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Abstract 

 
This paper reports briefly on the development of a new approach to evolutionary computation, 
called the Learnable Evolution Model or LEM. In contrast to conventional Darwinian-type 
evolutionary algorithms that employ mutation and/or recombination, LEM employs machine 
learning to generate new populations. At each step of evolution, LEM determines hypotheses 
explaining why certain individuals in the population are superior to others in performing the 
designated class of tasks. These hypotheses are then instantiated to create a next generation. In 
the testing studies described here, we compared a program implementing LEM with selected 
evolutionary computation algorithms on a range optimization problems and a filter design 
problem. In these studies, LEM significantly outperformed the evolutionary computation 
algorithms, sometimes speeding up the evolution by two or more orders of magnitude in the 
number of evolutionary steps (births). LEM was also applied to a real-world problem of 
designing optimized heat exchangers. The resulting designs matched or outperformed the best 
human designs. 
 

 1 Introduction 
 
Recent years have witnessed significant progress in the development of machine learning 
methods and in scaling them up to cope with large datasets (e.g., Cohen, 1995; Dietterich, 1997; 
Mitchell T., 1997; Michalski, 2000b). There has also been significant progress in the area of 
evolutionary computation (e.g., Baeck, Fogel and Michalewicz, 1997; Koza, 1994; Banzhaf, 
1999; Michalewicz et al., 1999). As symbolic learning and evolutionary computation have 
complementary capabilities and strengths, a question arises as to whether they can be integrated 
in a way that will lead to a new, more powerful model of evolutionary computation. This paper 
presents some of first results from the efforts toward such a goal. 
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Specifically, we briefly describe the Learnable Evolution Model, LEM, which employs machine 
learning to guide evolutionary computation and report a few results from its testing on selected 
problems.  

2 What is Learnable Evolution Model (LEM)? 

The central engine of evolution in LEM is Machine Learning mode which generates hypotheses 
about differences between high fitness and low fitness individuals, and then uses these 
hypotheses to generate new individuals. New individuals are thus generated not by a semi-blind 
process of mutation and/or recombination, as in conventional evolutionary algorithms, but rather 
by a deliberate process of inference. LEM can be viewed as a form of genetic engineering. Below 
is a simplified form of LEM: 

1. Generate a population.  

2. Execute Machine Learning  mode: 

2a Derive a training set: Select from a population (either the current one or a union of the 
current and selected past populations) a high performance group, or briefly H-group, and 
Low performance group, or briefly L-group, according to the fitness function.  

2b Create a hypothesis: Apply a machine learning method to create a description of the H-
group that differentiates it from the L-group.  

2c Generate a new population: Instantiate the hypothesis in different ways to generate new 
individuals, and combine them with those in the H-group. Create a new population from 
the resulting set by some form of selection operation. 

2d Go to step 2a, and continue repeating Machine Learning mode until the Machine Learning 
mode termination condition is met. When this termination condition is met, take one of 
the following actions:  

A. If the LEM termination condition is met, go to step 5. 
B. Repeat the process from step 1. This is called a start-over operation. 
C. Go to step 3. 

3. Execute Darwinian Evolution mode: 

 Apply some form of mutation, crossover (optionally) and selection operators to generate a 
new population. Continue this mode until the Darwinian Evolution mode termination 
condition is met. 

4. Alternate: 

Go to step 2, and then continue alternating between step 2 and step 3 until the LEM 
termination condition is met (e.g., the generated solution is satisfactory, or the allocated 
computational resources are exhausted), in which case the control goes to step 5.  

5. End: 

The best individual or individuals obtained are the result of evolution. 
 
If LEM executes repeatedly only step 2, or steps 1 and 2, then it is called uniLEM; otherwise, it 
is called duoLEM. The full description of the LEM algorithm includes some additional features 
and a few control parameters (Michalski, 2000). The LEM methodology can employ, in 
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principle, in step 2 any machine learning method that can generate discriminant descriptions 
(Michalski, 1983), and in step 3 any existing evolutionary algorithm.  
 
