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ABSTRACT 
 
 
 
APPLIED GAME THEORY?  COMPUTATIONAL TECHNIQUES TO 
OPERATIONALIZE COMPLEX GAMES. 
 
Michael Macgregor Perry, Ph.D. 
 
George Mason University, 2021 
 
Dissertation Director:  Dr. Hadi El-Amine 
 
 
 
Game theory, the mathematical study of strategic interaction, is often criticized as lacking 

practical application.  Such criticism has even come from its most prominent theorists.  

This dissertation takes the position that these critiques are largely a result of the 

complexities inherent in game-theoretic analysis, which in turn have relegated most of 

the literature to the study of over-simplified models, models that are too small in scale for 

practical application, or both.  In light of this, cutting-edge techniques drawn from the 

operations research literature such as efficient sample allocation, response surface 

methodologies, robust analysis, and nonconvex binary optimization will be integrated 

into realistic game theory models.  These and other modeling techniques have been slow 

to integrate into the game theory literature, likely due to the unique challenges games 

pose as multi-agent optimization problems, and this dissertation thus represents a step 

forward in operationalizing complex games.  Realistic examples will be drawn from 



maritime law enforcement and it will be seen that the models presented here have the 

ability to both explain observed phenomena and contribute to policy development. 
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1 INTRODUCTION 
 
 
 

Game theory attempts to apply mathematical models in situations where at least 

two intelligent actors (generally, humans) are making decisions.  “Intelligence” implies 

consideration for how others may behave, and game theory thus provides a mathematical 

framework for analyzing a host situations where competing interests are at play.  Of 

course, a framework in-and-of-itself is not useful.  Game theory’s value depends on the 

ability to state, in mathematical terms, the complex decision-making processes of 

intelligent actors.  If one’s to apply game theory to complex policy issues, which for the 

purposes of this dissertation can be defined as issues where multiple objectives, 

nonlinearities, and ambiguity are all ubiquitous, the game is only as useful as it’s ability 

to capture these things. 

 

Since game theory was introduced as a distinct discipline of study in the 1920s, its 

success in informing complex policy has been modest.  It’s reasonable to assume this is a 

consequence of the failure to overcome the modeling complexities mentioned above.  

While scholars have developed the theoretical literature in great detail, deriving analytical 

solutions in a wide variety of domains such as counterterrorism, contests over natural 

resources, and civil revolt, these models’ restrictive assumptions have been so far 

removed from the realities of the complex problems they studied that even the most 
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ardent supporter of quantitative modeling couldn’t base a decision on their results.  

Scholars seem content with this arrangement and analytical solutions remain the 

dominant form of analysis, perhaps with the less ambitious aim of identifying some 

directionally correct behavior not otherwise obvious.  Significant efforts have, however, 

been made to use less restrictive assumptions, which has pushed game-theoretic analysis 

into the realm of computational techniques.  While computing power has increased, the 

complexity and size of the games under study has remained quite small due to an inherent 

computational challenge of games:  the need to solve (at least) two layers of 

optimizations.  In any game, at minimum each intelligent actor must solve an 

optimization which optimally responds to the actions of all other players; then, an 

additional optimization mechanism must seek a collection of strategies where each player 

is optimally responding to all others.  The predominance of analytical models with 

restrictive assumptions, and the modesty of problems addressed via computational 

techniques, has left game theory on the fringe of policy analysis.  While the game-

theoretic lexicon has become familiar to most working in business and public policy, 

where terms like “(non)-zero-sum” have a common meaning and people might routinely 

ask themselves “what do I think, that he thinks, that I think, …,” these merely serve as 

useful reminders to think about fundamental concepts when dealing with intelligent 

actors. 

 

This dissertation proposes that game theory can have a more direct contribution to 

complex policy analysis by incorporating sophisticated computational techniques to 
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analyze models of sufficient complexity to be useful for decision makers.  Well-

established methods drawn from the operations research literature such as efficient 

sample allocation, response surface methodologies, and nonconvex binary optimization 

will be employed to analyze levels of complexity not yet explored in the game theory 

literature.  Recognizing no model, however complex, can ever be accurate enough to 

produce the one “correct” answer for a complex policy issue, stochastic and robust 

techniques will be stressed.  These techniques, while common in the operations research 

literature, have been slow to integrate into game theoretic analysis.  This is perhaps due 

to the aforementioned issue of multi-layered optimizations which makes their application 

less straightforward than in other domains.  Taking a practical approach, the dissertation 

will consider three pertinent examples related to maritime law enforcement to show how 

advanced methods can both explain observed behavior and inform policy decisions. 

 

The dissertation is structured as follows.  The next chapter provides an 

overarching literature review on the development of game theory and its limited progress 

analyzing complex policy problems.  Three subsequent, stand-alone chapters will analyze 

particular problems and provide more extensive literature reviews tailored to those 

problems.  The first of these is a generic defend-attack game, as one might encounter 

when defending oil rigs from robbery.  This is a concern, for instance, in the Gulf of 

Mexico where drug cartels seek to extract fuel from the rigs.  It’s conceivably a problem 

that will plague the South China Sea (SCS) in the future, where territorial disputes have 

made oil an issue.  The primary methodological tool used to analyze the game is 
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statistical selection for discrete choices with stochastic outcomes; in particular, a nested 

variant of optimal computing budget allocation (OCBA) will be used.  The next example 

deals with the fisheries dispute in the SCS and the need for states to strategically allocate 

maritime patrols.  Tools used include a response surface methodology capable of 

handling a highly nonlinear model, global optimization to pick sample points based on 

the response surface, and a robust formulation to account for imperfections in the model.  

Lastly, an example analyzing the East China Sea (ECS) is analyzed.  A key distinction 

between the SCS and ECS is that in the latter, fishing rights have been agreed to among 

the major parties, yet illegal encroachments of one nation’s fishermen into the waters of 

another persist in large numbers.  A nonconvex binary program is developed to explain 

this behavior and make recommendations to resolve it.  In the concluding chapter, 

remarks are given to summarize the work and discuss opportunities for future analysis. 
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2 A BRIEF LITERATURE REVIEW OF GAMES IN COMPLEX POLICY  
 

ANALYSIS 
 
 
 

Strategic interaction between actors with competing interests has been a point of 

analysis for as long as scholars have studyied complex human phenomena; that is to say, 

since the dawn of scholarship.  Mathematical models of such situations can be seen as far 

back as the eigtheenth centruy (Bellhouse and Fillion 2015).  The application of 

mathematics to strategic interaction didn’t explode, however, until John von Neumann 

published “On the Theory of Games of Strategy” in 1928, followed by  the related book 

16 years later with Oskar Morgenstern “Theory of Games and Economic Behavior” (von 

Neumann 1928; von Neumann and Morgenstern 1944).  These publications coined the 

term “game theory” and created a discipline of study that spanned mathematics and the 

social sciences. 

 

It’s useful to consider the development of game theory along two strands:  

increasing mathematical sophistication on the one hand, and a general infusion of the 

concepts of strategic interaction into the thinking of qualitative analysis on the other.  On 

the mathematical strand, aside from galvanizing strategic interaction into a sub-discipline, 

von Neumann’s 1928 paper proved the existence of a minimax solution in two-person 

zero-sum games with perfect information (von Neumann 1928).  “Perfect information” 



6 
 

implies outcomes are certain and that players know what all others are thinking.  John 

Nash extended this to the case of 𝑛𝑛-person, non-zero-sum games (Nash 1951).  The first 

breakthrough in relaxing the assumption players know what all others are thinking was 

Harsanyi’s work on what have come to be known as Bayesian games (Harsanyi 1967).  A 

cumbersome limitation of Harsanyi’s original work is that players must hold common 

beliefs about one another.  That is, if Player 1 has a particular belief about Player 2 

(expressed as a probability distribution for Player 2’s objectives), then Player 3 must hold 

that same belief.  This is the so-called theory of “types.”  It was relaxed by Kadane and 

Larkey who take a decision-theoretic approach and define probability distributions for 

adversaries’ behavior; no assumption on common beliefs is required (Kadane and Larkey 

1982).  The adversaraial risk analysis (ARA) framework formalized a method for 

eliciting those probability distributions (Rios Insua, Rios, and Banks 2009; Banks, Rios, 

and Rios Insua 2016). 

 

In addition to the above developments, which added realism by modeling the 

information available to players when they make their decisions, the context in which 

players make decisions has also been modeled with increasing complexity.  Differential 

games, for example, account for situations where players make several decisions over 

time and discount future playoffs (Isaacs 1999).  Modeling constructs tailored to large 

populations of actors include evolutionary games (Smith and Price 1973) and mean field 

games (Jovanovic and Rosenthal 1988).  Distinguishing between simultaneous and 

sequential moves by the players is an important distinction throughout the literature. 
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As game theory grew in prominance (in academia), it also came under increased 

scrutiny regarding whether the assumptions it poses about human behavior are legitimate.  

Games have been criticized for treating intelligent actors both too simplisitcally, not 

accounting for key decision-making factors such as altruisim and vindictiveness, and for 

giving humans too much credit in their ability to solve complex optimization problems.  

Behavioral game theory studies the different ways people make decisions, generally by 

conducting experiments where subjects play simple games (Camerer 2003).  A more 

mathematical treatment of the issue of uncertainty in player behavior is to take a robust 

approach that covers all reasonable behaviors.  The theory of robust games has been 

developed in Aghassi and Bertsimas (2006), Kardes (2005), and Crespi, Radi, and Rocca 

(2020). 

 

These developments have spawned a multitude of analytically solved models 

applied to various policy issues.  A small sampling of applications includes trade wars 

(Harrison and Rutström 1991), military deterrence (Sorokin 1994), natural resource 

disputes (Fischer and Mirman 1996; Acemoglu et al. 2012), predicting civil revolt (Chwe 

2000; Kiss, Rodríguez-Lara, and Rosa-García 2017), topics in terrorism and insurgency 

(E. B. De Mesquita 2005; 2007; 2010; S. Wang and Banks 2011; Berman, Shapiro, and 

Felter 2011), and strategic resource allocation (Gross and Wagner 1950; Kovenock and 

Roberson 2012a; 2012b; Bier, Oliveros, and Samuelson 2007).  All these applications can 

fairly be described as toy models, and further complexity would make them analytically 
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intractable.  While less mainstream, serious developments in applying computational 

techniques to intractable games have been made.  Mere computing power alone has been 

valuable, such as in generating Monte Carlo samples from stochastic variables describing 

an adversary’s uncertain values and capabilities, in order to elicit an empirical 

distribution for the adversary’s behavior (Rios Insua, Rios, and Banks 2009; Banks, Rios, 

and Rios Insua 2016).  Standard metaheuristics seen in the general optimization literature 

have been applied to games, such as tabu search (Sureka and Wurman 2005), ant colony 

optimization (Buer, Homberger, and Gehring 2013), and replicator dynamics (Golman 

and Page 2009).  Algorithms tailored for specific problem classes have also been 

developed (Nisan et al. 2007).  Despite the best computing power, these computational 

approaches have remained limited to games that are quite small or have easily 

computable objective functions (more often than not, both conditions are true).  Recall 

games pose a particular computational challenging because, as mentioned in Chapter 1, 

they always involve multiple layers of optimizations. 

