
3D ROAD SURFACE MESHING
WITH LIDAR

by

Nathan Obert
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Master of Science
Computer Science

Committee:

Dr. Zoran Duric, Thesis Director

Dr. Jyh-Ming Lien, Committee Member

Dr. Duminda Wijesekera, Committee
Member

Dr. Sanjeev Setia, Chairman, Department
of Computer Science

Dr. Kenneth S. Ball, Dean,
Volgenau School of Engineering

Date: Spring Semester 2018
George Mason University
Fairfax, VA

3d Road Surface Meshing with LIDAR

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Nathan Obert
Bachelor of Science

George Mason University, 2015

Director: Dr. Zoran Duric, Associate Professor
Department of Computer Science

Spring Semester 2018
George Mason University

Fairfax, VA

Copyright c© 2018 by Nathan Obert
All Rights Reserved

ii

Dedication

I dedicate this thesis to my wife Kimberly Obert for putting up with all these years of
college.

iii

Acknowledgments

I would like to thank the Computer Science professors at George Mason University, and my
employer Armedia LLC who made this possible.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . x

1 Introduction . 1

1.1 Overview of Cartographer SLAM . 2

1.2 Overview of Data Collection . 3

2 Background and Related Work . 5

2.1 Related Work . 5

2.2 Cartographer . 6

2.3 Platform: Hardware and Software . 7

2.4 Overview of Hardware and Software Integration 9

2.5 Background of Datasets . 9

2.5.1 Cartographer Backpack Deutsches Museum [1] 10

2.5.2 Map GMU [2] . 11

2.5.3 The KITTI Dataset [3] . 13

2.6 Background of Data Conversion . 13

3 Data Collection . 14

3.1 Calibration . 14

3.2 Global Position System Smoothing . 16

3.3 Global Position System Analysis . 17

3.4 Data Collection 240 degrees, VLP-16 . 17

3.5 Data Collection 360 degrees, VLP-16 . 19

3.6 Data Collection 360 degrees, VLP-64 . 19

4 Experiments . 27

4.1 Map GMU[2] . 27

4.2 The KITTI Dataset[3] . 27

4.3 SLAM Tuning . 29

4.4 Data Collected roof mounted Velodyne VLP-16 (240 degrees) 29

v

4.5 Data Collected roof mounted Velodyne VLP-16 (360 degrees) 30

4.6 Data Collected from Golf Cart with Velodyne VLP-64 (360 degrees) 31

4.7 Results . 35

5 Discussion . 37

6 Conclusion . 47

A Glossary of Terminology . 48

B Installation . 49

B.1 Ubuntu Installation . 49

B.2 Linux Configuration . 49

B.3 Install Cartographer Libraries . 51

B.4 Install Robot Operating System . 52

B.5 Install ROS Cartographer Integration . 53

B.6 Velodyne Driver Installation . 54

C Code . 56

C.1 GPS Driver for Velodyne . 56

C.2 GPS Export to Google Maps and GPS Smoothing 57

D Configuration . 73

D.1 Cartographer Main LUA Configuration . 73

D.2 Unified Robot Description Format (URDF) 75

D.3 Launch Configuration for High Definition Camera 77

D.4 Launch Configuration for VLP-16 and other Sensors 78

D.5 Launch Configuration for VLP-64 and other Sensors 81

E Demonstrations . 86

E.1 Download Demonstrations from Google . 86

E.2 Google SLAM Demonstrations . 87

E.3 Visualize existing ’Map GMU’ data . 88

E.4 PLY to OBJ Conversion . 89

E.5 Poisson Surface Reconstruction . 89

Bibliography . 93

vi

List of Tables

Table Page

vii

List of Figures

Figure Page

2.1 Cartographer Scan Matcher[4] . 7

2.2 Cartographer Branch and Bound[4] . 8

2.3 Google Sample Data[1] . 10

2.4 Example of no road data in MapGMU[2] . 11

3.1 Jeep Wrangler with Velodyne Bumper Mounted being calibrated 15

3.2 Jeep Wranger with Velodyne Roof Mounted 16

3.3 GPS Shenandoah Parking Deck . 18

3.4 GPS West Campus Parking Lot . 19

3.5 Data Collected with Velodyne VLP-16 1 . 21

3.6 Data Collected with Velodyne VLP-16 2 . 22

3.7 Data Collected with Velodyne VLP-16 3 . 23

3.8 Data Collected with Velodyne VLP-16 4 . 24

3.9 VLP-64 mounted on Golf Cart . 25

3.10 Data Collected with Velodyne VLP-64 . 26

4.1 KITTI Dataset[3] . 28

4.2 Point Cloud Shenandoah Parking Deck . 30

4.3 Point Cloud Rivanna River Way . 32

4.4 Top View Point Cloud West Campus Parking Lot 33

4.5 Side View Point Cloud West Campus Parking Lot 34

4.6 Point Cloud Parking Building in Lot C . 34

4.7 Results from Mason Pond . 36

5.1 VLP-16 XY Simple Loop Closure . 39

5.2 VLP-16 XZ Simple Loop Closure . 40

5.3 VLP-16 YZ Simple Loop Closure . 40

5.4 VLP-16 XY Loop Closure Around Parking Lot 41

5.5 VLP-16 XZ Loop Closure Around Parking Lot 41

5.6 VLP-16 YZ Loop Closure Around Parking Lot 42

viii

5.7 VLP-16 XY Loop Closure Around Parking Building 42

5.8 VLP-16 XZ Loop Closure Around Parking Building 42

5.9 VLP-16 XY round about Mason Pond . 43

5.10 VLP-16 YZ round about Mason Pond . 44

5.11 VLP-16 XZ round about Mason Pond . 44

5.12 VLP-64 XY round about Mason Pond . 45

5.13 VLP-64 XZ round about Mason Pond . 46

5.14 VLP-64 YZ round about Mason Pond . 46

5.15 VLP-64 closeup round about Mason Pond 46

B.1 Velodyne ROS Interaction . 55

E.1 PLY Shenandoah Parking Deck . 90

E.2 OBJ Shenandoah Parking Deck . 91

E.3 Before Poisson Shenandoah Parking Deck 92

E.4 After Poisson Shenandoah Parking Deck . 92

ix

Abstract

3D ROAD SURFACE MESHING WITH LIDAR

Nathan Obert

George Mason University, 2018

Thesis Director: Dr. Zoran Duric

The primary goal of this research is to create 3d maps of George Mason Fairfax roads.

These maps will be used in the 3d driving simulator. Towards this goal I have decided to

use Google Cartographer, which uses Lidar and Inertial Measurement Unit (IMU) data.

The Cartographer has been developed and applied for slam inside buildings. In the original

application Lidar and IMU units were worn in a backpack. Because of that Cartographer

is adjusted for abundance of vertical features and relatively slow moving speeds.

I have collected Lidar, IMU, HD video, and GPS data for the major GMU campus

roads and several parking structures and lots over four days. I have used two different

Lidars (VLP-16 and VLP-64) mounted on two different vehicles. I have written the needed

drivers to integrate GPS data collection with VLP-16 data. I have fabricated mounts for

VLP-16 and reconfigured VLP-64 mounts for these collections. I have processed the data

using Cartographer in Robot Operating System (ROS). The collected data was archived on

GMU servers for future teaching and research uses.

In our application the Lidar and units were placed on a moving vehicle which travels at

several times the speed of a walking person. In addition, the vertical features were more

struct accurate point clouds for some roads and parking lots and structures, while in several

cases more parameter tuning may be needed to make it work.

Chapter 1: Introduction

The primary goal of this research is to create 3d maps of George Mason University (GMU)

Fairfax roads. These maps will be used in the 3d driving simulator. Towards this goal I

have decided to use Google Cartographer, which uses Lidar and Inertial Measurement Unit

(IMU) data. The Cartographer has been developed and applied for slam inside buildings.

In the original application Lidar and IMU units were worn in a backpack. Because of

that Cartographer is adjusted for abundance of vertical features and relatively slow moving

speeds.

I have collected Lidar, IMU, HD video, and Global Positioning System (GPS) data for

the major GMU campus roads and several parking structures and lots over four days. I

have used two different Lidars (VLP-16 and VLP-64) mounted on two different vehicles. I

have written the needed drivers to integrate GPS data collection with VLP-16 data. I have

fabricated mounts for VLP-16 and reconfigured VLP-64 mounts for these collections. I have

processed the data using Cartographer in Robot Operating System (ROS). The collected

data was archived on GMU servers for future teaching and research uses.

George Mason University needs 3d road data and a method to collect 3d road data. The

data will be used in researching motion planning, localization, navigation, obstacle avoid-

ance, pedestrian detection, road sign detection, and many other challenges with autonomous

cars.

To implement a method of creating 3d road data, and collect data I procured any

equipment required for this project, either by reusing existing equipment or purchasing

additional equipment as detailed in the following sections. I fabricated mounting equipment

for the sensors, and performed software integration. Data was collected and offline slam

was used to build maps. After the maps were constructed I performed additional research.

Conversion between point cloud formats to aid in integration with the driving simulator.

1

Export and manipulation of GPS for visualizing the paths on Google Maps, and input into

Graph Slam. Lastly a small amount of research was done to see if surface reconstruction

could be performed on the point clouds.

1.1 Overview of Cartographer SLAM

When movement occurs two point clouds are created. One for where you were, and for

where you now are. Local Slam takes the two point clouds from the Lidar and attempts

to consolidate them into one single map by placing the data on a series of submaps or

grid points. Since orientation and velocity might have changed between the two sensor

measurements the IMU is used with rigid transformations and rotations to orient the data

on a grid together. Smoothing by solving least squares is also performed to assist with

connecting the data together.

Local Slam can be performed as data is collected know as online Slam, or after the data

is collected which is know as offline Slam. As noted in Google’s paper, offline Slam typically

runs around 5 times faster than real time. If 50 minutes of data is collected, it should be

processed offline in around 10 minutes. Through the research all the data was processed

afterwards with offline Slam.

The challenge with slam is connecting data together that is not collected in adjacent

time. For example when data is collected when you drive around a block, local slam can

easily identify frame by frame how to connect the data. It is global slam that recognized

the last frame connects with the first frame. Essentially any use case that involves traveling

near or over an area already traveled is resolved by global slam which is also referred to as

loop closure.

The map being constructed is a 3d point cloud that is pushed into the slam plane (2d)

that is being traveled to create a road map of obstacles. A road map is an electric map

that aids with navigation by marking where obstacles are located and how to travel from

one place to another. The map is broken into submaps or grids. Local slam connected the

grids together to the best of its ability however small errors occur in sensors called drift that

2

slow cause the grids to no longer be properly aligned for loop closure. Google Cartographer

addresses global slam by solving a non-linear least squares problem using branch and bound

search to attempt to connect the submaps of the data together. When global slam is ran

the submaps are adjusted to connect matching features together.

1.2 Overview of Data Collection

The data is collected with all the sensors by driving around George Mason University. I

used two different Lidars. I collected the data by driving around GMU Fairfax Campus.

The Velodyne VLP-16, 16 laser Lidar, was mounted on my Jeep Wrangler. The Velodyne

VLP-64, 64 laser Lidar, was mounted on a Golf Cart. The Golf Cart was used because

GMU’s Motion and Shape Computing Group already had mount fabricated for VLP-64

and Golf Cart.

Lidar is one of the main sensors used in this project. It is composed of several (16 or 64)

spinning lasers that provide a 3d point cloud of the immediate surrounding area. Each laser

provides one ”ring” corresponding to a slice of the visual field. Figure 2.4 is an example

the data that comes out of Lidar. The figure is vertically alined which is sub optimal for

SLAM.

When Lidar is mounted vertically the lidar would see sides, top and bottom, but would

be unable to see in front and behind. Unfortunately the sky is beyond the range of the

lidar, and the bottom is occluded with the vehicle which leaves only the sides of the vehicle

available. The road itself would not be visible or mapped. This is not optimal for SLAM.

When mounted horizontally the lidar would see the front, sides, and behind, but would

be unable to see below and above. They sky is out of range, and below is occluded so

immediately this is optimal since more regions are visible to the lidar. When 3d road

mapping, there is zero need to see the sky. The actual road would be captured by what is

in front and behind the lidar.

