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Abstract

DEVELOPMENT OF NUMERICAL OPTIMIZATION TECHNIQUES FOR OPTIMAL
DESIGN OF NANOPHOTONIC AND NANOPLASMONIC SYSTEMS

Carmen A. Caiseda, PhD

George Mason University, 2012

Dissertation Director: Dr. Igor Griva

There is a steadily growing interest in building new photonic and plasmonic nanosystems

capable of tailoring the electromagnetic properties of light. An optimal design of these

nanosystems is critical for their efficiency. One essential component of optimal design of

nanodevices is numerical simulation and optimization that provide the optimal structure to

be tested experimentally, and eventually implemented as actual device. This dissertation

focuses on the development of numerical optimization techniques to analyze and design

efficient nanoplasmonic and nanophotonic systems. In this work the electromagnetic field

is modeled through the numerical solution of Maxwell’s equations in the frequency domain,

and numerical techniques that address optimization problems with these PDE constraints

are developed. Application of the techniques to problems of i) maximization of light ab-

sorption by metal nanoparticle and ii) efficient surface plasmon generation demonstrate

considerable practical value of the developed methodology

No preferred strategy has yet emerged from the nanophotonic research community to solve

optimization problems with partial differential equation constraints, despite continuous the-

oretical developments in topology and shape optimization, large-scale nonlinear optimiza-

tion and sensitivity analysis. This dissertation considers two approaches to the problem.



The first approach is to discretize and incorporate the PDE into a constrained optimization

problem to solve with an appropriate nonlinear programming algorithm. The second op-

timization approach is to formulate and compute the gradient and modify the parameters

accordingly, using the current data and PDE solution obtained from the solver. The first

approach has been implemented in AMPL modeling language for problem i). The second

numerical optimization approach is the main strategy implemented for both problems i)

and ii) using COMSOL Multiphysics and MATLAB.

Although this effort to solve a design optimization problem is specific to nanophotonic/nanoplasmonic

systems, the result of this work afford computational tools with broader applications to ad-

vance the wider problem of optimization with PDE constraints.



Chapter 1: Introduction

Nanophotonics and Nanoplasmonics study the behavior and properties of light, and its inter-

action with matter on the nanoscale. The design and study of nanophotonic and nanoplas-

monic (nph/npl) systems have stirred the research community since its recent origins be-

cause of its potential of pushing the limits of technology to new levels. The foundational

research in photonic crystals (PC) was done by E. Yablonovitch [1] at Bell Communications

Research and S. John [2] at Princeton University during 1987. Their work has produced

periodic structures that are able to inhibit the propagation of certain frequencies of light to

a desired behavior, a successful result of optimal design. Today researchers use these mech-

anisms to control the dispersion, deceleration, and storage of light. Also in nanoplasmonics

there is much space for invention. Nanoplasmonics is a branch of nanophotonics that studies

surface plasmons, a collective oscillations of electron coupled to an electromagnetic field in a

metal or semiconductor. Surface Plasmon (SP) polaritons are quasi-particles, hybrid of the

photon and electron plasma. SP modes are the electromagnetic waves that propagate along

the interface of metal and dielectric. SP’s interaction with light can enhance absorption,

scattering and near-fields by modifying the surface of the conductor. This interaction allows

manipulation of light in new ways, with startling applications.

Nph/npl phenomena is not only of interest to electromagnetism (EM), an interdisciplinary

research community, but also to the general population because of its potential for appli-

cations hitherto only in the purview of science fiction. The creation of new materials and

photonic devices is common to optics, magneto-optic data storage, microscopy, solar cells

and biology (where it is used to detect targeted molecules). Two popular applications that

have captured the public imagination are the cloak of invisibility, and the possibility of

creating a superlens. By designing a cloaking device with a particular configuration of per-

meability (µ) and permittivity (ε) values, a covered object can be invisible to an EM wave.

1



Materials with negative refractive index, ν = ±√εµ, permit the creation of superlenses

with spatial resolution below the optical wavelength. A metamaterial-based superlens can

render images with better resolution than the diffraction limit by locating the objective lens

hundreds of nanometers (near field) from the object.

The contribution of the computational sciences to the development and study of optimal

design tools is fundamental. The Committee on Nanophotonics Accessibility and Applica-

bility of the Division on Engineering and Physical Sciences, National Research Council of

the National Academies in its citation from the 2008 document Nanophotonics Accessibility

and Applicability [3] states that:

Quantitative and computationally intensive EM modeling has assumed a dom-

inant and increasingly important role in this field, employing fully numerical

methods such as finite element, boundary element, and finite difference-time

domain approaches; analytical or semi-analytical methods such as plasmon hy-

bridization and discrete dipole approximation; and lumped circuit concepts for

the design of complex plasmonic systems.

To better develop these kind of applications, efficient use of simulation and optimization

algorithms is needed. The effort to develop tools for optimal design of electromagnetic

devices not only enables the creation of more efficient nanodevices, but also new conceptual

discoveries.

1.1 Previous Work

Optimal design in EM is a PDE constraint optimization problem. A survey of the PDE or

field solvers and optimizers used in recently published work is profitable to assess the state

of the art in this field. Numerical techniques used to solve the EM field or PDE solvers

include:

1. Finite Difference (FD): FD in the optimization of aperiodic structures [4], and finite

difference time domain (FDTD) in Iterative Optimization [5]

2



2. Finite Element Method (FEM): FEM codes include COMSOL and Omega3P in opti-

mization of photonic nanostructures in [6], [7],[8],[9] and

3. Fourier-Bessel series: aperiodic nph design in [10].

Numerical optimization techniques for nanoplasmonic and nanophotonic systems that sat-

isfy partial differential equations constraints include:

1. Genetic Algorithms: for photonic crystals [11]

2. Robust Optimization: using gradient information on a npl grating design [12]

3. Method of Moving Asymptotes: with topology and shape optimization in [6], [7]

4. Iterative Optimization: for plasmon resonant nanostructure in [5]

5. Guided Random Walk: in aperiodic nph design [10] and

6. Sequential Quadratic Programming (SQP): deterministic optimization in shape opti-

mization of low-loss cavity for the international linear collider in Physics in [9].

Recently, optimization with the Adjoint Method (AM) is present in [6], [7], [8], [4], [12], [9],

and has become popular to find the gradient with respect to design variables. AM is pre-

ferred for large-scale optimization over automatic differentiation, numerical differentiation

or direct sensitivity analysis as seen in [9]. The following review of previous work in EM

show a variety of numerical techniques implemented in optimal design. The choice of nu-

merical PDE-field solvers and numerical optimization algorithms vary in this list, showing

that there is no universally preferred tool for EM optimal design problems. The following

review of previous work classify nph/npl optimal design according to use of gradient-based

NLP algorithms. The numerical optimization technique or optimizer implemented is de-

scribed, as well as methods used to model the field or PDE solvers, and to find and evaluate

the objective function and its gradient.
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1.1.1 Derivative Free Optimization

The Derivative Free optimization approach iteratively runs the PDE solver over changed

parameters to find the best design without using gradient or derivative based optimization

in [11], [10]. A very common gradient free optimization algorithm is the Genetic Algorithm.

The technique starts with a candidate solution that evolves by chosing parameters that im-

prove the at each iteration regarding an objective criteria.

Jiang L. et al. in [11] use a Genetic Algorithm, a stochastic search algorithm from evolution-

ary computation, to optimize the design of a photonic crystal waveguide with grating-like

surface in order to maximize highly-efficient directional emission. The FDTD method is

used to calculate the efficiency of the directional emission as a fitness value for each chro-

mosome consisting of a binary list of parameters that generate the grating-like surface. The

list contains from four to eight parameters. Selection creates a new generation with more

positions in the new population for chromosome with good fitness values, and eliminating

the ones with poor values. The determined fitness level of each chromosome, by FDTD, is

used to find the probability of a chromosome to be selected. On the other hand crossover

produces two children that share the chromosomes of both parents’ genetic material using

a single point crossover at a position determined as a random integer. Mutation is used to

guarantee that a particular good characteristic is not lost through selection and crossover,

and non-zero probability of searching for a given string. The algorithm is repeated until

a predefined number of generations is obtained and decoded as an optimum design for the

grating-like surface.

Gheorma, I.L. et al. in [10] study the photon scattering properties of aperiodic nanoscale

lossless dielectric structures in two configurations resembling photonic crystals (PC) struc-

tures: lossless dielectric rods in air and circular holes in a dielectric. The use of adaptive

algorithms for device design of photonic crystal structures seeks to match desired EM trans-

mission and scattering properties. The 2D EM field solver uses the analytical solution of

Helmholtz equation by separation of variables in polar coordinates and expresses it and the

Gaussian input beam as a Fourier-Bessel series. The optimization strategy is an iterative
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solution of inverse problem Guided Random Walk. The position of individual cylinders is

randomly changed by a small amount. The scattered fields are modified, recalculated, and

accepted if the result is closer to the target function and within the error tolerance, and

rejected otherwise. The target function involves redirecting and reshaping an EM beam

using optimized aperiodic nanostructures. The parameter considered in the sensitivity of

the design is the change in position of the cylinders. This adaptive algorithm approximates

the distribution of the target function dependent of the number of cylinders, and therefore

is limited by increased computational effort as the number increases.

1.1.2 Gradient Based Optimization

Gradient based optimization require more computationally intensive information on the

objective function in exchange for a better convergence to the optimal solution. NLP al-

gorithms that use the Hessian are not found in this review of published work on nph/npl

design. The NLP algorithms used include the GM and SQP. The method of moving asymp-

totes (MMA), developed in 1987 by Svanberg [13] for structural optimization problems, is

used in Frei et al. [6] and [7].

In [5] Pavaskar et al. use finite difference time domain (FDTD) in 2D cylinder configuration

to determine the configuration of nanoparticles that give a maximum electric field intensity

in the center of the cluster. The algorithm is summarized as follows:

1. Determine resonance frequency of initial configuration with a FDTD simulation with

broad pulse and initialize parameters.

2. Calculate electric field intensity gradients in the x, y directions.

3. Move one nanoparticle in the direction of the electric field intensity gradient provided

there is no overlap with other nanoparticle.
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4. Determine resonant wavelength of new configuration and run FDTD simulation of the

electric field for the entire grid.

5. Compare electric field intensity at the center of the cluster and determine if the new

value is the new maximum or discard.

The algorithm converges after five iterations using three nanoparticles. The maximum in-

tensity can be achieved by placing the third nanoparticle either at the top or at the bottom

of the center of the cluster. The electric field intensity increased monotonically and the

resonant wavelength changes slightly by a maximum of 2 %. This approach permits the

authors to add one nanoparticle at a time until they reach a 20 nanoparticle configuration.

When comparing the optimal configuration with a linear or chain positioning, the field in-

tensity increases by a factor of 2500. In practice the following proved helpful: a list of bad

nanoparticle configurations to avoid visiting twice, a modified step size to achieve conver-

gence, and allowing downhill movement in the optimization to avoid local optima. Because

this is implemented in 2D the algorithm requires roughly five minutes of computation time

to move one nanoparticle.

W. R. Frei et al. in [6], [7] use Topology Optimization to improve the field in a photonic

crystal structure with a photonic band gap (PBG) waveguide. This numerical technique uses

the adjoint method (AM) to solve a nonlinear programming problem and design sensitivity

analysis by the FEM to improve photonic crystal structures. A waveguide is created by

defining an area with a dielectric rod lattice structure. The area with no rods is the

waveguide while the rods prohibit light from propagating in any other direction. The

performance of a compact waveguide termination in a square lattice rods-in-air photonic

crystal is increased five-fold in power incident upon the target area over the termination

through the use of topology optimization. This numerical optimization method is a three

step procedure.

1. Solve the differential equation and define the objective function.
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2. The sensitivity of the objective function to the solution is assessed at the computed

distribution of the material within the domain.

3. The material distribution is adjusted based on the sensitivity analysis.

This process is repeated until the objective function reaches the target function. The ob-

jective is to maximize the amount of power crossing the boundary at a given distance from

the waveguide termination. This indicates greater directional emissivity at the optimized

waveguide termination area compared to the strong diffraction in the non-optimal design.

The PDE is a Helmholtz equation with second order absorbing boundary condition solved

with the frequency domain FEM. Sensitivity of the objective function, i.e. the derivative

with respect to the set of design parameters, is obtained through the AM. The design pa-

rameters or controls are the dielectric constant as a function of position εmr (~x), within the

m elements of the FEM model. After obtaining the objective function and its derivative

with respect to the dielectric constants in the elements, εmr are modified to improve the

objective function. A non-linear constraint optimization problem is formulated from the

obtained objective function and its derivative with bounded dielectric constants. A numer-

ical optimization package is used to implement the Method of Moving Asymptotes (MMA)

optimizer to obtain the modified dielectric constants. The MMA is a deterministic opti-

mization algorithm that proceeds modifying the design α variable bounded by shrinking

asymptotes, Lk ≤ αk ≤ Uk, to maximize the solution until a suitable termination criteria is

met. The authors report that the computational implementation of the topology optimiza-

tion runs in a desktop computer for less than an hour, using linear quadrilateral element in

FE and 100 iterations of the optimization algorithm. Second order quadrilateral elements

increase run-time by more than a factor of four. Because the deterministic optimizer search

depends on an initial topology, many other local optima are expected. Interpretation of the

design is an open problem, [14].

The Akcelik et al. team in [9] works in the development of the International Linear Col-

lider (ILC) for high-energy physics research design to create high-energy particle collisions
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between electrons, positrons, and related antimatter. This shape optimization problem gov-

erned by a large-scale EM eigenvalue problem uses SQP optimization, AM gradients and

FEM solver. The shape of the accelerator cavity is optimized to damp high-order dipole

modes (HOMs). Because of the high accuracy requirements of the frequency constraint,

gradient-based methods are used to solve the optimization problem. The design variables

to find the derivative of the objective function and constraints are hundreds of computer

aided design (CAD) parameters for the accelerator cavity shape. The best approach to

compute gradients for this problem is the continuous AM. This method scales only with

active constraints, much fewer in number than the design variables. It also avoids differen-

tiation through the mesher that might be non-differentiable from CAD design. The design

problem is to maximize stored energy of the trapped modes in an end cell, subject to the

constraint of the cavity shape satisfying a desired accelerating frequency. Here the state

eigenvalue problem gives the relation between the design variables and eigenpairs. In order

to use highly-efficient SQP, the gradient of the objective function and the accelerating fre-

quency constraint with respect to design variables are obtained to solve the optimization

problem. Since the trapped modes frequency are expected to be well-separated, the adjoint

eigenvalue problem is non-singular and the gradient is continuous. The adjoint eigenpair is

a linear self-adjoint system. In the computational implementation, four variables are chosen

to parametrize the shape corresponding to the outer layer of elements. The state eigenvalue

problem is solved by Omega3P finite element electromagnetism code automatically, obtain-

ing the trapped mode and accelerating mode. The adjoint eigenvalue problem is solved

by an adjoint extension to the Omega3P using the same mesh, elements, and numerical

components in the state eigenproblem. Extensions to Omega3P are also used to compute

the objective, accelerating frequency constraint, objective gradient, and constraint gradient

expressions involving boundary and domain integrals. The function, gradient information,

and bounds on design variables are passed to the SQP code fSQP to solve a quadratic sub-

problem. These generate a search direction, perform a line search, and return new design
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vector. The updated design variables generate the deformed mesh and the process is re-

peated until convergence. The dominant computational cost is the solution of the Maxwell’s

(state) eigenvalue problem solution for frequencies and mode shapes, over solving the linear

adjoint eigenvalue problem and remeshing. This processes depend on volume computations.

The algorithm converges in five iterations where the objective value of the trapped energy

in the end cell is improved by 58%, even when the initial design is not feasible violating the

accelerating frequency constraint by 17%.

Bertsimas et al. in [12] use Robust Optimization to solve the EM scattering problem and

optimization of aperiodic dielectric structures on lowest mode TE10. Robust optimization is

applied to a non-convex objective function to mimic a power distribution of a target surface.

The objective of the robust optimization is to “minimize the worst case cost under implemen-

tation error from manufacturing or experiments.” It minimizes the robust or worst case cost

over a geometric 2D position p ∈ P , the admissible set. That is minimize max∆pJ(p+∆p),

where ∆p is the implementation error in uncertainty set U = {∆p|||∆p|| <= Γ = 550µm}.

U is the set of implementations errors to avoid in the design. The advantage of robust

optimization is that it only needs to evaluate the objective function. Commercial optimiza-

tion solvers are used to find the solution of the second order cone problem that describes

the search of a good direction d. The direction d is one that minimizes the angle between

the robust point and previously visited points in the neighborhood of pk with maximum

cost values. The EM field is modeled by the Helmholtz equation for lossless dielectric

scatterers with Dirichlet condition on metallic horn and perfectly matched layers (PML)

boundary conditions, and the solution is found with finite-difference (FD). Power on surface

is computed with interpolation for nearest four mesh points and standard Gaussian weight.

Linear Algebra Packages are used to solve the system of equations via LU decomposition

with UMFPACK, and Goto-BLAS is used for vector and matrix operations. The computa-

tional implementation takes 0.7 seconds on ab Intel Xeon 3.4 GHz for 70K x 70K matrix.

The optimization procedure consists of two steps: nominal and robust optimization. The
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nominal optimization problem finds a good configuration as initial solution for step two. A

random search does not produce fast improvement, therefore, two alternative algorithms are

tested: a gradient free stochastic algorithm and a modified gradient descent using the AM

to compute the gradient. The advantage of the adjoint equation is the efficient use of the

same structure and linear operators of the linear system for FD PDE operator producing a

gradient evaluation optimization at very little additional computational cost. The modified

gradient descent converges faster. The modifications consist of the following: if the configu-

ration is infeasible, the step size is halved until it meets a threshold value. Thus the modified

gradient will apply a gradient step only to feasible configurations. The robust optimization

step iteratively updates the configuration with one more robust (minimum worst case) until

a termination condition is met. Since the robust objective function max J(p + ∆p) does

not have a closed form, efficient local searches are used within a neighborhood of the initial

configuration p.

1.2 Overview of Dissertation

This dissertation is organized in the following way. In chapter 2 the theoretical background

related to the problem of optimal design of nph/npl systems is introduced. In Chapter 3 the

problem formulation is developed from basic principles, including a theoretical exposition

of the ways to obtain the gradient in the context of the dissertation problem, and discusses

equivalence of diverse formulations. The following chapters present the development and

computational application of the two main problems in this dissertation. Chapter 4 presents

the computer implementation of the FEM solver and its results. In Chapter 5 the maxi-

mum light absorption problem is developed from formulations of objective function and its

gradients, to the computer implemented in AMPL and MATLAB. The main problem of the

optimal design of the plasmon coupler is presented in Chapter 6. The development of the

model, formulations, numerical optimization strategies and implementation in COMSOL-

MATLAB code, is developed for two different electromagnetic waves. The plane wave and

the Gaussian beam devices are studied and results are presented. The final Chapter 7 is a
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summary of results, lessons learned, and options for further development of this work.
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Chapter 2: Theoretical Background

This section summarizes the theoretical background that is relevant to this work. In this

dissertation the EM field is modeled by partial differential equations (PDE) obtained from

Maxwell’s Equations subject to some modeling assumptions and constitutive relations. In

the optimization problem, these equations become the constraints that the state variables

must satisfy. To find the numerical solution of the PDE obtained from Maxwell’s Equa-

tions, this dissertation uses the Finite Element Method (FEM) algorithm. In addition, the

project will use numerical methods to find the gradient information in order to perform

optimization. A summary of non linear programming (NLP) algorithms used in large-scale

optimization problems is included. Finally the Adjoint Method (AM) is discussed as a

viable way to find the gradient of the objective or cost function.

2.1 Maxwell’s Equations

Maxwell’s Equations govern EM phenomena. The PDE used to model EM fields is ob-

tained from Maxwell’s equations under simplifying assumptions that define the model of

the phenomena. Maxwell’s equations in differential form are:

∇×H = J +
∂D

∂t
Ampere-Maxwell’s Law (2.1)

−∇×E =
∂B

∂t
Faraday’s Law (2.2)

∇ ·D = ρ Gauss Law-Magnetism (2.3)

∇ ·B = 0 Gauss Law. (2.4)
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Here:

E = electric field intensity (volts/meter)

D = electric displacement field or flux density (coulombs/meter2)

H = magnetic field intensity (amperes/meter)

B = magnetic flux density (webers/meter2)

J = current density (amperes/meter2)

ρ = electric charge density (coulombs/meter3).

For the light propagation in a linear dispersion-less time-invariant material the following

assumptions are made along with the constitutive relations:

• J = 0, there is no current.

• ρ = 0, No changes introduced to the field.

• D = εE, linearity.

• B = µH, linearity of Ampere-Maxwell’s equation .

• For harmonic light propagation, E(x, y, z, t) = E(x, y, z)ejωt and H(x, y, z, t) = H(x, y, z)ejωt.

• µr = 1 for high frequency light wave.

The parameters of the dielectric material are ε : permittivity(farads/meter) and µ : perme-

ability (henrys/meter). The general Maxwell’s equations are then simplified to the following:

∇×H =
ε∂E

∂t
(2.5)

−∇×E =
∂B

∂t
= µ

∂H

∂t
(2.6)

∇ ·D = ∇ · εE = 0 (2.7)

∇ ·B = 0. (2.8)
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By assuming time harmonic light propagation, the derivative with respect to t of E and H

is obtained in equations (2.5) and (2.6) that become:

∇×H(r)ejωt = jεωE(r)ejωt, ∇×E(r) = −jµωH(r),

taking r = (x, y, z). By substituting out H in equation (2.5) a partial differential Helmholtz

equation in space for E is obtained:

∇×
(

1

µ
∇×E(r)

)
= εω2E(r).

One way to model an artificial boundary that simulates an open domain is to use ab-

sorbing boundary conditions [15]. These are defined as

~n× (∇×E)− jk~n× (E× ~n) = −~n× (E0 × j(k~n− ~k))e−j
~k·~r,

where ~n is the normal vector at the boundary, E0 the source, and the wave number k =
(

2π
λ

)
.

Analytical solutions for this PDE’s with complex boundary conditions are rarely available.

Consequently, numerical solutions need to be obtained. Efficient numerical PDE solvers

can be developed using FEM, and will be discussed in the next section.

2.2 Finite Element Method

The FEM is an numerical tool used extensively in computational EM and simulation re-

search. Popular commercial PDE solvers, like COMSOL, are FEM solvers. Currently, FEM

and computational processing combine to tackle more complex problems and better model

phenomena described by PDEs.

The solid mathematical foundation behind FEM support the existence of the solution and

stability of the method for numerical simulations. The mathematical framework is well
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developed using calculus of variations and weak formulation of PDE’s in functional analy-

sis. The Lax-Milgram Theorem establishes the existence and uniqueness of a solution in an

infinite dimensional Hilbert space. The requirements for stability are automatically met by

FEM based in energy estimates, unlike other numerical PDE solvers like Finite Differences

(FD). Although a thorough mathematical treatment of Maxwell’s equations has been de-

veloped in the study H(Curl,Ω) Sobolev Spaces , this proposal focuses in the development

of numerical methods. The solution is a discrete approximation to the continuous solution

by using a finite dimensional ansatz basis for a finite dimensional space V ⊂ H(Curl,Ω).

The numerical solution belongs to the finite dimensional ansatz space.

The variational or weak formulation of the PDE in V an infinite Hilbert space is used to

derive the discretized ansatz space problem. The variable E ∈ V is approximated by Eh ∈

Vh ⊂ V an n-dimensional finite subspace with chosen basis functions ψk(z), k ∈ 1, ..., n.

Assuming for example that n = 2, then ψ1(z), ψ2(z) and Eh(z) = E1ψ1(z) + E2ψ2(z). Af-

ter applying the essential boundary conditions (Dirichlet), and integration by parts (that

accounts for the natural-Neumann boundary conditions), a linear system is obtained for

each element. As an example a four step derivation is considered, for a general 1D elliptic

problem in u : (0, 1)→ R, with given functions a, f, r : (0, 1)→ R, given by

(−au′)′ + ru = f, u in (0, 1)

u(x) = 0, on x = 0, x = 1 (2.9)

1. Variational formulation: Define V = {v : (0, 1) → R :
∫ 1

0 (v2(x) + v′(x)2) dx <

∞, v(0) = v(1) = 0}. Multiply equation (2.9) by a test (weight) function v ∈ V and

integrating by parts to obtain
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∫ 1

0
fv dx =

∫ 1

0
(−au′)′v + ruv dx =

= [−au′v]10 +

∫ 1

0
au′v′ + ruv dx (2.10)

=

∫ 1

0
au′v′ + ruv dx

The variational formulation for (2.9) is

A(u, v) = L(v), ∀v ∈ V (2.11)

with

A(u, v) =

∫ 1

0
au′v′ + ruv dx

L(v) =

∫ 1

0
fv dx. (2.12)

To obtain from the variational formulation a solution to (2.9) some assumptions on

the smoothness of a, r, f must be made so that −(au′)′ + ru− f is continuous. Then

working from (2.11) the result is (2.9). Using integration by parts

0 =

∫ 1

0
au′v′ + ruv − fvdx =

∫ 1

0
(−au′)′ + ru− f)v dx,

implies ∀v ∈ V the desired solution −(au′)′v′ + ruv − f = 0.

2. Finite Dimensional ansatz space: Vh can be obtained by dividing (0, 1) intoN elements
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with nodes 0 = x0 < x2 < ... < xN = 1. The discrete space is defined as

Vh = {v ∈ V : v(x)|(xi,xi+1
) = cix+ di, i = 1, .., N, v ∈ C(0, 1)},

continuous piecewise linear functions. The problem is to find uh ∈ Vh such that

A(uh, v) = L(v), (2.13)

the finite dimensional approximation of the solution u of (2.9).

3. Choose a basis for Vh: Basis functions ψi ∈ Vh for i = 0, ..., N satisfy:

ψi(xj) =


1 if i = j

0 ifi 6= j.

Therefore ∀w ∈ Vh

w(x) =
N∑
i=0

wi(x)ψi(x),

a linear combination of the basis functions ψi.

4. Solve the discrete problem: By choosing the basis function ψj = v in (2.13), and

uh(x) =
N∑
i=0

ciψi(x)

then

L(ψj) = A(uh, ψj) = A

(∑
i

ciψi, ψj

)
=
∑
i,j

A(ψi, ψj).
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This is the linear system to be solved

Âĉ = L̂, (2.14)

with

Âj,i = A(ψi, ψj),

L̂j = L(ψj),

ĉ = (c0, ..., cN ).

The obtained N ×N matrix Â is the stiffness matrix, and the vector L̂ the load vector that

characterize the discretized problem.

The computer implementation of these methods give rise to various degrees of accuracy and

performance. A higher degree polynomial used as basis functions gives better accuracy. The

refinement of the mesh on areas of interest provide more information on the distribution

and properties of the computed field. Symmetries of the domain can also enhance FEM

performance on a particular problem by reducing the computational domain to a fraction

of the original problem, saving time and space.

