into two groups. In the “two group model”, players share the same payoff 

function within a group and differ in the payoff between groups. The model predicts that 

the truthfulness of the messages will react to the membership of the monetary group. In 

particular, truth-telling within a monetary group is more frequent than between groups. 

Our study aims to test these predictions of the “two group model”. We choose to 

follow the model since it resembles real world examples that we are interested in. It 

includes the intra-organizational conflict case we mentioned earlier, the diffusion of 

political opinion in a large population as well as the case of advice giving on financial 

and medical decisions. We design our baseline experiment to test the two-group cheap 

talk model in the lab.  

Deceptive communication may respond not only to monetary but also to social 

incentives. Many past studies provide evidence that social identity impacts economic 

behaviors including charity and envy (Chen and Li, 2009), punishment (Bernard et al, 

2006), cooperation (Goette et al, 2006; Charness et al, 2006; Brewer, 1999), self-esteem 

(Shih et al, 1999) and contributions to public goods (Eckel and Grossman, 2005). Would 

                                                 
33

 Experimental studies support this prediction includes Dickhaut et al (1995), Blume et al (1998), Blume et 
al (2001), Cai and Wang (2006) and Wang et al (2010). 
34

 An exception is Hagenbach and Koessler (2010). 
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players’ social identity motive affect one’s decision to lie? This remains an open question 

in identity literature
35

. 

This paper designs a laboratory experiment to investigate the joint impact of 

social identity and monetary incentives on deception in group environments. First, we 

investigate whether one will lie to achieve higher monetary gain in the network sender-

receiver environment. We further study how the choice of deceiving others is impacted 

by introducing (non-monetary) social identity.  

A laboratory analysis is ideal for our study. The reason is that in natural 

environments it can be difficult to identify separately the effects of monetary incentives 

and social identity since (1) shared social identity may form around similar monetary 

incentives; (2) people have many social identities (e.g., gender, ethnicity, age) and it can 

be difficult to know which identity is salient during a decision process. Our laboratory 

study enables us to overcome these problems because identity is induced (Tajfel et al, 

1971; Chen and Li, 2009). Then, by randomly assigning players with different identities 

to different incentive groups, we observe choices made under all relevant incentive-

identity scenarios
36

. This design, therefore, enables us to identify the separate effects of 

“money” and “friend” on deception, and to compare the relative sizes of these two 

effects. 

Our main findings are as follows. 

                                                 
35

 Many studies found gender different in deception or how people perceive deception. Using fMRI data, 
Marchewka et al (2012) suggests that gender different in deception may be independent from the identity 
aspect. 
36

 The four scenarios are: same-incentive-same-identity, same-incentive-different-identity, different-
incentive-different-identity, and different-incentive-same-identity. 
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1. Absent identity, consistent with theory, truth-telling nearly always occurs 

among those with identical monetary incentives. Truth-telling also occurs to a great 

extent when monetary incentives are mis-aligned. In particular, while theoretically people 

should tell the truth exactly half the time in these cases, we find truth-telling to occur at 

rate 74.5%.  

2. Introducing social identity may not promote truth-telling. We find that sharing 

an identity does not increase the frequency of truth-telling. One is more willing to lie, 

however, to those holding a different identity, and this is true regardless of the nature of 

the monetary incentive. 

3. Players become more trusting in the presence of social identity. This seems to 

suggest people are unable to recognize that introducing identity leads to more lies. 

To our knowledge, we are first to provide empirical evidence on behavior in 

sender-receiver games with multiple senders and multiple receivers
37

. Despite the many 

insights gleaned from one-sender-one-receiver cases, extending the strategic information 

transmission to a group context is also important. The reason is that much communication 

occurs in groups of multiple people who may hold divergent preferences. Our study 

informs such environments and may aid in the design of institutions and organizations to 

foster more truthful transmission of information and reduce conflict within organizations. 

                                                 
37

 A few studies look at environment where there are one sender and two receivers (Battaglini and 
Makarov ,2011) or where there are two senders and one receiver (Minozzi and Woon, 2011; Lai, Lim, and 
Wang, 2011). Those studies differ from ours as players in those experiments make decisions as either a 
sender or a receiver, but never both. We focus on a game that better describes the environment of intra-
organizational communication, which is characterized by having each player as both sender and receiver. 
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As we discuss further below, our results may also suggest ways to design strategies for 

maximizing the transmission of truthful political information. 

The remainder of the paper is organized as follows: The next section briefly 

reviews the theoretical and experimental literature. Section 3 lays out the theoretical 

background of the study. Section 4 presents the experimental design and procedure. 

Section 5 sets up the hypothesis and reports experimental results. Section 6 concludes.  

II. Literature on Deception and Social Identity 
There have been a number of economic theories and experimental tests on sender-

receiver games. First, we review these theories. Then, we discuss the experimental 

evidence, in particular, the recent literature on deception. Finally, we review economic 

experiments on social identity. 

II.1 Theory of Cheap Talk Game 
Information is often delivered in a strategic way. When the information holders 

do not have the same incentive as the uninformed decision maker, they tend to hold back 

some but not all of the information so that they gain advantage in the transaction. This 

important economic phenomenon is first described in the seminal model by Crawford and 

Sobel (1982). In their paper, a sender has the full knowledge of the state of the world and 

can send messages to influence a receiver’s belief so that he or she may make a choice 

that benefits the sender. The receiver, or course, reacts to the possibility of manipulation 

in senders’ messages and chooses an action that maximizes his or her own earnings.  

The model predicts a partitioned equilibrium, where the larger are the payoff 

differences between the two players, the coarser is the partition, meaning senders hold 
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back more truthful information. In the extreme case where the payoff difference is too 

large, senders are predicted to send random messages. That is to say, senders engage in 

cheap talk. 

 The seminal work by Crawford and Sobel (1982) has been extended in many 

directions. For example, Milgrom and Roberts (1986), Gilligan and Krehbiel (1989), 

Austen-Smith (1993), Krishna and Morgan (2001a, b) investigate the case where there 

are more than one sender for each receiver. Battaglini (2002) and Ambrus and Takahashi 

(2008) further extended the analysis to environment where the senders are giving advice 

on multidimensional issues. Morgan and Stocken (2008) study the case of polling where 

each sender has a different information and ideology. Also, Farrell and Gibbons (1989) 

discussed the case where there are two receivers and two states of the world. In all of 

these cases, however, each agent plays either as receiver or as sender. Note that this 

contrasts with our study, where each person is both a sender as well as a receiver. 

We are aware of only two models of strategic information transmission in 

networks, where each person can act as both sender and receiver (Hagenbach and 

Koessler, 2010; Galeotti, Ghiglino and Squantani, 2011). Many real world environments 

would seem to require this framework. For example, workers from different departments 

at the same company often talk and listen to each other, and people of different political 

opinions may also mutually exchange information.  

Hagenbach and Koessler (2010) investigated a case where each individual 

receives some information and the aggregation of all private signals equals to the truth. In 

their environment, a player earns more when (1) choosing a number that is closer to the 
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true state of the world plus an individual bias and (2) choosing a number that is closer to 

others’ choices. The first part incentivizes the individuals to make the best guess of the 

truth, while the second half requires coordination of choices between players. Like in 

other cheap talk games, players send messages free-of-cost before choosing the numbers 

and all messages are non-verifiable.  

Galeotti et al (2011) also models group communication but the earnings in their 

model are defined in a different way. In particular, their model assumes that a player 

earns the highest payoff if everyone in the game, including him/her self, chooses a 

number that matches the truth plus his/her own bias. Since different players have 

different biases, one may try to affect others’ beliefs using cheap talk messages. The 

predictions of this and Hagenbach and Koessler (2010) are quite similar. Since we build 

mostly from Galeotti et al (2011), we make clear the details of their model in Section III. 

We choose to use Galeotti et al (2011) because it resembles an intra-organizational 

communication and decision making environment where everyone’s choice directly 

affects each player’s payoff, the situation in many important environments discussed 

above and of interest to us. 

