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ABSTRACT 

 

 
HUMAN TIME AWARENESS AND FEEDBACK-DRIVEN IMPROVEMENTS OF 

TIME REPRODUCTION 
 

Farah Nikhath Bader, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Martin Wiener 

 

 

Time perception is critical for cognitive and behavioral functions ranging from 

speech to motor control. Learning to time durations can cause errors; therefore, 

recognizing and correcting the temporal errors is essential for individual timing self- 

awareness, which humans innately possess. Conflicting reports over whether humans can 

discern the direction of the timing error (earliness/lateness) can be addressed by 

introducing feedback in behavioral tasks. To better comprehend the extent of human 

timing self-awareness and how feedback modulates the process of learning to time, three 

experiments were conducted utilizing the computerized visual temporal reproduction 

task. Participants viewed a blue square for a set amount of time selected from a mixed 

set of durations ranging from 1.5-6 seconds and then re-created the square’s on-screen 

time using a keypress and received adaptive non-directional feedback for their 

performance. Each trial could be repeated following feedback, allowing a “re-do” to 

learn from the successes or errors in the first trial. In the first experiment, I tested two 



 

groups of participants on versions where non-directional feedback was provided after 

every response, or not provided at all. Temporal estimates were more accurate and 

precise with post-trial non-directional feedback, revealing a metacognitive ability and 

tendency to adjust temporal responses. 

To examine the neural underpinnings of these previous behavioral findings, a 

fMRI-EEG study was performed with the same paradigm. Blood oxygen level dependent 

(BOLD) activation in the supplementary motor area (SMA), an area highly implicated in 

time perception and sharpening of temporal estimates, was observed as the durations was 

encoded and reproduced. Notably, significant EEG-informed fMRI activity in the SMA 

showed that the contingent negative variation signal covaried with the BOLD signal 

during the encoding phase. Additional BOLD activations were witnessed in areas 

associated with the brain’s performance monitoring system and the default mode network 

along with more timing-related areas parietally, frontally, and subcortically. 

The third experiment profiled an environment of temporal uncertainty in which 

every trial was not always followed by a redo opportunity. Two groups of participants 

were tested in settings where the frequencies of single (initial only) and double (initial 

and redo) trials varied. Group members receiving a low frequency of redo trials (80% 

single, 20% double) exhibited lower absolute temporal error and were more precise in 

their temporal estimates than participants allotted to the high frequency group. This 

demonstrated that both groups learned the underlying trial structure of the settings, 

adapted, and adjusted their temporal responses accordingly. 



 

Holistically, these studies offered deeper insights into timing self-awareness, the 

mechanism for improving time estimates through a redo opportunity and varied feedback, 

the region-specific neural responses to temporal judgements, and how we learn to time in 

uncertain environments. 



1  

 

 

 

 

 

INTRODUCTION 

 

 
Imagine that it is your turn to bat on a lovely Spring day. The pitcher throws the 

baseball, and it speeds towards you. Bat poised in hand, you fixate on the ball and swing 

with ferocity, but barely miss the ball. You groan at your hapless timing, but you know 

that you have one last chance to learn from your past folly. Muscles taut, you concentrate 

and prepare for the pitch again. Miraculously, in this instance, your timing and 

movement are synchronized with the ball, and you hear the thwack of the bat, signaling 

success. Briefly, you smile, elated by the unexpected reward of not striking out and run to 

first base as fast as your legs can carry you. 

 
 

Critical to the success of the batter in this example is her finely tuned sense of 

time perception. Her ability to evaluate her own timing behavior and update her motor 

movements to hit the ball in the second try involves perceiving and estimating time 

accurately. The ability is needed for communication (language), motor action and control, 

survival, and even consciousness itself (Meck, 2005; Grondin, 2010). Subjective time 

perception is impacted in degrees by emotion, developmental stages, age, gender, clinical 

disorders/conditions and body temperature (Matthews & Meck, 2016). Attention is a key 

determinant that highly influences the perception of time; targeting the attentional 

resources towards processing the interval duration can dilate the temporal judgements 

and essentially lengthen subjective time (Matthews & Meck, 2016). Furthermore, the 

past must be integrated with the present in this scenario as the batter’s previous 
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experience with timing the event and when to swing draws forth the past memories of 

misses and hits, culminating in the final, successful play (Matthews & Meck, 2016). 

 
 

Research Questions 
 

Past behavioral and electrophysiological evidence show that humans are 

cognitively aware of timing errors; however, questions remain concerning the extent of 

this time awareness (Akdogan & Balci, 2017; Kononowicz, 2019; Riemer et al., 2019). 

Are humans aware of the direction of their timing errors (earliness or lateness) or is this 

cognizance limited to only error magnitude? Furthermore, how does the process of 

learning to time impact this awareness? This dissertation addresses these questions by 

incorporating feedback into a classical task of time measurement, the visual time 

reproduction. A set of three studies examine these points of research inquiry: the first 

compares non-directional feedback with absence of feedback; the second is a 

simultaneous fMRI-EEG study which investigates the neural regions involved in time 

awareness and learning time, and the third study probes the impact of temporal 

uncertainty on our level of time awareness. 

 
 

Models of Time Perception 
 

How does this very carefully executed process of timing operate in the brain? Any 

exploration of the theories of time perception includes the widely supported model: scalar 

expectancy theory (SET) (Gibbon et al., 1984; Treisman, 2013; Wearden, 2004). This 

theory posits an internal clock in the brain that measures interval durations, consisting of 



3  

a pacemaker that emits pulses at a specified rate, and an accumulator that sums and 

integrates the pulses from the pacemaker (Gibbon et al., 1984; Treisman, 2013; Wearden, 

2004). The closing of a switch indicates the start of the interval duration and is highly 

influenced by attention, which modulates the entry of pulses and the switch operation. 

The clock readout of the duration involves comparing the present reading to previously 

encoded counts from memory and then making a decision about the duration. When the 

switch opens again, the duration measurement is complete (Gibbon et al., 1984; 

Treisman, 2013; Wearden, 2004). 

How might SET be implemented in the brain? A leading neurobiological theory 

is the Striatal Beat Frequency model (Matell & Meck, 2000, 2004). Here, the “clock” is 

comprised of a cortico-striatal-thalamic network in which cortical neurons oscillating at 

specific frequencies are detected by the striatum, during a timed event (Matell & Meck, 

2000;2004). When the oscillatory patterns are coincident between the cortico-striatal 

network, medium striatal neurons become active and the synaptic inputs from the cortex 

and thalamus are integrated and evaluated to code a particular duration (Matell & Meck, 

2000;2004). Any subsequent oscillatory phase change is reset by dopaminergic input 

from the substantia nigra pars compacta, marking a new timing event (Matell & Meck, 

2000; 2004). 

Another theory that supplements SET and is more applicable to how we learn to 

time is the Behavioral Theory of Timing (BeT). According to this model, the pulses are 

transitions between different behaviors (Killeen & Fetterman, 1988) and are modeled as 

Poisson processes with a rate constant that is proportional to the rate of reinforcement, 
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which in turn controls the pacemaker and the rate of learning (Killeen & Fetterman, 

1988; Bizo & White, 1994). 

Another perspective on how the brain’s internal timekeeping mechanisms may 

function relies on Bayesian principles to explain it (Freestone & Church, 2016). Here, 

the Bayesian prior is derived from information about a duration from experience with 

past intervals. The current readout of the duration is the likelihood estimate. The 

posterior estimate, which is the probability that the estimated time will match the actual 

elapsed time, is determined by multiplying the prior and likelihood together. This is how 

the brain learns to time using Bayesian updating and eventually the posterior estimate 

becomes the prior for the next trial. The maximum of the posterior aligns with traditional 

learning curves and is inversely proportional to the measurement error of the temporal 

estimate and the coefficient of variation (CV). Lower CVs signal higher rates of learning 

(Freestone & Church, 2016). 

An alternate viewpoint is that timing is an intrinsic feature of neuronal networks 

and that time perception does not require centralized components (Mauk & Buonomano, 

2004). In essence, there are multiple “population clocks” that modify their firing patterns 

and fire in sync either in a sequential or complex pattern to “time” an event (Buonomano 

& Laje, 2010). These state-dependent networks usually involve an active state of 

currently firing neurons in a recurrent network and a hidden state of neurons whose 

activity is either facilitated or inhibited (Goel & Buonomano, 2014). 

Most relevant to the present study are time-adaptive drift diffusion models (Simen 

et al., 2011). Traditionally, drift diffusion models are used to determine how real-time 
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decisions are made and involve modeling the rate of accumulating evidence in a noisy 

environment until a certain threshold is reached and a response is generated (Ratcliff, 

1978; Ratcliff & McKoon, 2008). When applied to interval timing, the modified drift 

diffusion model transforms into the Time-Adaptive Opponent Process Drift Diffusion 

model (ToP DDM). This model accumulates evidence related to the elapsed time using 

adjustable drift rates and a fixed interval to encode the duration (Simen et al., 2011). 

These drift diffusion parameters can be adapted fairly quickly, and the interval duration 

can be learned rapidly in one trial and with only one exposure to the duration (Simen et 

al., 2011). Furthermore, this model can handle frequent and rapid transitions of interval 

durations due to quick updates of the temporal representations of the experienced 

duration (Simen et al., 2011). 

Performance on the beat-the-clock procedure - a task where a key must be pressed 

prior to an offset of a green square to obtain a scaled reward (higher reward closer to the 

target) - provides evidence of how rapidly humans learn to time interval durations (Simen 

& Balci, 2011). Animal work in support of this model includes studies showing the 

patterns of neuronal firing activity in the monkey parietal cortex (Leon & Shadlen, 2003), 

the pre-supplementary area (pre-SMA) (Mita et al., 2009) and thalamic neurons in the rat 

(Komura et al., 2001) are consistent with ToPDDM. 

There are many information processing models that delineate how time perception 

proceeds in the brain with each model inching closer to addressing how interval durations 

are learned. Examining the underlying processes linked to these models, whether it be 

SET, striatal beat frequency, BeT, state-dependent networks, Bayesian mechanisms, or 
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ToP DDM leads to an understanding of normal timing behavior. Therefore, when timing 

errors occur, one can infer what part of the process went awry. Comparably to the role of 

timing theories in describing how and where timing errors may arise, my paradigm is also 

specifically designed to capture the timing errors and to shed light into the level of 

awareness of timing ability. 

 
 

Time Reproduction Task 
 

Although time perception can be studied in numerous ways, I selected to focus on 

one: the visual temporal reproduction task. In the temporal reproduction task, 

participants are exposed to visual stimuli that is presented on a computer screen for an 

interval duration selected from a random mix of durations during the estimation phase. 

Notably, the duration is not verbally defined beforehand at the start of a trial. 

Participants are subsequently asked to reproduce the elapsed time of this same stimuli 

with a stopwatch-like motor response during the reproduction phase (Wiener, 2014). 

The motor response can be performed in a myriad of ways from holding down a key for 

the entirety of the requested interval, pressing a key once to start the interval and another 

to stop it, or pressing the key to terminate the duration (Mioni, Stablum, McClintock & 

Grondin, 2014). My study used the last method. 

I chose this task because past studies of error monitoring have focused on two- 

alternative forced choice (2AFC) task for decision-making, memory, and perceptual 

experiments which are limiting because the 2AFC paradigm only permits dichotomous 

or binary responses (Akdogan & Balci, 2017). Even studies investigating time awareness 
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have followed this pattern and have used tasks where participants are asked to choose 

“short” or “long” to describe experienced durations (Droit-Volet & Izaute, 2009). The 

time reproduction task is different in that it allows an investigation of error metrics that 

are continuous, parametric, and may be graded, offering insight into directionality of the 

error in the form of under-reproduction (earliness) or over-reproduction (lateness) 

(Akdogan & Balci, 2017). Essentially, the time reproduction task provides a window into 

whether humans are aware of timing error direction rather than focusing only on whether 

the temporal responses are correct or not (Akdogan & Balci, 2017). 

Departing from describing my behavioral paradigm, I will now delve deeper into 

the brain regions that are involved in time perception. 

 
 

Neuroanatomy of Time Perception 
 

Traditionally, the core areas that have been associated with timing networks 

include the supplementary motor area (SMA), frontal and parietal cortices, and the basal 

ganglia, and the hippocampus. More recently, the insula and other regions associated 

with the default mode network have risen to the forefront. 

 
 

Supplementary Motor Area and other Traditional Timing Regions 

 

An early quantitative meta-analysis that evaluated the probability of activation by 

Wiener and colleagues (2010) noted that SMA and the inferior frontal gyrus, displayed 

activation in all types of timing tasks and showed concordance in four separate meta- 

analysis of motor, perceptual, subsecond (<1 second) and supra-second (>1 second) tasks 
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(Wiener et al., 2010). This led to a key finding – the brain area that is recruited depends 

on the task context and the timescale of interval duration. Sub-second tasks were more 

likely to involve higher activations in the cerebellum and basal ganglia structures whereas 

supra-second tasks involved the pre-frontal cortex and SMA. Relatedly, motor-heavy 

tasks activated the SMA proper and perceptual tasks evoked more activity in the pre- 

SMA (Wiener et al., 2011; Schwartze et al., 2012). 

The SMA, in particular, has been a core component of dissociable timing 

networks and has appeared repeatedly in other more recent meta-analyses (Nani et al., 

2019; Cona et al., 2021). Additionally, the basal ganglia, insula, and intraparietal sulcus 

are all associated with internally cued timing (Teghill et al., 2019). Aligned with these 

findings, yet another meta-analysis using data from 114 experiments showed time-related 

activation in the globus pallidus, putamen, bilateral thalamus, anterior insula, and the 

intraparietal sulcus, inferior frontal gyrus, pre-SMA and SMA, pre-central gyrus, right 

superior temporal gyrus, and middle gyrus (Cona et al., 2021). 

 

Frontal Cortex 

 

For longer durations and when there is involvement of memory, attention, or 

decision-making in storing the durations, the frontal cortex is recruited (Mioni et al., 

2020). Studies have shown that time-based prospective memory, verbal estimation of 

time, and time production are dependent on frontal cortex function (McFarland, 2009). 

The prefrontal cortex (pFC) in particular has taken center stage in time discrimination 

tasks (Lewis & Miall, 2003; Onoe et al., 2001; Rao et al., 2001) and has been known to 

encode visual interval durations following saccades in primates (Genovesio et al., 2009). 
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Patient with right pFC lesions display time perception deficits (Koch et al., 2002;2003). 

Furthermore, brain stimulation studies with transcranial magnetic stimulation (TMS) 

revealed that stimulating the right dorsolateral prefrontal cortex in a time reproduction 

task led participants to under-reproduce the interval durations during the reproduction 

phase (Jones et al., 2004), again reiterating the importance of the frontal cortex. Animal 

studies provided more evidence of frontal cortex involvement in time perception; 

primates who measured interval durations in a ready-set-go task (Meirhaeghe et al., 2021) 

had frontal cortex activity that reflected the mean interval of the distribution, revealing a 

temporal scaling feature predictive of the encoded durations (Meirhaeghe et al., 2021). 

 
 

Parietal Cortex 

 

Also invoked in making temporal judgements is the parietal cortex, stemming 

from its role in multimodal and multisensory processing. The parietal cortex is associated 

with the common magnitude system in the brain that is responsible for perception of 

other magnitudes – space, time, size, number or velocity (Beudel et al., 2009; Bueti & 

Walsh, 2009; Walsh, 2003). In particular, the posterior parietal cortex (PPC) plays a 

pivotal role in the interaction between spatial and temporal dimensions (Beudel et al., 

2009; Bueti & Walsh, 2009; Walsh, 2003). If TMS application inhibits the right PPC in 

healthy controls performing a variant of the time reproduction task that instructs subjects 

to indicate when half of the duration they were initially exposed to had elapsed, there is a 

directional bias and an under-reproduction of the midpoint of the interval (Olivera et al., 

2009). In patients with PPC inactivation due to right hemisphere brain damage and 



10  

spatial neglect who did not receive TMS, this same directional bias in this task persisted 

(Olivera et al., 2009). Further evidence for the PPC’s role in temporal processing and 

hemispheric bias stems from another study where healthy participants performed the time 

reproduction task with cathodal transcranial brain stimulation over the parietal cortex 

(Vicario, Martino & Koch, 2013). Participants stimulated over the right parietal cortex 

experienced changes in accuracy and overestimated the duration whereas left parietal 

cortex stimulation elicited lower variability in the time reproductions (Vicario, Martino, 

& Koch, 2013). 

 
 

Basal Ganglia 

 

The basal ganglia (BG) are an important network of subcortical nuclei recruited 

in timing studies (Allman, 2012; Fontes, et al., 2016). The basal ganglia’s role in motor 

control, procedural memory, reinforcement learning, and cognition is well-suited to a role 

in learning interval durations (Allman, 2012; Fontes et al., 2016). The striatum’s role as a 

coincident detector in the beat frequency model further illustrates the importance of the 

basal ganglia in timing (Mattell & Meck, 2003). Patient studies of Parkinson’s Disease 

patients reveal that the BG is needed for time production and reproduction in the 

millisecond to seconds range (Jones et al., 2008). Even in healthy participants, changes in 

dopaminergic input to the putamen due to dopamine precursor depletion has led to time 

impairments (Coull et al., 2012). These various studies demonstrated that the basal 

ganglia encoded the duration of any motor action, essentially providing a temporal 

representation of the interval duration (Rammsayer, 1997; Fontes et al., 2016). 
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Hippocampus 

 

Another subcortical structure critical to time perception is the hippocampus by 

virtue of its association with learning and memory. The hippocampus’ ability to chart 

moments in time in a temporally organized fashion is mediated by time cells, or neurons 

in the human hippocampus and the entorhinal cortex that fire in order to quantitatively 

encode interval durations (Eichenbaum, 2017). Time cells rescaled rapidly when 

durations change (Eichenbaum, 2017; Petter et al., 2011), were frequently recruited 

during memory retrieval and encoding (Umbach et al., 2020), and are implicated in 

temporal ordering, organization, and sequencing of episodic memory. Location-wise, 

these neurons are found in proximity to neurons that are involved in mapping the spatial 

context (Eichenbaum, 2017). 

 
 

Insular Cortex 

 

Less widely studied but equally as important is the insular cortex in making 

temporal judgements. Primarily involved in assessing the physiological state to evaluate 

interoceptive awareness, the insula is a barometer of internal bodily state, and this region 

has been suggested to use metrics such as the heartrate to determine a sense of time 

(Vicario et al., 2010; Craig et al., 2009). Notably, the insula can communicate with the 

basal ganglia, supplementing information on temporal encoding (Rao et al., 2001; Craig, 

2009). There is a directional gradient in insular activation with longer (supra-second) 

time reproduction tasks; higher neural activity is observed in the posterior area during the 
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encoding phase and greater anterior insula activation is seen during reproduction 

(Wittman et al., 2010). Additionally, there is a ramping up of activity, suggestive of an 

accumulator, reinforcing the insula’s role in demarcating the passage of time (Wittman et 

al., 2010). In auditory temporal discrimination tasks, where a decision must be made 

whether a tone is longer or shorter than a standard, there is also insular and operculum 

activation (Tregellas et al., 2006; Craig et al., 2009). 