In electromagnetism the finite elements in the frequency domain has been used to produce

efficient models of the EM field. In the optimal design of nph/npl devices, the FEM solution

of the Helmholtz PDE determine the state variables of the electromagnetic field or state

problem. An optimization problem is defined using the FEM computed field as constraints

of a large-scale nonlinear programming (NLP) optimization. The following section discusses

NLP algorithms.
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2.3 Nonlinear Programming

Large-scale simulations that model reality more accurately, and PDE solvers that are faster

and more efficient stir the development of efficient optimizers capable of finding the optimal

solution of simulation-based problems. Nonlinear Programming (NLP) tools are efficient

algorithms with the potential for solving optimal design problems. The theory and appli-

cation of NLP to optimization with PDE constraints is a new area of study with many

challenges to explore. In this section some of the most efficient NLP algorithms are de-

scribed that are needed to be able to solve large-scale optimization problems. However the

discussion refers to finding the optimal x∗ ∈ Rn a finite metric space, rather than u ∈ U an

infinite Banach space. The existence and regularity theory to generalize the optimization

theory to Banach spaces with semi-linear elliptic PDE is developed in the book by Hinze

et al. Optimization with PDE Constraints [16].

NLP is the study of optimization involving nonlinear functions:

minimize J(x)

subject to gi(x) = 0

cj(x) ≥ 0

i = 1, .., r, j = 1, ...,m

Nonlinear optimization methods can be broadly classified into two categories: methods that

use the gradient of the objective functions and methods that do not use the gradient. Meth-

ods that use the gradient are the focus of interest in this section. The Gradient Method

(GM) is the most basic method in this classification. GM has a very poor convergence

behavior comparable to a zigzag path toward the minimum. Methods that use the Hessian,

like Newton-based methods converge rapidly near the solution and are preferred. Nonethe-

less, the Optimal Gradient Method has brought the attention of the simulation research

community back to GM. This responds to the fact that finding the Hessian for large-scale

simulation problems might be problematic.
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The general unconstrained minimization problem is the starting point of the study of con-

strained gradient-based optimization. The unconstrained problem is to minimize f(x), and

the maximum can be obtained by minimizing the opposite of the objective function. The

algorithm seeks the minimizer of a nonlinear function f(x) in a local neighborhood. Note

then that a numerical optimization algorithm searches for a local versus global minimum

because it considers a finite number of points. Global minimization requires information of

the function at all points.

Numerical optimization algorithms for unconstrained minimization can be classified by the

use of gradient or Hessian in the computation of the descent direction. In its most gen-

eral form, numerical optimization algorithms search for a direction ps such that in the

least number of iterations s, the update xs+1 = xs + tps will reach the minimum of f(x)

within a given tolerance. The strategies used for the algorithm to convergence, to find

the minimizing direction p, and the step size t define each method. If f(x) ∈ C1 is as-

sumed, the gradient can be computed to apply Gradient method (GM). In the GM the

direction of descent is taken as the anti-gradient p = −∇f(x). GM is defined by the it-

eration: xs+1 = xs − ts∇f(xs), s = 1, 2, .... If f is strongly convex the convergence rate

of the algorithm is linear, that is ‖xs+1 − x∗‖ ≤ γ ‖xs − x∗‖ , 0 < γ < 1. Furthermore

under C2 smoothness assumption, the first-order necessary condition and second-order suf-

ficient conditions apply for x∗ to be a local minimizer. These are derived from Taylor series

f(x∗ + p) = f(x∗) +∇f(x∗)T p+ 1
2p
T∇2f(ξ)p. If x∗ is a local minimum, then it must be a

stationary point and thus ∇f(x∗) = 0. Note that this first-order condition is not sufficient

since a stationary point can also be a saddle-point or a local maximum. The second-order

sufficient condition states that x∗ is a strict local minimizer if ∇f(x∗) = 0 and ∇2f(x∗) � 0,

positive definite matrix. For a positive semi-definite matrix x∗ will be a candidate local min-

imizer only. Also in computer implementation the condition ∇f(x) = 0 must be adapted

to a given tolerance.

The treatment of constrained optimization follows by introducing the Lagrangian and La-

grange multipliers and performing unconstrained minimization of the Lagrangian. The
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constrained minimization problem with equality constraints is

minimize f(x)

subject to gi(x) = 0

i = 1, .., r.

The Lagrangian is defined : L(x, y) = f(x) −
∑r

i=1 yigi(x), i where yi are the Lagrange

multipliers or dual variables. The Lagrange multipliers are important not only because of

its mathematical significance in the dual functional space but also because of the information

on the sensitivity of the optimal objective value. Lagrange multipliers express the gradient

at the optimum as a linear combination of the rows of the constraint matrix A. These also

indicate the sensitivity of the optimal objective value to changes on the problem data or

perturbation. The optimality conditions for constrained optimization are obtained from the

gradient of the Lagrangian with respect to both x, y as follows


∇xL(x, y) = ∇f(x)−∇gT (x)y = 0

∇yL(x, y) = g(x) = 0,

where ∇g is the Jacobian of the constraints.

Sequential Quadratic Programming (SQP) as implemented in solvers like SNOPT, is other

type of constrained nonlinear programming method that has been used in the large-scale

optimization with PDE. The purpose is to obtain the descent direction by solving a prob-

lem with quadratic objective function and linear constraints. Consider the Lagrangian

L(x, y) = f(x)−
∑r

i=1 yigi(x), with Lagrange multipliers yi and equality constraints gi(x).

The quadratic programming is obtained from the optimality conditions and Newton’s

method. The quadratic problem formulation is:

minimize∆x 0.5 ∆xT∇2
xxL(x, y)∆x+∇xL(x, y)T∆x

subject to ∇g(x)∆x+ g(x) = 0

21



to obtain ∆x, the primal variable update: x̂ = x+ ∆x.

NLP algorithms provide the tools to solve constrained optimization problems. The gradi-

ent and Hessian are important tools for an efficient NLP algorithm to find the optimizer.

Therefore, in the next section one of the forms to compute the gradient using available

information from the PDE simulation is discussed.

2.4 Adjoint Method

The previous section discussed the importance of computing the gradient in order to apply

the most efficient NLP algorithms. Recent published work show that the Adjoint Method

(AM) has been favored in the nph/npl optimal design because of the efficient use of simu-

lation data.

AM is a very efficient way of finding the gradient when using a PDE solver like FEM be-

cause the gradient and PDE field variables can be simultaneously obtained. The general

formulation of the optimization with PDE constraints is

minimize J(α, u)

subject to A(α, u(α)) = 0,

where α ∈ Rd are design variables, u ∈ Rn the state variables, and A(α, u(α)) = 0 the PDE.

AM calculates the gradient with respect to the d design variables by starting with the first

variation or directional derivative of the objective function as follows:

δJ = lim
h→0

J(α+ hβ)− J(α)

h
= DuJ(α, u)δu+DαJ(α, u)β.

HereDuJ is the gradient. The variation of the PDE constraint is: DuA(α, u)δu+DαA(α, u)β =

0. Including the constraint variation times the Lagrange multiplier p in δJ :

δJ = [DuJ(α, u)− p ·DuA(α, u)]δu+ [DαJ(α, u)− pT ·DαA(α, u)]β.
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If p is chosen such that it satisfies the adjoint equation DuJ(α, u)− pT ·DuA(α, u) = 0 the

first variation reduces to the Gâteaux derivative

δJ = lim
h→0

J(α+ hβ)− J(α)

h
= [DαJ(α, u)− pT ·DαA(α, u)]β,

for all direction β. The gradient thus defined:

∇J = DαJ(α, u)− pT ·DαA(α, u).

By FEM the PDE is discretized as a linear system A(α)u(α) = f(α), with A : N×N matrix,

and p, u : vectors of dimension N . Using the same matrix data, the adjoint is computed

from the similar system A(α)p(α) = DuJ(α, u). Therefore the gradient is

∇J = DαJ(α, u) + pT · (Dαf(α)−DαA(α)u(α)) .

Here

• DαJ ∈ Cd

• p ∈ CN

• Dαf the N × d Jacobian

• DαA(α)u(α) =
∑N

i=1(Dαai,j)ui(α), for j = 1..N .

After considering the theoretical background in this line of work that has generated so much

interest, the problem formulation of this dissertation is discussed in the next chapter.
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Chapter 3: Problem Formulation

In this dissertation work numerical optimization techniques are developed for two main

problems: the maximum light absorption and the optimal grating coupler problem. These

share a common structure as well as the same PDE constraint. The optimal design problems

studied have the general form:

maxv J(u, v)

subject to Ku = b,

gd(u) ≤ 0 d=1,...,m

where J is the objective (performance) function, v the design parameters, Ku = b is the

state equation obtained from the FEM discretization of the weak form of the 2D Helmholtz

PDE, ,and g(u) the m inequality constraints.

In this dissertation there are two main objective functions to measure the performance of

two different nanoplasmonic systems. The first function denoted as J is the maximum light

absorption of a silver nanoparticle. It is used to find the maximizer wavelength λ and the

optimal size of a silver nanoparticle. The complete development and results are included in

chapter 5.

The second objective function, denoted as P (J) is the wave coupler functional used to

measure the performance of a grating coupler. This important problem is developed and

implemented obtaining very improved designs. The details are discussed in chapter ??.

The PDE describes the behavior of an electromagnetic field in the presence of a metal, thus

a nanoplasmonic system. The derivation of the PDE from Maxwell’s equations in the 2D

frequency domain is discussed in the next section.
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3.1 State Equations: PDE

The problem at hand consists in maximizing the value of an objective function J that

depends on an electromagnetic field quantities. The electromagnetic field becomes the

constraint or state equations that describes the behavior of light in the presence of a

nanoscale silver particle. The behavior of light and electromagnetic phenomena is described

by Maxwell’s equations: (2.1) - (2.4). From these equations a partial differential equation

(PDE) in the frequency domain is obtained, assuming an homogeneous medium of prop-

agation with no sources or excitation. The dissertation is in the two dimensional space ,

r = zx-plane, for an in-plane electromagnetic wave (light) with direction of propagation in

the z-axis. This implies that by assuming that light propagates in a time-harmonic fashion,

E(r, t) = E(r)ejωt, the problem reduces to finding E(r), in the space domain, i.e. Maxwell’s

equations in the frequency domain. Because the dissertation studies the behavior of the

electric field in the presence of a silver nanoparticle, the equations of the transverse magnetic

(TM) waves in the y axis (Hy) are relevant, for the transverse electric (TE) waves have no

electric field component in the direction of propagation. All parameters and assumptions

are summarized in table 3.1.

The PDE obtained from Maxwell’s equations is a Helmholtz equation. The general 3D

formulation is given by:

∇×∇×E(~r) =

(
2π

λ

)2

εrE(~r).

The simplification in r =< x, 0, z > renders a system of partial differential equations:

∂2Ez
∂z∂x

− ∂2Ex
∂z2

=

(
2π

λ

)2

εrEx

∂2Ex
∂x∂z

− ∂2Ez
∂x2

=

(
2π

λ

)2

εrEz. (3.1)
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Table 3.1: Electromagnetism parameters

parameter definition

~r < x, y, z >

E(~r) < Ex(~r), 0, Ez(~r) >
H(~r) < 0, Hy(~r), 0 >

~nnormal vector at left boundary < 0, 0,−1 >
~nnormal vector at right boundary < 0, 0, 1 >

k 2 ∗ π/λ
~k < 0, 0, k >

J = 0 electric current density
amperes/m2

ρ = 0 electric charge density
coulombs/m3

j
√
−1

εr relative permittivity

c0 speed of light
299,792,458 m/s

ω angularfrequency : kc0

εµ εr/c
2
0

The TM wave equation is a scalar PDE function in Hy for a plane wave obtained from (3.1)

by substitution of the following identity obtained also from (2.1)-(2.4):

jεωE(r) = ∇×H(r). (3.2)

Therefore the scalar TM Helmholtz equation in Hy is:

− ∂

∂x

(
1

εr

∂Hy

∂x

)
− ∂

∂z

(
1

εr

∂Hy

∂z

)
=

(
2π

λ

)2

µrHy((x, z)), (3.3)

where µr ≈ 1 for air and silver.

The absorbing boundary and perfect electric conductor boundary conditions complete the

formulation of the PDE. The absorbing boundary conditions (ABC) discussed in [15], also

known as scattering, is a Robin or third type boundary conditions. ABC artificially truncate

the air domain surrounding a silver square particle with minimal non-physical reflection.
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Absorbing boundary conditions are also easy to implement in a FEM code. The derivations

for the xz plane from the general formulation follow.

The 3D formulation at boundaries of an enclosing air square (1/εr = 1) is:

~n× (∇×E)− jk~n× (E× ~n) = −~n× (E0 × j < k~n− ~k >)e−j
~k·~r. (3.4)

Using the x-axis as the propagation in z, the light source is at z = 0, the left vertical

boundary of the air square, and the rightmost vertical boundary corresponds to z = L, for

an L× L enclosing air square. At z = 0,~n =< 0, 0,−1 > E0 =< 1, 0, 0 >, ~k · ~r =< 0, 0, k >

· < x, 0, z >= kz. By substitution in (3.4):

< 0, 0,−1 > ×(∇×E)− < 0, 0,−jk > ×(E× < 0, 0,−1 >)

=< 0, 0, 1 > ×(< 1, 0, 0 > × < 0, 0,−2jk >)e−jkz,

simplifies to ∂Ex
∂z −

∂Ez
∂x + jkEx = 2jk.

At the rightmost boundary z = L also from (3.4), with ~n =< 0, 0, 1 >,E0 =< 0, 0, 0 >

< 0, 0, 1 > ×(∇×E)− < 0, 0, jk > ×(E× < 0, 0, 1 >)

=< 0, 0,−1 > ×(< 0, 0, 0 > ×j < 0, 0, 0 >)e−jkL,

obtaining ∂Ez
∂x −

∂Ex
∂z − jkEx = 0. The boundary conditions in terms of H are obtained via

the substitution (3.2). Because ∇×H =< −∂Hy
∂z , 0,

∂Hy
∂x > then:

z = 0 : −∂
2Hy

∂z2
− ∂2Hy

∂x2
+ jk

∂Hy

∂z
= 2kεω

z = L :
∂2Hy

∂z2
+
∂2Hy

∂x2
+ jk

∂Hy

∂z
= 0. (3.5)
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Consider now that at the boundaries the transverse Hy field can be expressed as a plane

wave with equation: Hy = Hy(x, y, z, t) = H0
ye
j(ωt−kz), therefore

∂Hy

∂z
= (−jk)H0

ye
j(ωt−kz) = −jkH0

y

∂2Hy

∂z2
=

∂

∂z
(−jkHy) = (−jk)

∂Hy

∂z

∂2Hy

∂x2
= 0.

The derived ABC boundary conditions for H, after substitution in (3.5) and multiplication

by j/k, are thus

z = 0 : −∂Hy

∂z
+ jkHy = 2jkH0

y (3.6)

z = L : −∂Hy

∂z
− jkHy = 0, (3.7)

where H0
y := εω. The derivation of the FEM linear system is discussed next.

3.2 FEM Discretization

The solution of the PDE is obtained numerically by solving a finite dimensional weak form of

the PDE in the ansatz space. A k-dimensional approximation to the solution: u ≈
∑

i uiwi,

is computed. The test function w in the weak form of the integral of the Helmholtz PDE is

replaced by a finite dimensional set of basis functions wi, also used for the approximation

of u. In this form the nodal 2D finite element method (FEM) or Ritz-FEM is obtained and

implemented in this dissertation.

The discretization of the PDE by the Finite Element Method (FEM) and boundary condi-

tions give the linear system Ku = b, where u is the numerical approximation vector to the

magnetic field at each node, K the stiffness matrix, and b the load vector that models the
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light incident to the left boundary of the enclosing air square. The FEM matrix for linear

triangular element is derived from the nodes, and three linear interpolation shape functions

computed at each node. The mth element matrix is:

[Km] =

∫∫
T

1

εmr
BTB − k2NTN dT,

T a right triangle. NTN,BTB are 3×3 matrices obtained from the 3 linear shape (test) func-

tions in 2D coordinates Ni(x, y), its respective gradients∇Ni(x, y) =
〈
∂Ni
∂x ,

∂Ni
∂y

〉
, i = 1, 2, 3,

and εmr the relative permittivity assumed to be constant at element m. The shape func-

tions in 2D (x, z), where z is visualized in the x-axis, is defined at each element Ni(x, z) =

1
2A(ai+biz+cix), i = 1, 2, 3. Here ai = zi+1xi+2−xi+1zi+2, bi = xi+1−xi+2, ci = zi+2−zi+1,

and area of the element A = 0.5(bici+1−bi+1ci), following a natural permutation on (1, 2, 3).

For details on the derived formulas the reader is referred to [15],[17].

The stiffness matrix K is obtained from the integrals in the following form: [Km] =(
pr−jpj
(p2r+p

2
j )

)∫∫
T B

TB − k2NTN dT =

(
pr−jpj
(p2r+p

2
j )

)
[K1]− k2[K2]. Here

[K1] =

∫∫
T
BTB dT, BTB =


∇N1 · ∇N1 ∇N1 · ∇N2 ∇N1 · ∇N3

∇N2 · ∇N1 ∇N2 · ∇N2 ∇N2 · ∇N3

∇N3 · ∇N1 ∇N3 · ∇N2 ∇N3 · ∇N3

 (3.8)

[K2] =

∫∫
T
NTN dT, NTN =


N1N1 N1N2 N1N3

N2N1 N2N2 N2N3

N3N1 N3N2 N3N3

 . (3.9)

Note that the global stiffness matrix [K] is a sparse symmetric matrix as only elements that

share nodes have non-zero entries. This added to the fact that element and global matrices

are positive definite, are attractive characteristics of the FEM discretization system.
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These matrices and the numerical solution are complex valued. The decomposition of the

equations into real and imaginary parts is described in the next section.

3.3 Complex Variables Decomposition

In this dissertation complex variables arising in electromagnetism applications are decom-

posed into real and imaginary components. The state equation obtained from transverse

magnetic (TM) Maxwell’s Equations in an isotropic media, (3.3), simplify by the variational

formulation (weak form) to:

(εr)
−1

∫∫
Ω

∂Hy

∂x

∂w

∂x
+
∂Hy

∂z

∂w

∂z
− k2HywdΩ−

∫
Γ

∂Hy

∂n
wdΓ = 0.

Here w is the test (shape, trial) function, Ω the domain, Γ the boundary, and negative

constants have been simplified via integration by parts, also known as Green’s theorem.

After discretization of the domain into n nodes and m elements, the numerical solution is

reduced to a linear system via Finite Element Method.

The FEM approximation of the magnetic field is given by the solution of a complex val-

ued system of equations Ku = b. This system is decomposed into real and imaginary

components of the form: K = Kr + j ∗Kj , j =
√
−1, Kr = real(K),Kj = imaginary(K).

 Kr −jKc

jKc Kr


 ur

juc

 =

 br

jbc

 . (3.10)

Theoretical results for the formulations of gradients in C are presented in next section as

the dissertation evaluates the most efficient approach to compute gradients of functionals.
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3.4 Gradients of Functionals

The formulation of design optimization problems in computational electromagnetism is

characterized by the extensive use of complex vector analysis. The differential equations

of magnetic (H) and electric (E) fields, boundary conditions, wave propagation and per-

mittivity variables, are complex valued expression. Unfortunately in this interdisciplinary

community the use of notation and concepts of complex vector analysis in electromagnetism

is not mathematically rigorous as can be seen in Historial Study of Vector Analysis [18].

Here the author in 1995 writes:

We have examined a history covering a period of over a century. It represents a

very interesting period in the development of the mathematical foundations of

electromagnetic theory. However in view of the long-entrenched and widespread

mis-use of the gradient operator as a component of the divergence and curl

operators, the obligation of sharing the insight presented here with many of our

colleagues in this field has been a labor fraught with frustration.

Albert Einstein’s comment to the tensor treatment of the mathematician Levi-Civita is

revealing : “I admire the elegance of your method of computation; it must be nice to ride

through these fields upon the horse of true mathematics while the like of us have to make

our way laboriously on foot.”[19]. The controversy between the appropriate use of operators

like ∇ is very much alive in 2011 as the reader might verify by searching “Matrix Calculus”

in Wikipedia, where the factual accuracy is disputed in three sections, and the discussion

in the talk pages shows unsolved disagreement.

Further issues arise during differentiation of functionals of complex valued fields and conju-

gates that are functions of complex valued variables. The use of operators like the partial

derivative of a functional with respect to a complex vector field are common. For example
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the following derivation is seen in [20]:

J = w(v) =

∫∫
Ω
Nv ·Nv∗dΩ =

∂w

∂v
(v) =

∫∫
Ω
NTNv∗dΩ, (3.11)

where z∗ denotes the complex conjugate of a complex valued vector z. It is common in

computational electromagnetism papers,[7], [21], [22], [23] to define the derivative ∂J
∂E of a

functional J(E,E∗) =
∫∫

ΩE · E
∗dΩ with the following the argument:

∂J

∂E
=

∫∫
∂E

∂E
E∗ +

∂E∗

∂E
E dΩ

= 2Real

(
∂E

∂E
E∗
)

= 2Real(E∗). (3.12)

Here the argument is based on the observation real(z) = z+z∗

2 , imag(z) = z−z∗
2j , where

z = x+ jy, j =
√
−1.

In [24] an extension of the complex derivative when the analytical derivate does not exist is

defined. The formal definition of the real-derivative given as ∂f
∂z |z∗=k, k constant, is complex-

analytic (holomorphic). Similarly a conjugate-real derivative is defined as ∂f
∂z∗ |z=k. The

rigorous definition of the real and conjugate-real derivative of nonanalytic complex functions

that agrees with the complex-derivative when the function is analytic (holomorphic) is:

∂f

∂z
=

1

2

(
∂f

∂x
− j ∂f

∂y

)
,

∂f

∂z∗
=

1

2

(
∂f

∂x
+ j

∂f

∂y

)
(3.13)

Although this non rigorous treatment have been useful in published works, a complex valued

function must satisfy Cauchy-Riemann conditions in order for the derivative to exist and
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be continuous. The Cauchy-Riemann conditions for f(z) = u(x, y) + jv(x, y), z = x + jy

are:

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
.

Then because f(z) = zz∗ = (x2 + y2), with u(x, y) = x2 + y2, v(x, y) = 0, then f is not

holomorphic. (The interested reader is referred to Wirtinger Calculus).

Formulations in this dissertation will follow a standard mathematical treatment, departing

from the usage depicted in (3.11). Operators like the differentiation of a functional with re-

spect to a complex valued electric field and its complex conjugate will be treated separating

the real and imaginary components. This approach allows the identification of the station-

ary points needed for optimization. In the following section the dissertation analyzes ways

to obtain the numerical gradient that will be implemented in the computational chapters.

3.4.1 Numerical Gradients

The discrete application of the gradients of functionals is derived from the generaliza-

tion of the directional derivative to functionals in Banach Spaces X, or Gâteaux deriva-

tive. Formally the change in v ∈ V ⊂ X, in the direction of φ ∈ X is defined as:

dJ(v;φ) = limt→0
J(v+tφ)−J(v)

t , where J : U → C, and the limit is taken over the topology

of C. In the context of this dissertation, the functional J(v), is the integral that measures

a physical quality or performance of a design, with respect to a change in a parameter v.

Therefore the finite dimensional space V is the space of design parameters, J is a real valued

integral over v, and its derivative gives the variation δJ needed for optimization.

The current dissertation uses the gradient to determine the direction of increase of the

functional J . In optimization with PDE constraints, J depends on the numerical approxi-

mation of the PDE, here a complex valued field u(v). Gradients δJ require the computation

of analytical or numerical derivatives of J with respect to u, and of u with respect to v. A

first approach to find a numerical gradient is the finite difference of the objective function:
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J(v+∆v)−J(v)
∆v . This amounts to solving the large scale state equations (PDE) at least twice

in order to evaluate J for each parameter and its perturbation. This the most straight

forward option, but also more costly by requiring multiple solver runs in order to find the

value of the gradient. The adjoint and direct differentiation gradients are more efficient,

and therefore developed and implemented in this project.

In this chapter two numerical ways to obtain the gradient are discussed, along with some

equivalent formulations encountered when developing the formulas for this work. Also the

opportunity to implement this forms is assessed in the context of the projects in this dis-

sertation.

3.4.2 Gradient formulation

Two gradient formulations are studied: the direct differentiation gradient obtained from

linearization by Taylor’s theorem (DD), and the adjoint method (AM) as in [7],[9]. First

note that the variation in a parameter v of a linear system of equations A(v)x(v) = b(v) is

given by Taylor’s Theorem linear approximation of the derivative, where:

A(v + ∆v)−A(v)

∆v
= DvA+O(∆v2) ≈ DvA,

x(v + ∆v)− x(v)

∆v
≈ Dvx,

b(v + ∆v)− b(v)

∆v
≈ Dvb. (3.14)

Therefore, by product rule differentiation on Ax = b, and cancelling ∆v:

DvAx+ADvx = Dvb

ADvx = Dvb−DvAx. (3.15)

In DD, the variation of the functional J(x, v) is given by chain rule differentiation: δJ(x(v)) =

(DxJ)(Dvx). The gradient Dvx is obtained from (3.15), and the computation of DvA,Dvb
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can either be numerical or analytical, if the expressions are differentiable in the parameter v.

The numerical DvA can be obtained by finite difference substracting the matrix or vector

from its perturbed counterpart, as in (3.14). Moreover if the formulas for A(v), b(v) are

known, Dv can be obtained by exploiting the linear vector space structure of the system:

A(v + ∆v)−A(v) = A(∆v), and b(v + ∆v)− b(v) = b(∆v). The stiffness matrix A is used

here two times: to obtain the PDE solution and its gradient.

The AM starts with a different formulation of the objective function Ĵ(x, v) obtained by

introducing the adjoint variables p and the PDE constraint into the objective function

expression:

Ĵ = J + pT (b−Ax).

This expression is equivalent to J when x is feasible, i.e. b−Ax = 0. The adjoint variables

pT are a generalization of Lagrange multipliers in NLP. The total differential of Ĵ is:

δĴ = DvJ +DxJDvx+ pT (Dvb− [DvA]x−ADvx)

= DvJ + (DxJ − pTA)Dvx+ pT (Dvb− [DvA]x).

Then if p satisfies the adjoint equation: pTA = DxJ , the adjoint gradient simplifies to:

δĴ = DvJ + pT (Dvb− [DvA]x). (3.16)

Note that the same matrix A is efficiently used twice: to solve the state and the adjoint

equations pTA = DxJ .

The main advantage of the AM over DD occurs when the number of design variables, v is a

large number. In this case the computation of Dvx, x an n-dimensional field, is very costly.