II.2 Deception Experiments 
The earlier experimental literature on cheap talk game studies how well the 

empirical data matches the prediction of Crawford and Sobel (1982). In those games, 

sender can choose vague messages by sending a range of possible states (e.g. sending (1-

3) when signal is 2.). Dickhaut, McCabe and Mukherji (1995) confirms the comparative 

statics of the model by showing that the senders’ messages become vaguer and the 
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receivers’ actions deviate more from the true state as preferences between sender and 

receiver diverge. Cai and Wang (2006) replicated the above finding and further show that 

the average payoffs of senders and receivers are very close to the predicted level for the 

most informative equilibrium. Their data also suggest that senders over-communicate and 

receivers over-trust the message. Wang, Spezio and Camerer (2010) study the source of 

over-communication using eye-tracking data. 

Some recent experimental studies use a simplified sender-receiver game to study 

deception behavior in the lab. Gneezy (2005) analyzed an experiment where there are 

only two states of the world. They found that people are sensitive to both their own gain 

and others’ losses when deciding to lie. Lundquist et al (2009) modified the game further 

into a labor contract context, where the senders have information on their ability level 

and face an incentive to lie so the receiver will agree to hire. With this design, they can 

observe not only whether a player has lied but also the size of the lie. They found that lie 

aversion increases with the size of the lie and also the strength of the promise. The data 

also show evidence that free form messages leads to fewer lies and more efficient 

outcomes. Typically in this literature
38

, messages are considered deceptive if a sender’s 

message contains other than true state of the world. We also use this method to analyze 

deceptive messages
39

. 

                                                 
38

 Sutter (2009) and Xiao (2012) take into account “sophisticated” deception if a deceptive sender chooses 
the true message with the expectation that the receiver will not follow his/her message. 
39

 To identify a players exact strategy (truth-telling or cheap talk) requires repeated observations. The 
result may be ambiguous if individuals switch between different strategies during the game. We do not 
try to identify players’ strategy but simply study the frequency of deceptive messages. 
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II.3 Parochial Altruism & Social Identity 
Whether non-monetary gains can lead to less deception has not yet been studied. 

However, many experiments on the effect of social identity suggest that might be the 

case. Chen and Li (2009) used artist preference to divide people into identity groups and 

found that people are more altruistic towards those of the same group. In particular, they 

show artificial identities make people reward more and punish less towards in-group 

members. People of same identity also choose more social-welfare maximizing actions, 

which results in higher expected earnings. “Parochial altruism” is also found among 

indigenous people in Papua New Guinea (Bernhard, Fischbacher and Fehr, 2006). Their 

subjects tend to favor people of the same tribe by giving a higher transfer amount in 

dictator games and punishing more when the unfair dictator is from another tribe. Identity 

also affects cooperation. Eckel and Grossman (2005) found that with strong team identity 

priming, players of similar identity could achieve higher levels of contributions in public 

goods experiments.  

Charness, Rigotti and Rustichini (2007) found making social identity salient leads 

to aggressiveness. In particular, the presence of inactive players with the same identity 

results in more coordination in the Battle of Sex game and less cooperation in the 

Prisoners’ dilemma game. However, part of their study used shared monetary payoffs to 

strengthen social identity. Since we are trying to distinguish the effect of monetary and 

social identities, we adopt the artist preference method used in Chen and Li (2009) so that 

the assignment of social identity is unrelated to monetary payoffs. 

It is plausible that in-group altruism, cooperation and aggressiveness may lead to 

fewer lies within an identity group and more lies between groups in a game of strategic 



58 

 

information transmission. However, to our best knowledge, there has not been any study 

that directly looks at the effect of social identity on deception in network environments. 

Our study fills the gap. 

III. Theoretical Background 
Our experiment design follows the two-group communication model in Galeotti, 

Ghiglino and Squantani (2011). We review the detail of the model in this section. 

The sets of players is denoted by N={1,2,…,n} partitioned into two groups, N1 

and N2, with size n1 and n2, respectively, where n1+n2=n. Without loss of generality, 

assume n1 >n2≥1. Player i’s individual bias is bi. In two-group communication model, 

each members of group 1 has a bias normalized to 0; members of group 2 have a bias 

bi=b>0. The state of the world   is uniformly distributed on [0, 1]. Every player i receives 

a private signal si {0,1} where si=1 with probability  . 

Communication among players is exogenously restricted by a communication 

network            where player i can send message to j if gij=1 with gii=0 for all 

   . The communication neighborhood of i is the set of player to whom i can send his 

signals and it is denoted by Ni(g)={    : gij=1}. In this study we focus on the case 

where g is a complete network, meaning players can send a message to every other 

player. 

Communication mode describes to what extend the technology of communication 

allows to target messages. In a private message setting, player i chooses what message to 

send to each other player j. A communication strategy profile for each signal si {0,1} is 

defined as m={m1,m2,…,mn} in which mi(si)=             . 
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After communication occurs, each player chooses an action. Agent i’s action 

strategy, based on his/her own signal and messages received from others, is yi:{0,1}
n-

1
×{0,1}R; y={y1,y2,…yn} denotes an action strategy profile. Given the state of the 

world   and a profile of actions                   , the payoff of i is: 

                     
 

   

                              

That is, agent i’s payoffs depend on how close his own action yi and the actions 

taken by other players are to her ideal action     .  

A communication network g together with a strategy profile (m, y) induces a 

subgraph of g in which each link involves truthful communication. They refer to this 

network as the equilibrium truth-telling network denoted by c(m,y|g), a directed graph 

where              if and only if j belongs to i’s communication network and 

         for every s={0,1}. Given c(m,y|g) and that the agents are divided into two 

groups, the in-degree of an arbitrary player in group i,    , is defined as the number of 

agents who send a truthful message to him/her. Among all the truthful messages, the 

amount sent by members of the same group is denoted by kii, while the amount sent by 

members of opposite group is kij.  

Their analysis focuses on pure strategy Bayesian Nash equilibrium. They provide 

a full characterization of the utility-maximizing equilibrium networks
40

 with a focus on 

the natural subclass of those networks where there is complete intra-group 

communication. In our experiment setting, the bias we choose will yield the same 

                                                 
40

 It is a tradition in strategic information transmission models to characterize the utility maximizing 
equilibrium as babbling is always an equilibrium solution but not meaningful in most contexts. 
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prediction whether we decide to use the full characterization or the subclass. The 

following equation describes the in-degree of an arbitrary player in group i in the utility-

maximizing equilibrium truth-telling network: 

                                    

             
 

  
                                                        

That is, if   
 

      
, both intra-group and inter-group communication is 

complete; and if   
 

       
, there is complete intra-group communication and no inter-

group communication. When b takes the intermediate value, inter-group communication 

also takes intermediate value
41

.  

Given this type of communication, in equilibrium all players trust all intra-group 

communication. They treat inter-group messages as true signals whenever  
 

      
 , and 

as no information whenever   
 

       
 . That completes the equilibrium prediction of 

the model. 

IV. Design and procedure 

IV.1 Baseline treatment 
The design of our baseline treatment is based on a game introduced by Galeotti et 

al (2011). There are multiple games in their paper, and we adopt the one that is 

characterized by private communication between two groups with different biases in their 

payoff function. We choose to study this game as it is highly relevant to the real world 

                                                 
41

 Specifics related to intermediate biases can be found in Galeotti et al (2011).  
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network communication problem that interests us. To our best knowledge, our paper is 

the first to examine how people choose to transmit information in this environment. 

Each experimental session includes 15 subjects. Each five are randomly assigned 

to play the game. All subjects participate in three stage games. Each stage game consists 

of a random number of rounds
42

. Players know that the other four players are fixed during 

each stage game, and each of them holds a unique ID: J, K, L, M or N. Player J, K and L 

belong to Group 1. Player M and N belong to Group 2. Group 1 and Group 2 players 

differ in their payoff function by only one parameter: the bias. And the biases are 

common knowledge for all players.  