3 LEM as Progressive Partitioning of the Search Space 
 
The search conducted in Machine Learning mode can be interpreted as a progressive partitioning 
of the search space. An H-group description hypothesizes a region or regions that likely contain 
the optimal individual. Each subsequent H-group description hypothesizes a new, typically more 
specialized, partition of the search space. Due to this effect, the LEM evolution process may 
converge to the optimum (local or global) much more rapidly than Darwinian-type evolutionary 
algorithms. Since partitioning is guided by inductive inference, this process may miss the area 
with the global optimum. In such cases, LEM executes a start-over operation or temporarily 
switches to the Darwinian Evolution mode.  
 
The next sections briefly describe a selection of results from preliminary studies (Michalski, 
1998; Michalski and Zhang, 1999; Cervone and Michalski, 2000; Kaufman and Michalski, 
2000).  

4 Pilot Study: Optimization Problems 
This study applied rudimentary implementations of LEM (LEM-1 and LEM-2) and several 
evolutionary computation algorithms to problems of optimizing five functions f1, f2, f3, f4, and f5, 
described in (De Jong, 1975), which have been used by researchers for testing evolutionary 
algorithms. For the sake of space, we present here only a small selection of results. Other results 
followed the same pattern as those presented here (Michalski, 1999; Cervone and Michalski, 
2000).  

Problem 1: Find the minimum of function f2 of 5 variables bound between –10.1 and 10.1  (an 
inverted 2D graph of f2 is presented in Figure 1).  

 

 
This function represents a complex minimization 
problem because it has a very narrow ridge and 
variables are interdependent. The tip of the ridge is 
very sharp, and runs along a parabola.  Algorithms 
that are not able to discover good directions 
underperform in this problem. Although the function 
looks symmetric, it is not.  
 
 
 

Figure 1.  Inverted 2D graph of function f2. 
 

In this experiment, LEM-2 and a conventional evolutionary computation algorithm, EV, were run 
with different values of parameters to test the sensitivity of the methods to the parameter values. 
EV employs a uniform selection for the parent population, and binary tournament for the 
selection of the survivors.  Each parent is cloned and then mutated using uniform mutation. All 

f2(x) = (100 ⋅ (xi +1  −  xi
i = 0

5

� )2 + (xi −1)2)
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new individuals compete with a random selected parent. Results from experiments are presented 
in Figure 2.  

F u n c tio n f 2 : De te r mi n in g F u nc t io n Mi n im u m
Popu la ti on  s i ze  =  50 . E ac h c u rve  re p re s e n ts  t h e  av e ra g e  o f 10  r un s.
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Figure 2. Results from applying LEM-2 and EV to the problem of minimizing f2. 
 
Each curve in Figure 2 represents the average of 10 runs, each starting with a different initial population 
(which was the same for LEM-2 and EV). Curves 1, 3, 5 and 6 represent runs with a uniform crossover; 
the remaining runs of EV did not use crossover. All runs used elitism. The initial population was 100 and 
kept constant in all the experiments. In Figure 3, the value after EV represents the mutation rate, and a 
pair of values after LEM represents the high (HT) and low (LT) thresholds, respectively.  
 
In this experiment LEM-2 was relatively insensitive to its basic parameters, HT and LH (a similar 
behavior was observed in other experiments too, including cases when the number of variables was 
increased to 100). LEM-2 found the global minimum in almost all cases. EV was quite sensitive to its 
parameters and was unable to find the global minimum within the limit of 1000 births for any of the 
parameter values that were tried.  
 