Then the investment in solving the adjoint equation is well justified. Nonetheless for the

objective function of the electric field obtained from the gradient of the magnetic field, AM

is not the best option. The FEM discretization Ku = b, gives the magnetic field u, while

the objective function depends on the electric field. Therefore the matrix K 6= A in the
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adjoint equation (3.16).

3.4.3 Theoretical Results

This dissertation hopes to contribute to the interdisciplinary community many formulations

to find gradients of expressions, a contemporary discussion considering the unresolved issues

in the Matrix Calculus topics mentioned in the introduction. An equivalent formulation

simplifies computations, saves time and effort, and renders formulas that can be verified.

First in this section an equivalent formulation for the gradient of the linear system matrix

A−1 with respect to a design parameter v is proposed.

Proposition 1. [DvA
−1] = −A−1[DvA]A−1.

Proof. By (3.15):

Dvx = A−1(−[DvA]x+Dvb) = −A−1[DvA]x+A−1Dvb,

= −A−1[DvA]A−1b+A−1Dvb (3.17)

Also since x = A−1b then

Dvx = [DvA
−1]b+A−1Dvb. (3.18)

The proposition follows from equality of (3.17) and (3.18).

In order to verify the proposition [DvA
−1] was computed using a finite difference of inverse

matrices and compared to the obtained formula. For ∆x = 0.5,→ ∆x = 0.1, the maximum

difference between elements of both matrices also vanished.

Whenever possible the analytical derivative is preferred over the numerical for parameters

that are differentiable as is the case with the complex valued permittivity ε. From FEM
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weak form of the Helmholtz PDE the integral operator expression is given by:

A =
1

ε

∫∫
Ω
BTB − k2NTN dΩ.

Because N,B do not depend on ε but on the geometry of the triangular elements, the

analytical derivative is given by

DεA = − 1

ε2

∫∫
Ω
BTB − k2NTN dΩ.

A finite difference approximation of A must be computed by separating the real and imag-

inary parts of ε. Otherwise a difference in terms of δ = (ε + δ) − ε is misleading, because

a direction of increase, that is an order in (r, i), is not defined in the complex plane. Sepa-

rating the real (or imaginary) difference only, e.g. δ = (real(ε) + δ)− real(ε), and error for

the finite difference of A is given in the proposition.

Proposition 2. The error of the finite difference δ approximation of real or complex part

of the parameter ε = (εr, εi) 6= ~0 is
∣∣∣ δ
ε2(ε+δ)

∣∣∣ < τ , where δ = (δr, δi) is the difference in

real(ε) and imaginary(ε) respectively, and τ a desired tolerance.

Proof. This is obtained by observing that the finite difference simplifies to: −1/(ε2 + εδ),

while the analytical derivative is −1/ε2.

The following are computational chapters where the dissertation develops and presents

results obtained from the methods and theory following the discussed approach in this

chapter. Nonetheless there are new formulations derived and presented in chapters 5 and 6

to find gradients with respect to a real valued λ, complex valued ε and geometric parameters

v. These formulations will add to the theoretical results in this dissertation.
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Chapter 4: FEM solver

PDE’s obtained from Maxwell’s Equations model the magnetic and electric field or state

equations that nanophotonic/nanoplasmonic systems satisfy, i.e. the constraints of the op-

timization problem. Furthermore in the optimal design context the objective function J

and its gradient are functions of the solution of these state equations. Therefore the initial

step in the development of numerical optimization tools for the solution of PDE constrained

problems is the study of the PDE solvers.

In this dissertation the numerical solution to the state equations modeled by the 2D

Helmholtz equation in the scalar magnetic field is obtained from the FEM linear system.

An efficient FEM solver provides also important data to be used in the gradient computa-

tions for the PDE constrained optimization problem. It is also the most computationally

expensive part of the optimization with PDE constraints because of the large number of

variables of the order of the mesh.

In this chapter the MATLAB implementation of a 2D FEM complex variable solver is pre-

sented. This solver is a main tool in the numerical optimization of the maximum light

absorption problem in chapter 5. Two main solvers have been developed, and classified

according to the way the FEM matrix is assembled: by node sets or global assembly. Both

FEM solvers use extensively the connectivity of the uniform grid and therefore there is no

need to read a file with the mesh connectivity and node coordinates. In this applications

only the size of the grid and of the silver particle are needed as input.

The description of the computational domain, the uniform grid, and the computational

results are included starting with the development of the computational domain with the

corresponding boundary conditions.

38



4.1 Computational Domain

The FEM solver obtains the numerical approximation of the scalar magnetic that satisfies

the 2D Helmholtz equation in (3.3) in the (x, z) domain, with z in the horizontal axis.

The magnetic wave is incident to the leftmost boundary of a 200 nm air square. It is

enhanced by the interaction with a 30 nm silver square. The complete formulation requires

the application of boundary conditions.

The boundary conditions include absorbing boundary conditions (ABC) and perfect electric

conductors (PEC). The formulation of the ABC boundary in (3.7) is discussed in detail in

chapter 3, and reduces to:

z = 0 : −∂Hy

∂z
+ jkHy = 2jεω

z = 200 nm : −∂Hy

∂z
− jkHy = 0.

These are easily incorporated in the FEM formulation and include the incident magnetic

field H0 in the left boundary.

For top and bottom boundary conditions are obtained by assuming the medium outside the

computational domain is a perfect electric conductor: ∇×E = ~0, i.e. the curl of the electric

field vanishes at the boundary. This models a perfect electric conducting boundary. Then

at the top and bottom air interface, x = 200, x = 0, the boundary conditions simplify to

the homogeneous natural boundary condition. This follows because the normal component

of the electric field at the top and bottom interface with the perfect conducting medium:

~n×E =< 0,±Ez, 0 >= ~0. Then by equation (3.2) ⇒ ∂Hy
∂x = 0 . Figure 4.1 summarizes the

boundary conditions in the geometry on the 2D PDE computational domain.

The grid used to model the geometry of this simple computational domain is discussed next.
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Figure 4.1: 2D PDE domain

4.2 The Uniform Grid

A most practical decision when studying a large-scale optimization problem is to use the

simplest mesh that can compute an acceptable numerical approximation to the state equa-

tion, reducing the computational cost. Remeshing remains an option if needed in further

steps. A uniform grid provides a simple geometry, known connectivity for bookkeping, and

a finite difference domain with no need of interpolation. In this simple geometry of squares

the grid is also an accurate match. Therefore in this project a uniform grid of size h is used

and will remain constant to study the gradient of the objective function with respect to a

design variable. This guarantees that there is no mesh related variation introduced.

In order to determine the best value h when λ = 350 nm, an experiment is conducted mod-

ifying the size of the grid to observe the change in the light absorption objective function

J at the interior nodes of the silver particle. Table 4.1 summarizes the sensitivity of the

objective function when refining the grid. It shows results when increasing the number of

nodes in the L = 150 nm air square, λ = 350 nm and s = 30 nm silver square centered at

point (x, z) = (75, 75) in nanometers.

Note that the increase in the value of the absorption of light J in this experiment is

caused in part by the fact that only the interior nodes of the silver square are used in this

computation of J . This measure is adopted here in order to avoid the discontinuities in

the air/silver interface and the sharp corners of the silver square. Therefore the area of the
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Table 4.1: Grid size and J
h number of silver nodes total nodes J

7.5 nm 9 441 6.316272e+05
6 nm 16 676 1.124639e+06
5 nm 25 961 1.755978e+06
3 nm 81 2601 5.582489e+06

interior of the silver square increases when the grid is refined, and the fix grid approach is

adopted for gradient studies. The h = 5 nm with 31 × 31 = 961 nodes uniform grid will

be used for the J(ε) experiments. A coarser mesh with h = 7.5 nm and 21 × 21 = 441 is

used for AMPL based experiments. The triangular uniform grid and refined corner grid are

included in figures: 4.2 and 4.3 respectively.

Figure 4.2: Uniform Triangle Grid

4.3 Computational Implementation

The FEM has been implemented in MATLAB using different approaches. The algorithms

are classified in two categories: set building or assembling algorithms. Both work on a

uniform triangular grid or a refined grid over the corners of the silver square. The use of
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Figure 4.3: Refined Corners

sets is the strategy used to built AMPL models, but is much slower because the stiffness

matrix is defined by searching nodes in the lists: boundary, corner, silver or air node sets.

The projects accomplish several tasks:

1. Assembling Algorithm: Given the size of a uniform triangle mesh and silver square,

assemble the element matrices into the global matrix.

2. Set building Algorithm: Generate sets of nodes according to material properties and

geometry, and define the global matrices.

3. Generate the FEM linear system decomposed into real and imaginary parts.

4. Incorporate scattering boundary conditions from element connectivity or set informa-

tion.

5. Solve the discretized system by iterative solver.

6. Compute the Electric field by finite difference with half-step treatment along the

air/silver interface.
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Table 4.2: Time statistics
nodes Assembly Alg. Assembly Alg + File Set Alg.

441 0.28125s 0.43745s 2.45313s
961 0.22657s 0.69531s 8.92187s
2601 1.15625s 1.64063s 54s

Some speedup is obtained by using the connectivity of a uniform triangular grid, and then

the connectivity matrix can be generated in the algorithm vs. reading from a mesh file.

The 3 × 3 element matrices Ke are the same for all air and silver elements. Therefore by

identifying the node as air or silver, the global matrix K can be built by equations. Note

that in a triangular grid all interior nodes belong to 6 elements and the corresponding edges:

2 horizontal, 2 vertical and 2 diagonal edges. The global matrix K is obtained by adding

contributions of all elements. Therefore, equations are obtained from the element matrices

Ke for interior nodes, corner and boundary nodes. The corresponding equations obtained

from the element matrices Ke for interior nodes of air or silver follow, n the number hori-

zontal nodes.

1. Nodes: K(i, i) = 2Ke(1, 1) + 2Ke(2, 2) + 2Ke(3, 3).

2. Horizontal edges: K(i, i+ 1) = K(i, i− 1) = 2 ∗Ke(1, 2) = K(i+ 1, i) = K(i− 1, i),

by symmetry.

3. Vertical edges: K(i, i+ n) = K(i, i− n) = 2 ∗Ke(2, 3) = K(i+ n, i) = K(i− n, i).

4. Diagonal edges: K(i, i + n + 1) = K(i, i − n − 1) = 2Ke(1, 3) = K(i + n + 1, i) =

K(i− n− 1, i).

Time statistics of a typical run are included in table 4.2.

The finite difference method (FDM) has been implemented in order to find the electric

field from the magnetic field: Ex = − 1
jωε

∂Hy
∂z , and Ez = 1

jωε
∂Hy
∂x . For all interior air or

silver nodes the central finite difference in space is used as it is second order accurate. The

solution is obtained in an n points list u, where nodes are numbered for constant x, by
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increasing z coordinates: i.e. (x, z) coordinates according are numbered 1 = (0, 0), 2 =

(0, h), 3 = (0, 2h)..n = ((tnodes − 1) ∗ h, (tnodes − 1) ∗ h), where tnodes is the number

of nodes per axis. At the ith node ri = (xi, 0, zi), the central difference (CFD ) in the

u[1 : npoints] node list is obtained as:

∂Hy(ri)

∂z
≈ u[i+ 1]− u[i− 1]

2h
,
∂Hy(ri)

∂x
≈ u[i+ tnodes]− u[i− tnodes]

2h
.

At an interface nodes a half space is substituted by averaging the value of both edge-nodes

to obtain the midpoint value forward:

fmidx(ui) = 0.5(u[i+ tnodes] + u[i]), fmidz(ui) = 0.5(u[i+ 1] + u[i]),

or backward:

bmidx(ui) = 0.5(u[i− tnodes] + u[i]), bmidz(ui) = 0.5(u[i− 1] + u[i]).

When u[i+ 1] is in the silver/air interface the CFD is modified using the forward midpoint:

∂Hy(xi, zi)

∂z
≈ fmidz(ui)− u[i− 1]

1.5h
,
∂Hy(xi, zi)

∂x
≈ fmidx(ui)− u[i− tnodes]

1.5h
. (4.1)

This happens at the left and bottom boundary nodes of the silver square. At the top and

right silver square boundary nodes, the backward bmidx, bmidz substitute fmidx, fmidz in

(4.1).

The treatment of the FDM at boundary nodes was explored graphically and compared with

COMSOL’s solution. The best match is to use backward difference at the right and top

silver square boundary nodes. This amounts to defining all silver/air interface nodes as

silver.
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4.4 FEM Computational Results

The complex valued FEM has been implemented in MATLAB for various computational

grids to obtain the electromagnetic field Hy, and then compute the vector valued electric

field Ex, Ey from Hy by finite differences. The results are presented here as visualizations

of the real part of the electromagnetic fields obtained with MATLAB, and then compared

to visualizations obtained by the commercial package COMSOL-Multiphysics 3.5. All are

computed for λ = 300 nm, for a 30 nm silver square centered in a 200 nm air square.

COMSOL uses a continuity condition around the interface of silver and air. This condition

is equivalent to introducing a double boundary at the interface: one in silver, and other in

air. The electric field obtained in this project from Hy, obtained from FEM discretization,

is computed via finite difference in space. Therefore the project uses a half-step around the

interface such that nodes in silver or air would not use interface nodes that are contained

in both materials.

In figure 4.5 obtained from COMSOL, a refined unstructured grid is used to compute the

electric field in the direction of propagation, in this case the x-axis. The comparable graphs

in figures 4.6-4.8 are obtained from the finite difference of the Hy solution obtained via

MATLAB implementation of the solver, and visualization. The project’s implementation

of FEM used structured grid, refined corners and finally averaged values around the silver

particle interface.

For the Ex, the averaged solution is the best match to COMSOL’s refined solution. This

is accomplished by taking the mean of the FEM solution u over all adjacent nodes of the

interface nodes. The finite difference is then used to find the numerical approximation to

∂Hy
∂z , using a half step at the discontinuous interface between air and silver.

Regarding the results for the Ez component, a reduction toward zero is observed in the

refined grid, vs the coarse grid in figures 4.9 vs. 4.10. It is noted that the better solution

makes the non-zero brighter spots around the corner smaller in the visualizations. This is

the sharp corners that are problematic for numerical models.
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Figure 4.4: Comsol’s Ex: Refined Unstructured Mesh

Visualizations show the expected near field enhancements when the electromagnetic field

interacts with a silver nanoparticle produced by the localized plasmon (LPP). A very sig-

nificant difference is seen when the mesh is refined. The most notable area for improvement

is around the sharp corners of the square. This is well known to be discontinuous because

there is no unique normal direction, and a source of error in numerical electromagnetism

related to the lost of tangential continuity. An option for sharp corner treatment is to

introduce edge elements on triangles containing the corners into the FEM discretization,

as suggested in [25]. The project did not pursue further solver improvement in order to

continue with the gradient based computations.

The next chapter explores numerical optimization techniques that include and develops

further this FEM solver tool.
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Figure 4.5: Comsol’s Ez: Refined Unstructured Mesh

Figure 4.6: Ex in Coarse Grid
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Figure 4.7: Ex in Refined Grid

Figure 4.8: Ex with average
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Figure 4.9: Ez in Coarse Grid

Figure 4.10: Ez in Refined Grid
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Chapter 5: Maximum Light Absorption

5.1 Introduction

The light absorption of silver particles of sub wavelength size is an amazing property in

contrast with the reflection of light occurring in bulk silver. The investigation of light

absorption enhancement by nanoparticles is an important application in our times, with

promises of future development of new efficient sensors and powerful greener devices [26].

Therefore the first optimal design study in this dissertation is to find optimal parameters

to maximize the light absorption J of a silver nanoparticle.

The maximum light absorption is studied using two different optimization approaches. The

first approach is to discretize then optimize. This numerical optimization approach is im-

plemented in using the AMPL mathematical modeling language. The second approach is

the parameter optimization using the gradient of J with respect to its parameters λ and ε.

For this approach the formulations are derived and then implemented in MATLAB.

There are two contexts for the light absorption functional that are defined by the parameter

of interest: J(λ) and J(ε). In the J(λ) context, the maximizer λ is searched for a 30 nm

silver square in air. In the J(ε), the optimal size of a silver nanoparticle is the variable

of study. Each problem require the development of a particular gradient formulation and

strategy. Both use the FEM solver developed in chapter 4 plus new developed tools to

obtain the objective function and its gradients.

The formulation of the objective function is introduced first in this chapter.
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5.2 Optimization Criteria

A simplified equation in [26] of the absorption of silver is obtained from the divergence of

the Poynting Vector. The objective function formula is given by:

J = −0.5ωε0imag(εr)

∫∫
S
EĒdS, (5.1)

where EĒ is the norm (or modulus) squared of the complex valued electric field, S is a

silver square of sub wavelength scale, ε0 permittivity of vacuum, imag(εr) the imaginary

part of the permittivity of silver for a given wavelength, and ω = 2πc0
λ the angular frequency.

Because this objective function is in the electric field and the Helmholtz equation is in the

magnetic field a formulation of J(H) is needed and derived in the first section. The objective

function J is subject to the field equations derived from Maxwell’s Equations in the 2D (x, z)

plane. J is modeled by the equation in the time harmonic electric phasor Eejωε t and its

complex conjugate Ē:

J(λ, ε) = −0.5ε0ω(imag(εr))

∫ ∫
SS
E · Ē dz dx. (5.2)

By Maxwell’s equations the electric field under the appropriate assumptions can be obtained

from the electromagnetic field H through the equation E = 1
jωε∇×H, where ε = ε0εr, ε0 the

permittivity of air. Denote per = εr the relative permittivity of silver obtained numerically

from the database getper(), pi = imag(per), pr = real(per), and εr = pr + jpi·. The

gradient of the objective function is denoted δJ = DλJ , then J(ω(λ), per(λ), E(λ)). The

electric field E is obtained from the numerical magnetic fieldH that is the numerical solution

to the differential equation computed via Finite Elements.
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For a transverse magnetic field Hy = H the electric field simplifies to

E(λ) = 〈Ex, 0, Ez〉 =
1

ω(λ)(pr(λ)j − pi(λ))ε0
〈−∂H/∂z, 0, ∂H/∂x〉 .

Therefore the numerical approximation of the electric field is computed using the central

finite difference gradient of the magnetic field in the silver square.

Ex =
−∂H
∂z

· 1

jωε
=
−∂U
∂z
· 1

jωε
≈ −

(
U r,n+1
z − U r,n−1

z

2h
+ j

U i,n+1
z − U i,n−1

z

2h

)
1

jωε

Ez =
∂H

∂x
· 1

jωε
=
∂U

∂x
· 1

jωε
≈

(
U r,n+1
x − U r,n−1

x

2h
+ j

U i,n+1
x − U i,n−1

x

2h

)
1

jωε
.

Here the real and imaginary parts are separated and the following notation is used: 2h =

zn+1 − zn−1, U r,n+1
z = real(H(zn+1)), U i,n−1

z = imag(H(zn−1)), U r,n+1
x = real(H(xn+1)),

U i,n+1
x = imag(H(xn+1)). The numerical integration over the silver square is performed

by the 2D trapezoidal rule. The 2D trapezoidal rule is defined over the h × w rectangle

by denoting the corner vertices set {A,B,C,D}, sb= boundary nodes set (sides of the

rectangle), sil=interior nodes set, and z + ∆h ∈ H,x+ ∆w ∈W :

∫ ∫
SS
E · Ē dz dx =

∫ ∫
SS
f(x, z) dz dx ≈

1/4hw · (f(A) + f(B) + f(C) + f(D) + 2f(sb) + 4f(sil)). (5.3)

Note f(sb) =
∑

m∈H
∑

n∈W f(xn, zm) for (xn, zm) ∈ sb, and similarly

f(sil) =
∑

m∈H
∑

n∈W f(xn, zm) for (xn, zm) ∈ sil.

The following comprises the derivation of the objective function by decomposing into real
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and imaginary. Denote

δurz = Ur,n+1
z −Ur,n−1

z
2h ≈ real(∂U∂z )

δuiz = U i,n+1
z −U i,n−1

z
2h ≈ imag(∂U∂z )

and the finite difference notation corresponding to ∂U
∂x : δurx, δu

i
x. Then the following is

obtained:

Ex ≈ −δurz
(
−jpr − pi
ωε0(p2

r + p2
i )

)
− δuiz ·

(
pr − jpi

ωε0(p2
r + p2

i )

)

Therefore the real and imaginary parts of Ex are:

real(Ex) =
δurzpi − δuizpr
ωε0(p2

r + p2
i )

= a (5.4)

imag(Ex) =
δurzpr + δuizpi
ωε0(p2

r + p2
i )

= b. (5.5)

Similarly:

Ez ≈ δurx
(
−jpr − pi
ωε0(p2

r + p2
i )

)
+ δuix

(
pr − jpi

ωε0(p2
r + p2

i )

)

and

real(Ez) =
δuixpr − δurxpi
ωε0(p2

r + p2
i )

= c (5.6)

imag(Ez) =
−δurxpr − δuixpi
ωε0(p2

r + p2
i )

= d. (5.7)

Finally the integrand is: f(x, z) = E ·Ē = real(Ex)2+imag(Ex)2+real(Ez)
2+imag(Ez)

2 =

a2 + b2 + c2 + d2.

Denote

Q = 1
ε0

(
ω(p2

r + p2
i )
)−1

and

a2 = (δurzpi − δuizpr)2Q2,
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b2 = (δurzpr + δuizpi)
2Q2,

c2 = (δuixpr − δurxpi)2Q2,

d2 = (−(δurxpr + δuixpi))
2Q2.

The derived formula is:

E · Ē = a2 + b2 + c2 + d2 = Q2(p2
r + p2

i )
[
(δurx)2 + (δuix)2 + (δurz)

2 + (δuiz)
2
]

(5.8)

The objective function is thus

J(λ, ε) = −0.5ε0ωpi

∫∫
Ω

1

ω2ε20(p2
r + p2

i )

[
(δurx)2 + (δuix)2 + (δurz)

2 + (δuiz)
2
]
dΩ

= −0.5

ε0

∫∫
Ω

pi
ω(p2

r + p2
i )

[
(δurx)2 + (δuix)2 + (δurz)

2 + (δuiz)
2
]
dΩ. (5.9)

The following project is the first approach to the optimization with PDE constraints. The

AMPL mathematical modeling language allows to discretize the PDE and define as vari-

ables in the constraint and objective function definition of a large scale comprehensive

optimization problem. The details of the AMPL models and results are presented next.

5.3 AMPL Model

AMPL is an algebraic modeling language for linear and nonlinear optimization problems. It

has access to many optimization solvers that have been developed considering very diverse

optimization algorithms including among others:

1. SNOPT: constrained optimization for linear/nonlinear functions subject to based on

the sequential quadratic programing (SQL) algorithm sparse solver

2. LOQO: smooth constrained optimization solver based on infeasible primal-dual interior-

point method applied to a sequence of quadratic approximations to the problem.
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Through an AMPL mathematical modeling the user defines the optimization problem using

a model that AMPL set up to provide gradients for a chosen optimization solver. A one-

dimensional model for the light absorption problem was succesfully solved by the 2000

version of SNOPT, but was not solved by LOQO or any other optimization solver. The

project now developed a two dimensional PDE constrained optimization problem using the

assembled linear system obtained from the FEM discretization as the linear constraint.

The AMPL optimization model built accomplishes the following tasks:

1. Define a uniform mesh of right triangles of size h in a 150 nm square of air with a

centered 30 nm silver square centered.

2. Build sets of nodes with similar connectivity and material properties: corner, bound-

ary and interior nodes in air or silver.

3. For the nodes of each set, define the symmetric real and imaginary stiffness matrices

Ar,Ai according to the material properties, absorbing boundary conditions (Robin or

third type) on boundary nodes, using the known connectivity of the uniform mesh.

4. Uses cubic spline data to find the permittivity of the variable wavelength λ.

5. Define the system of equations as a set of 18 constraints on the real and imaginary

parts: [Ar]Ur − [Ac]Ui = 0, [Ac]Ur + [Ar]Ui = bi.

6. Define the light absorption objective function on the center or interior nodes of the

silver square.

The uniform mesh provides the most simple structure to start the large-scale optimization.

It is a key component in the AMPL modeling of the FEM linear system from sets of nodes.

The global matrix is defined by using formulas obtained from the connectivity of the uniform

mesh.

Because the permittivity of silver depends on the wavelength, a cubic spline interpolation

of experimental data is used to serve as the permittivity function of λ as explained next.
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5.3.1 Cubic Spline Permittivity

In this project experimental data of the relative permittivity of silver at various wavelengths

is available in a supra database. Permittivity of silver εr = pr + jpi and its derivative are

part of the definition of the objective function and its gradient. Therefore a cubic spline

interpolation has been obtained to determine permittivity at various wavelengths in the

AMPL model. For MATLAB, permittivity is obtained from the database, and the gradient

is obtained via finite difference approximation: Dλε ≈ ε(λ+∆λ)−ε(λ)
∆λ .

The cubic spline interpolation in figure 5.1 shows a smooth function of the permittivity

data with different step numbers in the 200 to 400 nm wavelength interval: ∆λ = 1, 2,

5, 10, and 20 nm. Cubic splines are continuous at connecting nodes for function values,

first and second derivatives. Therefore the system of equations for each data value xm:

sm(xm) = ym, sm+1(xm) = ym,m = 1, .., n− 1, plus first and second derivatives s′m(xm) =

s′m+1(xm), s′′m(xm) = s′′m+1(xm+1). The first and second derivatives of the cubic spline are

computed and visualized. The results are included in figures 5.2 - 5.3.

In AMPL mathematical modeling, the gradient-based NLP optimization solvers require

Figure 5.1: Cubic Spline for ∆λ=1,2,5,10,20nm

the derivative of the permittivity function to be smooth. From the graphs, the 10 and 20

nm step show derivatives with less abrupt changes. The 10 nm cubic spline interpolation

function is preferred over 20 nm, for it represents more accurate values from the experimental
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Figure 5.2: First Derivative of Cubic Spline: ∆λ=1,2,5,10,20nm

Figure 5.3: Second Derivative of Cubic Spline: ∆λ=1,2,5,10,20nm
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permittivity data. The AMPL model uses this cubic spline to compute the permittivity of

silver. The coefficients of the cubic polynomials are provided in the model via nested “if-

then-else” statements, producing some limitations in the model as will be seen in the results.

A one dimensional AMPL model is built, and provided good information on the performance

of the optimization solvers. This is discussed next.

5.3.2 Results of 1D AMPL model

A preliminary AMPL model for the 1-D Maxwell’s equation was tested. The finite element

matrix Ku = b was decomposed into real components Kr, ur, br and imaginary ones Ki, ui, bi

obtaining a 2n× 2n system of equations

K =

 Kr −Ki

Ki Kr


 ur

ui

 =

 br

bi

 .