Each round of the experiment is a guessing game. Before a round starts, the 

computer generates a random integer r between 0 and 5 (including 0 and 5). The number 

is unknown to all players. At the beginning of each round, each player receives a private 

signal that is either 0 or 1. Players do not see others’ signals. However, they are told that 

the sum of the five signals received by all five players equals to the random integer
43

. 

Before players guess the number, they are given the opportunity to exchange “cheap-talk 

messages” between each other. The messages are constrained to be either 0 or 1 to match 

the space of the signal. Moreover, messages are group specific, so each player decides on 

what message to send to Group 1 and Group 2 players rather to the message for each 

                                                 
42

 There are always at least 4 rounds in a stage. After round 4, the game has a random stopping 
probability of 0.04 at any given round. To keep control over the length of the real experiment, we 
randomly generated predetermined round lengths of 19, 28 and 32 for experimental stages I, II and III 
respectively. The practice stage lasts 3 rounds.  
43

 This part of design follows Hagenbach and Koessler (2010). We deviate from Galeotti et al (2011) for 
two reasons: (1) the former involves less uncertainty therefore is an easier task for our subjects and (2) 
the main predictions that we test in this paper remain the same between the two models. 



62 

 

player
44

. After all players submit their messages, they observe the messages that are sent 

to them and are asked to guess the value r randomly chosen at the beginning of the round. 

They also choose a number x based on their guess of r to determine everyone’s payoff for 

that round. The payoff function for Group 1 and Group 2 players are as follows
45

: 

 

 

 

Player J, K and L share the same payoff function as shown in equation &&&. The 

payoff is maximized when all five players, including him/herself, choose the number x 

that equals the true value of the random number r plus a group-specific bias b1 . Player M 

and N share the same payoff function as shown in equation %%%. The difference 

between their payoff functions and the ones for Group 1 players is the group-specific bias 

b2. As indicated in the theory, this payoff structure incentivizes every player to (1) choose 

a number x that is as close as possible to their best guess of r plus their own group’s bias 

b and (2) make other players, both in the same group and in the different group, to choose 

the same x. The presence of cheap talk messaging makes it possible for players in one 

group to manipulate the choice of x made by players in the other group. In our 

experiment setting b1 and b2 can only takes four different values, that is (0, 0), (0, 1), (1, 

0) or (1, 1). Note that (1, 1) appears always and only in the practice stage, and therefore is 

not included in our data analysis. The other three combinations appear in random order 

                                                 
44

 The message is group specific in order to simplify the decision problem for the subjects.  
45

 The payoff differs from the theory section since we give 20 experimental dollars as an endowment per 
period. This ensures subjects do not earn negative amounts during the experiment. This change does not 
alter the theoretical predictions.  
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for the three experimental stages. The structure of the game and all payoff-related 

information, including the value of b1 and b2, are common knowledge. Players also know 

that the value of b1 and b2 remain fixed within a stage game, but change between stages.  

The following three screens implement this design. First, subjects send messages 

using the “messaging screen” (see Appendix A, Fig. 1). Then, subjects make guesses on 

the random integer r and choose the payoff relevant value of x on the “guessing screen” 

(See Appendix A, Fig 2). While they are making these two choices, the same screen also 

shows them the messages they received from others graphically. Finally, the “result 

screen” (see Appendix A, Fig 3) reveals the true value of the random integer and displays 

all the actions taken by the other four player and their current payoff.  

Payoffs accumulate within, but not between, each of the three stage games. 

Players are informed about their accumulated payoff at the end of each stage. They are 

also reminded that they will be re-matched with a new set of players, and that their stage 

payoff will not be carried over to the new stage. Each subject’s earnings for the 

experiment are determined by one randomly-determined stage game according to a die 

roll at the end of the experiment. 

IV.2 Identity Treatment 
The identity treatment differs from the baseline treatment described above in that 

it includes an identity priming stage at the beginning of the experiment. We are using the 

artist preference as the method of priming, as first introduced by Tajfel and Turner (1979) 

and then reintroduced by Chen and Li (2009). The procedure and the paintings we are 

using follow the latter (see Appendix 2 for the paired paintings). Subjects are presented 
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with five paired paintings sequentially. Within each pair, one painting is a Kandinsky and 

the other a Klee. Subject can indicate their preference for each pair and are told that they 

will be assigned to an “artist team” if they choices show that they prefer one artist more 

frequently (above 3 out of 5 choices). After their team assignment, they are given another 

two new paintings by Kandinsky and Klee and are asked to guess the correct ownership 

of the artwork within 5 minutes. Each correct answer earns an additional E$40. People 

who are assigned to the same artist team can exchange free form text through a chat 

window
46

. This chat design is used in Chen and Li (2009) to strengthen the identity. 

Once the identity priming is completed, instructions for the baseline game are 

distributed. The only difference in the instructions is that subjects are told that their artist 

team identity will become public information and will be displayed during the entire 

“guessing number game”. 

Note that players in different “groups” differ in their monetary incentives. Players 

that are assigned to different artist “teams” only differ in their preference about painters 

and are randomly assigned to two incentive groups. Therefore, within an incentive group, 

there may be people on the same or different teams. In this study, we use the word 

“group” and “team” to distinguish monetary (the former) from non-monetary (the latter) 

affiliation.  

IV.3 Procedures 
The experiment sessions were conducted between May 2012 and September 2012 

in the ICES laboratory at George Mason University. Subjects were recruited via email 

                                                 
46

 Subjects are told not to reveal information regarding their name, race, age or anything that can reveal 
their identity. 
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from registered students at George Mason University. Each subject participated in only 

one session and none had previously participated in a similar experiment.  

In total, 75 subjects participated in the computerized experiment programmed 

with z-Tree (Fischbacher, 2007). Each experimental session lasted between 120 and 150 

minutes. Subjects’ total earnings were determined by the Experimental Dollars (E$) 

earned at the end of the experiment, which were then converted at a rate of E$20 per US 

dollar. Average earnings before adding the $5 show up fee were $18.40, ranging from a 

maximum of $29.3 to a minimum of $4.8 across all sessions.  

In all treatments, before a session starts, subjects are seated in separate cubicles to 

ensure anonymity. They were informed of the rules of conduct and provided with detailed 

instructions. The instructions were read aloud. In order to ensure there is no confusion, 

after subjects finished reading the instructions they were asked to complete a quiz. An 

experimenter checked their answers and corrected any mistakes one by one. Then the 

experimenter worked through the quiz questions on a white board in front of all subjects. 

The experiment began after all subjects confirmed they had no further questions.  

We ran 3 sessions for baseline condition and 2 sessions for treated condition. 

Within each session, we obtained 97 message sending decisions for each subject 

(excluding the practice stage). Our analysis conservatively assumes 45 independent 

observations (27 in the baseline condition and 18 in the treated condition) unless 

otherwise specified. 
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V. Hypothesis and Results 

V.1 Hypothesis 
Our hypotheses stem from Galeotti et al (2011) as well as the literature on social 

identity. We begin by indicating hypotheses based on Galeotti et al (2011), which will be 

tested using data from the baseline treatment. Second, we list hypothesis on social 

identity effects which will be tested using data from both baseline and identity treatments. 

Based on the theory discussed in section III, we can make following hypothesis: 

Hypothesis T1: Players always tell truth to those in the same monetary group. 

Hypothesis T2: Players tell truth to others in a different monetary group if the 

bias is (0, 0), and always send random message (babble) if the bias is (0,1) or (1,0). 

Hypothesis T3: Players fully trust the message sent by their group members and 

also fully trust the message sent by other group members if bias is (0, 0). They disregard 

those between group messages if the bias is (0,1) or (1,0). 

Since social identity may have a positive effect on truth-telling, we hypothesize as 

follows: 

Hypothesis S1: After priming identity, players in the same monetary group will 

continue to tell 100% truth. Emphasizing the difference in identity, however, may reduce 

within-group truth-telling. Therefore, introducing social identity priming can have only a 

negative effect on within-group truth-telling in comparison to the baseline condition. 

Hypothesis S2: The same team identity may increase truth-telling between 

monetary groups but different team identities may reduce truth-telling between groups. 

