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Abstract

RANDOMIZATION TESTS IN RANDOMIZED CLINICAL TRIALS

Yanying Wang, PhD

George Mason University, 2019

Dissertation Director: Dr. William F. Rosenberger

A clinical trial is a medical experiment using human volunteers. It is a highly controlled process

required by the U.S. Food and Drug Administration in the research and development of medical

innovations. From development to approval, an innovative therapy needs to go through up to four

phases of clinical trial, which might take a considerable amount of human resources and investment.

The key component of a phase III clinical trial is randomization, or the use of probability to assign

treatments to patients. Randomization assists in mitigating certain biases and is the basis for valid

statistical inference.

In this dissertation, we examine the randomization test, an inferential approach which inte-

grates and utilizes the experimental randomization in the evaluation of the treatment difference.

Randomization-based inference was introduced as the method of analyzing randomized experiments

since the formal introduction of the logic of experimentation, pioneered by Sir R. A. Fisher in the

1920s. The utility of the randomization test lies in the non-circumstantial statistical validity and the

connection of statistical properties to the randomization. However, the computational limitations

rendered the method infeasible in the early days, and statistical analysis was mostly formulated on

the basis of the normal distribution and random sampling as a matter of approximation. Because

it has been largely ignored in practice, other inferential methods which may not possess the same

statistical properties have been mistaken for the randomization test, including the permutation test.



Today, it has become a convention to present the study conclusions using statistical inference based

on the invocation of a (parametric) population distribution function.

We will develop (i) a theoretical framework of randomization tests in terms of the hypothesis,

the random mechanism, the reference set, (ii) an exploration of the statistical properties including

the statistical validity and the power of the test under various models of variability in the patient

responses, and (iii) a solution to the computational complexity, particularly in the analysis of multi-

armed clinical trials. Further, we will discuss the randomization-based interval estimation. We

will contextualize the definition of a confidence interval for the treatment difference and examine

efficient algorithms for computing an interval estimate. We conclude that randomization-based

inference is adaptable to nearly any primary outcome analysis, and should be used as a matter of

course.



Preface

The Pursuit of Knowledge and the Scope of Science

On 5 July 1687, Sir Isaac Newton published work that is considered to be one of the most important

works in the history of science. Interestingly, he named it “Mathematical Principles of Natural

Philosophy” (i.e., Philosophia Naturalis Principia Mathematica). In contemporary English usage,

the word philosophy may have the connotation of theoretical lucubrations with no substantial basis.

Nevertheless, in this context, philosophy constitutes definitive conclusions and insights based on

knowledge acquired from verifiable sources. The word science comes from Latin word scientia

which means knowledge or to know, whereas philosophy comes from Latin word philosophia which

means love of knowledge. It was not until 1833 that the word scientist came into being.

Science is essentially a quest for objective and meaningful knowledge, an endeavor in making

sense of the phenomena happen in the nature. Science magazine, in its 125th anniversary issue,

published a special feature exploring 125 big questions that face scientific inquiry over the next

quarter-century. Among them, the top two questions are “What is the universe made of?” and

“What is the biological basis for consciousness?” If we understand what the universe is made of

and where it comes from, that will provide a sense of meaning. And if we understand the basis for

consciousness and our position in the universe, that will provide a sense of purpose. Before start-

ing any scientific inquiry (e.g., what makes an apple fall to the ground?), the implicit suppositions

made a prior are three. First, events do not take place without order; nature follows laws. Sec-

ond, these laws can be expressed mathematically. Third, we conceive mathematics in the way that

we experience nature. It is mysterious that why there is order in nature and, further, that why ob-

servable phenomenon within nature are understandable through the constructions of mathematics,

which essentially are abstract symbols in human mind and have no direct correlation with natural
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phenomenon. As Albert Einstein remarks, “The most incomprehensible thing about the universe is

that it is comprehensible.”

Empirical science looks for natural explanations for natural phenomena. Its primary object is

the measurable properties of nature, such as height, weight, speed, and so forth. And those that

are non-measurable are considered to be secondary. By this focus, science can phrase things in the

language of mathematics, come up with equations, and make manipulations. However, what science

takes as the primary does not comprise our primary experience of the world. For example, medical

science is, at one level, meant to free people from pain and provide health. Despite its phenomenal

advancements, an objective measure for pain has not been defined. Doctors can characterize a

fracture by measuring the degree to which the bone bends. But there is no clue for how to put a

measure with a defined unit on the amount of pain a patient with a fractured bone undergoes. The

same conundrum is encountered when it comes to health. While there are stacks of measurements

associated with health to make indirect inferences, health itself is not something quantifiable. In

fact, an indispensable part of human experience is beyond the scope of measurements to quantify. It

is not possible to introduce to a friend how delicious the food is by enumerating the amount of salt,

sugar, and oil, or how extraordinary a person is by listing his height, race, and occupation.

The perspective science took looking at nature leaves out the non-measurable parameters in na-

ture. And by focusing on the measurable parameters, we have been able to achieve external control

at an extraordinary level. But the internal platform, in terms of the non-measurable parameters that

are subjected to direct experience, have become mismanaged, just as a smart phone equipped with

state-of-the-art hardware yet corrupted software cannot be enjoyed by the user. We observe that

soldiers fighting on the battlefields embrace the scarcities in health and food, whereas people living

in luxury become irritated if they miss even one meal. It is a sense of enduring practical meaning

and purpose that raises the attention of the soldiers above the physical conditions, grants the liberty

to adjust what to be considered as pleasant or unpleasant, and give rise to momentum and whole-

someness. In summary, the importance of empirical science to social achievement is undeniable:

Clinical trials are scientific research for the evaluation of innovations in medical care with respect

to efficacy and safety, and have been the seminal element of the development of modern medicine.

2



Understanding the spontaneous need for knowledge, enlightenment, and well-being as well as the

scope and focus of empirical scientific researches, we hope to contextualize and bring out what

empirical researches can offer, analyze, and do to help in the pursuit.
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Chapter 1: Introduction and Literature Review

1.1 Randomization as a Basis for Inference

1.1.1 Randomization in Clinical Trials

Perhaps the first recorded clinical trial was reported in the Book of Daniel, where four subjects

were compared with respect to the benefit of a vegetarian diet on health. Such a study today would

be inadequate in developing scientific conclusions. In the realm of clinical trials, it is desired that

evidence-based inference derived from one study yield a reliable standard for future treatment deci-

sions in serving the best care of patients. Being comparative experiments, clinical trials move from

expanding the quantity of evidence to enhancing the quality of evidence. The highest level of scien-

tific evidence in evidence-based inference of treatment effectiveness is generated by the randomized

clinical trial, first designed by Sir Bradford Hill in 1946 in the streptomycin trial (Armitage, 2003),

and is currently acknowledged golden standard in medical disciplines. Randomization in clinical

trials entails randomized allocation of patients to the treatments being studied. It is the implemen-

tation of randomization that makes the evidence the golden standard.

The idea of randomization as an imperative experimental principle can be traced to Sir R. A.

Fisher at the Rothamsted Agricultural Experiment Station in the early 20th century. The “patients"

were plots of agricultural land planted with crops, or vegetables, or grass, and the “treatments”

were varieties of agricultural interventions (Kempthorne, 1992). Fisher writes in his The Design of

Experiments about the purpose of randomization with regard to the principles of experimentation

(quoting from Kempthorne (1966)) :

In the foregoing paragraphs the subject-matter of this book [the principles of experi-

mentation] has been regarded from the point of view of an experimenter, who wishes to

carry out his work competently, and having done so wishes to safeguard his results, so

4



far as they are validly established, from ignorant criticism by different sorts of superior

persons.

The element in the experimental procedure which contains the essential safeguard, is

that the two modifications of the test beverage are to be prepared ‘in random order.’

As it is pointed out by Fisher, there are two purposes of incorporating the randomization principle:

for the experimenters to carry out the experiment competently and to “safeguard his results from

ignorant criticism by different sorts of superior persons.”

Later, when Sir Bradford Hill expanded the randomization principle from agricultural exper-

iments to clinical trials, his advocacy to physicians who were eager to conduct reliable research

emphasized the mitigation of selection bias by inducing unpredictability in treatment allotment.

Selection bias refers to the bias that is introduced by investigators who may predict the future treat-

ment assignment based on assignments that have been allotted and thus, intentionally or uninten-

tionally, choose patients based on their personal idiosyncrasies. In the presence of selection bias,

the objectivity of a clinical trial can be seriously compromised. We cite from Armitage (2003) the

justifications for randomization given by Hill in 1952:

It ensures that neither our personal idiosyncrasies (our likes or dislikes consciously or

unwittingly applied) nor our lack of balanced judgement has entered into the construc-

tion of the different treatment groups-the allocation has been outside our control and

the groups are therefore unbiased;

. . . it removes the danger, inherent in an allocation based on personal judgement, that

believing we may be biased in our judgements we endeavour to allow for that bias,

to exclude it, and that in doing so we may overcompensate and by thus ‘leaning over

backward’ introduce a lack of balance from the other direction;

. . . and, having used a random allocation, the sternest critic is unable to say when we

eventually dash into print that quite probably the groups were differentially biased

through our predilections or through our stupidity.
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Thus, randomization, as an intentional and systematic endeavor to design clinical trials in attain-

ment of the best possible scientific evidence, helps to provide scientific validity. Further, if there is a

need to safeguard the validly established results from “ignorant criticism”, randomization accounts

for a coherent basis for making statistical inference. As it is explained by Fisher, for analyzing

or interpreting data from a randomized experiment, it is necessary to incorporate the experimental

randomization (quoting from Kempthorne (1966)):

In these discussions it seems to have escaped recognition that the physical act of ran-

domization, which, as has been shown, is necessary for the validity of any test of sig-

nificance, affords the means in respect of any particular body of data, of examining the

wider hypothesis in which no normality is implied.

This [the randomization], in fact, is the only point in the experimental procedure in

which the laws of chance, which are to be in exclusive control of our frequency distri-

bution, have been explicitly introduced.

The validity of our estimate of error for this purpose is guaranteed by the provision that

any two plots, not in the same block, shall have the same probability of being treated

alike, and the same probability of being treated differently in each of the ways in which

this is possible. The purpose of randomization in this, as in the previous experiments

exemplified, is to guarantee the validity of the test of significance. . .

1.1.2 Randomization-based Inference in Clinical Trials

Consider a trial that compares the effectiveness of treatment A with treatment B. From the random-

ization, nA and nB patients are allocated to their respective treatments. In analyzing data from the

trial, we observe variability in the measurements. The variability has two aspects; treatment differ-

ence and error. Error is the variability that is not attributed to the effect of treatments; it may due

to the act of measuring and the individuality of patients. This aspect makes the experimental re-

sults, even validly established, subject to “ignorant criticism”. Because a skeptical judge can insist

that the variability is caused, not by treatments, but by error, irrespective of the apparent experi-

mental evidence, which leads to an absurd conclusion that treatment effects cannot be examined by
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experiments (Kempthorne, 1992). To safeguard the results, a plausible way is, by referring to the

randomizing mechanism, to calculate the chance of such a statement being true. The smaller the

chance is, the more likely that the data will be inconsistent with the statement that the variability in

data is caused by error alone.

It is essential to contrast the random mechanism in randomization tests with classical likelihood-

based tests, such as the t-test, z-test, permutation tests, and so forth. In the randomization test,

the data are understood to be arithmetic numbers. The only random mechanism implemented by

the investigators in a randomized clinical trial is the act of randomization; patients are carefully

selected first through rigorous screening and a consent process so that they have similar relevant

characteristics. The classical likelihood-based tests, on the other hand, assume a different random

mechanism (Kempthorne, 1977):

A classical type pf analysis consists of an examination of the data in search of a “good”

model. In the simple case of data consisting of an unstructured set of arithmetic num-

bers, the first steps consist of constructing histograms, then recognizing that the set

of numbers is like a random sample from some simple mathematical distribution (e.g.

Gaussian, �2, Cauchy), and then applying procedures developed for random sampling

from the chosen distribution. If the data do not conform, in some senses, to one of

these simple distributions, one will consider transformations of the data to achieve an

acceptable status. . . one then proceed by estimating and constructing intervals on the

parameters of that Gaussian distribution.

However, as it is stated by Fisher, the basis for making statistical inference in this context is ran-

domization. The normal theory test can be useful only if the resultant p-value provides a good

approximation to that given by the randomization test (quoting from Kempthorne (1966)):

The vital principle has often been overlooked that the actual and physical conduct of an

experiment must govern the statistical procedure of its interpretation.

. . . conclusion [from the normal theory test] have no justification beyond the fact that

they agree with those which could have been arrived at by this elementary method
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[randomization test].

As with the t-test, its appropriateness to any particular body of data may be verified

arithmetically.

Kempthorne (1966) comments further:

In this context, at least, Fisher says the only way to enable the laws of chance to be

used in the interpretation of the experiment, is to introduce a chance mechanism in the

design and interpret the results in terms of the same chance mechanism. The use of

randomization in the design induces a conceptual population of possible results and the

observed result is considered in relation to this population.

To recapitulate, first, “tests of significance in the randomized experiment have frequently been

presented by way of normal law theory, whereas their validity stems from randomization the-

ory” (Kempthorne, 1955). Second, the act of randomization does not guarantee the validity of

population-based approaches. Third, the reliability of the inductive inference follows from an un-

biased experiment; otherwise, any invoked statistical formality that is meant to facilitate us to look

into the future can only be nominal.

1.2 Permutation Tests and Randomization Tests

In this section, we will present, from the perspective of mathematical theory, why incorporating

the randomization procedure is necessary in analyzing data from randomized clinical trials. It is

important to distinguish randomization tests from permutation tests.

1.2.1 Permutation Tests

A defect with regard to the random sampling viewpoint is that the population model for the data

in terms of parameters is unknown. Further, the validity of the statistical conclusions to future

patients such as estimates is conditioned on the model assumptions. “Permutation tests are tests

for the comparison of random samples from unspecified distributions” (Kempthorne, 1969). The
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feature that renders permutation tests attractive, especially when it is difficult to assume a proper

population model, is that they are distribution-free; that is, the distribution of a test statistic under

the null hypothesis is unrelated to the population distribution of patient responses.

Let y = (y
1

, . . . , yn) be the observed patient responses. Let Yn
/y be the set of all possible

permutations of patient responses conditioning on y. Here Yn
/y is the reference set for conditional

inference (Pesarin, 2001), where Y is the sample space. Assume that yi’s, i = 1, . . . , n, are inde-

pendently sampled from a distribution P , where P is from a nonparametric family of distributions

denoted by P . Then the probability density of y (with respect to some dominating measure ⇠),

denoted by f
(n)
P (y) =

Qn
i=1

fP (yi), is invariant with respect to permutation of the argument of y;

that is,

f
(n)
P (y

1

, . . . , yn) = f
(n)
P (yu1 , . . . , yun), (1.1)

where (u
1

, . . . , un) is a permutation of (1, . . . , n). However, if yi’s are not viewed as independent

and identically distributed, then we need to assume that property (1.1) holds true. This assumption

is termed as exchangeability of observed data with respect to groups (Pesarin, 2001).

Now, since all the permutations have a common likelihood, the likelihood ratio of any two

permutations is a constant regardless of the probability distribution of yi’s; that is,

f
(n)
P (y

0
)/f

(n)
P (y

00
) = 1, 8P 2 P,

given that y0,y00 2 Yn
/y. Therefore, conditioning on Yn

/y, y is uniformly distributed regardless of

P , provided that there are not tied values in y:

P (y = y

⇤ | Yn
/y) =

f
(n)
P (y

⇤
) · d⇠

P
y2Yn

/y
f
(n)
P (y) · d⇠

=

1

#[y 2 Yn
/y]

= 1/n!.

Based on this distribution, for a given treatment difference metric, the p-value of the null hypothesis
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is obtained by counting the number of permutations that result in equal or more extreme test statistic

values then the observed test. Since y is a set of sufficient statistics, conditioning on y allows for

making inferences about their distribution arising from family P . A rejection of the null hypoth-

esis that the probability distributions of the two treatment groups are identical implies a treatment

difference.

Therefore, assuming independent and identically distributed patient responses and condition-

ing on the set of sufficient statistics y, the reference set for conditional inference is comprised of

equiprobable elements. Consequently, the distribution-free property and the flexibility in choosing a

test statistic is obvious. Yet, the permutation test ignores the distribution of the treatment assignment

sequence derived from the randomization procedure. The only function of the observed treatment

assignment sequence is to partition the patient responses into two treatment groups. Any discussion

on the type I error rate and the statistical power has no connection to the randomization.

1.2.2 Randomization Tests

In randomization tests, the collection of outcome data are viewed as arithmetic numbers, as opposed

to as if a realization of random samples from a population distribution (Kempthorne, 1977, 1992).