The one dimensional problem using a length of L = 200 nm assumes that a silver element

with variable permittivity εs(λ) is located in the interval z = [100, 150] nm. To illustrate

the process, for n = 4 elements we obtained the following submatrices:

Kr = 1
6h ∗



a1 a2 0 0 0

a2 a1 + a1 a2 0 0

0 a2 a1 + a1ε a2ε 0

0 0 a2ε a1ε a2

0 0 0 a2 a1



Ki = imag(εs)hc
6



k 0 0 0 0

0 0 0 0 0

0 0 2 1 0

0 0 1 2 0

0 0 0 0 k


and
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br =



0

0

0

0

0


, bi =



2k

0

0

0

0


The parameters are given in the table.

Table 5.1: AMPL Assembly Parameters

parameter value

a1 6− 2h2k2

a2 −6− 2h2k2

a1 + a1 12− 4h2k2

a1 + a1ε 12− 2(1 + real(εs))h
2k2

a2ε −6− real(εs)h2k2

k 2 ∗ π/λ
b − imag(εs)hk2

6
L length = 200nm
nele number of elements = 4
h L/nele

The problem was reduced to consider wavelengths200 ≤ λ ≤ 400 because the cubic spline

obtained for silver permittivity in 200 ≤ λ ≤ 2000 exceeds AMPL’s capabilities to pro-

gram nested ”if-then-else” statements. The optimization ran with the solvers: LOQO 6.01,

SNOPT 7.2-8 and MINOS 5.5. Only SNOPT 5.3-5 was able to produce the maximal wave-

length solution: λ = 200. Results for AMPL’s performance are shown in table 5.2.

The table shows that for 180 1D elements SNOPT could not produce a solution. This

shows that the size of the discretization affects the performance of the optimization solver.

Another important observation is the size limitation on the problem that will affect greatly

a 2D model.

5.3.3 2D AMPL Model

The greatest advantage of AMPL optimization is the possibility of finding a simultaneous

solution of the PDE constraint and the optimization of the objective function. Nonetheless

the size of the mesh, and some limitations in the definition of the permittivity using cubic
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Table 5.2: AMPL 1D Model Performance
N-elements AMPL-SNOPT time statistics

20 0.03s
40 0.06s
80 0.12s
100 0.22s
120 0.38s
180 Cannot improve
200 1.56s
400 10.09s
500 14.62s
600 Not enough Memory

splines were challenging. The initial mesh size was too big for the SNOPT solver to obtain

the solution to the FEM constraint. For a reduced mesh on a smaller air square (s = 150nm)

and 212 = 441, nodes corresponding to h = 7.5nm SNOPT’s solutions was unattainable

(error message: Not enough storage for the basis factors). Interior point method solver

LOQO correctly solved the sparse linear system but was unable to solve the optimization

problem. A model test11.mod included in the Appendix A, overcame the size limitation by

taking into account the symmetry of the problem. For a grid of uniform size 7.5 nm this

strategy reduces the variables from 441 to 231. Graphs 5.4-5.5 show the original domain

and the reduced domain due to y = 75nm line symmetries on the geometry, material and

boundary conditions presented. A comparison between the values of the scalar magnetic

field Hy for full and half computational domain is illustrated in the graphs 5.6 and 5.7 that

show very good visual correspondence of the real the magnetic field. The objective function

used in the AMPL model was simplified to the computation of light absorption at interior

nodes of silver. This simplification avoids the introduction of constants from the numerical

trapezoidal rule since all nodes are equally weighted in the summation. Using only interior

nodes also avoid the numerical errors associated with the silver square interface with air,

and sharp corners. The objective function that models absorption at the interior nodes of
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Figure 5.4: Full 21 Node Uniform Mesh

Figure 5.5: Half Uniform Mesh Symmetry
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Figure 5.6: Solution in full domain

Figure 5.7: Solution in half domain
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a 30 nm silver square is defined

Jint(λ) = imag(ε(λ))
∑
n

real(Ex)2
n + imag(Ex)2

n + real(Ez)2
n + imag(Ez)2

n,

where n are the interior nodes of the silver square. The graph of Jint is included in figure

5.8.

Figure 5.8: Light Absorption

An equivalent formulations Jc for Jint was introduced to submit the model for optimization

via NEOS-Server [27], [28],[29]. Jc measures absorption at interior nodes in a horizontal

line. Reciprocal variables were redefined to reduce round-off errors. The constant parameter

0.25h2 has been omitted as it will not change the maximizer nor the shape of Jc. Initializa-

tion of variables included λ = 310 nm and its corresponding permittivity values for silver.

The expected local maximizer λ∗ = 350 nm was obtained by the NEOS solver IPOPT [30]

in λ ∈ [300, 400] nm at an initial value of λ0 = 310 nm. A closer look at the Jc graph in

Figure 5.9 around the maximizer λ∗ = 350 nm reveals the jagged shape of this challenging

function. Table 5.3 summarizes the optimization results for Jc obtained by IPOPT close to
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λ = 350 nm, taking half of the increasingly refined grids with 212, 312 and 512 nodes.

Figure 5.9: Refined Grid Jc in [300,400] nm

Table 5.3: Optimization Results

n λ∗ J

231 349.887 nm 3.80358e-08
496 349.92 nm 2.66856e-8
1326 349.94nm 1.66275e-8

The error to satisfy the PDE constraint and solution time on NEOS server are summarized

in Table 5.4. The error norm shown is taken from the real part of the magnetic field. The

imaginary part gives similar results. The NEOS-solver IPOPT 3.10.1 solved the problem

Table 5.4: Optimization Solver Statistics

n iterations l2 norm (Real(H)) CPU time

231 5 5.99e-11 0.003s(NEOS)
496 5 2.29e-11 0.008s(NEOS)
1326 6 8.18e-12 0.048s(NEOS)

consistently in half domain grids of 212, 312, 512 nodes. The fact that for a refined grid of

a thousand nodes the solver took .048 seconds is very promising for this large scale PDE

constraint optimization. Numerical optimization using modeling languages and optimiza-

tion solvers is currently a strategy of interest for optimization based in simulation as seen

in the benchmark effort lead by H.D. Mittelmann in [31].

Regarding the PDE constraint, when fixing λ∗ = 350 nm, a solution obtained from IPOPT
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matched the corresponding FEM MATLAB solution for the magnetic field, using symme-

tries. The electromagnetic field matched MATLAB’s values for Hy, and the electric field

variable was defined by central difference as Ex = − 1
jωε

∂H
∂z , and Ez = 1

jωε
∂H
∂x . The visu-

alization in graphs 5.6 and 5.7 show a match between the magnetic field on the full mesh

and the more efficient symmetrical computation on the bottom half of the computational

domain. A comparison of values shows differences between the half and full mesh with

absolute error of order O(10−5), relative error O(10−3).

Despite the great advantage of solving a PDE constraint optimization as an AMPL model,

there are various limitations. Results confirm the extreme sensitivity of J to small changes

in λ. The wavelength, λ is an pervasive variable in all the components of the problem.

Permittivity of silver at different wavelengths, the wave constant k, and consequently the

FEM stiffness matrix, the electromagnetic fields H,E are all variables dependent on the

wavelength in the AMPL model. Dependence on lambda of the gradient is then very nested

as seen in the derivation of the gradient obtained in (5.11). The dependence on this one

variable λ single-handedly makes this a large-scale problem, with dimension of the order of

the mesh.

Another limitation is on the AMPL modeling language capabilities. The permittivity in

this problem is modeled by a cubic spline approximation from an available database. In

AMPL this amounts to a nested if-then-else structure that when bigger than 31 statements,

will crash the program. Therefore λ ∈ [200, 500] was a restriction imposed by the language,

and not the NLP optimization solvers. Reducing the permittivity to a simpler interpolation

equation like least squares approximation, can help the computations but hurt the accuracy

of computations. An improvement can be attained by exploring the use of the Brendel-

Bormann method to compute the permittivity of silver for visible light wavelengths.

A new approach is now developed using the MATLAB solver tools and developing new tools

to evaluate the objective function J and its gradients. The gradient of J(λ) is obtained first

to be used in this next numerical optimization strategy.
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5.4 Gradient of J(λ)

The first optimization problem under consideration is to find the wavelength λ that max-

imizes light absorption J of a nanoscale silver square SS in air. This is given in [26] and

obtained in (5.9):

J(λ, ε) = −0.5

ε0

∫∫
Ω

pi
ω(p2

r + p2
i )

[
(δurx)2 + (δuix)2 + (δurz)

2 + (δuiz)
2
]
dΩ.

Because λ is an ubiquitous parameter in this formulation, the numerical gradient is a com-

bination of analytical as well as various finite difference approximations for permittivity

ε = (pr, pi) and the electric field phasors obtained as finite difference of the magnetic field

(δurz, δu
i
z). To obtain the numerical approximation of the derivative of J with respect to λ

the following derivatives are needed:

∆pi
∆λ = p′i

d(ω−1)
dλ = 1

2πc0

d(p2r+p
2
i )
−1

dλ = −2(p2
r + p2

i )
−2(prp

′
r + pjp

′
i).

Permittivity is obtained numerically by interpolation. Therefore numerical derivative with

respect to lambda, is obtained by finite differences and denoted p′r, p
′
i . By definition

ω = 2πc0
λ and its derivative with respect to lambda ω′ = −2πc0λ

−2. Note also that in

the objective function 1
ω = λ

2πc0
, and therefore

(
1
ω

)′
= 1

2πc0
.

To obtain second derivatives, first assume δur,λ = δuλ,r, for space variables ~r = {x, z}

. The second derivatives are obtained by computing ∂u
∂λ , and then differentiating numer-

ically by finite differences in space. Thus ∂2u
∂λ∂r ≈ δ2uλ,r = δ2urλ,r + jδ2uiλ,r. To compute

δuλ = δurλ + jδuiλ, the system of equations obtained by FEM discretization of the PDE is
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differentiated at the element level, where K is the element’s stiffness matrix.

Ku = b⇒ K
∂u

∂λ
=
∂b

∂λ
− ∂[K]

∂λ
u.

The solution of the system δuλ approximates ∂u
∂λ .

To compute ∂[K]
∂λ note that by the finite element discretization K = ε(λ)−1

∫∫
T B

TB −

k2(λ)NTNdT, where the matrices B,N are the linear interpolation functions, also called

shape or test functions. These do not depend on λ. The permittivity gradient is obtained

numerically Dλ(ε(λ))−1 = −ε(λ)−2 ∗ (p′r(λ) + jp′j(λ)). The main result of this section is

∂J

∂λ
= −0.5

ε0

∫ ∫
SS

p′i
ω(p2

r + p2
i )

[
(δurx)2 +

(
δuix
)2

+ (δurz)
2 +

(
δuiz
)2]

+
pi

2πc0(p2
r + p2

i )

[
(δurx)2 +

(
δuix
)2

+ (δurz)
2 +

(
δuiz
)2]

(5.10)

−2pi(p
2
r + p2

i )
−2(prp

′
r + pip

′
i)

ω

[
(δurx)2 +

(
δuix
)2

+ (δurz)
2 +

(
δuiz
)2]

+
2pi

ω(p2
r + p2

i )

[
δurx · δ2urx,λ + δuix · δ2uix,λ + δurz · δ2urz,λ + δuiz · δ2uiz,λ

]
dx dz.

Naturally the next step is to implement the derived formulation, compare the accuracy of

the gradient and find the maximizer for the light absorption objective function J .

5.4.1 Computational Results

The above formulation for δJ , the direct differentiation (DD) gradient, has been imple-

mented in the MATLAB FEM solver tool as a new project. The project consists of the

following tasks:

1. Create a uniform mesh of right triangles of size h in a 150 nm square of air with a 30

nm silver square centered at 75 nm.
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2. Implement Finite Element Method to find the state variables that model the Magnetic

phasor in 2D (assuming time harmonic).

3. Compute the Electric Field from the Central Finite Difference (special treatment of

the interface silver-air includes using half step h/2).

4. Compute the Light Absorption integral on the silver square using only interior nodes.

5. Compute the gradient δJ according to the equation (5.11).

6. To compare results, compute the gradient of J using the finite difference approxima-

tion (FD) given as J(λ+∆λ)−J(λ)
∆λ , λ ∈ [200, 400] nm.

The uniform grid with fixed size h simplifies assembly because the structure is known. Only

the size of the silver square s and the mesh step h is needed, eliminating the need to read

files to obtain coordinates and connectivity of each element. The grid also facilitates the

computation of the electric field through central differences without interpolation. The im-

plementation uses sets to identify the structure of the mesh in the same way the AMPL

model was coded. The sets include: boundary nodes, corner nodes, and interior nodes of

air and silver. Table 5.5 contains the numerical results comparing the DD based gradient

with the FD gradient of J for a mesh with size h = 7.5 nm. Results are similar although

a discrepancy for the local minimum λ = 310 nm is obtained in the gradient formulation.

The graph for J(λ) was obtained from a developed MATLAB code FEM solutions and is

included in 5.8. It shows a cusp around λ = 310 nm that may account for the difficulty of

the gradient to obtain the expected increasing J value. The gradient on depends on the

direct differentiation of the magnetic field and the sensitivity of the electric field. The 2nd

degree accurate central finite difference approximation of the sensitivity of the electric field

efficiently computes the gradient from the available direct differentiation results. Nonethe-

less there are some errors inherent to finite difference schemes regarding the appropriate

step size. The DD based gradient is also very computational. Numerical errors are present

in the approximation of the derivatives of permittivity and matrix sensitivity, as well as the
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numerical solution of the electromagnetic phasors.

Table 5.5: Delta J for lambda
λ nm Finite Difference Gradient Obtained Gradient J

1.0e+13* 1.0e+13* 1.0e+06

200 -1.19980 -1.2538 1.30640
210 -0.91770 -1.0777 1.18640
220 -0.71800 -0.8129 1.09460
230 -0.62180 -0.6376 1.02280
240 -0.60170 -0.6326 0.96060
250 -0.60540 -0.6148 0.90050
260 -0.61460 -0.6217 0.83990
270 -0.61330 -0.6242 0.77850
280 -0.56410 -0.5875 0.71710
290 -0.70140 -0.5969 0.66070
300 -0.58120 -0.7424 0.59060
310 1.46950 -0.0863 0.53250
320 4.98590 3.9088 0.67940
330 2.53520 4.7352 1.17800
340 3.24440 1.9880 1.43150
350 -5.14470 -0.1160 1.75600
360 -3.70430 -6.5292 1.24150
370 -1.92250 -1.5566 0.87110
380 -2.33330 -2.6004 0.67880
390 -1.45370 -1.8222 0.44550
400 -0.82760 -1.1014 0.30010

The results in table 5.5 and figure 5.8 show a surprisingly successful adjoint gradient. The

maximizer of the light absorption function at interior nodes Jint of a 30 nm silver square in

the center of a 150 nm square air domain occurs at the wavelength λ = 350 nm. The result

is consistent with those published in [26] stating that for a 10 nm silver sphere embedded in

glass the resonance wavelength is approximately 400 nm. The DD gradient is very close to

the FD gradient, yet more computationally efficient. The biggest computational advantage

of the adjoint gradient strives in the fact that the gradient is computed from the obtained

FE solution, using the available stiffness matrix and solution vector as described in the

derived gradient equation (5.11). The finite difference gradient, on the other hand, is in

this case particularly costly because it requires at least two FE runs. In the complex valued

model that the project uses, each linear system amounts to double the nodes sparse system.
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This is significant consider that node-variables are of the order of 103 in most commonly

used grids.

Moreover table 5.5 show the sensitivity of the DD based gradient to small steps. The

cusp observed from figure 5.8 is a red flag. For λ = 310 nm DD-gradient does not

match the information of the FD gradient for a step ∆λ = 10 nm. After examining

J(310.05e − 9) = 5.322e + 05 < 5.3250e + 05, it is confirmed that the DD-gradient gives

the correct information for a small step showing that a refined mesh also would improve

accuracy.

The optimization of light absorption as a function of wavelength, obtained from the inner

nodes of the silver particle, is proven to be challenging for the gradient based optimization

algorithms used in this project. The value of local extrema, both minimum and maximum

changes naturally with the precision and size of the step. Nonetheless the computational

results show that the computed gradients could correctly describe the behavior of the nu-

merical objective function in most points for a given step size. The DD-gradient developed

and implemented here gives an efficient and sensitive information of the gradient of this

function. The computational results show that for a 30 nm silver particle embedded in a

150 nm air-square, the objective function modeling the light absorption at interior silver

nodes has a local minimizer in the vicinity of λ∗ = 310 nm, and a maximizer in the vicinity

of λ∗ = 350 nm.

5.5 Gradient of J(ε)

A new proposed design optimization problem under study is to find the size of a nanoscale

silver rectangle S in a 150 nm air square that maximizes light absorption J at a fixed

wavelength λ = 350 nm. Because it is assumed that the bigger square will have more

absorption two variations of the objective function are considered: Jc the absorption at the

center node or center of mass, and JA = J
A the absorption per unit area.

In this work the dissertation explores the dependency of the objective function on the size of
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silver rectangle through a change in the distribution of ε in the computational domain similar

to topology optimization approach. The dependency of J on ε ∈ C leads to modifying the

value of ε according to the sign of the gradient. In maximizing J it is assumed that a positive

gradient leads to increase in real or imaginary component of ε = real(ε) + j imag(ε) =

pr + jpi, and decrease otherwise. In order to increase the real part or imaginary part of ε

the dissertation computes: ∂J
∂pr

and ∂J
∂pi

. It is not clear, though, how to interpret the value

of ε according to the gradient as pr, pi are independent variables, but in this application ε

is either silver (ε2) or air (ε1). If the gradient of the real part and imaginary part do not

agree toward any of one permittivity, the information will not be useful, because it leads

toward a different maybe unknown material.

In this work there are two ways to define the gradient of a complex valued variable. First a

complex gradient is considered obtained from the real and imaginary permittivity derivatives

of objective function J(real(ε), imag(ε)). The ”extension” of the complex gradient is defined

in [24] as: ∂J
∂ε = 0.5

(
∂J
∂pr
− j ∂J∂pi

)
. Second, defining permittivity via the parameter t, ε(t) =

epsilon1 + t(ε2 − ε1), 0 ≤ t ≤ 1 gives a real-valued permittivity gradient of J(ε(t)). A

change of t gives either ε1, ε2, or an intermediate value. The real ε(t) equation is naturally:

εr(t) = εr1 + t(εr2 − εr1), and similarly for the imaginary εi(t) . Visualization of the results

guide shape modifications to maximize the function. Various models will be developed and

implemented. This results summarized in a visualization serves to assess the value of the

information given by the gradients.

This work defines three models to compute the complex gradient δJ of m design permittivity

variables over the N elements of the design computational domain.

1. m = N , all elements in the design domain are design elements. This is a topology

optimization approach where the design variable is allowed to change independently

in all elements of the design computational domain.

2. m = 2 design variables ( permittivity of air or silver). This requires assembly of all air

and silver elements in the design domain. Preserving a square, the model assembles
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an L structure: the left/bottom corner ( L shape) boundary around the silver square

for exterior (air) and interior (silver) elements.

3. m < N , define m rectangular strips surrounding the silver square. Each structure

is composed of w elements, w=width of the silver square. The design variables are

defined only around the silver/air interface, which is the significant area.

In this project the first and second models are studied for the light absorption Jc(real(ε), imag(ε))

objective function defined over the square and at the center node. The third model is de-

veloped and implemented on the J(ε(t)) objective function.

5.5.1 Derivatives

The derivatives for the solution vectors with respect to the permittivity are obtained from

the numerical solution of the PDE, the state equations, by the finite element method (FEM).

The discretized FEM linear system Ku = b gives u the numerical approximation vector to

the magnetic field at each node, K the stiffness matrix, and b the load vector that models

the light incident to the left boundary of the enclosing air square. Denote the relative

permittivity εmr = εm and assume no design variable lies on the leftmost boundary where

light is incident, then ∂b
∂εm = 0. The derivative of Ku = b with respect to the design variables

εm is given by

∂K

∂εm
u+K

∂u

∂εm
= 0. (5.11)

Then

K
∂u

∂εm
= − ∂K

∂εm
u. (5.12)

Assuming that εm is only defined at element m, then because f(z) = 1
εm is holomorphic the

non-zero computation reduces to the corresponding element matrices

∂K

∂εm
=
∂[Km]

∂εm
= −(εm)−2

∫
T
BTB dT,
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on element T. The derivative of variable u with respect to the design permittivity at element

m is thus obtained from

K
∂u

∂εm
=

(
(εm)−2

∫
T
BTB dT

)
u. (5.13)

In particular second derivatives can be obtained from 5.13 and finite difference in space

~r = (x, z) assuming δ2uεm,~r = δ2u~r,εm . The second derivatives with respect to εm = pr+jpi,

∂2ur

∂pr∂~r
≈ δ2urpr,~r,

∂2ur

∂pi∂~r
≈ δ2urpi,~r, are obtained by 5.13 and finite differences on space ~r. Let

Mpr =
∂[Km]

∂pr
= M r

pr + jM i
pr .

Following the principle of separating equations into real and imaginary components with

~r = (x, z), then Kδupr = Mpru become the following system of equations,

 Kr −j Ki

j Ki Kr


 δurpr

jδuipr

 =

 M r
pr −j M i

pr

j M i
pr M r

pr


 ur

j ui

 . (5.14)

Mpr = ∂[Km]
∂pr

=
(

(p2i−p2r)+2jprpi
(p2r+p

2
i )

2

) ∫
T B

TB dT = M r
pr + jM i

pr . Now for the uniform mesh,

the integrals of the derivative of the shape functions
∫
T ∇Ni∇Nj dT i, j = 1, 2, 3 in (3.9)

at each element reduces to the following matrices where h = size of the isosceles right
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triangle,A = 0.5h2 area of triangular elements, and 0.5 = h2/4A,

M r
pr =

p2
i − p2

r

(p2
r + p2

i )
2


0.5 −0.5 0

−0.5 1 −0.5

0 −0.5 0.5

 (5.15)

jM i
pr = j

2prpi
(p2
r + p2

i )
2


0.5 −0.5 0

−0.5 1 −0.5

0 −0.5 0.5

 . (5.16)

A corresponding formulation is derived for Mpi = ∂[Km]
∂pi

=
(
j(p2i−p2r)−2prpi

(p2r+p
2
i )

2

) ∫
T B

TB dT =

M r
pi + jM i

pi by observing that Mpi = jMpr . Thus the corresponding real and imaginary

components of Mpi

M r
pi = −M i

pr , M
i
pi = M r

pr

and  Kr −j Ki

jKi Kr


 δurpi

jδuipi

 =

 −M i
pr −j M

r
pr

j M r
pr −M i

pr


 ur

j ui

 . (5.17)

5.5.2 Model 1

An objective function that is independent of the area of the silver square, Jc is defined as

the light absorption at the central node of the silver square, as a measure of the strength

at a center of mass of the silver square. Here the project considers a topology optimization

approach by defining a permittivity variable εm at each element m, independently obtaining

then as many variables as design elements in the uniform mesh. The objective function

reduces to Jc(ε) = −0.5ε0ω ∗ imag(ε) ∗Ec(ε) · Ēc(ε) , the light absorption at the center node

with electric field Ec. Note also that no integration is needed in this simplified approach.
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In a L = 150 nm air square, the center node of the silver square at (x, z) = (75, 75)nm

corresponds to node number 481 on the h = 5 nm grid. The silver square is given by 7× 7

uniformly spaced nodes corresponding to an area over the silver square SS = (6 nm) ∗ h =

30 nm2.

The objective function is then:

Jc(pr, pi, δu
r
z, δu

i
z, δu

r
x, δu

i
x) = − 0.5εi

ωε0(ε2r + ε2i )
[(δurz)

2
c + (δuiz)

2
c + (δurx)2

c + (δuix)2
c ], (5.18)

where (δuix)c, denotes the finite difference approximation of imag
(
∂u
∂x

)
, at center node uc.

Assuming that the surrounding air elements are the design variable then

∂Jc
∂pr

=
−εi

ωε0(ε2r + ε2i )
2
[(δurx)(δ2urx,pr)

+(δuix)(δ2uix,pr) + (δurz)(δ
2urz,pr) + (δuiz)(δ

2uiz,pr)], (5.19)

∂Jc
∂pi

=
−εi

ωε0(ε2r + ε2i )
(δurx)(δ2urx,pi) + (δuix)(δ2uix,pc) + (δurz)(δ

2urz,pi) + (δuiz)(δ
2uiz,pi)].

(5.20)

The second derivatives δ2uir,pi above are obtained from 5.13-5.17. Otherwise if the εr, εi are

design variables, then

∂Jc
∂pr

=
pipr

ωε0(p2
r + p2

i )
2

[
(δurx)2 + (δuix)2 + (δurz)

2 + (δuiz)
2
]

− pi
ε0ω(p2

r + p2
i )

[
(δurx)(δ2urx,pr) + (δuix)(δ2uix,pr) + (δurz)(δ

2urz,pr) + (δuiz)(δ
2uiz,pr)

]
, (5.21)
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∂Jc
∂pi

=
p2
i − 0.5(p2

r + p2
i )

ωε0(p2
r + p2

i )
2

[(δurz)
2 + (δuiz)

2 + (δurx)2 + (δuix)2]

− pi
ωε0(p2

r + p2
i )

[
(δurx)(δ2urx,pi) + (δuix)(δ2uix,pi) + (δurz)(δ

2urz,pi) + (δuiz)(δ
2uiz,pi)

]
. (5.22)

When the function is real-differentiable, that is f(z, z̄) : R2 → R, the complex gradient

of the objective function with respect to real and imaginary components for the complex

variables [24],[32],[33], in this case εm is

δJ(pr, pi, δu
r
z, δu

i
z, δu

r
x, δu

i
x) =

1

2

(
∂J

∂pr
− j ∂J

∂pi

)
. (5.23)

This numerical extension imposes much more structure to the problem than needed. The

next model would find a new formulation of the problem that does not require a vector-

valued complex gradient.

5.5.3 Model 2

The objective function as developed in (5.9) depends on the area of the square, as it is

expected greater absorption in a bigger square. A more interesting alternative objective

function is obtained by dividing J by the Area A of the silver square: JA(ε) = J(ε)/A(ε).

This new problem seeks to maximize the absorption per unit area of the silver nanoparticle.

The permittivity of the element εmr is assumed constant within each element T or structure

of elements S. Permittivity of air (ε1) or silver (ε2) for a fixed wavelength λ is defined in

terms of a parameter t = 0, 1 : ε(t) = ε1 + t(ε2 − ε1). Therefore t increases from air t = 0

to silver t = 1. The derivative with respect to the parameter t is obtained by the quotient

rule: δJA = δJ∗A−J∗δA
A2 . At a given distribution of εr, this gradient will help determine if a

change in the size of the square will increase the new objective function JA, subject to the

field equations derived from Maxwell’s Equations in the 2D ~r = (x, z) plane.