 

The types of problems characterizing complex policy, where highly nonlinear 

objectives and contraints, many competing objectives, and abiguity requiring stochastic 

and robust analysis are typically jointly present, have not made much progress in game 

theory proper.  This has relegated game theory’s most significnat contributions to the 

qualitative strand.  Terms such as “(non)-zero-sum” have a known meaning and decision 

makers generally know they must not only consider what an adversary might do, but also 

what he thinks you may do.  This dissertation doesn’t seek to provide a historical account 
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of how game theory changed the way qualitative analysts think about complex problems, 

but a vignette is insightful.  In the 1950s, quantiative scholars at RAND (a premier 

defense think tank) began developing applied models similar to those mentioned above.  

One scholar was Thomas Schelling, who would go on to author “The Strategy of 

Conflict” (Schelling 1980).  The book introduced the major principles of game theory 

using plain language and minimal mathematics to analyze several policy issues, largely 

applicable to Cold War politics.  In writing the book, Schelling hoped the theory of 

games (which is to say the mathematical contributions summarized above) would make 

its way into the policy world.  He’d ultimately have to express his disappointment, noting 

years later that even the most rudimentary models are still met with resistance.  While the 

book was read and praised by scholars with diverse backgrounds, their intrest was in the 

general concepts, which Schelling thought were obvious. 

 

Where Schelling was disappointed, other game theorists have acquiesced to the 

notion that complex phenomena ought not to be modeled mathematically, at least not for 

the purposes of making specific policy recommendations.  The celebrated game theorist 

Ariel Rubinstein, for example, has stated:  “I have not seen, in all my life, a single 

example where a game theorist could give advice, based on the theory, which was more 

useful than that of the layman” (Rubinstein, n.d.).  As elaborated in his book “Economic 

Fables,” a game might elucidate a general tendency found in nature, but not a prescriptive 

policy recommendation (Rubinstein 2012).   Behavioral game theory has also brought 

into question the value of models, specifically along the lines that the assumed decision-
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making processes are wrong (Camerer 2003).  Player’s often exhibit altruism in decision-

making, seek to punish bad behavior at their own expense, settle for suboptimal solutions 

that are good enough (i.e. “satisficing”), exhibit inconsistencies, or simply lack the ability 

to solve complex optimization problems for their optimal utility.  Every one of these 

objections is an issue of semantics, as these alternative behaviors can be modeled and 

inserted into a traditional game.  The true contribution of behavioral game theory was to 

force people to think about the variety of decision-making processes people use.  The 

modeling challenge it introduces, assuming the actual decision-making process is 

unknowable in advance, is how to perform risk analysis around the various possibilities. 

 

This dissertation will respond to the failure of games to make headway into the 

policy realm by developing solution concepts for games with little-to-no restrictive 

assumptions.  The final determination of whether a model is useful will always remain in 

the hands of the decision-maker, but it’s hoped that emphasizing stochasticity and 

robustness will provide more confidence in model results.  Three specific examples will 

be given, each with an additional literature review pertinent to the specifics of the 

problem and methodologies used. 
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3 COMPUTATIONAL EFFICIENCY IN MULTIVARIATE ADVERSARIAL 
 

RISK ANALYSIS MODELS 
 
 
 

Note. This chapter was previously published as a stand-alone article in Decision Analysis (16 (4), 2019). 

 

This chapter presents a generic defense-attack model with multiple targets.  

Defense-attack models are not difficult to find in the real world, which explains their 

popularity in the literature.  One example which is consistent with the theme of the later 

chapters (maritime law enforcement) is the defense of oil rigs from robbery, a common 

occurrence in the Gulf of Mexico at the hands of drug cartels.  It’s fair to describe this as 

a complex problem as oil producers have multiple rigs to protect, real-world objective 

functions are rarely described by low-order polynomials, and most importantly, the 

producers lack good information on the cartels’ capabilities and values and must 

therefore perform stochastic analysis.  This chapter is distinct from the latter two in that it 

presents a generic model vice one tailored to a specific situation.  This choice was made 

so that an analytical solution could be derived as a benchmark for the computational 

technique used.  The computational technique, based on optimal computing budget 

allocation, is seen to converge to the true solution in the majority of cases, produce 

solutions within 95% of optimality in the remainder, and do so much faster than existing 

techniques. 
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3.1. Introduction 

Decision making under uncertainty requires the consideration of probable 

outcomes; at the most rudimentary level a decision maker may assess a prior measure of 

risk such as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∙ (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), and then 

make a decision with the intent of either reducing the probability of the event, decreasing 

disutility given the event occurs, or both.  In certain disciplines such as engineering this 

simple approach may be acceptable.  Complications arise, however, when the decisions 

you make are observed by an intelligent adversary whose actions are dependent on your 

own; in other words, (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑟𝑟𝑟𝑟) needs to be conditioned on your 

actions. 

 

While the need to consider the effect of your actions on an adversary's behavior 

isn't a new idea, in practice the concept is often ignored even at the highest levels of 

national security (see, e.g. G. G. Brown and Cox Jr. (2011) and Hanley, Jr. (2018)).  

Game theory provides a natural framework for addressing the problem of decision 

making in the face of an intelligent adversary and has evolved over the years to address 

the various shortcomings of its original conception, such as the optimistic assumption 

that actors know not only how they value various outcomes, but also how their 

adversaries value outcomes.  In brief, von Neumann is often cited as the founder of game 

theory due to his proof of the existence of a minimax solution in two-person zero sum 

games with perfect information (von Neumann 1928); subsequent developments were 

made into solution concepts for more complex problems, the most pertinent in regards to 
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the issue of adversarial uncertainty being the advent of Bayesian games (see Harsanyi 

(1967)).  A more recent development for addressing adversarial uncertainty is a 

framework that has been termed adversarial risk analysis (ARA).  In ARA, decision 

makers utilize traditional decision-theoretic methodologies while treating their 

adversary's behavior like any other stochastic parameter, except that the distribution for 

these parameters is elicited through a prior belief on the distribution of the adversary's 

utility function and beliefs.  General discussions on the merits of the decision-theoretic 

approach to games can be found in Kadane and Larkey (1982) and Harsanyi, Kadane, and 

Larkey (1982), as well as in Kadane et al. (2011) and Banks, Rios, and Rios Insua (2016).  

ARA is a young field and the focus of this chapter is to explore the computational 

feasibility of ARA models and develop a general-purpose heuristic algorithm for solving 

them. 

 

In Section 3.3 the details of a general ARA model will be given which will serve 

as the basis for this chapter.  Each a decision maker and an adversary are expected utility 

maximizers and assumptions will be made about the decision maker's utility function, the 

adversary's stochastic utility function, and the probability distributions of various events 

given courses of action of each the decision maker and adversary.  Sensible assumptions 

will be made but the purpose is not to accurately estimate these quantities; the purpose is 

to assess the computational feasibility of ARA models as they grow in size and 

complexity. 
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In the majority of the ARA literature small examples are analyzed where decision 

makers have limited choices, and utility functions and densities are either binary or easily 

integrable.  In general these conditions will not be met:  decision makers typically need to 

make decisions that are multivariate; outcomes are often more nuanced than a simple 

binary measure of success or failure; and to accurately model the distribution of 

outcomes and utilities it would be ideal to have the full spectrum of functions available, 

regardless of whether they make integration easy.  These factors cause exponential 

growth in the size of the model and to make things more challenging ARA requires the 

decision maker to assess her adversary's decision-making process, which will also 

typically be exponentially large.  Making ARA models yet more challenging is the fact 

that the adversary's utility function and beliefs are assumed to be stochastic; this not only 

means an additional distribution must be integrated over, but there's also typically an 

elicitation process by which the decision maker assesses her adversary's preferences 

which involves a computationally expensive Monte Carlo simulation. 

 

In light of these challenges, this chapter addresses the problem of solving an ARA 

model with a continuous decision space where analytical solutions are unavailable, and a 

sufficiently fine discretization is used to solve for the optimal strategy.  To date, no 

general-purpose algorithm has been suggested for handling ARA models of this form.  

Section 3.3 describes such a model, shows how to solve for the optimal decision in exact 

form (where solutions based on a sufficiently fine discretization are considered exact), 

and gives descriptive formulae for the computational size of the exact model as a function 
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of the dimensionality of the decision space.  The problem blows up quickly, so Section 

3.4 describes a simulation-based optimization technique to approximate the model in a 

feasible amount of time.  Section 3.5 presents results of runtimes for variously sized 

example problems and assesses the statistical confidence in the accuracy the algorithm's 

output, and also compares it to an alternative methodology employed in the literature, 

where this chapter’s methodology is seen to outperform.  Section 3.6 provides an 

overview of future work that will complement the methodologies described in Section 

3.4. 

3.2. Literature Review 

Rios and Rios Insua (2012) lay out mathematical formulations and give numerical 

examples for three simple versions of ARA that can be thought of as building blocks for 

larger models:  (i) a simultaneous defend-attack model; (ii) a sequential defend-attack-

mitigate model; and (iii) a sequential defend-attack model with private defender 

information.  Various ways their methodology can be expanded to model more detailed 

scenarios are discussed by Banks, Rios, and Rios Insua (2016) in a comprehensive 

monograph on ARA.  These features include alternative methods to account for level-k 

thinking (i.e. "he thinks, that I think, that he thinks, that I think …"), multiple adversaries 

and/or allies, and the expansion of ARA to complex systems that can't be modeled as 

simple sequences of actions. 