The overall effect may depend on the relative size of these two effects as well as the 

identity composition of each group. 
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Hypothesis S3: Hypothesis S.1 states that both within and between group 

messages are no less trustworthy if the message senders and receivers share the same 

identity. S.2 states that trustworthiness decreases if senders and receivers share different 

identities. If receivers fully anticipate this behavior then, in relation to an environment 

without identity, their guesses will deviate more from the messages they receive. 

V.2 Results 
We lay out the results in the order of the hypotheses above. First, we discuss the 

baseline observation in comparison to theoretical prediction (from T1-T3). Then, we 

compare the results from the social identity treatment with the baseline results (from S1-

S3).  

Result T1: Without identity, most within-group messages are truthful.  

Our data support hypothesis T1. As shown in Figure 12, we found that 95.3% of 

the within-group messages are truthful in the baseline treatment. Although the overall 

level of truth-telling seems high, it is significantly lower than the predicted level of 100% 

(p=0.001). Consistent with the theory, the bias of the opposing group does not affect 

within-group messages in any statistically significant way (pairwise comparisons, all ps 

greater than 0.856). Moreover, group size also does not impact the truthfulness of within-

group messages (96.2% for Group 1 and 94.4% for Group 2, no statistic different, 

p=0.412). 

Result T2: Without identity, players tell less truth to members of different 

group than to their own group members.  
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Our data support hypothesis T2. In the baseline treatment, 79.0% of messages 

sent between two groups are truthful. This level of truth-telling is much lower in 

comparison to within-group messages (p<0.001). This effect is larger if the bias is (0,1) 

or (1,0). However the effect persists even if the bias is (0,0). 

In case where bias is (0, 0) the two groups share the same payoff function, so that 

truth-telling is predicted to be 100%. However, 87.9% of these between-group messages 

are truthful, significantly lower than predicted. It is also lower than the truthfulness for 

within-group messages (compare to 95.3% , p<0.001), suggesting that simply dividing 

subjects into two groups has an impact on their truthfulness regardless of monetary 

incentive
47

.  

According to theory, under bias (0,1) and (1,0), there only exists a babbling 

equilibrium with 50% truthful messages. We observe 74.5% truthful messages between 

groups
48

, which is significantly higher than predicted levels (p<0.001). Under either bias, 

truth-telling is significantly lower than the case where the bias is (0,0) (pairwise 

comparisons, p=0.018 and 0.047 respectively).  

 

                                                 
47

 Eckel and Grossman (2005), however, suggest that minimal group identity does not affect subjects’ 
behaviors in their experimental setting. Our data suggests that the effectiveness may be sensitive to the 
environment. 
48

 We combine the two cases together as the unequal bias case, as there is no significant difference 
between them (p=0.652) 
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Figure 12 The Percentage of Truthful Messages in Baseline 

 

Result T3: Without identity, players overly trust messages they receive.  

To measure whether a player believes the messages s/he receives, we measure the 

difference between one’s guess and the sum of “1” messages received. When the 

difference is zero, we define the “trust” measure to equal one and set it to zero otherwise. 

74.9% of all guesses submitted in the baseline exactly equaled the sum of “1” messages 

received. When the bias is (0,0), 82.1% of guesses are consistent with the messages 

received, which is significantly lower than the predicted 100% level of trust.  

In equilibrium, when the bias is either (0,1) or (1,0), random choice will lead 

Group 1 players to appear completely trusting of between group messages 37.5% of the 
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time. This can be seen as follows. In equilibrium, each player in Group 1 faces four 

possible message combinations sent at random by two Group 2 players: (0,0), (0,1), (1,0) 

and (1,1). Each of these four outcomes is equally likely to appear. Group 1 players form 

beliefs about the true signal that Group 2 players hold independent of these messages: 

(0,0), (0,1), (1,0) and (1,1). Each outcome is also equally likely to happen. Therefore, out 

of 16 message-belief pairs with each combination having the same probability, six of the 

sums can coincide at random (6/16=37.5%). Similarly, Group 2 players may appear to be 

trusting in 31.25% of time even if they are choosing at random. Overall then, random 

choice will lead 35% of choices to appear fully trusting. Our data show that 72.1% of 

guesses are fully trusting, significantly higher than 35%. Moreover, the trust levels 

between bias (0,0) and bias (0,1) and (1,0) are significantly different (p<0.001).  

Identity effects are inferred using two metrics. To understand these metrics, note 

first that any player in the game is related to each other player in the game according to 

both group affiliation and team identity. Intuitively, the first metric is the frequency with 

which a player interacts within each type of relationship. It turns out there can be six such 

relationships: (1) in the same group and shares the same team identity (denoted as SGSI); 

(2) in the same group but with a different team identity (SGDI); (3) in a different group 

but shares the same team identity (DGSI); (4) in a different group and with different team 

identity (DGDI) ; (5) in the same group and have no team identity (SGNI) and (6) in a 

different group and have no team identity (DGNI). Note that all subjects in baseline will 

fall into SGNI or DGNI while all identity treatment subjects will belong to the first four 

categories. We do this categorization for each of the five individuals in the game and then 
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average across players and finally sum the results over the number of rounds in each 

stage game.  

For example, consider Player J. The relationship between J and K is determined 

as SGDI if K and J prefer different artists in the identity priming stage. J and L interact as 

SGSI if L shares the same artist preference with J. However, K and L are always SG in 

relation to J, while M and N are always DG relative to J. Our procedure determines, for 

each player, how many times each of the six relationships occurs for each other player in 

each stage game. 

The second metric builds upon the first and calculates, under each of the six 

scenarios, how many times a particular player sent a true message. If so, we code the 

message to be one, otherwise zero. For each stage game, we average across all five 

individuals and all rounds to determine how many times truthful messages are delivered 

under each of the six scenarios.  

Finally, we divide the second metric by the first in order to reveal the percentage 

of truthful messages sent under each of the six possible relationships. I denote the 

percentage truth for the same group and same identity as “PSGSI”, and similarly for the 

other five cases. The goal is to compare those percentages across relationships. Our main 

findings are as follows: 

Result S1: Compared to the baseline of no identity, sharing the same identity 

does not increase within-group truth-telling, but having different identities reduces 

truthfulness among group members. Introducing identity thus has a detrimental 

impact on within-group honesty.  
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This can be shown using the following equation:  

PSGDI<PSGNI=PSGSI                                           (16) 

PSGWI <PSGNI                                                        (17) 

Our data support hypothesis S1. As shown in Figure 13, the only significant 

difference is between the two bars on the right and the four bars on the left, showing that 

holding different identities reduces truth-telling within a group. Indeed, we observe a 

significant drop of 31.2% (p<0.001) between cases of different identity and no identity.  

Further, when breaking down the data by cases of equal or unequal bias, the 

negative effect of different identity is due to the unequal bias cases. Note that 

theoretically, within-group messages would not depend on the other group’s bias. Our 

data, however, suggest otherwise: players do consider the other group’s incentive when 

deciding what message to send to their own group. On the other hand, by comparing 

situations of no identity and of the same identity, we found no significant improvement 

resulting from introducing the same identity (p=0.630). On average, 95.3% of within-

group messages are truthful for the former (in baseline data) and the level is 94.2% for 

the latter. Overall then, the effect of introducing identity is to decrease the truthfulness of 

within-group messages by 16.2%, and this is significant (p=0.001). 
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Figure 13 Percentage of Truthful Messages Within Group 

 

Result S2: Introducing identity affects the truthfulness of between group 

messages in opposite directions. Different identity decreases truthfulness 

significantly. The same identity increases truthfulness slightly, but the effect is 

insignificant. Overall, there is no significant change in honesty after introducing 

identities.  

This can be demonstrated as follows: 

PDGDI<PDGNI=PDGSI                                (18) 

PDGWI =PDGNI                                          (19) 

Hypothesis S2 is supported by our data. Introducing different identities decreases 

the percentage of truth-telling significantly from 79.0% to 56.2% (p=0.013). Holding the 
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same identity seems to move the measure in the predicted direction: truthfulness 

increases to 84.3% , but the comparison is insignificant (p=0.281). This result are mainly 

driven by the cases where bias is unequal, indicating that the decisions based on identity 

are not independent of the other group’s monetary incentives.  