The J in JA (5.9) is obtained on the partial derivatives of the magnetic field u with respect to
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the space variables ~r = (x, z), real
(
∂u
∂~r

)
, imag

(
∂u
∂~r

)
. These are approximated by their corre-

sponding finite difference forms δurx, δu
i
z, δu

r
x, δu

i
x. The complex variable ε(t) is decomposed

in real and imaginary components as: εr(t) = εr1 + t(εr2−εr1) = pr, ε
i(t) = εi1 + t(εi2−εi1) = pi.

The gradient is denoted δJ = ∂J
∂f

∂f
∂pr

dpr
dt + ∂J

∂f
∂f
∂pi

dpi
dt , where f = {δurz, δuiz, δurx, δuiz}. The

main derived formulas used to obtain δJ = ∂J
∂pr

dpr
dt + ∂J

∂pi
dpi
dt are:

∂J

∂pr
=

∫∫
− pi
ωε0(p2

r + p2
i )

[(δurz)(δ
2urpr,z) + (δuiz)(δ

2uipr,z) + (δurx)(δ2urpr,x) + (δuix)(δ2uipr,x)]

+
prpi

ωε0(p2
r + p2

i )
2
[(δurz)

2 + (δuiz)
2 + (δurx)2 + (δuix)2]dΩ

(5.24)

∂J

∂pi
=

∫∫
− pi
ωε0(p2

r + p2
i )

[(δurz)(δ
2urpi,z) + (δuiz)(δ

2uipi,z) + (δurx)(δ2urpi,x) + (δuix)(δ2uipi,x)]

+
0.5(p2

i − p2
r)

ωε0(p2
r + p2

i )
2
[(δurz)

2 + (δuiz)
2 + (δurx)2 + (δuix)2]dΩ.

(5.25)

Some interesting results are presented in the next section.

5.5.4 Results

The MATLAB tools developed to compute the FEM solution and DD-gradients of the

silver absorption function are the first contribution of this work. These tools accomplish

the following tasks:

1. FEM 2D Helmholtz equation solver with absorbing boundary conditions that uses

faster assembled matrices given the geometrical information.

2. Assemble matrices by knowing position and size of the silver nanoparticle and the size

h of a uniform grid.

3. Compute the light absorption of the silver nanoparticle from the magnetic and FD
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obtained electric phasor by 2D trapezoid integration over the entire design domain.

4. Compute the gradient of real and imaginary components of the objective function J ,

with respect to t given ε(t) = ε1 + t(ε2 − ε1) using the derived formulation.

5. Compute the gradient of a structure of elements strips surrounding the initial silver

nanoparticle to assess movement of the silver/air boundary and therefore a change of

size.

The study of the absorption of a silver nanoparticle using a topology optimization approach

has developed many formulations in the area of complex valued functionals and its gradients.

The gradients obtained have pointed to an increase in the size of the silver rectangle increases

the absorption per area, Model 2. Therefore the maximum absorption per area is maximized

when the silver particle is at is maximum allowed size in the domain. This result is not

obvious because the absorption over the nanoparticle is divided by an area that is increasing

with size.

The objective function computed by the tools is shows to be dependent on the quality of

the mesh. The initial uniform mesh failed to give correct values for objective function.

The MATLAB code objective function, in agreement with the DD-based gradient, gave

decreasing values as the silver rectangle increased vertically. This was verified and discarded

as the meshed was refined in the sharp corners using a unstructured mesh in COMSOL-

Multiphysics 3.5.

The following graphs were obtained by COMSOL. The graphs show that for symmetric

rectangular shapes, circle and triangle with the same area, the square maximizes absorption

per area. The graphs generated with constant electric field range, show that the square has

greater extreme values around the boundaries and corners than the other rectangular shapes

with sharp corners. The numerical data for the absorption statistic for each geometric figure

of same area is summarized in 5.6. These values are obtained from COMSOL with refined

unstructured mesh with greater than 2e+004 elements. A proposed problem for shape

optimization, is then to prove or disprove that the square is the shape that optimizes light
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absorption per area.

Figure 5.10: Ex comparison for 900 sq nm rectangles I

The next chapter tackles the largest optimal design project in this dissertation work by

using the same consistent strategies to obtain the gradient and add some new developments.
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Figure 5.11: Ex comparison for 900 sq nm rectangles II

Figure 5.12: Ey comparison for 900 sq nm rectangles I
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Figure 5.13: Ey comparison for 900 sq nm rectangles II

Table 5.6: Absorption and norm(E) at center

figure dimensions (w x h) nm (J, Jc)

square 30 x 30 (7.11e-11, 1.47)
rectangle 45 x 20 (3.87e-11, 0.83)
rectangle 20 x 45 (5.95e-11,2.19)
rectangle 50 x 18 (3.32e-11,0.76)
rectangle 18 x 50 (4.72e-11,2.13)

circle r =1.69257e-008 (4.62e-11,1.85)
rectangle 60 x 15 (2.54e-11, 0.66)
rectangle 15 x 60 (3.26e-11, 1.96)
triangle b=30 nm, h=60 nm (4.67e-11, 2.09)
triangle b=60 nm, h= 30 nm (4.15e-11, 1.33)
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Chapter 6: Optimal Design of Plamon Coupler

6.1 Introduction

In quest for the design and development of smaller and more powerful devices, the abil-

ity to efficiently use energy is of central importance. Therefore the optimal design of the

Plasmon Coupler is of great interdisciplinary interest for its value in enhancing/scattering

electromagnetic energy. The grating coupler was introduced two decades ago as an efficient

form of generating plasmons, becoming a very productive area of research. For example, a

search in the Web of Science database for the grating coupler produced 1,883 papers since

1992. An efficient plasmon generator is thus an important contribution for practitioners to

be able to succeed building better and useful devices.

Excitation of surface plamons via photons of a light beam directed to a grating-like interface

between a metal and dielectic, produces an enhanced electromagnetic field in a small vicin-

ity of the grating grooves. An efficient resonance coupling drives the collective oscillation of

the beam of light and electrons on the grating surface of the metal from an input wave to a

plasmonic mode with less energy loss. The plasmonic mode excited in this way or SPP has

shown great sensitivity to changes in geometry, and characteristics of the incident wave. A

good design will promote that a greater percentage of the incident wave will be converted

into the plasmonic mode. An illustration is shown in figure 6.1.

In this work the change in geometry and characteristics of the incident wave are optimized

using gradient information. An optimal design with 14 variables is tackled using efficiently

the available numerical data and derived formulas. A gradient obtained from numerical as

well as analytical methods is computed and applied to the design of the grating coupler

using a combination of direct differentiation and finite difference gradients.

In this chapter original work on the design of a plasmon coupler is presented. It consists
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Figure 6.1: Coarse vs Refined Mesh Visualization

of two main experiments: the conversion of the plane wave, and the Gaussian beam. The

problem formulation, including formulas that model the electromagnetic waves, the objec-

tive function and its gradient are derived. Some mathematical analysis for the application

of the Adjoint Method is also presented. The computational tool developed using COMSOL

Multiphysics and MATLAB tools, the geometry and modeling decisions are discussed. Very

improved final designs are obtained, and analyzed, along with some suggestions for future

work.

6.2 Formulation of the Problem

The problem development from governing equations, modeling assumptions and obtained

formulas are presented in this section. Some important theoretical results from this section

are the formulas derived for the objective functions and gradients of both electromagnetic

waves: plane wave and Gaussian beam. The intention of sharing the steps in the develop-

ment of a working model is to give interested readers insights to apply in this as well as

other optimal design problems.

The conversion of energy between an electromagnetic wave and the plasmonic mode can be

modeled in two equivalent directions by choosing which one will be incident at the bound-

ary of the system. This defines an output or input coupler [23]. In this dissertation the

output coupler is studied, where the plasmonic beam is incident to the boundary, and the

energy transformed into an output electromagnetic wave is measured. This choice proves to
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be very convenient because changes in the parameters of the output wave will modify the

objective function, not the solution (state variables). The latter is more computationally

expensive data. The quantity of energy converted from the plasmonic mode to a target out-

put wave will measure the efficiency of the coupler. The conversion efficiency is measured

as the percentage of the energy transferred from the source modes such as a plane wave or

Gaussian beam to the plasmonic mode. The energy that the plasmon has lost as it travels

the distance between the boundary and the grating is also taken into account.

6.2.1 Designing the Geometry

A simplified grating coupler consists of a rectangular domain with an interface between

silver and air. The silver slab contains a grating-like surface that consists of a number of

grooves. In the output coupler the plasmonic mode is incident to the leftmost boundary

of the domain, and its coupling with an electromagnetic wave is measured at an horizontal

boundary over the parallel silver surface. The size of the grating depends on the number of

grooves.

As a guide for the initial design, the following measurements were obtained from practi-

tioners in the NIST. The total computational domain is a rectangle of dimensions 9.0e-5

m wide and 1.0e-5 m high when the grating consists of an initial geometry of n grooves in

the center. This is the design or variable part of the computational domain. Each groove

has initial dimensions of 100 nm wide and 50 nm deep. The center of adjacent grooves

is separated by 600 nm from a neighboring groove. This grating has initial dimensions

600× 50 = 3.0 e-5 m wide and 2.0e-7 m high. An additional left and right domain at both

sides of the design domain are used for boundary conditions, giving the total length of 9e-5

m plus perfectly matched layers (PML) domains. The objective function boundary is at

the top of the rectangle 8,000 nm away from the parallel silver surface. The figure 6.2.1

shows the geometry of the first computational domain. Table 6.1 described the geometric

parameters of the initial design.
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Table 6.1: Initial Design Parameters

parameter description initial value

x̄ fixed position of first groove 3.01e-5 m
d displacement between adjacent grooves 600 nm
n number of grooves 50, 20, 4
w initial width of grooves 100 nm
h initial depth of a groove 50 nm

Lm (Rm) left (right) margin of computational domain 30, 000 nm
PML perfectly matched layer domains top/right/left 1, 000 nm
hsil depth of silver slab 200 nm
B objective function boundary 8, 000 nm

Figure 6.2: Initial Computational Domain

Usually problems in computational electromagnetism require specialized boundary condi-

tions capable of modeling an incident electromagnetic mode while allowing other modes

to exit the system with minimal interaction. These specialized boundary conditions are

modeled by using a combination of perfectly matched layers (PML) domains, absorbing

boundary conditions (ABC) and ports at the surrounding boundaries of the a computa-

tional domain. These are discussed in [15], and included in COMSOL’s RF-module. The

computational domain with the boundary conditions is illustrated in figure 6.2.1.
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Figure 6.3: Final groove design

An important development of the work happened during the design of the geometry of the

grooves. Originally the grating contained 50 grooves. The size of the grating was to be

rescaled as a single composite structure consisting of only one design variable. The grating

would be compressed or stretched according to a transformation factor. A second approach

would allow modification of the grooves only. For a set of 20 grooves the right boundary of

each groove would be displaced simultaneously using one displacement parameter. A design

node on each groove determined the position of the groove. The geometry changes accord-

ing to the new position of the design nodes. Unfortunately this new geometry naturally

required a new mesh, or a moving mesh algorithm. The problem with this approach is that

it was found that modifying the mesh alone without modifying the actual geometry may

significantly affect the value of the objective function. Therefore a new design is proposed

that provides the desired control of the geometry of the grooves without the unwanted con-

sequences of redrawing/remeshing.

The final geometry of the groove is shown in figure 6.2.1. This geometry allows discrete

changes of all three boundaries for each rectangular groove: the right, left and bottom

boundaries according to the size of the introduced grid. The top boundary is not modified
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Figure 6.4: Design of Grooves
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Figure 6.5: Three Parameter Displacements

as it is the fixed interface between air and the silver slab. The design is updated via three

independent parameters for each groove. In this way each groove would change width, depth

and separation from adjacent grooves independently. The geometry design provided for a

way to modify the rectangular grooves without moving the mesh. The groove’s geometry

consists of 10 nm squares in a 300 by 150 grid . Each small square could be identified as

air or silver, thus modifying the width and depth of any groove in discrete steps of 10 nm.

A very important computational gain obtained with this design is that it does not require

remeshing as the design changes. From the optimization viewpoint this provides a desirable

effect because there is no need to account for how the mesh change affects the optimization

criteria. After defining an initial good quality mesh, it remains fixed during optimization

and therefore would not introduce variation to the objective function. Changes in the value

of the objective function can be better understood as a consequence of changes in the ma-

terial distribution, that is, groove size and position. The evolution of the grooves design is

shown in figure 6.4.

The displacement design variable of the left (dxL), right (dxR) and bottom (dyB) interfaces

of air and silver can either be increased, decreased or not moved at all. This gives 33 = 27

geometric design possibilities for each groove. An illustration of all three displacements for

a groove is given in figure 6.5. The design can then be modified geometrically in 27n ways.

Because the first groove’s left boundary is to remain fixed, in the final implementation work

with 4 grooves there are 4(3) − 1 = 11 geometric parameters to conduct the geometrical

88



optimization of the grating.

Once the geometry has been designed, the objective function measures the performance of a

particular grating design. The objective function P , its normalization and decay coefficient

computation are presented next.

6.2.2 The Objective Function

The choice of the objective function in this work is different from other optimal design work

on the grating coupler [22],[34],[23]. Published work in the design of this device consider the

Poynting vector as a measure of performance [22],[34],[23]. This far-field approach measures

power in general, and therefore results are the same no matter what electromagnetic wave

is used. In this work the objective function is tailored to a particular output wave so that

results differ greatly between a plane wave and a Gaussian beam. The practitioner has more

information on the expected conversion of the design when choosing a wave to irradiate the

silver grating. This near-field information is necessary in order to build a device that will

perform best for a particular source of electromagnetic radiation.

The equation of a wave coupler is given by the line integral over a determined boundary Γ

in the computational domain.

J =
1

4

∫
Γ

(
(ĒB ×H) + (E × H̄B)

)
· < 0, 1, 0 > ds, (6.1)

where {EB, HB} are the electric and magnetic field of the source, {E,H} the FEM ap-

proximation of the field in the computational domain induced by the plasmonic mode. The

objective function is taken to be the square of the magnitude of the integral in (6.1):

P (J) = real(J)2 + imag(J)2 = |J |2. (6.2)

This is then normalized by dividing by the coupler of a wave with itself PN , so that finally

the objective function is defined as P = P (J)/PN .
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When the air/silver interface occurs at y = 0, the magnetic field of the plasmonic mode is

modeled analytically by the expression in [35]:

Hz(y) =

 A1e
−k2y y ≥ 0

A2e
k1y y < 0

(6.3)

k2 =
√
β2 − k2

0,

β = k0

√
ε2

1 + ε2

k0 = 2π/λ, k1 = −k2ε2,

where ε2 is the permittivity of silver, the permittivity of air is ε1 = 1, and k0 the wave

propagation constant. The energy decay or evanescence factor is a function of β, the

propagation constant, the magnetic field of the plasmonic mode in (6.3), and x0, the distance

from the incidence boundary. The coefficient is obtained as: c2 = ereal(−2jβx0). Therefore

since P = c2P0, the initial power at the boundary P0 = P/c2. In this work the decay factor

1/c2 ≈ 1.6159, with real(β) = 7.998326e3, x0 = 3.0e-5 meters.

The objective function and its gradient depend on the particular equation of the mode to

be coupled with the EM field. The problem is modeled in a two dimensional xy plane, and

the time-harmonic scalar Helmholtz equation in Hz models the electromagnetic field. The

corresponding electric phasor vector is now < Ex, Ey, 0 >. A combination of numerical and

analytic strategies are explained next to exploit the available information from the solution

in obtaining the gradient in the following. These derivations obtained for the plane wave

and the Gaussian Beam as he modes coupled with the EM field, starting with the plane

wave.
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6.3 Plane Wave

The plane wave is a suitable approximation of most light waves. It is characterized by plane

wavefronts, and describes a perfectly monochromatic parallel beam of light. Because the

laser beam can be modeled as a plane wave in a localized region, the plane wave is used by

practitioners to study absorption and scattering of light [36].

Figure 6.6: Plane Wave Parameters

The plane wave is characterized by the propagation vector k̂ in the direction perpendicular

planar wavefront. Because in this experiment light propagation is assumed time-harmonic

and the free space wavelength is fixed, the only parameter that modifies the equation of the

plane wave is the angle between the vector k̂ and the positive direction of the x axis, see

figure 6.6. Because the plane wave can be generated with a laser and a simple mathematical

formalism, the PW was selected as the first option for the plasmon generation. This starting

experiment is described next.

6.3.1 Objective Function and Gradients

To obtain the equation for the plane wave in 2D the angle of incidence is measured counter-

clockwise from the positive direction of the x axi in the xy plane, such that 0 ≤ θ ≤ π, with
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wave propagation vector ~k =< k cos(θ), k sin(θ), 0 >, as seen in figure 6.6. The formula-

tion then starts with the generalized equation of the plane wave in 2D. The derivations are

obtained by the time harmonic convention H(r, t) = H(r)ejωt, r =< cos(θ)x, sin(θ)y, 0 >,

and the identity from Maxwell’s equation jωεE = ∇×H =
〈
∂Hz
∂y ,−

∂Hz
∂x , 0

〉
, simplified by

the fact H = Hz a scalar. Furthermore E = ∇×H = − j
ωε

〈
∂Hz
∂y ,−

∂Hz
∂x , 0

〉
. Assuming air’s

relative permittivity to be εr = 1, magnetic field constant H0 = (c0µ0)−1 ≈ 0.0026544, and

k
ω = 1

c0
, the 2D plane wave is then modeled by:

Hz(x, y, θ, t) = H0e
A,

E = 〈Ex, Ey, 0〉 =
H0

c0ε0

〈
− sin(θ)eA, cos(θ)eA, 0

〉
, (6.4)

where A = j(ωt−k cos(θ)x−k sin(θ)y). The objective function P (J) is obtained from the

square of the magnitude of the functional in (6.1) taking as the coupled propagation modes

the plane wave (EB, HB), and the electromagnetic field produced by an incident plasmonic

mode (E,H) over the boundary Γ.

To measure the percentage of conversion the results are normalized by obtaining the coupling

coefficient of the plane wave coupled with itself. A general cross product of 3D vectors gives

the following:

E×H = 〈eyhz − ezhy, ezhx − exhz, exhy − eyhx〉

= 〈eyhz,−exhz, 0〉 , (6.5)
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after simplifying by the definition of phasors Hz, < Ex, Ey >. Then (6.1) reduces to:

J =
1

4

∫
Γ

(
〈ēyhz,−ēxhz, 0〉+

〈
eyh̄z,−exh̄z, 0

〉)
· 〈0, 1, 0〉 ds

=
1

4

∫
Γ
−ēxhz − exh̄zds. (6.6)

Substituting (6.4) in (6.6), H0 ∈ R, (eĀ) = e−A the integral becomes a real number:

JN =
H̄0H0

4ε0c0

∫
Γ
eAe−A (2 sin(θ)) ds (6.7)

=
H2

0

2ε0c0
sin(θ)

∫
Γ
ds

=
H2

0

2ε0c0
sin(θ)s,

(6.8)

s the length of the boundary Γ. For normalization PN = sqrt(J2
N ) = JN .

The integral equation for the coupled electromagnetic field excited by the plasmonic beam,

and the output plane wave in (6.1) is obtained similarly. Substitution of (6.4) in (6.1) gives:

J =
H0

4

∫
Γ
e−A

(
sin(θ)

c0ε0
Hz +

j

ωε0

∂Hz

∂y

)
ds (6.9)

−A = jk(cos(θ)x+ sin(θ)y)− jωt. (6.10)

From now on the time harmonic term e−jωt is omitted from the derivations in space.

To find gradients of a complex valued functional the real and imaginary parts are first
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obtained with e−A = eja = cos(a) + j sin(a):

Jr =
H0

4ε0

∫
Γ

cos(a)

(
sin(θ)

c0
Hr − 1

ω

∂H i

∂y

)
− sin(a)

(
sin(θ)

c0
H i +

1

ω

∂Hr

∂y

)
ds (6.11)

J i =
H0

4ε0

∫
Γ

cos(a)

(
sin(θ)

c0
H i +

1

ω

∂Hr

∂y

)
+ sin(a)

(
sin(θ)

c0
Hr − 1

ω

∂H i

∂y

)
ds,

where f r = real(f), f i = imag(f) are real quantities, and a = k(cos(θ)x+ sin(θ)y).

The gradient is obtained in two parts: plane wave θ and geometric parameters v. This is

natural because the plane wave, in this project {EB, HB} = H0e
A{−sin(θ)

c0ε0
, 1}, is indepen-

dent of changes in the geometric parameters v that affect the EM field. Likewise the field

induced by the plasmonic mode is independent of the changes in the angle of the output

plane wave. First the simpler gradient with respect to the Plane Wave parameter, θ is

obtained.

To simplify the derivations note that equations (6.11) are of the form:

Jr =
H0

4ε0

∫
Γ

cos(a)F1 − sin(a)F2ds (6.12)

J i =
H0

4ε0

∫
Γ

cos(a)F2 + sin(a)F1ds,

where F1 =
(

sin(θ)
c0

Hr − 1
ω
∂Hi

∂y

)
, and F2 =

(
sin(θ)
c0

H i + 1
ω
∂Hr

∂y

)
. Then

DθF1 =

(
cos(θ)

c0

)
Hr

DθF2 =

(
cos(θ)

c0

)
H i.
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The general form of the gradient is DθP = 2Jr(DθJ
r) + 2J i(DθJ

i). The first part of the

gradient is then,

Dθ(J
r) =

0.25H0

ε0

∫
Γ
− sin(a)(k0(cos(θ)y − sin(θ)x))F1 + cos(a)DθF1

− cos(a)(k0(cos(θ)y − sin(θ)x))F2 − sin(a)DθF2 ds (6.13)

Dθ(J
i) =

0.25H0

ε0

∫
Γ

cos(a)(k0(cos(θ)y − sin(θ)x))F1 + sin(a)DθF1

− sin(a)(k0(cos(θ)y − sin(θ)x))F2 + cos(a)DθF2 ds

(6.14)

After obtaining the derivative of the plane wave parameter θ, the final part of the deriva-

tion of the gradient DvP is discussed. The geometric design parameters v =d1, ..., dn=

displacement of the right, left and bottom boundaries of n/3 grating grooves. As with the

plane wave θ parameter, the general gradient of P (J) = (Jr)2 + (J i)2 is:

DvP = 2Jr(DvJ
r) + 2J i(DvJ

i) = 2Jr
(
∂Jr

∂v

)
+ 2J i

(
∂J i

∂v

)
. (6.15)

The most significant part of the derivation is to obtain the formulas for the gradients

DvJ
r, DvJ

i.

Dv(Jr) =
0.25H0

ε0

∫
Γ

cos(a)

(
c1
∂Hr

∂v
− c2

∂2H i

∂y∂v

)

− sin(a)

(
c1
∂H i

∂v
+ c2

∂2Hr

∂y∂v

)
ds (6.16)

Dv(J i) =
0.25H0

ε0

∫
Γ

cos(a)

(
c1
∂H i

∂v
+ c2

∂2Hr

∂y∂v

)

+ sin(a)

(
c1
∂Hr

∂v
− c2

∂2H i

∂y∂v

)
ds. (6.17)
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Here

• c1 = sin(θ)
c0

• c2 = ω−1

• a = k(cos(θ)x+ sin(θ)y)

The numerical approximation of the second derivative ∂2H
∂y∂v is obtained from the 8th order

accurate central finite difference defined as:

∂f

∂y
|y=y0 ≈

1

h

4∑
k=1

ck(f(yk)− f(y−k))

y−k = y0 − kh,

yk = y0 + kh, (6.18)

y0 = 8000 nm

ck = {4/5,−1/5, 4/105,−1/280}, k = 1, ..., 4

where f(yk) = ∂H(x,yk)
∂v for a fixed x, and h = dy. This is better than the 2nd degree

central finite difference used in previous chapters to compute the λ and ε gradients of the

light absorption function. It uses 8 sensitivity values to approximate the y-space derivative

corresponding to the sensitivity of the electric field to the design parameters v. Nonetheless

results show that the choice of the step h is critical as the gradient values vary significantly.

This is further discussed in the numerical gradients section.

The finite difference approximation of the geometric gradient is the weak link in obtaining

the gradient. Therefore the next section presents some theoretical results on the implemen-

tation of an Adjoint Method to find the gradient of this objective function.
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6.3.2 Adjoint Method

The Adjoint Method is a very efficient way to obtain the gradient of an objective function

with respect to the geometric design variables. This direct computation saves the interme-

diate step of computing the sensitivity of the variables with respect to the state variables,

a number of the order of the mesh. In this dissertation then it is natural to analyze the

possibility of using the adjoint method to find gradients of the coupler objective function.

Because (6.11) contains terms ∂H
∂y = DyH, the adjoint method would require the solution

of two systems of equations: KH = b, and, by linearization with respect the space deriva-

tive y, K ∂H
∂y = ∂b

∂y − [DyK]H. When considering the derivatives with respect to a design

parameter v this last equation would produce undesirable double derivative on the stiffness

matrix Dv(DyK). A simpler formulation of J in terms of the x component of the electric

field: Ex would be more useful, as follows:

J =
H0

4

∫
Γ
(eĀ)

(
sin(θ)

c0ε0
Hz − Ex

)
ds (6.19)

(eĀ) = cos(a) + j sin(a), a = k cos(θ)x+ k sin(θ)y − ωt. (6.20)

Again the real and imaginary components become:

Jr =
H0

4ε0

∫
Γ

cos(a)

(
sin(θ)

c0ε0
Hr − Erx

)
− sin(a)

(
sin(θ)

c0ε0
H i − Eix

)
ds (6.21)

J i =
H0

4ε0

∫
Γ

cos(a)

(
sin(θ)

c0ε0
H i − Eix

)
+ sin(a)

(
sin(θ)

c0ε0
Hr − Erx

)
ds. (6.22)

Using the Adjoint Method the objective function to be maximized after introducing the

adjoint variables p, q is:

P = (Jr)2 + (J i)2 + pT (b1 −K1H) + qT (b2 −K2Ex) (6.23)
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where the discretization of the PDE for magnetic and electric field correspond to K1H =

b1, K2Ex = b2. The gradient of DvP and its derivative with respect to a list of parameters

vecv is the main derivation in the following proposition.

Proposition 3. Let P be the objective function that is not directly dependent on the

geometric parameter v. No design geometric parameter is in the boundary of the incident

wave, and the adjoint variables p are also constant in v. Then the gradient of the objective

function is given by

DvP = −pT [Dv(K1)]H − qT [Dv(K2)]Ex, (6.24)

where the complex valued quantities p = pr + jpi, q = qr + jqi, H = Hr + jH i, Ex =

Erx+ jEix,and complex valued matrices with [M ] = M r + jM i =

 M r −M i

M i M r

 satisfy the

following auxiliary adjoint equations:

pTK1 =

[
2(J)

∂J

∂H

]
(6.25)

qTK2 =

[
2(J)

∂J

∂Ex

]
. (6.26)

Proof. By a generalized chain rule, and the assumption that P does not depend directly on

v:

DvP = Dv((Jr)2)+Dv((J i)2)+pT [−Dv(K1)H−K1Dv(H)]+qT [−Dv(K2)Ex−K2Dv(Ex).