 

In the existing literature on ARA there are a multitude of "toy" examples that 

have been used to illustrate the above and other concepts while keeping the 
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computational effort low.  For example, optimal military convoy routing under the threat 

of improvised explosive devices (IEDs) was modeled by S. Wang and Banks (2011).  

Many researchers have studied the optimal allocation of counterterror resources; see, e.g., 

Rios and Rios Insua (2012), Sevillano, Rios Insua, and Rios (2012), and McLay, 

Rothschild, and Guikema (2012).  Optimal bidding in auctions was studied in Rios Insua, 

Rios, and Banks (2009).  Looking beyond these toy models, the most extensive example 

found in the literature to date is in Banks, Rios, and Rios Insua (2016), and is based on an 

actual ARA performed for a client that operates a railway system with multiple stations 

and is concerned with pickpockets and fare evaders.  While the client's decision space is 

quite large, representing possible security measures, the adversarial decision space is 

limited (to steal or not to steal), so the problem size remains relatively small.  

Nevertheless, an exact solution for the optimal security portfolio was computationally 

impractical so the analysts employed a greedy algorithm with random restarts to search 

for local optima; in Section 3.5 their approach is applied to the example described in 

Section 3.3, and the methodology developed in this chapter is shown to outperform. 

 

As noted in Section 3.1, ARA is just one approach to analyzing problems of 

adversarial conflict.  Game theorists in general have studied the above listed applications 

and as the field evolved analyses accounting for uncertainty in the behavior of other 

players has become the norm, not the exception.  Allocating resources against terrorism 

and other criminal activities has been studied in C. Wang and Bier (2011), Nikoofal and 

Zhuang (2012), and Liang and Xiao (2013), to name a few.  Protection from IEDs was 
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studied using traditional game theory by Lin and Dayton (2011).  Game theory is ripe 

with other applications that haven’t yet been analyzed from an ARA perspective and 

make for promising future ARA studies; these include models of conventional warfare 

(e.g. Kovenock and Roberson (2012b)), negotiations among political actors to include 

fringe figures such as moderate terrorists (e.g. E. B. De Mesquita (2005), Lapan and 

Sandler (1988), B. B. De Mesquita (1997)), and coordination games among willing 

participants in revolutionary activities (e.g. Kiss, Rodríguez-Lara, and Rosa-García 

(2017), Chwe (2000), Edmond (2013)).  While the above applications would be 

interesting to analyze using ARA, meaningful conclusions can only be drawn if 

methodologies for solving reasonably sized problems quickly are developed. 

 

In their book, Banks, Rios, and Rios Insua (2016) acknowledge computational 

feasibility will likely be an issue as ARA is developed in greater detail, but that the 

problem is similar to that faced by other decision theory problems.  An example of 

solving game theory problems with many decision makers and complex sequences of 

decision can be found in Koller and Milch (2003), where the notion of strategic 

dominance is used to decompose a problem into several smaller problems that can be 

solved in sequence.  Even in the smaller subproblems the decision space can become 

exponentially large for the reasons discussed in Section 3.1.  If the decision space is a 

continuous random variable it may be possible to derive analytic solutions to ARA and 

game theory models, as was done in Zhuang and Bier (2007).  However, such results 

usually rely on closed form expressions for the derivatives of the players' expected utility, 
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which in general won’t be possible.  This chapter makes the assumption the decision 

space must be discretized and thus consists of a large yet finite set of possible decisions, 

each of which is subject to an uncertain outcome due to uncertainty about how an 

adversary will behave.  Statistical selection methods that attempt to select the best among 

many alternatives have been used extensively in non-adversarial decision problems with 

uncertainty and generally seek to optimize a measure of confidence the selected 

alternative is indeed the true optimum.  These methods are often grouped by their 

overarching methodology; popular methodologies include optimal computing budget 

allocation (OCBA), the expected value of information (e.g. Chick, Branke, and Schmidt 

(2010)), and sequential elimination methods (e.g., Fan, Hong, and Nelson (2016)).  The 

OCBA methodology first developed by C.-H. Chen et al. (2000) will be used as the 

overarching framework in this chapter.  OCBA has been further developed since its initial 

conception to account for nuanced, problem-specific applications, and the state-of-the-art 

methods of OCBA as well as evidence of its sustained superior performance can be found 

in the textbook by C.-H. Chen and Lee (2011), and a recent paper by Peng et al. (2016). 

 

While powerful, OCBA still requires a preliminary assessment of all possible 

decisions, and thus also may become impractical.  Methods combining partitioned based 

search to identify promising regions of the decision space, and OCBA within the most 

promising regions, have been explored by, e.g., W. Chen et al. (2014) and Xu et al. 

(2016).  Another method that can be used to identify promising regions of a decision 

space is that of Bielza, Müller, and Insua (1999), who define an artificial probability 
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distribution for expected utility using the cross section of decision and state variables, 

which is calibrated via Markov Chain Monte Carlo methods.  Determining the marginal 

distribution in terms of only the decision variables then indicates where in the decision 

space the optimal decision lies. 

3.3. Model Formulation 

3.3.1. The Model 

This chapter analyzes a two-player sequential game between a decision maker 

(referred to as "she" throughout this chapter) and her adversary ("he"), where the 

adversary acts second.  As in all ARA models the perspective of the decision maker is 

taken, and thus her beliefs and utility function are known.  In this model, the decision 

maker implements a strategy, and the adversary then fully observes it and implements his 

response strategy.  Sequential models that continue for multiple moves are obvious 

extensions of this.  Simultaneous models can also be considered an extension, as 

simultaneous games are often solved using the concept of level-k thinking:  a level-1 

thinker responds to the expected actions of an actor who doesn't consider his adversary's 

actions, a level-2 thinker responds to the expected actions of a level-1 thinker, and so on.  

Players in a simultaneous game are therefore basing their decisions on the expected 

actions of their adversary, which is mathematically identical to the first mover's problem 

in a sequential game. 

 

The decision maker and adversary are competing over 𝑛𝑛 distinct targets, which 

could represent anything from tactical-level concerns such as securing a command center 
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from attack, to high-level strategic concerns such as some measure of economic control 

over a region.  A strategy of the decision maker is denoted as an 𝑛𝑛-dimensional vector, 𝑑𝑑, 

where each element of 𝑑𝑑 represents a particular target towards which she may allocate 

resources.  Similarly, an adversarial strategy 𝑎𝑎 is an 𝑛𝑛-dimensional vector stating how 

much resources the adversary invests towards each target.  For each target there will be a 

stochastic level of success achieved with 1 representing the adversary's most favorable 

outcome and 0 the decision maker's.  Denote these levels of success as 𝑆𝑆 ∈ 𝑹𝑹𝒏𝒏.  Given 

these definitions, the ARA model can now be described. 

 
 

  

 
Figure 3.1. Decision trees for the sequential game. 

 
 
 

Figures 3.1.a and 3.1.b represents the decisions faced by each the decision maker 

and adversary, respectively.  Circles represent chance nodes where he or she must 

calculate expected utility given the decisions made up to that point, and squares represent 

decision nodes.  As seen in Figure 3.1.a, the defender can solve her problem of 

maximizing utility as follows: 
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D1.  For each (𝒅𝒅,𝒂𝒂), find the decision maker's expected utility at chance node 

𝑺𝑺: 

𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) = ∫ 𝑢𝑢𝐷𝐷(𝑑𝑑,𝑎𝑎, 𝑠𝑠) ∙ 𝑝𝑝𝐷𝐷(𝑠𝑠|𝑑𝑑,𝑎𝑎)𝑑𝑑𝑑𝑑𝑆𝑆 , where 𝑢𝑢𝐷𝐷 is the decision maker's utility 

function and 𝑝𝑝𝐷𝐷(𝑠𝑠|𝑑𝑑, 𝑎𝑎) is her belief about the density of 𝑆𝑆, given 𝑑𝑑 and 𝑎𝑎. 

D2.  For each 𝒅𝒅, find the decision maker's expected utility at chance node 𝑨𝑨: 

𝜓𝜓𝐷𝐷(𝑑𝑑) = ∫ 𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) ∙ 𝑝𝑝𝐷𝐷(𝑎𝑎|𝑑𝑑)𝑑𝑑𝑑𝑑𝐴𝐴 , where 𝐴𝐴 is a random variable representing the 

adversary's strategy given 𝑑𝑑 and 𝑝𝑝𝐷𝐷(𝑎𝑎|𝑑𝑑) is the decision maker's belief about its 

density. 

D3.  Maximize expected utility at decision node 𝑫𝑫: 

𝑑𝑑∗ = argmax
𝑑𝑑∈𝐹𝐹𝐷𝐷

𝜓𝜓𝐷𝐷(𝑑𝑑), where 𝐹𝐹𝐷𝐷 is the set of all feasible strategies. 

 

Recall the fundamental principle of ARA that differentiates it from standard game 

theory:  the adversary's utility function and beliefs are uncertain and are elicited using the 

decision maker's beliefs about her adversary.  While the adversary's utility function and 

density of 𝑆𝑆 are not explicitly present in steps D1 through D3, they materialize implicitly 

through the decision maker's ability to assess the distribution of 𝑎𝑎, 𝑝𝑝𝐷𝐷(𝑎𝑎|𝑑𝑑), in step D2.  

Without perfect knowledge of these quantities she's uncertain how her adversary will 

behave and hence 𝑝𝑝𝐷𝐷(𝑎𝑎|𝑑𝑑) is unknown.  To overcome this challenge she must make an 

assumption on the functional form of the attacker's utility function, 𝑈𝑈𝐴𝐴(𝑑𝑑,𝑎𝑎, 𝑠𝑠, 𝑟𝑟𝑢𝑢), and 

density of 𝑆𝑆, 𝑃𝑃𝐴𝐴�𝑠𝑠�𝑑𝑑,𝑎𝑎, 𝑟𝑟𝑝𝑝�, where 𝑟𝑟𝑢𝑢 and 𝑟𝑟𝑝𝑝 are (possibly multidimensional) realizations 

of a random variable 𝑅𝑅 = �𝑅𝑅𝑢𝑢  𝑅𝑅𝑝𝑝� governing the specific forms of 𝑈𝑈𝐴𝐴 and 𝑃𝑃𝐴𝐴.  Also note 
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capital letters have been used to emphasize these are stochastic functions on account of 

uncertainty in 𝑅𝑅; this convention will be used throughout the chapter.  Making an 

assumption on the distribution of 𝑅𝑅, the decision maker can now infer a distribution on 

her adversary's behavior, 𝑃𝑃𝐷𝐷(𝑎𝑎|𝑑𝑑), by analyzing the problem from his perspective.  For 

each possible value of 𝑑𝑑, the attacker’s stochastic behavior can be inferred by tracing 

Figure 3.1.b backwards from node S to A in the following manner: 

 

A1.  Randomly sample a value of R: 

Using the assumed distribution of 𝑅𝑅, the decision maker can randomly sample a 

single value.  Denote this as 𝑟𝑟𝑖𝑖 = �𝑟𝑟𝑢𝑢𝑖𝑖  𝑟𝑟𝑝𝑝𝑖𝑖�. 