The structure of the randomization test consists of three components: the hypothesis, the reference

set, and the distribution of the test statistic. The null and alternative hypotheses in the randomiza-

tion test are simple; the null states that the treatments are independent of patient responses. The

alternative hypothesis, on the other hand, is not simply a complement of the null hypothesis, but is a

specification of the treatment difference on an individual level. The reference set holds a prominent

position in the testing structure, because the distribution of the treatment assignment sequences is

derived from the set, and, more importantly, the distribution test statistic is derived from the set. We

illustrate the structure through the following examples.

Consider a two-armed randomized clinical trial comparing the treatment difference among four

patients. At the end of the trial, the data are collected and organized in the table below (Table 1.1).

From the table, the first patient was assigned to treatment A and gave a response of y
1

, the second

patient was assigned to treatment A and gave a response of y
2

, and so forth. The third column
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Table 1.1: Data structure of a two-armed randomized clinical trial with four patients.
Patients responses Treatment assignment sequence Probability

y t P
�

{T = t}

y1, y2, y3, y4 A,A,A,B p1

in the table is the probability of the treatment assignment sequence (A,A,A,B) being sampled

using the randomization procedure. To determine the statistical significance of a hypothesis based

on the experimental data, we need to find out what the patient responses are when duplicating the

completed trial by re-randomization. This is possible with the help of a hypothesis.

The null hypothesis assumes that patient responses are unrelated to the treatments. In other

words, under the null, patient responses for any treatment assignment sequences in the reference set

are copied from the original responses without any alteration (Table 1.2). The second column in the

table lists the treatment assignment sequences that could have been generated by the randomization

procedure. The third column contains their corresponding probabilities given the randomization

procedure. From this table, the probability distribution of the test statistic can be derived. For

instance, consider the difference in means statistic. From the patient responses and the their treat-

ment assignments, the values of the difference in means can be obtained, and their probabilities are

determined by the randomization procedure (Table 1.3).

Under an alternative hypothesis, the probability distribution of the difference in means is sim-

ilarly derived. Suppose an alternative hypothesis states that treatment A has a constant additive

effect (denoted by �) on the patient responses in comparison to treatment B. That is to say, if a pa-

tient from treatment A were re-randomized to treatment B, the response would be decreased by �.

Likewise, if a patient from treatment B were re-randomized to treatment A, the response would be

increased by �. Therefore, under the alternative, a new set of patient responses can be determined

for any treatment assignment sequence in the reference set (Table 1.4). Thus, the distribution of the
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Table 1.2: Reference set of a randomized clinical trial with four patients and randomization proce-
dure � and the patients responses under the null hypothesis.

Patients responses Treatment assignment sequence Probability
y t P

�

{T = t}

y1, y2, y3, y4 A,A,A,B p1

y1, y2, y3, y4 A,A,B,A p2
y1, y2, y3, y4 A,A,B,B p3
y1, y2, y3, y4 A,B,A,A p4
y1, y2, y3, y4 A,B,A,B p5
y1, y2, y3, y4 A,B,B,A p6
y1, y2, y3, y4 A,B,B,B p7

. . . . . . . . .

Table 1.3: The probability distribution of difference in means statistic under the null hypothesis.
Patients responses Treatments Difference in means Probability

y t ȳ
A

� ȳ
B

P
�

{T = t}

y1, y2, y3, y4 A,A,A,B (y1 + y2 + y3)/3� y4 p1

y1, y2, y3, y4 A,A,B,A (y1 + y2 + y4)/3� y3 p2
y1, y2, y3, y4 A,A,B,B (y1 + y2)/2� (y3 + y4)/2 p3
y1, y2, y3, y4 A,B,A,A (y1 + y3 + y4)/3� y2 p4
y1, y2, y3, y4 A,B,A,B (y2 + y4)/2� (y1 + y3)/2 p5
y1, y2, y3, y4 A,B,B,A (y1 + y4)/2� (y2 + y3)/2 p6
y1, y2, y3, y4 A,B,B,B (y2 + y3 + y4)/3� y1 p7

. . . . . . . . . . . .

difference in means under the alternative hypothesis is determined (Table 1.5).

The p-value of the hypothesis is constructed as follows. For a given test statistic S(·), it repre-

sents the likelihood of observing a test statistic that equals or exceeds the observed value sobs. when

duplicating the already complemented trial by re-randomization. The value is determined as

p =

X

t2⌦
I
(S(t,y)�sobs.|H)

P�{T = t},
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Table 1.4: Reference set of a randomized clinical trial with four patients and randomization proce-
dure � and the patients responses under the alternative hypothesis

Patients responses Treatment assignment sequence Probability
y t P

�

{T = t}

y1, y2, y3, y4 A,A,A,B p1

y1, y2, y3 ��, y4 +� A,A,B,A p2
y1, y2, y3 ��, y4 A,A,B,B p3

y1, y2 ��, y3, y4 +� A,B,A,A p4
y1, y2 ��, y3, y4 A,B,A,B p5

y1, y2 ��, y3 ��, y4 +� A,B,B,A p6
y1, y2 ��, y3 ��, y4 A,B,B,B p7

. . . . . . . . .

Table 1.5: The probability distribution of difference in means statistic under the alternative hypoth-
esis (color blue denotes the responses come from treatment B).

Patients responses Difference in means Probability
y ȳ

A

� ȳ
B

P
�

{T = t}

y1, y2, y3, y4 (y1 + y2 + y3)/3� y4 p1

y1, y2, y3 ��, y4 +� (y1 + y2 + y4 +�)/3� (y3 ��) p2
y1, y2, y3 ��, y4 (y1 + y2)/2� (y3 ��+ y4)/2 p3

y1, y2 ��, y3, y4 +� (y1 + y3 + y4 +�)/3� (y2 ��) p4
y1, y2 ��, y3, y4 (y2 ��+ y4)/2� (y1 + y3)/2 p5

y1, y2 ��, y3 ��, y4 +� (y1 + y4 +�)/2� (y2 ��+ y3)/2 p6
y1, y2 ��, y3 ��, y4 (y2 ��+ y3 ��+ y4)/3� y1 p7

. . . . . . . . .

where ⌦ denotes the reference set and H denote the hypothesis tested. If H is the null hypothesis,

the p-value is used as the standard comparator to the type I error rate to judge statistical power.

However, the construction under the an alternative hypothesis can be used to determine interval
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estimate for �. In the randomization test, the experiment itself forms a population and the patient

responses does not represent a random sample from a patient population.

Even if inference been placed in the framework of patient population and random sampling, the

randomization test still has its validity as a likelihood ratio test, and the p-value is determined by

the reference set alone. We demonstrate this point via a test of the null hypothesis. In a permutation

test, patient outcomes y are regarded as a realization of random variables while the probability dis-

tribution of the treatment assignments t is not considered. A more holistic perspective for analyzing

data from clinical trials is to view both y and t as random variables. Let X = (T ,Y ) be a random

vector, where T = (T
1

, . . . , Tn) is the treatment assignment sequence and Y = (Y
1

, . . . , Yn) is the

patient responses. The distribution of T , denoted by P�, is derived from the randomization proce-

dure. The distribution of Y , denoted by probability measure P with density fP (y), is unknown.

Let fX(x) be the probability density of X with respect to a dominating measure ⇠. Since x is

a set of sufficient statistics, conditioning on x allows for making inferences about the distribution

of X arising from a nonparametric family of distributions (Pesarin, 2001). Note that this argument

alone does not provide a substantial basis for a valid generalization of the experimental results to a

large context. Under the null hypothesis that the treatments are unrelated to patient outcomes, T is

stochastically independent of Y (i.e., T ?? Y ). Therefore, we have fX(x) = P�(T = t) · fP (y),

and the likelihood ratio of two observations with identical patient outcomes y (e.g., x = (t,y),

x

0
= (t

0,y)) is decided only by the randomization, and is not dependent on the distribution of X:

fX(x)

fX(x

0
)

=

P�(T = t) · fP (y)
P�(T = t

0
) · fP (y)

=

P�(T = t)

P�(T = t

0
)

,

where t, t0 2 ⌦, the reference set induced by the randomization procedure. Note that the permuta-

tion of data is no longer the key element. The reference set does not have to be equiprobable and

the data do not have to be exchangeable. These concepts are now replaced by the reference set and

computation of the distribution of the test statistic with respect to that reference set.

Let S(·) be a measure of treatment difference. Let xobs. be the observation from a trial, p-value
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is thereby computed as

p =

X

t2⌦
I
(S(x)�S(xobs.)|Y =y)

P�{T = t},

which is equivalent to the equation we have derived previously without the notion of patient popu-

lation, conditioning, and sufficient statistics.

Edgington and Onghena (2007) discuss applying randomization tests in designed experiments

where the use of nonrandom samples is prevalent. Because the experimental designs result in

equiprobable treatment assignment sequences, they suggest using the set of data permutations as

a replacement for the reference set to reduce the computation in calculating the p-value. The set of

data permutations is comprised of all possible permutations of patients outcomes while fixing the

treatment assignment sequence. The p-value is computed as the proportion of data permutations

that result in equally or more extreme test statistic values than the observation.

Table 1.6: The analogy of the set of data permutations and the reference set when treatment assign-
ment sequences are equiprobable.

Set of data permutations Reference set Probability
Group A Group B y1 y2 y3 y4 P

�1{T = t} P
�2{T = t}

y1 y2 y3 y4 A A B B 1/6 1/4
y1 y3 y2 y4 A B A B 1/6 1/8
y1 y4 y2 y3 A B B A 1/6 1/8
y2 y3 y1 y4 B A B A 1/6 1/8
y2 y4 y1 y3 B A A B 1/6 1/8
y3 y4 y1 y2 B B A A 1/6 1/8

The analogy of the set of data permutations and the reference set when treatment assignment

sequences are equally likely is presented in Table 1.6. Consider an experiment which assigns four

patients to two A treatments and two B treatments. The design produces six equiprobable treat-

ment assignment sequences (see the second column in table 1.6). Suppose patient outcomes are

y
1

, y
2

, y
3

, y
4

. Then six permutations of patient responses can be obtained by fixing the treatment
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assignment sequence (see the first column in table 1.6). Comparing the two columns, we see a

one-to-one relationship between each data permutation and each treatment assignment sequence.

Thus, enumerating the number of data permutations is arithmetically equivalent to using the refer-

ence set in obtaining the p-value. However, the equivalence no longer exists when the sequences are

not equiprobable (see the last column in the table for an example). More essentially, assumptions

from population-based testing theory would be needed for permuting the observed patient outcomes

among treatment groups, which alters the nature of randomization-based inference.

So, a randomization test is different from a permutation test, in that, under the null, it depends

only on the randomization distribution, which may not be exchangeable.

1.2.3 Inferential Procedures Overview

An overview of the inferential procedures applied in randomized clinical trials is summarized in

Figure 2.1. Here the term parametric tests refers to the hypothesis tests of population parame-

ters under the Neyman-Pearson paradigm (Rosenberger and Lachin, 2016). Although aiming at a

common research question, population-based and randomization-based inferences diverge as they

condition on different component of the data: randomization tests condition on the observed pa-

tient outcomes y while permutation tests and parametric tests condition on the observed treatment

assignment sequences t.

Kempthorne (1977) discusses three types of empirical investigations in the statistical profession.

They are: (1) an observational study; (2) a survey in which population of interest is totally defined

and accessible; (3) a comparative experiment (i.e., the comparing treatments are chosen by the

investigators and are imposed on the patients). What distinguishes the comparative experiment

from the other two is the imposition of interventions on the experiment units as well as the concept

of population. Kempthorne (1977) states that different investigations are distinctive in purposes and

scopes, and it is crucial that the subsequent approach to inference should conform to the type of

investigation; only in a survey of a definite and accessible population, is making inference about

attributes of the population reasonable.
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Probability space on X = (T ,Y )

Under the null
population-based inferencerandomization-based inference

X | T = t ⇠ PX | Y = y ⇠ P
�

P
�

known P unknown

P
�

is derived
from the
randomization
procedure �

P is invariant to
the permutation
of y with respect
to order

P belongs to
a family of
parametric
distributions

Randomization tests Permutation tests Parametric tests

Figure 1.1: Overview of the inferential procedures applied in randomized clinical trials

1.3 Validity, Statistical Power, Test Statistic, and Generalization

The idea of using a hypothesis test as an accept-reject rule can be seen in a paper by Neyman and

Pearson (1933). In standard Neyman-Pearson hypothesis testing theory (Lehmann and Romano,

2006), patient responses are regarded as a realization of a random variable which has a distribution

function indexed by a parameter (or a set of parameters). The goal is to determine a decision

rule to ascertain if a particular value of the parameter is plausible in order that the probabilities of

committing type I and type II errors are minimized.

Statistical power is the probability of correctly rejecting the null hypothesis (of independence)

under repeated sampling. As in population-based testing approaches, the power of the random-

ization test is simulated by re-sampling patient responses from a population distribution and re-

randomizing treatment assignments. It is interpreted as how reproducible the statistical decision

would be in a population of repetitions under a certain randomization procedure. Investigating the

power is helpful in improving the randomization if some background knowledge of the nature of

treatment effects, or the potential confounding factors, or the heterogeneity in patient responses in
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general (e.g., time trend, outliers, skewness) is known beforehand. We will explore this topic in

later chapters.

In addition, the randomization test is statistically valid by construction provided that the signif-

icance level ↵ is an achievable size and the comparability among treatment groups is not violated

by, for example, selection bias. This is because, for each time the data set being regenerated, the

randomization test updates the distribution of the test statistic with respect to the newly generated

outcomes and the reference set. Therefore, the distribution is always correct for the data, and thus

the p-value is uniformly distributed. In this regard, an inflated type I error rate can be taken as an

indication of a flawed study or an improper reference set (i.e., inconsistent with the randomization

procedure that produces the original treatment allocations).

Because of the built-in statistical validity, the choice of the test statistic in a randomization test

is no longer confined by the distributional assumptions of the patient population, nor is influenced

by any misspecification in that population model. As we have shown in Section 1.2.2, even from

the perspective that patient outcomes are random samples from a population, the randomization

test has its rationale as a valid likelihood ratio test on the basis of sufficiency and conditioning.

Consequently, randomization tests can be adapted to nearly every type of primary outcome analysis,

including covariate-adjusted analysis (Parhat et al., 2014), sequential monitoring (Plamadeala and

Rosenberger, 2012), and stratified analysis (Rosenberger and Lachin, 2016). Any type of primary

outcome variable can be analyzed by an appropriate test statistic, capturing categorical, ordinal,

continuous, time-to-event outcomes (Rosenberger et al., 2019).

It is sometimes believed that the generalizability of the experimental conclusions to a relevant

population of interest is enabled and can be estimated by invoking statistical formality via the notion

of random sampling , or via the formulation of the testing hypothesis. For example, Proschan and

Dodd (2019) indicate that preservation of type I error rate is an implication for valid generalization

from the specific trial participants to a larger context. They show this using a conditioning argument

as support. However, such a connotation cannot be invoked by the preservation of type I error

rate alone; rather, a statistically valid conclusion may not be scientifically objective due to a biased

experiment. The validity of the generalization of trial results to future similar patients relies on the
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design and proper conduct of the trial rather than on the accuracy of a statistical model applied in the

inference. The entire population cannot be unambiguously characterized on the strength of a finite

number of experiments; how could it be possible to sample and experiment with patients who will

appear in future and whose diversity in attributes can scarcely be understood? After all, randomized

clinical trials do not involve the design and execution of a random sampling procedure. ß

The rationale or validity underlying randomization tests follows from the principle that statisti-

cal inference is subordinate to experimentation. Thus, the testing method should be consistent with

the experimental design and conduct. While the p-value of a hypothesis targets only at the given set

of experiment data, this limited purview does not impede the generalizability of the experiment con-

clusions. For randomization-based inference, the rationale for generalization comes descendingly:

because a treatment effect exists, the experiment provides the gold standard level of evidence, and

the statistical test is pursuant to the experimental design. Therefore, the inferential conclusion can

be compatible with the actual treatment effect, and thus can be applied to future clinical decisions

assuming that future patients have similar characteristics. On the other hand, if the researchers have

no faith in the validity of experimentation or treatment effects, and if making valid generalization

can be single-handedly addressed by invoking a patient population and applying decision theory,

then why bother to conduct a trial in the first place?

1.4 Interval Estimation

Randomization-based interval estimation is closely connected with the treatment effect model speci-

fied in the alternative hypothesis. We found in Kempthorne (1969, 1977, 1979, 1982) and Edgington

(2007, Section 13.6) some suggestions on how a confidence interval of an additive treatment effect

can be interpreted and constructed. We recall the test of constant additive treatment effect in Sec-

tion 1.2.2. Let H
�

be the hypothesis that the difference between treatment A and B is � for each

and every patient, where � is a real number. Under H
�

, by the construction of randomization

distribution, the probability of rejecting H
�

when H
�

is true,

P (rejecting H
�

|H
�

is true),
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should be controlled at the prescribed significance level. Therefore, the set of � values for which

H
�

will not be rejected in a level ↵ test can be regarded as a (1 � ↵)% confidence set for the

treatment difference.