Decomposing into real and imaginary parts:

Dv((Jr)2) = 2(Jr)

[
∂Jr

∂Hr

∂Hr

∂v
+
∂Jr

∂Erx

∂Erx
∂v

+
∂Jr

∂H i

∂H i

∂v
+
∂Jr

∂Eix

∂Eix
∂v

]
.
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Similarly

Dv((J i)2) = 2(J i)

[
∂J i

∂Hr

∂Hr

∂v
+
∂J i

∂Erx

∂Erx
∂v

+
∂J i

∂H i

∂H i

∂v
+
∂J i

∂Eix

∂Eix
∂v

]
.

Then pT [−Dv(K1)H −K1Dv(H)] =

−[pr, pi]

 Dv(Kr
1) −Dv(Ki

1)

Dv(Ki
1) Dv(Kr

1)


 Hr

H i

− [pr, pi]

 Kr
1 −Ki

1

Ki
1 Kr

1


 ∂Hr

∂v

∂Hi

∂v

 . (6.27)

The same holds for q, taking K2, Ex instead of K1, H. Regrouping these scalar quantities:

DvP =

2(Jr)
∂Jr

∂Hr
+ 2(J i)

∂J i

∂Hr
− [pr, pi]

 Kr
1

Ki
1


 ∂Hr

∂v

+

2(Jr)
∂Jr

∂Erx
+ 2(J i)

∂J i

∂Erx
− [qr, qi]

 Kr
2

Ki
2


 ∂Erx

∂v

+

2(Jr)
∂Jr

∂H i
+ 2(J i)

∂J i

∂H i
− [pr, pi]

 −Ki
1

Kr
1


 ∂H i

∂v

+

2(Jr)
∂Jr

∂Eix
+ 2(J i)

∂J i

∂Eix
− [pr, pi]

 −Ki
2

Kr
2


 ∂Eix

∂v

−[pr, pi]

 Dv(Kr
1) −Dv(Ki

1)

Dv(Ki
1) Dv(Kr

1)


 Hr

H i

− [qr, qi]

 Dv(Kr
2) −Dv(Ki

2)

Dv(Ki
2) Dv(Kr

2)


 Erx

Eix

 .
(6.28)
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To cancel the ∂H
∂v ,

∂Ex
∂v terms take:

 2(Jr) ∂J
r

∂Hr + 2(J i) ∂J
i

∂Hr

2(Jr) ∂J
r

∂Hi + 2(J i) ∂J
i

∂Hi

 = [pr, pi]

 Kr
1 −Ki

1

Ki
1 Kr

1

 ,
 2(Jr) ∂J

r

∂Erx
+ 2(J i) ∂J

i

∂Erx

2(Jr) ∂J
r

∂Eix
+ 2(J i) ∂J

i

∂Eix

 = [qr, qi]

 Kr
2 −Ki

2

Ki
2 Kr

2

 ,
(6.29)

equivalent to the auxiliary equations in (6.26).

The proposition shows that a form of the Adjoint Method requires two solutions. The

solutions for the auxiliary equations in p, q: magnetic and electric fields adjoint variables

are required in the gradient. Although further theoretical development might be a worthy

endeavor, at this point the proposition is not favorable for computational implementation.

The approach developed in previous chapters of this dissertation uses one solution, the

scalar magnetic field, and a numerical approximation of the the electric field. This is

faster computationally and a natural choice for implementation, pending further theoretical

development. Therefore the computer implementation applies gradients obtained using this

hybrid numerical and analytical approach. The forward sensitivity or direct differentiation

is used to obtain the gradient of the magnetic field, and an 8th degree accurate numerical

central finite difference is used for the electric field gradient.

In the next section the formulation of the objective function and its gradients are obtained

for the Gaussian beam.

6.4 The Gaussian Beam

The natural next step to improve the performance of the design is to substitute the plane

wave by a Gaussian beam. The Gaussian beam has curved wavefronts in contrast with the
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plane wave. Visualization of the magnetic field of the initial design show a curved magnetic

field that suggests that a Gaussian beam can produce better conversion. The parameters

governing the Gaussian beam allow more control on the shape and position of the beam

parameters that can help tailor the wave to conform to the characteristics of the generated

plasmonic beam. Moreover, the Gaussian beam can be generated by an optical fiber, which

make it readily available from the practical point of view.

The Gaussian beam propagates according to a propagation axis u, as the plane wave, and

radially v away from the propagation axis, see figure 6.7 1. At u=0 the beam has a center

(x0, y0), where the beam has a maximum intensity or amplitude of the electric field. As

the distance from the center increases the intensity or amplitude of the field drops in a

the form of a Gaussian curve form. The radial propagation function w(u) has its smallest

value at w(0) = w0 the waist. Therefore the Gaussian beam can be characterized by these

parameters: center, waist and angle of propagation axis.

Figure 6.7: Gaussian Beam axis and radial propagation

practitioners use the Gaussian beam to model light from optical fiber, and therefore some

restrictions are physically imposed on the dissertation model. A typical width of the optical

fiber is around w = 130e-6 m. Therefore the center of the Gaussian beam cannot be placed

closer to the grooves that some minimal possible distance, unless the optical fiber is placed

perpendicular to the surface with θ = π/2 (see Figure 6.8). Therefore the parameter dist is

1http://www.rp-photonics.com/Gaussian beams.html
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Figure 6.8: Gaussian Beam Parameters

constrained with the inequality: dist ≥ 0.5 ∗w ∗ cot(θ), where w is the width of the optical

fiber. The point where the optical fiber touches the silver slab can also change allowing

horizontal movement of the optical fiber. The distance from the boundary to the grating is

denoted as x̄. Then, the distance from the point where the optical fiber touches the silver

slab to x̄ is the parameter s. Finally the design allows change in the angle of the optical

fiber and therefore the Gaussian beam. In figure 6.8 the parameters of the Gaussian beam

are illustrated.

6.4.1 Objective Function and Gradients

The Gaussian Beam formulation in the 2D space (x, y) is given by the formula in the scalar

magnetic field and transformed axis (u, v):

HG(x, y) = H0

√
w0

w
exp

(
− v

2

w2

)
exp

(
−jk

(
u+

v2

2R

)
+
j

2
arctan

(
u

xr

))
, (6.30)

with

• axis of propagation u = (x− x0) cos(θ) + (y − y0) sin(θ)

• radial distance from propagation axis v = −(x− x0) sin(θ) + (y − y0) cos(θ)
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• beam center (x0, y0)

• beam radius along the u propagation axis w = w(u) = w0

√
1 +

(
u
xr

)2

• size of beam waist w0 = w(0)

• radius of curvature of the beam’s wavefront R = R(u) = u
(

1 +
(
xr
u

)2)

• Rayleigh length xr =
πw2

0
λ , propagation length of beam without significant divergence

• wave number k = 2π
λ

• magnitude of incident magnetic field H0

In this dissertation the center is also a variable dependent on some natural design parame-

ters: the Gaussian Beam rotation angle θ, the displacement s in the x-axis from the position

of the first groove x̄, and the distance dist from the x-axis to the center along the Gaussian

Beam’s u-axis. The center coordinates are now defined by:

x0 = (x̄+ s) + dist ∗ cos(θ)

y0 = dist ∗ sin(θ) (6.31)

The x, component of the electric field EG = − j
ωε

∂HG
∂y , is obtained to derive the objective

functional J = −1
4

∫
Γ ĒGH+ExH̄G dσ, with z̄ the complex conjugate, Ex, H the computed

x-component of the electric and magnetic field respectively. In order to simplify the neces-

sary derivations note that (6.30) is of the form:

HG = H0f exp(g) exp(jh) = H0f exp(g)(cos(h) + j sin(h)),

H̄G = H0f exp(g)(cos(h)− j sin(h)), and

• f = f(w(u)) =
√
w0w(u)−1

• g = g(v, w(u)) = −v2w(u)−2
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• h = h(u, v,R(u)) = −k
(
u+ 0.5v2R(u)−1

)
+ 0.5 arctan

(
u
xr

)
.

Using this notation the real and imaginary components are simply:

real(HG) = Hr
G = H0f exp(g) cos(h),

imag(HG) = H i
G = H0f exp(g) sin(h).

A general expression for the electric field of the Gaussian Beam is given in the following

main result:

EG =
−jH0

ωε

[
exp(g)(f ′ + fg′)(cos(h) + j sin(h)) + exp(g)(fh′)(− sin(h) + j cos(h))

]
(6.32)

real(EG) =
H0

ωε
exp(g)[sin(h)(f ′ + fg′) + cos(h)fh′]

(6.33)

imag(EG) =
H0

ωε
exp(g)[sin(h)(fh′)− cos(h)(f ′ + fg′)],

(6.34)
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with derivatives with respect to y:

f ′ =
∂f

∂y
= −0.5w′

√
w0w−3

w′ =
∂w

∂y
= w0(1 + (u/xr)

2)−1/2(uu′/x2
r)

g′ =
∂g

∂y
= −2vv′w−2 + 2v2w−3w′

h′ =
∂h

∂y
= −k(u′ + vv′R−1 − 0.5v2R−2R′) + 0.5

u′xr
x2
r + u2

R′ =
∂R

∂y
= u′

(
1− u−2x2

r

)
u′ =

∂u

∂y
= sin(θ)

v′ =
∂v

∂y
= cos(θ).

The normalization PN is obtained easily by noticing that the coupling of the Gaussian beam

with itself in the equation (6.1) for complex EG = (a+ bj), HG = (c+ dj) has the form:

PN = −0.25

∫
Γ
(a− bj)(c+ dj) + (a+ bj)(c− dj) ds

= −0.25

∫
Γ

2(ac+ bd) + (ad− bc)j + (bc− ad)j ds

= −0.5

∫
Γ
(ac+ bd) ds

= −0.5

∫
Γ
(ErG)(Hr

G) + (EiG)(H i
G) ds. (6.35)
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To obtain the gradient of the objective function for the geometric design parameters v, the

real and imaginary components of J are defined first. Thus

real(J) = Jr = −0.25

∫
Γ
real(EG)real(H) + imag(EG)imag(H)

+real(Ex)real(HG) + imag(Ex)imag(HG) ds (6.36)

imag(J) = J i = −0.25

∫
Γ
real(EG)imag(H)− imag(EG)real(H)

−real(Ex)imag(HG) + imag(Ex)real(HG) ds. (6.37)

Because the Gaussian Beam is not dependent on the geometric design parameters v=

d1, ..., dn the displacement of the left, right, bottom boundaries of the grating grooves:

∂Jr

∂v
= −0.25

∫
Γ
ErG

∂Hr

∂v
+ EiG

∂H i

∂v

+
∂Erx
∂v

Hr
G +

∂Eix
∂v

H i
G ds (6.38)

∂J i

∂v
= −0.25

∫
Γ
ErG

∂H i

∂v
− EiG

∂Hr

∂v

−∂E
r
x

∂v
H i
G +

∂Eix
∂v

Hr
G ds. (6.39)

The sensitivity of the state variables ∂Hr

∂v ,
∂Hi

∂v to the geometric parameters v is obtained

from COMSOL Multiphysics Sensitivity Analysis applications. Nonetheless the sensitivity

to the electric field is computed using the 8th degree accurate central finite difference ap-

proximation in (6.18): ∂Ex
∂v = −

(
j
ωε

)
∂2H
∂y∂v = δy

(
∂H
∂v

)
.

Next the gradient of Jr, J i with respect to the Gaussian Beam parameters: α = {θ, dist, s}
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is derived aided by the fact that the state variables are independent of α:

∂Jr

∂α
= −0.25

∫
Γ

∂ErG
∂α

Hr +
∂EiG
∂α

H i

+Erx
∂Hr

G

∂α
+ Eix

∂H i
G

∂α
ds (6.40)

∂J i

∂α
= −0.25

∫
Γ

∂ErG
∂α

H i −
∂EiG
∂α

Hr

−Erx
∂H i

G

∂α
+ Eix

∂Hr
G

∂α
ds. (6.41)

Therefore a general gradient form for Gaussian Beam design parameters is:

∂Hr
G

∂α
= H0 exp(g)(cos(h)[fα + fgα]− sin(h)[fhα]) (6.42)

∂H i
G

∂α
= H0 exp(g)(sin(h)[fα + fgα] + cos(h)[fhα]) (6.43)

∂ErG
∂α

=
H0

ωε
exp(g)(sin(h)[gα(f ′ + fg′) + f ′α + fαg

′ + fg′α − hαfh′]

+ cos(h)[gαfh
′ + hα(f ′ + fg′) + fαh

′ + fh′α]) (6.44)

∂EiG
∂α

=
H0

ωε
exp(g)(sin(h)[gαfh

′ + hα(f ′ + fg′) + fαh
′ + fh′α]

+ cos(h)[hαfh
′ − gα(f ′ + fg′)− f ′α − fαg′ − fg′α]) (6.45)

Important derivations to compute ∂EG
∂α ,

∂HG
∂α in (6.42)-(6.45), with α = θ follow.

• ∂u
∂θ = uθ = −(x− x0) sin(θ) + (y − y0) cos(θ)

• ∂v
∂θ = vθ = −(x− x0) cos(θ)− (y − y0) sin(θ)− dist

• ∂u
∂dist = udist = − cos2(θ)− sin2(θ) = −1

• ∂v
∂dist = vdist = sin(θ) cos(θ)− cos(θ) sin(θ) = 0
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• ∂u
∂s = us = − cos(θ)

• ∂v
∂s = vs = sin(θ)

• ∂2u
∂y∂θ = u′θ = cos(θ)

• ∂2v
∂y∂θ = v′θ = − sin(θ)

• ∂2u
∂y∂dist = u′dist = 0

• ∂2v
∂y∂dist = v′dist = 0

• ∂w
∂α = wα = w0uuα

x2r
√

1+(u/xr)2

• ∂f
∂α = fα = −0.5wα

√
w0w−3

• ∂g
∂α = gα = 2vw−2(vwα/w − vα)

• ∂R
∂α = Rα = uα(1− (x2

r/u
2))

• ∂h
∂α = hα = −k(uα + vvαR

−1 − 0.5v2R−2Rα) + 0.5 uαxr
x2r+u

2

• ∂2f
∂y∂α = f ′α = −0.5w′α

√
w0w−3 + 0.75w′wα

√
w0w−5

• ∂2w
∂y∂α = w′α = − w0u2u′uα

x4r(1+(u/xr)2)3/2
+ w0(u′αu+u′uα)

x2r(1+(u/xr)2)1/2

• ∂2g
∂y∂α = g′α = 2w−2[vα(2vw′/w − v′) + wα(2vv′/w − 3v2w′/w2) + v(vw′α/w − v′α)]

• ∂2h
∂y∂α = h′α = −k[u′α + vR−2(−vαR′ +Rα(vR′/R− v′)− 0.5vR′α) + (v′vα + vv′α)/R]

+ xr
x2r+u

2 [0.5u′α − uu′uα
x2r+u

2 ]

• ∂2R
∂y∂α = R′α = u′α(1− x2

r/u
2) + 2x2

ru
′uα/u

3.
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In the spirit of sharing the acquired knowledge with other interested researchers the next

section includes the development of the computational model from the initial models to

the final simplified form. The challenges encountered guided the development of a useful

models that together with the derived formulas of gradients and objective functions, guided

the discovery of very improved designs. The computational implementation results and

tools developed using COMSOL-multiphysics and MATLAB are discussed next.

6.5 Development of Computational Tools

The dissertation work has produced useful computational tools for the optimal design of

devices that tackle a 14 dimensional optimization problem. A gradient based update of

11 geometrical and 3 analytical parameters produced much improved designs for the plane

wave and Gaussian beam nanoplasmonic systems. These tools have produced new and

greatly improved designs of the grating coupler, and therefore have proven useful as a first

or beta version. And, there is much more designs yet to be discovered and tested as the

tools can be used for a larger number of grooves.

The developed tools are useful to conduct numerical optimization in different ways. The

developed numerical optimization techniques tools for the 4 groove grating include:

1. Numerical Optimization of 11 geometric parameters with fixed beam parameters.

2. Optimization of grating design of 3 beam parameters with fixed geometry.

3. Simultaneous optimization of geometric and beam parameters.

4. Simultaneous optimization of geometric and beam parameters with quality of gradi-

ents verification.

These programs use efficiently available data and solvers. The final Gaussian beam design

was obtained in approximately one hour in a Dell Precision T7400 desktop computer (Intel

(R) Xcon(R) CPU, X5482@3.2 GHz, 3.19GHz, 32.0GB RAM) by using a combination of

these tools to find a better initial design and best Gaussian beam parameters.
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The grating coupler is a complex problem to model and optimize. It requires specialized

boundary conditions developed for use in computational electromagnetism, geometry and

refined mesh generators, as well as multiphysics capabilities. The complex form of the

objective function and gradient also require a combination of sensitivity analysis and nu-

merical techniques to update the designs. Therefore to develop the numerical optimization

techniques for the grating coupler, the experiments are conducted using the commercial

engineering, simulation and FE analysis software environment COMSOL Multiphysics, ver-

sion 3.5 and MATLAB. COMSOL provides a MATLAB based script language since its

origins as FEMLAB, a distributed MATLAB package.

This hybrid computer tools presented in this dissertation accomplish several tasks to op-

timize the grating coupler design. Through COMSOL’s tools the geometrical domains

are defined as silver and air elements according to the corresponding permittivity. The

parametrized geometry of the Arbitrary Lagrangian Eulerian (ALE) application is used

in combination with the foward sensitivity analysis. These together with the electromag-

netic application makes use of COMSOL’s multiphysics capabilities. The geometry, bound-

ary conditions, visualization, solvers, refined unstructured mesh, and interpolation tools

of COMSOL are exploited. The MATLAB code conducts post processing of COMSOL’s

solutions to computes the numerical gradient using the formulas obtained in the previous

sections, control the optimization algorithm, and do necessary updates to COMSOL’s do-

main and boundary lists to obtain the next design update. The computational results and

details of the implementation of the MATLAB and COMSOL are presented next.

6.5.1 Computer Implementation

One of the main products of this project are the codes developed by combining COMSOL

and MATLAB tools. The computational implementation and modeling decisions presented

here are also of interest for its potential use in other optimal design problems. The main

algorithms, strategies for updating the geometry, and some COMSOL Multiphysics envi-

ronment application, solvers, drawing and mesh generation are discussed. Visualization of
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the results are also included.

The computer implementation of the numerical optimization technique is a composite al-

gorithm that does the following tasks:

1. Initializations.

(a) Build the geometry from COMSOL’s tools.

(b) Build the refined unstructured mesh using COMSOL’s mesher.

(c) Define in COMSOL the three multiphysics application modes.

i. Electromagnetism transverse magnetic (TM)-mode.

ii. parametrized geometric (pg)-mode.

iii. Sensitivity analysis (sa)-mode.

(d) Solve using COMSOL’s Linear static solver for symmetric matrices UMFPACK.

2. Find gradient with MATLAB and COMSOL tools.

(a) Interpolate the sensitivity values for each of the 11 parameters in the objective

function grid.

(b) Compute 8th accurate central finite difference of the sensitivity in the grid.

(c) Compute the gradient using the derived formulas for geometry parameter deriva-

tives.

3. For each groove update the domains and boundaries of the new geometry according

to the gradient information.

4. Obtain current values of the derivatives of the output beam parameters using the

derived formulas (6.42)-(6.45) for Gaussian beam, and (6.13) for the plane wave.

5. Update the values of the beam parameters into the FEM structure: commands

<multiphysics> and <fem.sol = fem0.sol>.

6. Solve and repeat until objective function cannot improve.
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The update of the domains and boundaries of the design requires and modifying two COM-

SOL lists: domain list in the TM application mode and the boundary list in the pg applica-

tion mode. In order to update each groove’s size there are 27 cases on the movement of the

boundaries and domains that the algorithm needs to be able to update. The 27 different

ways to modify a grating are illustrated in figure 6.9. The following algorithm works for all

27 cases.

1. For right boundary displacement (r).

(a) Shift to right or none (dxR={0,1}).

i. Update with the final right domain position (R).

ii. Change silver domains to air from R to level 0 (top of silver slab).

iii. Update boundaries to the right of (R) domain.

(b) Shift to left (dxR= -1).

i. Update domains from the vertically shifted right domain (Rv).

ii. Change air domains to silver from Rv to level 0.

iii. Update boundaries to the left of Rv.

2. For left boundary displacement (l).

(a) Shift to right (dxL= 1).

i. Update domains from the vertically shifted left domain (Lv).

ii. Change air domains to silver from Lv to level 0.

iii. Update boundaries to the right of Lv.

(b) Shift to left or none (dxL = {-1,0}).

i. Update domains with the final left domain position (L).

ii. Change silver domains to air from L to level 0.

iii. Update boundaries to the left of the domain L.

3. For bottom boundary displacements (dyB).
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(a) Shift down (dyB= -1).

i. Change silver domains to air from L to R.

ii. Update bottom boundaries from L to R.

(b) Shift up or none (dyB={0,1}).

i. Change air domains to silver from horizontal shifts of L and R (Lh, Rh).

ii. Update upper boundaries from Lh to Rh.

4. Special treatment of corner domains.

(a) dxR=-1, dxL = {-1,0}: change previous right domain r to silver.

(b) dxL = 1: change previous left domain l to silver.

(c) dxR=-1, dxL = 1: change previous domains l,r to silver.

The first step to generate a COMSOL model is to define the geometry. After using the

GUI to draw, the commands are saved in a MATLAB/COMSOL file in order to build the

code and generalize the geometry commands. Caution must be exercised when selecting

the objects type. The initial geometry had to be redrawn using solid objects in order to

make a composite geometry consisting of gratings, silver, PML, objective function bound-

ary and computational domain. Curves cannot become part of a composite object that

contains solids and should be avoided. For this reason the objective function boundary is

the lower part of a rectangle at y = 8000 nm, that is 2000 nm from the top PML. This

remedy provided a way to identify the expressions for the objective function as a <boundary

expression>. That is, the gradient formulas and objective function variables are defined as

<inline> expressions at this boundary. The computational domain contains a silver rect-

angle at y = [-2.0e-7,0] nm, so that the plasmon equation is defined as in (6.3). Apart from

this, the objects are defined by coordinates in a straight forward fashion. The real challenge

in order to have a general drawing code is in the definition of the geometrical variables and

numbering both domains and boundaries for COMSOL application modes. This can be

done in a text handling utility.
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Figure 6.9: 27-cases for 3 parameters: Right, Left, Bottom
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There are three COMSOL Multiphysics application modes used in the experiments: parametrized

geometry (pg), sensitivity analysis (sa) and transverse magnetic mode (tm). The parametrized

geometry (pg) mode provided a moving mesh to update the design according to the gra-

dient of the geometrical parameters. By fixing the interface between air and silver of each

groove the mesh deformation modeled the change in the size of the grating. This applica-

tion uses only the space coordinate system. The key difference between the application of

parametrized geometry and a moving mesh (ALE) is that in the latter the physics guides

the movement of the mesh, but in the former the change in the mesh affects the physics

through the objective function values.

Appropriate boundary conditions and domain definitions for the parametrized geometry

Figure 6.10: Multiphysics solution of moving mesh and magnetic field

would provide a smooth transformation of the mesh inside the domains, as a solution of the

Laplacian PDE in the 2-dimensional displacement in space dx, dy, the velocity of the mesh.

The boundary conditions include Dirichlet condition when a particular movement of the

boundary, including no movement at all, is prescribed. Continuity boundary conditions are
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Figure 6.11: parametrized Geometry boundary and mesh definitions

assumed when the boundary can deform freely. The figure 6.10 illustrates the deformation

of the mesh of two adjacent grooves using the parametrized geometry and parametric solver.

In this case the multiphysics solution for both the magnetic field and the displacement is

shown as the grooves increase in size toward the right boundary. The definition of the

boundary conditions used in this deformation including prescribed displacement, shown in

figure 6.11, aimed to make the deformation match the rectangular shape of a groove while

changing the size.

The forward sensitivity analysis (SA) provided the sensitivity of solution to a parameter

change. This is a key component of the gradient of the objective function that has been

derived for the plane wave and Gaussian beam in (6.42)-(6.45) and (6.13). The sensitivity

analysis mode is independent of the physics and has no boundary conditions or equations

to be defined. The solver was defined to find: optimization> sensitivity analysis>forward

sensitivity or in COMSOL script mode:

fem.sol =femstatic(fem, ’solcomp’,

{’d9’,’d8’,’d5’,’d4’,’d7’,’d6’,’d1’,’d11’,’d2’,’Hz’,’d3’,’d10’,’y’,’x’}, ...

’outcomp’,{’d9’,’d8’,’d5’,’d4’,’d7’,’d6’,’d1’,’d11’,’d2’,’Hz’,’d3’,’d10’,’y’,’x’}, ...

’blocksize’,’auto’, ...

’sensmethod’,’forward’, ...
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’senscomp’,{’d1’,’d2’,’d3’,’d4’,’d5’,’d6’,’d7’,’d8’,’d9’,’d10’,’d11’}).

The use of the Laplacian PDE of the parametrized geometry mode coupled to the TM elec-

tromagnetic equations and sensitivity analysis defined a form to study modification of the

geometry of the grooves and how this affect the objective function. Nonetheless, the smooth

deformation of the mesh also introduces changes to the objective function. This strategy,

although developed to some extent, is not explored further in this dissertation work because

of this. For more details on the management of COMSOL-Multiphysics application modes

see Appendix A.

Figure 6.12: Coarse vs Refined Mesh Visualization

Figure 6.13: 139K and 557K elements meshes
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Figure 6.14: No-grooves with plasmonic Mode

Figure 6.15: 4-grooves with Plasmonic Mode
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Figure 6.16: 20-grooves with Plasmonic Mode
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The quality of the unstructured mesh chosen greatly affects the outcome visually and numer-

ically. The computational domain is very big compared to the design domain and therefore

the mesh has irregular refinement. The grating required a very refined mesh. The rest of

the domain had no restriction. Some problems with quality of the mesh were encountered.

The visualization of the plasmon helped identify the need of refinement of the mesh. In a

refined mesh the quality of the waves showed an angle of propagation of roughly 120 de-

grees from the grating in direction to the P boundary. This could not be seen in a coarser

mesh. Figure 6.12 shows the comparison between the visualization of the initial design us-

ing a refined and a coarser mesh. Also a significant numerical problem was detected in the

objective function value. The no-groove design for both Gaussian Beam and Plane Wave

objective function is assumed to be less than the 4-groove case. With a coarser mesh pf

139,252 elements the value of the objective function with no groove is P0 = 2.06e-14, and

the 4-groove P4 = 7.78e-15. After refining the mesh to 557,008 elements: P0 = 7.92e-13,

and P4 = 1.62e-12. In figure 6.13 these meshes can be observed. Visualization using the

refined mesh are included in figures 6.14-6.16 for no-groove, 4 and 20 grooves grating. These

visualizations show an increase in emission from no-grooves, to the 20 grooves grating. The

numerical gradient obtained in this dissertation work is discussed and analyzed.