Problem 2.  Find the minimum of function f3 of 100 variables  (an inverted 2D graph of f3 is 
presented in Figure 3). 

f3(x1,x2, x3 ,..., x100) = integer(xi )
i =1

100

�    - 5.12 ≤ xi ≤ 5.12 

 
Figure 3. Inverted two-dimensional graph of f3 . 
(Reprinted with permission of Kenneth De Jong) 

1 – EV .1 with crossover 4 - EV .3 without crossover 7 – EV .5 without crossover 10 – LEM .1 .3  (uniLEM) 
2 - EV .1 without crossover 5 - EV .7 with crossover 8 – EV .7 without crossover 11 – LEM .3 .3  (uniLEM) 
3 - EV .5 with crossover 6 – EV .9 with crossover 9 – LEM .1 .1  (uniLEM) 12 – LEM .3 .1  (uniLEM) 
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In this experiment, the number of variables in function f3 was increased from the original 5 to 100 in 
order to test LEM’s scalability. Results from applying LEM-2 and three evolutionary computation 
methods EV, EP and ES with different mutation rates are presented in Figure 4.  
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1 - EP 100, 10,  0.1;   2 - EV 100, 10, 0.1;   3 - EP 100, 10, 0.5;    4 -  ES 100, 0.5;    
5 - EP 100, 10,  0.9;   6 - ES  100,  0.9;         7 - EV 100, 10, 0.5;    8 -  EV 100, 10, 0.9; 
9 – uniLEM2  (AQ18 ; HFT &  LFT 30% )    10 -  duoLEM2  (AQ18 + EV 100,10, 0.5) 

 
Figure 4.  An evolutionary process for finding the minimum of f3  with 100 variables using EP, EV and 

ES evolutionary computation methods and LEM-2 in uniLEM and duoLEM versions. 

The horizontal axis in Figure 4 represents the number of births in thousands, and the vertical axis 
represents the function value. In the caption of Figure 4, EP p, c, m; EV p, c, m; and ES p, m 
stand, respectively for “Evolutionary Program,”  “Evolutionary Algorithm,”  and “Evolutionary 
Strategy,”  where p denotes the number of parents, c  denotes the number of children. and m is the 
mutation rate. LEM-2 was run in uniLEM mode (i.e., using only Machine Learning mode), and 
in duoLEM mode (i.e., using both Machine Learning and Darwinian Evolution). As seen in 
Figure 4, LEM-2 dramatically outperformed the tested evolutionary algorithms. Both variants of 
LEM  (uniLEM and duoLEM) performed similarly (graphs 9 and 10 in Figure 4). 
 
The results presented above represent only a sample of experiments. In all pilot experiments, the 
tested implementations of LEM consistently outperformed selected evolutionary computation 
algorithms in terms of the number of evolutionary steps, sometimes by a wide margin. These 
experiments were repeated many times and results consistently indicated a similar pattern of 
performance: LEM required a significantly smaller number of evolutionary steps to reach the 
solution and exhibited a relatively low sensitivity to the inititial population and its parameters 
(for details, see Michalski, 2000a; Michalski and Zhang 1999; Cervone and Michalski, 2000; 
Cervone, Coletti, and Latiner, 2000). 
 
5 An Exploratory Application to Heat Exchanger Design 
 
To test LEM on a complex engineering design problem, we started a collaboration with the 
National Institute of Standards and Technology (NIST). In this research, we applied LEM to 
problems of designing highly efficient heat exchangers. The problem is how to design heat 
exchangers that have maximal capacity for any given set of environmental and technical 
constraints.  Such constraints include the outside air temperature and humidity, the flow of air 
through the heat exchanger, the number of rows of tubes and the number of tubes per row in the 
exchanger, the refrigerant used, etc.  
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Below is a highly abbreviated illustration of one of our initial experiments. A population consists 
of a set of heat exchanger design structures. Each structure is represented by a vector of numbers 
characterizing the connections between tubes. The vector is associated with capacity of that 
design, determined by a simulator.  
____________________________________________________________________________________________
_ 
Exchanger Size: 16 x 3 
Population Size: 15   Generations: 40 
Operator Persistence: 5(# of unsuccessful trials of a structure modifying operator) 
Mode Persistence: Dar-probe=2 and Learn=probe=1. 
 