A2.  For a given 𝒅𝒅, for each 𝒂𝒂 find the adversary's expected utility at chance 

node 𝑺𝑺: 

𝛹𝛹𝐴𝐴𝑖𝑖(𝑑𝑑,𝑎𝑎) = ∫ 𝑈𝑈𝐴𝐴�𝑑𝑑,𝑎𝑎, 𝑠𝑠, 𝑟𝑟𝑢𝑢𝑖𝑖� ∙ 𝑃𝑃𝐴𝐴�𝑠𝑠�𝑑𝑑, 𝑎𝑎, 𝑟𝑟𝑝𝑝𝑖𝑖�𝑑𝑑𝑑𝑑𝑆𝑆   

A3.  Generate a sample of the optimal adversarial strategy at node A, given 

𝒅𝒅: 

𝑎𝑎𝑖𝑖(𝑑𝑑) = argmax
𝑎𝑎∈𝐹𝐹𝐴𝐴

𝛹𝛹𝐴𝐴𝑖𝑖(𝑑𝑑,𝑎𝑎), where 𝐹𝐹𝐴𝐴 is the set of all feasible adversarial 

strategies. 

A4.  Infer the density 𝒑𝒑𝑫𝑫(𝒂𝒂|𝒅𝒅): 

Repeating steps A1 - A3 𝑁𝑁𝑅𝑅 times generates equally likely samples, 

𝑎𝑎1(𝑑𝑑),𝑎𝑎2(𝑑𝑑), … ,𝑎𝑎𝑁𝑁𝑅𝑅(𝑑𝑑), for the optimal adversarial strategy given 𝑑𝑑.  These 
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samples serve as an estimate the decision maker can use for the density of the 

adversary's actions, denoted 𝑃𝑃𝐷𝐷(𝑎𝑎|𝑑𝑑). 

 

Repeating this process for all 𝑑𝑑 gives empirical densities that can be used in place of 

𝑝𝑝𝐷𝐷(𝑎𝑎|𝑑𝑑) in step D2, and so the decision maker can now solve her utility maximization 

problem. 

3.3.2. Size of the Model 

Analyzing the above model reveals three factors that affect its computational size:  

the number of feasible strategies, the number of samples of 𝑅𝑅 drawn in step A4, and the 

precision with which the integrals over 𝑆𝑆 will be estiamted, under the assumption the 

functional forms of 𝑢𝑢𝐷𝐷 ,𝑈𝑈𝐴𝐴, 𝑝𝑝𝐷𝐷(𝑠𝑠), 𝑃𝑃𝐴𝐴(𝑠𝑠), and 𝑃𝑃𝐷𝐷(𝑎𝑎) don't offer an analytical solution.  

The appropriate number of samples to draw from 𝑅𝑅 will depend on its dimensionality, so 

it will be assumed it contains 𝑛𝑛 elements of uncertainty; recall 𝑛𝑛 is the number of targets 

being competed over.  Denote the number of samples to be drawn in A4 as 𝑁𝑁𝑅𝑅, and 

denote the number of intervals to use when discretizing the integrals over each element of 

𝑆𝑆 as 𝑁𝑁𝑆𝑆.  Fixing the values 𝑁𝑁𝑅𝑅 = 10𝑛𝑛 and 𝑁𝑁𝑆𝑆 = 10, the below analysis considers the size 

of the problem as the number of feasible strategies increases, as this is likely to be the 

most pertinent parameter to a strategic planner using an ARA model. 

 

The number of feasible strategies will be influenced by two factors:  (i) the 

dimensionality of 𝑑𝑑 and 𝑎𝑎 (i.e. 𝑛𝑛); and, under the assumption the decision space is in 

reality continuous but must be discretized for computation, (ii) the discretization used for 
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𝑑𝑑 and 𝑎𝑎.  Assume it's sufficient for each element of 𝑑𝑑 and 𝑎𝑎 to take on values in the set 

{0, .1, .2, … , .9, 1}.  The only parameter influencing problem size not yet fixed is 𝑛𝑛, and 

analyzing the computational feasibility as 𝑛𝑛 increases will make up the remainder of this 

chapter. 

 

As a preliminary analysis note that as 𝑛𝑛 increases from 2, to 3, 4, 5, the number of 

feasible strategies for the decision maker, |𝐹𝐹𝐷𝐷| = �9 + 𝑛𝑛
𝑛𝑛 − 1�, increases from 11, to 66, to 

286, to 1,001.  An identical result obviously holds for |𝐹𝐹𝐴𝐴|.  It can also be shown that the 

number of integrals over 𝑆𝑆 that must be performed to solve the ARA model is: 

 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = |𝐹𝐹𝐷𝐷| ∙ |𝐹𝐹𝐴𝐴| ∙ (1 + 𝑁𝑁𝑅𝑅).   (3.1) 

Considering that integrating over 𝑆𝑆 is an 𝑛𝑛-fold integral to be estimated 

numerically using 𝑁𝑁𝑆𝑆 intervals per element of 𝑆𝑆, the actual number of computations 

required to solve the ARA model is: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = |𝐹𝐹𝐷𝐷| ∙ |𝐹𝐹𝐴𝐴| ∙ (1 + 𝑁𝑁𝑅𝑅) ∙ 𝑁𝑁𝑆𝑆𝑛𝑛.  (3.2) 

In this chapter four cases for the values of 𝑛𝑛 will be considered:  𝑛𝑛 ∈ {2,3,4,5}.  The 

growth in the number of computations in 𝑛𝑛 is enormous, increasing from over 1 million 

when 𝑛𝑛 = 2, to over 4 billion when 𝑛𝑛 = 3, 8 trillion when 𝑛𝑛 = 4, and finally 10 

quadrillion when 𝑛𝑛 = 5.  When none of the requisite integrals have analytical solutions 

the model becomes computationally intractable in its exact form when 𝑛𝑛 = 3, so as 

discussed in Sections 3.4 and 3.5 approximation techniques must be used to solve larger 

problems.  Section 3.4 discusses the methods actually employed in this chapter, which 
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take the approach of analyzing the whole decision space in a computationally efficient 

way.  Section 3.6, where future work is discussed, addresses approaches for finding 

promising regions of the decision space; if identifying these regions can compress the 

decision space of extremely large problems, then the methods of Section 3.4 can be used 

to thoroughly assess these relatively small spaces. 

3.4. Methodology 

The simulation-based methodology that will be used for solving the ARA model 

of Section 3.3 is based on OCBA, which is a statistical selection technique that's been 

employed in a variety of contexts to find good solutions quickly.  Comparisons will be 

made for the solve times of the statistical selection method developed here to those of the 

exact model, and the method's ability to converge to the true optimum will be assessed as 

well.  To facilitate the latter the utility functions, 𝑢𝑢𝐷𝐷(𝑑𝑑, 𝑎𝑎, 𝑠𝑠) and 𝑈𝑈𝐴𝐴(𝑑𝑑, 𝑎𝑎, 𝑠𝑠, 𝑟𝑟𝑢𝑢), and the 

distributions 𝑝𝑝𝐷𝐷(𝑠𝑠|𝑑𝑑,𝑎𝑎) and 𝑃𝑃𝐴𝐴(𝑠𝑠|𝑑𝑑,𝑎𝑎, 𝑟𝑟𝑝𝑝) have been selected so the integrals in steps D1 

and A2 give analytical solutions for 𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) and 𝛹𝛹𝐴𝐴(𝑑𝑑,𝑎𝑎) and the optimization over the 

adversary's behavior in A3 can be solved efficiently using standard algorithms, and thus 

the model can be solved in exact form in a reasonable amount of time.  Because in 

practice the interest is in solving problems without analytical solutions for 𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) and 

𝛹𝛹𝐴𝐴(𝑑𝑑,𝑎𝑎), and where the optimization for the adversary's behavior is hard, the model will 

also be solved in exact form by discretizing these integrals and then solving the 

optimization model in A3 via full enumeration for the purpose of assessing the 

computational advantages of statistical selection. 
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Before discussing the details of how OCBA is employed, a brief narrative 

example for the ARA model to be solved is given as well as the functional forms of its 

utility and density functions. 

3.4.1. A Modified Colonel Blotto Game 

Colonel Blotto games are a class of widely studied game theory models where 

one military commander, Colonel Blotto, must allocate her forces to 𝑛𝑛 distinct 

battlefields, knowing that her adversary, Colonel Klink, is simultaneously making the 

same decision.  The objective is to win control of the most battlefields where each field is 

won based on some (possibly stochastic) function of the amount of forces deployed.  This 

chapter modifies the game to assume there's an ongoing military conflict in which 

Colonel Blotto is considering intervening.  If she intervenes to aid her allies, she knows 

with certainty Colonel Klink will respond by intervening in aid of the other side, but she's 

uncertain as to which battlefields he values most and hence how he'll respond.  Blotto's 

only uncertainty about Klink is in his utility function, and Blotto and Klink share a 

common density over the outcome on a battlefield, 𝑝𝑝(𝑠𝑠|𝑑𝑑,𝑎𝑎) = 𝑝𝑝𝐷𝐷(𝑠𝑠|𝑑𝑑,𝑎𝑎) = 𝑝𝑝𝐴𝐴(𝑠𝑠|𝑑𝑑,𝑎𝑎).  

The modified game is a sequential model:  Colonel Klink only acts after observing 

Colonel Blotto's decision. 

 

In this context, Colonel Blotto is the decision maker and Colonel Klink the 

adversary.  The decision vectors 𝑑𝑑 and 𝑎𝑎 now represent what percentage of forces each 

Blotto and Klink deploy to each of the 𝑛𝑛 zones, and 𝑆𝑆 is a random vector representing the 
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degree of success in each battlefield (𝑆𝑆𝑖𝑖 ∈ [0,1], where 𝑆𝑆𝑖𝑖 = 1 is the best possible 

outcome for Colonel Klink). 