This result is consistent “moral wiggle room” (Dana et al 2007). In particular, 

negative identity may be used as a psychological excuse to lie more to members of 

another group. Without such an excuse, one may feel guilt as a result of lying for 

monetary gain. When monetary incentives are aligned, the identity effect is mitigated as 

players are not able to lie for monetary gain and there is no need to lie or to look for 

excuses to lie. Figure 14 illustrates this, showing the exact truth-telling percentages for all 

cases of bias and all relationships. 
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Figure 14 Percentage of Truthful Messages Between Groups  

 

Result S3: Introducing identity leaves players more trusting, in contrast with 

hypothesis S3. 

We use the same measure for “trust” constructed for the analysis of result T3. 

When the bias is (0,0), we found that 93.5% of guesses are consistent with fully believing 

in the messages received, significantly higher than the level of trust in baseline treatment 

(p<0.001). When bias is either (0,1) or (1,0), 81.3% of guesses are fully trusting, again 

significantly higher than the corresponding trust level in baseline (p<0.001). Moreover, 

trust levels under these two conditions are significantly different (p<0.001). Combined 
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with result S2, introducing identity doesn’t seem to alter player’s overall honesty, but has 

led to a higher level of trust in others’ messages.  

VI. Conclusion 
Information is transmitted between group members in a strategic way. Both 

monetary and social incentives may affect the truthfulness of people’s messages. Based 

on a model suggested by Galeotti et al (2011), we conducted a laboratory study of 

deceptive behavior in an environment of strategic information transmission. We found 

that absent social identity the message sending behavior of our subjects mostly 

conformed with theory. In particular, between-group messages were less truthful than 

within-group ones. However, we found behavior to depart from predictions in that people 

often overly trusted messages they received, regardless of the presence of social identity. 

On the other hand, identity has a negative effect on the frequency of truthful information 

transmission. In particular, we find that the negative effect of holding different identities 

outweighs the positive effect of sharing the same identity. Interestingly, despite this 

reduction in truthfulness, subjects trust more in the presence of social identity. 
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Appendix A. Z-tree Interface 
 

 
Figure 15 Messaging Screen 
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Figure 16 Guessing Screen 
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Figure 17 Result Screen 
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CHAPTER THREE: EXPLORING BEHAVIORAL DATA USING CLUSTER 

ANALYSIS 

I. Introduction 
A general question facing researchers in social science is how to classify 

observations into meaningful groups so that we can better understand the structure of 

data. When natural features, such as gender, age or income, are obviously driving the 

change of the variable of interest, we can hypothesize on the direction of change between 

groups and use statistical methods such as ANOVA or regression analysis to validate or 

reject such hypothesis. However, such a priori interpretations of data are not always 

available.  

Cluster analysis, as a numerical method for classification, allocates large and 

complicated datasets into a small number of groups with no need to make arbitrary ex 

ante assumptions. As early as the 1920s, psychologists were interested in the composition 

of ability. Some claimed all ability could be explained using two factors (Spearman, 

1904), others argued that there were more divisions, such as verbal, arithmetic, memory 

and spatial. Left unanswered were the number of low-level abilities and the way they 

relate to each other. This question inspired Robert Tryon to develop the first cluster 

analysis algorithm, then leading to the development of the first cluster analysis software 

BC TRY in the 1960s (Tryon, 1932; Tryon, 1935; Tryon and Beiley, 1966).  



81 

 

Since then, numerous mathematical algorithms have been proposed to improve 

the performance of clustering (Everitt et al 2011). Due to its simplicity and wide 

applicability, cluster analysis has been commonly used for data analysis in fields ranging 

from astronomy (Rosenburg, 1910; Babu and Feigelson, 1996 for a review), biology 

(Kerr and Chirchill, 2001;Witten and Tibshirani, 2010), psychology (Johnson, 1967; 

Farmer et al, 1983; Borgen and Barnett, 1987; Hay et al,1996) and anthropology (Clarke, 

1968; Sutton and Reinhard, 1995), marketing (see Punj and Stewart, 1983 for a review), 

to increasingly in economics (Fisher, 1969; Hirschberg et al, 1991; El-Gamal and 

Grether, 1995; Slater and Zwirlein, 1996; Houser, et al, 2004; Yamamori et al, 2008; 

Adomavicius et al, 2012). 

Walter Fisher was the first economist to systematically study the problem of 

classification. In his 1969 book Clustering and Aggregation in Economics, he foretold the 

increasing complexity of quantification in social variables and stressed “the need for 

systematic and scientific simplification” of social science data through clustering
49

. The 

discussion regarding the methods of clustering disappeared in economics for a long time 

after Fisher’s book was published. In 1960s and 1970s, the fields that saw new 

developments and applications using clustering methods were largely psychology and 

anthropology.  

El-Gamal and Grether (1995) revived economists’ interest in uncovering 

behavioral strategies from complex data. They developed a pseudo-baysisan approach to 

                                                 
49

 The methods reviewed in Fisher (1969) is somewhat different from the cluster analysis defined by its 
current literature. The author did relate these clustering and aggregation methods to the general 
literature of cluster analysis. 
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classify behavioral strategies used by individuals in games. The method is loosely related 

to finite mixture density clustering. Houser et al (2004) developed a related method in 

which the nature and the number of decision rules are determined simultaneously.  

Substantial time elapsed from Fisher’s original work to the time empirical 

economists began to apply cluster analysis to real-world datasets. Among the few studies 

that implement cluster analysis, a variety of topics are included. Hieschberg et al (1991) 

identify clusters for welfare measures across countries using multiple hierarchical 

agglomerative clustering methods. Slater and Zwirlein (1996) adopt a slightly different 

hierarchical method using Ward’s minimum variance as clustering criteria
50

. They 

allocated 303 S&P 400 companies into 8 distinct groups in which some were classified as 

“stable maintainers” and others “leveraged strategists”.  

Recently, a few experimental economists started to use cluster analysis to identify 

behavioral patterns among subjects. De Rubeis et al (2007) investigates the difference on 

the transmission pattern of sexually transmitted disease. The authors clustered individuals 

based on their demographic and clinical characteristics and separated the social network 

analysis for each cluster. Yamamori et al (2008) found three types of dictators in a 

modified dictator game with communication using Ward’s minimum variance 

hierarchical clustering. Adomavicius et al (2012) found that bidders in their auction 

experiment could be categorized into three behavioral groups using k-means clustering. 

The goal of this paper is to review cluster analysis methods that are 

straightforward and easily implementable. Two key questions must be answered before 

                                                 
50

 The difference and relations between cluster method and cluster criteria will be detailed in Section 2. 
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implementing any clustering procedure
51

: the method to be used for clustering and the 

method to find the “correct” number of clusters. As these two decisions are made 

independently, we review them in separate section of the paper.  

We begin with a discussion of various distance measures, separated into measures 

for categorical data and continuous data. With a particular distance measure, different 

dissimilarity indices and clustering criteria are developed to formulate the goal of 

optimization. Since finding the optimal solution can be extremely computationally 

burdensome, semi-optimal clustering algorithms, such as k-means and k-median 

algorithms are discussed. Section 2 reviews procedures for cluster analysis and discusses 

different methods used in each procedure. In addition to the choice of clustering methods, 

one also needs to choose how to determine the “correct” number of clusters. Section 3 

reviews two major approaches to doing this, the Silhouette width and the Calinski-

Harabatz index. The final section concludes. 

 II. Methods of clustering 
With optimization cluster analysis one develops indices and criteria to know in a 

mathematically precise way how “close” or far apart objects are to each other. There are 

many schools of thought regarding clustering.  