The Velodyne VLP-16 is one of the Lidar units used. It is very low resolution with only

16 lasers. The VLP-16 for example might have 6 different rings of distances for objects on

3

the ground plane, and 10 rings for objects on vertical surfaces. There could be multiple

meters between these data points, which leads features being missed due to the sparse

nature of the data. For example when near a building the lidar might see the bottom of a

window frame, but if the vehicle moves even a foot or two left or right with a second pass,

it may see below or above the window frame being unable to match features. Even a slight

variation in timing or pathing could lead to a different set of features which would cause

huge issues with recognition.

The VLP-64 is high resolution with 64 lasers that also was used. Since the 64 is much

higher resolution even if timing or pathing is different there is a significantly higher proba-

bility that the same features will be detected, however possibly with a different laser since

the point cloud data is four times as dense. The VLP-64 produces over 1 million vectors

(points) per second.

Inertial Measurement Unit (IMU) is the other main sensor I used. The IMU provides

three accurate measurements: (i)orientation— a quaternion (X,Y,Z,W)—which corresponds

to the heading direction with respect to the gravity direction, (ii) angular Velocity (radians

per second) around X, Y, Z provide the rotation information, and (iii) Linear Acceleration

(meters per second squared) in X, Y, and Z directions.

I also used Global Position System (GPS), and High Definition (HD) Camera and syn-

chronized them with Lidar and IMU in all data captures. These two additional sensors were

used for ground truth for troubleshooting and evaluation. GPS is not used within Google

Cartographer. The GPS unit provided timestamps for the Lidar.

4

Chapter 2: Background and Related Work

2.1 Related Work

The basis of this work is Google Cartographer[4]. In their work the authors utilized Robot

Operating System (ROS). They improved on multi-resolution scan matching [5] by adding

branch and bound method and made exhaustive matching practical. An earlier approach to

global loop closure provided a probabilistically-motivated scan-matching algorithm which

produced higher quality and more robust results at the cost of additional computation

time [6]. The idea of submaps used in Cartographer can be traced back to [7]; this work

introduced spatially-aware data structure that enabled the cost of a map update to be

proportional to the impact of any loop closures, resulting in better average case performance

than naive method. Cartographer does local slam by doing rigid transformations to place

each frame of the Lidar into the same overall grid of submaps. Ceres Scan Matcher is used

to smooth data as cartographer adds. Google Cartographer performs the branch-and-bound

algorithmic framework to find exact solutions to loop closure [8].

ROS has been a popular tool for researching Simultaneous Localization And Mapping

(SLAM). ROS was originally developed at Standford’s Robotics Lab and is the ground

work for many of the most referenced SLAM research. SLAM has been a popular research

topic within robotics and there are many related worked. ”Map-Based Precision Vehicle

Localization in Urban Environments”[9] is one of earlier works followed up by ”Robust

Vehicle Localization in Urban Environments Using Probabilistic Maps”[10] also by the

same authors. ”Towards fully autonomous driving: Systems and algorithms”[11] providers

further details.

I reviewed the 27 road datasets listed in ”When to use what data set for your self-driving

car algorithm: An overview of publicly available driving datasets”[12]. 19 of the data sets

5

do not contain lidar. Of the other 8 data sets reviewed may of the datasets documented

problems and issues with their own data, or were in a format that we could not easily use

with alot of development. In the end I decided it was easier to simply record my own data

with George Mason University’s equipment.

”An evaluation of 2D SLAM techniques available in Robot Operating”[13] provides a

significant overview of the major SLAM techniques offered using ROS, however it does not

include Google’s more recent contribution to SLAM.

2.2 Cartographer

Cartographer provides Local Slam and Global Slam to ROS. The lidar makes a series of 3d

point cloud frames that represent the world at each location the vehicle is at. Local Slam

uses the rigid transformation given by Eq. 2.1

Tξp =

 cos ξθ − sin ξθ

sin ξθ cos ξθ

 p+

 ξx

ξy

 = Rξp+ tξ (2.1)

where ξθ is angular rotation about vertical axis and tξ is the translation between the frames.

The transformations allow the frames to be organized in world coordinates. Since sensors

are not perfect additional smoothing is done to optimize the matching. Optimization is

provided by Ceres Scan matching shown in Eq. 2.2.

argmin
ξ

K∑
k=1

(1−Msmooth(Tξhk))
2 (2.2)

Submaps are matched to a world grid presented in Fig. 2.1 Local slam is not sufficient

for mapping. Global slam or loop closure resolves matching frames that are not temporally

aligned. For instance if the car travels in a circle, the start and end connect, however the

data that connects is not in order. The same applies to a use case of mapping the left and

6

Figure 2.1: Cartographer Scan Matcher[4]

right side of the map, and then having the center connect the two sides. Global slam within

cartographer is a optimized search problem. The submaps are organized in a tree, and

branch and bound is used to search for submaps that connect. The search utilizes depth

first search to find the leaf nodes of the tree which represent submaps as seen in Fig. 2.2

Once slam is completed, cartographer provides an utility to export map as a point cloud

or raster images of the point cloud.

2.3 Platform: Hardware and Software

A Jeep Wrangler and Golf Cart was used to mount the sensors on. The Jeep Wrangler was

used with the Velodyne VLP-16, and the Golf Cart was used with the Velodyne VLP-64.

The two lidar sensors used was a low resolution lidar from Velodyne the VLP-16 with 16

lasers. The second lidar was a high resolution lidar sensor also from Velodyne the VLP-64

with 64 lasers. Both Velodyne units had a Garmin GPS 18x LVC attached onto them for

satellite timestamps and GPS data.

The Inertial Measurement Unit (IMU) used was by CH Robotics, model UM7. A Log-

itech 1080p HD USB Web Camera was used to collect ground truth information.

The computer processing hardware was a Mid 2012 Macbook Pro, with 2.7 GHz Intel

7

Figure 2.2: Cartographer Branch and Bound[4]

Core i7, 16 GB of ram, NVIDIA GeForce GT, with Solid state internal hard drive. Car-

tographer is memory intense when building point clouds. A large amount of memory and

solid state for swap file is optimal. Additionally I had 4 TB of external storage for the large

sensor data files.

The software used was ”Ubuntu 16.04.3 LTS (Xenial Xerus)”, with ”Robot Operat-

ing System (ROS) Kinetic Kame”. Make sure the combination of software used matches

Google’s website, when this research was done Luner Logger (the newer version of ROS)

was not supported.

8

For clarity: Python 2.7.12, GCC 5.4.0, Google Cartographer 0.2.0, Google ROS Cartog-

rapher Integration 0.2.0, Velodyne ROS Integration 1.2.0, ROS USB CAM package 0.3.5,

and Meshlab 1.3.2[14] were used in this research.

2.4 Overview of Hardware and Software Integration

When selecting hardware sensors do the most amount of research and verification that

the hardware and software have drivers that are fully compatible to reduce the amount of

development required. The Velodyne for example has drivers that feed directly into ROS.

The GPS unit however supplied with the Velodyne does not have drivers. Out of the box

the only benefit of the GPS is providing accurate timestamps on the Velodyne packets. I

had to write our own driver to read the GPS on the Velodyne and feed it into ROS. The

python source code to the driver is in the appendix.

Robot Operating System which is the core of this thesis, provides a listing on line of

which sensors are compatible with it. I highly recommend you first download the drivers and

attempt to compile them prior to purchasing any hardware. Many of the drivers depends

on old antiquated libraries, and many not function with this specific version of ROS. Also

verify the drivers provide all the necessary information within the sensor topics. Not all the

open source drivers are equally developed to provide what is required.

CH Robotics UM-7 was selected for the IMU because it would properly compile, was low

cost, the ROS integration was commercially supported by the manufacturer and provided

all the sensor data. Not all the sensors integrations provide all these features.

2.5 Background of Datasets

The initial datasets used were provided by Google[1]. The indoor museum dataset was

used largely to verify all the software was properly installed and functional. Map GMU[2]

and KITTI[3] datasets were existing outdoor datasets that we used, both with some short-

comings documented in experiments section. The last three datasets I collected at George

9

Mason University.

2.5.1 Cartographer Backpack Deutsches Museum [1]

Google[1] supplied sample indoor data for 2D Slam collected with two VLP-16 (Horizontal

and Vertical) and IMU from a backpack mounted GPS. This dataset worked flawlessly with

Google’s software that was already tuned to use this data. The horizontal VLP-16 provided

the data for optimal matching since it was on the same plan as the map. The vertical

VLP-16 provided the additional point cloud information for accurate reconstruction of the

room that was outside of the view frame of the horizontal LIDAR.

Figure 2.3: Google Sample Data[1]

Google[1] supplied sample indoor data for 3D SLAM collected with two VLP-16 (Hor-

izontal and Vertical) and IMU from a backpack mounted GPS. This dataset also worked

10

flawlessly with Google’s software was already tuned to use this data.

Figure 2.4: Example of no road data in MapGMU[2]

2.5.2 Map GMU [2]

The Map GMU Dataset was collected with the same Velodyne VLP-64 hardware, however

a previous semester by a different student with different research. The research involved

mapping buildings on campus, and the Velodyne was vertically aligned to capture the top

of buildings. Additionally the Map GMU research team fitted a golf cart with a mounting

bracket for the Velodyne that I used to collect data.

I had access to previous data[2] and software collected by former students at George

Mason University. The previous data was collected with Velodyne VLP-64. The only

11

data usable was pcap lidar itself. The GPS collected was not synchronized or usable, no

IMU data, or ground truth such as camera data. The data presented numerous challenges.

The first challenge is the Velodyne was oriented to scan vertically instead of horizontally.

This is sub-optimal for 3d road mapping as stated in other papers, however optimal for

their previous thesis of mapping buildings. To clarify, it is more optimal to match an

existing horizontal plane to another horizontal plan of data. The most extreme sub-optimal

design would be to attempt to match a horizontal plan (the road map you have) to a new

vertical plan of data. The very small intersection of the two planes would be the only area

the matcher could use to attempt to connect the frames together. With the VLP-64 for

example only the lasers pointed the ground that intersected with the ground plane could be

used. In contrast to the hundreds of thousands of points that could be used when aligned

horizontally as each laser sweeps across the entire plane.

The previously collected Velodyne data also has significant noise in it. The front of

the golf cart was in the view frame of the lidar. This problem was compounded by the

splash noise reflected off the white surface of the golf cart. To correct this, we removed the

quadrant of the view frame with all the noise, however by doing so, it eliminated 99 percent

of the actual road we were attempting to map, leaving only a view looking directly to the

sides. Since the goal of the project is to map the horizontal surface of the ground plane,

and not the vertical components, having the scanner oriented to only capture components

that are not from the road, and vertical components was not feasible.

I did however try to load the data through Cartographer using correlative scan matching

without IMU. Unfortunately cartographer attempts match horizontal segments together

without the IMU, which was not optimal since the lidar was mounted vertical and most of

the area it would have matched had to to be removed due to reflective noise.

New data was collected using Robot Operating System (ROS). Lidar and IMU specif-

ically was captured for Cartographer. Additionally GPS, and HD Video was captured for

ground truth. All the data was captured in a ROS datafile called a ”BAG” file that contains

all the datastreams at topics that are synchronized, timestamped and can be replayed. The

12

data can easily be accessed through a python API or the ROS applications provided. The

python API allows the data to easily be exported into any format with a very small amount

of code. I wrote the code necessary to export the GPS out of the bag format for example

to perform GPS Smoothing and export the paths to Google Maps for visualization.

2.5.3 The KITTI Dataset [3]

The KITTI Dataset is a well known dataset on the internet. The key feature of the KITTI

dataset is the data has been manually labeled. Every pedestrian, street sign, car, or other

item within their datasets have been labeled which makes the dataset very popular for

computer vision. Their dataset also includes IMU and lidar which makes it feasible to run

through cartographer to see what kind of results can be produced.

2.6 Background of Data Conversion

Most of the data conversion was done for producing ground truth visualization or assisting

with comparing to other methods outside the scope of this thesis.