This definition of confidence level differentiates randomization-based interval estimation from

population-based interval estimation: for example, let yi, i = 1, . . . , n be a random sample from

the population distribution indexed by an unknown parameter µ. A confidence interval for µ is an

interval calculated from the random sample, such that it captures the true value of µ with a spec-

ified probability under repeated sampling (Bhattacharyya and Johnson, 1977). If the construction

is based on inverting a test statistic, then the level of confidence associated with the interval cor-

responds to the significance level of a test of the null hypothesis, and the interval is basically a

point estimate with an error bound. Kempthorne (1992) comments that interval estimation in the

randomization-based framework should be named consonance region, because the values of the

treatment difference specified by the regions are consonant with the given data at a chosen signifi-

cance level, in order to distinguish it from the population-based confidence interval.

The confidence interval of a treatment shift is specified by performing a series of significance

tests over a range of �. To determine the upper and lower limits of the confidence interval thus

requires efficient algorithms. There are numerous in carrying out this search approach. For example,

will the confidence region be continuous (i.e., an interval)? How will the confidence interval be

impacted by the choice of test statistic? What do we do if the subtraction of treatment shift � from

patient responses results in negative numbers when negative values have no practical meaning in the

study? Is it applicable to derive a confidence interval for other types of treatment effect, such as the

ratio? These questions will be examined in Chapter 6.

1.5 Conditional Reference Set

The use of the conditional reference set is suggested by Cox (1982) as a method of analysis for the

Efron’s bias coin design (BCD). In his treatise, Cox first advocates the use of BCD in clinical trials:

[The BCD] ensures with high probability near balance at all stages of the experiment
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and avoids the objection to any form of block design that towards the end of a block,

treatment allocation can be successful predicted [which makes room for selection bias].

He mentions that in small experiments, unlike in a long term experiment, the BCD can lead to the

presence of treatment allocations that provides no information about the treatment effect (e.g., all

As). To test H
0

in this context, Cox proposes that:

We should take the randomization distribution not over all designs [the original refer-

ence set] but only over those arrangement with the same or nearly the same terminal

lack of balance [the observed value of NA(n)�NB(n)].

The justification for applying the conditioning method given by Cox is that NA(n)�NB(n) is

an ancillary statistic under H
0

. Additionally, Cox proposes that the conditioning can also include

other aspects of the treatment assignments that are ancillary and if there is a reason to think relevant:

For instance, if the background model has a roughly linear trend, we should condition

the randomization on the realized value of
P

r�r [�r = NA(r)�NB(r)].

Further, Cox comments that

Such conditioning of the randomization is closely related to the argument for rejecting

unsatisfactory designs in a more conventional context. Restricted randomization is

essentially a way of achieving the necessary conditioning without modification of the

usual analysis, and with the avoidance altogether of specified ‘bad’ designs.

The word “designs” in the above quotation refers to a treatment assignment sequence, not a ran-

domization procedure.

The conditional reference set can be introduced more naturally in the setting of multiple com-

parisons, or when the randomization procedure is covariate-adaptive or response-adaptive. For ex-

ample, consider a randomized clinical trial comparing three treatments A,B,C among six patients.

The treatment assignments used in the trial is (A,C,A,A,C,B). If we want to compare the differ-

ence between treatment A and B, then we need a subset of the reference set that randomizes only
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treatment A and B while holds the C assignments fixed. Such a subset is known as the conditional

reference set (for the pairwise comparison).

As another example, consider a randomization procedure as follows (adapted from Proschan

and Dodd (2019)): recruit six patients and allocate them to one of the two treatments by flipping a

fair coin. If all of them are assigned to a same treatment, recruit another six patients and allocate

them to the opposite treatment. If the first six patients are not all assigned to the same treatment,

then recruit another six patients and allocate them to one of the two treatments by flipping a fair

coin. The reference set used in the test is supposed to be conditioned on the observed treatment

assignments of the first six patients. Like the reference set, the conditional reference set provides an

objective basis for deriving the probability distribution of the test statistic, and thus tends to preserve

the type I error rate of the test.

1.6 Monte Carlo Re-Randomization Tests

The p-value of an exact randomization test can be estimated by the Monte-Carlo re-randomization

test. The idea is to estimate the distribution of the test statistic by Monte-Carlo simulation. For a

given set of patient responses, the treatment assignment sequence is regenerated L times, and the

test statistic is re-computed for each time. Then the p-value is determined as the proportion of the

L simulations that results in a test statistic value that equals or exceeds the observed statistic. The

two-sided Monte Carlo p-value estimator is defined as

p̂ =

PL
l=1

I(|Sl| � |Sobs.|)
L

. (1.2)

The value of Monte Carlo re-randomization tests can be appreciated better if the historical set-

ting is understood. We cite from Rosenberger and Lachin (2016)

The great founders of the randomization clinical trial understood the importance of ran-

domization as a basis for inference, but were limited in their ability to perform it, due

to computational limitations of the day...While in the past, much of the literature was
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focused on finding the asymptotic distribution of the randomization test, such approxi-

mations were often inaccurate for moderate sample sized, and the accuracy was highly

dependent on the type pf the randomization procedure employed...The computation of

randomization tests using Monte Carlo is now the preferred technique...this method is

simple and relatively foolproof...such tests can be performed using standard software

in seconds.

From the above quotation, we see that an impediment of popularizing randomization-based

inference in the early days is the limitation in computation; an exact randomization test is not

computationally efficient as the sample size gets larger than around fifteen even with the modern

computational facilities (Rosenberger and Lachin, 2016). With regard to the limitation, the solutions

provided during the 1980’s focused on approximating the exact randomization distribution when the

number of patients goes infinity. Now with the advancement of computers, the exact randomization

distribution can be simulated with efficiency by Monte-Carlo simulation. The accuracy of the p-

value estimate is guaranteed by convergence theory. But, somehow, statistical inference turns astray

from its original basis in randomization.

Some necessary concerns for carrying out the re-randomization tests includes the choice of L

(Rosenberger and Lachin, 2016). The choice of L depends on how large the p-value is expected to

be. With an MSE argument (1.3), it is straight forward that the smaller the expected p-value is, the

larger the L will be. A more advanced measurement for finding L is suggested by Plamadeala and

Rosenberger (2012). Later, Galbete and Rosenberger (2015) demonstrated through simulations that

taking L to be 15,000 will be accurate enough to estimate a small p-values, for instance, no greater

than 0.05.

MSE(p̂) =
p(1� p)

L
 1

4L
. (1.3)

To apply the Monte-Carlo method to estimating a conditional randomization test (i.e., a test

uses the condition reference set), it is required to have an efficient algorithm for simulating the

conditional reference set, particularly in multiple comparisons. Here we give some examples when
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the test is conditioned on the observed number of A treatments assigned in a (two-armed) trial

(denoted by nA). Zhang and Rosenberger (2011) examine a naive approach for sampling from the

conditional reference set. Generate a large number of treatment assignment sequences, say K, using

the unconditional sampling scheme. Next, keep only the sequences satisfying the condition, and the

p-value estimate p̂c is computed from them by the following equation,

p̂c =

PK
l=1

I(|Sl| � |Sobs.|, NA(n) = nA)PK
l=1

I(NA(n) = nA)
, (1.4)

where NA(n) denotes the number of A assignments in a sequence of length n.

In the above approach, the number of the sequences should be large enough to approximate

the conditional randomization distribution. Plamadeala and Rosenberger (2012) show that it gets

computationally unfeasible and complicated when nA deviates from 0.5. They suggest sampling

directly from the conditional reference set as an alternative approach. For instance, for complete

randomization design, jth treatment assignment can be sampled by using the formula:

pj =
nA �NA(j � 1)

n� (j � 1)

. (1.5)

They also provide a formula to enable conditional sampling for Efron’s biased coin design. For

more complex randomization procedures, the formula for direct sampling can be difficult to derive

(Rosenberger and Lachin, 2016).

1.7 Contributions of the Thesis

Thus far we have presented the application of randomization in clinical trials and the use of the

randomization test as a valid inferential method with regard to the exposition by many statisticians,

including Fisher (1935b), Anscombe (1948), Kempthorne (1952a), Armitage (2003). Noticing that

the concepts and use of the notion of population, statistical significance, validity, statistical power,

and confidence interval in randomization-based inference have not been comprehensively addressed

in past research, particularly in the context of randomized clinical trials; this chapter explores them
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afresh.

The contributions of the dissertation encompasses four aspects, covering tests of significance as

well as estimations of treatment effects. We develop (i) a holistic theoretical framework of random-

ization tests in terms of the hypothesis, the random mechanism, the reference set, (ii) an exploration

of the statistical properties including the statistical validity and the power of the test under various

models of variability in the patient responses, and (iii) a solution to the computational complexity,

especially in the analysis of multi-armed clinical trials. Further, we discuss (iv) the estimation of

the treatment difference in the randomized-based framework. We contextualize the definition of

confidence interval for the treatment difference and examine an efficient algorithm for computing

an interval estimate. We conclude that randomization-based inference is adaptable to nearly any

primary outcome analysis, and should be used as a matter of course.

1.8 Outline of the Thesis

The outline of the thesis is as follows. In Chapter 2, we explore the statistical properties of ran-

domization tests in two-armed clinical trials through simulations, in terms of the type I error rate

and statistical power under three scenarios of heterogeneity in patient responses. In each of the

scenario, we compare two test statistics and eight randomization procedures. Also, we contrast the

randomization test with the permutation test and the t-test. In Chapter 3, we explain the rationale

of randomization-based inference in handling multiple treatments, which begins with a discussion

of the analysis of variance largely based on Kempthorne’s work in a different context and, later,

covers the topics of multiple comparisons as well as the analysis of factorial designs. Chapter 4

contains a collection of generalized randomization procedures for clinical trials with more than two

treatments, and a description of the algorithm for the conditional Monte Carlo re-randomization test

is included. The statistical properties of the randomization test in handling data from multi-armed

clinical trials are also explored in comparison to the population-based tests in this chapter, which

includes the re-analysis of two three-armed randomized clinical trials using the randomization test.

In Chapter 5, we define a confidence interval for the treatment difference in randomization-based

estimation and examine an efficient algorithm for computing an interval estimate. Application to
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estimating confidence intervals for data from randomized clinical trials as well as a comparison of

performance of randomization-based with population-based interval estimation are also incorpo-

rated. Finally, future work and concluding remarks of randomization-based and population-based

inference in the context of randomized clinical trials are presented in Chapter 6.
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Chapter 2: Statistical Properties of Randomization Tests in

Two-armed Randomized Clinical Trials

2.1 Randomization Procedures for Two-armed Randomized Clinical

Trials

We briefly introduce the randomization procedures that will be compared in the following simulation

study. They are (i) complete randomization (CR), (ii) the random allocation rule (RAR), (iii) the

truncated binomial design (TBD), (iv) permuted blocked design (PBD), (v) random block design

(RBD), (vi) the urn design (UD) (Wei, 1977, 1978), (vii) Efron’s biased coin design (BCD) (Efron,

1971), and (viii) the big stick design (BSD) (Soares and Wu, 1982).

In complete randomization, all the treatment assignments are independent Bernoulli random

variables with success probability 1/2. The random allocation rule and truncated binomial design

are forced balanced procedures, which lead to exactly n/2 patients assigned to each of the two

treatments. The random allocation rule produces
�

n
n/2

�
equiprobable sequences. As we can find

in Chapter 3 of Rosenberger and Lachin (2016), “One can think of the random allocation rule in

terms of an urn model. Suppose an urn contains n/2 balls of type A and n/2 balls of type B. Each

time a patient is ready to be randomized, a ball is drawn and not replaced, and the corresponding

treatment is assigned. This continues until the urn is depleted.” In the truncated binomial design,

each assignment is decided by a Bernoulli random variable with success probability 1/2 until one

treatment has been assigned n/2 times. Then the rest of the patients are assigned to the opposite

treatment.

The permuted block design and the random block design are forced balance designs within

blocks. The permuted blocked design divides the n treatment assignments into blocks. Each block

contains m assignments. Note that the size of the last block may be smaller than m. Within each
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block, a forced balance design, usually a random allocation rule, is used. Thus the maximum

imbalance at any time during the trial is m/2. The random block design assumes a random size for

each block to reduce the chance of selection bias. In our model (Rosenberger and Lachin, 2016),

the block sizes are sampled from a set of values (2, 4, . . . , 2Bmax) uniformly at random (except the

last block), where the maximal block size Bmax � 1.

Other designs that are developed to balance treatment assignments are Efron’s biased coin de-

sign, the big stick design, and the urn design. Efron’s biased coin design allocates treatment assign-

ments according to a probability model

P (Ti = treatment A) =

1

2

, if NA(i)�NB(i) = 0,

p, if NA(i)�NB(i) < 0,

1� p, if NA(i)�NB(i) > 0,

where NA(i) and NB(i) denote the number of A assignments and the number of B assignment in i

allocations, and the parameter p 2 (0.5, 1]. The big stick design is a modification of Efron’s biased

coin design by imposing an imbalance intolerance parameter b (Rosenberger and Lachin, 2016).

The probability model is given by

P (Ti = treatment A) =

1

2

, if |NA(i)�NB(i)| < b,

0, if NA(i)�NB(i) = b,

1, if NA(i)�NB(i) = �b.

The urn design is an adaptive biased coin design, where the probabilities of assignment adapt ac-

cording to the degree of imbalance (Wei, 1977, 1978). For an urn design with parameter ↵ and �,

the urn starts with ↵ balls of each of two types (A and B). If a type A ball is drawn, it is replaced

and � type B ball is added to the urn, and vice versa. In the simulation, we set ↵ = 0 and � = 1.
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The urn is so designed as to increase the probability of assignment to the treatment that has been

selected least often thus far.

2.2 Randomization Tests, Permutation Tests, and the t-test

We first verify the validity of randomization tests in analyzing data from randomized clinical trials

in comparison to permutation tests and the t-test via simulations. Type I error rate and power for

testing the null hypothesis that patient responses are independent of treatment assignments are sim-

ulated under a linear time trend model using difference in means statistic under two randomization

procedures (TBD, and PBD with RAR within each block). Time trends are systematic temporal

changes in measurements. In clinical trials, they can appear with the sequential recruitment of

patients as a result of maturation or deterioration of physiological conditions, and is often not per-

ceived by the investigators in advance of the trial. The impact of time trends in biasing the treatment

effect appears to be highly dependent on the randomization (Tamm and Hilgers, 2014).

In the simulation, patient responses are sampled from N(�, 1), � 2 {0, 0.1, . . . , 2}, plus a

time trend ranging linearly on the interval (-2.2]. Type I error rate and power of the test correspond

to parameter values � = 0 and � > 0 respectively. The rejection rates are estimated by averaging

the rejection indicator over 10,000 simulated data sets with sample size n = 50. In each data set,

both patient responses and treatment assignment sequence are regenerated. Monte Carlo simulation

is applied to compute permutation tests and randomization tests. The p-value is estimated by the

Monte Carlo re-randomization test with the number of re-generated treatment assignment sequences

L = 15, 000.

The presence of a time trend invalidates the assumptions of the permutation test (exchangeability

(Pesarin, 2001)) and the t-test (normality and homogeneity of variance). In addition, when the TBD

is employed, the treatment assignment sequences are no longer equally likely, which invalidates the

assumptions of the permutation test even further. In Figure 2.1 we see that only the randomization

test preserves the nominal type I error rate consistently. For the permutation test and the t-test,

however, type I error rates are deflated under the PBD and inflated under the TBD. Note also that

under the PBD, the power of the randomization test is highest among the three. For instance, the
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Figure 2.1: Power curves of the randomization test, the permutation test, and the t-test under a
linear time trend model and two randomization procedures.

power, given by the randomization test, is 0.82 at � = 0.9, whereas those given the t-test and the

permutation test are 0.52 and 0.49 respectively.

It is usually believed that nonparametric tests have less power than parametric tests if there is no

misspecification. If the randomization test is classified as nonparametric, then the results obviously

contradict the conventional assertion. It can be seen further that the performance of the permutation

test is close to the t-test, yet dissimilar to the randomization test, which emphases the gap between

population-based and randomization-based inference in the analysis of randomized clinical trials.

The normal-law test is invalid in the presence of the linear drift; it cannot be used to approximate a

randomization test.
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2.3 Power of Randomization Tests and the Choice of Randomization

Procedure and Test Statistic

Though randomization tests are statistically valid by construction, which randomization procedure

or test statistic would be most useful for detecting the treatment difference with desired sensitiv-

ity depends on the nature of variability in patient responses as well as how large the treatment

differences are likely to be (Anscombe, 1948). In this section, we explore the impact of the ran-

domization procedure and test statistic on the power of the randomization test under three models

of heterogeneity in patient responses: time trend, outliers, and heavy-tailed outcome data.