One method adopts a bottom-up approach where the closest two objects are 

grouped first and then a third objects that are closest to the two
52

 are added, so on and so 

forth. This method gradually forms a tree-like cluster result which gives its name 

                                                 
51

 An exception arises when one uses finite mixed density approaches for cluster analysis. In this case both 
questions are answered at the same time.  
52

 Depending on the sub-school of thought, the similarity of an object to a group of objects could be 
evaluated by the distance of the object from the mean, the centroid, or the farthest or the closest object 
of the group. 
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“Hierarchical clustering”. The hierarchical cluster analysis has a natural implication in 

taxonomy where objects bear similarity at different levels and join groups that are not 

necessarily horizontally comparable. An example is the classification of plants where 

genus, family and variety are groups formed at different levels of similarity. However, 

when studying clusters in social science data, researchers are often interested in parallel 

group structures that contain the entire dataset. This specific goal is achieved with 

another clustering method, optimization clustering.  

The goal of optimization clustering is to allocate optimally all objects into a few 

groups
53

 so that the aggregate distance within a group is small and the distance between 

groups is large. As this method provides a way to place individuals into flexible decision 

rule categories, and is straightforward and easily applicable to almost all behavioral 

datasets, we believe that the method bears relevance to the current discussion.  

We introduce optimization clustering by describing each step of the clustering 

procedure. It starts with distance measures which calculate how close and far apart an 

object (or a group) is from another object (or another group). Built on the distance 

measures, we then discuss a variety of (dis-)similarity indices developed to aggregate 

these distance measures for any particular group. Different similarity indices are then 

combined to become the goal of the maximization (or minimization) problem. We 

introduce these goals (also known as optimization criteria) one by one. Finally, we 

demonstrate how clustering algorithms, like k-means and k-median, provide quasi-

optimal solutions for the computationally impossible clustering problems. 

                                                 
53

 The number of groups is a choice variable for the researchers. Methods to choose the number of groups 
are discussed in Section 3. 
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II.1 Distance Measures 
The starting point of many clustering investigations is an n p  multivariate 

matrix X with n observations each of which are described with p distinct characteristics. 

For behavioral datasets, this can be interpreted as a matrix of n individuals with each 

individual having p descriptive variables, such as gender, age, choices, etc.  

A variety of distance measures have been proposed to measure quantitatively the 

distance between objects from a set of categorical or continuous observations (see, e.g., 

Jajuga et al, 2003). Categorical data are usually measured in terms of similarity, while 

continuous data are commonly measured in dissimilarity (or distance). These two types 

of measures are mostly interchangeable as they carry the same amount of information 

regarding distance. 

When individual measures are binary, one may use the Matching Coefficient or 

Jaccard Coefficient as a distance measure. For each pair of individuals, the following 

table counts the matches and mismatches in the p variables. 

 

Table 6 Counts of matches and mismatches for two individual i and j 

  Individual j 

  1 0 Total 

Individual 

i 

1 a b a+b 

0 c d c+d 

Total a+c b+d p=a+b+c+d 

 

The Matching Coefficient approach simply calculates the ratio of one-one and 

zero-zero matches over the total number of characteristics p. 

ijs =(a+d)/(a+b+c+d)                                                                    (20)  
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Alternatively, the Jaccard Coefficient ignores the zero-zero matches when 

calculating the similarity. Therefore, the Jaccard Coefficient is: 

ijs =a/(a+b+c)                                                                    (21)  

This is particularly useful when the absence of a large number of attributes may 

not necessarily lead to a high degree of similarity. For example, in biology, lacking 

similar attributes when comparing certain plants with certain insects does not lead to a 

high degree of similarity between them. Therefore, the principle to choose between the 

above two coefficients depends on the characteristics of the variables. When co-absence 

is considered informative, one may use the Matching Coefficient, otherwise the Jaccard 

Coefficient should be used
54

. 

When each variable has more than two categories, the similarity measure sijk is 

constructed for each variable: when two individual i and j are the same on the kth 

variable, sijk equals one, and is zero otherwise. The measure is then averaged over all p 

variables. The over-all similarity measure between individual i and j is calculated as: 

p

ij ijk

k=1

1
s = s                                                                   (22)

p
  

Alternatively, one can also divide multiple categories into two subsets, then 

convert the original data into binary datasets and finally apply the Matching Coefficient 

or Jaccard Coefficient approach as in equation 2 and 3. However, whether it is proper to 

divide categories into two subsets may depend on the specific dataset and the research 

question one wishes to address. 

                                                 
54

 Similar coefficients have been proposed by Rogers and Tanimoto (1960), Sneath and Sokal (1973) and 
Gower and Legendre (1986). Their proposed coefficients vary the weight on the mismatches. 
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When each individual has their characteristics measured as a continuous variable, 

distance between two individuals i and j are typically quantified by a dissimilarity index 

dij. A variety of dissimilarity measures are proposed, among which Euclidean distance is 

the most commonly used one:  

1/ 2

2

1

( )                                                            (23)
p

ij ik jk

k

d x x


 
  
 
  

where ikx
 and jkx

 are, respectively, the kth variable value of the p-dimensional 

observations for individual i and j. This distance measure has the appealing property that 

the dij can be interpreted as physical distances between two p-dimensional points 

1 2( , ... )i i i ipx x x x
and 1 2( , ... )j j j jpx x x x

 in Euclidean space. Alternatively, city block 

distance measures the dissimilarity of individuals on a a rectilinear configuration
55

. 

1

                                                                      (24)
p

ij ik jk

k

d x x


   

Where ikx
 and jkx

 are defined in the same manner as it is in Euclidean distance. 

Both of the above two measures are special cases of the general Minkowski distance with 

r=2 and r=1 respectively: 

1/

1

   (r 1)                                                   (25)

r
p

r

ij ik jk

k

d x x


 
   
 
  

In some cases, the data may contain both categorical and continuous variables. It 

is possible to construct a single measure by combining distance measures either with or 

without certain weighting function.  

                                                 
55

 It is also known as the Manhattan distance or taxicab distance as it is measures the travelling distance 
between two points on the street when city blocks are organized chess-board style. 
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Notice that even though the distance measures mentioned above for categorical 

data are measuring distance in similarity while those for continuous data is in 

dissimilarity, in most cases, these two measure are interchangeable using the following 

formula
56

: 

1                                                        (26)ij ijd s   

In the following discussion, we assume the distance is measured in, or has been 

converted to, dissimilarity. 

II.2 dissimilarity index 
Whichever distance measure one may choose, one can form the dissimilarity 

matrix D by stacking the distance between all pairs of objects. In behavioral datasets, 

therefore, each row or column of a dissimilarity matrix corresponds to an individual. 

Each entry reflects a quantitative measure of dissimilarity between a particular pair of 

objects.  

An informative clustering should include groups such that the distance between 

objects in the same group is small, while the distance between groups is large. Based on 

this simple principle, a variety of so-called “dissimilarity indices” (formed by taking 

combinations of distance measures) have been suggested.  

With 
qk

lvd
 defined as the dissimilarity between the lth object in the qth group and 

the vth object in the kth group, the following equations gives a simple example of an 

index that measures heterogeneity within group m: 

                                                 
56

 Gower (1966) showed that if a similarity matrix S, with element sij, is nonnegative definite, then the 
matrix D, with elements dij defined by equation 5 is Euclidean. 
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2

1

1 1,

( ) ( )                                                                    (27)
m mn n

mm

lv

l v v l

h m d
  

   

Intuitively, this index is the sum of squared dissimilarities between two objects 

that belong to the same group m.  

Another commonly used similar index measures the sum of squared 

dissimilarities between an object in a cluster group m and the mean of objects in group m. 

It is also known as the trace of within-group dispersion matrix
57

. This index comprises 

the foundation for the k-means clustering algorithm which we will discuss later. 

2

2

1 1

1
( ) ( )                                                           (28)

2

m mn n
mm

lv

l vm

h m d
n  

   

The final index we note here uses the smallest sum of distances to quantify 

dissimilarity of a group: 

mm

3
1,...