3.4.2. Utility and Density Functions 

Assume the levels of success on each battlefield follow independent uniform 

distributions over intervals of length 0.1, 𝑆𝑆𝑖𝑖~𝑈𝑈𝑈𝑈𝑈𝑈(ℎ𝑖𝑖,ℎ𝑖𝑖 + .1), where ℎ𝑖𝑖 ∈ [0, .9] depends 

on the 𝑖𝑖𝑡𝑡ℎ elements of 𝑑𝑑 and 𝑎𝑎.  In particular, ℎ𝑖𝑖(𝑑𝑑𝑖𝑖,𝑎𝑎𝑖𝑖) = − 2
4.6
�log�𝑐𝑐𝐴𝐴,𝑖𝑖𝑎𝑎𝑖𝑖 +

1� − log�𝑐𝑐𝐷𝐷,𝑖𝑖𝑑𝑑𝑖𝑖 + 1�� + 𝐶𝐶𝐻𝐻,𝑖𝑖, where 𝑐𝑐𝐴𝐴,𝑖𝑖, 𝑐𝑐𝐷𝐷,𝑖𝑖, and 𝐶𝐶𝐻𝐻,𝑖𝑖 are measures of how difficult it is 

to attack target 𝑖𝑖.  Blotto's and Klink's utility functions are: 

 𝑢𝑢𝐷𝐷(𝑠𝑠) =
∑ 𝑣𝑣𝑖𝑖�𝑒𝑒

−4.6�𝑠𝑠𝑖𝑖−𝐶𝐶𝐻𝐻,𝑖𝑖−.05�−1�𝑛𝑛
𝑖𝑖=1

𝑛𝑛
,    (3.3) 

 𝑈𝑈𝐴𝐴(𝑠𝑠, 𝑟𝑟) =
∑ 𝑟𝑟𝑖𝑖�1−𝑒𝑒

−4.6�𝑠𝑠𝑖𝑖−𝐶𝐶𝐻𝐻,𝑖𝑖−.05��𝑛𝑛
𝑖𝑖=1

𝑛𝑛
,    (3.4) 

where 𝑣𝑣𝑖𝑖 is the known value Blotto places on battlefield 𝑖𝑖 and 𝑟𝑟𝑖𝑖 is the uncertain value 

Klink places on battlefield 𝑖𝑖. 

 

The proof these specifications result in analytic solutions for 𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) and 

𝛹𝛹𝐴𝐴(𝑑𝑑,𝑎𝑎) is in Appendix 3.A, and the formulation for 𝑎𝑎𝑖𝑖(𝑑𝑑) = argmax
𝑎𝑎∈𝐹𝐹𝐴𝐴

𝛹𝛹𝐴𝐴𝑖𝑖(𝑑𝑑,𝑎𝑎) as a 

simple quadratic integer program is in Appendix 3.B.  The intuitive appeal of these 

specifications is that ℎ𝑖𝑖 is increasing in 𝑎𝑎𝑖𝑖 and decreasing in 𝑑𝑑𝑖𝑖, and determines a 

relatively tight bound of length 0.1 on the possible outcomes of each 𝑆𝑆𝑖𝑖 based on how 

much effort each Blotto and Klink apply to field 𝑖𝑖.  The rate of change of 𝑆𝑆𝑖𝑖 with respect 

to 𝑎𝑎𝑖𝑖 and 𝑑𝑑𝑖𝑖 is driven by the (fixed) parameters 𝑐𝑐𝐴𝐴,𝑖𝑖 and 𝑐𝑐𝐷𝐷,𝑖𝑖.  If each Blotto and Klink 



28 
 

invest zero resources on zone 𝑖𝑖, then ℎ𝑖𝑖 = 𝐶𝐶𝐻𝐻,𝑖𝑖.  In the example analyzed in Section 3.5, 

𝐶𝐶𝐻𝐻,𝑖𝑖 will be non-zero, indicative of the fact they're intervening in an ongoing conflict 

where, without intervention, the 𝑆𝑆𝑖𝑖 values will be non-zero.  The utility functions are 

exponential and if all 𝑆𝑆𝑖𝑖 = 𝐶𝐶𝐻𝐻,𝑖𝑖 + .05, representing no change to the status quo, then 

utilities evaluate to zero.  Values of 𝑆𝑆𝑖𝑖 above 𝐶𝐶𝐻𝐻,𝑖𝑖 + .05 lead to positive utility for Klink 

proportional to the importance he attaches to battlefield 𝑖𝑖, 𝑟𝑟𝑖𝑖, while values below 𝐶𝐶𝐻𝐻,𝑖𝑖 +

.05 lead to positive utilities for Blotto proportional to 𝑣𝑣𝑖𝑖.  The "4.6" constant was chosen 

so that in the extreme case when 𝐶𝐶𝐻𝐻,𝑖𝑖 = 0 and 𝑠𝑠𝑖𝑖 = 1, Klink receives utility of 

approximately 𝑟𝑟𝑖𝑖
𝑛𝑛

 and Blotto is decremented by 𝑣𝑣𝑖𝑖
𝑛𝑛

 (because 𝑒𝑒−4.6 ≈ 0).  For the 

distribution of the unknown parameters 𝑅𝑅𝑖𝑖 of which 𝑟𝑟𝑖𝑖 are realizations, it’s assumed each 

𝑅𝑅𝑖𝑖 follows a triangular distribution:  𝑅𝑅𝑖𝑖~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑙𝑙𝑖𝑖,𝑚𝑚𝑖𝑖, 𝑢𝑢𝑖𝑖).  In practice, these model 

parameters would be fit rigorously by codifying intelligence analysts' knowledge into 

measurable functions and distributions. 

3.4.3. Optimal Computing Budget Allocation for Solving Large ARA Models 

To solve for Colonel Blotto's optimal decision an algorithm based on the optimal 

computing budget allocation (OCBA) scheme of C.-H. Chen et al. (2000) is used.  OCBA 

is a general technique to support decision making under uncertainty.  While it assumes 

normality of 𝑢𝑢𝐷𝐷, theoretical methods that generalize OCBA to any distribution are a 

current point of research and a few non-normal extensions have been derived in Glynn 

and Juneja (2004), and C.-H. Chen et al. (2000) showed that in practice OCBA performs 

well for non-normal utility functions.  Empirical results for the example presented in this 

chapter show highly normal behavior (see Figure 3.3 of Section 3.5.2). 
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Developed for the purpose of choosing a good strategy under uncertainty when 

fully evaluating all possibilities is impractical, OCBA evaluates potential strategies 

through a series of iterations.  In the first iteration all strategies are given preliminary 

examination by taking a small number of samples of the random variables causing the 

uncertainty (in this case, 𝑆𝑆 and 𝑅𝑅).  In subsequent iterations, OCBA solves a nonlinear 

optimization problem to maximize an approximation of the probability of selecting the 

best strategy, subject to a constraint on the total number of samples to be drawn per 

iteration.  The iterative process continues until either sufficient confidence an optimal 

strategy has been found is achieved, or the total computational budget is exhausted.  

Formally, during each iteration OCBA's sampling allocation scheme yields the result in 

Theorem 3.1: 

Theorem 3.1 (proved in C.-H. Chen et al. (2000)) 

Given a finite number of samples to be allocated among 𝑘𝑘 competing strategies, 

whose utility each follow a normal distribution, 𝑢𝑢𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖2) for 𝑖𝑖 = 1,2, … ,𝑘𝑘, 

the approximate probability of funding the true optimal strategy (APCS) is 

asymptotically maximized using the following allocation scheme: 

𝑁𝑁𝑖𝑖
𝑁𝑁𝑗𝑗

= �𝜎𝜎𝑖𝑖/(𝜇𝜇𝑏𝑏−𝜇𝜇𝑖𝑖)
𝜎𝜎𝑗𝑗/(𝜇𝜇𝑏𝑏−𝜇𝜇𝑗𝑗)

�
2

, 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑏𝑏,    (3.5) 

𝑁𝑁𝑏𝑏 = 𝜎𝜎𝑏𝑏�∑
𝑁𝑁𝑖𝑖
2

𝜎𝜎𝑖𝑖
2𝑖𝑖≠𝑏𝑏   , 

∑ 𝑁𝑁𝑖𝑖𝑘𝑘
𝑖𝑖=1 = total sampling budget, and 



30 
 

𝑏𝑏 = argmax
𝑖𝑖

𝜇𝜇𝑖𝑖 (i.e. the index for the best strategy, based 

on the highest mean utility). 

 

When applying Theorem 3.1 in practice, the normal parameters 𝜇𝜇 and 𝜎𝜎 are 

estimated using the most current sample data of the OCBA-based algorithm described 

above.  The approximation for the probability of correctly selecting the true optimum, 

APCS, is the objective function being maximized and is defined using the Bonferroni 

(1936) lower bound on the actual probability of correct selection: 

            (3.6) 

 𝑃𝑃(𝑢𝑢𝑏𝑏 > 𝑢𝑢𝑖𝑖 ,∀ 𝑖𝑖 ≠ 𝑏𝑏) ≥ 1 − ∑ 𝑃𝑃(𝑢𝑢𝑖𝑖 > 𝑢𝑢𝑏𝑏) =𝑖𝑖≠𝑏𝑏 1 − ∑ 𝛷𝛷

⎝

⎜
⎛ 𝜇𝜇𝑖𝑖−𝜇𝜇𝑏𝑏

�𝜎𝜎𝑏𝑏
2

𝑁𝑁𝑏𝑏
+
𝜎𝜎𝑖𝑖
2

𝑁𝑁𝑖𝑖⎠

⎟
⎞
≔ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖≠𝑏𝑏 ,  

 where 𝛷𝛷(∙) is the standard normal cumulative distribution function. 

 

The choice of APCS as the metric to be maximized is partly pragmatic, as it 

allows the optimal sampling problem in Theorem 3.1 to be solved analytically.  However, 

APCS is also an appealing metric from a decision-theoretic standpoint as it's a lower 

bound on the true probability of correct selection (PCS); lacking a reliable metric for 

PCS, a decision maker will likely be most interested in knowing how low PCS could be 

(i.e. APCS).  Also, as shown in C.-H. Chen and Lee (2011), APCS converges to PCS 

under mild conditions and numerical tests show strong performance in identifying 

strategies with the true PCS.  Aside from fixing a total computational budget across 

iterations, there's no general-purpose stopping criterion that's used in the OCBA 
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literature.  A sufficiently high APCS may seem a natural stopping criterion but has issues 

when two strategies have expected utilities that are close.  In ex post analysis, this chapter 

outlines a simple method for adjusting APCS when two or more expected utilities are 

nearly indistinguishable, but for a stopping criterion a metric is defined based on a lack of 

material changes in the most promising strategies from one iteration to the next; this is 

detailed in Appendix 3.C. 