Data conversion from proprietary library formats to PLY format, to OBJ format, from

point cloud to mesh textures. Normals and poisson mesh reconstruction[15] was used verify

feature work could use my data to build surfaces from point clouds. GPS Data was converted

from $GPRMC to Degrees Minutes Seconds (DMS), and Degrees format for Google Maps

visualization.

13

Chapter 3: Data Collection

Data Collection at GMU starts of mounting the sensors on the Jeep or Golf Cart, using

a fabricated mount. Once the sensors are mounted, they need to be calibrated. The lidar

must be aligned with the IMU, and the gyroscope on the IMU should be zeroed out to a flat

surface the vehicle is parked on. GPS and HD Camera as also mounted, however they are

only used for ground truth with this research. Once the sensors are setup and calibrated,

data can be recorded by driving around GMU. Afterwards the data will go through offline

slam to produce a point cloud of the area driven. Additionally an utility I wrote can be ran

to export the GPS to Google maps to visualize where the data was collected.

3.1 Calibration

With all our data collection calibration took a substantial amount of time and in some cases

was not a precise as desired. I used a 1 yard construction level on the ground to attempt

to locate a flat surface. I next zeroed out the gyroscope on the IMU.

I discovered most roads are crowned and even parking lots are typically intentionally

tilted for rain water to drain off. This provides challenges for finding level ground to

calibrate the IMU. Additionally even after calibration when reviewing data, surfaces that

might appear flat in HD video will most likely have a slight tilt due to the way roads that

are constructed. With the Golf Cart I discovered even most side walks have some type of

tilt. Fortunately ROS uses a URDF file to define the sensor orientations allowing for tuning

the pitch, yaw, and roll after recording the data should the IMU not be perfectly level at

calibration.

I experienced numerous problems while collecting data from either interference, cables

unhooking or even sensors slightly shifting. Its very important to first do a dry run with a

14

small subset of the data collected before wasting hours collecting data that cannot be used.

Additionally as many checks as possible that things are working should be done along the

way, to spot check and correct any changes that might have occurred while collecting data,

such was wiring coming unhooked, or sensors not responding.

As seen in the Fig. 3.1, I used a level during calibration to insure when I zeroed out the

gyroscopes they were in the most level spot in a parking lot I could find.

Figure 3.1: Jeep Wranger with Velodyne Bumper Mounted being calibrated

One issue I encountered was our IMU would sometimes start reporting rotation while I

was not moving. The easiest way to detect this problem was to monitor the orientation being

reported in ROS using RVIZ when data collection starts and I was not moving. If the orien-

tation is moving while the vehicle is not moving obviously the sensor is malfunctioning. The

15

easiest correction I determined was unplug the IMU and plug it back in and start a new data

collection. The root cause to why the IMU sensor would start ”spinning”, and why unplug-

ging it would reset it was never isolated.

Figure 3.2: Jeep Wranger with Velodyne Roof Mounted

3.2 Global Position System Smoothing

I experimented with GPS Smoothing, since I am using a consumer grade Garmin GPS unit.

I developed a program that can export the GPS out of the ROS Bag format into Degrees,

Degrees Minutes Seconds (DMS), and NMEA 0183 $GPRMC formats. Additionally the

program can do a full GPS export (dense) or a sparse export of only changes in GPS. Once

16

the data is exported in CSV format, I can run it through MatLab or any external tool to

clean up any data points I feel need to be corrected. The program developed can then be

utilized to inject the new GPS stream into the ROS Bag file either replacing the original

topic stream or as a new topic stream. The data will be sequenced in the same order, unless

temporal smoothing was done to the spreadsheet, in which case, the GPS positions will be

inserted at their new respective positions.

This smoothing will allow us to correct any errors in the GPS I identify to insure with

Graph SLAM the data is constrained to the correct position on the map.

3.3 Global Position System Analysis

I also used our GPS program to transfer the GPS data into Google Maps. This allowed us

to visually inspect the GPS. Review of the data showed the GPS data was slightly bias to

the right, which is explainable by driving on the right hand side of the road and having the

GPS mounted on the right hand side of the vehicle.

Although Google Cartographer does not use GPS, this bias can easily be compensated

for within ROS by insuring the frame id within the Uniform Robot Description Format

(URDF) file in ROS has the proper translation and rotations on all the sensors. Examples

of the data exported to Google Maps can be seen within prior figures.

I detected the GPS Data from the Velodyne/GPS hardware was substantially more

dense than I expected. After careful review I determined the Velodyne/Garmin hardware

was returning 12 duplicate GPS entries. I altered the code to sub sample the data to only

return data when the GPS changed.

3.4 Data Collection 240 degrees, VLP-16

I collected data with the VLP-16 lidar mounted on the bumper of a Jeep Wrangler. I

collected 3d Lidar, IMU, GPS, and 1080p video. All the data was collected on the same

computer, the GPS was hard wired to the lidar for ultra precise timing. All the data was

17

recorded into ROS Bag format allowing it to be synchronized and easily replayed. Depend-

ing on which inputs are used, the other inputs would be used as ground truth. For example

Cartographer used IMU and lidar, leaving the GPS and camera data as ground truth. The

datasets are displayed on Fig. 3.5 through Fig. 3.8. Specifically the region around the hub,

police station, and Sandy Creek parking deck were collected with the 240 degrees mount.

Figure 3.3: GPS Shenandoah Parking Deck

18

3.5 Data Collection 360 degrees, VLP-16

I constructed a small tower on the jeep, to elevate the lidar’s view above the jeep. I recorded

360 degree lidar at George Mason with the same equipment as collecting 240 degree data,

see Fig. 3.2. The datasets are displayed on Fig. 3.5 through Fig. 3.8. All the locations

except the sandy creek parking deck were collected with the 360 degrees mount.

Figure 3.4: GPS West Campus Parking Lot

3.6 Data Collection 360 degrees, VLP-64

I used a Golf Cart(Fig. 3.9) with a horizontally mounted VLP-64 Lidar to also collect data.

See Fig. 3.10. The datasets collected are the following:

19

• parkingbuilding.bag - GMU parking office

• pond.bag - Road around Mason pond

• police.bag - Road around Mason police Station

• police2.bag - Road around Mason police Station

• hub2.bag - Road near ”The Hub” as Mason

• patriotcircle.bag - Patriot Circle Dr.

• parkinggarage.bag - first floor of parking garage

• ikes.bag - Near ”Ikes” restaurant

• sandycreek.bag - Sand Creek Lane around parking structure

All of the datasets are road mesh data requiring loop closure to complete.

20

Figure 3.5: Data Collected with Velodyne VLP-16 1

21

Figure 3.6: Data Collected with Velodyne VLP-16 2

22

Figure 3.7: Data Collected with Velodyne VLP-16 3

23

Figure 3.8: Data Collected with Velodyne VLP-16 4

24

Figure 3.9: VLP-64 mounted on Golf Cart

25

Figure 3.10: Data Collected with Velodyne VLP-64

26

Chapter 4: Experiments

Experiments were conducted on the Map GMU, KITTI, and collected data sets. Each

dataset provides its own challenges. The Map GMU data failed because it was vertically

aligned, without an IMU and did not contain any road data. The KITTI data only was

successful with their trivial data. The data I collected was the most successful of all the

experiments.

4.1 Map GMU[2]

The existing lidar data from Map GMU[2] was the first outdoor dataset used. The data

had the golf cart in every frame of the data and reflection noise since the surface of the golf

cart is white and reflective. I modified the open source Velodyne drivers for ROS exclude

this region from the data within the PCAP files previously captured. I attempted to use

”Online Corrective Scan Matching” which is the mode that attempts to match the frames

of data without an IMU, or with faulty IMU data. The path of the golf cart was a square,

ending where it started at. The result in cartographer however was a straight line. Without

the IMU, and with the vertical mounted Lidar that could only see the sides, cartographer

could not match enough features to see turns.

4.2 The KITTI Dataset[3]

The small simple datasets from KITI[3] processed with Google Cartographer successfully.

In some cases however the dataset was so large I could not export the point cloud data out

of Cartographer.

The large complex datasets from KITTI[3] did not have as good results with Google

Cartographer. Specifically I could not get loop closure. Portions of the maps were accurate,

27

while other portions were very poor. I inquired with the Google authors for feedback on

why the well known KITTI[3] dataset had problems with Google Cartographer. The first

issue they pointed out was the dataset did not start at a complete stop. Since the IMU

returns acceleration the starting speed must be zero. The second issue they pointed out is

it appears the sensors were down sampled. Google expects very fast IMU times where the

software knows exactly where the lidar is as the data comes in and sweeps across the plane.

Down sampling to a complete sweep with one imu data point vastly reduces the capability

of their algorithm.

Trivial KITTI[3] data like a car moving straight down a road for 10 seconds processed

and converted to point cloud very well. Very complex datasets requiring global slam how-

ever performed substantially worse as displayed in the figure.

Figure 4.1: KITTI Dataset[3]

28

4.3 SLAM Tuning

The default parameters were not sufficient for the data processing and the parameters were

updated. See the appendix for the exact settings used.

IMU drift was identified as a problem after processing some of the problematic datasets

from the VLP-16 and VLP-64 data collections. To re-mediate IMU drift I fine tuned the

IMU translation/rotation matrix within the Uniform Robot Description Format (URDF)

with -0.1125 radian pitch.

I experimented with the accumulator to determine what differences there were with how

much data was accumulated in batches going into SLAM. Our results indicate that with the

VLP-16 three or four accumulations (full spins) provided optimal results with our dataset.

Fewer spins, down to even one spin provided slightly lesser results, while going much beyond

four spins drastically decreased the results.

I experimented with ceres scan matcher, this allows computer vision and matching

to have a stronger weight in the cost formulas within slam than the IMU. The ceres scan

matcher is typically very helpful with high resolution lidar with poor IMU. Since the VLP-16

is low resolution, the ceres scan matcher significantly decreased the results. Our conclusion

was that with low resolution lidar, the IMU is necessary for constraining the data.

4.4 Data Collected roof mounted Velodyne VLP-16 (240 de-

grees)

Using Google Cartographer with VLP-16 I had good results with local trajectory builder,

and loop closure, however the low resolution of VLP-16 against high resolution outdoor

environment provided poor results for scan matching and global trajectory builder. This

allowed in limited cases in optimal conditions to collect small loop closures of outside data,

like Shenandoah Parking Deck, and Rivanna River Way.

29

Figure 4.2: Point Cloud Shenandoah Parking Deck

4.5 Data Collected roof mounted Velodyne VLP-16 (360 de-

grees)

I moved the lidar from the bumper to the roof on a small tower, to increase the view frame

from 240 degrees to 360 degrees. I found it much easier for local trajectory builder to perform

loop closure, however I still had the same problem with poor results on scan matching and

global trajectory builder in some locations. Our results indicate maximizing the area on

the plan being matched is the key to good matching results with SLAM. Obviously a large

view plan from 240 to 360 degrees adds a significant increase in incoming data that can be

matched to the existing maps horizontal plane.

30

West Campus Parking Lot, and Parking Building in Lot C are examples of loop closure

with the 360 degree dataset using Google Cartographer.

4.6 Data Collected from Golf Cart with Velodyne VLP-64

(360 degrees)

I collected data with a Golf Cart that had been already configured for the LVP-64 Lidar.

Previous researchers had mounted the lidar vertically to capture buildings, I mounted it

horizontally to capture roads. The vertical orientation from the previous students data

collection was sub-optimal for road mapping since matching only occurred where the or-

thogonal data from the vertical lidar touched the horizontal plan of the road map. In

contrast to our existing data collected on VLP-16, I obviously cannot increase the number

of degrees, but I did vastly increase the resolution. By having 64 lasers instead of 16 lasers,

there was four times the resolution, which provides four times as many features for match-

ing. The increased resolution vastly improved the results. Some areas that I could not get

slam to map correctly instantly were mapped correctly with the increased resolution.

31

Figure 4.3: Point Cloud Rivanna River Way

32

Figure 4.4: Top View Point Cloud West Campus Parking Lot

33

Figure 4.5: Side View Point Cloud West Campus Parking Lot

Figure 4.6: Point Cloud Parking Building in Lot C

34

4.7 Results

With the VLP-16, The two configurations, I had overall better results with 360 degrees both

for quality of the point cloud returned, and the overall number of point clouds produced. I

inferred that the more points on the horizontal ’slam plane’ the better Google Cartographer

could perform local and global slam.