Initial population: 
Structure #0.3:  17 1 2 3 4 5 6 7 8 9 12 13 29 15 31 I 18 33 20 36 22 38 24 40 26 42 

11 2 7 45 14 47 16 34 35 19 37 21 39 23 41 25 43 44 28 46 30 48 32:  5.5376 
Structure #0.8:  17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 

11 44 13 46 30 48 34 35 36 I 21 37 23 39 25 41 27 43 29 45 31 47:  Capacity = 
5.2099 

and 13 others 
 
Selected Members:  3, 2, 3, 7, 9, 3, 9, 3, 6, 9, 9, 6, 8, 1, 7 
Operations: NS(23, 39), SWAP(8), SWAP(28), SWAP(19), SWAP(1), SWAP(27), 
            SWAP(40), SWAP(43), SWAP(15), SWAP(25), SWAP(7), SWAP(36), 
            SWAP(29), SWAP(25), SWAP(1) 

 
Below is one of the structures created by the application of a SM operator in Machine Learning 
algorithm mode (by swapping the two tubes following tube 29 in Structure #0.8)  
Generation 1:  

Structure #1.13: 17 1 20 3 4 22 6 24 8 26 10 28 27 15 16 32 33 2 18 19 5 38 7 40 9 42 
11 4 13 45 30 48 34 35 36 I 21 37 23 39 25 41 27 43 46 29 31 47:  
Capacity=5.2093 

(15 structures in a population) 
 
Selected Members:  6, 15, 11, 3, 13, 1, 10, 6, 12, 10, 5, 4, 13, 1, 3 
. . . . . .  
Generation 5: Machine Learning  mode 
A learned rule: 
Rule:  

[x1.x2.x3.x4.x5.x6.x7.x8.x9.x11.x12.x13.x14.x15.x17.x18.x19.x20.x21.x22.x23.x24.
x25. 
x26.x27.x28.x29.x30.x31.x32.x33.x34.x35.x36.x37.x38.x39.x40.x41.x42.x43.x44.x45.
x46. 
x47.x48=regular] & [x10=outlet] & [x16=inlet]        (t:7, u:7, 
q:1) 

 
An example of a generated structure: 
Structure #5.1:  17 1 2 3 4 5 6 7 8 9 12 29 45 30 31 I 18 33 20 36 22 38 24 40 26 42 

11 27 13 15 47 48 34 35 19 37 21 39 23 41 25 43 44 28 46 14 32 16:  
Capacity=5.5377 

 
Below are examples of structures from the 20th generation: 
  . . . . . . . . .  
Generation 21: Machine Learning mode 
 
Structure #21.7: 18 1 4 2 6 3 5 7 8 9 12 13 45 15 31 I 33 17 35 36 22 39 24 40 42 25 

11 44 30 46 32 47 34 19 20 37 21 23 44 41 26 43 28 27 29 14 48 16:  4.1702 
Structure #21.15 2 18 4 1 6 3 5 7 8 9 12 13 45 15 31 I 33 17 35 36 22 39 24 40 42 25 

11 44 30 46 32 47 34 19 20 37 21 23 38 41 26 43 28 27 29 14 48 16:  5.5387 
and 13 others 
 
Selected Members:  11, 4, 4, 13, 15, 10, 12, 13, 15, 15, 12, 2, 3, 5, 10.  
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. . . . .  
Generation 40: 
 
Structure #40.15: 33 17 2 41 4 5 6 9 7 8 12 29 46 45 47 I 1 34 20 36 22 38 24 3 42 43 

44 27 13 15 32 16 18 11 19 37 21 32 23 25 40 26 28 35 30 14 48 31: 
Capacity=6.3686 

 . . .  

As shown above, the initial designs evolved to better designs (as measured by the capacity). In 
these experiments, LEM explored many different architectures, reaching heat capacities 
comparable to the best human designs in the case of uniform flow. In the case non-uniform flow, 
LEM designs have been judged by collaborating experts as superior to best human designs. For 
details on this work, see (Kaufman and Michalski, 2000a). 