 

Applying this to the ARA model, samples of Colonel Blotto's objective function 

must be drawn for all values of 𝑑𝑑 ∈ 𝐹𝐹𝐷𝐷.  This is done by simultaneously drawing samples 

of 𝑆𝑆 and 𝐴𝐴.  Sampling a value 𝑆𝑆 = 𝑠𝑠 is straightforward as each element is 

𝑆𝑆𝑖𝑖~𝑈𝑈𝑈𝑈𝑈𝑈(ℎ𝑖𝑖 ,ℎ𝑖𝑖 + .1), with ℎ𝑖𝑖 deterministically in 𝑑𝑑𝑖𝑖 and 𝑎𝑎𝑖𝑖.  The difficulty is in sampling 

𝐴𝐴 = 𝑎𝑎 as 𝑝𝑝𝐷𝐷(𝑎𝑎|𝑑𝑑) is unknown.  To overcome this, a sample is instead drawn for 𝑅𝑅 = 𝑟𝑟 

and then transformed into a sample of Colonel Klink's optimal behavior by solving 

𝑎𝑎∗(𝑑𝑑) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎  ∫ 𝑈𝑈𝐴𝐴(𝑑𝑑,𝑎𝑎, 𝑠𝑠, 𝑟𝑟) ∙ 𝑝𝑝(𝑠𝑠|𝑑𝑑,𝑎𝑎)𝑑𝑑𝑑𝑑𝑆𝑆 .  Because this is an 𝑛𝑛-dimensional 

integral that may not have an analytical solution, it becomes computationally expensive 

as 𝑛𝑛 increases.  Thus, a nested OCBA is used to evaluate it, where for each 𝑎𝑎 ∈ 𝐹𝐹𝐴𝐴 

samples from 𝑆𝑆 are drawn according to the OCBA sampling allocation rules.  Together 

with the sample 𝑠𝑠 in the higher-level OCBA representing Blotto's problem, this gives a 

single sample of 𝑢𝑢𝐷𝐷(𝑑𝑑,𝑎𝑎, 𝑠𝑠).  Repeating the process per the allocation scheme in (3.5) 

gives a sample set that can be used to estimate 𝜓𝜓𝐷𝐷(𝑑𝑑); repeating for all 𝑑𝑑 allows the 

allocation scheme (3.5) to be used for the next iteration. 
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Algorithm 3.1 formalizes the solution technique to be used in Section 3.5.  To 

provide a descriptive summary of the algorithm, for each strategy 𝑑𝑑, multiple draws are 

taken from (𝑆𝑆,𝑅𝑅) and each of these draws requires performing a nested OCBA to 

transform the sampled value of 𝑅𝑅 into a sampled value of 𝐴𝐴.  The drawn samples are used 

to estimate the utility of each strategy 𝑑𝑑, and the process repeats until the stopping criteria 

in Appendix 3.C is met.  This process is referred to as one "trial," as in a Bernoulli trial 

where a particular strategy either is or is not proposed as the optimal strategy.  Trials are 

ran until a 95% confidence level is reached for the most frequently observed outcome of 

a single trial being, in fact, the most likely outcome.  This confidence level is calculated 

using Wilson’s (1927) Bernoulli confidence interval: 

 

Lemma 3.1 (see proof in Appendix 3.D) 

Assume an experiment is being conducted with 𝑘𝑘 possible outcomes, 𝐸𝐸1, 𝐸𝐸2, …, 

𝐸𝐸𝑘𝑘, so that the occurrence of an event 𝐸𝐸𝑖𝑖 is a Bernoulli random variable, 𝐵𝐵𝑖𝑖, with 

success probability 𝑝𝑝𝑖𝑖, where ∑ 𝑝𝑝𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 1.  Assume all 𝑝𝑝𝑖𝑖 values are unknown, 

that 𝑁𝑁 trials of the experiment are conducted with 𝐵𝐵𝑖𝑖𝑖𝑖 ≔ 1 if the 𝑗𝑗𝑡𝑡ℎ trial results in 

event 𝐸𝐸𝑖𝑖, and 𝐵𝐵𝑖𝑖𝑖𝑖 ≔ 0 otherwise, and define 𝑓𝑓𝑖𝑖 ≔ 𝑁𝑁 − ∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1 , the number of 

times event 𝐸𝐸𝑖𝑖 did not occur. 

 

A sufficient condition to be 1 − 𝛼𝛼 confident the most frequently observed 

outcome, 𝐸𝐸𝑏𝑏, is in fact the most likely, is that: 
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 . 5 <
𝑁𝑁−𝑓𝑓𝑏𝑏+

𝑧𝑧2

2
𝑁𝑁+𝑧𝑧2

− 𝑧𝑧
𝑁𝑁+𝑧𝑧2

�𝑓𝑓𝑏𝑏(𝑁𝑁−𝑓𝑓𝑏𝑏)
𝑁𝑁3

+ 𝑧𝑧2

4
,    (3.7) 

where 𝑧𝑧 ≔ 𝛷𝛷−1(1− 𝛼𝛼). 

 

Formally, the algorithm proceeds as follows: 

 

Algorithm 3.1.  Nested OCBA to Optimize the Decision Maker's Strategy. 

1.  Create an |𝐹𝐹𝐷𝐷|-dimensional list, 𝐵𝐵, indicating the number of times each of the 

decision maker's strategies has been proposed by steps 2 through 18 as an 

optimum.  Initiate all elements to 0. 

2.  Create an |𝐹𝐹𝐷𝐷|-dimensional list, 𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐷𝐷, to store samples of 

𝑢𝑢𝐷𝐷(𝑑𝑑,𝑎𝑎, 𝑠𝑠) for all 𝑑𝑑. 

3.  Initiate the number of samples for each 𝑑𝑑 in the initial iteration of 

OCBA to 𝑁𝑁𝑑𝑑 = 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and set the iteration number to 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐷𝐷 = 0. 

4.  Increment 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐷𝐷 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐷𝐷 + 1. 

5.  For all d: 

6.  For all 𝑖𝑖 = 1:𝑁𝑁𝑑𝑑: 

7.  Generate a sample, 𝑟𝑟, from 𝑅𝑅. 

Determine the optimal adversarial strategy for 𝒅𝒅, 𝒓𝒓 

using nested OCBA 

8.  Create an |𝐹𝐹𝐴𝐴|-dimensional list, 𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴, to store 

samples of 𝑈𝑈𝐴𝐴(𝑑𝑑,𝑎𝑎, 𝑠𝑠, 𝑟𝑟) for all 𝑎𝑎. 
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9.  Initiate the number of samples for each 𝑎𝑎 in the initial 

iteration of OCBA to 𝑁𝑁𝑎𝑎 = 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and set the iteration 

number to 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐴𝐴 = 0. 

10.  Increment 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐴𝐴 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐴𝐴 + 1. 

11.  For all 𝑎𝑎: 

12.  For all 𝑗𝑗 = 1:𝑁𝑁𝑎𝑎: 

13.  Generate a sample, 𝑠𝑠𝐴𝐴, from 

𝑆𝑆~𝑈𝑈𝑈𝑈𝑈𝑈(ℎ(𝑑𝑑,𝑎𝑎), ℎ(𝑑𝑑,𝑎𝑎) + .1). 

14.  Calculate 𝑈𝑈𝐴𝐴(𝑑𝑑,𝑎𝑎, 𝑠𝑠𝐴𝐴, 𝑟𝑟) and store it in 

𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴(𝑎𝑎). 

15.  If 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐴𝐴 = 20 or the stopping criterion of Appendix 3.C 

is reached, set the adversary's optimal behavior for this 

value of (𝑑𝑑, 𝑟𝑟) to 𝑎𝑎∗(𝑑𝑑, 𝑟𝑟) ≔ the adversarial strategy with 

the highest sample mean in 𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴.  Otherwise, use the 

OCBA allocation scheme, (3.5), to update 𝑁𝑁𝑎𝑎 for all 𝑎𝑎, and 

return to step 10.  Note that when calculating (3.5), in the 

event the sample standard deviation is 0 for some strategy 𝑖𝑖 

we set 𝑠𝑠𝑖𝑖 = .0001.  Values of 𝑁𝑁 are rounded up to get an 

integer number of samples, effectively setting 𝑁𝑁𝑖𝑖 = 1. 

16.  Generate a sample, 𝑠𝑠𝐷𝐷, from 𝑆𝑆~𝑈𝑈𝑈𝑈𝑈𝑈(ℎ�𝑑𝑑,𝑎𝑎∗(𝑑𝑑, 𝑟𝑟)�, 

ℎ�𝑑𝑑,𝑎𝑎∗(𝑑𝑑, 𝑟𝑟)� + .1). 
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17.  Calculate 𝑢𝑢𝐷𝐷(𝑑𝑑,𝑎𝑎∗(𝑑𝑑, 𝑟𝑟), 𝑠𝑠𝐷𝐷) and store it in 

𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐷𝐷(𝑑𝑑). 

18.  If 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝐷𝐷 = 20 or the stopping criterion of Appendix 5.C is reached, 

select the strategy 𝑑𝑑 with the highest sample mean in 𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴𝐷𝐷, and 

increment the element of 𝐵𝐵 corresponding to the selected optimum.  

Otherwise, use the OCBA allocation scheme, (3.5), to update 𝑁𝑁𝑑𝑑 for all 𝑑𝑑, 

and return to step 4 (see note in step 15 for the case when 𝑠𝑠𝑖𝑖 = 0 for some 

strategy 𝑖𝑖). 

19.  If the most frequently observed strategy in 𝐵𝐵 is in fact the most likely 

outcome of a trial with at least 95% confidence (see Lemma 3.1), stop; select the 

most frequently observed strategy in 𝐵𝐵 as the (approximated) optimal solution.  

Otherwise, repeat from step 2. 