 
 

Default Mode Network 

 

Another sparsely studied network in relation to time perception is the default 

mode network, which steps online during the brain’s resting state when there is no 

stimulus or task to engage the brain (Raichle et al., 2001). Interactions between time- 

related and default-mode related activations are more pronounced when judging 

suprasecond intervals over two seconds (Morillion et al., 2009) and could relate to 

mentalizing interval durations. Specifically, the posterior cingulate, a major node in the 

default mode network, has been implicated in episodic retrieval and functions as a bridge 

between memory and time perception (Ustin et al., 2017). Notably, the posterior 

cingulate also connects the lateralized frontoparietal network and subcortical structures 

such as the anterior insular cortex and the BG, again neural regions connected to timing 

(Ustin et al., 2017). Another structure, the precuneus, shows heightened connectivity to 

the default mode network during resting state cognition, also revealing its importance as a 

default mode structure and in self- awareness (Utevsky et al., 2014). Stimulation of the 

precuneus using TMS disrupts episodic memory retrieval (Ye et al., 2018). Lowered 
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BOLD precuneus activity is seen in Parkinson’s Disease patients who are both ON and 

OFF their medications in the encoding phase and the OFF-medicated PD patients in the 

reproduction phase of a time reproduction task (Dusek et al., 2012). Taken together, these 

studies on the precuneus demonstrate a linkage to time disorientation. 

The expansive range of brain areas and neural networks involved in time 

perception reinforces the notion that timing an interval duration is a complex process. A 

deeper inspection of the function of each brain structures linked with time perception 

reveals the multiple cognitive operations needed, from attention, memory, decision- 

making to self-awareness for formulating an accurate estimate of time. These cognitive 

operations are also critical for developing timing awareness and the learning of interval 

durations; therefore, familiarity with the neuroanatomy informs our knowledge. 
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THE BRAIN’S PERFORMANCE MONITORING SYSTEM 

 

 
When learning a new task (e.g., temporal processing of interval duration) or 

executing a motor program, environmental conditions can change quickly, and humans 

must adapt. A neural evaluation system whose responsibility is to detect errors, register 

conflict, respond and adapt to shifting task conditions, all without external feedback is 

critical (Ulpsberger et al., 2014). Generally, the brain’s performance monitoring system 

fulfills this role, and not only must this brain network assess what caused any errors but 

also send a cognitive control signal to represent and resolve the error (Ulpsberger et al., 

2014). 

 
 

Behavioral Adjustments 
 

Adaptive Mechanisms 

 

Compensatory mechanisms to correct the error include an increased reaction time 

leading to post-error slowing or an increase or decrease in post-error accuracy (Laming, 

1979; Rabbit, 1979). Whether these mechanisms are beneficial (Botvinick et al., 2001; 

King et al., 2010; Maier et al., 2011) and engender a slower, more cautious strategy that 

enhances performance or maladaptive (Buzzell et al., 2017; Jentzsch & Dudschig, 2009; 

Notebaert et al., 2009; Ullsperger & Danielmeier; Van der Borght et al., 2016) and 

operate as a distraction to worsen performance is debatable (Beatty et al., 2018) and 

beyond the scope of the current study. 
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Neural Biomarkers of Performance Monitoring 

 

Performance monitoring signals can be traced by neural biomarkers. An oft- 

referenced electrophysiological marker is the event-related negativity, a frontocentral, 

response-locked event related potential (ERP) generated by the medial frontal cortex 

when there is mismatch between the actual and target outcome or response conflict 

(Falkenstein et al., 1991; Gehring et al., 1993). In the time-frequency domain, frontal 

midline theta oscillations can also reflect an error response which eventually leads to 

cognitive control and behavioral adjustments (Ullsperger et al., 2014; Cavanagh & Frank, 

2014). 

 
 

Neuroanatomy of the Performance Monitoring System 
 

The neural circuitry involved in the tracking of errors includes the medial, ventral 

and orbitofrontal prefrontal cortex, the anterior cingulate cortex (ACC) and the lateral 

pre-frontal cortex (Ridderinkhof et al., 2004; Ulspsburger et al., 2014). The posterior 

medial pFC determined the value of the on-going behavioral strategy and updated the 

value of each action. The ventral pFC compares the values between multiple different 

actions or strategies and the hierarchically organized lateral pFC exerts over top-down 

attentional control. The basal ganglia (caudate, putamen and thalamus) select an 

appropriate response, facilitates or inhibits actions, and engages in reinforcement 

learning. The orbitofrontal cortex monitors the outcomes and assigns credits (Ulspsburger 

et al., 2014). The ACC is involved in error monitoring and explore-exploit paradigm 

which entails evaluating the need for strategy switching and committing to the strategy 
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switch when attempting to conduct a goal-directed action (Tervo et al., 2021). As 

expected, the neurochemistry underlying performance monitoring relies on dopamine for 

its role in reward prediction error (Joacham & Ullsperger, 2009). Other transmitters 

(serotonin, norepinephrine, and GABA) have also been linked to performance monitoring 

(Jocham & Ullsperger, 2009). 

Neurons with the medial frontal cortex (dorsal anterior cingulate cortex and pre- 

supplementary area) encode domain-specific and domain-general performance 

monitoring signals associated with conflict (selecting between two or more options), 

conflict probability, and errors. Both neuron types are mixed together in the medial 

frontal cortex (Fu et al., 2022). Single neuron recordings in epilepsy patients as they 

performed a Stroop task, and a multi-source interference task provided a means to probe 

the geometry of the medial frontal cortical neurons (Fu et al., 2022). At the population 

level, domain-general neurons could be readout with 90% accuracy in single trials, but 

domain specific neurons could still code for different conflict conditions (Fu et al., 2022). 

In a recent study of hierarchical reasoning, neurons in the primate dorsomedial 

cortex (including the preSMA) and the anterior cingulate cortex were recorded to assess 

whether unfavorable task outcomes stemmed from either misjudgment of stimuli or due 

to selecting the wrong rule following a covert rule switch (Sarafyazd & Jazayeri, 2019). 

While both regions were implicated in evaluating the confidence associated with a lower- 

level decisions that informed the later, higher level decisions (Sarafyazd & Jazayeri, 

2019), the ACC had a more robust and direct role in causal inference and attribution of 

errors to rule switches (Sarafyazd & Jazayeri, 2019). This finding was not surprising 
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given that the ACC is modulated by reward history (Seo &Lee, 2007; Amiez et al., 2006) 

and expectations (Shidara & Richmond, 2002) and is connected to reward dependent 

adaptive behavior including motor action selection (Shima & Tanji, 1998), foraging 

(Hayden et al., 2011), exploration and exploitation (Quildoran et al., 2008), and decision- 

making in risky conditions (Kennerly et al., 2006; Sarafyazd & Jazayeri, 2019). 

Performance monitoring is associated with learning new tasks, monitoring for 

errors, adjusting after an error and comparing the actual and intended outcomes of 

actions. All of these roles are important for recognizing and correcting for timing errors. 

Therefore, understanding the roles, neuroanatomy, and the theories underlying 

performance monitoring feeds into a fuller comprehension of the self-awareness of the 

timing error, which is the topic of the next section. 
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TEMPORAL METACOGNITION 

 

 
Recognizing and correcting temporal errors without any external sensory input or 

prior learning is a critical component of performance monitoring and is also essential for 

metacognition and self-awareness of one’s cognitive state (Fleming & Yeung, 2012). 

This has led scientists to ponder the degree to which humans can self-assess 

miscalculations in temporal accuracy and variance. Behavioral studies have shown that 

humans can track the magnitude (whether near or far from target) and direction of errors 

(earliness or lateness) in time reproduction tasks and can self-report their errors with a 

high degree of confidence (Akdogan & Balci, 2017). 

 
 

Electrophysiology and Behavioral Studies 
 

Electrophysiology studies have added to the body of evidence on temporal 

metacognition. An M/EEG study using a temporal production task with the objective of 

repeatedly producing the same single interval duration, involved asking respondents to 

first judge their own performance (Kononowicz et al., 2018). Afterwards, they were 

provided with 100% directional feedback in two blocks out of the six and 15% feedback 

on the remaining blocks. The initial self-assessment of their performance prior to 

feedback matched the true interval duration and β power value, a numerical quantity 

corresponding to the signal strength of the beta oscillation (15-40 Hz) at a specific time 

and frequency. Beta power operated as an index of the actual duration and the self- 

evaluative ability to track timing errors, such that increases in the power reflected the 
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increases in duration (Kononowicz et al., 2018). In yet another single duration temporal 

production study, Brocas et al. (2018) tasked participants to generate interval durations of 

30+ sec repeatedly for 10 trials and introduced a reward scheme to incentivize making 

accurate temporal estimates. In this study, participants accurately self-evaluated their 

performance after a block of trials and correctly identified what proportion of trials were 

above or below the target interval duration (Brocas et al., 2018). Although accurate in 

their assessments of bias or tendency to overestimate or underestimate, the participants 

were less successful in prediction beforehand or correction of their responses (Brocas et 

al., 2018). More recently, this self-awareness of timing ability and the capacity to track 

reward history has been observed in rodents (Kononowicz et al., 2022). Rats self- 

produced a single duration (always 3.2) and revealed their knowledge of whether a small 

or large error was made by choosing between two ports with differing quantities of pellet 

rewards associated with the size of the error commission (Kononowicz et al., 2022). 

 
 

Metric Error Monitoring Systems 
 

Temporal metacognition is the ability to self -assess and introspect one’s timing 

ability without prior sensory input or learning and can involve predicting errors in timing 

(Kononowicz et al., 2009). Error tracking mechanisms have been reported for temporal, 

numerosity (Dunyan & Balci, 2018,2019), and spatial errors (Dunyan & Balci, 2020), 

implying that there may be a common metric error-monitoring system that underpins 

magnitude-based representations (Duyan and Balcı 2019, Bader & Wiener, 2021). This 

metric error monitoring system is also impervious to social influence (Oztel et al., 2021). 

https://www-ncbi-nlm-nih-gov.mutex.gmu.edu/pmc/articles/PMC8054678/#LM053108BADC22
https://www-ncbi-nlm-nih-gov.mutex.gmu.edu/pmc/articles/PMC8054678/#LM053108BADC6
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Participants performed time reproductions and made judgements while a third-party 

observer watched yet their temporal error monitoring activity remained intact (Oztel et 

al., 2021). 

 
 

Alternative Hypothesis: Metacognitive Readout 
 

Other investigations of the neural basis of temporal metacognition have described 

an alternative mechanism to temporal error monitoring – temporal metacognitive readout. 

This alternate theory proposes that there is a secondary representation of internal 

durations that allow for evaluations of internal timing. It is based on the previously 

described beta power and its tendency to linearly scale with self-evaluation of the interval 

and the self-generation of the interval duration (Kononowicz and Wasserhove, 2019). 

Testing these two hypotheses involved a simultaneous M/EEG study in which 

participants were requested to produce a duration (always 1.45 seconds) and report the 

signed magnitude for how far they were from the target (Kononowicz and Wasserhove, 

2019). No changes were observed in the amplitudes of the error positivity and error- 

related negativity, two event-related potentials that profile errors, despite the varying 

short, medium, and long self-produced and self-evaluated durations. However, a single 

trial time-frequency analysis of the time after producing the temporal duration but prior 

to its self-evaluation revealed an additional higher alpha power for shorter durations and 

lower alpha power for longer durations. Notably, beta power during the same interval 

predicted the emergence of this additional oscillatory power, the post-interval alpha 

power, reflective of the signal strength of the alpha oscillation for the readout coding for 
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the duration estimates and the signed magnitude difference between the target and 

produced interval, again lending support to the metacognitive readout hypothesis 

(Kononowicz & Wasserhove, 2019). The new post interval alpha power could be 

indicative of reorienting attentional focus after self-generation and evaluation of 

durations that are long. It could also relate to the alpha-beta coupling responsible for 

ensuring that durations are produced with precision (Grabot et al., 2019). 

 

 

 

 

 

 
Metacognition and Confidence 

 

 

Despite the debate as to what hypothesis – temporal error detection or 

metacognitive readout is better suited -- understanding the anatomy underlying temporal 

metacognition is critical. The neural substrates for decision confidence, a marker to 

evaluate decisions and guide future behavior are linked to metacognitive ability and have 

been associated with an array of brain regions. Proposed areas to represent confidence 

determined by single unit recordings included the orbitofrontal cortex in rodents (Kepecs 

et al., 2008,), dorsal pulvinar neurons (Komura et al., 2013) supplementary eye fields 

(Middlebrooks et al., 2012) and lateral intraparietal area of monkeys (Kiani & Shadlen, 

2009), and the amygdala and the hippocampus in humans (Ruthishauser et al., 2015). 

Human fMRI studies point towards the ventromedial prefrontal cortex, the rostral medial 
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prefrontal cortex (Lebreton et al., 2015), and the ACC and dorsomedial cortex (Sarafyazd 

& Jazayeri, 2019) as regions for encoding confidence (Pouget & Kepecs, 2016). 

An imaging study which employed cognitive tasks on belief judgements based on 

semantic knowledge of geography and history and another on time estimation recruited 

anatomically separate regions of the brain. However, confidence-related behavioral 

measures including accuracy, reaction time, confidence of preceding trial shared the same 

architecture and a domain-general network representing confidence (Roualt et al., 2022). 

With regards to anatomy, regardless of the type of cognitive task, the imaging results 

indicated that confidence was positively correlated with activity in the ventromedial 

prefrontal cortex and negatively correlated with the pre-fronto-parietal network (Roualt et 

al., 2022). 

 
 

Clinical Conditions and Metacognitive Disruptions 
 

Clinical conditions highlight the impairments in temporal metacognition when time 

perception is disrupted. A cohort of autism spectrum disorder (ASD) patients performed 

an auditory temporal reproduction task with no feedback but had confidence ratings and 

self-assessments of under or over-reproductions. Performance-wise, ASD children 

achieved the task objectives, and their mean reproduction accuracy and coefficient of 

variation were similar to neurotypical children (Doenyas et al., 2019). However, there was 

a mismatch between the level of subjective self-confidence and the actual objective 

performance in ASD children, suggesting that ASD children were unaware of their own 

temporal errors (Doenyas et al., 2019). 
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Another study of confidence and temporal metacognition investigated 

schizophrenics tested on a temporal order judgement (TOJ) task where they had to 

determine which movie clip came first in an encoded video sequence and produce a 

retrospective confidence judgement (Zheng et al., 2022). While they were able to 

confidently determine whether their selection was correct or not, schizophrenics relied 

more on their prior confidence history then the actual objective TOJ performance history 

to make the decision, suggesting a difference in metacognitive processing and use of a 

different processing schematic from that of neurotypicals (Zheng et al., 2022). 

Our self-awareness of our own timing ability has been the topic of both behavioral 

and electrophysiological studies. This evaluative ability integrated error detection 

mechanisms and suggested the existence of a common metric error monitoring system for 

magnitude representations (line, space, numerosity, time). Also, the capacity to self-assess 

and evaluate timing behavior has been connected to confidence, which can be linked to 

specific brain areas. Additionally, temporal metacognition can be impaired, as observed 

by many clinical conditions with timing deficits. 

Importantly, knowing that a timing error has occurred depends on first learning how 

to time interval durations. Learning to time relies on a trial-and-error reinforcement 

learning algorithm, which is the subject of the next section. 
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REINFORCEMENT LEARNING AND TIME PERCEPTION 

 

 
Reinforcement Learning (RL) is a trial-and-error behavioral algorithm that 

describes how we make predictions about the consequences of our actions by incorporation 

of previous experiences into future scenarios to improve outcomes and maximize future 

rewards (Lee et al., 2012). The process of learning is fraught with errors, particularly when 

there is a mismatch between an expected and actual outcome, which signals a reward 

prediction error (RPE) (Hollerman & Schultz, 1998) and can be characterized by a loss 

function which maps the subjective cost of individual errors (Acerbi et al., 2012). A 

positive RPE results from an outcome that is better than expected whereas a negative RPE 

arises from an outcome that is worse than expected (Schultz, 2016). No error results when 

the outcome matches the expectation and RPEs update the value of the potential actions 

that lead to the outcome (Schultz, 2016). The computation underlying the RPE is coded 

by phasic dopamine (DA) release and is usually associated with an element of surprise and 

uncertainty (Hollerman & Schultz,1998). Positive RPEs are accompanied with an increase 

in phasic DA and are linked to striatal, medial prefrontal cortex, or ACC activity. Negative 

RPEs have reduced phasic DA in response to omitted rewards and are connected to insula 

and habenula activity (Garrison et al., 2013). 

Notably, a recent study indicated how the shared striatal dopaminergic circuitry in 

timing and reinforcement learning may impact one another. Here, participants were shown 

two images with the latter image superimposed with positive or negative monetary value 

and were requested to determine which image was presented for a longer time (Toren et 
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al., 2020). Behavioral and imaging results revealed that positive RPEs yielded duration 

overestimates (perceived time dilation) and negative RPEs produced duration 

underestimates (perceived time compression), respectively with activity linked to the 

putamen (Toren et al., 2020). 

When learning is complete, surprise diminishes between the expected and actual 

outcome (less RPEs) and the phasic DA returns to pre-learning levels during the response 

and back-propagates so that it is released at the cue-predicting event rather than during 

response (Schultz et al., 1997). This is important because it demonstrates that the brain 

documents the time interval between the cue and reward and that dopamine has access to 

this temporal prediction information throughout the learning process (Schultz et al., 1997; 

Fung et al., 2021). 

 
 

Dopamine, Clock Speed, and Precision 
 

Dopamine is central to reinforcement learning algorithms and has been known to 

modulate our internal clocks (Hollerman & Schultz, 1998), thus shaping and frequently 

distorting our time perception by increasing or decreasing clock speeds (Soares et al., 

2016). For example, DA agonist drugs lead to over-estimations of temporal intervals 

(Pastor et al., 1992), whereas DA antagonists lead to temporal under-estimations (Buhusi 

& Meck, 2005; Gershman et al., 2014). 

Dopamine also has a role in modulating precision of timing behavior, in readying 

for motor preparation for an action, and in encoding the internal representation of elapsed 

time. Pharmacological disruptions have solidified dopamine’s role in these domains. When 
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a group of healthy participants were administered haliperdol (D1/D2 receptor blocker) and 

sulpride (D2 blocker) and performed the variable foreperiod task, they presented with 

impairments in temporal precision (Tomassini et al., 2015). 

 
 

Dopamine, Reward, and Time 
 

In addition to its role in RL, DA is implicated in the intersection of time perception 

with reward system (Fung et al., 2021) due to its modulation of clock speed. Whether the 

direction is an increase or decrease is dependent on whether DA is involved prior to or after 

reward delivery (Fung et al., 2021). Earlier than expected time delivery produces a higher 

pacemaker rate while later delivery elicits a reduction (Petter & Meck, 2018; Mikhael & 

Gershman, 2019). The RPE can also signal early or late reward arrivals and inform the 

subsequent behavioral output. Finally, similarly to its involvement in RL, dopamine can 

signal action initiation and ramp up the signal to a certain threshold depending on reward 

proximity. 

From a computational perspective, predicting an action’s value in RL paradigm in 

order to maximize rewards requires a precise measurement of time (Petter & Meck, 2018). 