1

( ) min                                                                (29)
m

m

n

lv
v n

l

h m d




 
  

 
  

where a reference object v is connected with all other objects in the group m to 

form a star, which then determines the sum of distance of the group. Since the smallest 

sum of distance is achieved when the reference object v is at the center of the group, the 

index is often referred to as the “star index”. h3(m) index is used in the k-median 

algorithm.  

All three indices mentioned above measure the dissimilarity within the group m 

and ignore the information about the distance between group m and other groups. 

Separation indices are designed to capture this information. One commonly used 

                                                 
57

 The dispersion matrix is derived from multivariate matrix X directly without constructing the 
dissimilarity matrix D. These two methods are mathematically equivalent, hence we omit the discussion of 
the other method. 
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separation index takes form h1(m) but now instead of summing over within group 

distance, the distance dml,kv captures the dissimilarity between the object l from group m 

and the object v from a different group k. 

2

4

1 1

( ) ( )                                                                    (30)
m kn n

mk

lv

l k m v

h m d
  

  

As separation indices are mostly capturing the same information as in 

dissimilarity indices
58

 and that the current computer algorithms tend to use the latter, we 

will refer readers who are interested in other separation indices to Everitt et al (2010). 

II.3 clustering criteria 
Having chosen an index to represent a group’s dissimilarity, clustering criteria can 

be defined by aggregating these group measures over all groups. The aggregation can be 

defined as the sum of dissimilarity over all groups as in 1( , )c n g
, or as the maximum or 

minimum dissimilarity among groups as in 2 ( , )c n g
or 3( , )c n g

 below: 

1

1

( , ) ( )                                                          (31)
g

m

c n g h m


  

2
1,...

( , ) max [h(m)]                                                     (32)
m g

c n g


  

3
1,...

( , ) min [h(m)]                                                     (33)
m g

c n g


  

One of the most commonly used clustering criteria combines 1( , )c n g
 with 

dissimilarity index 2 ( )h m
to represent the total sum of within group dissimilarity. The 

criterion can also be shown equivalent to the within-group sum-of-squares criteria 

derived directly from the n p  multivariate matrix X.  

                                                 
58

 Roughly speaking, the sum of squared distance of the sample comprises two parts: the within group 
sum of squares and the between group sum of squares. Since the total sum of squared distance is 
constant, minimizing within group sum of squares, the dissimilarity index mentioned earlier, is equivalent 
to maximizing the between group sum of squares, the separation index. 
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* 2

1 2

1 1 1 1 1

( , ) ( ) ( ) ( ) ( )            (34)
m mn ng g g

mm m m m m

l l l

m m l m l

c n g h m d x x x x
    

        

Intuitively, when the above 
*

1 ( , )c n g clustering criterion is minimized, agents put 

into the same cluster share descriptive variables most similar to each other as compared 

to when they are allocated based on any other alternative clustering outcome. 

There are a few features of the above clustering criterion of which any user should 

be aware. First, the method is scale dependent. For data that contains variables measured 

on different scales, one may reach different solutions from the same raw data 

standardized in different manners. Second, this clustering criterion imposes a “spherical” 

structure on the clusters and is unlikely to find clusters of other shapes, for example, 

agents that are separated into a few layers. Other clustering criteria exist to circumvent 

these two features
59

. However, any clustering approach has its advantages and 

disadvantages, and one must evaluate approaches within the context of particular 

applications.  

II.4 iterative algorithms—k-means and k-median clustering 
Ideally, one would consider all combinations of objects and choose the one that 

yields the lowest dissimilarity index within each group
60

. However, when the number of 

objects is large, it becomes infeasible to do this. Indeed, Liu (1968) provides the exact 

number of possible partitions one must consider in order to cluster n objects into g 

groups: 

                                                 
59

 Attempts to create clustering criteria less restrictive regarding the cluster’s shape include Scott and 
Symons(1971), Symons(1981), Murtagh and Raftery(1984), Banfield and Raftery(1993) and Celeux and 
Govaert(1995) 
60

 Indices that measure the separation between groups are also used in many other methods. We refer 
interested readers to Everrit et al (2011) 
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( , ) ( 1)                                                       (35)
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That is, in order to partition 100 network agents into 5 groups, the number of 

possible combinations to examine is about 
676.6 10 . The task becomes impossible even 

with modern computational power when the population under analysis comprises 

hundreds, if not thousands, of agents. This excessive computational burden has led 

scholars to develop numerical search algorithms to approximate clustering solutions. 

Here we review the two most commonly used numerical algorithms, k-means and k-

median, both of which involve iterative updating processes for partitions and group 

centroids. 

 K-means algorithm: 

As stated in its name, the k-means algorithms emphasize the mean of the clusters. 

Generally speaking, all k-means algorithms involve iterative updates of clusters by 

simultaneously relocating objects into the cluster whose mean is closest and then 

recalculating cluster means. Particularly, all k-means algorithms contain the following 

four steps: 

(1) g initial seeds are defined for each cluster by a p-dimensional vector, 

1 2( , ,..., )m m m m

px x x x
where 

m

kx
 stands for the kth characteristic of the initial seed of 

cluster m. The squared Euclidean distance between the ith object and the initial seed of 

cluster m is simply calculated as:  

2 2

1

( )                                                   (36)m

p
m

ik kix
k

d x x


   
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By comparing the result of equation (X) for an object with each initial seed (there 

are g of them), we allocate the object to the cluster where the result is minimized.  

(2) After all objects have been allocated to one cluster or another, the mean of the 

cluster is obtained by taking average over all objects that falls into each cluster. This is 

done for each dimension of the p characteristics: 

1 2( , ,..., )                                      (37)m m m m

px x x x  

The above mean of clusters 
mx  can then replace the initial seeds 

mx and be used 

to calculate the squared distance between each object and each cluster centroid as in 

equation (X). Objects are again moved to the cluster which yields the lowest squared 

distance measure. 

(3) The step (2) is repeated. For each repetition, the old cluster mean is replaced 

by the one calculated from the latest membership. The process repeats until no objects 

change membership. 

Although all k-means algorithms attempt to minimize within-group sum of 

squared deviations from (group) mean, they may differ from each other in details. 

Depending on the specific dataset used, these differences may have substantial impact on 

the clustering results
61

. Here we trace a few important differences of these most popular 

algorithms. 

First, the methods of initialization affect the final clustering results. The simplest 

suggestion, currently used in SPSS, chooses g random data points as initial cluster seeds 

                                                 
61

 We have found substantial differences in K-means clustering results produced by the standard packages 
in Stata, R and Matlab. We traced it to differences in the specific numerical algorithms used by each 
package.  
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(MacQueen, 1967). A slightly different method randomly partition all data points into g 

mutually exclusive groups and use the group mean as initial seeds (Steinley 2003). These 

two methods both rely on the random process, therefore may yield a different clustering 

result each time the algorithm is performed.  

Various deterministic methods also exist. Astrahan (1970) suggest a two 

parameter method as follows: before initialization, two distance d1 and d2 are specified. 

Then for each data point, a density index is calculated as the number of objects that are 

less or equal to d1 distance away from the object. The object that yields the highest 

density is selected as the first seed. Objects that are within the distance of d2 to the first 

seed are removed from the consideration. A second seed is selected if it has the highest 

density among the remaining objects. The objects that are within distance d2 to the 

second seeds are removed. The process continues until all g seeds are determined. A 

similar process was suggested by Ball and Hall (1965) and implemented in the PROC 

FASTCLUS procedure in SAS. Although other types of random or deterministic 

processes exist (see Milligan, 1980 and Bradley and Fayyad 1998 for examples), Steinley 

(2003) suggest that the most robust method that outperform most of the arbitrary 

initialization rules is to use multiple random restarts (in order of thousands) and pick the 

one result that gives the smallest clustering criteria value. Kmeans package in R allow the 

user to specify the number of restart. 