The VLP-64 however, provided better data than the VLP-16 with four times the reso-

lution. The Mason Pond dataset will be carefully examined below using Google as ground

truth. The four images supplied for comparison are a Satellite Image provided by Google, a

Road Map provided by Google, the Cartographer Output from using the VLP-64 Lidar, as

well as the road map superimposed on top of the scaled and rotated Cartographer output

for careful examination.

The superimposed image shows the road mesh is where it belongs on the map provided

by Google.

35

Figure 4.7: Results from Mason Pond

36

Chapter 5: Discussion

Figures 5.1, 5.2, and 5.3 display simple loop closure using the low resolution VLP-16 lidar

with cartographer. The vehicle drove in a circular direction with the starting and ending in

the same area on George Mason west campus. The data is rather simple with a large hill

within the view frame of the lidar in nearly every frame. Although there are very few strong

square corner features in this dataset it demonstrates cartographer’s ability to perform local

slam and loop closure even with a low resolution lidar.

Figures 5.4, 5.5, and 5.6 display loop closure with a slightly more complex dataset using

the low resolution VLP-16 lidar with cartographer. The vehicle drove roughly in a square.

The distinct circles seen in the lower left corner show the distance the lidar can see. In

this example the loop is larger than the distance of the lidar, displaying that the algorithm

functions outdoors even when landmarks are outside of its view. Its my belief this dataset

worked well with the low resolution lidar because the cars in the parking lot provided a

feature rich environment.

Figures 5.7 and 5.8 display loop closure with an even more complex dataset using the low

resolution VLP-16. The vehicle drove around a building that was physically impossible to

see around. The low resolution lidar with cartographer performed well in this environment

also. Its my belief the building itself and the cars in the parking lot provided a strong set

of features to aid in local and global slam being successful.

Figures 5.9, 5.10, and 5.11 display a problematic dataset with the low resolution VLP-16

lidar. This is a ”round about” or ”traffic circle” located on Patriot circle. This dataset does

not contain many strong features for SLAM to utilize and the end result looks more like a

cork screw shape rather than a circle. Its my strong suspicion if more features were present

in the dataset the VLP-16 lidar with cartographer would have operated well in this setting

as well.

37

Figures 5.12, 5.13, and 5.14 display the exact same problematic ”round about” however

with the data collected with the high resolution VLP-64 lidar. This ”round about” or

”traffic circle” from patriot circle is clearly visible. Although there are other structures

present in the point cloud, the same structures were also present with the low resolution

lidar. These three figures are a subset of the larger loop closure of George Mason Pond

presented in the results section. As clearly visible in the images, local and global slam were

successful with the higher resolution lidar when fewer features were available.

Figure 5.15 displays a closeup in meshlab of the point cloud produced of the ”round

about” featured in the previous images with the VLP-64 Lidar. The details of the road are

very clearly present within the point cloud.

The conclusion I have draw is that as the number of strong features are reduced, the

resolution of the lidar needs to increase for quality results.

38

Figure 5.1: VLP-16 XY Simple Loop Closure

39

Figure 5.2: VLP-16 XZ Simple Loop Closure

Figure 5.3: VLP-16 YZ Simple Loop Closure

40

Figure 5.4: VLP-16 XY Loop Closure Around Parking Lot

Figure 5.5: VLP-16 XZ Loop Closure Around Parking Lot

41

Figure 5.6: VLP-16 YZ Loop Closure Around Parking Lot

Figure 5.7: VLP-16 XY Loop Closure Around Parking Building

Figure 5.8: VLP-16 XZ Loop Closure Around Parking Building

42

Figure 5.9: VLP-16 XY round about Mason Pond

43

Figure 5.10: VLP-16 YZ round about Mason Pond

Figure 5.11: VLP-16 XZ round about Mason Pond

44

Figure 5.12: VLP-64 XY round about Mason Pond

45

Figure 5.13: VLP-64 XZ round about Mason Pond

Figure 5.14: VLP-64 YZ round about Mason Pond

Figure 5.15: VLP-64 closeup round about Mason Pond

46

Chapter 6: Conclusion

Cartographer works quite well outdoors as well with optimal hardware even though it is

designed for indoor SLAM where GPS is not available. With lesser hardware like the

Velodyne VLP-16, cartographer has difficulties matching surfaces with poor features. The

circle presented on the top of the Mason Pond data for instance is mostly grass without

any solid structures or strong features around it. Cartographer had no problem with the

high resolution data from the VLP-64, however we captured this area multiple times with

the lower resolution VLP-16 and had very poor results. In contrast however cartographer

worked very well with low resolution lidar like the VLP-16 in feature reach environments

and indoor like environments like the parking garage with flat solid walls with strong ridge

features.

The shortcomings of cartographer in the outdoor environment in the future might be

be overcome if GPS is added, allowing problematic areas to be constrained using GPS for

global slam. Essentially making cartographer a hybrid with graph slam.

47

Appendix A: Glossary of Terminology

• DMS: Degrees, Minutes, Seconds

• $GPRMC: GPS sentence within NMEA 0183 international standard

• GPS: Global Positioning System

• GMU: George Mason University

• HD: High Definition

• IMU: Inertial Measurement Unit

• LIDAR: Light Imaging, Detection, And Ranging

• LTS: Long Term Support

• NMEA: National Marine Electronics Association

• OBJ: Wavefront Object File Format

• PLY: Polygon File Format

• ROS: Robot Operating System

• SLAM: Simultaneous Localization And Mapping

• URDF: Uniform Robot Description Format

• USB: Universal Serial Bus

48

Appendix B: Installation

B.1 Ubuntu Installation

The installation of Ubuntu was fairly typical. Although most of these settings make nearly

no difference in the end, I am documenting them for clarity. Insure the installation is of

Xenial Xerus (16.04), and there is sufficient disk space allocated.

1. Download Updates while Installing Ubuntu

2. Install third-party software for graphics and Wi-Fi hardware, Flash, MP3, and other

media

3. Select: Erase disk and install Ubuntu

4. Select: Use LVM with the new Ubuntu installation

5. New York

6. English (US)

7. English (US) - English (Macintosh)

8. Your name: user

9. computer name: cs799

10. pick a username: user

11. Select: Log in automatically

B.2 Linux Configuration

Immediately after installing Linux, some basic configuration is necessary.

49

Update the security file to allow for frequent easy access of sudo. emphsudo vi /etc/su-

doers

1 user ALL= NOPASSWD : ALL

Install SSH, Create a few directories that will be needed later, and get the system to

start patching itself.

1 sudo apt−get −y i n s t a l l openssh−s e r v e r

2 sudo apt−get i n s t a l l −y vim vim−gnome vim−gnome−py2

3 sudo mkdir −p / opt / crontabs

4 sudo chown −R user : user / opt

5 touch / opt / crontabs /update . sh

6 chmod a+x / opt / crontabs /update . sh

7 vim / opt / crontabs /update . sh

Create a bash file for system updates.

/opt/crontabs/update.sh

1 #!/ bin / bash

2 sudo apt−get −y update

3 sudo apt−get −y upgrade

4 sudo apt−get −y d i s t−upgrade

Update the cron so it will automatically perform updates sudo crontab -e

Crontab Listing:

1 0 2 ∗ ∗ ∗ / opt / crontabs /update . sh > /dev/ n u l l 2>&1

Properly tune screen settings, using Gnome Desktop. This will allow for collecting data

without the screen locking.

1. Brightness & Lock:

50

2. Turn screen off when inactive for: Never

3. Lock: OFF

B.3 Install Cartographer Libraries

Install the Cartographer Prerequisites, and compile the library by itself. The library would

allow you the ability to write c++ code directly against the cartographer libraries. This

will insure the system has what it needs to run Cartographer, and can be troubleshot by

itself. Perform the following Linux commands[16]:

1 cd / opt

2 # I n s t a l l a l l p r e r e q u i s t s

3 sudo apt−get i n s t a l l −y cmake g++ g i t google−mock l i bboo s t−a l l−

dev l i b c a i r o 2−dev

4 sudo apt−get i n s t a l l −y l i b e i g e n 3−dev l i b g f l a g s −dev l i b g o o g l e−

glog−dev

5 sudo apt−get i n s t a l l −y l i b l u a 5 .2−dev l i bp ro tobu f−dev

l i b s u i t e s p a r s e−dev

6 sudo apt−get i n s t a l l −y ninja−bu i ld protobuf−compi ler python−

sphinx

7 # Ver i fy Cartographer (L i b r a r i e s) w i l l compi le and b u i l t w i thou t

ROS

8 # Bui ld and i n s t a l l Ceres .

9 g i t c l one https : // cere s−s o l v e r . goog l e sour c e . com/ cere s−s o l v e r

10 cd cere s−s o l v e r

11 mkdir bu i ld

12 cd bu i ld

13 cmake . . −G Ninja

14 n in ja

51

15 n in ja t e s t

16 sudo n in j a i n s t a l l

17

18 # Bui ld and i n s t a l l Cartographer .

19 cd / opt

20 g i t c l one https : // github . com/ goog l e ca r tog rapher / car tographer

21 cd car tographer

22 mkdir bu i ld

23 cd bu i ld

24 cmake . . −G Ninja

25 n in ja

26 n in ja t e s t

27 sudo n in j a i n s t a l l

B.4 Install Robot Operating System

Installation of Robot Operating System Kinetic Kane is required prior to installing the

Cartographer Integration. Below are the Linux commands I used to install ROS.[17]

Note: Make sure you use Kinetic Kane verison of ROS, do not attempt to use other ver-

sions of ROS without verifying compatibility with Cartographer documentation. Currently

the newer version of ROS ”Luner Logger” is not supported by Cartographer.

1 sudo sh −c ’ echo ”deb http :// packages . ro s . org / ros /ubuntu $ (

l s b r e l e a s e −sc) main” > / e tc / apt / sour c e s . l i s t . d/ ros−l a t e s t .

l i s t ’

2 sudo apt−key adv −−keyse rve r hkp :// ha . pool . sks−key s e rv e r s . net : 80

−−recv−key 421C365BD9FF1F717815A3895523BAEEB01FA116

3 sudo apt−get update

4 sudo apt−get i n s t a l l −y ros−k i n e t i c−desktop− f u l l

52

5 sudo rosdep i n i t

6 rosdep update

7 echo ” source / opt / ros / k i n e t i c / setup . bash” >> ˜/ . bashrc

8 source / opt / ros / k i n e t i c / setup . bash

9 sudo apt−get −y i n s t a l l python−r o s i n s t a l l python−r o s i n s t a l l −

generato r python−wstoo l bui ld−e s s e n t i a l

B.5 Install ROS Cartographer Integration

Now that Cartographer can be compiled, and ROS is installed, installation of the integration

can be done. Use the following Linux commands to build and deploy ROS/Cartgrapher

Integration: [1]

1 cd / opt

2 # I n s t a l l w s t o o l and rosdep .

3 sudo apt−get update

4 sudo apt−get i n s t a l l −y python−wstoo l python−rosdep ninja−bu i ld

5

6 # Create a new workspace in ’ c a t k i n w s ’ .

7 mkdir catk in ws

8 cd catk in ws

9 wstoo l i n i t s r c

10

11 # Merge the c a r t o g r a p h e r r o s . r o s i n s t a l l f i l e and f e t c h code f o r

dependencies .

12 wstoo l merge −t s r c https : // raw . g i thubuse rcontent . com/

goog l e ca r tog rapher / c a r t o g r a p h e r r o s / master / c a r t o g r a p h e r r o s .

r o s i n s t a l l

13 wstoo l update −t s r c

53

14

15 # I n s t a l l deb dependencies .

16 # The command ’ sudo rosdep i n i t ’ w i l l p r i n t an erro r i f you have

a l r e a d y

17 # executed i t s i n c e i n s t a l l i n g ROS. This erro r can be ignored .

18 sudo rosdep i n i t

19 rosdep update

20 rosdep i n s t a l l −−from−paths s r c −−ignore−s r c −−r o s d i s t r o=${

ROS DISTRO} −y

21

22 # Bui ld and i n s t a l l .