 

Theorem 3.2 provides a guide for estimating the expected number of trials for 

Algorithm 3.1 to terminate, based on the required statistical confidence in its output: 

Theorem 3.2 (see proof in Appendix 3.D) 

Assume multiple trials of the experiment described in Lemma 3.1 are to be 

performed and again define by 𝑓𝑓𝑏𝑏 the number of trials in which the most frequent 

outcome, 𝐸𝐸𝑏𝑏, does not occur.  Given 𝑓𝑓𝑏𝑏, denote by 𝑁𝑁(𝑓𝑓𝑏𝑏) the minimum number of 

trials to be 1 − 𝛼𝛼 confident 𝐸𝐸𝑏𝑏 is in fact the most likely outcome of a single trial.  

Let 𝑛𝑛0 ≔ ⌈𝑧𝑧2⌉, where 𝑧𝑧 ≔ 𝛷𝛷−1(1− 𝛼𝛼).  The following are true: 

1. Either 𝑁𝑁(𝑓𝑓𝑏𝑏) = 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0, or 𝑁𝑁(𝑓𝑓𝑏𝑏) = 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0 + 1. 
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2. A sufficient condition for 𝑁𝑁(𝑓𝑓𝑏𝑏) = 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0 is:  √3
18𝑛𝑛0

< �𝑛𝑛0
2𝑧𝑧
�
2
− 𝑧𝑧2

2
. 

3. Assuming the condition in part 2 is met and given 𝑝𝑝𝑏𝑏, the true 

probability of the most frequently observed outcome, the expected 

number of trials until Algorithm 3.1 terminates can be calculated as: 

𝐸𝐸[𝑁𝑁(𝑓𝑓𝑏𝑏)|𝑝𝑝𝑏𝑏] = 𝑝𝑝𝑏𝑏2 ∙ ∑ (2𝑓𝑓𝑏𝑏 + 𝑛𝑛0) ∙∞
𝑓𝑓𝑏𝑏=0 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 − 1),𝑓𝑓𝑏𝑏|𝑝𝑝𝑏𝑏),  (3.8) 

where 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗), 𝑖𝑖|𝑝𝑝𝑏𝑏), the probability of not terminating after 

𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗) trials while observing exactly 𝑖𝑖 failures during those trials, 

can be calculated recursively as: 

 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗), 𝑖𝑖|𝑝𝑝𝑏𝑏) =        (3.9) 

 ∑ 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1),𝑘𝑘|𝑝𝑝𝑏𝑏)𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘=𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

∙ 𝑝𝑝𝑏𝑏2−𝑖𝑖+𝑘𝑘 ∙ (1 − 𝑝𝑝𝑏𝑏)𝑖𝑖−𝑘𝑘 ∙ � 2
𝑖𝑖 − 𝑘𝑘�,  

where 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≔ max{𝑓𝑓𝑏𝑏 − 𝑗𝑗, 𝑖𝑖 − 2}, 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = min{2(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1) +

𝑛𝑛0, 𝑖𝑖}, and the recursion can be started using 𝑃𝑃(!𝑁𝑁(0),𝑘𝑘|𝑝𝑝𝑏𝑏) = �
𝑛𝑛0
𝑘𝑘 � ∙

𝑝𝑝𝑏𝑏
𝑛𝑛0−𝑘𝑘 ∙ (1 − 𝑝𝑝𝑏𝑏)𝑘𝑘 for 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛0, and 0 otherwise. 

 

Although this is an infinite sum, it converges to its true value quickly 

as long as 𝑝𝑝𝑏𝑏 is sufficiently higher than 0.5. 

 

The sufficient condition in part 2 of Theorem 3.2 is met for the vast majority of 

confidence levels, including when using the required level of 95%.  While the expected 

number of trials can’t be calculated without knowledge of 𝑝𝑝𝑏𝑏, a reasonable upper bound 

can be obtained by assuming any well-constructed algorithm will have 𝑝𝑝𝑏𝑏 ≥ 60%; along 
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with 95% required confidence, this gives 𝐸𝐸[𝑁𝑁(𝑓𝑓𝑏𝑏)|.6] = 15.  In Appendix 3.D many 

trials of the algorithm are ran (more than required to terminate) and its observed 

empirically that 𝑝𝑝𝑏𝑏 ≈ 76.47%; this gives an expected number of trials of 5.7.  As a 

technical note, to deal with situations where the estimated expected utilities of two or 

more strategies are essentially equivalent, in order to make the events 𝐸𝐸𝑖𝑖 distinct its 

assumed the most frequently observed among them (in prior trials) is the optimum for the 

current trial.  To avoid path dependencies the most frequently observed is recalculated 

after each trial.  Ties are broken arbitrarily.  Such a condition is required since without it 

two strategies that for all intents and purposes yield equivalent utilities will cause an 

excessive number of trials to be run in expectation, even once it's become clear the 

strategies are indistinguishable and either can be selected. 

3.5. Discussion of Findings 

Four values of 𝑛𝑛 were analyzed, 𝑛𝑛 = 2, 3, 4, and 5, with parameters as detailed in 

the next subsection.  For each case Algorithm 3.1 was ran to estimate the optimal solution 

to Colonel Blotto's problem, the time required to reach that solution was measured, and 

ex post analysis was performed using the sample utilities generated to calculate a lower 

bound on the probability the proposed optimum is in fact the true optimum.  The exact 

optimal solution was also computed by exploiting the analytical forms of 𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) and 

𝛹𝛹𝐴𝐴(𝑑𝑑,𝑎𝑎) and the quadratic structure of 𝑎𝑎𝑖𝑖(𝑑𝑑) = argmax
𝑎𝑎∈𝐹𝐹𝐴𝐴

𝛹𝛹𝐴𝐴𝑖𝑖(𝑑𝑑, 𝑎𝑎), and compared to the 

solution found by Algorithm 3.1.  For the remainder of the chapter this solution method 

will simply be referred to as the "partial analytic" method.  Even using the partial analytic 

method the computational advantages of Algorithm 3.1 become apparent when 𝑛𝑛 ≥ 4.  
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To make clear the computational savings when no analytical solutions are available (as 

will be the case in general) the time required to solve the exact model when 𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) and 

𝛹𝛹𝐴𝐴(𝑑𝑑,𝑎𝑎) must be evaluated numerically and 𝑎𝑎𝑖𝑖(𝑑𝑑) = argmax
𝑎𝑎∈𝐹𝐹𝐴𝐴

𝛹𝛹𝐴𝐴𝑖𝑖(𝑑𝑑,𝑎𝑎) solved via full 

enumeration was also assessed; this solution method will be referred to as the "fully 

numeric" method. 

3.5.1. Parameter Values and Sampling Budgets 

As 𝑛𝑛 is increased from 2 to 5, the below parameter values are used.  When 𝑛𝑛 = 2, 

only the first two elements of each parameter are used, when 𝑛𝑛 = 3 the first three 

elements are used, and so on. 

𝐶𝐶𝐻𝐻 = [. 4, .35, .4, .4, .3], 

𝑐𝑐𝐴𝐴 = [−.4984,−.4984,−.5529,−.6015,−.6834], 

𝑐𝑐𝐷𝐷 = [−.4984,−.4373,−.4373,−.5529,−.4626],  

𝑣𝑣 = [1.3, .8, 1.25, .7, 1.1], and 

𝑅𝑅 = [𝑅𝑅1,𝑅𝑅2,𝑅𝑅3,𝑅𝑅4,𝑅𝑅5],  
where 𝑅𝑅1~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 8, 1, 1.5), 𝑅𝑅2~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 5, .8, 2.5), 

𝑅𝑅3~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟(1, 1.5, 3.5), 𝑅𝑅4~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 3, .7, 1.1), and 

𝑅𝑅5~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 6, 1.1, 1.9).  

 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 2𝑛𝑛 was used as the number of samples to allocate to each of Colonel 

Blotto's strategies in the first iteration of Algorithm 3.1.  In later iterations, a total of 5𝑛𝑛 

samples were allocated across the strategies per the OCBA allocation scheme.  The same 
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sampling rules were used for the nested OCBAs to solve Colonel Klink's decision 

problem. 

3.5.2. Run Times and Ex Post Analysis 

Solve times are now compared for the fully numeric method, the partial analytic 

method, and Algorithm 3.1.  Illustrating the difficulty in solving large ARA problems by 

brute force, the fully numeric method took 26 minutes when 𝑛𝑛 = 2 and was 

computationally infeasible for 𝑛𝑛 ≥ 3.  The partial analytic method took 1 minute when 

𝑛𝑛 = 2, 9 minutes when 𝑛𝑛 = 3, 597 minutes (10 hours) when 𝑛𝑛 = 4, and 62,000 minutes 

(43 days) when 𝑛𝑛 = 5.  In contrast, Algorithm 3.1 took 1 minute when 𝑛𝑛 = 2 and 

terminated after 3 trials, 24 minutes when 𝑛𝑛 = 3 and terminated after 7 trials, 279 

minutes (4.65 hours) when 𝑛𝑛 = 4 and terminated after 5 trials, and 2,618 minutes (44 

hours) when 𝑛𝑛 = 5 and terminated after 3 trials.  These results are summarized in Table 

3.1.  The number or trials required for Algorithm 3.1 to terminate is subject to random 

variation in the samples that are drawn, and in Appendix 3.E the analysis is repeated 

many times for 𝑛𝑛 = 4 to assess the expected number of trials to termination; in all cases 

Algorithm 3.1 selects the correct optimum and the expected number of trials is rather low 

(5.7), but can be as high as 13. 

 

Figure 3.2 shows graphically that Algorithm 3.1 identified the true optimum for 

all values of 𝑛𝑛.  The true utilities of each strategy are plotted along with those estimated 

after the first iteration of the first trial and the estimated utilities upon termination.  

Plotting the entire decision space for 𝑛𝑛 ≥ 3 would make the plots difficult to read so only 
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the area surrounding the true optimum is shown; no estimated utilities of Algorithm 3.1 

(at termination) outside the range plotted exceeded the highest within the plotted range.  