2.3.1 Time Trend

The time trend model follows from the previous section. The simulation results are as follows. The

lowest power occurs when the TBD is employed, whereas the PBD and RBD achieve the highest

power at all � values. For example, when the mean shift � is 1, the power for TBD, PBD, and RBD

are 0.35, 0.88, and 0.90, respectively. Recall that block designs ensure balanced assignment within

every block of patients and thereby balance treatment assignments throughout the course of a trial.

On the contrary, the TBD can result in a serious imbalance at some point in the trial, for treatment

assignments can end with either A’s or B’s with non-negligible probability. It is also observed that

the type I error rate of the test is preserved under all randomization procedures. However, comparing

the power curves of the test using the difference in means statistic to those using the simple rank

statistics, the power appears to not be sensitive to the change of the test statistic.

Since the PBD and RBD have the highest power, we further examine the performance of the

PBD under a series of block sizes m,m = 2, 4, 8, . . . , 44, 50. Note that when m = 50, the PBD

is the same as the RAR. The result (Figure 2.3) displays a consistent increase of power with the

decrease of block size for both test statistics, which implies that the confounding influence of a time

trend can be alleviated by adjusting block size in relation to the expected amount of heterogeneity

in patient responses over time.
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2.3.2 Outliers

The presence of outliers is modeled by a Cauchy distribution Cauchy(x
0

, �), where x
0

, � are

the location and scale parameter respectively. Under H
0

, patient outcomes are sampled from

Cauchy(0, 1). Under HA, patient responses to treatment A are sampled from Cauchy(�, 1). Fig-

ure 2.3 shows overlapped power curves under both the difference in means statistic and the simple

rank statistic, indicating that the influence of the randomization procedures compared on power is

negligible. But the test of the difference in means has relatively low power in comparison to the

test based on the linear rank statistic. For example, if � = 2, the rejection rates under difference

in mean statistic are approximately 0.29, while those under simple rank statistic are approximately

0.88. Given that the Cauchy distribution does not has a finite mean, it is not unexpected that the

difference in means statistic appears to be insensitive in detecting the treatment group difference.

We further study a less extreme model. Under H
0

, patient outcomes are sampled from N(0, 1)

with 10% random contamination sampled from N(5, 1). Under HA, patient responses to treatment

A are sampled from N(�, 1) with 10% random contamination sampled from N(5 +�, 1). Figure

2.4 shows that, when the simple rank statistic is applied, the distinction between power curves under

different randomization procedures is negligible. When the difference in means statistic is used, the

impact of the choice of randomization procedure is partially observed: the power given by UD(0,1)

and CR are lower those given by other procedures. Since balancing treatment assignments is not

considered in the design of CR, and the UD tends to CR asymptotically (Rosenberger and Lachin,

2016), this observation is sensible. The result implies that the simple rank statistic is capable of mit-

igating the influence of unbalanced treatment assignments on power. Moreover, it is again observed

that, for all randomization procedures, the test of difference in means produces low power compar-

ing to the test using simple rank statistic. It is therefore concluded that, under the assumed outliers

model, the choice of test statistic has a greater impact on power than the choice of randomization

procedure.
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2.3.3 Heavy-tailed Distribution

Another source of variability in patients is heavy-tailed outcome data. We model this by the expo-

nential distribution Exp(�), where � is the distribution mean. Under H
0

, patients outcomes are

sampled from Exp(1). Under HA, patient responses to treatment A are sampled from Exp(1+�).

The results summarized in Figure 2.5 indicate that the influence of the randomization procedure on

power is dependent on the choice of test statistic. When using the simple rank statistic, the power

of the test is not affected by the choice of randomization procedures, indicated by overlapped power

curves for all randomization procedure compared. However, the impact of the randomization proce-

dure is observed when using the difference in means statistic. Specifically, the powers curves of UD

and CR are much lower than those given by other randomization procedures. For instance, at � = 1,

the power under CR, UD(0,1), and RBD is 0.34, 0.50, and 0.64, respectively. This phenomenon is

similarly observed under the mixed-normal model in the previous section.

2.3.4 Conclusion

The three extreme examples above demonstrate that choosing a suitable randomization procedure

with regard to the research outcome (test statistic) and the clinical circumstance is a dynamic process

which can be facilitated by studying the power of randomization tests. We have found that periodic

balance of treatment allocation helps mitigate the confounding influence of a time trend on the

analysis of the treatment effect. When variability in patient responses is unrelated to a sequential

order (e.g, outliers, heavy-tailed), however, the power appears less contingent on the randomization

procedures compared, and the choice of test statistic has more significant impact. Other factors may

also be considered in the selection of a randomization procedure, including selection bias, balance,

ethics, and covariates. More details can be found in Rosenberger and Lachin (2016).
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Figure 2.2: Power curves of randomization tests under a linear drift and eight randomization pro-
cedures.
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Figure 2.3: Power curves of randomization tests under a linear drift and PBDs with different block
size m.
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Figure 2.4: Power curves of randomization tests under two outliers model and eight randomization
procedures.
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Figure 2.5: Power curves of randomization tests under a heavy-tailed model and eight randomiza-
tions.
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Chapter 3: Randomization Tests for Multi-armed Randomized

Clinical Trials

While an adequate amount of literature have focused on randomization tests in two-armed random-

ized clinical trials, in this chapter, we re-examine the rationale of randomization tests afresh in the

context of multi-treatment randomized clinical trials in testing global treatment difference, multiple

comparisons, and factorial designs. To develop an illustrative theoretical framework, we refer to the

analysis of variance formulation (Kempthorne, 1955).

3.1 The Analysis of Variance

The popularity of analysis of variance (ANOVA) in the 20th century and its applications developed

thereof are considered to be attributed to the brilliance of Sir R. A. Fisher: “The first published paper

with an analysis of variance was the analysis by Fisher and Mackenzie of the results of a 2⇥ 12⇥ 3

factorial experiment on potatoes, which appeared in 1923” (Cochran, 1980).

The ANOVA is a modeling tool for investigating treatment comparisons. Consider a randomized

clinical trial evaluating K treatments among n patients, K > 2. From the data, an one-way ANOVA

table can be computed (Table 3.1). The treatment mean square SSB/(K�1) and the residual mean

square SSW /(n�K) are regarded as the ANOVA estimates of the effect variability per treatment

group and the residual variability per patient, respectively. The ratio of two mean squares thus

gives a meaningful measure of the overall heterogeneity among the treatment groups. Although

nowadays ANOVA is usually presented as a way to linearly decompose the variance for given set

of realizations of random variables, it was not originally proposed in such a manner. Fisher writes

in his discussion to a paper by J. Wishart (Fisher, 1935b) that “the analysis of variance is not a

mathematical theorem, but rather a convenient method of arranging the arithmetic.” We find in

Kempthorne (Kempthorne, 1987) some explanations of the quotation:

38



Table 3.1: ANOVA table for comparing k treatments

Source of Variation Sum of Squares d.f. Mean Square Ratio of Mean Squares

between treatments SS
B

=

P
j

n
j

(ȳ
j

� ȳ)2 K � 1

SSB
K�1

SSB/(K�1)
SSW /(n�K)

within treatments SS
W

=

P
ij

(y
ij

� ȳ
j

)

2 n�K SSW
n�K

total SS
T

=

P
ij

(y
ij

� ȳ)2 n� 1

“Analysis of variance” is not analysis of ‘variance’ [of random variables] but is analysis

of variability and covariability of given data. ...analysis of variance is, indeed, a species

of “arithmetic” that is related to linear models [to explain the observations] without any

conception of random variable.

...analysis of variance is not necessarily a decomposition of a sum of squares into

quadratic forms, as we can see in model: yij = µaibj , first explored by Fisher and

Mackenzie (1923) and developed over the past, say, 20 years, by various workers.

We see from these comments that, first, the analysis of variance does not have to be related to

random variables and, second, the analysis does not have to be done linearly. Another interesting

implication is that linear models of treatment effect on patients does not have to be formulated as

conditional expectations of random samples from population distribution function: “the Gaussian

error model [and, indeed, the notion that our data (the vector y) are a realization of random variable]

is an idea that is a huge leap from the data and the arithmetic” (Kempthorne, 1987).

For example, the response of ith patient in treatment group j can be decomposed as the com-

bination of deviations of treatment means ȳj from the grand mean ȳ and the deviations of patient
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responses from the corresponding treatment group mean

yij = ȳ + (ȳj � ȳ) + (yij � ȳj), i = 1, . . . , nj , j = 1, . . . ,K,

or

(yij � ȳ) = (ȳj � ȳ) + (yij � ȳj), i = 1, . . . , nj , j = 1, . . . ,K.

The decomposition equation given above does not have apparent connection with the Gaussian

error model that {yij}’s are population expectations with errors that are normally and independently

distributed around zero with constant variance. The identity

X

ij

y2ij =
X

ij

ȳ2 +
X

ij

(ȳj � ȳ)2 +
X

ij

(yij � ȳj)
2

or
X

ij

(yij � ȳ)2 =
X

ij

(ȳj � ȳ)2 +
X

ij

(yij � ȳj)
2

holds true simply as the result of arithmetic properties regardless of the nature of {yij}’s, be they

random samples or not. In other words, conjoining the notion that data are random samples from

population distribution and the basic arithmetic properties is but an additional component. From

this arithmetic aspect of ANOVA, we develop the framework for randomization-based multiple

treatment comparisons.

3.2 Test of Overall Treatment Difference Significance

Here we briefly discuss two test statistics in evaluating the overall treatment difference that are

related to the ANOVA structure: the ratio of mean squares and the Kruskal Wallis H-statistic.
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3.2.1 Ratio of Mean Squares and Additive Model

We first review an additive model on the basis of normal theory that is widely used and thoroughly

studied. The term “additive” emphasizes that there is no patient-by-treatment interaction. Patient

responses in jth treatment group, j = 1, . . . ,K, are assumed to constitute a random sample from

a normal population with mean �j and common variance �2 (Bhattacharyya and Johnson, 1977).

Under the additive model, the population null hypothesis is specified as �
1

= . . . = �K = 0. If the

assumption of common variance holds true, the ratio of treatment mean square over residual mean

square would follow a F distribution with df = (K�1, n�K). If it does not, however, the p-value

thus obtained would underestimate the level of significance to be attached to the null (Kempthorne,

1952a). Note that, initially, the F -test is meant for examining the equality of variances of two normal

populations. The F statistic, whose distribution is called a F distribution with (n
1

� 1, n
2

� 1)

degrees of freedom is given as

F =

s2
1

/�2

1

s2
2

/�2

2

=

P
i(Xi � ¯X)

2/(n
1

� 1)�2

1P
i(Yi � ¯Y )

2/(n
2

� 1)�2

2

,

where Xi’s and Yi’s are independent random samples from two normal populations N(µ
1

,�2

1

) and

N(µ
2

,�2

2

) (Bhattacharyya and Johnson, 1977).

For randomization-based inference, an additive model that facilitates the interpretation of de-

scriptive statistics is proposed as follows. Suppose uth patient is assigned to treatment j, the re-

sponse yu is regarded as the sum of xu and �j , where xu is the response of patient u in the trial

under some basic condition (Kempthorne, 1955):

yu = xu + �j

= x̄+ �j + (xu � x̄), u = 1, . . . , n.

Let �ju be the indicator random variable that patient u is assigned to treatment j. The group mean of

41



treatment j is thereby expressed as

ȳj = x̄+ �j +
1

nj

nX

u=1

�ju(xu � x̄).

Unlikely the normal theory model, the quantity (xu � x̄) is no longer a realization of a normally

distributed random variable, but as a fixed unknown value that is attached to ȳj according the dis-

tribution of �ju, which is derived from the randomization employed. The significance of the null

hypothesis is obtained with reference to the randomization null distribution of the ratio of mean

squares statistic. The variance estimator, which is a concern in the population-based model, is

irrelevant.

3.2.2 Kruskal-Wallis H statistic

The Kruskal-Wallis H test (Kruskal and Wallis, 1952) is designed to evaluate the hypothesis that the

samples are from the same population. It is generally known as a non-parametric test proposed under

the random sampling model using the rank statistics of the original measurements. As suggested

by Kruskal and Wallis (1952), “one of the most important applications of the test is in detecting

differences among the population means.”

The Kruskal-Wallis H statistics is formulated as

H =

kX

j=1

(r̄j � r̄)2

�2/nj
,

where ri denotes the rank of yi in the n observations. If there is no ties, then �2 reduces to

1

n� 1

nX

i=1

(ri � r̄)2 =
n(n+ 1)

12

, r̄ =

n+ 1

2

,
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and thus the statistic reduces to

H =

12

n(n+ 1)

kX

j=1

nj r̄
2

j � 3(n+ 1).

The statistics has its relevance to the �2 distribution (Kruskal and Wallis, 1952): Let X
1

, . . . , Xn

be a random sample from a normal distribution N(µ,�2

). Then the distribution of statistic

P
i(Xi � ¯X)

2

�2

=

s2

�2/(n� 1)

is a �2 distribution with n�1 degree of freedom (Bhattacharyya and Johnson, 1977). For determin-

ing p-value, Kruskal and Wallis (1952) state that if the samples yi’s come from identical continuous

populations and the group size nj’s are not too small, then H statistic is distributed (approximately)

as �2

(k�1)

. In randomization-based inference, the observed test statistic is compared to its random-

ization null distribution, and the normalization in the above equation is unnecessary.

3.3 Multiple Comparisons

The motivation of developing multiple comparisons is found in Tukey (1949):

The practitioner of the analysis of variance often wants to draw as many conclusions

as are reasonable about the relation of the true means for individual "treatments," and

a statement by the F -test (or the z-test) that they are not all alike leaves him thor-

oughly unsatisfied. The problem of breaking up the treatment means into distinguish-

able groups has not been discussed at much length, the solutions given in the various

textbooks differ and, what is more important, seem solely based on intuition.

The analytical question usually centers around the control of the familywise error rate (FWER)

(Benjamini and Hochberg, 1995), which is the probability of committing at least one type I error

under simultaneous comparisons. First mentioned by Fisher (1935a), the procedure for weak control
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was is a two-step process (Hinkelmann and Kempthorne, 2008): at the first step, test the overall null

hypothesis by the size ↵ F -test, then, at the second step, test each pairwise comparison by the size

↵ t-test. For achieving strong control, a number of approaches have been proposed, among which

the method that makes use of the Bonferroni inequality (Dunn, 1961) is one of the more popular.

An additional element that adds to the complexity of the issue is that whether the type I error

rate of a test is truly controlled at the designated level. For randomization-based inference, this,

however, is not a concern, provided that the trial is an valid experiment. In the randomization

model, the distribution for testing the overall null hypothesis is generated from the entire reference

set. For comparing a subset of the treatments, such as a pairwise comparison, the null hypothesis

is restricted to the difference between certain treatments. Thus the randomization distribution is to

be generated from the corresponding subset of the entire reference set (known as the conditional

reference set) that only randomizes the treatments compared in the null (Edgington and Onghena,

2007, Rosenberger and Lachin, 2016). In either case, the distribution is objectively given, although

a conditional test may be difficult to compute depending on the complexity of the randomization

procedure.

3.4 The Analysis of Factorial Design

In addition to examining the effect of each treatment, a factorial design enables the evaluation of

treatment interaction: “Fisher conducted experiments using factorial design to increase the precision

of experimental outcomes and to further study how key factors may jointly modify the outcomes”

(Berger, 2018). Suppose the researchers investigate four combinations of two treatments each at

two levels (Table 3.2). Treatment interaction is understood as follows. If the two treatments were

acting independently, then the effect of treatment A would be unaffected by the level of B. The

difference between the effects at the two levels is thus a possible measure of the extend to which the

treatments interact (under an additive model).

In this situation, the patients are randomized as if entering a four-armed trial, but the analysis

is targeted at comparing three treatments (including the placebo). The test of the overall treatment

difference can be incorporated easily in the ANOVA using the ratio of mean squares statistic, since
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B Placebo
A (A,B) (A, Placebo)
Placebo (B, Placebo) (Placebo, Placebo)

Table 3.2: A 2⇥ 2 factorial design

the sum of squares of the three treatment contrasts, ¯A, ¯B, ¯AB, provide a partitioning of the total sum

of squares into three single df sums of squares (see Hinkelmann and Kempthorne (2008) Section

7.2.3 for details). Alternatively, we may use the H statistic. The ANOVA table for a trial comparing

p⇥ q combinations of two treatments with r replicates is presented in Table 3.3.

Let ȳPP , ȳAP , ȳBP , ȳAB denote the treatment averages of the four groups. Citing Kempthorne

(1952b), The average effects of treatment A and B over the two levels can be estimated as

¯A =

1

2

(ȳAP � ȳPP + ȳAB � ȳBP ),

¯B =

1

2

(ȳBP � ȳPP + ȳAB � ȳAP ),

and the interaction can be estimated as

¯AB =

1

2

(ȳAB � ȳAP � ȳBP + ȳPP ).