23 c a t k i n m a k e i s o l a t e d −− i n s t a l l −−use−n in ja

24 source i n s t a l l i s o l a t e d / setup . bash

25 echo ” source / opt / catk in ws / i n s t a l l i s o l a t e d / setup . bash” >> ˜/ .

bashrc

B.6 Velodyne Driver Installation

In order to interface directly with the hardware of the Velodyne (or read pcap files previously

captured with Velodyne), it is necessary to compile and deploy Veloydne drivers. The

following Linux commands will compile and deploy Velodyne drivers [18].

1 mkdir −p / opt / catk in ws / s r c

2 cd / opt / catk in ws / s r c

3 g i t c l one https : // github . com/ ros−d r i v e r s / velodyne . g i t

4 cd . .

5 sudo rosdep i n i t

6 rosdep update

54

Figure B.1: Velodyne ROS Interaction

7 rosdep i n s t a l l −−from−paths s r c −−ignore−s r c −−r o s d i s t r o=${

ROS DISTRO} −y

8

9 # Bui ld and i n s t a l l .

10 c a t k i n m a k e i s o l a t e d −− i n s t a l l −−use−n in ja

11 source i n s t a l l i s o l a t e d / setup . bash

55

Appendix C: Code

C.1 GPS Driver for Velodyne

1 #!/ usr / b in /env python

2 # −∗− coding : i so −8859−15 −∗−

3

4 import sys

5 import rospy

6 import socket

7 from std msgs . msg import St r ing

8 from std msgs . msg import Header

9 from socket import ∗

10

11 # c r e a t e ros p u b l i s h e r

12 rospy . i n i t n o d e (” te l emetry node ”)

13 pub = rospy . Pub l i she r (” te l emetry ” , Str ing , q u e u e s i z e =10)

14

15 # connect to ve lodyne

16 UDP IP = ” 1 9 2 . 1 6 8 . 1 . 2 ”

17 UDP PORT = 8308

18 sock = socket (AF INET , SOCK DGRAM)

19 sock . bind ((UDP IP , UDP PORT))

20

21 # loop f o r e v e r

22 while True :

23 t ry :

24 data , addr = sock . recvfrom (512)

56

25 nmea = data [2 0 4 : 2 7 8]

26 #p r i n t nmea

27 pub . pub l i sh (S t r ing (nmea))

28 except :

29 print ” Exception : Reconnecting . . . ”

30 sock . close ()

31 sock . bind ((UDP IP , UDP PORT))

32

33 # we dont need to c l o s e por t s i n c e we loop f o r e v e r !

C.2 GPS Export to Google Maps and GPS Smoothing

1 #!/ usr / b in / python

2 #

3

4 import sys

5 import rospy

6 import rosbag

7 from std msgs . msg import Int32 , S t r ing

8

9 ##

10 # How to Use .

11 #

12 # Step #1, choose format you wish you use GPS:

13 #

14 # DMS: Degrees , Minutes , Seconds

15 # Degrees : Degrees . decimal [p r e f e r r e d by g o o g l e]

57

16 # $GRPRMC: Long s t a n d a r d i z e d gps s t r i n g from hardware wi th

a d d i t i o n a l in format ion

17 #

18 # Set True to whichever formats you d e s i r e (you can p i c k m u l t i p l e

)

19 #

20 # o p t i o n s to e x p o r t csv

21 writeToCsvDMS = False

22 writeToCsvDegrees = False

23 writeToCsvGPRMC = False

24 spareGps = False

25

26 # Note , sparseGPS w i l l on ly pro v ide you changes in GPS, i n s t e a d

o f every gps entry in f i l e

27

28 # Step #2, run the program

29 #

30 # ./ r e w r i t e b a g . py <pr ov id e bagf i l ename>

31 #

32 # example : r e w r i t e b a g . py in1 . bag

33 #

34 ## depending on o p t i o n s t h e s e f i l e s w i l l appear ######

35 #

36 # −rw−rw−r−− 1 nathan nathan 2329 Jan 31 22:25 in1 . bag−DMS−

sparse . csv

37 # −rw−rw−r−− 1 nathan nathan 320231 Jan 31 22:24 in1 . bag−DMS−

dense . csv

58

38 # −rw−rw−r−− 1 nathan nathan 2490 Jan 31 22:25 in1 . bag−degrees−

sparse . csv

39 # −rw−rw−r−− 1 nathan nathan 342634 Jan 31 22:24 in1 . bag−degrees−

dense . csv

40 # −rw−rw−r−− 1 nathan nathan 4134 Jan 31 22:24 in1 . bag−GPRMC−

sparse . csv

41 # −rw−rw−r−− 1 nathan nathan 568372 Jan 31 22:24 in1 . bag−GPRMC−

dense . csv

42 #

43

44 # Step #3, perform any smoothing d e s i r e d to the csv f i l e in the

format you d e s i r e

45 #

46 #

47

48 # Step #4, c r e a t e a new bag f i l e wi th updated ”smoothed” gps

49 #

50 # s e t a l l t h r e e o p t i o n s be low most l i k e l y to True

51

52 # o p t i o n s to w r i t e bag f i l e

53 readInput = False

54 # readInput t e l l s the program to read in the CSV f i l e you are

p r o v i d i n g

55

56 writeIgnoreSourceGPS = False

57 # writeIgnoreSourceGPS t e l l s program to d i s c a r d gps from o r i g i n a l

bag f i l e

58

59

59 writeToBag = False

60 # writeToBag t e l l s program to w r i t e a new b a g f i l e named <o r i g i n a l

name>−updated . bag

61

62 # then run the program

63 #

64 # ./ r e w r i t e b a g . py <pr ov id e o r i g i n a l bag f i lename> <pr ov id e one o f

above csv f i l e s >

65 #

66 #

67 # note , in the csv f i l e :

68 # column #1 i s the timestamp ,

69 # column #2 i s the name o f the t o p i c

70 # column #3 i s the gps

71

72 # the program w i l l use whatever t o p i c name you choose , so i f you

want o r i g i n a l gps and new gps

73 # most l i k e l y you w i l l want to change the t o p i c name in the

s p r e a d s h e e t u n l e s s you want the

74 # gps mixed

75

76 # a d d i t i o n a l l y the new t o p i c w i l l have the data in the e x a c t

s t r i n g format from the s p r e a d s h e e t

77 ##

78 # nathan@www :˜/ I d e a P r o j e c t s / cs699−gps$ rosbag i n f o t e s t−west−

park ing . bag

79 # path : t e s t−west−park ing . bag

80 # v e r s i o n : 2 .0

60

81 # durat ion : 5:04 s (304 s)

82 # s t a r t : Jan 20 2018 1 9 : 0 8 : 0 8 . 5 8 (1516475288.58)

83 # end : Jan 20 2018 1 9 : 1 3 : 1 2 . 9 1 (1516475592.91)

84 # s i z e : 10.1 GB

85 # messages : 56783

86 # compression : none [4819/4819 chunks]

87 # t y p e s : sensor msgs /Image [060021388200

f 6 f 0 f 4 4 7 d 0 f c d 9 c 6 4 7 4 3]

88 # sensor msgs /Imu [6

a62c6daae103f4 f f57a132d6f95cec2]

89 # sensor msgs / PointCloud2 [1158

d486dd51d683ce2f1be655c3c181]

90 # std msgs / S t r i n g [992

ce8a1687cec8c8bd883ec73ca41d1]

91 # t o p i c s : /imu/ data 5779 msgs : sensor msgs /

Imu

92 # / t e l e m e t r y 41933 msgs : s td msgs /

S t r i n g

93 # /usb cam/ image raw 3039 msgs : sensor msgs /

Image

94 # / v e l o d y n e p o i n t s 6032 msgs : sensor msgs /

PointCloud2

95 #

96 ###

97 # h t t p :// aprs . g i d s . n l /nmea/#rmc

98 # $GPRMC

99 #

100 # Recommended minimum s p e c i f i c GPS/ Trans i t data

61

101 #

102 # eg1 . $GPRMC,081836 ,A, 3 7 5 1 . 6 5 , S ,14507 .36 ,E

,0 00 . 0 , 360 . 0 , 130 998 ,0 11 . 3 ,E∗62

103 # eg2 . $GPRMC,225446 ,A, 4 9 1 6 . 4 5 ,N,12311 .12 ,W

,0 00 . 5 , 054 . 7 , 191 194 ,0 20 . 3 ,E∗68

104 #

105 #

106 # 225446 Time o f f i x 22 :54 :46 UTC

107 # A Navigat ion r e c e i v e r warning A = OK, V = warning

108 # 4916.45 ,N L a t i t u d e 49 deg . 16.45 min North

109 # 12311.12 ,W Longitude 123 deg . 11.12 min West

110 # 000.5 Speed over ground , Knots

111 # 054.7 Course Made Good , True

112 # 191194 Date o f f i x 19 November 1994

113 # 020.3 ,E Magnetic v a r i a t i o n 20.3 deg East

114 # ∗68 mandatory checksum

115 #

116 #

117 # eg3 . $GPRMC,220516 ,A, 5 1 3 3 . 8 2 ,N,00042 .24 ,W

,1 73 . 8 , 231 . 8 , 130 694 ,0 04 . 2 ,W∗70

118 # 1 2 3 4 5 6 7 8 9 10 11 12

119 #

120 #

121 # 1 220516 Time Stamp

122 # 2 A v a l i d i t y − A−ok , V−i n v a l i d

123 # 3 5133.82 curren t L a t i t u d e

124 # 4 N North/ South

125 # 5 00042.24 curren t Longitude

62

126 # 6 W East /West

127 # 7 173.8 Speed in knots

128 # 8 231.8 True course

129 # 9 130694 Date Stamp

130 # 10 004.2 Var ia t ion

131 # 11 W East /West

132 # 12 ∗70 checksum

133 #

134 #

135 # eg4 . $GPRMC, hhmmss . ss ,A, l l l l . l l , a , yyyyy . yy , a , x . x , x . x , ddmmyy , x . x

, a∗hh

136 # 1 = UTC o f p o s i t i o n f i x

137 # 2 = Data s t a t u s (V=n a v i g a t i o n r e c e i v e r warning)

138 # 3 = L a t i t u d e o f f i x

139 # 4 = N or S

140 # 5 = Longitude o f f i x

141 # 6 = E or W

142 # 7 = Speed over ground in knots

143 # 8 = Track made good in de gre es True

144 # 9 = UT date

145 # 10 = Magnetic v a r i a t i o n de gree s (E a s t e r l y var . s u b t r a c t s from

t r u e course)

146 # 11 = E or W

147 # 12 = Checksum

148 #

149 ##

150

151 # Debugging o p t i o n s

63

152 debug = False

153

154

155 # h t t p :// en . p r o f t .me/2015/09/20/ conver t ing−l a t i t u d e−and−l o n g i t u d e

−decimal−va lues−p/

156 de f dms2dd(degrees , minutes , seconds , d i r e c t i o n) :

157 dd = f l o a t (degree s) + f l o a t (minutes) /60 + f l o a t (seconds)

/(60∗60) ;

158 i f d i r e c t i o n == ’S ’ or d i r e c t i o n == ’W’ :

159 dd ∗= −1

160 return dd ;

161

162

163 # f i r s t argument i s name o f output f i l e

164 base f i l ename = sys . argv [1]

165

166 # f i l e n a m e s

167 readBagFileName = base f i l ename # + ’ . bag ’

168 writeBagFileName = base f i l ename + ’−updated . bag ’

169

170 i f spareGps :

171 writeCsvGPRMCFilename = base f i l ename + ’−GPRMC−spar s e . csv ’

172 writeCsvDMSFilename = base f i l ename + ’−DMS−spar s e . csv ’

173 writeCsvDegreesFi lename = base f i l ename + ’−degrees−spar s e . csv

’

174 else :

175 writeCsvGPRMCFilename = base f i l ename + ’−GPRMC−dense . csv ’

176 writeCsvDMSFilename = base f i l ename + ’−DMS−dense . csv ’

64

177 writeCsvDegreesFi lename = base f i l ename + ’−degrees−dense . csv ’

178

179

180

181 i f readInput :