6 Relation to Other Research  
The proposed LEM methodology is to our knowledge an original development. In searching 
through the literature, we found several papers describing efforts to apply machine learning to 
evolutionary computation, but they are substantially different from LEM.  Work has also been 
done on the application of evolutionary computation to machine learning. A brief review of some 
of this work is below. 
 
Sebag and Schoenauer (1994) applied machine learning to adaptively control the crossover 
operation in genetic algorithms (implementing their own version of AQ-type learning).  In their 
system, a machine learning method develops rules characterizing relevant crossovers. These rules 
are then used to bias the selection of crossover operators. Sebag, Schoneauer and Ravise (1997a) 
used inductive learning to determine mutation step-size in evolutionary parameter optimization. 
Ravise and Sabag (1996) described a method for using rules to prevent new generations from 
repeating past errors. In a follow-up work, Sebag, Schoenauer and Ravise (1997) proposed 
keeping track of past evolution failures by using templates of unfit individuals, called “virtual 
losers.”  An evolution operator, called “ flee-mutation,”  aims at creating individuals different from 
the virtual losers. Grefenstette (1991) developed a genetic learning system, SAMUEL, that 
implements a form of Lamarckian evolution. The system was designed for sequential decision 
making in a multi-agent environment. A strategy, in the form of if-then control rules, is applied to 
a given world state and certain actions are performed. This strategy is then modified either 
directly, based on the interaction with the environment, or indirectly by changing the rules’  
strength within the strategy. The changes in a strategy are passed to its offspring. This is a 
Lamarckian-type process that takes into consideration the performance of a single individual 
when evolving new individuals. Reynolds (1994) proposed cultural algorithms, which are dual 
inheritance systems that provide a cooperation between a cultural and population-based levels of 
evolution. The cultural level is represented by a belief space that contains global knowledge in 
the form of beliefs. The beliefs constrain the way in which individuals are modified by genetic 
operators. Cultural algorithms relate to LEM (developed independently) in that they utilize top 
individuals in the population, but do it differently, namely they vote for the beliefs to be accepted 
into the belief space (e.g., Rychtyckyj and Reynolds, 1999). 
 
As to the application of evolutionary computation to machine learning, most research has 
concerned the improvement of propositional concept learning. An indirect form of such 
application is to evolve the “best”  subset of attributes from a collection of original attributes in 
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order to improve concept learning (Forsburg, 1976; Vafaie and De Jong, 1992). Another form 
concerns an improvement of the learning method itself (e.g., Vafaie and De Jong, 1991; De Jong, 
Spears, and Gordon, 1993; Giordana and Neri, 1995; Greene and Smith 1993; Janikow, 1993; 
Hekanaho, 1997). There have also been efforts to use genetic algorithms to evolve a population 
of biases for a machine learning algorithm. For example, Turney (1995) applied a genetic 
algorithm to evolve weights assigned to attributes in the C4.5 program in order to derive the 
minimum cost decision tree. Evolutionary algorithms have also been applied to improve 
relational learning, e.g. (Augier, Venturini and Kodratoff, 1995; Hekanaho, 1998). 

7 Conclusion 

Although the results obtained in the pilot studies are highly encouraging, there are many 
unanswered questions and desirable directions for further research. These include a systematic 
theoretical and practical investigation of the methodology, determining best methods for 
implementing its steps, and a determination of the type of tasks for which it will likely be 
successful. One emerging pattern in performance of LEM in comparison with the evolutionary 
computation methods is that LEM typically needs far fewer generations (or births) to reach the 
solution. This makes LEM particularly attractive in problem domains with a high cost of 
determining the fitness function. Another pattern is that LEM appears to be relatively insensitive 
to the choice of initial population and to the variation of its basic parameters, HT and LT (within 
a range). 
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