For the normal theory test, the significance of the null hypotheses ( ¯A = 0, ¯B = 0, ¯AB = 0) can be

obtained by comparing the estimated effects to a t distribution with variance estimated by MSE/r

and df = pq(r � 1), where p = q = 2 and MSE = SSE/pq(r � 1) (Bhattacharyya and Johnson,

1977). Note that for the randomization test, unlike the pairwise comparison, the distribution of the

test statistic is derived from the reference set (not the conditional reference set).
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Table 3.3: ANOVA table for a p⇥ q factorial design with r replicates

Ratio of
Source of Variation Sum of Squares d.f. Mean Squares

factor a SS
a

= qr
P

p

j=1(ȳj � ȳ)2 p� 1

SSa/(p�1)
SSE/pq(r�1)

factor b SS
b

= pr
P

q

i=1(ȳi � ȳ)2 q � 1

SSb/(q�1)
SSE/pq(r�1)

interaction a⇥ b SS
ab

= r
P

p

i=1

P
q

j=1(ȳij � ȳ
i

� ȳ
j

+ ȳ)2 (p� 1)(q � 1)

SSab/(p�1)(q�1)
SSE/pq(r�1)

residual SS
E

=

P
p

i=1

P
q

j=1

P
r

k=1(yijk � ȳ
ij

)

2 pq(r � 1)

total SS
T

=

P
p

i=1

P
q

j=1

P
r

k=1(yijk � ȳ)2 pqr � 1
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Chapter 4: Randomization of More Than Two Treatments and

Conditional Monte Carlo Re-Randomization Test

4.1 Randomization of More Than Two Treatments

We now discuss how to randomize in a trial with more than two treatments. A selected collection

of randomization procedures generalized to the multi-armed treatment allocation are summarized.

They are (i) complete randomization, (ii) the random allocation rule, (iii) the truncated binomial

design, (iv) the permuted block design and (v) random block design, and (vi) the urn design. In

addition, we propose generalizing methods for (vii) Eforn’s biased coin design and (viii) the big

stick design, which heretofore were designed for only randomizing two treatments.

As we can find in Chapter 3 of Rosenberger and Lachin (2016), “Complete randomization be-

comes a simple multinomial probability generator with K equally likely outcomes. Then random

allocation rule can be thought of as an urn with n/K balls representing each treatment. Truncated

binomial randomization becomes a multistage process whereby K-treatment complete randomiza-

tion is used, and each treatment is subsequently dropped when the n/Kth patient is assigned to

that treatment, until only one treatment is left. All subsequent patients are then assigned to that

treatment.”

The permuted block and random block designs are forced balance designs within blocks. The

permuted block design divides the treatment assignments into blocks with equal size (except the

last block). The random block design assumes a random size for each block to reduce the chance

of selection bias. The block sizes are sampled from a set of values (K, 2K, . . . , BmaxK) uniformly

at random, unless the last block is incomplete. For block designs, the random allocation rule or the

truncated binomial design is usually applied for randomization within each block. Hence, the block

designs for multiple treatment are generalized accordingly.
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The urn design (Wei, 1977, 1978) is an adaptive biased coin design where the probabilities of

assignment adapt according to the degree of imbalance. For a generalized urn design with parameter

↵ and �, the urn starts with ↵ balls for each type. If one type of ball is drawn, it is replaced and �

balls for each of the other types is added to the urn. A generalized urn design with ↵ = 0 and � = 1

has allocation rule (Rosenberger and Lachin, 2016)

P (Ti = j | Nj(i� 1)) =

i� 1�Nj(i� 1)

(i� 1)(K � 1)

, i � 2,

P (T
1

= j) =
1

K
, j = 1, . . . ,K.

We now generalize two procedures that heretofore have not been expressed for K > 2 treat-

ments. A generalization of Efron’s biased coin design (Efron, 1971) is proposed as follows. First,

calculate the weight for allocating treatment j at ith assignment as

W (Ti = j | Nj(i� 1)) =1/K, if KNj(i� 1)� (i� 1) = 0,

2p/K, if KNj(i� 1)� (i� 1) < 0,

2(1� p)/K, if KNj(i� 1)� (i� 1) > 0,

where j = 1, . . . ,K, p 2 (0.5, 1). The term Nj(i � 1) denotes the number of allocations to

treatment j in (i� 1) assignments. Hence, if the number of allocations is above the expected value

(i.e., (i � 1)/K), then the weight is decreased. If it is below the expected ratio, then the weight

is increased. Denote the value of W (Ti = j | Nj(i� 1)) by wij . The allocating probability of

treatment j is defined as wij/
P

j wij . The rule reduces to an Efron’s biased coin design with p

when K = 2.

In the generalized big stick design, (Soares and Wu, 1982) we guarantee that the absolute pair-

wise imbalance between any two treatments at any allocation cannot exceed an imbalance intoler-

ance parameter b (positive integer). The allocation rule is as follows. First, calculate the weigh for
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allocating treatment j at ith assignment as

W
�
Ti = j | Nj(i)�Nj0(i), j 6= j0

�
=1/K, if |Nj(i)�Nj0(i)| < b for all j0,

0, if Nj(i)�Nj0(i) = b for some j0,

1, if Nj(i)�Nj0(i) = �b for some j0,

where j, j0 2 {1, . . . ,K}. Denote the value of W (Ti = j | Nj(i)�Nj0(i), j 6= j0) by wij . Next, if

the lower imbalance limit �b is reached by one or more treatments, then the next assignment would

only be chosen from the these treatments with equal probability. That is, if wij = 1 for some j, then

for j0 6= j let wij0 = 0 if wij0 < 1. Finally, treatment j is allocated with probability wij/
P

j wij .

The rule reduces to a big stick design with imbalance tolerance b when K = 2.

The validity of the randomization procedures above is based on the principle that the allocation

ratio at every assignment be preserved (i.e., P (Ti = j) = 1/K, i = 1, . . . , n, j = 1, . . . ,K).

(Kuznetsova and Tymofyeyev, 2011) The proofs for the generalized Efron’s biased coin design and

the generalized big stick design are relegated to an appendix. The other procedures are easier to see

due to their interchangeable structures.

These generalized procedures preserve the allocation ratio at every assignment (i.e., P (Ti =

j) = 1/K, i = 1, . . . , n, j = 1, . . . ,K), since the allocating probabilities of the treatments are

interchangeably defined. We now prove this property for the generalized Efron’s biased coin design

and the generalized big stick design.

From the definition of the generalized Efron’s biased coin design, the sum of all the weights

assigned at ith allocation is

KX

j=1

wij =
1

K

KX

j=1

I
(

Nj(i)=
i
K )

+

2p

K

KX

j=1

I
(

Nj(i)<
i
K )

+

2(1� p)

K

kX

j=1

I
(

Nj(i)>
i
K )

,

where Nj(i) is the number of treatment j in i allocations. Since there are K treatments to be
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assigned at each allocation, we also have the identity

KX

j=1

I
(

Nj(i)=
i
K )

+

KX

j=1

I
(

Nj(i)<
i
K )

+

KX

j=1

I
(

Nj(i)>
i
K )

= K.

Combing the two equations, we have

KX

j=1

wij = 1 +

2p� 1

K

0

@
KX

j=1

I
(

Nj(i)<
i
K )

�
KX

j=1

I
(

Nj(i)>
i
K )

1

A .

Thus the allocation rule can be expressed as, for any i = 1, . . . , n, j0 = 1, . . . ,K,

E(Nj0(i+ 1)�Nj0(i) | N1

(i), . . . , NK(i)) = P (Ti = j0 | N
1

(i), . . . , NK(i))

=

1

K + (2p� 1)

PK
j=1

(I
(

Nj(i)<
i
K )

� I
(

Nj(i)>
i
K )

)

, if Nj0(i) =
i

K
,

2p

K + (2p� 1)

PK
j=1

(I
(

Nj(i)<
i
K )

� I
(

Nj(i)>
i
K )

)

, if Nj0(i) <
i

K
,

2(1� p)

K + (2p� 1)

PK
j=1

(I
(

Nj(i)<
i
K )

� I
(

Nj(i)>
i
K )

)

, if Nj0(i) >
i

K
.

Taking expectation, we have

E(Nj0(i+ 1)�Nj0(i)) =
P (Nj0(i) =

i
K ) + 2pP (Nj0(i) <

i
K ) + 2(1� p)P (Nj0(i) >

i
K )

E
⇣
K + (2p� 1)

PK
j=1

(I
(

Nj(i)<
i
K )

� I
(

Nj(i)>
i
K )

)

⌘

=

1 + (2p� 1)

�
P (Nj0(i) <

i
K )� P (Nj0(i) >

i
K )

�

K(1 + (2p� 1)

PK
j=1

�
P (Nj(i)<

i
K )�P (Nj(i)>

i
K )

�

K )

=

1

K
,
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since by symmetry

P (Nj(i) <
i

K
) = P (Nj(i) >

i

K
) =

1� P (Nj =
i
K )

2

, j = 1, . . . ,K.

Likewise, we prove the preservation of allocation ratio of the generalized big stick design. From

the definition, at ith allocation, if there exists treatment j such that Nj(i)�Nj0(i) = �b holds true

for some j0, j0 6= j, then treatment j would be assigned with probability 1 in the next allocation,

and treatment j0 would be not be assigned since the upper imbalance limit is reached (i.e., Nj0(i)�

Nj(i) = b). Otherwise, if |Nj(i)�Nj0(i)| < b for all j = 1, . . . ,K, j0 6= j, then all the treatments

would be assigned with probability 1/K in the next allocation. Therefore, the sum of all the weights

at ith allocation is

KX

j=1

wij =(1�
KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

)

KX

j=1

I
(

Nj(i)�Nj0 (i)=�b,8j0 6=j
)

+

1

K

KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

.

The probability of allocating treatment j00 at position i is thus rewritten as, for i = 1, . . . , n,

E(Nj00(i+ 1)�Nj00(i) | Nj00(i)�Nj0(i), 8j0 6= j00) = P (Ti = j00 | Nj00(i)�Nj0(i), 8j0 6= j00)

=

I
(

Nj00 (i)�Nj0 (i)=�b,8j0 6=j00
)

PK
j=1

I
(

Nj(i)�Nj0 (i)=�b,8j0 6=j
)

, if
KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

= 0,

1

K
, if

KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

= 1.
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Taking expectation, we have

E(Nj00(i+ 1)�Nj00(i))

=E

0

@
I
(

Nj00 (i)�Nj0 (i)=�b,8j0 6=j00
)

PK
j=1

I
(

Nj(i)�Nj0 (i)=�b,8j0 6=j
)

1

AP (

KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

= 0)

+

1

K
P (

KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

= 1)

=

P (Nj00(i)�Nj0(i) = �b, 8j0 6= j00)
PK

j=1

P (Nj(i)�Nj0(i) = �b, 8j0 6= j)
P (

KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

= 0)

+

1

K
P (

KY

j=1

I
(

|Nj(i)�Nj0 (i)|<b,8j0 6=j
)

= 1).

Because the allocation rule is interchangeably defined among the treatments, all K treatments have

equal probability to achieve a same event. By symmetry, we have

P (Nj(i)�Nj0(i) = �b, 8j0 6= j) = P (Nj00(i)�Nj0(i) = �b, 8j0 6= j00), for any j00 6= j.

Hence, the expectation reduces to

E(Nj0(i+ 1)�Nj0(i)) =
1

K
P (

KY

j=1

I
(

|Nj(i)�Nj0 (i)|b,8j0 6=j
)

= 0)

+

1

K
P (

KY

j=1

I
(

|Nj(i)�Nj0 (i)|b,8j0 6=j
)

= 1) =

1

K
.

52



4.2 Conditional Monte Carlo Re-Randomization Test

To recap, the p-value of a randomization test is estimated by a Monte Carlo re-randomization test.

The idea is to use Monte Carlo simulation to estimate the randomization distribution of a test statis-

tic. For given patient response data, the treatment assignment sequence is regenerated L times, and

the test statistic is re-computed each time. The p-value is determined as the proportion of the L sim-

ulations that gives a test statistic value Sl which is at least as extreme as the observed test statistic

sobs., 1  l  L. The two-sided Monte Carlo p-value estimator is calculated as (Plamadeala and

Rosenberger, 2012):

p̂ =

PL
l=1

I(|Sl| � |sobs.|)
L

.

The test statistic S is chosen to incorporate the information on the treatment effect.

In the multiple comparisons problem, the re-randomization test is carried out on the condi-

tional reference set, which only randomizes the treatments that are included in the hypothesis while

keeping the other treatment assignments fixed. For certain randomization procedures, for example,

complete randomization, the random allocation rule, and the block designs with each block filled

by the random allocation rule, sampling directly from the conditional reference set is equivalent to

re-randomizing by the corresponding two-treatment procedures. For more complicated procedures

that do not generate treatment assignment sequences with equal probability (e.g. the truncated bino-

mial design, Efron’s biased coin design, the big stick design, and Wei’s urn design), the convenient

approach does not apply. One may consider generating a massive number of sequences and discard

those that do not satisfy the conditions necessary to make a subgroup comparison. However, the

computational intensity prevents the naive approach from being feasible. In this regard, we develop

a new algorithm that sequentially selects each element of the sequence from the conditional refer-

ence set, so that, without loss of efficiency, only the desired treatment would be generated at the

position. We explain the method with the following example.

Consider a randomized clinical trial investigating the differences between four treatments 1, 2, 3, 4.

Let the observed treatment assignment sequence be T

⇤
= (1, 3, 2, 3, 4, 2, 1, 4). Suppose the trial
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was randomized according to randomization procedure �. For a pairwise comparison of treatment

1 and treatment 4, we need to sample from a subset of the reference set that only randomizes treat-

ment 1 and 4. In other words, we want to generate treatment assignment sequences only of the form

T = (1 or 4, 3, 2, 3, 1 or 4, 2, 1 or 4, 1 or 4) with respect to P�, the probability distribution derived

from procedure �.

At position i, let pij be the probability of generating treatment j with respect to P�, j =

1, . . . , 4, i = 1, . . . , 8. To re-generate a treatment assignment from the unconditional reference

set, we sample a random number y from the uniform distribution ranging from 0 to
P

j pij . If

pi1 < y < pi1 + pi2, for instance, then assign treatment 2 at the position i, thereby Ti = 2 with

probability p
2

. To re-generate a treatment assignment from the conditional reference set, we impose

the following constrains. If T ⇤
i = 1 or 4 and, further, if pi1 + pi4 > 0, then continue sampling y

until y < pi1 + pi4. Next, let Ti = 1 if y < pi1, and Ti = 4 if pi1  y < pi1 + pi4. However, if

pi1 + pi4 = 0, then the treatment assignment sequence produced so far cannot be from the condi-

tional reference set, because the probability of having either treatment 1 or treatment 4 at position

i is zero. Thus we discard this re-randomization and start a new one. Similarly, if T ⇤
i = 2 and,

further, if pi2 > 0, then assign treatment 2 to Ti. If pi2 = 0, we restart the re-randomization. In this

way, the sequences are generated under P� and those that are not in the conditional reference set are

not produced.

The process terminates when the re-randomization sequences reaches L, and then allows the

computation of the p-value estimate. The discontinuation of re-randomization takes place only in

the generalized big stick design, where the situation pij = 0 can be encountered. Even in this case,

the algorithm is efficient and the computation of a single p-value estimate is completed in seconds

with a regular laptop. Citing an example in our simulation, it takes 378, 643 re-randomization to

produce 20, 000 desirable sequences when b = 3, Note that the expected number of discontinuations

is proportionate to the cardinality of the corresponding conditional reference set.

Now we demonstrate that the algorithm is equivalent to the naive approach that samples a large

amount of sequences and keeps only those satisfying the conditions. Let t 2 ⌦c, the conditional

reference set. Suppose L sequences are regenerated naively under P�, and Tl = t for some l, 1 
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l  L. Then the Monte Carlo conditional p-value estimate of Pc(T = t) is calculated as

Pc(T = t) =

P (T = t,T 2 ⌦c)

P (T 2 ⌦c)
⇡

PL
l=1

I
(Tl=t)

I
(Tl2⌦c)

/L
PL

l=1

I
(Tl2⌦c)

/L
.

If Tl 2 ⌦c for all l, then the denominator reduces to 1, and the equation reduces to

ˆPc(T = t) =

PL
l=1

I
(Tl=t)

L
,

which is also the formula for computing the Monte Carlo conditional p-value estimate when ap-

plying the algorithm we proposed. The algorithm produces sequences in such a way that, at each

position, treatments are sampled with probability defined by P� while the undesirable treatments

are discarded. Consequently, Tl 2 ⌦c for all l.