182 # second argument i s name o f input f i l e

183 inputFi lename = sys . argv [2]

184 i n p u t F i l e = open(inputFi lename)

185

186

187 readBagFi le = rosbag . Bag(readBagFileName)

188

189 i f writeToBag :

190 wri teBagFi l e = rosbag . Bag(writeBagFileName , ’w ’)

191

192 i f writeToCsvGPRMC :

193 writeCsvGPRMCFile = open(writeCsvGPRMCFilename , ’w ’)

194

195 i f writeToCsvDMS :

196 writeCsvDMSFile = open(writeCsvDMSFilename , ’w ’)

197

198 i f writeToCsvDegrees :

199 wri teCsvDegreesF i l e = open(writeCsvDegreesFi lename , ’w ’)

200

201 lastGps = ””

202 nextLine = ””

203

204 i f readInput :

65

205

206 # F i r s t Line from input f i l e

207 nextLine = i n p u t F i l e . r e a d l i n e ()

208 nextL i s t = nextLine . sp l i t (”\””)

209

210 i f nextLine != ”” :

211 nextTopic = s t r (nex tL i s t [3])

212

213 nextMsg = Str ing ()

214 nextMsg . data = nextL i s t [5]

215

216 nextTimestamp = rospy . rost ime . Time ()

217 nextTimestamp . s e c s = int (nex tL i s t [1] [0 : 1 0])

218 nextTimestamp . nsec s = int (nex tL i s t [1] [1 0 :])

219

220 # Loop through bag f i l e

221 for top ic , msg , timestamp in readBagFi le . read messages () :

222

223 # i f re−w r i t i n g wi th input gps

224 i f nextLine != ”” and readInput and writeToBag :

225

226 # f o r every message in the bag f i l e , i n s e r t any p r i o r

messages from gps input f i l e

227 while nextLine != ”” and (nextTimestamp . s e c s < timestamp .

s e c s or (nextTimestamp . s e c s == timestamp . s e c s and

nextTimestamp . nsec s <= timestamp . nsec s)) :

228 wri teBagFi l e . write (nextTopic , nextMsg , nextTimestamp)

229

66

230 # Next Line from input f i l e

231 nextLine = i n p u t F i l e . r e a d l i n e ()

232 nextL i s t = nextLine . sp l i t (”\””)

233

234 i f nextLine != ”” :

235 nextTopic = s t r (nex tL i s t [3])

236

237 nextMsg = Str ing ()

238 nextMsg . data = nextL i s t [5]

239

240 nextTimestamp = rospy . ros t ime . Time ()

241 nextTimestamp . s e c s = int (nex tL i s t [1] [0 : 1 0])

242 nextTimestamp . nsec s = int (nex tL i s t [1] [1 0 :])

243

244

245 #### format from $GPRMC #############################

246 # 3849.8998 ,N,07719.5674 ,W

247 #

248 ### format f o r input i n t o g o o g l e ####################

249 #

250 # 38 49.8987 , −77 19.5685

251 # [− or b lank] [degree] [space] [minutes . decimal minutes] , [space

][− or b lank] [degree] [space] [minutes . decimal minutes]

252 ###

253

254 ###

255 # h t t p :// s t a t i c . garmincdn . com/pumac/ GPS 18x Tech Specs . pd f

256 #

67

257 # Lat i tude , ddmm.mmmm format f o r GPS 18x PC/LVC; ddmm.

mmmmm format f o r GPS 18x−5Hz (l e a d i n g z e r o s must be

t r a n s m i t t e d)

258 # Longitude , dddmm.mmmm format f o r GPS 18x PC/LVC; dddmm.

mmmmm format f o r GPS 18x−5Hz (l e a d i n g z e r o s must be

t r a n s m i t t e d)

259 #

260 ###

261

262 i f t o p i c == ’ / te l emetry ’ :

263 GPRMC = s t r (msg) [1 1 : l en (s t r (msg))−1]

264 GPRMCList = GPRMC. sp l i t (” , ”)

265

266

267 # Change from N/S W/E to + or −

268 i f GPRMCList [4] == ’N ’ :

269 l a t S i g n = ””

270 else :

271 l a t S i g n = ”−”

272

273 # Lat i tude , ddmm.mmmmm format f o r GPS 18x−5Hz (l e a d i n g

z e r o s must be t r a n s m i t t e d)

274 Latd i r = GPRMCList [4]

275 Latdd = int (GPRMCList [3] [0 : 2])

276 Latmm = f l o a t (”0” + GPRMCList [3] [2 : 9])

277 Latss = 0

278

279 i f GPRMCList [6] == ’W’ :

68

280 l ongS ign = ”−”

281 else :

282 l ongS ign = ””

283

284 # Longitude , dddmm.mmmmm format f o r GPS 18x−5Hz (l e a d i n g

z e r o s must be t r a n s m i t t e d)

285 Longdir = GPRMCList [6]

286 Longdd = int (GPRMCList [5] [0 : 3])

287 Longmm = f l o a t (”0” + GPRMCList [5] [3 : 1 0])

288 Longss = 0

289

290

291

292 # Reformat GPS S t r i n g [to g o o g l e format]

293 DMS = s t r (l a t S i g n) + s t r (Latdd) + ” ” + s t r (Latmm) + ” , ”

+ s t r (longSign) + s t r (Longdd) + ” ” + s t r (Longmm)

294

295 LatDegrees = dms2dd(Latdd , Latmm, Latss , Latd i r)

296 LongDegress = dms2dd(Longdd , Longmm, Longss , Longdir)

297

298 Degress = s t r (LatDegrees) + ” , ” + s t r (LongDegress)

299

300

301 # CSV Format f o r Degrees

302 CsvDegrees= ”\”” + s t r (timestamp) + ” \” ,\” ” + s t r (t o p i c)

+ ” \” ,\” ” + Degress + ”\””

303

304 # CSV Format f o r DMS

69

305 CsvDMS = ”\”” + s t r (timestamp) + ” \” ,\” ” + s t r (t o p i c) + ”

\” ,\” ” + DMS + ”\””

306

307 # CSV Format f o r $GPRMC

308 CsvGPRMC = ”\”” + s t r (timestamp) + ” \” ,\” ” + s t r (t o p i c) +

” \” ,\” ” + GPRMC + ”\””

309

310

311 i f spareGps == False or lastGps != DMS:

312

313 i f debug :

314 print Degress

315

316 i f writeToCsvGPRMC :

317 writeCsvGPRMCFile . write (CsvGPRMC + ”\n”)

318

319 i f writeToCsvDMS :

320 writeCsvDMSFile . write (CsvDMS + ”\n”)

321

322 i f writeToCsvDegrees :

323 wri teCsvDegreesF i l e . write (CsvDegrees + ”\n”)

324

325 lastGps = DMS

326

327 # w r i t e to new output f i l e

328 i f writeToBag :

329 i f t o p i c != ’ / te l emetry ’ or writeIgnoreSourceGPS == False

:

70

330 wri teBagFi l e . write (top ic , msg , timestamp)

331

332 # w r i t e any gps p o i n t s t h a t e x i s t a f t e r data in bag f i l e

333 i f nextLine != ”” and readInput and writeToBag :

334

335 # f o r every message in the bag f i l e , i n s e r t any p r i o r

messages from gps input f i l e

336 while nextLine != ”” and (nextTimestamp . s e c s < timestamp . s e c s

or (nextTimestamp . s e c s == timestamp . s e c s and nextTimestamp .

nsec s <= timestamp . nsec s)) :

337 wri teBagFi l e . write (nextTopic , nextMsg , nextTimestamp)

338

339 # Next Line from input f i l e

340 nextLine = i n p u t F i l e . r e a d l i n e ()

341 nextL i s t = nextLine . sp l i t (”\””)

342

343 i f nextLine != ”” :

344 nextTopic = s t r (nex tL i s t [3])

345

346 nextMsg = Str ing ()

347 nextMsg . data = nextL i s t [5]

348

349 nextTimestamp = rospy . ros t ime . Time ()

350 nextTimestamp . s e c s = int (nex tL i s t [1] [0 : 1 0])

351 nextTimestamp . nsec s = int (nex tL i s t [1] [1 0 :])

352

353 # c l o s e bag f i l e s

354 readBagFi le . close ()

71

355

356 i f writeToBag :

357 wri teBagFi l e . close ()

358 i f writeToCsvDMS :

359 writeCsvDMSFile . close ()

360 i f writeToCsvDegrees :

361 wri teCsvDegreesF i l e . close ()

362

363 i f writeToCsvGPRMC :

364 writeCsvGPRMCFile . close ()

72

Appendix D: Configuration

D.1 Cartographer Main LUA Configuration

This is the main Cartographer configuration file. scans per accumulation should be set to

a value between 2 and 10 for the velodyne. optimize every n scans should also be set to a

low number to have global slam performed frequently.

1 i n c lude ” map bui lder . lua ”

2 i n c lude ” t r a j e c t o r y b u i l d e r . lua ”

3

4 opt ions = {

5 map bui lder = MAP BUILDER,

6 t r a j e c t o r y b u i l d e r = TRAJECTORY BUILDER,

7 map frame = ”map” ,

8 t rack ing f rame = ” b a s e l i n k ” ,

9 publ i shed f rame = ” b a s e l i n k ” ,

10 odom frame = ”odom” ,

11 provide odom frame = true ,

12 use odometry = f a l s e ,

13 num lase r scans = 0 ,

14 num mul t i e cho l a s e r s cans = 0 ,

15 n u m s u b d i v i s i o n s p e r l a s e r s c a n = 1 ,

16 num point c louds = 1 ,

17 l o okup t rans f o rm t imeout s e c = 0 . 2 ,

18 submap pub l i sh per i od sec = 0 . 3 ,

19 p o s e p u b l i s h p e r i o d s e c = 5e−3,

20 t r a j e c t o r y p u b l i s h p e r i o d s e c = 30e−3,

21 }

73

22

23 TRAJECTORY BUILDER 3D. scans per accumulat i on = 2

24

25 −− d e f a u l t 5

26 −− TRAJECTORY BUILDER 3D. ce r e s s can matche r .

o c cup i ed space we igh t 0 = 1

27 −− TRAJECTORY BUILDER 3D. ce r e s s can matche r .

o c cup i ed space we igh t 1 = 1

28 −− TRAJECTORY BUILDER 3D. ce r e s s can matche r . t r a n s l a t i o n w e i g h t =

1

29

30 −− TRAJECTORY BUILDER 2D. scans per accumulat i on = 2

31

32 −− TRAJECTORY BUILDER 3D. submaps . number range data = 160

33

34

35 MAP BUILDER. u s e t r a j e c t o r y b u i l d e r 3 d = true

36 −− MAP BUILDER. u s e t r a j e c t o r y b u i l d e r 2 d = true

37 MAP BUILDER. num background threads = 7

38 SPARSE POSE GRAPH. opt imizat ion prob lem . h u b e r s c a l e = 5e2

39 −− SPARSE POSE GRAPH. opt imizat ion prob lem . a c c e l e r a t i o n w e i g h t = 1

e3

40 −− SPARSE POSE GRAPH. opt imizat ion prob lem . r o t a t i o n w e i g h t = 3e5

41 SPARSE POSE GRAPH. o p t i m i z e e v e r y n s c a n s = 8

42 SPARSE POSE GRAPH. c o n s t r a i n t b u i l d e r . s a m p l i n g r a t i o = 0 .03

43 SPARSE POSE GRAPH. opt imizat ion prob lem . c e r e s s o l v e r o p t i o n s .

max num iterat ions = 20

44 SPARSE POSE GRAPH. c o n s t r a i n t b u i l d e r . min score = 0.62

74

45 TRAJECTORY BUILDER 3D. u s e o n l i n e c o r r e l a t i v e s c a n m a t c h i n g =

f a l s e

46 return opt ions

D.2 Unified Robot Description Format (URDF)