Process-wise, model-free algorithms have been proposed to use time representations 

directly and linear temporal basis functions to predict rewards while model-based 

paradigms rely on training the algorithm to “what happens when” through a non-linear 

reward structure in conjunction with environmental simulations rather than direct 

environmental interaction (Petter & Meck, 2018). Regardless of the algorithm used, the 

rapid learning of time is hypothesized to have a biological substrate, the newly discovered 
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time cells in the striatum, supplementary motor area (SMA), and hippocampus that 

quantitatively encode and are preferably tuned to respond to a specific interval time 

durations (Petter & Meck, 2018). Time cells can be rescaled and receptive fields adjust 

swiftly when durations to reward change (Petter & Meck, 2018; Mikhael & Gershman, 

2019) as with RL and after feedback. DA neurons mediate this rescaling in the 

corticostriatal synapses, by modulating the firing rate and altering the timing of the tonic 

dopamine signal and reward delivery (Petter & Meck, 2018; Mikhael & Gershman, 2019). 

 
 

Tonic Dopamine, Reward, RL and Time 
 

Interestingly, all of these effects also rely on tonic DA release, suggesting a 

dissociation between timing and RL across firing patterns (Soares et al., 2016; Simen & 

Matell, 2016). Tonic DA has been traditionally associated with response vigor and 

motivation (Niv et al., 2005) but it is also tied to both interval timing and RL. The theory 

of rational inattention connects these two functionalities together by linking tonic DA’s 

role in average reward and heightened precision (Mikhael et al., 2021). DA controls 

precision, which, when higher, indicates more certainty about the environment, 

intensifying the ability to accumulate reward but at a cognitive cost. Whether that cost is 

worthwhile depends on the average reward size. The larger the average reward size, the 

greater the likelihood that the agent has the incentive to pay the cost. Tonic DA levels 

can bias behavior with high DA tipping the balance towards exploitation and low DA 

tilting towards exploration (Mikhael et al., 2021). The temporal estimates derived from 



28  

low DA have low precision and are context-dependent whereas high DA state responses 

are not based on context and are undertaken with more confidence (Mikhael et al., 2021). 

Reinforcement learning uses the trial-and-error process coupled with an 

introspection of past experiences to improve behavioral outcomes when action selection 

occurs. Similarly, when learning to time an interval duration, this reflection on the past 

experiences can facilitate the decision for determining the duration of an interval. In 

particular, dopamine has a pivotal role in RL paradigms due to its affiliation with reward 

prediction errors, its ability to increase or decrease clock speed, its involvement in reward 

delivery and in enhancement of temporal precision. Notably, the influence of dopamine 

in RL is impacted by individual differences since genetic polymorphisms of the 

dopaminergic system may impact the level of dopamine in the brain and elicit differential 

effects on time perception. 
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IMPACT OF INDIVIDUAL DIFFERENCES ON TIME 

 

 
An important factor to consider when learning to time are individual differences. 

 

In this realm, the discussion will be center upon cognitive styles, personality and 

genetics. 

 
 

Cognitive Styles 
 

Cognitive styles that delineate an individual’s approach to learning and processing 

information play an important role since the strategy for acquiring, organizing and 

manipulating material can preferentially impact timing behavior (Farmaki et al., 2019). 

Field independent style learners derive patterns from complex visual images and 

investigate individual parts of the image while the field dependent style learners need 

contextual cues to comprehend the holistic image and is less able to distinguish objects 

from background images (Farmaki et al., 2019). These visual processing differences 

translate to varied behaviors and disparate impacts on temporal learning (Teghll et al., 

2022). In a recent study of cognitive styles, participants were tested on a novel temporal 

learning task that expected them to learn and reproduce a stimulus duration that was 

internally or externally-based. In the internally based condition (IBL), the stimulus 

duration was fixed but the events demarcating the duration in a trial varied, while in the 

externally based condition (EBL), the stimulus duration varied but the number of events 

within a trial was constant. Field independent learners were significantly more accurate 

than field dependent learners in the internally based condition (IBL) and both groups 
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were more variable (less precise) in the EBL condition compared to the IBL. Error scores 

were more elevated in the internally-based conditions for both types of learners (Teghill 

et al., 2022). These results revealed the extent to which cognitive styles and task context 

can control suprasecond temporal learning. 

 
 

Personality 
 

The interaction of personality with temporal learning can also influence timing 

accuracy and metacognitive judgements. Past research has demonstrated that neuroticism 

did not have any relationship to absolute or directional timing errors in a time 

reproduction task with intervals ranging from 5-40 seconds (Rammsayer, 1997). In this 

same study, extroverts, when compared to introverts were more likely to over-estimate 

and inaccurately assess time (Rammsayer, 1997). High scorers on the psychopathy scale 

also exhibited time over-estimation (Rammsayer, 1997). More recently, participants were 

tested on a modified temporal bisection task were administered a schizoptypy personality 

test from the O-Life questionnaire (Corcoran et al., 2018). Higher scores on this 

assessment for impulsivity, unusual experiences, and cognitive disorganization negatively 

correlated with accuracy and metacognitive judgements, illustrating that personality can 

partially explain certain timing behaviors (Corcoran et al., 2018). 

 
 

Genetic Differences 
 

Genetic differences due to single nucleotide polymorphisms of genes impacting 

the dopaminergic system are another individual-level feature that effects subjective time 
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perception. Two polymorphisms--one associated with reduced D2 striatal receptor 

density (DRD/ANKK1-Taq1a) and another, the COMT Val158Met, a gene linked to 

increased activity of the COMT enzyme which metabolizes dopamine, have shown lower 

precision of time estimates (Wiener et al., 2011). This is related to BOLD activity in the 

basal ganglia and prefrontal cortex (Wiener et al., 2014). Also, of relevance, DA 

polymorphisms have been shown to alter the impact of reward magnitude on temporal 

estimates (Balci et al., 2013). One possible explanation for these effects is that increased 

DA tone leads to a “sharpening” effect on the temporal basis functions used for 

estimating time (Michael & Gershman, 2019) and is represented by duration tuned 

neurons occurring throughout the brain, but most notably in the SMA (Protopapa et al., 

2019; Wiener et al., 2010). 

Individual differences may influence the learning of interval durations in 

conjunction with cognitive styles and the type of learners. Personality type may also 

modulate time perception and timing awareness. Notably, extroverts are more likely to 

exhibit timing errors and over-reproduction and individuals higher on the impulsivity and 

disorganization on schizoptypy questionnaires perform poorly on timing accuracy and 

metacognitive judgement. Genetic differences due to DA polymorphisms from enzymes 

that metabolize dopamine to changes in striatal receptor density can impact temporal 

precision or modify the effect of reward on temporal estimation. 

With a solid foundation of individual level variations that impact time perception 

and time awareness, the focus may shift to how we measure what transpires on an 

electrophysiological level as we time durations. An important electrophysiological 
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signature that profiles time perception is the contingent negative variation, the topic of 

the next section. 
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CONTINGENT NEGATIVE VARIATION 

 

 
Event-related potentials (ERPs) can give us the temporal resolution of events and 

function by time-locking to cognitive events, supplying us with insight on the influence 

of learning and feedback in guiding timing behavior. Critical to the narrative on time 

perception is the contingent negative variation (CNV), an endogenous, slow, negative- 

deflecting cortical signature due to its strong involvement in temporal expectation, 

interval timing, and memory encoding of interval durations (Macar, 2002;2003). It is 

response-locked signal with a frontocentral distribution whose appearance depends on a 

behavioral response following a warning (S1) and target stimulus (S2) and was thought to 

reflect motor preparation and expectation (Walter et al., 1964; Falkenstein, Hoormann, 

Hohnsbein, & Kleinsorge, 2003) and attention (Rohrbaugh & Gaillard, 1983). An initial 

orienting wave, seen in early response selection, is referred to as the initial CNV (iCNV) 

while a later expectancy wave profiles the motor preparation prior to the S2 is known as 

the terminal CNV (tCNV) (Sahai & Tandon, 2000). Importantly, the waveform 

transitions to a biphasic wave after two seconds (Sahai & Tandon, 2000). 

 
 

CNV and Time Perception 
 

The CNV shows a characteristic ramping up pattern of activity (Casini, 2011; 

Kononowicz et al., 2014; van Rijn et al., 2011) associated with the accumulator in the 

centralized clock model of timing and is linked to the supplementary motor area (SMA) 

(Casini, 2011; Kononowicz et al., 2014; Macar et al., 1999) an area that is strongly 
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implicated in time perception (Wiener et al., 2010) and has exhibited temporally tuned 

neurons (Protopapa, 2019; Merchant et al., 2013). The CNV has also been linked to 

duration encoding and duration discrimination in a visual temporal discrimination task in 

which the morphology of the waveforms varied for the different comparison durations 

and was the most easily identifiable for the longest duration (Tarantino et al., 2010). The 

CNV’s role in duration discrimination extends to both sub and supra-second intervals and 

increasingly higher negative amplitudes and longer peak latencies are seen as it 

approaches the standard memorized interval (Zhang et al., 2021). This suggests that the 

CNV amplitude profiles the comparison of durations while the latency represents the 

decision-making feature (Zhang et al., 2021). 

 
 

CNV and Error Monitoring 
 

 

Furthermore, this ERP has been connected to a timing study focused on error 

correction. In a time frequency study, the CNV’s peak latency coincided with subsequent 

behavioral adjustment for tapping stimuli that were either shifted forwards or backward in 

time (Jang et al., 2016). Other studies on the confluence between timing and performance 

monitoring with the CNV have focused on tool use in sports activities (eg. bats in baseball) 

and have used a coincident timing task to model this real-world application. Participants 

use force-sensitive keys to move a rotating stimulus in an angular direction around a 

clock face for a target interval duration while a CNV was recorded simultaneously 

(Masaki et al., 2012). In this task, the CNV amplitudes were higher for faster velocities 

and longer 
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time-to-peak force conditions, likely because more pre-programming attentional resources 

and conscious effort was needed (Masaki et al., 2012). 

 
 

Dopamine Tone and the CNV 
 

 

The CNV is also a sensitive index of the levels of DA in the brain or DA tone, and 

neuropharmacological evidence centers on the finding that higher negative amplitudes are 

associated with greater DA levels (Linssen et al., 2011). Increased CNV amplitudes were 

seen when healthy volunteers were given placebo, 10, 20, or 40 mg of methylphenidate, 

showcasing a dose-dependent impact of the drug (Linssen et al., 2011). L-dopa and 

bromocriptine (a DA-like chemical in the brain) administered to Parkinson’s Disease (PD) 

patients led to increased CNV amplitudes (Amablie et al.,1986). In an implicit timing study 

with variable stimulus onset times, moderate to severe PD patients that were off- 

medications for one day displayed reduced CNV amplitudes, absence of an anticipatory 

negative wave, and no temporal preparation (Praamstra & Pope, 2007). 

Due to its ubiquitous presence in the basal ganglia, its role in timing and reward, 

and its association with the striatal beat frequency model, dopamine can also indirectly 

influence the contingent negative variation (Kononowicz, 2015). Starting from the onset 

of any to-be-timed interval, the ventral tegmental area releases dopamine to reset the 

phase of cortical oscillations to the striatum (Kononowicz, 2015). This action, dubbed as 

the “start gun” ensures that all of the cortical oscillations will initiate from the same 

phase, enabling coincident detection to occur and readout of the duration code 

(Kononowicz, 2015). Any disturbance of dopamine via pharmacological means could 
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cause variability in resetting and coincident detection, thereby reducing timing precision 

(Kononowicz, 2015). 

 
 

fMRI-EEG Studies of the CNV 
 

 

As a neural signature that can link together the subcortical and cortical structures, 

the CNV is a good candidate for fMRI-EEG studies. For example, a fMRI-EEG reward 

anticipation study profiled the CNV in this context using connectivity analysis (eg: 

mediation, dynamic causal modeling) (Plichita et al., 2013). Thalamic BOLD activation 

mediated the CNV signal and the BOLD activity in both the SMA and the ventral striatum, 

presenting evidence that thalamic BOLD can predict the CNV and operate as a top-down 

signal from SMA to the VS and the SMA to the thalamus (Plichita et al., 2013). This builds 

on an earlier fMRI-EEG study probing CNV-linked neural activity related to peripheral 

autonomic arousal through galvanic skin response (Nagai et al., 2004). Here, Nagai and 

colleagues (2004) described how trial-by-trial CNV amplitudes modulated BOLD activity 

in the bilateral thalamus, anterior cingulate and the SMA, again uncovering the importance 

of thalamocortical interactions in modulating the CNV. 

The CNV is an essential ERP for tracking durations and discerning between 

different durations and it has been shown that the SMA is the source generator for the 

accumulator in the clock time model. In addition to its affiliation with time perception, the 

CNV is also associated with error monitoring and is heavily modulated by the level of 

dopamine, which may impact RL and learning of interval durations. There is also evidence 

to show CNV amplitudes can be used to predict BOLD activity in simultaneous fMRI-EEG 
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studies, notably in the SMA. It follows from this that the CNV is a critical ERP that appears 

in the estimation and reproduction phases of my time reproduction task. However, what 

transpires during the feedback phase? Another event related potential, the reward 

positivity, chronicles feedback related events and is discussed more extensively in the next 

chapter. 
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REWARD POSITIVITY (REW P) 

 

 
A decision-related ERP that tracks feedback is integral to comprehending how 

feedback impacts human time estimation and learning to time. In this regard, to assess an 

outcome as rewarding or aversive (Gehring, 2002), a useful ERP and evaluative 

biomarker is the Reward positivity (RewP), which is a positive deflection elicited post- 

feedback in probabilistic trial-and-error learning tasks (Holroyd & Coles; 2002 Heydari 

& Holroyd, 2016). The RewP indexes RPEs and exhibits larger amplitudes for 

unexpected positive (rewarding) events compared to unexpected negative events, with 

more positivity on correct feedback trials and less on incorrect feedback trials (Holroyd 

& Coles; 2002; Heydari & Holroyd, 2016). By monitoring reward prediction errors 

(RPE) (Holroyd & Coles, 2002), the RewP, generated by the ACC, ventral striatum and 

medial frontal cortex, uses these contextually sensitive RPEs and dopaminergic signals 

from the basal ganglia (Heydari & Holroyd, 2016; Holroyd et al., 2008) to “learn” the 

value of actions via reinforcement learning and the midbrain phasic dopamine 

(Umemoto, 2017; Holroyd & Coles, 2002). 

 
 

Reward Positivity and Learning 
 

Fittingly, the strength of the RewP response is reflective of learning-related 

changes over time (Krigolson, 2018), due to its association with RPEs and because 

learning provides an opportunity for the performance monitoring system to shift focus 

from using external to internal information to track performance (Luft, 2014). As learning 
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occurs, the amplitude of the FRN/RewP wanes (Krigolson, Pierce, Tanaka, and Holroyd, 

2009; Krigolson et al., 2014; Bellebaum and Colosio, 2014; Bellebaum and Daum, 2008; 

Eppinger et al., 2008; Luque et al., 2012; Sailer et al., 2010; Walsh and Anderson, 2012; 

Krigolson, 2018). Diminished RewP amplitudes can also be seen with individuals who 

learn at different rates (fast and slow learners) or who encounter varying task difficulty 

(easy vs. difficult) (Krigolson, 2018). 

The RewP is an ideal feedback marker for tracking positive and negative 

outcomes and for indexing RPEs. RewP amplitudes are sensitive to learning-related 

changes and exhibit diminished amplitudes as individuals progressively learn a task. 

This is particularly relevant to my paradigm for rapid, one trial learning of interval 

durations. 

Equipped with an understanding of the biomarkers for measuring temporal 

learning, we shift focus to more of a behavioral level of how feedback modulates time 

perception, feedback delivery methods, and clinical conditions in which feedback is 

affected. 



40  

FEEDBACK AND TIME PERCEPTION 

 

 
There is behavioral and electrophysiological evidence to demonstrate human self- 

awareness of time but there are questions about what this entails (Akdogan & Balci, 

2017; Kononowicz et al., 2018). Evaluating timing aptitude in the context of feedback 

and learning may broaden our comprehension of internal metacognitive process and its 

role in time perception. Management of errors related to early or late timing with or 

without external feedback are not fully understood. Studies on the impact of feedback on 

time perception have produced conflicting results, particularly due to the variability in the 

type of feedback delivery. Experimental timing paradigms offer a broad array of options 

ranging from no feedback, magnitude and directional feedback, magnitude-based 

feedback only, or directional-only feedback. 

 
 

The Many Purposes of Feedback in Time Estimation 
 

 

My design was based on the fact that feedback has a variety of purposes. In 

addition to simply supplying knowledge and guidance about the behavioral response 

(Salmoni et al., 1984), feedback has numerous other uses. It reduces response drifts over 

the experimental trajectory (Salmoni et al., 1984; Riemer et al. 2019) and may be 

erroneous or correct, but my study concentrates on correct feedback that tends to 

positively adjust behavioral responses (Salmoni et al., 1984). Its delivery may be 

absolute—after every trial or on a percentage of trials (relative). Additionally, feedback 

can be a motivational factor and act as an implicit reward for behavioral learning 
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(Salmoni et al., 1984; Tsukamoto et al., 2006). Feedback can be true or false and 

imaging studies of true feedback have shown activation in the thalamus, insula and 

striatum in a time estimation task (Tsukamoto et al., 2006). Post-error feedback can also 

facilitate the learning of time intervals (Ryan & Robey 2002). Feedback may be 

processed differently depending on the quality of the learners and is reflected in a well- 

functioning performance monitoring system (Luft et al., 2013). 

Feedback’s role in reducing noise in order to enhance precision and reduce 

behavioral variability is a noteworthy benefit. Recently, researchers showed that the 

rewarding or nonrewarding nature of the previous trial outcome causally controls the 

current trial behavioral variability in a ready-set-go paradigm, a motor context-dependent 

timing task where subjects were required to flexibly produce timing intervals using either 

a keypress or eye movement (Wang et al., 2020). When given probabilistic feedback, the 

participants’ timing variability was higher for incorrect trials than correct trials regardless 

of the error size (Wang et al., 2020). This finding aligned well with my own past 

behavioral study's results (included here as Experiment I) demonstrating that the second 

trial performance following previous on-target feedback improved temporal precision 

(Bader & Wiener, 2021). Further evidence of feedback's beneficial effect on precision 

comes from a study that examined bias and variance changes for three time estimation 

tasks with a single interval design—motor reproduction, auditory comparison (duration 

discrimination), and auditory reproduction—and found that in all three tasks, participants 

overestimated time durations (Shi et al., 2013). Auditory feedback, included as a 

component of the auditory reproduction task, produced a lower overestimation bias and 
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variance than the motor reproduction task, although the bias still surpassed the auditory 

comparison task. In this same study, the signal to noise (SNR) ratios were determined by 

varying the decibel levels of the comparison and feedback tones thus altering the 

comparison/feedback ratio and simultaneously introducing pink noise to produce a varied 

SNR. This was later manipulated to yield low and high SNR conditions, and the 

variances on the reproduced interval, measured by standard deviations, were reduced in 

the high SNR condition compared with the low SNR in the same auditory reproduction 

task (Shi et al., 2013). Similar benefits of auditory feedback have also been observed in 

an experiment performed by Mitani and Kashino (2018), which required participants to 

reproduce the duration of a single tone after hearing it twice successively. Feedback was 

then delivered, and participants indicated whether they were early or late in responding. 