4.3 Simulation of Error Rates

In this section, we apply randomization tests to K treatment comparisons, K = 4, and examine

the impact of the randomization procedure and the test statistic on the power of the test under two

models of variability in patient responses: time trend and outliers. Under the alternative hypotheses

HA, the treatments compared have constant additive effects on patient responses denoted by �j , j =

1, . . . , 4. In each situation, eight randomization procedures and two test statistics (one based on

the original values and one based on the order statistics of the values) are compared. The error

rates are averaged across 10, 000 simulated data sets. In each simulation, both patient responses

and treatment assignment sequence are regenerated. The p-value is estimated by the Monte Carlo

re-randomization test with the number of re-generated sequences L = 20, 000 and sample size

n = 100.

The eight randomization procedures compared in the simulation study are described in Chapter

4: complete randomization (CR), the random allocation rule (RAR), the truncated binomial design

(TBD), the urn design with parameters ↵ = 0,� = 1 (UD(0,1)), Efron’s biased coin design (BCD)
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with parameter p = 2/3, permuted blocked design (PBD) with block size m = 8, random block de-

sign (RBD) with maximal block size KB
max

, B
max

= 3, the big stick design (BSD) with imbalance

intolerance parameter b = 3/2. For the block designs, a RAR is used within each block.

4.3.1 Time Trends

The time trend is modeled by a linear drift. Patient responses to treatment j are sampled from normal

distribution N(�j , 1) plus a linear drift ranging on the interval (�2, 2], where �
1

= 0,�
2

= �,�
3

=

1.5�,�
4

= 1.75�,� 2 {0, 0.1, . . . , 1}. The null and the alternative hypothesis correspond to the

cases where � = 0 and � > 0, respectively.

In the first step, we examine the test of the overall null hypothesis that patient responses are

independent of the treatments. We compare the performance of three tests: the randomization test

using the ratio of mean squares statistic, the population-based F test using F distribution with

df = (3, 96), and the population-based Kruskal-Wallis H test using �2 distribution with df = 3.

The simulation results show interesting information (Figure 4.1). First, the type I error rate of the

(population-based) F test is highly inflated under TBD, and is deflated under other randomization

procedures. In particular, the block designs give the most deflated error rate. Only the error rates

under the RAR and CR are preserved at level 0.05. The nonparametric Kruskal-Wallis H test gives

similar results. The type I error rates of the randomization tests are preserved for all procedures.

Second, the power of test changes with the change of randomization procedures. For randomization

tests, the highest power is achieved when using the block designs, which is followed by the biased

coin designs. In particular, the BSD gives higher power than the BCD. It is also observed that the

power curve under the urn design is below that under the RAR. The lowest power is seen when

using the TBD, a procedure that can result in serious imbalanced at some stage in the trial. When

complete randomization is employed, the power of the three tests (i.e., randomization test using

the ratio of mean squares statistic, the population-based F test, and the Kruskal-Wallis H test) are

almost the same. Under the RAR, the power of the randomization test is slightly higher then those

given by the other two.
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Next, we examine the performance of the conditional randomization test for subgroup compar-

isons. The conditional randomization test and the t-test are compared for a pairwise comparison

(treatment 1 and treatment 4) using the difference in means statistic. A t distribution with df = 96

and variance estimated by (n�1

1

+ n�1

4

)MSE is used for calculating the rejection rate of the t-test.

The results are summarized in Figure 4.3. For the conditional randomization test, the type I error

rates are preserved. A slight inflation of the type I error rate (i.e., 0.058) is seen for our generaliza-

tion of the BSD. We do not see this phenomena on other occasions, for example, if K is 2. This is

unexpected. Note that the our simulation can only estimate the type I error rate to two digits with

accuracy given the number of replications. The power curves given by the block designs overlap,

and the power given by CR and the RAR overlap. For the t-test, the type I error rate is deflated

under the block designs. The power curves under CR and the RAR are close to those given by the

randomization test.

Lastly, we apply the randomization test to a factorial design. Let treatment 1, 2, 3, 4 represent

(placebo, placebo), (A, placebo), (B, placebo), (A,B), respectively, then the simulation scenario

can be expanded to a factorial design provided that the randomization procedure assigns equal num-

ber of treatments to each group. The test of average effects and treatment interaction are presented in

Figure 4.2. For the randomization test, the change of power with regard to the randomization proce-

dures is again observed, and the changing pattern is consistent with that presented in the overall com-

parison in Figure 4.1. For the t-test, the power curve displays feature similar to that observed in the

F test (Figure 4.1): the type I error rate is inflated under the TBD, deflated under the block designs,

and preserved under the RAR. Note also that the test of average effect of B gives the highest power,

and the test of treatment interaction gives the lowest power for all � > 0. Given that the expectation

of treatment effect under the alternative hypotheses are ¯A = 0.625�, ¯B = 1.125�, ¯AB = 0.125�,

respectively, the observation is expected.

4.3.2 Outliers

The presence of outliers is modeled by the Cauchy distribution, Cauchy(x
0

, �), where x
0

, � are the

location and scale parameters. Patient responses to treatment j are sampled from Cauchy(�j , 1),
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where �
1

= 0,�
2

= �,�
3

= 1.5�,�
4

= 1.75�,� 2 {0, 0.1, . . . , 1}. The null and the alternative

hypothesis correspond to � = 0 and � > 0, respectively. We first compare the randomization

test using the ratio of mean squares statistic with the randomization test using Kruskal Wallis H

statistic. Figure 4.4 shows that the power of the test using the H statistic is considerably higher

than that using the ratio of mean squares statistic. In the mean time, the influence of randomization

procedures on power is not evident, indicated by overlapping curves. Furthermore, we obtain the

power curve of the formal Kruskal-Wallis H test (Figure 4.4). Comparing the two plots, we see that

the power of the formal H test approximates the power of the randomization test in this situation.

4.3.3 Conclusions

The statistical validity of the randomization test is demonstrated by the above simulations in ana-

lyzing data from multi-armed randomized clinical trials, in terms of overall treatment comparison,

pairwise comparison, and comparison in a factorial design. The type I error rate is preserved by

construction, as the randomization distribution of any test statistic is always correct for the set of

data under repeated experiments. We conclude that periodic balance of treatment allocation in ran-

domization procedure improves the sensitivity in detecting existing treatment effects in the presence

of time trend, which is observed alike in the simulation results of all three categories of treatment

comparison. Second, in the presence of outliers, the variability in patient responses is not related

to the sequential order of treatment assignment, and the power of detecting existing treatment ef-

fects in an overall test appears less affected by the randomization procedures compared, but is

increased when changing the test statistic from the ratio of mean squares to the H statistic. Third,

the population-based test, either parametric or nonparametric, is not always valid for analyzing data

from (multi-armed) randomized clinical trials, except when the RAR or CR is employed. This

observation agrees with Kempthorne’s conclusion from the mathematical proof on early occasions

(Kempthorne, 1952a, 1955) that the normal theory test serves as an approximation to the random-

ization test.
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4.4 Case Study

4.4.1 Multiple Tumor Recurrence Data for Patients with Bladder Cancer

As an illustration of the method, we consider the data from a randomized trial conducted by Byar,

Blackard, and the Veteran’s Administration Co-operate Urology Research Group (1980). The data

are found in Andrews and Herzberg (1985). A total of 121 patients recruited at ten hospitals were

randomly assigned to one of the three treatments with equal probability: placebo, pyridoxine, or

thiotepa instillation. The primary outcome is the rate of tumor recurrence per 100 patient months

follow-up (Byar, 1980). The treatment effect model assumes that the survival time in month be-

tween two recurrences follows the exponential distribution defined by a constant recurrence rate.

To evaluate the difference in recurrence rate among treatment groups, the test statistic was chosen

to be the ratio of two group means (i.e., the sum of survival times over the number of uncensored

recurrences), and was compared to an F -distribution (Byar, 1980, Byar et al., 1977, Gehan, 1975).

The five patients who were lost to follow up at the beginning were excluded in the analysis (Byar,

1980). One-sided tests showed that thiotepa differs significantly from placebo (p = 0.012) and from

pyridoxine (p = 0.019), and the difference between placebo and pyridoxine is not significant (Byar,

1980). To repeat the analysis, we compute the pairwise p-value by the parametric test mentioned

above and the conditional randomization test, where treatment assignments are re-randomized via

complete randomization and L = 2, 000, 000. We deliberately choose a large L to guarantee the pre-

cision of the p-value estimate. The results from the parametric test agree with the original analysis,

but the p-value estimates from the conditional randomization test do not show similar significance

for the first two comparisons (Table 4.1). We may therefore infer that, for this experiment, the

parametric test underestimates the p-value when the significance level is small in comparison to the

conditional randomization test.

4.4.2 Gallstones Data from The National Cooperative Gallstone Study

Another trial we considered is the National Cooperative Gallstone Study that was conducted to de-

termine the efficacy and safety of using chenodiol for dissolution of gallstones (Schoenfield and
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Table 4.1: One-sided p-value from the parametric test and the conditional randomization test

Thiotepa vs placebo Thiotepa vs pyridoxine Pyridoxine vs placebo

Conditional randomization test 0.07 0.15 0.51

Parametric test 0.019 0.012 0.51

Original results 0.019 0.012 not significant

Lachin, 1981). In the major study, 916 patients were randomly assigned to one of the three treat-

ments: high dose of chenodiol, low dose of chenodiol, or placebo. The primary outcome is the pro-

portion of patients whose gallstones were completely dissolved during the 24 months of follow up.

The comparison of the probabilities of events across time was evaluated by the Mantel chi-squared

test (p < 0.0001) based on the total cohort of 916 patients (Schoenfield and Lachin, 1981). The

randomization followed a generalized big stick design1 with imbalance parameter b = ✓(j)
p
2j/3,

where ✓(j) = 2 for j < 8, ✓(j) = 12/j + 1/2 for j � 8, j = 1, . . . , n, and treatment assignment

sequences were separately generated, inspected, and modified to satisfy the study requirements be-

fore being assigned to the ten participating clinics (see Lachin, Marks, and Schoenfield (1981) for

details). Two clinics withdrew and were replaced during the study and an additional sequence was

generated for this reason, which makes an exact re-randomization difficult. In computing the ran-

domization test, we combine the patients in a withdrawn clinic with a newly recruited clinic, and,

at each re-randomization, generate one sequence for each clinic with regard to the big stick de-

sign without additional considerations. The overall comparison is evaluated by the ratio of mean

squares statistic in Table 1, the randomization-based analog of the population-based F -test. The test

(L = 2, 000, 000) gives a significant result (p̂ < 0.0001), which agrees with the original analysis.

1This method of generalizing the big stick design is not applicable to the situation where more than three treatments
are involved.
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Figure 4.1: Power curves of the randomization test with the ratio of mean square statistic, F -test,
and Kruskal-Wallis H test under a linear drift and eight randomization procedures
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Figure 4.2: Power curves of the randomization test of average treatment effects and treatment inter-
action in a factorial design under a linear drift and four randomization procedures
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Figure 4.4: Power curves of the randomization test and the Kruskal-Wallis H test under a outliers
model and eight randomization procedures
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Chapter 5: Confidence Interval Procedures

5.1 Introduction

In this chapter, we explore another important aspect of randomization-based inference, namely es-

timating a confidence interval for a treatment effect. Statistical estimation is considered to be the

primary method of reporting evidence from a sample of data (Bhattacharyya and Johnson, 1977).

The estimation has predictive value for circumstances under which it was developed. The predictive

value is the prerequisite for, rather than the result of, statistical analysis. In the analysis of clinical

trials, a point estimator calculated from the sample data provides an estimate of the treatment differ-

ence in terms of a single number, even though the standard error, as a statement of accuracy, can be

attached to it. An alternative approach to estimation, that is, estimation by interval, was introduced

by Neyman (1937). The approach extends the notion of error bound and produces an interval of

numerical values of the treatment difference, to be calculated from the data and upon the hypothesis

of the mathematical model of the treatment difference, that is acceptable under the prescribed type

I error rate.

The formation and interpretation of confidence interval estimation procedure is very distinct be-

tween population-based and randomization-based inference. In population-based inference, the con-

fidence interval is usually determined by the inversion of a hypothesis test. In randomization-based

inference, the one-to-one correspondence does not exist, and the interval is constructed without in-

troducing the notion of repeated sampling of patients responses from some distribution. Instead,

the confidence interval of a constant additive effect �, for instance, is understood to be a set of �

values for which the hypothesis H
�

that the treatment difference is � for each and every patient

is not rejected at the prescribed significant level based on the given set experimental data (Edg-

ington and Onghena, 2007, Kempthorne, 1977, 1979). The mathematical model of the treatment

difference is specified independently. To search for the confidence limits, the method is to consider
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a sequence of values, �
1

, . . . ,�n, and perform a corresponding one-sided randomization test of

H
�i for each �i, i = 1, . . . , n, until the desired significant level is approached. The problem in its

practical aspect is not merely a computational one, but also involves probability theory, specifically,

convergence theory.

On the basis of the Robbins-Monro process, a search algorithm is developed by Garthwaite

(1996). The coverage probability of the confidence limit estimates is unbiased and have small vari-

ance as the number of search steps goes large, and the process is computationally efficient (Garth-

waite, 1996). However, the re-randomization procedure in Garthwaite’s search process permutes

patient outcomes while holding the treatment assignments unchanged, which is not equivalent to

more general circumstances in randomized clinical trials where the number of assignments for each

treatment is not fixed and the randomization sequences are not equally likely. Moreover, in testing

a hypothesis H
�

,� 6= 0, the computational procedure developed by Garthwaite modifies patient

outcomes only initially, and then all the permutations (i.e., the analogue of re-randomizations) are

sampled from the modified data set without further change. An equitable procedure would require

modifying patient outcome data according to the hypothesis at each time a re-randomization of

treatment assignments is generated (Edgington and Onghena, 2007, Kempthorne, 1977, 1979). A

comparison of the computational procedure is presented in Table 5.1. Suppose the interest is in

estimating a constant additive effect � between two treatment A and B, and the hypothesis is that

� = �

0

. Although it is not designed with an appropriate randomization test procedure, the algo-

rithm can be applied and extended to determining the confidence intervals of additive effects in the

randomization context.

5.2 Garthwaite’s Robbins-Monro Search Process

5.2.1 The Robbins Monro Process

Let us review the Robbins Monro process (Robbins and Monro, 1951) in the context of randomized

clinical trials. The process defines an estimation of the confidence limit by a convergent sequence

using binary random variables. Let X = (T ,Y ) be a random vector, where T = (T
1

, . . . , Tn) is
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Table 5.1: Process of computing the permutation test and the randomization test for testing hypoth-
esis � = �

0

Permutation Test Randomization Test

(1) Add �0 to the responses of patients in group A. (1) Generate a new treatment assignment sequence.
(2) Do nothing to the responses in group B. (2) If a patient in group A was re-assigned to B,

add ��0 to the response.
(3) Re-randomize the responses into two groups. (3) If a patient in group B was re-assigned to A,

add �0 to the response.
(4) Calculate a new estimate for �. (4) Calculate a new estimate for �.
(5) Repeat (3)-(4) for L times, estimate a p-value. (5) Repeat (1)-(4) for L times, estimate a p-value.

the treatment assignment sequence and Y = (Y
1

, . . . , Yn) is the patient responses. The distribution

of T , P�, is derived from a randomization procedure �. Let ⌦ be the reference set (of treatment

assignment sequences). Let sobs be the observed test statistic value. Note that sobs is unchanged

under H
�

for any � value. Define a sequence of binary randomization variables

zi =

8
>><

>>:

0 if SLi(x) < sobs

1 if SLi(x) � sobs,

where SLi(x) is the test statistic calculated from x under the hypothesis of � = Li. Select L
1

be the best guess of the (lower) confidence limit at level ↵, 0 < ↵ < 1, and {ai} be a sequence

of positive constants of type 1/i, or, more generally, with
P

i a
2

i < 1. Then define the values

L
2

, L
3

, . . . according to the rule

Li+1

� Li = ai(↵� zi). (5.1)
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Denote the p-value of sobs under the hypothesis � = Li by ↵i, where ↵i is computed as

↵i = P (SLi(x) � sobs) =
X

t2⌦
I(SLi(x) � sobs)P�(T = t).

Observe that P�(zi = 1|� = Li) = ↵i, P�(zi = 0|� = Li) = 1�↵i. We thereby have the equation

E�(zi|Li) = ↵i, which can be viewed as a function of Li. It has been proved that limi Li = �L in

quadratic mean and thus in probability, where �L is the root of the equation E�(z|�L) = ↵, that is,

the level ↵ (lower) confidence limit (Garthwaite and Buckland, 1992, Robbins and Monro, 1951).

Robbins and Monro (1951) remarked that the efficiency of {Li} is decided by the choice of L
1

and

{ai}, and the convergent sequence defined as above has the advantage of being distribution-free

over other more efficient estimator of �L.

5.2.2 Algorithm Overview

We summarize the algorithm with reference to the paper (Garthwaite, 1996). The process may be

considered as stepping from one estimate of � to the next, either forward or backward depending

on the value of test statistic calculated from a single re-randomization taken at that estimate. In

other words, the re-randomization is the source of randomness of the search process. The length of

each step is decided by a constant, whose value determines the asymptotic properties of the process

(Garthwaite, 1996).