6.5.2 Numerical Gradient

The numerical gradient of the 11 geometric design variables introduced in this work is ob-

tained by using efficiently the available information of the solver but at the cost of accuracy.

Because COMSOL uses the factorization of the FEM matrix to find the forward sensitivity

for each parameter v, the sensitivity is obtained with no extra cost from solver. The post

processing of the sensitivity in order to obtain ∂2H
∂v∂y via the finite difference of DvH is also

a very inexpensive step. The sensitivity of the field to the 11 design parameters can be ob-

tained from one solver step at the cost of a matrix multiplication for each parameter. The

alternative of developing a new FEM model to obtain the electric field and its sensitivity to

find a gradient will make each optimization step doubly expensive. Nonetheless by choosing
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to post process the gradient via a finite difference approximation the algorithm inherits the

errors associated this numerical scheme.

The sensitivity of the magnetic field is computed by forward sensitivity using COMSOL’s

static symmetric matrix solvers. Then it is also used to obtain the electric field sensitivity

at a grid around the objective function boundary Γ. This is obtained numerically by a finite

difference in space of the computed magnetic field sensitivities during post processing. The

gradient obtained from this hybrid method is then used to update the design. Therefore

the process to obtain the geometrical parameter’s gradient is the most costly computation-

ally, as opposed to the beam parameter optimization obtained by the derived formulas in

(6.42)-(6.45), and (6.13).

The finite difference approximation of a gradient is dependent on the step size h = dy.

In this dissertation work dy = {0.5, 0.75, 1.1} e-7 m are used. Some strategies to find a

good step size include computing the gradient as an average of the value from different step

sizes. In this work the 2nd degree central difference was used in the mesh deformation and

plane wave optimization. For the Gaussian beam an 8th degree accuracy central difference

formula is implemented to improve the gradient and was used to obtain the best designs

with dy = 0.5e-7.

A tool to study errors of the numerical gradient was developed. It showed that there is

no indication that any particular groove parameter is more error prone due to position.

These tool can be used to further improve solutions by using only trustworthy parameter

derivatives to continue the optimization algorithm, as identified by the tool.

In the next section the results of the use of the implemented computational tools to obtain

the optimal design of the grating coupler are presented.

6.6 Optimal Design Results

In this dissertation work there are two approaches explored in the optimal design of the

grating coupler: the parametrized geometry (PG) deformed mesh to update geometry and
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the fixed mesh approach. The first one controlled only 4 geometrical parameters, the in-

dependent displacement of the right boundary of each grooves. The second approach was

developed further to solve 14 dimensional optimization problem. These are eleven discrete

geometric parameters and 3 Gaussian beam parameters. The most important results are

obtained with the latter approach. Results for both are presented next.

6.6.1 Deformed Mesh Approach

The PG deformed mesh approach with the plane wave coupler objective function is the first

numerical optimization technique implemented. Here the gradient has been obtained only

for the 4 geometric parameters that control the movement of the right boundary of each

groove. The advantage of this approach is that any step of movement can be chosen. The

disadvantage is that as the mesh deforms the objective function value is also affected not

only by a change in size but by mesh deformations and element quality. The deformed mesh

value of the objective function P for a design where grooves {1,2} are 150 nm wide, groove

3 is 120, and groove 4 is 125 nm, (g1, g2, g3, g4) = (150, 150, 120, 125) nm, is P = 2.910564e-

24. When verifying the value by creating a matching geometry and similar mesh quality

gives P = 3.49799e-24. This is a relative difference of almost 17%.

The results of an initial numerical optimization run of the deformed mesh algorithm is

summarized in the table 6.2. The numerical gradient is obtained by direct differentiation

and 2nd degree finite central difference algorithm. A 314,272 element unstructured mesh

was used, and an initial geometry was (g1, g2, g3, g4) = (120, 120, 120, 125)nm, where g1...g4

refer to grooves 1-4, and 120, 125 refer to the width of each corresponding groove. Only the

right boundary is moved and there are then 4 parameters. The optimization step is initially

α = 10 nm, and is reduced as needed as in the gradient method.

Table 6.2: Moving Mesh optimization

Design Gradients P value
(120,120,120,125) DvP=(3.5e-13,-5.7-13,-6.3e-14,1.6e-13) 3.05e-19
(130,120,120,135) DvP=(2.2e-13,-5.6e-13,-6.6e-14,1.6e-13) 3.07e-19
(140,120,120,135) DvP=(9e-14, -5.5e-13, -6.5e-14, 1.2e-13) 3.1e-19
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Although this option gives better flexibility to choose the size of the grooves, the design

could not be verified because of the difference in the objective function values when the

geometry was redrawn and meshed. Also the introduction of more parameters to control

the depth and left boundary movement of a groove will introduce bigger deformations to

the mesh. Therefore a discrete design approach with 11 geometric parameters and a fixed

mesh was chosen as the next numerical optimization technique.

6.6.2 Fixed Mesh Approach

Using the geometry design illustrated in 6.2.1 and a very refined mesh the composite 14

dimensional gradient of geometric and beam parameters was computed from analytical and

numerical techniques. The Gaussian beam parameters are optimized analytically by the

derivative equations in (6.42)-(6.45) for Gaussian beam, and (6.13) for the plane wave ob-

jective function. The current solution values of the electric and magnetic field are used

and therefore this is a very fast computation. The 11 geometric parameters gradient is a

composite procedure that uses the forward sensitivity and post processing. The forward

sensitivity is obtained from the FEM solution at the cost of a substitution when the matrix

has been factored by LU decomposition. The 8th degree central finite difference is used

to obtain the electric field sensitivity in liu of finding the solution for the electric field to

compute the sensitivity. This is a fast solution that comes with a cost.

An algorithm to record the faulty numerical gradients obtained the following information.

This can be used in the future to continue the optimization using the derivative that are

trustworthy to update the corresponding design parameter. The bad derivative, those giv-

ing incorrect information, will remain at the current value, and will not update the design.

Faulty sensitivity information in the gradient are expected as the design reaches close to

optimal values. This is due in part to the smaller values of the derivative, and in part to

the numerical errors introduced by the finite difference component of the sensitivity.

The plane wave coupler as well as the Gaussian beam coupler optimization produced changes
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that incremented the directional emissivity of the device. Furthermore the results as mea-

sured by the wave coupler objective function measure the coupling and conversion rate of

each device according to the targeted wave. This results provide more specific information

on the performance of the simulated device for the practitioner when using different waves.

The dissertation presents visualizations of the change in emissivity, value of the objective

function and its conversion rate. The best conversion rate is produced by the Gaussian beam

coupler as expected from the number of parameters that tailor the shape of the beam. The

best results are presented and discussed.

The initial geometrical design (Design 0) consisted of four grooves of dimension 100× 50

Figure 6.17: Final Design Solution for Plane Wave

nm = width × depth. The separation between adjacent center of groove is 600 nm. The

design was greatly improved by a change in geometry and angle guided by the 12 parameter

gradient: 11 geometrical parameters and 1 for the plane wave. The initial design converts

0.008%, while the best design converts 1.92%, an improvement of 240 times the initial de-

sign conversion. Figure 6.17 shows the new magnetic field solution with the new groove
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Figure 6.18: Grating Final Design for Plane Wave

design change: (190×80, 240×100, 140×80, 100×60) showing a change in strength. Figure

6.18 shows the final design for the plane wave. Even though the new design shows great

improvement with the plane wave, the small conversion rate is of little interest for practi-

tioners. For 20 grooves the initial design could only convert 0.2%. Although this is 25 times

better than the 0.008% of the 4 grooves initial design, the small percentage indicated that

a design with a Gaussian beam is a better option to obtain a design that gives a significant

conversion percentage.

The optimal design of the Gaussian beam grating coupler is the best grating coupler de-

vice in this dissertation work. The results of the best designs are summarized in the table

6.3 for λ=800 nm. These results use the restrictions of the design given by practitioners

in NIST: dist >= 62.5 e-6*cot(θ), w0 ∈ [3.3λ, 3.5λ]. All the designs shown in the table

have greater conversion percentage with w0 = 3.3λ, because the normalization constant is

smaller: PN = 4.386294e-9. An improved design was obtained by conducting simultaneous

optimization of the geometry and Gaussian beam parameters, from the initial geometrical

design obtained from practitioners, Design 0. When the gradient could not improve the

objective function, only parameters of the Gaussian beam are optimized. This produced for

Design 1 a strictly increasing objective function from P=6.755307e-10 to 6.780889e-10. The
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Table 6.3: Fixed Mesh optimization

Design grooves GB parameters P value

0 (100x50,100x50, s=5.49052e-7, 1.71e-10 6.3%
100x50,100x50) θ= 1.58e-5, dist=1.81

1 (130x80,120x80, s=3.257e-7, 6.76e-10 24.89%
100x80,100x80) θ=1.813527, dist=1.551379

2 (150x60,130x80, s=3.4e-7, 6.81e-10 25.088%
170x80,140x80) θ=1.81, dist=1.525e-5

3 (160x70,150x80, s=4.34163e-7, 7.03e-10 25.898%
160x80,120x90) θ=1.831687, dist=1.994596e-5

4 (160x70,150x80, s=3.4e-7, 7.3e-10 26.89%
160x80,120x90) θ=1.81, dist=1.525e-5

Figure 6.19: Optimization for Gaussian Beam Parameters Only
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results of the Gaussian beam parameter optimization are summarized in the graph 6.19.

The total run, geometric and Gaussian beam parameters, took 39.38 minutes in the Dell

Precision T7400 desktop computer.

The best design, Design 4 is obtained by the use of various computational tools. The initial

design, Design 0 was used to obtain Design 1 using the simultaneous optimization tool.

This design was used as the new initial design to obtain Design 3. Finally the results of

the optimization of the optimal Gaussian beam parameters used with the optimal geometry

produced Design 4 the final and best result.

The simplicity of the silver/air design could not convert more than 65% because it is known

that 35% of the energy is lost in the substrate. For this reason more complex designs use

silicon on insulators couplers with bottom reflectors as in [37]. Also it is estimated in pre-

vious work [34] that the minimum number of grooves for a correct wave vector matching

is approximately nine. The best conversion rate obtained with a Gaussian beam in a four

groove grating is 26.9%. Nonetheless some percentage is lost to the substrate. In some

experiments it is reported that 65% is lost, giving more than a 43% relative conversion.

The figures 6.20-6.25 show the best geometrical designs obtained. In this way the maxi-

mum conversion of the device is restricted by the simplicity of the design. Nonetheless the

initial design obtained from practitioners at NIST has been improved greatly, more than

100 times, by the use of gradient-based numerical optimization. The initial Gaussian beam

design was improved from 6.3%, a result obtained using good Gaussian beam parameters, to

27%. This is more than four times the efficiency of the initial design, within the constraints

of the optical fiber, and using only a silver/air design.

The next and final chapter presents a summary of the dissertation work, analysis of the

obtained results, and future work.
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Figure 6.20: Design 1: Magnetic Field

Figure 6.21: Design 1: Grating
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Figure 6.22: Design2 : Magnetic Field

Figure 6.23: Design 2: Grating
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Figure 6.24: Best Design 4: Magnetic Field

Figure 6.25: Design 4: Grating

130



Chapter 7: Conclusions and Future Work

The research work in this dissertation has been built like a path in new terrain: by walking

over the same area in a consistent direction, and a little further ahead. Following the natural

direction from the simplest to the more involved, this project is paved with answers to the

challenges encountered. From one to two dimensions, from real to complex parameters,

from sensitivity to parameters of equations to those of a geometry, from the optimal design

of a silver square to that of a grating, from energy conversion of a plane wave to that of a

Gaussian beam, from MATLAB to composite COMSOL Multiphysics-MATLAB tools, the

dissertation has developed more than one useful products. Similar to a new built path, the

formulations, methodology and computational tools contributed in this dissertation are for

others to explore similar problems in multidirectional areas of research.

The contributions in this dissertation are summarized in the following list.

1. Derivations of formulas for the following:

(a) the gradients of the objective functions with respect to the design parameters

for two problems: the maximum light absorption and grating coupler optimal

design problems.

(b) the Adjoint Method for the grating coupler problem.

(c) the error bound for finite difference approximation of the matrix sensitivity.

(d) proof of an equivalent formulation for the inverse matrix sensitivity.

2. Development of the 1D and 2D AMPL models for maximum light absorption of a

silver nanoparticle in air.

3. Development of the methodology and computational tools for the numerical optimiza-

tion of the maximum light absorption of a silver nanoparticle.
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(a) Developing a MATLAB based Finite element solver for 2D silver rectangle in air

and visualization tools.

(b) Finding the optimal wavelength for the 30 nm silver square in air.

(c) Computing gradient for permittivity of silver to determine the optimal size of

the silver rectangular nanoparticle.

(d) Finding the optimal size for the maximum light absorption per area of the silver

rectangle nanoparticle.

4. Development of the methodology and computational tools for the numerical optimiza-

tion of the plane wave and grating coupler.

(a) Finding the optimal design for the plane wave grating coupler.

(b) Finding the optimal design for the Gaussian beam grating coupler.

Some details of these contributions are further discussed next.

7.1 Derivation of formulas

In this dissertation several numerical optimization techniques have been developed while

working on two main design problems. For these problems, the maximum light absorption

and the grating coupler, a methodology to conduct gradient based optimization have been

developed. Therefore a first contribution is to obtain the formulations of the objective func-

tionals and the derivation of gradients from analytical as well as numerical methods.

The formulas for the gradients using a combination of finite difference and direct differen-

tiation of the FEM linear system have been derived from governing equations in this work.

A proposition stating the mathematical structure of the Adjoint Method gradient for the

optimal design of the grating has been proved. The added value of these derivations is ob-

tained from the complexity of these objective function. These objective functions and their

gradients are not commonly used in literature of optimal design problems. The optimal

design of a silver nanoparticle that maximizes absorption per area has not been found in
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the literature review for this dissertation to this day. However, addressing this problem

is an important step for the design of efficient sensors. The optimal design of the grating

coupler is a very important optimal design problem based on literature review, but the

objective function is usually simplified to measure power in a far-field approach. In this

dissertation a wave coupler function tailored for specific waves yield a conversion rate value.

This information is more useful for practitioners to appreciate a design that can be built.

The maximum light absorption functional was formulated in terms of the magnetic field

variable (H) in order to use the solution obtained from FEM solution of the Helmholtz

PDE in H. The gradient of the maximum light absorption objective function was obtained

with respect to two parameters: the real valued wavelength (λ) and the complex valued

permittivity (ε). This gradient is a combination of direct differentiation and finite difference

approximation of the sensitivity with respect to the electric field. The senstivity of the FEM

matrix is computed from direct differentiation, and the numerical approximation error of a

finite difference approximation is obtained. More details are provided in chapter 5.

The wave coupler functional P was derived using two different source beams: the plane wave

and the Gaussian beam. The formulation of the gradient of P for the geometric parameters

v was obtained first, followed by the gradient of P with respect to the beam parameters

θ, dist, s. The Adjoint method formulation was also obtained for the plane wave design.

More details are found in chapter 6.

7.2 Development of the 1D and 2D AMPL models

The AMPL models developed and implemented in this dissertation project contribute to

the optimization with PDE constraints. The 1D and 2D models show a way to conduct

optimization with PDE constraints as a comprehensive mathematical modeling problem.

The Finite Element matrix defined through sets of nodes is a key component to define the

PDE constraints. Nonetheless, even in 1D, the model can successful solve the PDE. It is

observed that SNOPT 5.3 found a solution by reaching the wavelength’s lower limit, the
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maximizer. The 2D model was also successfully developed, even though the complex valued

matrix that characterizes the electromagnetism equations makes the problem twice the size

of the matrix in just real domain. Each node in the grid is a variable in constraints and

functions of this large scale optimization problem. Therefore using symmetry of the com-

putational domain, the number of variables was reduced to a half domain. The half domain

model built the matrix from equations using node sets and obtained the connectivity from

the known structure of a uniform grid. The 2D model found the magnetic field solution for

the PDE. Again, most solvers, including the state of the art NEOS-server solvers failed to

converge to a maximizing wavelength. Nonetheless a solution was found by IPOPT 3.10.1

in coarse and refined grids. The limitations inherent to the cubic spline definition of the

permittivity from experimental data added complexity to the problem, and met the mod-

eling language limits. There is room for further development of these tools.

7.3 Numerical optimization of the maximum light absorption

functional

The development of the methodology and computational tools for the numerical optimiza-

tion of the maximum light absorption of a silver nanoparticle in air was studied as two

separate problems: the optimal wavelength for a 30 nm silver square, and the optimal size

of the silver nanoparticle. The methodology, and computational tools developed in MAT-

LAB are discussed in this section.

In the first problem the gradient of the light absorption functional J with respect to the

real valued parameter λ (free space wavelength) has been obtained and implemented. The

first challenge encountered in the derivations is the fact that λ is ubiquitous in the variables

of the objective function and PDE. The next challenge is the fact that J is defined in terms

of the electric field, while the PDE are in the magnetic field. Thus the gradient of J with
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respect to λ required the derivative of the sensitivity of the solution to λ. The disserta-

tion used direct differentiation (DD) of the FEM linear system to obtain the magnetic field

sensitivities, and central finite difference in a uniform grid to obtain the electric field sen-

sitivities. The obtained gradient was implemented in MATLAB and compared to a finite

difference approximation of J as a function of λ. The newly obtained gradient compared

favorably with the finite difference approximation because of its efficiency. Unlike the finite

difference gradient that requires at least two solver iterations per parameter, the obtained

gradient uses only the current matrix data and solution for all parameters in the problem.

This numerical technique to find the sensitivity with respect to the electric phasor is to be

continuously used throughout the dissertation work in optimal design.

The second problem is to find the optimal size of a silver rectangular nanoparticle that

maximizes J/A, i.e. light absorption per area. This was studied using a topology optimiza-

tion approach with the added value of considering a structures of elements as the design

variable. The gradient of J/A with respect to a strip of horizontal or vertical elements sur-

rounding the silver particle would point to an increase or decrease of the size of the silver

square. The permittivity of either air or silver for a structure of homogeneous elements

was parametrized as ε(t) = ε1 + (t)(ε2 − ε1), t ∈ [0, 1] in the design domain. The gradient

of J/A with respect to ε(t) was derived and implemented in MATLAB. The grid had to

be refined in order to obtain consistent results for gradient and the functional J/A. The

gradient showed that an increase in the size of the silver square increases the absorption

per area. The square was generalized to a rectangle of the same area. Visualization and

values for J/A obtained for various rectangular and symmetric geometrical shapes of same

area, suggest that the square is the optimal shape to maximize light absorption per area.

Using a fixed range for all graphs, visualizations show a stronger electric field surrounding

the boundaries and corners of the square. A proof or disproof that the square is the optimal

shape for J/A is an interesting future problem to study in shape optimization.

The optimal size of the silver nanoparticle was more challenging. The gradient of gradient

of J with respect to a complex valued permittivity parameter ε is a vector gradient when
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ε is decomposed in real and imaginary components. There are some proposals in literature

to extend the complex gradient to non analytic functions such as J , and it is a commonly

accepted that ∂J
∂conj(E) = 0. In the dissertation work the gradient was obtained using the

standard mathematical procedure of decomposing the expressions in real and complex parts.

This became a standard practice that continued throughout the project and proved to be

very useful in the optimal design work.

The dissertation work has produced much needed computational tools for the optimal de-

sign of devices. The simplest tool is a 1D and 2D FEM solver and visualization tools in

MATLAB. This FEM solver can use either sets or an implicit structured mesh to assemble

complex and real valued matrices. The visualizations are also conducted in MATLAB and

include a time-harmonic animation. To the solver tool the computation of gradients of the

light absorption problem with respect to the complex valued permittivity of silver and air is

added. The capability of finding the gradient with respect to a strip of air or silver elements

is built to use in a topology optimization approach. These tools have proven useful in the

optimization of light absorption per area problem.

7.4 Numerical optimization of the Grating Coupler

The optimal design of the grating coupler was challenging in the design of geometry, bound-

ary conditions and gradient formulation. The dissertation took advantage of the simplifi-

cations introduced by the output coupler formulation in order to conduct optimization. By

defining the plasmon beam as incident on the left boundary and thus part of the PDE, the

optimization changes of the output beams’ parameters will not require solving a modified

PDE, but only updating values according to the derived formulations of P and its gradients.

Some new challenges included more specialized boundary conditions. The requirements in-

cluded absorbing boundary conditions equipped with perfectly matched layers to indicate
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the direction of absorption on each of three domains surrounding the air part of the com-

putational domain. The grating coupler also required a port in order to define the plasmon

mode as irradiating at the boundary.

A final challenge in the development of the gradients is finding the gradient with respect

to shape or geometric parameters of the 2D grating coupler design. The complexity of the

defined objective function P (J) = P required both magnetic and electric field sensitivities.

The same strategy used to obtain sensitivities in the previous problems applied, with the

added complexity that geometrical changes affect the shape interpolation functions used to

build the FEM matrix. The forward sensitivity of the magnetic field was obtained from

COMSOL-Multiphysics. The sensitivity of the electric field was obtained with an improved

8th accurate central finite difference. But this is only the geometrical parameters of a more

involved gradient. The complete gradient for the optimal grating problem included param-

eters that govern the output waves: plane wave and Gaussian beam. Because the beams

could be transformed by changing the angle of incidence and distance from the silver slab

and grating, another contribution is obtained in the derivation of the form of the objective

function P from the transformed coordinates of a Gaussian beam and plane wave. Then the

dissertation work developed formulations for the derived P gradients of the Gaussian beam

and plane wave parameters: θ, s, dist that modify the beam’s position in the 2D plane.

The hard work of modeling and deriving the formulations reaped good rewards. Many

designs were obtained for the plane wave and Gaussian beam grating. Nonetheless the

best design in energy conversion is the Gaussian beam coupler. Considering the available

energy in the system to be 65% [37], the Design #4 attains better than a 40% conversion

for the Gaussian beam coupler. The 27% conversion of the available energy is a significant

accomplishment for such a simple design. It has been reported that 35% of the energy is

lost in the substrate and therefore more elaborate designs use silicon on insulators couplers

with bottom reflectors as in [37]. A grating with 4 grooves is also less than the minimum

of 9 grooves reported in literature for correct wave vector matching [34]. The design incor-

porated also constraints on the available equipment that affects the waist and distance of
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the Gaussian beam. The use of the computational tools developed in this dissertation open

the possibilities to discover many more new designs for efficient couplers.

There are multiple computational tools developed. The optimal design of the grating coupler

tools tackle a 14 dimensional optimization problem using combined COMSOL-MATLAB

tools. The geometrical model for the gratings allow the use of a fixed unstructured and

refined mesh. A gradient based update of 11 geometrical and 3 analytical parameters

produced much improved designs for the plane wave and Gaussian beam nanoplasmonic

systems. Algorithms to compute geometry only optimization, beam only parameter opti-

mization, and a combined run of geometry and beam are implemented. There are many

ways to conduct numerical optimization using these tools even when the design update is

not improving the objective function. For example, after geometry gradients are no longer

giving improvement, the algorithm can continue optimization of beam parameters for the

best attained geometry.

These flexible numerical optimization tools are important for electromagnetism and a bigger

interdisciplinary area. In the geometrical parameter optimization, for example, the use of

rectangular domains serves as a first step to designing other arbitrary shapes. The tools

developed in this project applied to any design can help to determine the size or scale of a

shape that will produce a better design according to a optimal bounding rectangle, provid-

ing an initial draft for components of more involved designs. The hardware requirements

are not high, because program runs in a Dell Precision T7400 desktop computer are less

than an hour long.

The fact that the gradient of the wave coupler function uses a finite difference approxi-

mation for electric field sensitivity is efficient but comes with the defects associated with

this numerical scheme. Therefore a tool to identify faulty gradients has been implemented

providing the capability of continuing geometry optimization using only the reliable com-

ponents of the gradient. Nonetheless this is a perfect place to continue development.
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7.5 Future Work

This dissertation has many open problems and therefore there are many paths to continue

exploring in the near future. The 2D AMPL model can continue development by solving

other simulation based models. The silver light absorption problem and tools can continue

development to find the optimal shape per area. Nonetheless, the most successful and im-

portant tools for the optimal design of the grating coupler are presently undergoing much

development.

The grating coupler tools have proven useful in this first beta version, and many more de-

signs can be discovered and tested. Nonetheless there is much space for improvement and

development. The tools for the development of the grating couple have found the optimal

design that the accuracy of the discrete size updates yield. The accuracy can be further

improved. The model presented in this work that uses a moving mesh is a promising strat-

egy. This would have the capability of updating close to optimal design a small arbitrary

distance. This is a significant improvement on the discrete step updates that can help the

tools to converge to an optimal design.

It is very interesting to implement a grating model with more an arbitrary number n

of grooves and compare the conversion percentage. Some improvements to the tools are

planned for this purpose. A general geometry tool that can automatically produce the

design for n grooves requires a text utility to identify the variables and lists for COMSOL

application modes. This is a very useful addition because the definition of 1827 silver/air

domains and 3854 boundaries takes a lot of time and is not fun.

To improve the gradient information there are various options planned. The finite differ-

ence gradient can be substituted by a differential quadrature or other numerical gradient

method. The study of the objective function can also produce simplifications that do not

require the use of the sensitivity to the electric phasor and thus eliminate the need to use an

approximation to the gradient. The Adjoint Method gradient is a promising option because

it is independent of the magnetic and electric phasor solutions. Some derivations have been

already obtained in this work that remains a continuously developing path.
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Appendix A:

AMPL model developed on July 2012.

\* AMPL Model for PDE optimization in 1/2 domain

\* Need to change pr,pc in order to achieve feasibility

during initialization according to lamda!