Bias and variability improved, self- judgement of timing error matched the actual 

temporal reproductions, and serial dependency was dampened but only for subsecond 

rather than suprasecond intervals (Mitani and Kashino 2018). My previous behavioral 

study (included as Experiment I here) extends the findings of these two studies to the 

visual modality and demonstrates a benefit in reducing timing variability in the longer 

suprasecond range (Bader & Wiener, 2021). 

In addition to supplying informational content to update behavioral responses, the 

provision of feedback can be rehabilitative and therapeutic in clinical conditions 

characterized by aberrant temporal processing. Recently, a group of PD patients were 

tested on a time production task and other cognitive tasks (Homna et al., 2021). 

Feedback, given over the course of four weeks, involved viewing the digital stopwatch to 
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record the actual duration and compare it to the target duration. This type of feedback 

delivery provided advantages to both time perception and non-temporal domains. In 

addition to improved duration estimates, better accuracy in the Go/No Go and Stroop 

tasks and lowered impulsivity in other cognitive batteries were observed (Homna et al., 

2021), illustrating that learning-related feedback effects could be transferred to other 

cognitive processes. 

 
Comparison with other Feedback & Time Perception Studies 

 

A landmark study in temporal error monitoring involved using a temporal 

reproduction task to assess how subjects reproduced a range of suprasecond intervals; 

their findings demonstrated that humans are aware of both the magnitude and direction 

(early/late) of their timing errors despite not receiving any external feedback (Akdogan & 

Balci, 2017). Another recent behavioral study used a temporal production task, in which 

subjects were asked to repeatedly produce a single duration (3 sec) and compared 

performance during a condition when only the magnitude of the error was given 

(absolute) against another condition in which both the magnitude and direction (signed) 

were given (Riemer et al., 2019). Signed feedback delivery yielded more behavioral 

adjustments in opposition to the direction of the error in subsequent trials, reduced bias in 

temporal estimates, and produced a more accurate and better calibrated performance 

when compared with absolute feedback. This study illustrated that directional 

information was not intrinsically accessible to the subject and that the participant's 

internal timing error representation failed to include that error direction. Furthermore, 
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subjects assigned to the absolute feedback group also tended to report an 

overreproduction of the interval duration when in reality, they were under-reproducing 

(Riemer et al., 2019). A key difference should be noted between these two studies, 

notably that feedback and retrospective self-judgments respectively were given following 

an entire block (Riemer et al., 2019) rather than trial by trial as in the Akdoğan and Balcı 

(2017) experiment. Task context also played a crucial role, as different tasks were used 

for the two studies; Akdoğan and Balcı (2017) used a temporal reproduction with a mixed 

set of intervals while Riemer et al. (2019) used a temporal production task with a singly 

presented interval. 

 
 

Methodological Issues with Past Feedback and Time Studies 
 

 

Methodologically, using an appropriate feedback technique is pivotal to fully 

understanding the complexities of self-timing awareness. The traditional feedback 

structure in psychophysics studies is best suited for single interval reproductions because 

the same interval is successively reproduced; therefore, the majority of the studies 

described above are single interval experiments. Challenges arise when reproducing a 

random set of a mixed range of intervals because corrective guidance is given on one 

interval duration, yet the next interval may be of a different duration (Ryan, 2016). This 

is problematic since there is no opportunity to use the feedback from the previous trial to 

the new trial, so the feedback is frequently misapplied to an entirely different duration 

(Ryan, 2016). To rectify this issue, our past behavioral study introduced a “redo” trial, 

which allows the subject to use the original feedback from the first trial in a second trial 
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of the same duration (Bader & Wiener, 2021). I hypothesized that the redo trials will be 

beneficial to subjects for improving performance and for minimizing the Vierordt effect 

(underestimation of long intervals and overestimation of short intervals) (Ryan, 2016). It 

is for this reason our past behavioral study (Experiment I) also incorporated absolute 

(nondirectional) feedback: to assess whether subjects possess awareness of the direction 

of the timing errors (Bader & Wiener, 2021). If there is a substantial directional 

awareness of timing error, then the central tendency would be reduced (Bader & Wiener, 

2021). 

Clinical Conditions and Feedback 
 

 

Disruption in timing and learning to time are observed in children with clinical 

conditions involving impairments in dopaminergic pathways, such as Attention Deficit 

Hyperactivity Disorder (ADHD) and Neurofibromatosis (NF1). Prochnow and colleagues 

(2021) compared both patient groups to healthy control children and found that the patient 

participants presented with deficits in feedback-based learning of time estimation. 

Children in all groups were instructed to press a key 1-2 seconds following the appearance 

of a white square in a time production task. For responses from 1000-1400 ms, a smiley 

face and written feedback indicating it was correct were given. Early responses (400-1000 

ms) and late responses (1400-3000 ms) were met with written feedback and sad faces. Data 

from the on-time trials for three blocks were analyzed to examine learning-related effects 

stemming from feedback. For ADHD patients, the reaction times were unstable amongst 

the three blocks, while the NF1 group was characterized by steady high reaction times but 

no fluctuation across the blocks. Both findings reiterated an absence of learning-based 
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adjustments of the temporal estimates in the NF1 and ADHD groups, unlike the healthy 

controls who exhibited appropriate feedback-based learning and steadily approached the 

target duration across the three blocks (Prochnow et al., 2021). 

 
 

Lessons Learned Applied to Current fMRI-EEG study 
 

 

Holistically, these historical studies on feedback have informed our experiments. 

Insight gleaned on methodology, experimental design, and the numerous uses of feedback 

were valuable during our current investigation of what transpires on the neural level when 

participants are given a second opportunity to generate a temporal estimate and how 

feedback modulates the resultant temporal responses. 
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METHODS 

 

 

 

 
Three experiments were conducted for this study. Experiment I was behavior-only 

study which was not conducted in the scanner and involved a between subjects design and 

two groups: an on/off and no feedback condition. Data from this first experiment has been 

published (Bader & Wiener, 2021). Experiment II had a within subjects fMRI-EEG design 

with the on/off condition. Experiment III was another behavior-only study but it varied in 

the frequency of single or double trials and compared a group with a high frequency of 

double trials (initial+ redo) with a group of low frequency of double trials. 

 
 

Table 1. Experimental Set-up 

 

 

 

 

 
Subjects 

 

For experiments I and III, George Mason University undergraduates were 

recruited via a research studies database or flyers. For the fMRI-EEG experiment 

(Experiment II), participants were recruited solely through fliers around the GMU 
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campus to target students. Eligible participants who completed the research study 

received undergraduate psychology course credit for their participation or were paid for 

their time. For both experiments, researchers gave each subject a questionnaire to 

determine eligibility prior to beginning the experiment. Participants with any 

neurological and psychological disorders, hospitalization for a psychological disorder, or 

diagnosis or treatment for substance abuse were excluded. 

 

 

 

Experiment I 

 

Twenty subjects each were originally recruited for the on/off target condition. For 

the final analysis, data from only 17 right-handed neurologically healthy subjects 

(average age 20.83.84 SD yr, five males, 12 females) in experiment I were analyzed. 

Two subjects did not fully understand the task parameters and one recruited subject later 

informed us that she had a concussion so these three were excluded. Another twenty 

right-handed subjects were also recruited for the no feedback condition; however, for the 

final data analysis, 19 right-handed subjects (average age 19.61.53 SD yr, six males, 13 

females) were analyzed because one subject had outlier responses that varied three 

standard deviations from the average mean responses. The difference in ages between the 

on/off and the no feedback groups was also not significant t(34) =1.196, p = 0.245. 

Additionally, a Pearson χ2 revealed that the gender ratio was not significantly different 

between the on/off and no feedback groups χ(1) = 0.020, p = 0.888 in Experiment I. 
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Experiment II: 

 

Twenty-seven neurologically healthy, right-handed subjects were recruited for the 

fMRI-EEG experiment (Experiment II). Four participants were removed from the sample 

for technical reasons. EEG event markers failed to load for all stages of the task for three 

subjects thus leading to missing and insufficient trial counts. Another subject was unable 

to complete the entirety of the temporal reproduction task inside the scanner. The final data 

analysis included twenty-three right-handed neurologically healthy subjects (average age 

23.174.58 SD yrs, 12 males, 11 females). 

 

Experiment III: 

 

Forty subjects were recruited for Experiment III (behavior-only); however, for the 

final analysis, 37 right-handed and neurologically health subjects (average age 20.814 

SD, 28 males, 9 females) were included. Two subjects were unable to finish the entirety 

of the behavioral experiment and there was a data loss for another subject due to a technical 

issue related to the computer. Nineteen subjects were assigned to the low double group 

(average age of 214.58 SD, 14 males, 5 males). Eighteen subjects were assigned to the 

high double group (average age of 20.63.5 SD, 14 males, 4 females). 

An independent t-test revealed that the ages between the low double and the high 

double were not significantly different t (35)=0.291, p<0.772 CI:-2.321-3.098. The 

Pearson’s chi square (1)=0.084, p=0.772 for the gender ratios was also not significantly 

different between the low double and high double groups. 
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Behavioral Paradigm 
 

Experiment I and III, both behavior-only studies, were conducted outside of the 

scanner and did not involve EEG or imaging. The same temporal reproduction task was 

delivered via Psychopy2 on a 27-in Mac desktop while subjects sat ~ 60 cm from a 

computer screen (Dell S2716DGR, 120 Hz refresh rate) in the lab. 

For the fMRI-EEG study (Experiment II) the temporal reproduction task was 

delivered via Psychopy2 from a Dell (120 Hz refresh rate) desktop and projected to 

Cambridge Research Systems BOLD Screen 32” 1920x1080 resolution screen situated 

~1.5 meters outside of the MRI Bore. Participants with EEG electrodes attached to their 

scalp were laid inside the MRI bore and observed the experimental stimuli from a mirror 

inside the bore. 

Experiment II started with the MRI scanner sending repetition time pulses to the 

stimulation PC (Dell) via the trigger box and also to the EEG computer through 

Psychopy’s clock synchronization component. The task structure of the temporal 

reproduction task was comprised of three phases: estimation, reproduction, and feedback 

for all three experiments. These three phases were performed twice for each duration. 

Each trial initiated with a centrally presented fixation cross for a randomly presented 

duration of 2–6 s. In the estimation phase, a blue square was visually shown to the 

participant for one of five logarithmically spaced, randomly presented intervals (1.5–6 s). 

Until the square was on-screen, the participant was instructed to encode the duration in 

memory and to not use counting as a method to determine the elapsed time, which has 
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been demonstrated as an effective means of eliminating counting strategies (Rattat 

&Droit-Volet, 2012). Following the estimation phase, there was a 4- to 8-s gap prior to 

the reproduction phase. Then, the blue square reappeared on-screen in the reproduction 

phase and the participant was asked to press any number key when the blue square has 

remained on-screen for the same time duration as the time elapsed in the estimation 

phase. The subjects’ keypress using the button box inside the scanner caused the square 

to disappear, signaling interval termination. 

 

 

 

 

Figure 1. Task schematic of the Temporal Reproduction Task 

 

 

 

After every trial in Experiment II and in the on/off condition of Experiment I, 

adaptive feedback (duration = 1 second) was delivered 2–4 s after the disappearance of 

the square and informed the participant whether the response was on-target or off-target; 

notably, this feedback provided no index of direction. On each trial, a feedback constant 

(k), starting with an initial value of 3.5 was adjusted such that that the reproduced interval 

had to be within the window [interval/k] and was updated according to the 1-up/1-down 

rule with a step size of 0.015 (Jazayeri & Shadlen 2010). If the participant's reproduced 
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interval was either 15% above or below the target duration, on-target feedback would be 

delivered; otherwise, off-target feedback was delivered. Critically, after each trial in 

Experiment II and the on/off condition in Experiment I, participants had a second 

opportunity (essentially a redo trial) to perform the entire sequence of phases (estimation, 

reproduction, and feedback) again, ensuring feedback was applied to the appropriate 

duration. After the second feedback in Experiment II, Psychopy waited for an amount of 

time specified by a random floating-point number with an exponential distribution before 

starting the next full trial (initial and redo). This was done to jitter the inter-stimulus 

intervals so that the trial durations and ISIs for all of the trials were within the total trial 

sequence time. 

In total, Experiment II had 120 trials (10 durations/block × 6 blocks × two trials, 

initial and redo). Participants were given a break after each block for a total of six blocks. 

EEG triggers for each onset and offset of the estimation and reproduction phases for each 

of the five durations were sent from Psychopy via the trigger box from the stimulation PC 

to the EEG recording computer. The delivery of the on-target and off-target feedback 

markers for the initial and redo feedbacks were also sent from the button box which the 

subject pressed and trigger box to the EEG computer. 

Subjects participating in Experiment I were assigned to either a condition with no 

feedback at all or an on/off condition. Similarly, to Experiment II, there are 120 trials (10 

durations/block × 6 blocks × two trials) and participants were given a break after each 

block. Two groups performed the study with one experimental condition that delivered 

on/off feedback and another experimental condition that did not deliver feedback at all. A 
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different set of participants were used for each condition. In the on/off condition, on and 

off-feedback was provided for both trials while the no feedback condition still had two 

trials per duration but lacked any feedback for either the initial or redo trial. 

Subjects participating in Experiment III did not always receive a second, redo 

trial and were randomly assigned to one of two groups with varying ratios of double 

(initial + redo) and single (initial only) trials. The two groups in Experiment III had a 

different set of participants for each condition. Experiment III had a low double group 

comprised of 80% of total trials with only one opportunity to perform the trial. The other 

20% of total trials consisted of both an initial and redo trial. In the high double group, 

80% of the total trials had a second chance (initial+ redo) whereas the other 20% of the 

total trials were single trials. Participants were blinded to the group assignment and to 

whether a specific trial would be a single or double trial as they performed the 

experiment. Experiment III had 250 trials total and five blocks and breaks following each 

block. 

Experiments I and III were behavior-only and differed from the fMRI-EEG 

(Experiment II) in its absence of a clock synchronization component, no jittering after the 

second feedback in the double trials, and no EEG event markers for the onset and offset 

of each task phase. 
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Data Acquisition 
 

Simultaneous raw EEG was recorded at 5000 Hz (Range: 16.384 mV, resolution: 

0.5 uV and 10-250 bandpass filter) with a MR-compatible 64-channel (Brain Products) 

Ag/AgCl passive electrodes system as the participant was imaged inside the 3T Siemens 

Magnetom Prisma MR scanner. Electrode positioning (or the electrode montage) on the 

participants’ scalps were based on the 10/20 system. 

Online and ground references during the recording were FCz and AFz, respectively 

and impedances were maintained at 20k. Gel specifically designed for a MR-compatible 

system was applied to the subjects’ scalps. Head circumferences were measured, and the 

appropriately sized cap was selected when fitting the participant. The smaller 56- 

centimeter cap contained an additional vertical and horizontal electrooculograms (EOG). 

One vertical EOG was placed below the eye and the horizontal EOG was positioned at the 

outer canthus of the eyes. An ECG electrode (20k) was also attached on the back of the 

participant close to the heart to record the electrocardiogram for all of the participants. 

EEG data was transmitted from the cap via BrainAmp amplifiers (Brain Products) 

over fiber optic cables and a wave guide to the console room. EEG event markers for the 

various phases of the behavioral task including the first and second trial estimation onset 

and offset, reproduction onset and offsets, and the on and off-feedback were relayed via 

the Brain Products trigger box from the stimulus computer where the Psychopy experiment 

originated and received through a BNC connector from the button box (Current Design, 

932 Interface) and delivered to the EEG computer (Dell). The scanner gradient and the 

EEG clocks were synchronized using a Brain Vision syncbox. The Psychopy experiment 
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was projected onto a Cambridge Research Systems BOLD Screen 32” 1920x1080 

resolution screen situated outside of the MRI Bore. Visual stimuli were observed by the 

participant via a mirror in the MRI bore. 

 

 

 

EEG Analysis 
 

The Brain Vision Analyzer 2 (Brain Products) software was used for the initial EEG 

processing steps. Initially, the EEG data was segmented into six sections corresponding to 

the six BOLD runs using the magnetic resonance (MR) volume markers. Each EEG 

segment was then corrected for the MR gradient using template drift detection based on 

the Allen method (2000) and was downsampled to 256 Hz. Brain Vision Analyzer’s 

baseline correction options enabled correction to the average and was computed over the 

whole artifact. The segments were then corrected for the cardio-ballistic artifact (Allen et 

al., 1998) using a combination of both automation and visual inspection of R-peak 

detection using Brain Vision Analyzer 2. Noisy EEG channels, detected through visual 

inspection, were corrected through topographic interpolation (spherical splines). Data was 

re-referenced to the mastoids (TP9/TP10) and low pass filtered at 30 Hz. Infomax-based 

independent component analysis (ICA) was used to remove blinks and movement artifacts. 

The six pre-processed EEG segments were stitched and appended together to reflect the 

chronological order of the runs. The newly stitched EEG data for each subject was fed into 

EEGLAB and further processed using the clean_raw EEGLAB plug in for detecting and 

separating noisy channels, drifts and flatlines from the data (Kothe et al., 2019). It applied 
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ASR (automated subspace removal) to detect and reject remaining artifacts produced by 

blinks, motion and muscle activity (Kothe et al., 2019). 

 

 

 

Event Related Potentials (ERPs) 
 

In-house MATLAB scripts using EEGLAB, as noted in the Appendix, were used 

to calculate and extract single trial ERP amplitude data both individually and across the 

group of all participants from the processed EEG data (see Appendix). The EEG data was 

segmented into separate epochs for the estimation phase, reproduction phase, on- and off- 

feedbacks using the event markers and the in-house scripts. The estimation and 

reproduction epochs were baseline corrected 1000 ms pre-stimulus whereas on- and off- 

feedback were baseline corrected from 500 millisecond prior. For the contingent negative 

variation (CNV), single trial frontocentral mean amplitudes were extracted from the 

following electrode arrays: FCz, Fz, Cz, FC1, FC2, F1, F2, C1, and C2. The mean CNV 

amplitudes from the initial and redo estimation and reproduction onset phases for an a- 

priori window from 430-598 milliseconds (Robinson & Wiener, 2020) were examined. To 

capture the Reward Positivity (RewP), the same electrode array was inspected and the 

amplitudes corresponding to the initial and redo trial and on and off feedback responses 

were extracted from a window of 400-550 ms. 
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fMRI Acquisition 
 

A Siemens Magnetom 3T whole-body MR scanner was used to acquire all 

imaging sequences. First, a localizer was performed to identify the brain’s position in 

space followed by a field map to measure the magnetic field inhomogeneity. Field 

mapping parameters were TE1=4.92ms and TE2=7.38 ms, TR=731 ms, FOV=208 mm, 

matrix (104x104) voxel size=2x2x2 mm and 72 slices were collected with a 2 mm 

thickness. Next, a structural magnetization-prepared gradient-echo-planar image (MP- 

RAGE) T1* was performed with the following values: repetition time (TR)=2300, echo 

time (TE)=2.23 ms, flip angle 8 degrees, field-of-view (FOV)=256 mm, matrix 

(256x256) 192 slices at a thickness of 0.88 mm were acquired with MP-RAGE sequence. 