Let (�L,�U ) be the 100(1 � 2↵)% equal-tailed confidence interval for � estimated from

the data. Under some natural monotonicity conditions (Cox and Hinkley, 1974, Garthwaite and

Buckland, 1992), the lower and upper confidence limits would be sought such that H
�L is rejected

in favor of � > �L at level ↵, and H
�U is rejected in favor of � < �U at level ↵. Let ˆ

� be the

point estimate of � from the data. Let Li, Ui be the estimates of �L,�U after i steps of the search.

A permutation of patient outcomes, denoted by y, is taken from the data set modified according to
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HUi . The estimate of upper limit is updated by

Ui+1

=

8
>><

>>:

Ui � ci↵/i if Sy

Ui
> Sobs

Ui

Ui + ci(1� ↵)/i if Sy

Ui
 Sobs

Ui
,

(5.2)

where Sy

Ui
is the test statistic for this permutation under HUi and Sobs

Ui
is the test statistic for the

original patient outcome sequence under HUi . In this way, the confident limit estimate takes random

walk at each step, either goes upward by ci(1 � ↵)/i or goes downward by ci↵/i, depending on

Sy

Ui
. With similar notations, the lower confidence limit estimate is updated by

Li+1

=

8
>><

>>:

Li + ci↵/i if Sy

Li
< Sobs

Li

Li � ci(1� ↵)/i if Sy

Li
� Sobs

Li
.

(5.3)

We can see that Equation (5.2) and (5.3) are derived from Equation (5.1) by taking ai = ci/i.

Let the p-value of the observed patient outcomes under HUi be ↵i (i.e., P (SUi  Sobs
Ui

) = ↵i, ).

Then the expected distant from step i to step i+ 1 is

E (Ui+1

� Ui) = ↵ici(1� ↵)/i� (1� ↵i)ci↵/i = ci(↵i � ↵)/i.

The value tends to zero as i goes large. Under weak regularity conditions (Blum, 1954, Garthwaite,

1996), the sequence of the confidence limit estimates attains the true upper confidence limit �U

with probability one, which is the root of the equation P (S
�U  Sobs

�U
) = ↵.

The positive step length constant ci is formulated as ci = k(Ui � ˆ

�) in a search for the upper

limit, or ci = k( ˆ�� Li) in a search for the lower limit. The constant k is chosen to be

k = 2/{z↵(2⇡)�1/2
exp(�z2↵/2)}.
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By this choice of k, ci is twice its optimal value with regard to minimizing the variance of Ui+1

(and thus the variance of the coverage probability of interval) when � is normally distributed. The

value ci is overestimated to guarantee that the estimators would converge to the true confidence limit

and with probability one, given that the efficiency of the variance is not dramatically affected (see

Garthwaite and Buckland (1992) for details). Moreover, although the optimal value of k depends

on the distribution of the point estimate of �, it does not vary greatly across many distributions (not

including the Cauchy distribution and the two parameterizations of the exponential distribution); the

above choice of k is recommended in the absence of better information (Garthwaite and Buckland,

1992).

The starting values for searches are prepared as follows. Modify the data according to H
ˆ

�

.

Generate (2� ↵)/↵ data permutations of the modified data and estimate � at each time. Let t
1

, t
2

be the second smallest and second largest estimates. The starting values are given by ˆ

�±(t
2

�t
1

)/2.

The search would start with letting i equal to m, m = min{50, 0.3(2�↵)/↵}, to mitigates the rapid

change in the early part of a search. The search is continued for a predetermined number of steps and

the last value is regarded as the confidence limit. The number of steps is suggested to be larger than

the number of data permutations used in estimating the randomization test. If 5, 000 sequences were

re-generated in the estimation, then an efficient number of steps is recommended to be 6, 000. The

choice of number may also be guided by the asymptotic properties of the Robbins-Monro process.

5.2.3 Extension to Randomized Clinical Trials

The Robbins-Monro search process provides estimates that converge to the confidence limits at the

designated coverage probability with asymptotic property and unbiasedness. A j-step searching

process is equivalent to performing j Monte Carlo re-randomization tests each with the number of

re-randomizations L = 1. Nonetheless, further considerations are expected when it comes to the

choice of step length constant and the number of searching steps. We have seen that k, a key element

in the formation of step length constant ci that guards the asymptotic property of the searching

process, is formulated with reference to the distribution of parameter � (Garthwaite, 1996). In

population-based inference, it is apparent to derive the distribution of � from the assumed patient
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population. However, in randomization-based inference, patient responses are no longer assumed to

be random samples. To extend the theoretical foundation to this context, it is imperative to provide

another basis from which a reasonable distribution of � can be derived. We may consider using the

randomization distribution of a treatment difference under the null hypothesis.

Garthwaite and Buckland (1992) recommend monitoring the progress of the search and restart-

ing the search to accelerated the convergence. Since the publication of the papers (Garthwaite, 1996,

Garthwaite and Buckland, 1992), computational facility has been greatly improved. The considera-

tion for computation time may not be as important. Once the step length constant has been chosen,

the standard error of the coverage probability reduces as the number of searching steps increases

(Garthwaite and Buckland, 1992). For this reason, we may deliberately choose a relatively large

number of steps in searching for the confidence limit. A more critical aspect in deciding the stop-

ping rule is the evaluation of whether the search process is still moving towards the limit, or having

converged to the limit and is oscillating around the value. Other important components in the search

process are the choice of test statistic and the formulation of the treatment effect model by which an

alternative hypothesis is tested and the patient responses are modified. Both statistical and clinical

considerations are needed for a sensible choice.

5.3 Preliminary Study: Effect of Malarial Infection on Lizards

We first re-examine the lizard data discussed in the paper (Garthwaite, 1996) with a proper random-

ization test procedure and the randomization test applied in the paper, which is referred to as “data

permutation test” in below in order to distinguish from the randomization test. The data are the

distances in meters each of the thirty lizards could ran in two minutes. It is worth noting that the

research is not a randomized experiment but a field study (Schall et al., 1982):

infected lizards (group A):

16.4, 29.4, 37.1, 23.0, 24.1, 24.5, 16.4, 29.1, 36.7, 28.7, 30.2, 21.8, 37.1, 20.3, 28.3;

uninfected lizards (group B):

22.2, 34.8, 42.1, 32.9, 26.4, 30.6, 32.9, 37.5, 18.4, 27.5, 45.5, 34.0, 45.5, 24.5, 28.7.
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The difference of group means are ˆ

� = ȳB � ȳA = 5.36. For a randomized test of H
ˆ

�

, we

re-generate the treatment assignment sequence L times by the random allocation rule. At each

time, the outcomes are modified accordingly and a new � is estimated. Specifically, if a lizard

from group A is re-randomized to group B, we add 5.36 to the datum. If a lizard from group B

is re-randomized to group A, we subtract 5.36 from the datum. To determine the starting points

for searches at confidence level 95%, we perform a Monte-Carlo re-randomization test of H
ˆ

�

with

L = 79 (= (2�↵)/↵,↵ = 0.025) and estimate � for each re-randomization. The second smallest

and second largest estimates of � are obtained, and the starting points are computed from them. See

Table 5.2 for a summary. The other required starting value m is 24 (= min{50, 0.3(2�↵)/↵},↵ =

0.025).

The test statistic is the mean of group B. For this statistic, a search process updated with the data

permutation test and a search process updated with the randomization test are equivalent except for

the starting values. In other words, the difference between the two results is caused mainly by the

randomness in re-randomization. In searching for the limits, 6,000 steps were taken. The estimated

95% confidence intervals for � are (�0.22, 10.96) from the randomization test and (�0.10, 10.82)

from the data permutation test. We continue the search process up to 30,000 steps (see Figure 5.1).

The 95% confidence interval for � turns out to be (�0.23, 10.90) from the randomization test and

(�0.25, 10.98) from the data permutation test.

Next, we examine the influence of the starting values. We obtain another set of starting values

by increasing the number of re-randomizations L from 79 to 20, 000. The lower and upper 100↵%

estimate of � are taken to be the 500

th and the 19501

th values from the 20, 000 re-randomization

estimates, and the starting points for searches are computed from the two values. See Table 5.2

for a summary. The confidence limits estimated from a search with the randomization test are

(�0.20, 10.96) at step 6, 000 and (�0.23, 10.90) at step 30, 000. The confidence limits estimated

from the data permutation test are (�0.11, 10.82) at step 6, 000 and (�0.25, 10.98) at step 30, 000.

The change of starting values does not change the confidence limit estimates significantly.

To assess the accuracy of the estimates, the one-sided p-value is computed by the Monte Carlo

re-randomization test (L = 1, 000, 000) at various values of �. It shows that a 95% confidence

72



Figure 5.1: 95% confidence limits estimates for � from randomization tests and data permutation
tests

interval for � is (�0.27, 10.97), which is very close to the estimates given by the data permuta-

tion test at step 30, 000, but is somewhat difference from (�0.30, 10.69), the confidence interval

estimates given by the paper.
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Table 5.2: Estimates of � and starting points for searches.
Estimates of � Starting points for search

Lower 100↵% Upper 100↵% Lower limit Upper limit

L = 79 Randomization test 1.299 10.917 0.551 10.169
Data permutation test -5.731 5.904 -0.457 11.177

L = 20, 000 Randomization test 1.573 10.611 0.841 9.879
Data permutation test -5.203 5.251 -0.236 10.384

Table 5.3: One-sided p-value from randomization test.
� P (S� � Sobs

� ) � P (S�  Sobs

� )

-0.10 0.028 10.90 0.026
-0.20 0.026 10.96 0.025
-0.27 0.025 10.97 0.025
-0.28 0.024 10.96 0.024

5.4 Application to Randomized Clinical Trials: Multiple Tumor Re-

currence Data for Patients with Bladder Cancer

5.4.1 Confidence Limits for Difference

We now extend the approach to analyzing data from randomized clinical trial. The data set, given

by Andrews and Herzberg (1985), was collected from a three-treatment randomized trial evaluating

the effects of placebo, pyridoxine, and thiotepa instillation on patients with bladder cancer (Byar

et al., 1977). A total of 121 patients recruited at ten hospitals were randomly assigned to one of

the three treatments with equal probability. The primary outcome is the rate of tumor recurrence

per 100 patient months follow-up, and the treatment effect model in the analysis assumes that the
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recurrence takes place according to the exponential distribution with a constant rate (Byar et al.,

1977). A one-sided parametric test of the ratio of recurrence rates shows that difference between

thiotepa and placebo is significant (p = 0.012); that is, the thiotepa group has lower recurrence rate

than the placebo group. Therefore, we estimate the one-sided 95% confidence limit of the treatment

effect measured by the difference between the two recurrence rates.

Let treatment A be placebo and treatment B be thiotepa. Denote the recurrence rate of group

j by �j , j = A,B. Let � = �A � �B . A one-sided 95% confidence interval of �, (�L,1), is

obtained by using the conditional randomization test re-randomized according to complete random-

ization. The lower confidence limit should be sought that H
�L is rejected in favor of � > �L at

level 0.05. We choose the test statistic to be �. To test an alternative hypothesis H
�

⇤ , we propose

an additive treatment effect model and modify the patient outcomes as follows. If all the patients

assigned to treatment A were re-randomized to treatment B, then the recurrence rate of the group

would be decreased by �

⇤. Therefore, if a patient from group A is re-randomized to group B, we

multiple the patient’s observed number of recurrences by (�A � �

⇤
)/�A. Similarly, if a patient

from group B is re-randomized to group A, we multiple the observed number of recurrences by

(�B +�

⇤
)/�B . Note that some patients do not have tumor recurrence during the follow up period.

Next we determine the starting values for search. The point estimator from the data is ˆ

� =

ˆ�A � ˆ�B = 0.0189, which also is the observed test statistic value under an alternative hypothesis.

To compute the starting value for search at the desired level, we generate 20, 000 re-randomization

sequences and obtain the 1001th and 19000th values of the re-randomization estimates of �, which

are �0.00298 and 0.0406 respectively. The starting value for the lower limit search is therefore

�0.00289. Another starting value m is 12 according to the formula Section 5.2. The step length

constant is set to be ci = k( ˆ� � Li), where k = 2/g and g = z↵(2⇡)
�1/2

exp(�z2↵/2). After

60, 000 steps, the estimated one-sided confidence interval is (�0.00319,1) (Figure 5.2). The one-

sided p-value for H
�=�0.00319 is 0.05 from a conditional randomization test (L = 1, 000, 000),

which verifies the confidence level of the lower limit estimate.

The asymptotic properties of the searching process is influenced by the choice of k. It is seen

from Figure 5.2 that the variance of the confidence limit estimates increases when k increases from
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Figure 5.2: Lower confidence limit estimates for � from the conditional randomization test.

2/g to 4/g, and decrease when k decreases from 2/g to 1/g. However, the influence of k becomes

less evident as the number of steps goes large. But when k is decreased to 0.5/g, the estimate is far

lower than the true 95% confidence limit even at step 60, 000 and the search process moves towards

the limit very slowly.

5.4.2 Confidence Limits for Ratio

In the previous section, we obtained the 95% lower confidence limit for the difference between

the two recurrence rates, from which the lower confidence limit for the ratio of the two recurrence

rates can also be derived. Now we explore the way to directly calculate a confidence interval for

the ratio of the two recurrence rates. Let � = �A/�B . To test a hypothesis H
�

⇤ , we propose an

additive treatment effect model in the following manner. If a patient from group A is re-randomized
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to group B, we multiple the patient’s observed number of recurrences by 1/�⇤ so that the patient’s

observed number of recurrences would decrease to �A/�
⇤. Likewise, if a patient from group B

is re-randomized to group A, we expect that the patient’s observed number of recurrences would

increase to �

⇤�B . Thus we multiple the patient’s observed number of recurrences by �

⇤.

Let � be the test statistic. The observed test statistic is ˆ

� =

ˆ�A/ˆ�B = 1.497. To determine

the starting values for searching the confidence limits, we re-randomize 20, 000 times. At each

time, we modify the patient’s outcomes according to the treatment effect model as if to test the

hypothesis H
ˆ

�

and compute the estimate for �. The starting values are calculated from the 1001th

and 19000th values among the 20, 000 estimates, which are t
1

= 0.776 for searching the lower

confidence limit and t
2

= 2.218 for searching the upper confidence limit.

Noticing that the Robbins-Monroe process is an algorithm based on addition and subtraction,

so, to calculate a confidence interval for ratio, a monotonic transformation of � needs to be applied

so that the confidence limits for � can be approached linearly. Let �0
= log� = log �A � log �B .

Then the 95% confidence limits for �0 can be identified using the Robbins-Monroe process. To find

the lower confidence limit, for example, let the starting value L
1

be log t
1

. Update the lower limit

estimate by

Li+1

=

8
>><

>>:

Li + ci↵/(m� i+ 1) if Sy

exp(Li)
< ˆ

�

Li � ci(1� ↵)/(m� i+ 1) if Sy

exp(Li)
� ˆ

�.

(5.4)

Note that the estimate of ratio � at step i is given by exp(Li) due to the log transformation. The

step length constant ci is defined as ci = k(log ˆ

� � Li). The choice of m and k follows from the

previous section (i.e., m = 12, k = 2/g).

After 30, 000 steps, the 95% lower and upper confidence limits for � = �A/�B are 0.949 and

2.524 respectively. The searching process is presented in Figure 5.3. We know from the previous

section that the 95% lower confidence limit for � = �A � �B is �0.00319. Given that �A =

87/1528,�B = 45/1183, it can be easily verified that the two 95% lower confidence limits agree

with each other.
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Figure 5.3: Confidence limit estimates for the ratio of recurrence rates.

5.5 Population-based and Randomization-based Confidence Intervals

In this section we compare the confidence intervals given by the population-based and randomization-

based inference. We calculate from the lizard data (Section 5.3) a 95% confidence interval for the

difference in group means given by the pooled two-sample t-test, and calculate from the bladder

cancer data (Section 5.4) a 90% confidence interval for the ratio of the recurrence rates by a test

based on F distribution (Gehan, 1975). The interval for ratio is determined as

F↵/ ˆ� < � < F
1�↵/ ˆ�,

where F↵ is the upper ↵ percent point of the F distribution with degrees of freedom df
1

= 2nA, df2 =

2nB , where nA = 87, nB = 45 are the number of recurrences in group A and B, respectively. The
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results are summarized in Table 5.4. In both cases, population-based inference results in a shorter

interval than that obtained from the randomization test.