\* Some values of lambda are hard converge: lam=400, but the PDE

is satisfied.

reset;

model;

option substout 1;

param nodes := 51; \*number of elements per grid +1

param nodes1 := 52; \*nodes per grid +1

param nhalf := round(nodes2/2);

param npoin := nodes*nhalf; \*number of half grid nodes

\* Spline Parameters (if changed need to recompute data with Matlab)

param nl := 200E-9; \*min lambda in spline from data

param nr := 400E-9; \*max lambda in spline from data

param nperm := 180; \*lambda step is 10 in data

param pi := 3.141592653589793;

param eps0 := 8.8541878176E-12;

\* Variables

\* x is the wavelength

var x := 310e-9, >= 300e-9, <=400e-9;
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var k = 2*pi/x;

\*>=2*pi/400e-9, <=2*pi/200e-9;

var Ur{1..npoin}; \* real part of solution

var Ui{1..npoin}; \*complex part of solution

#parameters

var pr :=1.33827; \* requires good initial value

permittivity for lambda = 300nm

var pc := -1.73245; \* for lambda = 300nm

#var pc := - 0.757719496436341; #permittivity complex for lambda = 350

#var pr := -8.479293893595084; \* permittivity real

param silc {1..nperm,1..4}; \* Silver cubic Spline complex

param silr {1..nperm,1..4}; \* Silver cubic Spline real

param c0 := 299792458;

param L := 150E-9; \*space value z= [0,L]

param h := L/(nodes-1); \*uniform mesh and space steps

param sl := round(60E-9/h + 1); \*left silver node: 85/h + 1

param sr := round(90E-9/h+1); \*silver node right: 115/h +1

\* Buildind sets

\*silver corner and boundary nodes

param sn1 := (sl-1)*nodes+sl; \*177

param sn2 := (sl-1)*nodes+sr; \*181

param sn3 := (nhalf-1)*nodes+sr; \*265

param sn4 := (nhalf-1)*nodes+sl; \*261

set sil:=:= {1144..1152}; \* interior Silver nodes;

set sb1 := sn1+1..sn2-1;
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set sb2 := sn2+nodes..sn3-nodes by nodes;

set sb3 := sn4+1..sn3-1;

set sb4 := sn1+nodes..sn4-nodes by nodes;

set sc1 := {sn1};

set sc2 := {sn2};

set sc3 := {sn3};

set sc4 := {sn4};

\*vacuum corners and boundary nodes

param vn1 := 1;

param vn2 := nodes;

param vn3 := nodes*nhalf;

param vn4 := nodes*(nhalf-1)+1; #vacuum corners

set vb1 := vn1+1..vn2-1;

set vb2 := vn2+nodes..vn3-nodes by nodes;

set vb3 := {vn4+1..sn4-1} union {sn3+1..vn3-1};

set vb4 := vn1+nodes..vn4-nodes by nodes;

set vc1 := {vn1};

set vc2 := {vn2};

set vc3 := {vn3};

set vc4 := {vn4};

set allbd := vc1 union vb1 union vc2 union vb2 union vb4

union vc4 union vb3 union sc4 union sb3 union sc3 union vc3;

\* Define boundary segments

\*param b1 = nodes-1;

\*param Bs1{1..b1,1..2};

\*param Bs2{1..b1,1..2};
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\* Real 3 x 3 matrix elements for uniform elements: h*w=h^2

var K11 = 1/2 - k^2*h^2/12;

var K12 = -1/2 - k^2*h^2/24;

var K13 = -k^2*h^2/24;

var K22 = 1 - k^2*h^2/12;

var KM11 = pr/(2*(pr^2+pc^2)) - k^2*h^2/12;

var KM12 = -pr/(2*(pr^2+pc^2)) -k^2*h^2/24;

var KM22 = pr/(pr^2+pc^2) - k^2*h^2/12;

var Ar{1..npoin,1..npoin};

var Ac{1..npoin,1..npoin};

\* Imaginary (Silver) 3x3 matrix elements

var KMi11 = -pc/(2*(pr^2+pc^2));

var KMi22 = -pc/(pr^2+pc^2); \*center silver complex element

var KMi12 = pc/(2*(pr^2+pc^2));

\*\*\*\*\* Boundary conditions at z=0 and z=L

var ksi11 = k*h/3; \*for left and right boundary Condition nodes

var ksi12 = k*h/6;

\*\*\*\*\* B vector at z=0

var bsi1 = k*h/(c0*pi*4E-7); \*=2*k*h*H0/2 only left boundary

\*\*\*\* Build Ar Real part of Matrix

s.t. m1 {i in 1..npoin, j in 1..npoin}:

Ar[i,j] = if (i==j) then (if i in sil then 4*KM11+2*KM22 else

if i in {sc1} then 2*K11 + 2*K22+2*KM11 else

if i in {sc3} then 2*KM11 + K22 else

if i in {sc2} then 4*K11 + K22+ KM22 else
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if i in {sc4} then KM22 + 2*K11 else

if i in {sb1 union sb2 union sb4}

then 2*K11+K22+2*KM11+KM22 else

if i in {sb3} then 2*KM11+KM22 else

if i in {vc1 union vc3} then 2*K11 else

if i in {vc2 union vc4} then K22 else

if i in {vb4 union vb2 union vb1 union vb3}

then 2*K11 + K22

else 4*K11 + 2*K22)

else if (i== j-1 or i == j+1) then

(if (i in {vb2 union vc2 union vc3} and j>i) then 0

else if (i in {vb4 union vc1 union vc4} and j<i)

then 0 else if i in {vb1 union vb3 union vc1

union vc2 union vc3 union vc4}

then K12 else if ((i==sn4 and j<i) or (i==sn3 and i<j))

then K12

else if ((i in sb1) or (i == sn1 and j>i) or (i == sn2 and i>j))

then K12 + KM12 else if ((i in sb3) or (i == sn4 and j>i)

or (i == sn3 and i>j))

then KM12 else if ((i in sil)

or (i in sb4 and j>i) or (i in sb2 and i>j))

then 2*KM12

else 2*K12)

else if (i==j-nodes or i==j+nodes)

then (if i in {vb2 union vc2 union vc3 union vb4

union vc1 union vc4} then K12 else

if ((i in {sb2 union sb4}) or (i in {sc3 union sc4} and j<i)

or (i in {sc2 union sc1} and i<j)) then KM12 + K12 else
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if ((i in sil) or ((i in sb1) and (j>i)) or ((i in sb3) and (i>j)))

then 2*KM12 else 2*K12)

else if (i==j+nodes+1 or i==j-nodes-1)

then (if i in {sil union sb1 union sb3} then 2*K13

else if (i in {vb2 union vc2 union vc3} and j>i) then 0

else if (i in {vb4 union vc1 union vc4} and j< i) then 0 else 2*K13)

else 0;

\*\*\*\* Build Ac Complex part of Matrix

s.t. m2 {i in 1..npoin, j in 1..npoin}: Ac[i,j]= if (i==j) then

(if i in sil then 4*KMi11+2*KMi22 else

if i in {sc1 union sc3} then 2*KMi11 else

if i in {sc2 union sc4} then KMi22 else

if i in {sb1 union sb2 union sb3 union sb4}

then 2*KMi11+KMi22 else

if i in {vc1 union vc3 union vc2 union vc4}

then ksi11

else if i in {vb4 union vb2} then 2*ksi11

else 0)

else if (i== j-1 or i == j+1) then

(if ((i in {sb1 union sb3}) or (i in {sc1 union sc4} and j>i)

or (i in {sc2 union sc3} and i>j)) then KMi12 else

if ((i in sil) or (i in sb4 and j>i) or (i in sb2 and i>j))

then 2*KMi12 else 0)

else if (i==j-nodes or i==j+nodes)

then (if i in {vb2 union vc2 union vc3 union vb4 union vc1 union vc4}

then ksi12 else

if ((i in {sb2 union sb4})
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or (i in {sc3 union sc4} and j<i) or (i in {sc2 union sc1} and i<j))

then KMi12 else

if ((i in sil) or (i in sb1 and j>i) or (i in sb3 and i>j))

then 2*KMi12 else 0) else 0;

\* Right hand side

var bc {i in 1..npoin} = if (i in {vc1 union vc4})

then bsi1 else if i in vb4

then 2*bsi1 else 0; \*Complex part of right hand side

var aEx {i in sil} = ((Ur[i+1]-Ur[i-1])*pc

+(Ui[i-1]-Ui[i+1])*pr)*x/(4*h*pi*c0*eps0*(pr^2+pc^2));

var bEx {i in sil} = ((Ur[i+1]-Ur[i-1])*pr

+(Ui[i+1]-Ui[i-1])*pc)*x/(4*h*pi*c0*eps0*(pr^2+pc^2));

var aEz {i in sil} = ((Ui[i+nodes]-Ur[i-nodes])*pr

+(Ui[i-nodes]-Ui[i+nodes])*pc)*x/(4*h*pi*c0*eps0*(pr^2+pc^2));

var bEz {i in sil} = ((Ur[i-nodes]-Ur[i+nodes])*pr

+(Ui[i-nodes]-Ui[i+nodes])*pc)*x/(4*h*pi*c0*eps0*(pr^2+pc^2));

\*PDE constraints

subject to Pde1 {i in vc1}: Ar[i,i]*Ur[i]+ Ar[i,i+1]*Ur[i+1]

+Ar[i,i+nodes]*Ur[i+nodes]+Ar[i,i+nodes1]*Ur[i+nodes1]

-Ac[i,i]*Ui[i]-Ac[i,i+1]*Ui[i+1]-Ac[i,i+nodes]*Ui[i+nodes]

-Ac[i,i+nodes1]*Ui[i+nodes1]=0;

subject to Pde2 {i in vc3}: Ar[i,i]*Ur[i]+ Ar[i,i-1]*Ur[i-1]

+Ar[i,i-nodes]*Ur[i-nodes]+Ar[i,i-nodes-1]*Ur[i-nodes-1]

-Ac[i,i]*Ui[i] - Ac[i,i-1]*Ui[i-1] - Ac[i,i-nodes]*Ui[i-nodes]

- Ac[i,i-nodes-1]*Ui[i-nodes-1]= 0;

147



subject to Pde3 {i in vc2}: Ar[i,i]*Ur[i]+ Ar[i,i-1]*Ur[i-1]

+Ar[i,i+nodes]*Ur[i+nodes]-Ac[i,i]*Ui[i] - Ac[i,i-1]*Ui[i-1]

- Ac[i,i+nodes]*Ui[i+nodes]=0;

subject to Pde4 {i in vc4}: Ar[i,i]*Ur[i]+ Ar[i,i+1]*Ur[i+1]

+Ar[i,i-nodes]*Ur[i-nodes]-Ac[i,i]*Ui[i] - Ac[i,i+1]*Ui[i+1]

- Ac[i,i-nodes]*Ui[i-nodes]=0;

subject to Pde5 {i in vb1}: Ar[i,i]*Ur[i]

+ Ar[i,i+1]*Ur[i+1]+Ar[i,i-1]*Ur[i-1]

+Ar[i,i+nodes]*Ur[i+nodes]+Ar[i,i+nodes+1]*Ur[i+nodes+1]

-Ac[i,i]*Ui[i] - Ac[i,i+1]*Ui[i+1]-Ac[i,i-1]*Ui[i-1]

- Ac[i,i+nodes]*Ui[i+nodes] - Ac[i,i+nodes+1]*Ui[i+nodes+1]=0;

subject to Pde6 {i in vb3 union sb3 union sc3 union sc4}:

Ar[i,i]*Ur[i]+ Ar[i,i+1]*Ur[i+1]+Ar[i,i-1]*Ur[i-1]

+Ar[i,i-nodes]*Ur[i-nodes]+Ar[i,i-nodes-1]*Ur[i-nodes-1]

-Ac[i,i]*Ui[i] - Ac[i,i+1]*Ui[i+1]-Ac[i,i-1]*Ui[i-1]

- Ac[i,i-nodes]*Ui[i-nodes] - Ac[i,i-nodes-1]*Ui[i-nodes-1]=0;

subject to Pde7 {i in vb2}: Ar[i,i]*Ur[i]

+ Ar[i,i+nodes]*Ur[i+nodes]

+Ar[i,i-nodes]*Ur[i-nodes]+Ar[i,i-1]*Ur[i-1]

+ Ar[i,i-nodes-1]*Ur[i-nodes-1]-Ac[i,i]*Ui[i]

-Ac[i,i+nodes]*Ui[i+nodes]-Ac[i,i-nodes]*Ui[i-nodes]

- Ac[i,i-1]*Ui[i-1] - Ac[i,i-nodes-1]*Ui[i-nodes-1]=0;

subject to Pde8 {i in vb4}: Ar[i,i]*Ur[i]+ Ar[i,i+nodes]*Ur[i+nodes]

+Ar[i,i-nodes]*Ur[i-nodes]+Ar[i,i+1]*Ur[i+1]

+ Ar[i,i+nodes+1]*Ur[i+nodes+1]-Ac[i,i]*Ui[i]

-Ac[i,i+nodes]*Ui[i+nodes]-Ac[i,i-nodes]*Ui[i-nodes]

- Ac[i,i+1]*Ui[i+1] - Ac[i,i+nodes+1]*Ui[i+nodes+1]=0;

subject to Pde9 {i in {1..npoin} diff {allbd}}:
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Ar[i,i]*Ur[i]+ Ar[i,i+nodes]*Ur[i+nodes]

+Ar[i,i-nodes]*Ur[i-nodes]+Ar[i,i-1]*Ur[i-1]+Ar[i,i+1]*Ur[i+1]

+ Ar[i,i+nodes+1]*Ur[i+nodes+1]+Ar[i,i-nodes-1]*Ur[i-nodes-1]

-Ac[i,i]*Ui[i]-Ac[i,i+nodes]*Ui[i+nodes]-Ac[i,i-nodes]*Ui[i-nodes]

- Ac[i,i-1]*Ui[i-1]-Ac[i,i+1]*Ui[i+1] - Ac[i,i+nodes+1]*Ui[i+nodes+1]

- Ac[i,i-nodes-1]*Ui[i-nodes-1]=0; #matrix multiplication

subject to Pde10 {i in vc1}: Ac[i,i]*Ur[i]

+ Ac[i,i+1]*Ur[i+1] +Ac[i,i+nodes]*Ur[i+nodes]

+Ac[i,i+nodes+1]*Ur[i+nodes+1] +Ar[i,i]*Ui[i] + Ar[i,i+1]*Ui[i+1]

+ Ar[i,i+nodes]*Ui[i+nodes]+ Ar[i,i+nodes+1]*Ui[i+nodes+1]=bc[i];

subject to Pde11 {i in vc3}: Ac[i,i]*Ur[i]+ Ac[i,i-1]*Ur[i-1]

+Ac[i,i-nodes]*Ur[i-nodes]+Ac[i,i-nodes-1]*Ur[i-nodes-1] +Ar[i,i]*Ui[i]

+ Ar[i,i-1]*Ui[i-1] + Ar[i,i-nodes]*Ui[i-nodes]

+ Ar[i,i-nodes-1]*Ui[i-nodes-1]=bc[i];

subject to Pde12 {i in vc2}: Ac[i,i]*Ur[i]+ Ac[i,i-1]*Ur[i-1]

+Ac[i,i+nodes]*Ur[i+nodes]+Ar[i,i]*Ui[i] + Ar[i,i-1]*Ui[i-1]

+ Ar[i,i+nodes]*Ui[i+nodes]=bc[i];

subject to Pde13 {i in vc4}: Ac[i,i]*Ur[i]+ Ac[i,i+1]*Ur[i+1]

+Ac[i,i-nodes]*Ur[i-nodes]+Ar[i,i]*Ui[i] + Ar[i,i+1]*Ui[i+1]

+ Ar[i,i-nodes]*Ui[i-nodes]=bc[i];

subject to Pde14 {i in vb1}: Ac[i,i]*Ur[i]

+ Ac[i,i+1]*Ur[i+1]+Ac[i,i-1]*Ur[i-1]+Ac[i,i+nodes]*Ur[i+nodes]

+Ac[i,i+nodes+1]*Ur[i+nodes+1] +Ar[i,i]*Ui[i] +Ar[i,i+1]*Ui[i+1]

+Ar[i,i-1]*Ui[i-1] + Ar[i,i+nodes]*Ui[i+nodes]

+Ar[i,i+nodes+1]*Ui[i+nodes+1]=bc[i];

subject to Pde15 {i in vb3 union sb3 union sc3 union sc4}:

Ac[i,i]*Ur[i]+ Ac[i,i+1]*Ur[i+1]+Ac[i,i-1]*Ur[i-1]

+Ac[i,i-nodes]*Ur[i-nodes]+Ac[i,i-nodes-1]*Ur[i-nodes-1]
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+Ar[i,i]*Ui[i] +Ar[i,i+1]*Ui[i+1]+Ar[i,i-1]*Ui[i-1]

+Ar[i,i-nodes]*Ui[i-nodes] +Ar[i,i-nodes-1]*Ui[i-nodes-1]=bc[i];

subject to Pde16 {i in vb2}: Ac[i,i]*Ur[i]+ Ac[i,i+nodes]*Ur[i+nodes]

+Ac[i,i-nodes]*Ur[i-nodes]+Ac[i,i-1]*Ur[i-1]

+ Ac[i,i-nodes-1]*Ur[i-nodes-1]+Ar[i,i]*Ui[i]+Ar[i,i+nodes]*Ui[i+nodes]

+Ar[i,i-nodes]*Ui[i-nodes] + Ar[i,i-1]*Ui[i-1]

+ Ar[i,i-nodes-1]*Ui[i-nodes-1]=bc[i];

subject to Pde17 {i in vb4}: Ac[i,i]*Ur[i]+ Ac[i,i+nodes]*Ur[i+nodes]

+Ac[i,i-nodes]*Ur[i-nodes]+Ac[i,i+1]*Ur[i+1]

+Ac[i,i+nodes+1]*Ur[i+nodes+1]+Ar[i,i]*Ui[i]

+Ar[i,i+nodes]*Ui[i+nodes]+Ar[i,i-nodes]*Ui[i-nodes] + Ar[i,i+1]*Ui[i+1]

+ Ar[i,i+nodes+1]*Ui[i+nodes+1]=bc[i];

subject to Pde18 {i in {1..npoin} diff {allbd}}: Ac[i,i]*Ur[i]

+ Ac[i,i+nodes]*Ur[i+nodes]+Ac[i,i-nodes]*Ur[i-nodes]

+Ac[i,i-1]*Ur[i-1]+Ac[i,i+1]*Ur[i+1]

+ Ac[i,i+nodes+1]*Ur[i+nodes+1]+Ac[i,i-nodes-1]*Ur[i-nodes-1]

+Ar[i,i]*Ui[i]+Ar[i,i+nodes]*Ui[i+nodes]+Ar[i,i-nodes]*Ui[i-nodes]

+ Ar[i,i-1]*Ui[i-1]+Ar[i,i+1]*Ui[i+1] + Ar[i,i+nodes+1]*Ui[i+nodes+1]

+ Ar[i,i-nodes-1]*Ui[i-nodes-1]=bc[i]; \ #matrix multiplication

\* THE CUBIC SPLINE define the permittivity for the wavelength variable

s.t. permr: pr = if x >= 200E-9 and x < 210E-9

then sum{i in 1..4} silr[1,i]*x^(4-i) else

if x >= 210E-9 and x < 220E-9 then sum{i in 1..4} silr[2,i]*x^(4-i) else

if x >= 220E-9 and x < 230E-9 then sum{i in 1..4} silr[3,i]*x^(4-i) else

if x >= 230E-9 and x < 240E-9 then sum{i in 1..4} silr[4,i]*x^(4-i) else

if x >= 240E-9 and x < 250E-9 then sum{i in 1..4} silr[5,i]*x^(4-i) else

if x >= 250E-9 and x < 260E-9 then sum{i in 1..4} silr[6,i]*x^(4-i) else
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if x >= 260E-9 and x < 270E-9 then sum{i in 1..4} silr[7,i]*x^(4-i) else

if x >= 270E-9 and x < 280E-9 then sum{i in 1..4} silr[8,i]*x^(4-i) else

if x >= 280E-9 and x < 290E-9 then sum{i in 1..4} silr[9,i]*x^(4-i) else

if x >= 290E-9 and x < 300E-9 then sum{i in 1..4} silr[10,i]*x^(4-i) else

if x >= 300E-9 and x < 310E-9 then sum{i in 1..4} silr[11,i]*x^(4-i) else

if x >= 310E-9 and x < 320E-9 then sum{i in 1..4} silr[12,i]*x^(4-i) else

if x >= 320E-9 and x < 330E-9 then sum{i in 1..4} silr[13,i]*x^(4-i) else

if x >= 330E-9 and x < 340E-9 then sum{i in 1..4} silr[14,i]*x^(4-i) else

if x >= 340E-9 and x < 350E-9 then sum{i in 1..4} silr[15,i]*x^(4-i) else

if x >= 350E-9 and x < 360E-9 then sum{i in 1..4} silr[16,i]*x^(4-i) else

if x >= 360E-9 and x < 370E-9 then sum{i in 1..4} silr[17,i]*x^(4-i) else

if x >= 370E-9 and x < 380E-9 then sum{i in 1..4} silr[18,i]*x^(4-i) else

if x >= 380E-9 and x < 390E-9 then sum{i in 1..4} silr[19,i]*x^(4-i) else

if x >= 390E-9 and x < 400E-9 then sum{i in 1..4} silr[20,i]*x^(4-i) else

sum{i in 1..4} silr[21,i]*x^(4-i);

s.t. permc: pc = if x >= 200E-9 and x < 210E-9

then sum{i in 1..4} silc[1,i]*x^(4-i) else

if x >= 210E-9 and x < 220E-9 then sum{i in 1..4} silc[2,i]*x^(4-i) else

if x >= 220E-9 and x < 230E-9 then sum{i in 1..4} silc[3,i]*x^(4-i) else

if x >= 230E-9 and x < 240E-9 then sum{i in 1..4} silc[4,i]*x^(4-i) else

if x >= 240E-9 and x < 250E-9 then sum{i in 1..4} silc[5,i]*x^(4-i) else

if x >= 250E-9 and x < 260E-9 then sum{i in 1..4} silc[6,i]*x^(4-i) else

if x >= 260E-9 and x < 270E-9 then sum{i in 1..4} silc[7,i]*x^(4-i) else

if x >= 270E-9 and x < 280E-9 then sum{i in 1..4} silc[8,i]*x^(4-i) else

if x >= 280E-9 and x < 290E-9 then sum{i in 1..4} silc[9,i]*x^(4-i) else

if x >= 290E-9 and x < 300E-9 then sum{i in 1..4} silc[10,i]*x^(4-i) else

if x >= 300E-9 and x < 310E-9 then sum{i in 1..4} silc[11,i]*x^(4-i) else
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if x >= 310E-9 and x < 320E-9 then sum{i in 1..4} silc[12,i]*x^(4-i) else

if x >= 320E-9 and x < 330E-9 then sum{i in 1..4} silc[13,i]*x^(4-i) else

if x >= 330E-9 and x < 340E-9 then sum{i in 1..4} silc[14,i]*x^(4-i) else

if x >= 340E-9 and x < 350E-9 then sum{i in 1..4} silc[15,i]*x^(4-i) else

if x >= 350E-9 and x < 360E-9 then sum{i in 1..4} silc[16,i]*x^(4-i) else

if x >= 360E-9 and x < 370E-9 then sum{i in 1..4} silc[17,i]*x^(4-i) else

if x >= 370E-9 and x < 380E-9 then sum{i in 1..4} silc[18,i]*x^(4-i) else

if x >= 380E-9 and x < 390E-9 then sum{i in 1..4} silc[19,i]*x^(4-i) else

if x >= 390E-9 and x < 400E-9 then sum{i in 1..4} silc[20,i]*x^(4-i) else

sum{i in 1..4} silc[21,i]*x^(4-i);

maximize obj: sum {i1 in sil}\\

(aEx[i1] + bEx[i1]+aEz[i1]+bEz[i1])*-pc*scl*14767.1957;

\* Cubic spline data has been truncated

data;

param silr: 1 2 3 4 :=

1 -4.195872e-006 1.797891e-004 5.344454e-003 -3.877652e-001

2 -4.195872e-006 5.391292e-005 7.681474e-003 -3.205376e-001

3 -8.453746e-006 -7.196324e-005 7.500971e-003 -2.425274e-001

4 1.669650e-005 -3.255756e-004 3.525582e-003 -1.831678e-001

5 7.493353e-006 1.753193e-004 2.023019e-003 -1.637730e-001

6 1.031412e-006 4.001199e-004 7.777411e-003 -1.185175e-001

7 4.976405e-006 4.310622e-004 1.608923e-002 2.999579e-004

8 -1.357134e-005 5.803544e-004 2.620340e-002 2.092749e-001

9 3.257923e-005 1.732143e-004 3.373908e-002 5.157730e-001
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10 -1.179722e-004 1.150591e-003 4.697714e-002 9.030645e-001

;

param silc: 1 2 3 4 :=

1 -5.336101e-006 6.467304e-004 -3.397986e-002 -2.654169e+000

2 -5.336101e-006 4.866474e-004 -2.264608e-002 -2.934631e+000

3 -1.636969e-005 3.265643e-004 -1.451396e-002 -3.117763e+000

4 5.766864e-006 -1.645265e-004 -1.289359e-002 -3.246616e+000

5 2.930984e-006 8.479475e-006 -1.445406e-002 -3.386238e+000

6 2.326190e-006 9.640899e-005 -1.340517e-002 -3.526999e+000

7 3.152028e-006 1.661947e-004 -1.077913e-002 -3.649084e+000

8 3.166349e-005 2.607555e-004 -6.509631e-003 -3.737104e+000

9 1.607032e-005 1.210660e-003 8.204526e-003 -3.744461e+000

10 8.439983e-005 1.692770e-003 3.723883e-002 -3.525279e+000

solve;
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Appendix B:

Some details on COMSOL Multiphysics application modes used in this dissertation work

follow in the spirit of helping others to build or modify optimal design codes using tools

from MATLAB and COMSOL. In this work three application modes where used in the mul-

tiphysics capabilities: the electromagnetism application or TM, the parametrized geometry

or PG and the sensitivity analysis (SA) using forward sensitivity or FW. The RF-module

transverse magnetic (TM) application was defined as in B.1: In order to compute the gra-

Table B.1: In Plane TM mode properties

property value

Default element type: Lagrange-Linear
Analysis Type harmonic propagation

Field type TM waves
specify wave using free space wavelength

Frame pg
Weak Constraint OFF
Constraint type ideal

dient and define the plane wave the following constants are defined as seen in the table B.2.

The functionals Jr, Ji are defined as <integration coupling variables¿boundary variables>

defined by the derived formulas for the Gaussian beam and plane wave experiments. The

<boundary expression> become part of the <boundary integration expressions>. COM-

SOL then integrates to find the values. The formulas for the objective function P and

normalized PN are defined as a <Global Expression>.
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Table B.2: In Plane TM waves Constants
Plane Wave parameter value description

λ 800 nm wavelength
k0 2π/λ propagation constant

eps2 -27.913031524989577 permittivity of silver
- 1.507030911560426*j at 800 nm

HH 2.654418729438e-3 [A/m] magnetic field
amplitude

eps0 8.854187817e-12 [F/m] vacuum permittivity
θ π/4 propagation angle
c0 2.99792458e8 [m/sec] speed of light
ω 2 ∗ π ∗ c0/800e-9 frequency angle
a0 HH*0.25/eps0 gradient constant
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[28] W. Gropp and J. Moré, “Optimization environments and the neos server,” Theory and
Optimization, pp. 167–182, 1997.

158



[29] E. Dolan, “The neos server 4.0 administrative guide,” Argonne National Laboratory,
Tech. Rep. ANL/MCS-TM-250.
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