The helium pump was turned off prior to the acquisition of the echo planar images (EPI) 

images. EPI T2* scans were then collected with the following parameters (TR=2390 ms, 

TE=30 ms, 90-degree flip angle, FOV: 192 mm, matrix: 94x94). Forty interleaved slices 

with a transverse orientation, a slice thickness of 3 millimeters and 2x3x3 mm voxel size 

were taken. Each participant underwent one localizer, one field map, one MP-RAGE and 

six BOLD EPI sessions. 

 

 

 

fMRI Pre-Processing Steps 
 

All pre-processing steps were performed in SPM 12 on 3D nifti files generated from 

the MP-RAGE, field map, and the six EPI T2 sequences. First, voxel displacement was 

calculated using the magnitude and phase images from the field map, followed by a slice 
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timing correction, realignment and calculation of six affine rigid movement parameters 

related to head movement and unwarping. Images were then normalized to standard 

Montreal Neurological Institute (MNI) anatomical space and mean BOLD values were 

computed, written, and smoothed. Behavioral data on onset times and durations for each 

of the various phases (estimation, reproduction, feedback) in both the initial and redo trials 

were extracted and loaded by an in-house batch processing Matlab script which then 

estimated and wrote a first order General Linear Model (GLM) for each individual 

participant using the BOLD images. 

 

 

 

fMRI-EEG Processing 
 

In-house MATLAB scripts, as noted in the Appendix, using SPM 12 loaded the 

extracted CNV and RewP amplitude EEG data, the behavioral onset and durations for all 

of the phases (estimation, reproduction, and feedback) for the initial and redo trials from 

each of the subjects, with the six processed BOLD images from each participant (see 

Appendix). The ERP amplitude regressors were parametrized and convolved with the 

hemodynamic response function so that the covaried EEG signal could be coupled with the 

mean BOLD activation. For each subject, a separate first-level general linear model for the 

combined fMRI-EEG datasets was estimated and written. Next, SPM’s contrast manager 

was used to create contrasts to examine changes in BOLD activation between the task 

phases and between the initial and redo trials of those phases in this combined dataset. The 

specified contrasts and weights were then fed into an additional in-house Matlab script and 
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a second-level group GLM was estimated and written. Afterwards in SPM, one-sample t- 

test was performed for each contrast and whole brain group level results were displayed 

with a familywise error correction for multiple comparisons at the cluster level. 

 
 

Statistics 
 

 

 

JASP 0.16 (JASP team, 2021) was used to analyze the behavioral data from the 

temporal reproduction task in the two experimental groups independently. For all the 

experiments, the data was normally distributed and passed the Shapiro–Wilks test of 

normality for the absolute temporal error, accuracy, and precision (as measured by the 

coefficient of variation (CV)). The absolute temporal error was calculated as the 

reproduced duration – target duration for Experiments II and III. The CVs was calculated 

as the standard deviation of the mean reproduced durations/participant's mean reproduced 

durations and two separate CV values were generated for the initial and redo trials. A 

linear mixed model (fixed effects: duration, trial designation, target duration; random 

effects: subjects) was used to detect changes in absolute temporal error between initial 

and redo trials in Experiment II and between the low double and high double groups in 

Experiment III. 
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RESULTS 

 

 
Behavioral Results 

 

In this section, behavioral results for Experiments I-III are presented with a focus 

on initial and redo trials. Behavioral measures tested include accuracy which reveals how 

close the reproduced duration is to target duration; and precision, which is an indication 

of timing variability, and is measured by the coefficient of variation. The absolute 

temporal error at the single trial level, calculated as the absolute value of the difference 

between the target and reproduced durations, was also measured. Experiment I will have 

an additional set of results examining the second trial CVs based on first trial status of 

whether feedback was on or off along. Second trial slopes based on first trial status of on 

or off feedback are also displayed. 

 

Experiment I: 

 

Subjects administered the on/off feedback version of the temporal reproduction 

task exhibited central tendency with overestimation of short durations and 

underestimations of long durations. The accuracy of the reproduced times for the first 

and second trials was compared and a significant main effect of duration (F(2.12,33.92) = 

291.655, p < 0.001, η = 0.948), of the trial (F(1,16) = 12.134, p = 0.03, η = 0.431) and a 

trial × duration interaction (F(2.297,36.758) = 3.527, p = 0.034, η = 0.181) were observed. 

Second trial estimates were more accurate and closer to the target durations, and there 

was less uncertainty in time estimation, as revealed by nearer estimations to the reference 

line or identity line. 
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Figure 2. Accuracy of Reproduced Durations in On/Off condition by trial type. 

The initial trial is represented by the blue solid line and the redo trial is represented 

by the red dotted line. Data are expressed as reproduced duration in seconds SEM. 

 

 

 

The second trial time estimates were also more precise (F(1,16) = 9.398, p = 0.007, 

η = 0.370), as measured by the lower coefficient of variation in the second trial estimates. 

Similar to accuracy, precision also exhibited a main effect of duration (F(1.553, 24.841) = 

8.862, p = 0.002, η = 0.356). 
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Figure 3. Temporal Precision in the On/Off Feedback Condition. 

The initial trial is represented by the blue solid line and the redo trial is 

represented by the red line. Data are expressed as the coefficient of variation 

SEM. 

 

 
 

Similar to the on-off feedback condition, the subjects in the no-feedback group 

exhibited central tendency with subjects overestimating short time intervals and 

underestimating long time intervals. More accurate reproduced temporal estimates in the 

second trial for the no-feedback group signaled that they were reproducing the time 

closer to the target duration with significant differences between the original and redo 

trials (F(1,18) = 6.2, p = 0.023, η = 0.256). Duration (F(1.49,26.92) = 123.03, p < 0.01, η = 

0.872) and the duration × trial interaction (F(3.353,60.346) = 2.786, p = 0.043, η = 0.134) also 

varied significantly between the trials despite the lack of feedback. 
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Figure 4. Reproduction Accuracy in the No Feedback Condition. 

The initial trial is represented by the blue solid line and the redo trial is 

represented by the red dotted line. Data are expressed as reproduced 

duration in seconds SEM. 

 

 

Although more temporally accurate, subjects failed to show greater temporal 

precision, as evidenced by CVs in the redo trials of the no-feedback version of the 

task F(1,18) = 1.672, p = 0.212, η = 0.085. No significant differences in precision were 

observed in the duration (F(4,72) = 1.921, p = 0.116, η = 0.096) or duration × trial 

(F(2.93,52.73) = 2.583, p = 0.064, η = 0.125). 
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Figure 5. Temporal Precision in the No Feedback Condition. 

The initial trial is represented by the blue solid line and the redo trial is 

represented by the red line. Data are expressed as the coefficient of 

variation SEM. 

 

 

The delta precision was also calculated for each subject (CVtrial2 – CVtrial1) in both 

the on/off and no feedback conditions. Notably, participants in the on/off conditions 

exhibited significantly reduced CV (higher precision) than the no-feedback 

condition t(34) = 3.234, p = 0.003 (CI: 0.0223–0.09784). 
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Figure 6. CV difference between No Feedback and Feedback 

95% confidence intervals are represented by the outer boxes, and ±one 

standard deviation are represented by the inner boxes. Individual dots 

represent both sets of participants from the two conditions. The asterisk 

indicates a significant difference at p < 0.05. 

 

 

 

An additional analysis of Experiment I involved dissecting the second trial CVs 

according to whether the first trial was on-target or off-target. Positive (on-target) 

feedback in the first trial resulted in significantly more precise estimates (lower CVs) in 

the second trial (F(1,16) = 8.106, p = 0.012, η = 0.336) performance than negative feedback 
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Figure 7. Second Trial CVs based on First Trial Feedback Status. 

The solid purple line represents the on-target responses whereas the green 

dotted line represents off-target responses. Data are expressed as the 

coefficient of variation SEM. 

 

 

The second trial slopes which measure how certain the temporal estimates were 

also dissected into whether the first trial was on-target or off-target. The individual 

slopes of the redo trials t(16) = 4.699, p < 0.001 between the first trial positive (on) and 

negative feedback (off) also varied significantly, demonstrating more certainty in 

temporal estimation following positive feedback 
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Figure 8. Second trial slope based on first trial feedback status.  

Data is represented by a scatter plot with x and y coordinates corresponding to 

on- and off-target slopes, respectively of each individual. The reference line 

represents a slope=1. 

 

 

Experiment II: 

 

A linear mixed model was performed on the absolute temporal error, showing a 

significant reduction in the redo trial when compared to the initial trial (p<0.015, F 

(1,190.7)=6.039. Essentially, timing performance improved when provided a second 

chance. 
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Figure 9. Absolute temporal error by trial type in fMRI-EEG. 

The initial trial is represented by the pink dots and the redo trial is 

represented by blue dots. Data are expressed as target duration-reproduced 

duration  95% confidence interval. 

 

 

A repeated measures ANOVA revealed that the participants’ reproduced 

durations for the redo trials were also more accurate, thus nearer to the target duration 

and the identity line when compared to the initial trial p<0.001, F (1,22) =14.146, 

=0.001, again showing an improvement in temporal estimates. There was also a main 

effect duration p<0.001, F (1.83, 41.422)=680.058), =0.957. 

(s
) 
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Figure 10. Accuracy of Reproduced Durations by trial type in fMRI-EEG. 

The initial trial is represented by the red solid line and the redo trial is represented 

by the blue solid line. Data are expressed as reproduced duration in seconds SEM. 

 

 
 

Participants, however, did not display significantly better precision (lower 

coefficient of variation) in their redo trials p<0.225, F (1,1.562), but did exhibit a main 

effect of duration F (4,26.239) p<0.001. 
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Figure 11. Temporal precision by trial type in fMRI-EEG. 

The initial trial is represented by open circles and the redo trial is 

represented by solid circles. Data are expressed as the coefficient of 

variation SEM. 

 

 
 

Experiment III: 

 

Another linear mixed model was performed to compare the absolute temporal 

error between the low double (20 single:80 double) trial and high double (80 single:20 

double) trial groups. Low-double group participants had significantly lower absolute 

temporal errors overall F (1,35.06) =6.433, p<0.016 than high-double group, 

demonstrating that when given only one chance, participants are more likely to exert 

more effort than when provided with two opportunities. Also, participants may be 

learning the underlying structure of the environment, adapting and anticipating either 

having a single or double trial. Similarly, to experiment I, both groups had significantly 
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reduced absolute temporal errors in the redo trial F (1,35.92) =15.326, p<0.001 and a 

main effect of duration F(1, 36.46)=68.285, p<0.001. 

 

 

 

 
 

 

Figure 12. Absolute temporal error by trial and group type in uncertain environments. 

Low double group participants are represented by solid dots and high double group 

participants by solid triangles. Data are expressed as target duration – reproduced 

duration  95% confidence interval. 

 

 
 

Accuracy, computed as the mean reproduced durations, did not significantly differ 

between the low-double or the high-double groups F (1,35) =0.173, p<0.680. Regardless 

of which group a participant was assigned, there was a main effect of trial with 

significantly more accurate redo trial estimates F (1,35) =15.121, p<0.001, =0.008 and 
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duration F(4,140)=3.972, p<0.004 =0.864 in concert with a duration x group interaction 

F(4,140)=3.972, p<0.004, =0.007. 

 

 

 

 

 

 

 

Figure 13. Accuracy of reproduced duration in uncertain environments by group type. 

Low double group participants are represented by open circles and high double group 

participants are represented by closed circles. Data are expressed as reproduced 

duration  SEM. 

 

 
 

Participants in the low double group exhibited significantly more precise (lower) 

estimates than those in the high double group F (1,35) =8.69, p<0.006, =0.114, 

indicating that an environment with less opportunities to make a second temporal 

estimate will reduce the sensory noise. Lowered CVs and enhanced precision were 

observed in the redo trials F (1, 35) =19.678, =0.012. 
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Figure 14. Temporal precision in uncertain environments by group type. 

The low double group is represented by open circles and the high double group 

is represented by solid circles. Data are expressed as the coefficient of variation 

SEM. 

 

 

 

Electrophysiology Results 
 
 

Contingent Negative Variation 
 

The mean subject CNV ERP (window: 430-598 ms) for the Estimate phase of the 

task were plotted and waveforms were dissected into initial and redo trials for all of the 

durations. Since the data was not normally distributed according to the Shapiro-Wilks 

test, the Wilcoxon rank sum test was performed and no significant differences in 

Estimation phase mean amplitudes were observed between the initial and redo trials 

collapsed across the durations W=151, z=0.395, p<0.709 (CI: -0.356-0.509). 
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Initial and redo trials during the reproduction phase of the CNV were also 

plotted. A paired t-test demonstrated that there were no significant differences in the 

mean reproduction phase amplitudes collapsed across durations between the initial and 

redo trials t (22) =1.058, p<0.302 (CI: -1.116-3.441). A local peak between 3000-3500 

ms in the reproduction phase, although not significant between the initial and redo trials, 

is of note because the CNV usually tracks the average of the target durations and the 

mean duration for this study is 3360 milliseconds. 

 

 

 

 
 

 
Figure 15. Mean Subject CNV for Estimation and Reproduction 

Phases initial and redo trials. The initial trial is represented by a blue line 

whereas the redo trial is represented by a red line. Data are expressed in µV. 
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Reward Positivity 
 

The mean subject RewP ERP (window: 400-550 ms) for the On-Target and Off- 

Target feedbacks were plotted for both feedback conditions. On- and Off-target ERPs 

were separated into the initial and redo trials for the aggregate durations (data not shown). 

No significant differences in amplitudes were seen between redo and initial trials for either 

the On- or Off-target conditions. 

 

 

 

Imaging Results 
 

The fMRI only and the EEG-informed fMRI peak activation contrasts were all 

cluster corrected at p<0.05 and voxel wise at p<0.001, with the exception of the Reproduce 

Redo-Reproduce Initial contrast which was uncorrected with a voxel wise p<0.001, k=10. 

All contrasts had a familywise error correction for multiple comparisons at the cluster level. 

 
 

Estimate Initial – Estimate Redo Contrast 
 

EEG-Informed fMRI Peak activations in the Estimate Initial – Estimate 

Reproduce contrast were derived from the mean subject CNV amplitudes parametrized 

onto the BOLD signal. Neural activations were seen bilaterally in the supplementary 

motor area (SMA), the middle cingulate gyrus, and a low activation of the right 

precentral gyrus medial segments. The SMA was likely involved in the initial encoding 

of the interval durations whereas the precentral gyrus was activated to ready for 

movement preparation. 
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Estimate Redo- Estimate Initial Contrast 
 

The fMRI Peak activations for the contrast Estimate Redo – Estimate Initial 

displayed high BOLD activations in the bilateral calcarine cortex, bilateral lingual gyrus, 

left cuneus, left occipital pole, and the left occipital fusiform gyrus. These are all visual 

processing areas and indicate that the subject is observing and fixating on the blue square 

in order to encode it. 

 
 

Table 2. Estimate {Initial -Redo} and Estimate {Redo-Initial} fMRI Activations 

Contrast 

Condition 

Location Hemisphere x y z t-score Cluster 

size 

Estimate {Initial - 

Redo}-EEG 
Informed 

Supplementary 

Motor Cortex, 

L,R -6 -6 53 5.21 125 

 Middle 

Cingulate Gyrus 
L 0 -6 38 4.58  

 Middle 

Cingulate Gyrus 
R 2 -14 41 4.40  

 Supplementary 

area 
R      

 Precentral gyrus 
medial segment 

R      

Estimate {Redo- 
Initial} 

Calcarine cortex L,R -2 -92 -4 5.45 116 

 Lingual Gyrus L,R      

 Cuneus L      

 Occipital Pole L      

 Lingual Gyrus L -12 -83 -7 4.96  

 Occipital 

fusiform gyrus 
L      
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Figure 16. High BOLD in Estimate {Initial-Redo} and Estimate {Redo–Initial} 

Contrasts. Arrows are bidirectional. Neural activation in Estimate Initial – Estimate 

Redo is an EEG-Informed fMRI Peak activation whereas the Estimate Redo- 

Estimate Initial is an imaging only contrast. Cluster corrected at p<0.05 and voxel 

wise at p<0.001, FWE corrected. 

 

 

 

Reproduce Initial – Reproduce Redo 
 

Neural activations in the Reproduce Initial – Reproduce Redo contrasts were 

detected in the bilateral SMA (mainly right hemisphere), the exterior cerebellum, right 

superior frontal gyrus, the right anterior cingulate gyrus, left postcentral gyrus, left 

supramarginal gyrus, right calcarine cortex, bilateral thalamus, posterior insula, bilateral 

caudate, right putamen, right hippocampus, right posterior insula, right pallidum, right 

accumbens. Here, in addition to time-perception related areas (SMA, supramarginal 

gyrus, basal ganglia), and interoceptive awareness (insula), activation was observed in 

memory related regions (hippocampus) as the encoded time is recalled and performance 
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is monitored (superior frontal gyrus and anterior cingulate cortex) when decisions about 

the duration are made in the initial and redo trials. Notably, activation was also exhibited 

in the cerebellum, a region that has been associated with error learning. Previously, 

higher cerebellar activity has been viewed in fMRI studies in trials with sensory errors 

than trials without errors (Diedrichsen et al., 2005; Schlerf et al., 2012). The cerebellum 

also plays a role in performance monitoring, error processing, and feedback learning 

(Peterburs & Desmond, 2017) in conjunction with predictive timing and the regulation of 

trial-by-trial variation in self-timing (Tanaka et al., 2020), particularly due to connections 

with the frontoparietal cortices (Tanaka et al., 2020). 

 
 

Reproduce Redo-Reproduce Initial Contrast 
 

Task-related BOLD activations in the Reproduce Redo-Initial contrast were 

observed in the bilateral medial frontal cortex, bilateral gyrus rectus, bilateral superior 

frontal gyrus medial segment and the left medial orbital gyrus. Recruitment of brain 

regions in performance monitoring (medial frontal cortex) and working memory (superior 

frontal gyrus) (Algapan et al., 2019) are displayed in the reproduction phase, 

demonstrating a mechanism for error detection and correction. 
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Table 3. Reproduce {Initial -Redo} and Reproduce {Redo-Initial} fMRI Activation 

Contrast 

Condition 

Location Hemisphere x y z t-
score 

Cluster 

size 

Reproduce 

{Initial – 

Redo} 

Calcarine Cortex R 19 -71 8 6.13 1228 

 Cerebellum 
Exterior 

R 19 -59 -16 5.67  

 Supplementary 

motor cortex 

R, L 4 27 56 6.88 363 

 Superior frontal 

gyrus 
R      

 Superior frontal 

gyrus medial 

segment 

R, L 0 37 32 5.34  

 Anterior Cingulate 

Gyrus 
R 4 29 35 5.17  

 Caudate R 9 4 -1 5.33 248 
 Pallidum R      

 Thalamus R 9 -2 5 5.32  

 Accumbens Area R      

 Caudate L -10 -2 20 4.48  

 Thalamus L      

 Hippocampus R 33 -24 -4 5.50 108 
 Putamen R      

 Posterior Insula R      

 Thalamus L -22 -22 14 6.04 85 
 Postcentral gyrus L -55 -26 50 6.37 84 

 Supramarginal 
gyrus 

L      

Reproduce 

{Redo- 

Initial} 

Medial frontal 

cortex 

L, R -2 47 -16 5.07 107 

 Gyrus Rectus L      

 Medial frontal 

cortex 

L, R -2 58 -7 4.43  

 Superior Frontal 

Gyrus Medial 
Segment 

L, R      

 Gyrus Rectus L, R -2 45 -25 3.78  

 Medial Orbital 

gyrus 
L      
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Figure 17. High BOLD in Reproduce{Initial-Redo} and Reproduce{Redo-Initial} 

Contrast. Note that the top contrast is cluster corrected at p<0.05 and voxel wise at 

p<0.001 but the bottom is uncorrected, p<0.001, k=10. Both are FWE corrected. 