Second, to further minimize the squared distance as in equation (X), some 

algorithm suggests to introduce an additional stage of single-object reallocation process 

after the group reallocation has been settled (Spath, 1980; Hartigan and Wong, 1979). 
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Specifically, after performing the standard iterative process (1)-(3) mentioned above, if 

there is an object in cluster m such that 

2 2( ) ( )                                           (38)
1 1

mm mmm m
i i

m m

n n
d d

n n






 

 

The object i should be moved from cluster m to cluster m’ and the squared 

distance (as in equation (X)) is reduced. The objects will be checked and moved if 

necessary one after another until no further improvement can be achieved by this 

process
62

.  

 K-median algorithm: 

In more recent years, the k-median algorithm has received increasing attention 

(Kaufman and Rousseeuw, 1990; spath, 1985; Hansen and Jaumard, 1997; Kohn et al, 

2010). This algorithm relocates an object to a group whose median is the closest to it 

according to certain distance measure. Numerically, the specific clustering procedure 

proceeds like k-means except that the clustering criteria in equation (6) is replaced by 

*

2

1 1

( , ) ( )                                                   (39)
mng

m m

l

m l

c n g x x
 

   

Where 
mx  refers to the median vector of the mth cluster. The original idea of 

using median instead of mean is to reduce the influence of outliers. However, Garcia-

Escudero and Gordaliza (1999) pointed out that k-median method can also be as affected 

by outliers as k-means since the “joint” selection of two medians are unlikely to be as 

robust in terms of centralization as when only one random variable is involved. 

                                                 
62

 The kmeans package in Matlab and R adopt this two-phase iterative algorithm. 
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Variations of k-median algorithm also exist in terms of how initial seeds are 

selected and how objects are swapped between clusters. PAM (Partitioning Around 

Medoids), developed by Kaufman and Rousseeuw (1990) and implemented in the pam 

package of R language, is one of the most popular one. The algorithm sets the objective 

function as the sum of distance between each object and its nearest medoid. The initial 

seeds in PAM are chosen by a greedy built phase
63

 where the seed is added one after 

another and only the one that brings the largest improvement on the objective function 

will be selected.  

Once the built phase completes, a multi-iteration swapping stage begins. For each 

iteration, a medoid object i and a non-medoid object j will be selected that brings the 

largest improvement on the objective function if i and j are switched. The iterations 

continue until no improvement is possible. Since in both built phase and swapping phase, 

there are many pairs of objects to go through to find the largest improvement, the original 

PAM algorithm is very time consuming with large dataset and increasing number of 

clusters
64

.  

III. Methods for choosing the number of clusters 
Independent of the choice of clustering criteria and algorithms introduced above, 

one also needs to choose the method to determine the number of clusters. The past 

literature has recommended many methods that are algorithmic, graphical or formulaic. 

                                                 
63

 In programming, greedy algorithms refer to the ones that are based on heuristics who find locally 
optimal choice. 
64

 The same authors also developed a similar but less deterministic method CLARA (Clustering LARge 
Applications), implemented in R language. This method could reduce the computing time significantly 
when a dataset is large. Meanwhile, STATA implements its cluster kmedians command in a similar way as 
in the basic k median algorithm as described at the beginning of this subsection. 
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All of these methods are based on some logical heuristics. To judge which method is 

better at recovering the number of clusters, Milligan and Cooper (1985) conducted a 

Monte Carlo analysis to compare 30 of the most popular ones and concluded that the top 

performer is the one suggested by Calinski and Harabasz (1974) (which we denote by C-

H)
65

. Another popular method readily available in many commercial packages is 

Silhouette Width. The output of this method includes a visualization giving direct clue on 

the performance of clustering under different numbers of clusters. We review Silhouette 

Width in this paper as well. 

III.2 C-H index 
C-H (1974) suggested that the optimal number of clusters, g*, should maximize 

the following value C(g): 

( ) ( )
( )                                                     (40)

1

trace B trace W
C g

g n g


 
 

where  

1

( )( )                                                         (41)
g

m m

m

m

B n x x x x


    

representing the between-group dispersion matrix, and 

1 1

( )( )                                                      (42)
mng

m m m m

l l

m l

W x x x x
 

    

representing the within-group dispersion matrix, both of which derive from the 

original multivariate matrix X.  

  

                                                 
65

 Another successful technique developed by Duda and Hart (1973) works with hierarchical cluster 
methods. The network data do not fit these types of cluster analysis. 
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III.3 Silhouette Width 
The Silhouette Width index is first mentioned in Rousseeuw(1987). His paper 

argues that due to the absence of visualization for the quality of cluster, it is hard to tell 

whether an object is well-classified or misclassified. He then proposed the index and the 

plot of Silhouette Width to visualize the quality of cluster. Interestingly, the Silhouette 

Width Index has become increasingly popular as a way to choose the number of clusters 

and has been adopted by most commercial packages along with the Calinki-Harabatz 

Index we introduced above. 

For a given clustering result, the Silhouette width indices, denoted by s(i), are 

calculated for each object i=1,2,…,n, which are then combined into a Silhouette plot. 

Individual silhouette width s(i) is defined as: 

( )
( ) ( )( )

( )
( ) ( )( )

1 1
min ( , ) ( , )

( )                                   (43)
1 1

max[ ( , ), min ( , )]
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k C j i
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j i k C

d i k d i j
n n

s i

d i j d i k
n n


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
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



 

 
 

where M(i) refers to the cluster that contains object i, nM(i) refers to the number of 

objects in cluster M(i) and C refers to any cluster other than M(i).  

The first term in the numerator refers to the minimum average distance of an 

object to all members of another cluster. It calculates the average distance from i to all 

members of an arbitrary cluster C. After the average distance is calculated for all 

arbitrary clusters, the closest cluster (in terms of distance to object i) is used. 

The second term in the numerator refers to the within cluster average distance for 

object i. The term simply calculates the distance between object i and each other object in 
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the same cluster and then takes an average. The denominator is the maximum of the two 

terms that appear in the numerator. 

From the above formula, it is easy to see that s(i) would increase as object i is 

closer to other objects in the same group and farther away from objects in other groups. 

However, more characteristics of the index are revealed by evaluating s(i) under three 

different conditions.  

First, note that if 

( )
( ) ( )

( )

1 1
( , ) min ( , )

c m i
j m i k m im c
j i k m c

d i j d i k
n n

 
 

 
, then s(i) can be simplified 

as 

( )

( )
( )
( )

1
( , )

1
1

min ( , )

j m im
j i

c m i
k m ic
k m c

d i j
n

d i k
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











 .That is s(i) is always positive and approaches 1 as the measure 

of within dissimilarity (the numerator) is much smaller than the measure of the smallest 

between dissimilarity (the denomenator).  

Similarly, consider the opposite case where 

( )
( ) ( )

( )

1 1
( , ) min ( , )

c m i
j m i k m im c
j i k m c

d i j d i k
n n

 
 

 
. 

Under this condition, s(i) can be simplified as 

( )
( )
( )

( )

1
min ( , )

-1
1

( , )

c m i
k m ic
k m c

j m im
j i

d i k
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d i j
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









, which is always a 

negative number and approaches -1 if within dissimilarity is large and the between 

dissimilarity if small. That is to say that the silhouette width index defined as in 
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Rousseeuw(1987) is an index between -1 and 1 with a higher positive number indicating 

a better clustering quality. 

In practice, one should choose the number of clusters that maximizes the average 

Silhouette Width across all objects. 

VII. Summary 
Cluster analysis is an intuitive method to analyze complicated data sets. Without 

making assumptions on the properties of the data, the method divides observations into 

small number of groups based on patterns of similarity. We reviewed the key procedure 

of cluster analysis in this paper. First, we reviewed several distance measures that fit for 

different types of measures (binary, categorical or continuous). We then illustrated how 

distance measure can be combined into (dis-)similarity matrix and how these matrices are 

further used in forming clustering criteria. We also discussed the detail of two popular 

algorithms: k-means and k-median. Finally, we reviewed two indices, Calinski-Harabatz 

Index and Average Silhouette Width, used to discover the number of clusters prior to the 

implementation of cluster analysis. We argue that the decision data from laboratory 

experiments are often generated by complex behavioral rules that can be difficult to 

specify a priori. Therefore, these data may particularly benefit from clustering methods.  
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