1

2 <robot name=” jeep ”>

3 <mate r i a l name=” orange ”>

4 <c o l o r rgba=” 1 .0 0 .5 0 .2 1” />

5 </mater ia l>

6 <mate r i a l name=” gray ”>

7 <c o l o r rgba=” 0 .2 0 .2 0 .2 1” />

8 </mater ia l>

9

10

11 <l ink name=” usb cam l ink ”>

12 <v i sua l>

13 <o r i g i n xyz=” 0 .0 0 .0 0 .0 ” />

14 <geometry>

15 <c y l i n d e r length=” 0.25 ” rad iu s=” 0 .5 ” />

16 </geometry>

17 <mate r i a l name=” gray ” />

18 </v i sua l>

19 </link>

20

21 <l ink name=” l i d a r l i n k ”>

22 <v i sua l>

75

23 <o r i g i n xyz=” 0 .0 0 .0 0 .0 ” />

24 <geometry>

25 <c y l i n d e r length=” 0.25 ” rad iu s=” 0 .5 ” />

26 </geometry>

27 <mate r i a l name=” gray ” />

28 </v i sua l>

29 </link>

30

31

32 <l ink name=” imu l ink ”>

33 <v i sua l>

34 <o r i g i n xyz=” 0 .0 0 .9 0 .0 ” />

35 <geometry>

36 <c y l i n d e r length=” 0.25 ” rad iu s=” 0 .5 ” />

37 </geometry>

38 <mate r i a l name=” gray ” />

39 </v i sua l>

40 </link>

41

42

43 <l ink name=” b a s e l i n k ” />

44

45

46 < j o i n t name=” u s b c a m l i n k j o i n t ” type=” f i x e d ”>

47 <parent l ink=” b a s e l i n k ” />

48 <c h i l d l ink=” usb cam l ink ” />

49 <o r i g i n xyz=” 0 .0 0 .0 0 .0 ” rpy=” 0 .0 0 .0 0 .0 ” />

50 </j o i n t>

76

51

52 < j o i n t name=” l i d a r l i n k j o i n t ” type=” f i x e d ”>

53 <parent l ink=” b a s e l i n k ” />

54 <c h i l d l ink=” l i d a r l i n k ” />

55 <o r i g i n xyz=” 0 .0 0 .0 0 .9 ” rpy=” 0 .0 0 .0 0 .0 ” />

56 </j o i n t>

57

58 < j o i n t name=” i m u l i n k j o i n t ” type=” f i x e d ”>

59 <parent l ink=” b a s e l i n k ” />

60 <c h i l d l ink=” imu l ink ” />

61 <o r i g i n xyz=” 0 .0 0 .0 0 .0 ” rpy=”−0.16 0 .0 0 .0 ” />

62 </j o i n t>

63

64 </robot>

D.3 Launch Configuration for High Definition Camera

1 <launch>

2 <node name=”usb cam” pkg=”usb cam” type=”usb cam node” output=”

sc r e en ” >

3 <param name=” v i d e o d e v i c e ” value=”/dev/ video0 ” />

4 <param name=” image width ” value=”1280” />

5 <param name=” image he ight ” value=”720” />

6 <param name=” p i x e l f o r m a t ” value=”yuyv” />

7 <param name=” camera frame id ” value=”usb cam” />

8 <param name=” io method ” value=”mmap”/>

9 </node>

77

10 <node name=” image view ” pkg=” image view ” type=” image view ”

respawn=” f a l s e ” output=” sc r e en ”>

11 <remap from=”image” to=”/usb cam/ image raw”/>

12 <param name=” a u t o s i z e ” value=” true ” />

13 </node>

14 </launch>

D.4 Launch Configuration for VLP-16 and other Sensors

1 <launch>

2

3 <!−− ∗∗∗∗ Star t : Robot Desc r ip t i on ∗ −−>

4 <param name=” r o b o t d e s c r i p t i o n ” t e x t f i l e=”$ (f i n d gmu) / urdf / j e ep

. urdf ” />

5

6 <!−− ∗∗∗∗ Star t : Robot Desc r ip t i on ∗ −−>

7 <node name=” r o b o t s t a t e p u b l i s h e r ” pkg=” r o b o t s t a t e p u b l i s h e r ”

type=” r o b o t s t a t e p u b l i s h e r ” />

8

9 <!−− USB CAMERA −−>

10 <node name=”usb cam” pkg=”usb cam” type=”usb cam node” output=”

sc r e en ” >

11 <param name=” v i d e o d e v i c e ” value=”/dev/ video0 ” />

12 <param name=” image width ” value=”1280” />

13 <param name=” image he ight ” value=”720” />

14 <param name=” p i x e l f o r m a t ” value=”yuyv” />

15 <param name=” camera frame id ” value=” usb cam l ink ” />

16 <param name=” io method ” value=”mmap”/>

78

17 </node>

18 <!−−

19 <node name=” image view ” pkg=” image view ” type=” image view ”

respawn=” f a l s e ” output=” sc r e en ”>

20 <remap from=”image” to=”/usb cam/ image raw”/>

21 <param name=” a u t o s i z e ” value=” true ” />

22 </node>

23

24 −−>

25 <!−− IMU −−>

26 <node name=”imu” pkg=”um7” type=” um7 driver ” output=” sc r e en ”>

27 <param name=” port ” value=”/dev/ttyUSB0” />

28 <param name=”baud” value=”115200” />

29 <param name=” frame id ” value=” imu l ink ” />

30 <param name=”mag updates” value=” true ” />

31 <param name=”quat mode” value=” true ” />

32 <param name=” z e r o g y r o s ” value=” true ” />

33 <param name=” covar iance ” value=”0 0 0 0 0 0 0 0 0” />

34 </node>

35

36 <!−− d e c l a r e arguments with d e f a u l t values −−>

37 <arg name=” c a l i b r a t i o n ” d e f a u l t=”$ (f i n d ve lodyne po in tc l oud) /

params/VLP16db . yaml”/>

38 <arg name=” d e v i c e i p ” d e f a u l t=” 1 9 2 . 1 6 8 . 1 . 2 0 1 ” />

39 <arg name=” f rame id ” d e f a u l t=” l i d a r l i n k ” />

40 <arg name=”manager” d e f a u l t=”$ (arg f rame id) node let manager ”

/>

41 <arg name=”max range” d e f a u l t=” 130 .0 ” />

79

42 <arg name=” min range ” d e f a u l t=” 0 .4 ” />

43 <arg name=”pcap” d e f a u l t=”” />

44 <arg name=” port ” d e f a u l t=”2368” />

45 <arg name=” r e a d f a s t ” d e f a u l t=” f a l s e ” />

46 <arg name=” read once ” d e f a u l t=” f a l s e ” />

47 <arg name=” r e p e a t d e l a y ” d e f a u l t=” 0 .0 ” />

48 <arg name=”rpm” d e f a u l t=” 600 .0 ” />

49

50 <!−− s t a r t node l e t manager and d r i v e r node l e t s −−>

51 <i n c lude f i l e=”$ (f i n d v e l o d yn e d r i v e r) / launch / nodelet manager .

launch ”>

52 <arg name=” d e v i c e i p ” value=”$ (arg d e v i c e i p) ”/>

53 <arg name=” f rame id ” value=”$ (arg f rame id) ”/>

54 <arg name=”manager” value=”$ (arg manager) ” />

55 <arg name=”model” value=”VLP16”/>

56 <arg name=”pcap” value=”$ (arg pcap) ”/>

57 <arg name=” port ” value=”$ (arg port) ”/>

58 <arg name=” r e a d f a s t ” va lue=”$ (arg r e a d f a s t) ”/>

59 <arg name=” read once ” value=”$ (arg read once) ”/>

60 <arg name=” r e p e a t d e l a y ” value=”$ (arg r e p e a t d e l a y) ”/>

61 <arg name=”rpm” value=”$ (arg rpm) ”/>

62 </inc lude>

63

64 <!−− s t a r t c loud node l e t −−>

65 <i n c lude f i l e=”$ (f i n d ve lodyne po in tc l oud) / launch / c l ou d n od e l e t

. launch ”>

66 <arg name=” c a l i b r a t i o n ” value=”$ (arg c a l i b r a t i o n) ”/>

67 <arg name=”manager” value=”$ (arg manager) ” />

80

68 <arg name=”max range” value=”$ (arg max range) ”/>

69 <arg name=” min range ” value=”$ (arg min range) ”/>

70 </inc lude>

71

72 <node pkg=” node l e t ” type=” node l e t ” name=”$ (arg manager)

t rans fo rm ” args=” load ve lodyne po in tc l oud / TransformNodelet $ (

arg manager) ” >

73 <param name=” c a l i b r a t i o n ” value=”$ (arg c a l i b r a t i o n) ”/>

74 <param name=” frame id ” value=” l i d a r l i n k ”/>

75 <param name=”max range” value=”$ (arg max range) ”/>

76 <param name=” min range ” value=”$ (arg min range) ”/>

77 </node>

78

79 <node pkg=” rosbag ” type=” record ” name=” reco rd data ”

80 args=” record −o /home/ user / record /gmu /imu/ data /

ve l odyne po in t s /usb cam/ image raw / te l emetry ” />

81 </launch>

D.5 Launch Configuration for VLP-64 and other Sensors

1 <launch>

2

3 <!−− ∗∗∗∗ Star t : Robot Desc r ip t i on ∗ −−>

4 <param name=” r o b o t d e s c r i p t i o n ” t e x t f i l e=”$ (f i n d gmu) / urdf / j e ep

. urdf ” />

5

6 <!−− ∗∗∗∗ Star t : Robot Desc r ip t i on ∗ −−>

81

7 <node name=” r o b o t s t a t e p u b l i s h e r ” pkg=” r o b o t s t a t e p u b l i s h e r ”

type=” r o b o t s t a t e p u b l i s h e r ” />

8

9 <!−− USB CAMERA −−>

10 <node name=”usb cam” pkg=”usb cam” type=”usb cam node” output=”

sc r e en ” >

11 <param name=” v i d e o d e v i c e ” value=”/dev/ video0 ” />

12 <param name=” image width ” value=”1280” />

13 <param name=” image he ight ” value=”720” />

14 <param name=” p i x e l f o r m a t ” value=”yuyv” />

15 <param name=” camera frame id ” value=” usb cam l ink ” />

16 <param name=” io method ” value=”mmap”/>

17 </node>

18 <!−−

19 <node name=” image view ” pkg=” image view ” type=” image view ”

respawn=” f a l s e ” output=” sc r e en ”>

20 <remap from=”image” to=”/usb cam/ image raw”/>

21 <param name=” a u t o s i z e ” value=” true ” />

22 </node>

23

24 −−>

25 <!−− IMU −−>

26 <node name=”imu” pkg=”um7” type=” um7 driver ” output=” sc r e en ”>

27 <param name=” port ” value=”/dev/ttyUSB0” />

28 <param name=”baud” value=”115200” />

29 <param name=” frame id ” value=” imu l ink ” />

30 <param name=”mag updates” value=” true ” />

31 <param name=”quat mode” value=” true ” />

82

32 <param name=” z e r o g y r o s ” value=” true ” />

33 <param name=” covar iance ” value=”0 0 0 0 0 0 0 0 0” />

34 </node>

35

36 <!−− d e c l a r e arguments with d e f a u l t values −−>

37 <arg name=” c a l i b r a t i o n ” d e f a u l t=”$ (f i n d ve lodyne po in tc l oud) /

params/64 e utexas . yaml”/>

38 <arg name=” d e v i c e i p ” d e f a u l t=” 1 9 2 . 1 6 8 . 3 . 4 3 ” />

39 <arg name=” f rame id ” d e f a u l t=” l i d a r l i n k ” />

40 <arg name=”manager” d e f a u l t=”$ (arg f rame id) node let manager ”

/>

41 <arg name=”max range” d e f a u l t=” 130 .0 ” />

42 <arg name=” min range ” d e f a u l t=” 4 .0 ” />

43 <arg name=”pcap” d e f a u l t=”” />

44 <arg name=” port ” d e f a u l t=”2368” />

45 <arg name=” r e a d f a s t ” d e f a u l t=” f a l s e ” />

46 <arg name=” read once ” d e f a u l t=” f a l s e ” />

47 <arg name=” r e p e a t d e l a y ” d e f a u l t=” 0 .0 ” />

48 <arg name=”rpm” d e f a u l t=” 600 .0 ” />

49

50 <!−− s t a r t node l e t manager and d r i v e r node l e t s −−>

51 <i n c lude f i l e=”$ (f i n d v e l o d yn e d r i v e r) / launch / nodelet manager .