 

 

 

Estimation Initial – Reproduction Initial Contrast 
 

BOLD activations were seen in the bilateral superior frontal gyrus, right middle 

frontal gyrus, left middle occipital gyrus, right post- and pre-central gyrus, left angular 

and supramarginal gyrus (SMG), left and right precuneus, bilateral posterior cingulate 

gyrus. In this inter-phase contrast, more parietal involvement for time perception (angular 

gyrus and SMG) along with pre-central gyrus for motor movement was observed in 

conjunction with the recruitment of structures associated with the default mode network 

(posterior cingulate gyrus) and metacognition (precuneus). 
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Reproduction Initial – Estimation Initial Contrast 
 

Neural activations were observed in the left pre- and postcentral gyrus; bilateral 

SMA; bilateral middle cingulate gyrus; bilateral superior frontal gyrus, left central 

operculum, left parietal operculum, left supramarginal gyrus, right occipital pole, right 

cuneus, right calcarine and lingual cortex, and superior occipital gyrus. The SMA is 

recruited again when re-creating the interval duration jointly with timing-related, parietal 

brain areas to include the SMG, left central, or parietal operculum. High detection of 

activity in the superior frontal gyrus also reiterates the brain’s performance monitoring 

system is online. Visual processing of the stimuli is emphasized again due to the eliciting 

of the BOLD signal in the occipital lobe. 

 
 

Table 4. Estimate and Reproduce Initial fMRI Activations 

Contrast 

Condition 

Location Hemisphere x y z t-score Cluster 

size 

Estimateinitial - 

Reproduceinitial 

Superior frontal 

gyrus 

L -18 43 47 7.82 2353 

 Middle frontal 
gyrus 

R 33 29 53 6.72  

 Superior frontal 
gyrus 

R      

 Angular gyrus L -53 -61 38 5.28 276 

 Supramarginal 

gyrus 
L      

 Middle occipital 
gyrus 

L -49 -67 26 5.26  

 Precentral gyrus R 35 -20 53 5.70 118 
 Postcentral gyrus R      

 Precuneus R,L 0 -55 23 4.72 129 

 Posterior 

Cingulate gyrus 

R,L      
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Reproduceinitial 
-Estimateinitial 

Precentral gyrus L -40 -16 53 8.85 1083 

 Postcentral 

gyrus 

L      

 Supplementary 

motor area 

L -4 -2 53 7.96 588 

 Middle cingulate L, R      

 Superior frontal 
gyrus 

L -6 -4 74 7.16  

 Superior frontal 

gyrus 

R 6 -2 74 4.82  

 Supplementary 
Area 

R      

 Occipital pole R 15 -92 14  225 
 Cuneus R      

 Calcarine cortex R      

 Superior occipital 
gyrus 

R      

 Lingual gyrus R 9 -87 -4   

 Central operculum L -57 -20 20  154 
 Postcentral gyrus L      

 Parietal 
operculum 

L      

 Supramarginal 

gyrus 

L      

 

 

 

 

 

 

Figure 18. High BOLD in Estimate-Reproduce{Initial} & Reproduce-Estimate 

{Initial}. Cluster corrected at p<0.05 and voxel wise at p<0.001,FWE corrected 
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Estimation Redo-Reproduction Redo Contrast 
 

Task related activations were witnessed in the bilateral posterior cingulate, 

bilateral middle cingulate gyrus, right middle frontal gyrus, right triangular and opercular 

part of the inferior frontal gyrus, right inferior temporal gyrus, right middle and superior 

temporal gyrii, left cuneus and bilateral precuneus respectively, right superior frontal 

gyrus, bilateral superior frontal gyrus medial segment, anterior cingulate cortex, right 

frontal pole, bilateral angular gyrus, and left supramarginal gyrus. Regions related to 

forming duration judgements (inferior frontal gyrus, bilateral angular gyrus and SMG) 

along with self-awareness (precuneus) and the default mode network (posterior cingulate 

cortex) have high BOLD activation when comparing the redo trials between phases. 

 
 

Reproduction Redo – Estimation Redo Contrast 
 

BOLD activations were seen in the bilateral SMA and the right superior frontal 

gyrus, signaling the sharpening of temporal estimates in the second (redo) trials in 

conjunction with invoking the brain’s performance monitoring system (superior frontal 

gyrus). 

 
 

Table 5. Estimate and Reproduce Redo fMRI Activations 

Contrast 
Condition 

Location Hemisphere x y z t-score Cluster 
size 

Estimateredo- 

Reproduceredo 

Frontal Pole R 15 66 17 5.39 971 
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 Superior frontal 

gyrus medial 
segment 

L,R -2 49 17 5.01  

 Anterior 
cingulate gyrus 

L,R      

 Superior frontal 

gyrus 
R 9 39 53 4.98  

 Middle frontal 
gyrus 

R 49 31 22 6.13 453 

 Triangular part 

of the inferior 

frontal gyrus 

R      

 Opercular part 

of the inferior 
frontal gyrus 

R 45 13 26 4.94  

 Precentral gyrus R      

 Precuneus L -6 -73 32 6.02 432 

 Superior 

occipital gyrus 
L -14 87 35 4.89  

 Cuneus L      

 Precuneus R 13 -67 44 4.85  

 Posterior 
cingulate 

L, R -2 -36 29 7 297 

 Middle 
cingulate gyrus 

R,L 0 -28 23 5.31  

 Precuneus R,L 2 -45 35 3.69  

 Angular gyrus R 53 -61 38 4.74 296 

 Middle 

occipital gyrus 
R 43 -65 26 4.33  

 Angular gyrus L -51 -61 35 5.36 255 

 Supramarginal 
gyrus 

L -55 -53 44 4.31  

 Inferior 

temporal gyrus 
R 56 -43 -13 6.08 253 

 Middle 

temporal gyrus 
R 47 -36 -7 4.89  

 Superior 

temporal gyrus 

R 43 -22 -7 4.41  

Reproduceredo- 
Estimateredo 

Supplementary 
Motor area 

L -6 -2 56 6.34 261 

 Supplementary 
Motor area 

R 4 -2 56 6.34  

 Superior frontal 

gyrus 

R 15 2 68 4.90  
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Figure 19. High BOLD in Estimate-Reproduce{Redo} and Reproduce-Estimate 

{Redo}Cluster corrected at p<0.05 and voxel wise at p<0.001, FWE corrected. 

 

 

 

On Feedback redo- On Feedback initial Contrast 
 

Positive feedback associated activations were observed in the pre- and postcentral 

gyrus, left superior parietal lobe, right precuneus, bilateral anterior and posterior insula, 

left planum temporale, right entorhinal area, left putamen, left hippocampus, left 

pallidum, left calcarine cortex and bilateral cuneus. On-target feedback recruited the 

basal ganglia areas for reward (putamen and pallidum), memory related regions 

(hippocampus and entorhinal area), the insula (interoceptive awareness of time) and the 

superior parietal lobe (spatial awareness and visual attention). Detection of activity in the 

precuneus also showed an awareness of successful timing performance. 
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Figure 20. High BOLD activation in the On-Target{Redo-Initial}trial phases. 

Cluster corrected at p<0.05 and voxel wise at p<0.001, FWE corrected 

 

 

 

Off Feedback Redo-Off Feedback Initial Contrast 
 

Negative feedback related activations were seen in the following areas: left 

calcarine gyrus, left lingual gyrus, bilateral precuneus, left post- and precentral gyrus, left 

parietal operculum, planam temporal, left supramarginal gyrus, left posterior insula, left 

transverse temporal gyrus, and left putamen. Off-target feedback activated more visual 

processing areas (calcarine and lingual gyrus), metacognition (precuneus) and parietal 

timing related areas (parietal operculum and supramarginal gyrus) in concert with fewer 

basal ganglia areas (putamen). The transverse temporal gyrus, an auditory region, also 

showed heightened BOLD response, indicating the temporal representation occurs via the 

auditory cortex because it is optimized for time perception (Amadeo et al., 2020). 

 
 

Table 6. Positive and Negative Feedback fMRI Activations 

Contrast 

Condition 

Location Hemisphere x y z t-score Cluster 

size 
Onredo-Oninitial Precuneus R 15 -55 8 6.65 548 

 Cuneus L -18 -69 20 5.42  
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 Calcarine 

cortex 
L -16 -65 8 5.37  

 Precentral gyrus L -43 -18 62 6.98 418 

 Postcentral 
gyrus 

L -36 -36 65 5.52  

 Superior 

parietal lobe 

L      

 Anterior Insula R 37 6 -13 6.03 201 
 Posterior Insula R      

 Entorhinal area R      

 Central 

operculum 

R 41 4 8 4.75  

 Frontal 

operculum 

R      

 Putamen L -32 -20 4 6.02 154 
 Posterior insula L      

 Hippocampus L      

 Planum polare L      

 Pallidum L      

 Posterior insula L -40 14 8 5.59  

 Central 

operculum 

L      

 Transverse 

temporal gyrus 

L      

 Anterior insula L      

 Postcentral 
gyrus 

L -20 -38 71 6.73 150 

 Superior 

parietal lobe 

L -30 -53 65 5.26  

 Cuneus L, R 0 -83 26 4.75 88 
 Occipital Pole L -4 -94 23 4.50  

Offredo-Offinitial Postcentral 

gyrus 

L -43 -22 50 6.60 416 

 Precentral gyrus L -34 -8 65 5.84  

 Supramarginal 

gyrus 

L -45 -26 32 5.30  

 Calcarine L -22 -65 2  202 
 Lingual gyrus L      

 Precuneus L      

 Cuneus L -14 -67 11   

 Posterior 
cingulate 

L -14 -57 -1   

 Parietal 

operculum 

L -49 -28 20  83 

 Planum 
temporale 

L -57 -30 11   



88  

 Central 

operculum 
L -57 -20 20   

 Posterior Insula L -32 -20 2  72 
 Putamen L      

 Transverse 

Temporal gyrus 

L      

 Planum polare L -45 -16 -1   

 Lingual gyrus R 13 -63 2  67 

 Calcarine 
cortex 

R 25 -63 2   

 Precuneus R 23 -63 11   

 

 

 
 

 

Figure 21. High BOLD activation in Off-target{Redo-Initial} trial phases. 

Cluster corrected at p<0.05 and voxel wise at p<0.001, FWE corrected. 

 

 

 

Estimate – Reproduce Contrast 
 

EEG-Informed fMRI Peak activations for the contrast Estimate – Reproduce 

contrasts (not separated by redo or initial trials) were derived from the mean subject CNV 

amplitudes parametrized into the BOLD signal and were cluster level corrected at p<0.05 

and voxel wise 0<0.001 (data not shown). Time-related activations were seen in the left 

opercular and triangular part of the inferior frontal gyrus, left middle gyrus, and the left 

precentral gyrus. Activation of the IFG, which is implicated in time perception provides 

further biological evidence for the CNV’s role in modulating duration judgements. The 



89  

left precentral gyrus is activated due to movement from the right-hand keypress of the 

button box. 

 
 

Estimate – Contrast 
 

EEG-Informed fMRI Peak activations for the contrast Estimate (not fractionated 

by redo or initial trials) were also derived from the mean subject CNV amplitudes 

parametrized into the BOLD signal and were cluster level corrected at p<0.05 and voxel 

wise 0<0.001 (data not shown). Neural activations were seen in the right transverse 

temporal gyrus, right parietal and central operculum, right posterior insula, right planum 

temporale and right thalamus proper, and the right putamen. Basal ganglia, insular, and 

parietal involvement related to time perception in association with the transverse 

temporal gyrus, an auditory region. The activation of the transverse temporal gyrus 

aligned with the finding that auditory cortex may also represent complex visual stimuli 

due to its supra-modal, privileged role in temporal representation and the finding that 

early visual processing of time recruits the temporal cortex (Amadeo et al., 2020). 



90  

DISCUSSION 

 

 

 

 
Behavioral and electrophysiological evidence suggest that humans and rodents 

can monitor errors during timing behavior (Akdogan & Balci, 2017; Kononowicz et al., 

2019; 2022). Studies reveal that subjects are cognitively aware of the timing errors they 

make, particularly when learning to time interval durations, which happens rapidly and 

within one trial (Simen et al., 2011). In Experiment I, I demonstrated that when allowed to 

“re-do” a trial, humans can incorporate non-directional feedback to improve timing 

estimates both in accuracy and in precision (Bader & Wiener, 2021). Novel in using a 

mixed range of interval durations rather than a single duration, this experiment also showed 

that in the absence of feedback, the accuracy of time reproductions improved whereas the 

precision did not. These results revealed that humans are aware of the direction of their 

timing error; however, feedback was needed to make timing more precise. Next, a 

simultaneous fMRI-EEG paradigm (Experiment II) was used to determine the neural 

regions underlying this improvement in timing estimation. Afterwards, an additional 

follow-up behavioral experiment (III) using the same time reproduction paradigm further 

informed how temporal judgement responses were performed in uncertain environments. 

The behavioral results of the fMRI-EEG were also highly illuminating. The redo 

trial integrated the feedback and improved timing, the absolute temporal error decreased, 

and the accuracy of the temporal estimates was improved with reproduced targets 

approaching their target durations. In contrast to our earlier behavior-only study using this 
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same paradigm, temporal precision was not enhanced (Bader & Wiener, 2021) in the fMRI- 

EEG study. This may have stemmed from participants’ immersion in the scanner 

environment and the more involved set-up with application and recording from EEG 

electrodes. 

Benefits gained from the second redo trial were also observed in Experiment III 

despite its varying ratio of single and double trials in the two groups. Both the high double 

and low double groups had reduced absolute temporal error and more accurate temporal 

judgements during the redo trial. Regardless of the group assignments, precision also 

improved with the second opportunity to recreate the interval duration. Notably, the low 

double group had more significant reduction in the absolute temporal error and enhanced 

precision, which may indicate that the participants in both groups were learning the 

underlying structure of the initially uncertain environment and adapting to it. This finding 

aligns with a study showing that participants can learn the temporal statistics and trial 

structure of a novel, uncertain environment and adapt its timing processes accordingly 

(Jazayeri & Shadlen, 2010). In the high double group, participants may have realized that 

there would be another opportunity by the preponderance of double trials and tracking of 

reward history. High double group participants failed to perform their best in the initial 

trial, secure in the knowledge that they would have another opportunity in the later redo 

trial to optimize their performance. Conversely, in the low double group, participants 

exhibited metacognitive awareness that they would have only one chance; therefore, their 

first opportunity would have to count more. Expectedly, low double group members 

contributed more effort and produced better timing estimates. 
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Revisiting the baseball analogy from the beginning, in situations with a 100% of a 

second chance swing (Experiment II), batting improved in the second try. In situations of 

uncertainty (Experiment III) the probability of attaining that second chance altered the 

performance. In conditions where there was a high probability of a second opportunity, 

batters decided that if the first swing fails to count, why give it your best? However, if 

second redo swings are a rare occurrence, then that first swing needed to be optimized as it 

had to be the most successful. 

Our imaging results reinforced the behavioral results but also reiterated the 

importance of the supplementary motor area in representing temporal information and 

measuring time, which has been demonstrated repeatedly in the time perception literature 

(Ferrandez et al., 2003; Coull et al., 2004; Pouthas et al., 2005; Macar et al., 2006). The 

initial recruitment of the SMA indicated that the duration was encoded in the estimation 

phase and was invoked again in the redo trials during reproduction. The EEG-informed 

fMRI activations during the Estimate initial – redo contrast further confirmed the SMA’s 

pivotal role and showcased the covariation of both the BOLD signal and the 

electrophysiological signals in the time course of the CNV. This finding aligned with the 

behavioral data and the sharpening of temporal responses and was reflected by a 

reduction in temporal errors and an improvement in accuracy in the second, redo trial in 

the fMRI-EEG experiment. 

Neural activation in performance monitoring network structures (superior frontal 

cortex, medial frontal cortex, anterior cingulate cortex) suggested the co-occurrence of 

temporal error detection and correction in concert with the activation of the timing 
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network. A high BOLD signal displayed in these regions was linked with tracking and 

correcting errors, behavioral inhibition, feedback evaluation and cognitive control (Van 

Noordt & Segalowitz, 2012) and was witnessed when the participants recreated the 

duration using a keypress during reproduction. Performance monitoring tended to come 

online when learning a new task; therefore, the co-activation of the two networks was not 

unexpected. Also, the basal ganglia are activated throughout the task, a common 

biological substrate for both time perception networks and performance monitoring. 

Learning to time when given a second opportunity involved the default mode 

network (posterior cingulate) as humans mentalized time to improve their estimates, as 

indicated by PCC activation. Structures associated with metacognition (precuneus) that 

have connections with the DMN showed enhanced activity during temporal reproduction 

in our experiment, indicating a self-awareness of timing ability and performance. Studies 

addressing the interaction of time perception with the DMN are sparse; however, an 

experiment using a temporal expectation task of periodic and non-periodic motion to test 

temporal attention showed recruitment of the DMN during the periodic motion condition 

(Carvallho et al., 2016). Study authors attributed this recruitment to increased familiarity 

and predictability of the stimulus and a reduction in task difficulty following successful 

learning of a novel task, resulting in attenuated attentional engagement (Carvallho et al., 

2016). Applying this explanation to our temporal reproduction task would lead to the 

conclusion that as a participant learned to make accurate duration judgements and the 

task became more habitual, the resting state network become more engaged. 
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Alternatively, the length of an interval duration to be tracked (short or long) can 

determine whether the DMN will become involved (Morillon et al., 2009). A time 

discrimination study in which participants had to report the longer duration or hue 

between two sequentially presented circles recruited the DMN when there were temporal 

errors for longer durations exceeding two seconds while the motor system tracked time 

for less than two seconds (Morillon et al., 2009). BOLD activity in the SMA decreased 

after two seconds whereas activity in the posterior cingulate cortex increased after two 

seconds, substantiating this finding. Additionally, heightened activity in the DMN was 

not limited to only the medial prefrontal cortex and the posterior cingulate cortex but also 

the inferior temporal cortex, particularly in response to under-reproduction of time 

(Morillon et al., 2009). Since our current study employs four target durations over two 

seconds, it is not surprising that the DMN is invoked. Future studies can examine the 

interaction of the DMN network and time perception network more deeply. 