Table 5.4: Confidence interval estimate from population-based and randomization-based inference.
Lizard data Bladder cancer data

Lower 2.5% limit Upper 2.5% Lower 5% limit Upper 5% limit

Population-based -0.23 10.95 1.115 2.045
Randomization-based -0.27 10.97 0.949 2.524

Nevertheless, this is not always the case. We examine the population-based and the randomization-

based 95% confidence intervals under eight randomization procedures when there are some hetero-

geneity in data. First we assume a time trend model. Patient responses to treatment j are sam-

pled from normal distribution N(�j , 1) plus a linear drift ranging on the interval (�1, 1], where

�A = 0,�B = 1. Sample sized n = 50. The test statistic is chosen to be the difference in means for

randomization-based estimation, or the t-statistic with the pooled standard deviation for population-

based estimation.

Next we study a model of outliers in comparing recurrence rates. We assume that each patient is

followed up for at least 36 months; the last event would be observed no sooner than the 36th month

of follow-up. The number of recurrences and the total number of follow-up months is recorded for

each patient. Let Exp(�) denote the exponential distribution with mean �. For patients assigned to

treatment A, the event times are sampled from Exp(10) with 10% random contamination sampled

from Exp(36). For patients assigned to treatment B, the event times are sampled from Exp(15)

with 10% random contamination sampled from Exp(36). Therefore, the “true” ratio of recurrence

rates �A/�B should be 1.5 (i.e., 15/10). Test statistic is chosen to be the ratio of recurrence

rates. The estimation of the population-based confidence interval follows from the discussion at the

beginning of this section.
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The performance of the confidence interval estimate is evaluated by the coverage probability and

the length of the interval averaged over 1, 000 simulated data sets, each with sample sized n = 50.

The values of the upper and lower confidence limits are determined after searching for 30, 000 steps.

The results are presented in Table 5.5.

Table 5.5: Comparison of confidence interval estimate from population-based and randomization-
based inference.

Randomization-based Population-based
Coverage probability Interval length Coverage probability Interval length

Difference CR 0.95 1.32 0.95 1.33
in means RAR 0.96 1.31 0.96 1.33

TBD 0.96 1.53 0.91 1.33
UD(0,1) 0.96 1.24 0.96 1.33
BCD 0.96 1.19 0.97 1.33
BSD 0.96 1.18 0.97 1.34
PBD 0.95 1.15 0.98 1.33
RBD 0.94 1.14 0.97 1.34

Ratio of CR 0.95 1.10 0.91 0.87
recurrence RAR 0.95 1.08 0.90 0.87
rates TBD 0.95 1.08 0.90 0.87

UD(0,1) 0.96 1.07 0.90 0.87
BCD 0.94 1.09 0.89 0.88
BSD 0.95 1.07 0.89 0.87
PBD 0.95 1.07 0.88 0.87
RBD 0.94 1.07 0.90 0.88

When estimating the difference in group means in the presences of a time trend, the length

of the population-based confidence interval is relatively preservative, whereas the length of the

randomization-base interval varies from 1.14 to 1.53. Specifically, the block designs give the short-

est interval length, and TBD gives the longeest interval length. This change of interval length

resembles the change of power with regard to randomization procedure in the simulation study of

the power of the test (Chapter 2, Chapter 5). While the coverage probability of the randomization-

based interval is close to 0.95, the coverage probability of the population-based interval ranges from

80



0.91 to 0.98. This phenomena is related to the unpreserved type-I error rate of the population-based

test in the previous simulation study (Chapter 2, Chapter 5).

When estimating the ratio of recurrence rates in the presence of outliers, the lengths of the

population-based confidence interval are, on average, shorter than that of the randomization-base

intervals (1.08 versus 0.87). But the population-based method basically gives a 90% interval rather

than a 95% interval as it claims to be. Only the randomization-based interval preserves the coverage

probability. In short, when heterogeneity in data renders the population model of the treatment

effect insufficient, the randomization-based method maintains the confidence level.

The difference between the two methods is more profound than the apparent difference in nu-

merical values. In randomization-based inference, the logic of interval estimation is simple: (i) a

mathematical model of the treatment effect on an individual level is proposed and (ii) acceptable

estimates of the parameter in terms of statistical significance are calculated from the experimental

data, assuming the treatment effect model. In population-based inference, the mathematical model

is imposed on the distribution of the data rather than directly on the treatment effect. Moreover,

the goal of estimation consists in achieving a value or a set of values that should not differ very

much from the “true” value of the parameter. The 95% confidence interval of a parameter has the

interpretation that 95% of the intervals would cover the “true” parameter value under repeated sam-

pling. A randomization-based confidence interval, on the other hand, does not has the connotation

of covering a “true” parameter value with claimed probability.

5.6 Alternative Computational Method: The Bisection Method

The Robbins-Monro algorithm is a stochastic approximation algorithm. Now we introduce a numer-

ical approximation algorithm–the bisection, or binary search method (Mauchly, 1949, as referred

in Knuth 1998). This is a method based on the Intermediate Value Theorem. It finds a root of a

given (continuous) function by narrowing down an interval that contains a root of the function. The

method will split the interval into two equal halves and check which half interval contains a root of

the function, and continue splitting the interval in halves until the resulting interval is sufficiently
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small. Then the root is approximated by any value in the final interval. Here, the function is

f(x) = P (observing an equally or more extreme test statistic|Hx),

and the method would find solution x = � to the equation f(x) = ↵. The starting interval [x
1

, x
2

]

would be arbitrarily chosen such that f(x
1

) < ↵ < f(x
2

) and f(x) is monotonic on the inter-

val. According to the accuracy of the Monte Carlo p-value estimate (Plamadeala and Rosenberger,

2012), we propose that the iteration would be stopped when the interval is small enough that the

difference between the p-value estimates at the two endpoints is smaller than 10%↵. The lower and

upper confidence limits are determined separately.

We find that the numerical approximation method is more effective than the stochastic method

when data are extreme. Consider again the simulation in Section 5.5 where we estimate the confi-

dence limits for the ratio of event recurrence rates, denoted by �, in the presence of outliers. When

the outliers are sampled from the Cauchy distribution, the Robbins-Monro algorithm does not give a

convergent sequence for approximating the confident limits. Theoretically, it is possible to construct

a convergent sequence by choosing a suitable step length constant ci, but it is unclear that how this

can be done efficiently in practice. On the other hand, the bisection method is able to produce a

confidence limit estimate within a computable number of iterations. The details are as follows.

The event times are sampled from Exp(✓) with 10% random contamination sampled from

Cauchy(0, 1)/5, where ✓ = 10 for patients assigned to treatment A, and ✓ = 15 for patients

assigned to treatment B. We examine the example of estimating the lower confidence limit. The ran-

domization procedure is complete randomization. The Robbins-Monro algorithm with step length

constant parameter k = 2/g (see the penultimate paragraph in Section 5.4.1) does not give a limit

after 30, 000 steps of the search. For the bisection algorithm, we set the initial interval containing

the limit to be [0.5, 1.5]. At each iteration, we estimate the p-value of the upper point, lower point,

and midpoint of the interval by Monte Carlo re-randomization test with L = 20, 000. After seven

iterations, the estimate for the lower confidence limit is � = 0.83203, and the confidence level is

confirmed by the p-value of the estimate (Table 5.6).

82



Table 5.6: Numerical approximation of the 5% lower confidence limit for the ratio of recurrence
rates by the bisection method.

Iteration Interval p-value at endpoints Midpoint p-value at midpoint

0 [0.5,1.5] 0.003, 0.496 1 0.128
1 [0.5, 1] 0.002, 0.127 0.75 0.028
2 [0.75, 1] 0.029, 0.123 0.875 0.065
3 [0.75, 0.875] 0.027, 0.063 0.8125 0.047
4 [0.8125, 0.875] 0.041, 0.063 0.84375 0.051
5 [0.8125, 0.84375] 0.044, 0.054 0.82813 0.049
6 [0.82813, 0.84375] 0.050, 0.056 0.83594 0.053
7 [0.82813, 0.83594] 0.050, 0.054 0.83203 0.052

Below is a brief comparison of the computational efficiency of the two algorithms for obtaining

a 5% lower confidence limit under the outliers model in the previous section. The number of steps

in Robbins-Monro algorithm is 30, 000 and the starting point is provided. The starting interval and

the stopping rule of the bisection method follow from the above example. Computational time is

0.97 seconds for the bisection method and 0.13 seconds for the Robbins-Monro algorithm based

on a regular laptop (with a 1.4 GHz Intel Core i5 processor and 4 GB 1600 MHz memory). The

total number of modifications of patient responses according to the testing hypothesis is 2, 100, 000

(= 7 iterations⇥3 points⇥20, 000 Monte Carlo simulations⇥50 patients) for the bisection method

and 150, 000(= 30, 000 Monte Carlo simulations ⇥ 50 patients). In this example, the difference in

computational time does not have a noticeable impact to user experience. But if the object of

estimation does not has a closed-form and requires applying an iterative method for each estimate,

the difference may not be negligible, and may be reduced by decreasing the number of iterations.

5.7 Discussions

The discussion in this chapter has been focused on constant additive treatment effect in terms of a

scalar parameter. Nonetheless, additivity of treatment effect does not exclude random errors. Let
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xi denote the response of patient i under some basic condition. Constant additivity implies that the

response of patient i under treatment j is given by liner model

yij = xi + tj + eij , (5.1)

where the eij’s are independent random errors not necessarily assuming a distribution (Kempthorne,

1955). In view that perfect patient-treatment additivity are rare and multiple covariates are common

in clinical trials, we consider it is helpful to evaluate other model of treatment difference, such as

a multiplicative model (Onghena, 2018) or, in more complex cases, regression models, and we are

inviting future exploration on the topic.

We end this chapter with an excerpt (Kempthorne, 1992) that summarizes the randomization-

based interval and its interpretation and remarks on different approaches to inference (randomization-

based, population-based, Bayesian).

Related to this process [the population-based method], but different from it, is the use

of significance levels, often called P values. Inversion of the whole family of related

significance tests of ✓ = ✓
0

for a set of values of ✓
0

gives a region of values of ✓ that

agree with the data to a designated extent.

My preference is to regard the regions so obtained as consonance regions that specify

values of ✓ that are consonant with the data at chosen level.

These procedures, however characterized by particular words, do not give proba-

bilities of hypotheses such as probability that ✓ belongs to any chosen region of the

parameter space.

If, then, the aim of the whole exercise, design, performance and analysis of the ex-

periment is the obtaining of such probabilities, the procedures are totally unsuccessful.

The group of statisticians known as Bayesians take the position that the aim of all

investigation must be the obtaining of such probabilities. Then it is obvious that one

can reach the result with the introduction of a prior distribution. Unfortunately there is

no logic that forces choice of a prior. It is the conclusion of this line of development
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that probability outcome is a belief probability that depends critically, obviously, on the

prior belief probability.

My opinion is that the processes of science and technology do not require belief

probabilities. The processes of science and technology require obtaining of data under

circumstances chosen by the investigators, and analysis of data, which consists of mak-

ing judgment of whether the data are consonant with particular models suggested by

previous investigators or of determining new models from the data that are obtained. . .

The idea that analysis of astronomical data should use a parametric model determined

by some ✓ with a prior belief distribution on ✓ seems to me to be an antithesis of

scientific method.

I therefore take the view that the Bayesian prescription, which is being heavily touted

as the prescription by which all the uncertainty about this world in which we have to

live can be handled, is not worth considering.

The application of Bayesian methods in the design and analysis of randomized clinical trials

may yield further information that is helpful to design a scientific experiment, particularly if prior

studies are available. If the researcher would like to adjust some measurements for the purpose

of optimizing the design of the experiment, the researcher may run simulations based on a para-

metric model of data distribution to evaluate the performance at given values of parameters. An

in-depth discussion on Bayesian methods is beyond the scope of this dissertation. In summary, it

is unnecessary to always reduce the the processes of experimentation to a (hierarchy of) families of

distribution functions in order to extrapolate, and it is unlikely that the level of confidence to predict

in a population-based interpretation can eradicate the uncertainty in extrapolation with a claimed

confidence level. Randomization-based estimation is more about checking a proposed model of

how a treatment affects the response by real world data than checking the data by a stochastic dis-

tribution model.
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Chapter 6: Conclusions and Future Work

A core of experimental inference is an objective, substantial basis for forming the probability dis-

tribution upon which the statistical significance of the test is shaped and calculated. In analyzing

data from randomized clinical trials, such a basis is recognized as the randomization procedure.

Essentially, randomized clinical trials are complex, designed experiments rather than sampling pro-

cedures with well-defined populations. It has been widely known for the last century that designed

experiments must be analyzed differently from studies with random sampling. The experiment itself

is a population, and replication, rather than repeated sampling, is the key factor in generalizability.

The contributions of the thesis are recapitulated as follows. First, we distinguish population-

based inference from randomization-based inference, and examine the framework of randomization

tests in terms of the hypothesis, the random mechanism, and the reference set. Perhaps the most

obvious difference between the two inferential theories lies in the rationale for generalizing ex-

perimental conclusions as well as the meaning of repeating an experiment. If the observations

are actually sampled from the proposed populations, generalizability is automatic, since the pop-

ulation of interest can be unambiguously defined by a distribution function. Valid generalization

can be entrusted with a test that sufficiently represents the distributional characteristics. Repeating

an experiment means repeated sampling from the population distribution. In randomization-based

inference, it is understood that the general patient population can neither be well-defined nor char-

acterized by a limited number of trials. The statistical significance of a hypothesis pertains to the

specific trial being analyzed, and randomization allows us to replicate of a completed trial without

actually replicating. The validity of the generalization relies on the design and proper conduct of

the trial rather than on the accuracy of a statistical model of treatment effect.

Second, in exploring the statistical validity and the power of the test under heterogeneity in the

patient responses, we discover that, while randomization tests preserve the type I error rate, the

population-based test, either parametric or non-parametric, is not always valid. The study confirms
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that the normal theory test can sometimes serve as an approximation to the randomization test, not

the other way around, as Kempthorne discussed throughout his voluminous work on experimental

design. We also find that, in the presence of time trends, periodic balance of treatment allocation

in the randomization improves the sensitivity in detecting existing treatment effects. When the

heterogeneity is not related to the sequential order of treatment assignment (e.g., outliers, heavy-

tailed), the power of the test is less affected by the randomization procedure, but is increased when

changing the test statistic from measurement-based to rank-based. The phenomena are observed

alike in global hypothesis, pairwise comparisons, and factorial designs.

Third, the solution to the computational complexity in multiple comparisons culminates in an

efficient approach for simulating the conditional reference set. Apart from the naive approach that

samples a large number of treatment sequences and keep only those satisfying the condition, the

convenient approach that samples by the corresponding two-armed randomization, we develop a

approach that samples directly from the conditional reference set without loss of computation effi-

ciency. Moreover, we make valid generalization of two randomization procedures, which heretofore

were designed only for randomizing two treatments, so they can be applied to randomizing clinical

trials with more than two treatments. Relevant mathematical proofs are provided.

Fourth, in developing the randomization-based estimation, we contextualize the definition of

confidence interval and examined an efficient algorithm for computing a confidence limit based on

Robbins-Monro process. We extend the algorithm from the context of permutation test to random-

ization test, and apply it to estimating confidence intervals for data from randomized clinical tri-

als. We also compare the performance of randomization-based interval estimation with population-

based interval estimation, and demonstrate that only the formal preserves the confidence level under

heterogeneity in the patient outcomes.

Another important topic in popularizing the application of randomization tests in practice but

is not covered in the thesis concerns the principle and method of handling missing outcomes data.

Edgington (2007) discusses two ways of permuting the patient outcomes when there are missing

outcomes. One method eliminates the missing records and permutes the remaining data. The other

method permutes the entire data set without discrimination, as if there were no missing records.
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A third approach, the worst-rank analysis, is described in Rosenberger and Lachin (2016). They

suggest assigning the worst rank to the missing records when using a linear rank statistic.

For randomization-based estimation, future investigations can be expected in the mathematical

properties of the estimating process, for example, the accuracy of the confidence limit estimate,

the method of determining the step length constant in order that the sequence of estimates would

converge even if the data are extreme, so as to facilitate the application to a broader class of primary

outcome variables and analyses.

In addition, the randomization procedures discussed in the thesis are procedures that preserve

the allocation ratio at every treatment assignment (i.e., marginally, each treatment is equally likely

to be assigned to each patient). Some discussion of randomization tests in nonstandard settings,

such as covariate-adaptive and response-adaptive randomization, can be found in Proschan and

Dodd (2019). Questions regarding how the p-value should be determined or applied arise when the

randomization in a trial is almost a deterministic process (see Proschan and Dodd (2019) for some

examples). We consider that the level of evidence in favor of a treatment effect in this situation

may not be mechanically interpreted. Challenges of re-randomization are present when the clinical

conditions are imperfect. Nonetheless, reliable conclusions in terms of scientific objectivity and

statistical validity is attainable with the improvement in the design, documentation, and analysis

of randomized clinical trials. We hope that the exposition of the purpose of statistical inference in

the randomized clinical trials and techniques of how to perform the inference is coherent with the

instructions and inspirations given by the great predecessors. We hope that the thesis will serve as

one of the stepping stones for inquiring into these topics further.
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