launch ”>

52 <arg name=” d e v i c e i p ” value=”$ (arg d e v i c e i p) ”/>

53 <arg name=” f rame id ” value=”$ (arg f rame id) ”/>

54 <arg name=”manager” value=”$ (arg manager) ” />

55 <arg name=”model” value=”VLP16”/>

56 <arg name=”pcap” value=”$ (arg pcap) ”/>

83

57 <arg name=” port ” value=”$ (arg port) ”/>

58 <arg name=” r e a d f a s t ” va lue=”$ (arg r e a d f a s t) ”/>

59 <arg name=” read once ” value=”$ (arg read once) ”/>

60 <arg name=” r e p e a t d e l a y ” value=”$ (arg r e p e a t d e l a y) ”/>

61 <arg name=”rpm” value=”$ (arg rpm) ”/>

62 </inc lude>

63

64 <!−− s t a r t c loud node l e t −−>

65 <i n c lude f i l e=”$ (f i n d ve lodyne po in tc l oud) / launch / c l ou d n od e l e t

. launch ”>

66 <arg name=” c a l i b r a t i o n ” value=”$ (arg c a l i b r a t i o n) ”/>

67 <arg name=”manager” value=”$ (arg manager) ” />

68 <arg name=”max range” value=”$ (arg max range) ”/>

69 <arg name=” min range ” value=”$ (arg min range) ”/>

70 </inc lude>

71

72 <node pkg=” node l e t ” type=” node l e t ” name=”$ (arg manager)

t rans fo rm ” args=” load ve lodyne po in tc l oud / TransformNodelet $ (

arg manager) ” >

73 <param name=” c a l i b r a t i o n ” value=”$ (arg c a l i b r a t i o n) ”/>

74 <param name=” frame id ” value=” l i d a r l i n k ”/>

75 <param name=”max range” value=”$ (arg max range) ”/>

76 <param name=” min range ” value=”$ (arg min range) ”/>

77 </node>

78

79 <node pkg=” rosbag ” type=” record ” name=” reco rd data ”

80 args=” record −o /media/ user / e a s y s t o r e / record /gmu /imu/ data

/ ve l odyne po in t s /usb cam/ image raw / te l emetry ” />

84

81 </launch>

85

Appendix E: Demonstrations

E.1 Download Demonstrations from Google

The Google Team provides sample data to verify the installation is working properly, below

are the commands necessary to download the sample data.[1]

1 wget −P / opt /Downloads https : // s to rage . g o o g l e a p i s . com/

cartographer−publ ic−data / bags / backpack 2d /

cartographer paper deutsches museum . bag

2 wget −P / opt /Downloads https : // s to rage . g o o g l e a p i s . com/

cartographer−publ ic−data / bags / backpack 2d /b2

−2016−04−05−14−44−52.bag

3 wget −P / opt /Downloads https : // s to rage . g o o g l e a p i s . com/

cartographer−publ ic−data / bags / backpack 2d /b2

−2016−04−27−12−31−41.bag

4 wget −P / opt /Downloads https : // s to rage . g o o g l e a p i s . com/

cartographer−publ ic−data / bags / backpack 3d /b3

−2016−04−05−14−14−00.bag

5 wget −P / opt /Downloads https : // s to rage . g o o g l e a p i s . com/

cartographer−publ ic−data / bags / r e v o l d s /

c a r t o g r a p h e r p a p e r r e v o l d s . bag

6 wget −P / opt /Downloads https : // s to rage . g o o g l e a p i s . com/

cartographer−publ ic−data / bags / pr2/2011−09−15−08−32−46.bag

7 wget −P / opt /Downloads https : // s to rage . g o o g l e a p i s . com/

cartographer−publ ic−data / bags / tau rob t ra cke r /

t a u r o b t r a c k e r s i m u l a t i o n . bag

86

E.2 Google SLAM Demonstrations

Below is a series of different demonstrations to utilize the sample data and watch the system

map different environments to verify the system is operational.[1]

1 # Launch the 2D backpack demo .

2 ros launch c a r t o g r a p h e r r o s demo backpack 2d . launch bag f i l ename

:=/ opt /Downloads/ cartographer paper deutsches museum . bag

3 # Generate the map : Run the next command , wai t u n t i l

c a r t o g r a p h e r o f f l i n e n o d e f i n i s h e s .

4 ros launch c a r t o g r a p h e r r o s o f f l i n e b a c k p a c k 2 d . launch

bag f i l enames :=/ opt /Downloads/b2−2016−04−05−14−44−52.bag

5 # Run pure l o c a l i z a t i o n :

6 ros launch c a r t o g r a p h e r r o s demo backpack 2d loca l i za t i on . launch \

7 bag f i l ename :=/ opt /Downloads/b2−2016−04−27−12−31−41.bag \

8 map fi lename :=/ opt /Downloads/b2−2016−04−05−14−44−52.bag .

pbstream

9 # Launch the 3D backpack demo .

10 ros launch c a r t o g r a p h e r r o s demo backpack 3d . launch bag f i l ename

:=/ opt /Downloads/bag/b3−2016−04−05−14−14−00.bag

11 # Launch the Revo LDS demo .

12 ros launch c a r t o g r a p h e r r o s demo revo lds . launch bag f i l ename :=/

opt /Downloads/ c a r t o g r a p h e r p a p e r r e v o l d s . bag

13 # Launch the PR2 demo .

14 ros launch c a r t o g r a p h e r r o s demo pr2 . launch bag f i l ename :=/ opt /

Downloads/2011−09−15−08−32−46.bag

15 # Launch the Taurob Tracker demo .

16 ros launch c a r t o g r a p h e r r o s demo taurob tracker . launch

bag f i l ename :=/ opt /Downloads/ taurob t rack

87

This demonstrations can be visualized through ROS tools such as rviz, and data topics

can be monitored through rosecho.

E.3 Visualize existing ’Map GMU’ data

Open 5 seperate linux termnial windows and execute the following commands in order. [19]

Download, Unzip, and Convert the xml configuration file into yaml format.

1

2 # i n s t a l l 7 z i p to decompress f i l e s from GMU

3 sudo apt i n s t a l l p7zip− f u l l

4

5 # Download f i l e s from GMU

6 mkdir −p / opt /Downloads/pcap/gmu

7 cd / opt /Downloads/pcap/gmu

8 wget http :// masc . c s . gmu . edu/ wik i / uploads /MapGMU/ velodyne−c a l i b .

xml

9 wget http :// masc . c s . gmu . edu/ wik i / uploads /MapGMU/Nottoway−Annex−

track5−f a s t −1loop . 7 z

10 7z e Nottoway−Annex−track5−f a s t −1loop . 7 z

11

12 # Convert xml f i l e i n t o yaml f i l e

13 rosrun ve lodyne po in tc l oud g e n c a l i b r a t i o n . py velodyne−c a l i b . xml

Velodyne pcap file to bag file conversion: [20]

The following steps can be performed to convert an existing pcap file in raw Velodyne

format into ROS BAG format.[11]

1 # i n s t a l l 7 z i p to decompress f i l e s from GMU

2 sudo apt i n s t a l l p7zip− f u l l

3 # s t e p s to conver t

88

4 r o s c o r e &

5 rosrun ve l od yn e d r i v e r ve lodyne node model :=VLP16 pcap :=/ opt /

Downloads/Nottoway−Annex−track2−s low . pcap read once := true &

6 rosrun rosbag record −O your v lp16 070815 . bag / ve lodyne packet s

E.4 PLY to OBJ Conversion

Cartographer exports point cloud in Polygon File Format (PLY), in x,y,z binary Little

Endian. The end format of the data needs to be on Wavefront OBJ format. The task to

convert from PLY to OBJ became trivial when we discovered Point Cloud Library (PCL)

provides a library that does this conversion. We did find however there are limitations on

the library and it will stack overflow if the PLY file size exceeds the stack size allocated in

the source code of the PCL Library.

An example of conversion between file formats is presented for Shenandoah Parking

Deck.

E.5 Poisson Surface Reconstruction

The next conversion was to move from a point cloud representation to a surface represen-

tation.

Using Meshlab[14] we cleaned the noise from 3d point clouds. We computed normals

for point sets, using 10 neighbors. With the normals to the points I then performed surface

Poisson reconstruction[15] of the Point Cloud.

The immediate discovery with Poisson reconstruction is it will connect all the points and

essential make caves. Surface reconstruction will require hand editing the point clouds and

either segmenting each object for Poisson reconstruction or removing all the background

and noise to only reconstruct the road surface. I verified the point clouds created were

compatible with surface reconstruction techniques such as Poisson.

89

Figure E.1: PLY Shenandoah Parking Deck

90

Figure E.2: OBJ Shenandoah Parking Deck

91

Figure E.3: Before Poisson Shenandoah Parking Deck

Figure E.4: After Poisson Shenandoah Parking Deck

92

Bibliography

93

Bibliography

[1] T. C. Authors. (2017) Cartographer ros integration. [Online]. Available:
https://google-cartographer-ros.readthedocs.io/en/latest/

[2] e. a. Yu-Ta Tsai. (2017) Map gmu. [Online]. Available:
http://masc.cs.gmu.edu/wiki/MapGMU

[3] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” International Journal of Robotics Research (IJRR), 2013.

[4] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar
slam,” in 2016 IEEE International Conference on Robotics and Automation (ICRA),
May 2016, pp. 1271–1278.

[5] E. Olson, “M3rsm: Many-to-many multi-resolution scan matching,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May 2015, pp. 5815–
5821.

[6] E. B. Olson, “Real-time correlative scan matching,” in 2009 IEEE International Con-
ference on Robotics and Automation, May 2009, pp. 4387–4393.

[7] J. Strom and E. Olson, “Occupancy grid rasterization in large environments for teams
of robots,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sept 2011, pp. 4271–4276.

[8] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-and-bound
algorithms,” Discret. Optim., vol. 19, no. C, pp. 79–102, Feb. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.disopt.2016.01.005

[9] J. Levinson and S. Thrun, “Map-based precision vehicle localization in urban environ-
ments,” in Robotics: Science and Systems, 2007.

[10] ——, “Robust vehicle localization in urban environments using probabilistic maps,” in
International Conference on Robotics and Automation, 2010.

[11] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algo-
rithms,” in 2011 IEEE Intelligent Vehicles Symposium (IV), June 2011, pp. 163–168.

[12] H. Yin and C. Berger, “When to use what data set for your self-driving car algorithm:
An overview of publicly available driving datasets,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), Oct 2017, pp. 1–8.

94

[13] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2d slam techniques
available in robot operating system,” in 2013 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), Oct 2013, pp. 1–6.

[14] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia,
“MeshLab: an Open-Source Mesh Processing Tool,” in Eurographics Italian Chapter
Conference, V. Scarano, R. D. Chiara, and U. Erra, Eds. The Eurographics Associa-
tion, 2008.

[15] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in
Proceedings of the Fourth Eurographics Symposium on Geometry Processing, ser. SGP
’06. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2006, pp.
61–70. [Online]. Available: http://dl.acm.org/citation.cfm?id=1281957.1281965

[16] Google. (2017) Cartographer. [Online]. Available: https://google-
cartographer.readthedocs.io/en/latest/

[17] ROS. (2017) Ubuntu install of ros kinetic. [Online]. Available:
http://wiki.ros.org/kinetic/Installation/Ubuntu

[18] ——. (2017) Ros answers. [Online]. Available:
https://answers.ros.org/question/226594/how-do-i-build-ros-vlp16-velodyne-driver-
for-indigo-using-catkin/

[19] ——. (2017) velodyne pointcloud. [Online]. Available:
http://wiki.ros.org/velodyne pointcloud

[20] ——. (2017) Ros answers. [Online]. Available:
https://answers.ros.org/question/213080/convert-raw-velodyne-vlp16-pcap-to-
bagfile/

95

Curriculum Vitae

Nathan C. Obert was been employeed at fortune 500 and government agencies for over
two decades. He returned to school and received his Bachelor of Science from George Mason
University in 2015. He currently is supporting the Joint Chiefs of Staff, US Senate and New
York State Government.

96