A comparison and contrast of the positive or negative feedback brain responses is 

also important to address. Aside from the greater visual processing area recruitment and 

heightened activity in the occipital lobe in the off-target condition which was likely due 

to enhanced visual attention to the stimuli in an incorrect trial, there is little to distinguish 

the profiles between the two conditions. Basal ganglia and insular activation are 

witnessed in both feedback conditions while less so in the off-target condition which only 

has putamen activation whereas on-target included both the putamen and pallidum 

activity. The positive feedback condition displayed more memory-related activity with 

the hippocampus and the entorhinal cortex. It was also puzzling to note the lack of 
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frontal cortical activity in either condition as the medial frontal cortex has been 

implicated as one of the source generators of the RewP (Carlson et al., 2011; Foti et al., 

2011; Becker et al., 2014). 

In a future iteration of this study, we can measure the awareness of temporal 

errors more directly and the neural regions implicated therein. Using the absolute 

temporal error from our behavioral data as a regressor and parametric modulator in the 

general linear model for BOLD activity is a method devised to demonstrate how the 

magnitude of the error modulates hemodynamic activity in networks related to timing, 

performance monitoring, and the resting state/default mode network. A dissection and 

separate analysis of each of the five durations used in the study with this temporal error 

regressor, or alternatively, the ERPs, the imaging, and the EEG-informed fMRI BOLD 

activations would also be enlightening, given different brain areas and networks are 

recruited depending on the length of the time duration. 

With reference to event-related potentials, another ERP that we could examine 

is the Pe, or error positivity, a biomarker of conscious error awareness that has been linked 

to metacognition (Boldt & Yeung, 2015; Charles et al., 2013; Yeung & Summerfield, 

2012). The ERP functions as a marker of evidence accumulation of knowledge for error 

commission (Steinhauser & Yeung, 2010; Ullsperger et al., 2014). As a post-decisional 

ERP, the Pe is also associated with confidence levels. In future studies, the error 

positivity (Pe), an ERP biomarker of error awareness, can also be related to confidence 

levels since higher Pe amplitudes are linked to lower confidence in simple decision task 

performance (Boldt & Yeung, 2015). 
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While the EEG-informed component of this study was focused on extracting 

data from event-related potentials, an extension of this study may integrate more time- 

frequency components. Inclusion of these time frequency components may be able to 

tease out more EEG-informed fMRI results from our study particularly from the feedback 

conditions, as this has been an ongoing limitation. Timing errors have been linked to 

oscillatory activity; therefore, a power spectral analysis of oscillatory components related 

to timing and metacognitive could yield additional regressors for the GLM to predict 

BOLD activity in time perception networks. Frontal theta oscillations are a good 

candidate due to their involvement in error processing and cognitive control (Ullsperger 

et al., 2014; Cavanagh & Frank, 2014). Studies show that inter-trial phase reset of the 

theta band can be modulated by both error magnitude (higher reset with larger errors) and 

incorrect temporal prediction (Barne et al., 2017). 

The delta oscillation is another frequency band implicated in error processing 

stemming from studies that have linked delta with error corrections, anticipatory 

responses, and future behavioral adjustments following an incorrect trial (Barne et al., 

2017; Arnal et al., 2014; Arnal & Giraud, 2012). Delta oscillations also have a role in 

temporal prediction and response accuracy in temporal judgement tasks (Barne et al., 

2017; Arnal et al., 2014; Arnal & Giraud, 2012). Beta oscillations are yet another suitable 

choice as higher beta power (13-30Hz) has also been associated with encoding longer 

temporal durations and ability to self-deduce timing errors (Kononowicz et al., 2019) 

while alpha-beta phase coupling has been connected to precision in self-generated time 

intervals (Grabot et al., 2019). Beta power is also predictive of the post-interval alpha 
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power metacognitive readout coding for the duration estimate (Kononowicz and 

Wasserhove, 2019). Alpha power is yet another candidate because it is a BOLD correlate 

of EEG synchronization associated with resting state network activity (Jann et al., 2009). 

With an array of oscillatory components to choose from, any of these bands would be a 

valued biomarker for further exploratory analysis. 

Another time-frequency decomposition analysis involves exploring event 

related spectral perturbation (ERSPs) in order to examine synchrony and desynchrony in 

brain areas. Comparing the ERSPs of the CNV between the initial and redo trials during 

the estimation and reproduction phases may offer insights on the neural substrates of time 

awareness. Again, this measure can once again be fed into the GLM model to determine 

if it can modulate BOLD responses in timing networks. Incorporating the initial and redo 

ERSPs for the feedback phases can also demystify our feedback results along with 

enhancing our understanding of what happens neuronally when offered a second 

opportunity to encode and recreate a temporal duration. 

Behaviorally, another future research direction would integrate a self- 

reporting tool to rate confidence in temporal estimates post-judgement, a feature seen in 

many temporal metacognition studies (Akdogan & Balci, 2017; Kononowicz et al., 

2019). The confidence measure may also include a self-evaluation of magnitude and 

direction to describe proximity to the target duration. These confidence values can be 

compared to the actual performance to provide an estimate of timing self-awareness. 

Furthermore, including this component whilst inside the scanner would confirm the 

neural regions involved in self-appraisal of timing and of confidence. 
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CONCLUSIONS 

 

 

 

 
With the rich repository of data gathered from these experiments, there are a 

multitude of exploratory options to further comprehend the neural substrates of temporal 

learning and metacognition. Each avenue reveals a new facet of learning how to time. 

The sheer speed at which we learn to time visual durations is notable. Regardless of the 

feedback condition (adaptive, non-directional or none) and context (scanner or behavior 

only) or the frequency in type of trials (high single or high double), participants excelled 

at learning to infer the pattern of interval durations, incorporated the guidance supplied 

by the feedback, and improved their time reproductions by the second try. This confirmed 

the robustness of human learning of time estimation and re-emphasized that it can be 

done rapidly and in one trial as proposed by Simen et al. (2011). 

My fMRI-EEG experiments demonstrated that timing systems co-activated with 

performance monitoring and error detection systems at various stages of time 

reproduction. To more thoroughly investigate this co-activation and subsequent 

interaction, we may analyze the fMRI connectivity patterns between the various brain 

areas involved in time perception and performance monitoring using graph theory, a 

technique where cortical or subcortical regions are represented by nodes and the direct or 

indirect connections between them are symbolized by edges (Bullmore & Sporns, 2012; 

Farhani et al., 2019). This method would supply further insight into the patterns, 
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clustering, path length distances, and strength and number of connections between the 

two brain systems (Bullmore & Sporns, 2012). 

Network analysis using graph theory can also unravel the interaction between 

traditionally timing related areas to that of resting state network brain regions. Bridging 

the gap between mentalizing time and then accurately reproducing it, a dual DMN and 

time perception network analysis may pave the path for further probing how we 

formulate and maintain an awareness of time. 

Timing self-awareness, while witnessed behaviorally in accuracy and precision 

improvements in time reproductions, may also be surmised through activation of 

structures associated with metacognition, including the precuneus or the posterior 

cingulate. Metacognition can be confirmed by incorporating measures of confidence (e.g., 

Pe). Another fMRI-EEG study using these advanced fMRI connectivity techniques to tie 

the neural activations between the confidence-related structures to the metacognitive 

regions would generate further evidence, and supplemented by behavioral self-report, 

solidify our findings. 

Learning to time, knowing when we make a timing error, and adjusting to and 

learning from that error in the future are fundamental to the acts of daily living. These 

abilities are necessary for performance of any discrete motor action that permits multiple 

tries whether it be from hitting a baseball to performing day-to-day tasks (e.g., driving 

through traffic lights) to enacting a timing decision that employs a redo. The delivery of 

correct feedback aids and abets these abilities, but what if the feedback regime is 

incorrect or skewed? A future study exploring this possibility can evaluate how altered 
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feedback impacts time perception by shifting the distribution away from the reproduced 

intervals, akin to motor adaptation studies. An example would be to test how altered 

visual feedback impacts performance on a reaching task (Gaffin-Cahn et al., 2019) with a 

time perception component. In that same regard to modulating feedback, future studies 

can also modulate the cost associated with error correction, particularly in timing studies 

related to sensorimotor learning (Sedhagat-Nejad & Shedmahr, 2021). An error incurs a 

time and energy cost to rectify it; therefore, adjusting the error cost can influence learning 

rate so that larger error costs increase the brain’s learning rate (Sedhagat-Nejad & 

Shedmahr, 2021). 

While the three experiments comprising this study clearly enrich the narrative on 

temporal processing and the impact of feedback on neurotypical populations, they also 

provide a window into what may occur when timing mechanisms are impaired, 

particularly in relationship to temporal metacognition and learning. When extended to 

clinical conditions, the possibilities for identifying and understanding timing disruptions 

are replete with boundless new possibilities for research inquiry. 
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APPENDIX 
 

 

 

List of MATLAB code that was used: 

 

batch_dicom2nifti_fMRIEEG.m 

% Script to convert dicom imaging files to .nii 

base_dir = '/Users/sladmin/Desktop/Farah/ImagingOnly/'; %%% Where the subjects' 

data is kept 
 

%% 

subj_dirs = { ... 

 

}; 

 

subj_subdirs = { ... 

 

'/EP2D_BOLD_GMU_1/' ... 

'/EP2D_BOLD_GMU_2/' ... 

'/EP2D_BOLD_GMU_3/' ... 

'/EP2D_BOLD_GMU_4/' ... 

'/EP2D_BOLD_GMU_5/' ... 

'/EP2D_BOLD_GMU_6/' ... 

'/T1_MPRAGE_SAG_P2_ISO/'... 

'/GRE_FIELD_MAPPING_2MM_0001/'... 

'/GRE_FIELD_MAPPING_2MM_0002/'... 

 
 

}; 

 
 

%% 

 

num_subjs=length(subj_dirs); %how many subjects are there? 

num_sub_dir=length(subj_subdirs); %how many sub-directories are there? 

 

%% 

for subj_num=1:num_subjs, %for each subject 

 

this_subj_dir = subj_dirs{subj_num}; 

disp(['Processing subject ' num2str(subj_num) ': ' this_subj_dir ]); 

for cur_dir=1:num_sub_dir, %for each sub-directory 
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dicm2nii([base_dir this_subj_dir subj_subdirs{cur_dir}], [base_dir this_subj_dir 

subj_subdirs{cur_dir}],'.nii 3D'); 

end 

end 

 
 

Batch_PreprocessingfMRIEEG.m 

%% Batch Preprocessing script for each individual imaging file 
 

base_dir = '/Users/sladmin/Desktop/Farah/ImagingOnly/'; %%% Where the subjects' 

data is kept 
template_dir = '/Users/sladmin/Desktop/Farah/Scripts/fMRI_Analysis_Scripts/'; %%% 

Where the templates are stored 

cd(base_dir); %%% Where the Subjects' data is kept 

%% 

 

subj_dirs = { ... 

 

}; 

 

Bold_subdirs = { ... 

 
 

'/EP2D_BOLD_GMU_1/' ... 

'/EP2D_BOLD_GMU_2/' ... 

'/EP2D_BOLD_GMU_3/' ... 

'/EP2D_BOLD_GMU_4/' ... 

'/EP2D_BOLD_GMU_5/' ... 

'/EP2D_BOLD_GMU_6/' ... 

 
 

}; 

 

fmap_subdirs = { ... 

 

'/GRE_FIELD_MAPPING_2MM_0001/'... 

'/GRE_FIELD_MAPPING_2MM_0002/'... 

 
 

}; 

 

%% 
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num_subjs = size(subj_dirs,2); %how many subjects are there? 

num_runs=6; %how many runs are there? 

 

%% Perform batch preprocessing 

 
 

for subj_num = 1:num_subjs, 

for curr_run=1:num_runs, 

 

this_subj_bold_dir = [base_dir subj_dirs{subj_num} Bold_subdirs{curr_run}]; 

disp(['Running batch preprocessing on subject ' subj_dirs{subj_num} ]); 

 

%%% Load in batch pipeline 

load([template_dir 'Batch_PreprocessorfMRIEEG.mat']); 

 

%%% Add in phase image 

 

matlabbatch{1,1}.spm.tools.fieldmap.calculatevdm.subj.data.presubphasemag.phase=cell 

str([base_dir subj_dirs{subj_num} fmap_subdirs{2} 

'gre_field_mapping_2mm_phase.nii']); 

%%% Add in Magnitude image 

matlabbatch{1,1}.spm.tools.fieldmap.calculatevdm.subj.data.presubphasemag.magnitude 

=cellstr([base_dir subj_dirs{subj_num} fmap_subdirs{1} 
'gre_field_mapping_2mm_00001.nii']); 

 

%%% The only thing we need to change is that we are going to 

%%% load in a different subject's data for slice timing 

bold_files_from_manual_job = matlabbatch{1,2}.spm.temporal.st.scans; 

 

image_filenames_without_dir_path = 

spm_select('List',this_subj_bold_dir,['̂ ep2d*.*']); 

num_TR_per_run=length(image_filenames_without_dir_path); 

copies_of_directory_path = repmat(this_subj_bold_dir,num_TR_per_run,1); 

image_filenames_with_path = cellstr([ copies_of_directory_path 

image_filenames_without_dir_path ]); 

 

 

matlabbatch{1,2}.spm.temporal.st.scans{1} = cellstr(image_filenames_with_path); 
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%%% Run the realign job 

spm_jobman('run',matlabbatch); 

 

 

end; 

 

 

end 

 

 

 

Batch_GLM_fMRIOnly.m 

% Estimating Individual GLM for only the imaging files 

base_dir = '/Users/sladmin/Desktop/Farah/ImagingOnly/'; %%% Where the subjects' 

data is kept 
template_dir = '/Users/sladmin/Desktop/Farah/Scripts/fMRI_Analysis_Scripts/'; %%% 

Where the templates are stored 

log_dir = '/Users/sladmin/Desktop/Farah/Behavior data/Log files only/'; %%% Where the 

log files are 

behav_dir='/Users/sladmin/Desktop/Farah/Behavior data'; %%% where the behavioral 

data are 
cd(base_dir); %%% Where the Subjects' data is kept 

%% 

 

subj_dirs = { ... 

 

 

}; 

 

Bold_subdirs = { ... 

 
 

'/EP2D_BOLD_GMU_1/' ... 

'/EP2D_BOLD_GMU_2/' ... 

'/EP2D_BOLD_GMU_3/' ... 

'/EP2D_BOLD_GMU_4/' ... 

'/EP2D_BOLD_GMU_5/' ... 

'/EP2D_BOLD_GMU_6/' ... 
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}; 

 

Behav_dirs= { ... 

 

}; 

 
 

%% 

 

num_subjs = length(subj_dirs); %how many subjects are there? 

num_runs=6; %how many runs are there? 

 

cd(log_dir); 

loglist=dir('*.log'); 

loglist={loglist.name}; 

%loglist={loglist{5:6}};%delete this line once it's done. It selects only the last two 

subjects for log files. 

 

%% Perform batch preprocessing 

for subj_num = 1:num_subjs, 

 

this_subj_GLM_directory = [base_dir subj_dirs{subj_num} ]; 

disp(['Running batch preprocessing on subject ' subj_dirs{subj_num} ]); 
 

%load in the SPM Template 

load ([template_dir 'GLMTemplatefMRIonlysubj2mod.mat']); 

matlabbatch{1,1}.spm.stats.fmri_spec.dir = cellstr(this_subj_GLM_directory); 
%update to the current subject directory 

 

cd(log_dir); 

[VarName1 text]=LogfileImporter(loglist{subj_num});%import the log file 

[EstOnsetTimes RepOnsetTimes EstOnset2Times RepOnset2Times OnTargetTimes 

OffTargetTimes OnTargetTimes2 OffTargetTimes2] = 

PrototypeLogExtractor(VarName1,text); 

 

cd([behav_dir Behav_dirs{subj_num}]); 

file=dir('*.csv'); 

subj_data=readtable(file.name); 
 

for curr_run = 1:num_runs, 
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%load up the appropriate files 

this_subj_bold_dir1=[this_subj_GLM_directory Bold_subdirs{curr_run}]; 

image_filenames_without_dir_path = 

spm_select('List',this_subj_bold_dir1,['̂ swua*.*']); 

num_TR_per_run=length(image_filenames_without_dir_path); 

copies_of_directory_path1 = repmat(this_subj_bold_dir1,num_TR_per_run,1); 

image_filenames_with_path1 = [ copies_of_directory_path1 

image_filenames_without_dir_path ]; 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).scans = 
cellstr(image_filenames_with_path1); 

 

%Put in all the log file data. Note: we still need to put in 

%duration information for estimation and reproduction phases, which 

%can only be extracted by analyzing the behavioral data. 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(1).onset = 

EstOnsetTimes(:,curr_run); 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(1).duration = 

subj_data.intervals_1(subj_data.runs_thisN==(curr_run-1)); 
 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(2).onset = 

RepOnsetTimes(:,curr_run); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(2).duration = 

subj_data.Endreproductionkey_rt(subj_data.runs_thisN==(curr_run-1)); 
 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(3).onset = 

OnTargetTimes(curr_run); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(4).onset = 

OffTargetTimes(curr_run); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(5).onset = 

EstOnset2Times(:,curr_run); 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(5).duration = 

subj_data.intervals_1(subj_data.runs_thisN==(curr_run-1)); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(6).onset = 

RepOnset2Times(:,curr_run); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(6).duration = 

subj_data.repro_2key_rt(subj_data.runs_thisN==(curr_run-1)); 
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matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(7).onset = 

OnTargetTimes2(curr_run); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(8).onset = 

OffTargetTimes2(curr_run); 

 
 

%lastly, load in the multiple regressors for each run 

 
 

cd(this_subj_bold_dir1); %go to BOLD directory 

file=dir('*00001.txt'); 

 
 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).multi_reg = 

cellstr([this_subj_bold_dir1 file.name]); 
 

end 

 

%Now generate the GLM 

spm_jobman('run',matlabbatch); 
 

%% Now estimate the model 

load ([template_dir 'EstimateSPM12Template.mat']); 

matlabbatch{1,1}.spm.stats.fmri_est.spmmat = cellstr([this_subj_GLM_directory 
'/SPM.mat']); 

%%% Run the GLM-estimate job 

spm_jobman('run',matlabbatch); 
 

end; % End of loop through subjects 
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Batch_GLM_fMRIEEG.m 

%% Batch Preprocessing script for fMRI-EEG data 

 

base_dir = '/Users/sladmin/Desktop/Farah/ImagingOnly/'; %%% Where the subjects' 

data is kept 
template_dir = '/Users/sladmin/Desktop/Farah/Scripts/fMRI_Analysis_Scripts/'; %%% 

Where the templates are stored 

log_dir = '/Users/sladmin/Desktop/Farah/Behavior data/Log files only/'; %%% Where the 

log files are 

behav_dir='/Users/sladmin/Desktop/Farah/Behavior data'; %%% where the behavioral 

data are 

EEG_dir='/Users/sladmin/Desktop/Farah/Brain Vision Processed 

fMRI_EEG_files_cleanrawdata/';%%% Where EEG data are 

cd(base_dir); %%% Where the Subjects' data is kept 
%% 

 

subj_dirs = { ... 

 

}; 

 

Bold_subdirs = { ... 

 
 

'/EP2D_BOLD_GMU_1/' ... 

'/EP2D_BOLD_GMU_2/' ... 

'/EP2D_BOLD_GMU_3/' ... 

'/EP2D_BOLD_GMU_4/' ... 

'/EP2D_BOLD_GMU_5/' ... 

'/EP2D_BOLD_GMU_6/' ... 

 
 

}; 

 

Behav_dirs= { ... 

 

}; 

 

EEG_dirs={... 

 
 

}; 

 
 

%% 



109  

 

%%% 

 

num_subjs = length(subj_dirs); %how many subjects are there? 

num_runs=length(Bold_subdirs); %how many runs are there? 

 
 

%loglist={loglist{5:6}};%delete this line once it's done. It selects only the last two 

subjects for log files. 
 

%% Perform batch preprocessing 

for subj_num = 1:num_subjs, 

 

this_subj_GLM_directory = [base_dir subj_dirs{subj_num} ]; 

disp(['Running batch preprocessing on subject ' subj_dirs{subj_num} ]); 

 

%load in the SPM Template 

load ([template_dir 'GLMTemplatefMRIEEG.mat']); 

matlabbatch{1,1}.spm.stats.fmri_spec.dir = cellstr([this_subj_GLM_directory 
'/FMRIEEG']); %update to the current subject directory 

 

 
 

cd([behav_dir Behav_dirs{subj_num}]); 

loglist=dir('*.log'); 

loglist={loglist.name}; 
 

[VarName1 text]=LogfileImporter(loglist{1});%import the log file 

[EstOnsetTimes RepOnsetTimes EstOnset2Times RepOnset2Times 

FirstFeedbackTimes SecondFeedbackTimes FirstFeedbackOnOff 

SecondFeedbackOnOff] = PrototypeLogExtractor(VarName1,text); 
 

%cd([behav_dir Behav_dirs{subj_num}]); 

file=dir('*.csv'); 

subj_data=readtable(file.name); 
 

cd([EEG_dir EEG_dirs{subj_num}]); 

fname=dir('*EstRep*.mat'); 

load(fname.name); 

fname=dir('*OnOff*.mat'); 

load(fname.name); 
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%Reshape the amplitudes into array by runs (6) 

 

OnOffAmplitudes=reshape(OnOffAmplitudes,20,6);%OnOffAmplitudes=[zeros(20,1),O 

nOffAmplitudes]; 
 

OnOffIndices=reshape(OnOffIndices,20,6);%OnOffIndices=[zeros(20,1),OnOffIndices]; 

 

EstAmplitudes=reshape(EstAmplitudes,20,6);%EstAmplitudes=[zeros(20,1),EstAmplitu 

des]; 

 

RepAmplitudes=reshape(RepAmplitudes,20,6);%RepAmplitudes=[zeros(20,1),RepAmpl 

itudes]; 

 

% % %Re-Order Everything (this is just for the wrongly stitched ones) 

% % OnOffAmplitudes=[OnOffAmplitudes(:,5:6),fliplr(OnOffAmplitudes(:,1:4))]; 

% % OnOffIndices=[OnOffIndices(:,5:6),fliplr(OnOffIndices(:,1:4))]; 

% % EstAmplitudes=[EstAmplitudes(:,5:6),fliplr(EstAmplitudes(:,1:4))]; 

% % RepAmplitudes=[RepAmplitudes(:,5:6),fliplr(RepAmplitudes(:,1:4))] 

 

%Divide into first and second trials 

EstAmplitudes_1=EstAmplitudes(1:2:end,:); 

EstAmplitudes_2=EstAmplitudes(2:2:end,:); 

RepAmplitudes_1=RepAmplitudes(1:2:end,:); 

RepAmplitudes_2=RepAmplitudes(2:2:end,:); 

OnOffAmplitudes_1=OnOffAmplitudes(1:2:end,:); 

OnOffAmplitudes_2=OnOffAmplitudes(2:2:end,:); 

OnOffIndices_1=OnOffIndices(1:2:end,:); 

OnOffIndices_2=OnOffIndices(2:2:end,:); 
 

% EstOnsetTimes=EstOnsetTimes(:,2:end); 

% EstOnset2Times=EstOnset2Times(:,2:end); 

% RepOnsetTimes=RepOnsetTimes(:,2:end); 

% RepOnset2Times=RepOnset2Times(:,2:end); 

% FirstFeedbackOnOff=FirstFeedbackOnOff(:,2:end); 

% FirstFeedbackTimes=FirstFeedbackTimes(:,2:end); 

% SecondFeedbackOnOff=SecondFeedbackOnOff(:,2:end); 

% SecondFeedbackTimes=SecondFeedbackTimes(:,2:end); 

% 

 
 

for curr_run = 1:num_runs, 

 

%load up the appropriate files 

this_subj_bold_dir1=[this_subj_GLM_directory Bold_subdirs{curr_run}]; 
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image_filenames_without_dir_path = 

spm_select('List',this_subj_bold_dir1,['̂ swua*.*']); 

num_TR_per_run=length(image_filenames_without_dir_path); 

copies_of_directory_path1 = repmat(this_subj_bold_dir1,num_TR_per_run,1); 

image_filenames_with_path1 = [ copies_of_directory_path1 

image_filenames_without_dir_path ]; 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).scans = 
cellstr(image_filenames_with_path1); 

 
 

%Put in all the log file data. Note: we still need to put in 

%duration information for estimation and reproduction phases, which 

%can only be extracted by analyzing the behavioral data. 

 

%Estimation Onset 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(1).onset = 

EstOnsetTimes(:,curr_run); 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(1).duration = 

subj_data.intervals_1(subj_data.runs_thisN==(curr_run-1)); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(1).pmod.param=EstAmpl 

itudes_1(:,curr_run); 

%Reproduction Onset 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(2).onset = 

RepOnsetTimes(:,curr_run); 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(2).duration = 

subj_data.Endreproductionkey_rt(subj_data.runs_thisN==(curr_run-1)); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(2).pmod.param=RepAmpl 

itudes_1(:,curr_run); 
 

%On Target Feedback 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(3).onset = 

FirstFeedbackTimes(FirstFeedbackOnOff(:,curr_run)==1,curr_run); 
 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(3).pmod.param=OnOffA 

mplitudes_1(OnOffIndices_1(:,curr_run)==1,curr_run); 

%Off Target Feedback 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(4).onset = 

FirstFeedbackTimes(FirstFeedbackOnOff(:,curr_run)==2,curr_run); 
 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(4).pmod.param=OnOffA 

mplitudes_1(OnOffIndices_1(:,curr_run)==2,curr_run); 
%Estimation 2 Onset 
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matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(5).onset = 

EstOnset2Times(:,curr_run); 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(5).duration = 

subj_data.intervals_1(subj_data.runs_thisN==(curr_run-1)); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(5).pmod.param=EstAmpli 

tudes_2(:,curr_run); 

%Reproduction 2 Onset 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(6).onset = 

RepOnset2Times(:,curr_run); 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(6).duration = 

subj_data.repro_2key_rt(subj_data.runs_thisN==(curr_run-1)); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(6).pmod.param=RepAmp 

litudes_2(:,curr_run); 

%On Target Feedback 2 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(7).onset = 

SecondFeedbackTimes(SecondFeedbackOnOff(:,curr_run)==1,curr_run); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(7).pmod.param=OnOffA 

mplitudes_2(OnOffIndices_2(:,curr_run)==1,curr_run); 

%Off Target Feedback 2 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(8).onset = 

SecondFeedbackTimes(SecondFeedbackOnOff(:,curr_run)==2,curr_run); 

 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).cond(8).pmod.param=OnOffA 

mplitudes_2(OnOffIndices_2(:,curr_run)==2,curr_run); 
 

%lastly, load in the multiple regressors for each run 

 
 

cd(this_subj_bold_dir1); %go to BOLD directory 

file=dir('*00001.txt'); 

 
 

matlabbatch{1,1}.spm.stats.fmri_spec.sess(curr_run).multi_reg = 

cellstr([this_subj_bold_dir1 file.name]); 

 

end 

 

%Now generate the GLM 

spm_jobman('run',matlabbatch); 

 

%% Now estimate the model 
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load ([template_dir 'EstimateSPM12Template.mat']); 

matlabbatch{1,1}.spm.stats.fmri_est.spmmat = cellstr([this_subj_GLM_directory 

'/FMRIEEG/SPM.mat']); 

%%% Run the GLM-estimate job 

spm_jobman('run',matlabbatch); 
 

end; % End of loop through subjects 

 
 

Contrast_Batch_fMRI_Only.m 

%% Batch Contrasts for First-level fMRI only 

 

base_dir = '/Users/sladmin/Desktop/Farah/ImagingOnly/'; %%% Where the subjects' 

data is kept 
template_dir = '/Users/sladmin/Desktop/Farah/Scripts/fMRI_Analysis_Scripts/'; %%% 

Where the templates are stored 

cd(base_dir); %%% Where the Subjects' data is kept 

%% 

 

subj_dirs = { ... 

 

}; 

 

%% 

 

num_subjs = size(subj_dirs,2); %how many subjects are there? 

 

%% Perform batch preprocessing 

for subj_num = 1:num_subjs, 

 
 

this_subj_GLM_directory = [base_dir subj_dirs{subj_num} ]; 

disp(['Running contrast batch preprocessing on subject ' subj_dirs{subj_num} ]); 

 

%load in the SPM Template 

load ([template_dir 'fMRIEEGBatchTemplateFeb2022v2spec.mat']); 

matlabbatch{1,1}.spm.stats.con.spmmat = cellstr([this_subj_GLM_directory 
'/FMRIEEG/SPM.mat']); 

 

load([this_subj_GLM_directory '/FMRIEEG/SPM.mat']); %load in SPM.mat file for 

subject 

feedbacktest=sum(SPM.xX.X)==0; %are any of the covariates empty? (this indicates 

no feedback of a particular type) 
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feedbacktest=feedbacktest(1:104);%cut out the extra covariates for session,change if 

BOLD runs are cut out 
for con=1:37 %for each contrast (hard coded) 

 

matlabbatch{1,1}.spm.stats.con.consess{1,con}.tcon.weights(find(feedbacktest==1))=0; 

%set the weights to zero if there was a run without any events 

end 

 

%Now generate the GLM 

spm_jobman('run',matlabbatch); 
 

end; % End of loop through subjects 

 
 

fMRIEEGProcessorv3.m 

%% Script for processing EEG data for combined fMRI analysis 

 

base_dir='/Users/sladmin/Desktop/Farah/Brain Vision Processed 

fMRI_EEG_files_NOcleanrawdata/'; 
 

subj_dirs = { ... 

 

}; 

 

num_subj=length(subj_dirs); 
 

%% 

 

for subj_num=1:num_subj, 

 

%Go to the subject directory 

 

cd([base_dir subj_dirs{subj_num}]); 

fname=dir('*.eeg'); 

fname={fname.name}; 
 

EEG=pop_fileio(fname{1}); %load in data 

 

channel=dir('*.bvef'); 

channel={channel.name}; 
 

EEG.chanlocs=loadbvef(channel{1}); %update channel information 

EEG.chanlocs(1) = []; 
EEG.chanlocs(1).labels = 'FCz'; 
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if length(EEG.chanlocs)>65, 

EEG = pop_select( EEG,'nochannel',{'ECG' 'IO' 'HEOG'}); 

end 

EEG = pop_reref( EEG, [30 31] ); %Re-reference to the mastoids 

 

%This is for the weird ones where the bvef file doesn't work. 

% EEG=pop_chanedit(EEG, 

'lookup','/Users/sladmin/Desktop/eeglab14_1_2b/plugins/dipfit2.3/standard_BESA/stand 

ard-10-5-cap385.elp','insert',64,'changefield',{64 'labels' 

'FCz'},'lookup','/Users/sladmin/Desktop/eeglab14_1_2b/plugins/dipfit2.3/standard_BESA 
/standard-10-5-cap385.elp'); 

% EEG = pop_reref( EEG, [29 30] 

,'refloc',struct('labels',{'FCz'},'type',{''},'theta',{0},'radius',{0.12662},'X',{32.9279},'Y',{0 

},'Z',{78.363},'sph_theta',{0},'sph_phi',{67.208},'sph_radius',{85},'urchan',{64},'ref',{''},' 

datachan',{0})); 
 

%% 

%Remove bad channels 

%EEG = pop_rejchan(EEG, 'elec',[1:60] 

,'threshold',5,'norm','on','measure','spec','freqrange',[1 125] ); 

 
 

%Or, alternatively, use clean_rawdata (comment out above line if you 

%want to try) 

 
 

EEG=clean_artifacts(EEG,'FlatlineCriterion',5,'ChannelCriterion',0.8,'LineNoiseCriterion 

',4,'Highpass','off','BurstCriterion',20,'WindowCriterion','off','BurstRejection','off','Distanc 

e','Euclidian'); 

 

%Low-pass filter at 30Hz 

EEG = pop_eegfiltnew(EEG, [],30,110,0,[],0); 
 

%Epoching for Estimation 

EEG1 = pop_epoch( EEG, { 'S 1' 'S 2' 'S 3' 'S 4' 'S 5' 'S 23' 'S 24' 'S 25' 'S 26' 

'S 27' }, [-1 7], 'newname', 'Estimation', 'epochinfo', 'yes'); 

EEG1 = pop_rmbase( EEG1, [-1000 0]); 

EEG1.setname='Estimation'; 

% %EEG1=pop_runica(EEG1,'extended',1,'interupt','off'); 

EEG1=pop_saveset(EEG1,'filename',[subj_dirs{subj_num} 
'Estimation.set'],'filepath',[base_dir subj_dirs{subj_num}]); 
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% %Epoching for Reproduction 

EEG2 = pop_epoch( EEG, { 'S 6' 'S 7' 'S 8' 'S 9' 'S 10' 'S 33' 'S 34' 'S 35' 'S 36' 

'S 37' }, [-1 7], 'newname', 'Reproduction', 'epochinfo', 'yes'); 

EEG2 = pop_rmbase( EEG2, [-1000 0]); 

EEG2.setname='Reproduction'; 

% %EEG2=pop_runica(EEG2,'extended',1,'interupt','off'); 

EEG2=pop_saveset(EEG2,'filename',[subj_dirs{subj_num} 
'Reproduction.set'],'filepath',[base_dir subj_dirs{subj_num}]); 

%Epoching for On-Feedback 

EEG3 = pop_epoch( EEG, { 'S 11' 'S 43' }, [-0.5 1], 'newname', 'Off-feedback', 

'epochinfo', 'yes'); 

EEG3 = pop_rmbase( EEG3, [-500 0]); 

EEG3.setname='OnFeedback'; 

%EEG3=pop_runica(EEG3,'extended',1,'interupt','off'); 

EEG3=pop_saveset(EEG3,'filename',[subj_dirs{subj_num} 

'OnFeed.set'],'filepath',[base_dir subj_dirs{subj_num}]); 
%Epoching for Off-Feedback 

EEG4 = pop_epoch( EEG, { 'S 12' 'S 44' }, [-0.5 1], 'newname', 'Off-feedback', 

'epochinfo', 'yes'); 

EEG4 = pop_rmbase( EEG4, [-500 0]); 

EEG4.setname='OffFeedback'; 

%EEG4=pop_runica(EEG4,'extended',1,'interupt','off'); 

EEG4=pop_saveset(EEG4,'filename',[subj_dirs{subj_num} 
'OffFeed.set'],'filepath',[base_dir subj_dirs{subj_num}]); 

%Epoching for On and Off-Feedback 

EEG5 = pop_epoch( EEG, { 'S 11' 'S 43' 'S 12' 'S 44' }, [-0.5 1], 'newname', 'OnOff- 

feedback', 'epochinfo', 'yes'); 

EEG5 = pop_rmbase( EEG5, [-500 0]); 

EEG5.setname='OnOffFeedback'; 

%EEG4=pop_runica(EEG4,'extended',1,'interupt','off'); 

EEG5=pop_saveset(EEG5,'filename',[subj_dirs{subj_num} 

'OnOffFeed.set'],'filepath',[base_dir subj_dirs{subj_num}]); 

End 
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fMRIEEGamplitudeExtractoNewWindowsmar14_22r.m 

%% Script for extracting amplitudes from EEG portion for fMRI 

 

%% 
 

%Set parameters and extract the data for frontocentral electrodes, single 

%trials 

STUDY = pop_statparams(STUDY, 'singletrials','on'); 

STUDY = pop_erpparams(STUDY, 

'plotconditions','together','averagechan','on','topotime',[]); 

STUDY = pop_erpparams(STUDY, 'filter',5,'topotime',[]); 

 

[STUDY erpdata erptimes] = std_erpplot(STUDY,ALLEEG,'channels',{'FCz' 'Fz' 'Cz' 

'FC1' 'FC2' 'F1' 'F2' 'C1' 'C2'},'plotstderr','on'); 
 

%% For Estimation-Reproduction Data 

 

%average within 430-598ms window (358 - 401), using Bader & Wiener, 2021 

timeframe 

 

Estamps=mean(erpdata{1}(358:401,:)); 

Repamps=mean(erpdata{2}(358:401,:)); 

%Need an index of which points correspond to which trials 

num_subj=length(STUDY.subject); 

EstSubIndex=[]; 
RepSubIndex=[]; 

 

for s=1:num_subj, %for each subject 

 

Estindex=1:2:(num_subj*2); 

Repindex=2:2:(num_subj*2); 

 

EstSubIndex=[EstSubIndex; 

ones(length(STUDY.datasetinfo(Estindex(s)).trialinfo),1)*s]; 

RepSubIndex=[RepSubIndex; 

ones(length(STUDY.datasetinfo(Repindex(s)).trialinfo),1)*s]; 

 

end 

 

for s=1:num_subj, 

EstAmplitudes=Estamps(EstSubIndex==s); 
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RepAmplitudes=Repamps(RepSubIndex==s); 

save(['EstRepAmplitudes_S' num2str(s)],'EstAmplitudes','RepAmplitudes'); 

end 

%% For Off-On data 

%note that I'm not sure if we want to use a frontocentral array, or just a 

%single electrode, and also if I want to use the clean_rawdata bunch or or 

%not 

 

%average within 400-550ms window (226-263) 

OnOffamps=mean(erpdata{1}(226:263,:)); 

%Need an index of which points correspond to which trials 

 

num_subj=length(STUDY.subject); 

OnOffSubIndex=[]; %empty matrix for subject index 

OnOffIndex=[];%empty matrix for whether it's positive or negative feedback 

 
 

for s=1:num_subj, %for each subject 

Onindex=1:num_subj; 

 

OnOffSubIndex=[OnOffSubIndex; 

ones(length(STUDY.datasetinfo(Onindex(s)).trialinfo),1)*s]; 

 
 

end 

 

for s=1:num_subj, %for each subject 

 

triggerindex={STUDY.datasetinfo(s).trialinfo.type}; 

triggerindex=string(triggerindex); 

Onindex=contains(triggerindex,{'11' '43'}); 

Offindex=contains(triggerindex,{'12' '44'}); 

OnOffIndex=[OnOffIndex; (Onindex+(Offindex*2))']; 
end 

 
 

for s=1:num_subj, 
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OnOffAmplitudes=OnOffamps(OnOffSubIndex==s); 

OnOffIndices=OnOffIndex(OnOffSubIndex==s); 

 

save(['OnOffAmplitudes_S' 

STUDY.datasetinfo(s).filename(1:3)],'OnOffAmplitudes','OnOffIndices'); 
 

end 
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