The important thing to note about Figure 3.2 is that while divergence between the true 

expected utilities and those computed by Algorithm 3.1 remains in some parts of the 

decision space, Algorithm 3.1 has converged near the peak values of expected utility, 

reflecting the computational budgetary allocation scheme that dedicates the majority of 

samples to understanding the most promising regions of the decision space.  As can be 

seen in Figures 3.2.b and 3.2.c, a false optimum would have been identified had the 

algorithm stopped after just 1 iteration of the first trial, but given additional iterations the 

algorithm arrived at the true optimum. 
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Figure 3.2.a:  n = 2 Figure 3.2.b:  n = 3, near 𝑑𝑑∗ = [. 7, 0, .3] 
 

  
Figure 3.2.c:  n = 4, near 𝑑𝑑∗ = [. 4, 0, 0, .6] Figure 3.2.d: n = 5, near 𝑑𝑑∗ = [. 4, 0,0, .6, 0] 
 

 
 
Figure 3.2. Exact values of 𝝍𝝍𝑫𝑫(𝒅𝒅) and estimates from Algorithm 3.1 

 
 
 

In general an exact solution wouldn’t be available to compare the results of 

Algorithm 3.1 to, so to add confidence in its solution the sample values of utility, 𝑢𝑢𝐷𝐷(𝑑𝑑) 

for all 𝑑𝑑 ∈ 𝐹𝐹𝐷𝐷, were used to calculate a lower bound on the probability the strategy with 

the highest sample mean utility, 𝑑𝑑𝑏𝑏|{𝑢𝑢�𝐷𝐷(𝑑𝑑𝑏𝑏) > 𝑢𝑢�𝐷𝐷(𝑑𝑑𝑖𝑖) ∀ 𝑖𝑖 ≠ 𝑏𝑏}, does in fact yield the 

highest utility.  Using the assumption that 𝑢𝑢𝐷𝐷(𝑑𝑑) is normally distributed this is a 

straightforward calculation using the Bonferonni inequality described in equation (3.6).  

To justify the normality assumption, normal qq-plots for 𝑢𝑢𝐷𝐷(𝑑𝑑) were created for a variety 
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of values of 𝑑𝑑 and 𝑛𝑛.  Figure 3.3 shows the plots for three particular values of 𝑑𝑑 when 

𝑛𝑛 = 4 which are illustrative of the results seen for other values; all showed clear 

normality despite the occasional bit of deviation in the tails (Figure 3.3.c was the most 

extreme case found).  Calculating the lower bounds on the probability the algorithm's 

proposed optimum is in fact the true optimum (APCS), it was found that:  in the case of 

𝑛𝑛 = 2, APCS evaluated to 91.41%; when 𝑛𝑛 = 3, it was 57.01%; when 𝑛𝑛 = 4 it's 94.59%; 

and when 𝑛𝑛 = 5 it's 98.39%.  These lower bounds are summarized in Table 3.1.  The 

markedly lower value of APCS when 𝑛𝑛 = 3 is due to a point noted in Section 3.4:  as can 

be seen in Figure 3.2.b, two strategies, 𝑑𝑑𝑏𝑏 = [. 7, 0, .3] and 𝑑𝑑2 = [. 8, 0, .2], have 

essentially identical expected utilities of .0660 and .0630, respectively.  In the summation 

to calculate APCS, along with their respective standard errors (.0036 and .0049) the term 

𝑃𝑃(𝑢𝑢2 > 𝑢𝑢𝑏𝑏) = 31.12% is subtracted out.  If this had not been subtracted, essentially 

treating strategies 𝑑𝑑𝑏𝑏 and 𝑑𝑑2 as one and the same, the lower bound on the probability of 

correct selection would have been 88.19%.  In Appendix 3.E where the analysis is 

repeated for 𝑛𝑛 = 4 several times, a simple calculation to adjust APCS values is used that 

doesn't require decision maker's to visually inspect expected utilities for virtual 

equivalency. 
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Figure 3.3.a:  𝑑𝑑 = [. 4,0,0, .6]Figure 3.3.b:  𝑑𝑑 = [0,0, .2, .8]Figure 3.3.c:  𝑑𝑑 = [. 9,0, .1,0] 
 

Figure 3.3. Normal qq-plot for 𝒖𝒖𝑫𝑫(𝒅𝒅) using 1st to 99th quantiles. 
 
 
 

Table 3.1.  Run times and lower bounds on probability of correct selection. 

 
 
 
 

3.5.3. Benchmarking Against a Greedy Search with Random Restarts 

As noted in Sections 3.1 and 3.2, there are few examples in the literature of 

solution techniques for large ARAs, so the results presented in this chapter are useful in 

their own right.  However, this subsection compares Algorithm 3.1 to the technique used 

by Banks, Rios, and Rios Insua (2016) to find a heuristic solution to a fairly large ARA 

model.  They used a greedy algorithm with random restarts that begins with a randomly 

selected feasible strategy, generates a sufficient number of samples to estimate the 

expected utility of that strategy, and then permutes a single element of the strategy to 

reach a new feasible strategy.  Samples are again drawn, and if this yields a new 
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incumbent solution the algorithm continues with an additional permutation to this new 

incumbent; otherwise, the algorithm returns to the incumbent and tries an alternative 

permutation.  Applying this to the modified Colonel Blotto example, a nested greedy 

algorithm is required where for each strategy of Blotto he must draw random samples for 

Klink's 𝑟𝑟 value, and for each of these samples Blotto must use a greedy algorithm to 

analyze the decision problem from Klink's perspective.  Using the case when 𝑛𝑛 = 4, it 

was assumed 100 samples was sufficient for each iteration of the algorithm; as observed 

empirically, a single trial of Algorithm 3.1 generally allocates several hundred samples to 

each of the best few strategies, and 100 samples was seen to be a natural segregator 

between decent strategies and strategies that were entirely ignored following the initial 

iteration.  As a stopping criterion it’s required that the probability of finding a new local 

maximum with another random restart be less than 5% as calculated using Laplace's law 

of succession, which is consistent with Algorithm 3.1's 95% required confidence level.  

This algorithm took 3,371 minutes (56 hours) to terminate with 𝑛𝑛 = 4; as detailed in 

Appendix 3.E, in expectation Algorithm 3.1 will take just 4.92 hours to terminate when 

𝑛𝑛 = 4.  Further, though the greedy algorithm did find the true optimum, due to the 

relatively small sample size the APCS was -82.00% (i.e. no better than the trivial lower 

bound of 0%); while this is only a lower bound on the probability of correctly selecting 

the optimal solution, it clearly indicates much less confidence than when Algorithm 3.1 is 

used.  Indeed, as shown in Appendix 3.E, even after accounting for virtual equivalency in 

mean utilities APCS for the greedy algorithm is less than 0%.  As an additional 

benchmark, experiments were ran to find the number of samples to generate for each 
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strategy in the greedy algorithm such that it terminates in about 4.95 hours.  The number 

of samples needed to be reduced to 7 per strategy.  Of course, as APCS was meaningless 

when 100 samples per strategy were drawn, it's likewise meaningless with just 7 samples 

per strategy (-3,034.75%). 

 

3.5.4. Summary of Results 

Algorithm 3.1 accurately estimated 𝜓𝜓𝐷𝐷(𝑑𝑑) for all values of 𝑛𝑛 tested, and in 

Appendix 3.E the analysis is repeated several times for 𝑛𝑛 = 4 to assess the accuracy rate 

in selecting the true optimum.  In brief, for the parameters in this section the algorithm 

always identifies the true optimum in 102 runs of the algorithm, and using three 

alternative parameter sets and an additional 144 runs it always selects a strategy whose 

utility is at least 95% of the true optimum, though is typically much closer to 100% of 

optimality.  Equally important to the accuracy of the algorithm is its speed, and the run 

times summarized in Table 3.1 as well as Appendix 3.E clearly show it makes generically 

specified ARA problems that would otherwise be intractable solvable in a reasonable 

amount of time. 

3.6. Conclusion and Future Work 

This chapter has presented a simulation-based algorithm for a two-player, 

sequential ARA model that terminates in reasonable time when the decision spaces for 

each the decision maker and adversary are large and the functional forms of utilities and 

state variable distributions don’t offer analytical solutions.  By running multiple 

independent trials, as defined by steps 2 through 18 of Algorithm 3.1, the algorithm 



46 
 

terminates only after sufficient statistical confidence is achieved.  Further, in the example 

of Section 3.5 ex post analysis yielded lower bounds on the probability the algorithm 

produced the true optimum that were quite high.  The example used to assess the 

algorithm was a modified Colonel Blotto game and the number of battlefields was used 

as a variable parameter to increase the size of the model, but the algorithm is not 

particular to Colonel Blotto games; the only criteria for its use is that decision spaces are 

discrete and utilities can be reasonably approximated by a normal distribution. 

 

What it means to solve a model quickly is subjective, and for the purposes of this 

chapter this meant being able to solve a model on a commercial laptop running Python in 

one day.  Using this criterion the analyis stopped after 𝑛𝑛 = 5, but with a more powerful 

machine and/or willingness to wait for solutions larger problems could be solved.  The 

main result of this chapter is that the OCBA-based algorithm offers enormous 

computational savings for ARA models and presents a framework for exploring the 

computational feasibility of increasingly larger models.  A natural next step is to develop 

methods to identify promising regions of very large decision spaces, within which 

Algorithm 3.1 can be applied.  Three general approaches come to mind for exploring this 

problem:  assess all possible decisions using a low-fidelity model, a la Xu et al. (2016), 

and then explore in detail regions where the low-fidelity model suggested expected utility 

was high; partition the decision space and draw samples of decisions from each, which 

are then explored in detail to decide whether the region as a whole ought to be explored, a 

la W. Chen et al. (2014); and calibrating a distribution for the expected utility of a pair of 
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decision maker and adversary decisions, 𝑔𝑔(𝑑𝑑,𝑎𝑎, 𝑠𝑠) = 𝑢𝑢𝐷𝐷(𝑑𝑑,𝑎𝑎, 𝑠𝑠) ∙ 𝑝𝑝(𝑠𝑠|𝑑𝑑,𝑎𝑎), via a 

Markov Chain Monte Carlo simulation, a la Bielza, Müller, and Insua (1999), and then 

analyzing the marginal of the distribution with respect to 𝑑𝑑 to determine regions where 

the expected utility is high.  All these approaches will have to deal with the unique 

challenge of ARA models, which is that the adversary's utility function and beliefs are 

stochastic.  In this chapter this was overcome by utilizing a nested OCBA algorithm. 

 

Another natural extension would be to incorporate a richer description of 

uncertainty regarding the adversary's behavior.  Considering that the distribution of the 

adversary's behavior, 𝑃𝑃𝐷𝐷(𝑎𝑎|𝑑𝑑), was estimated by solving his problem using statistical 

selection, despite the accuracy of the algorithm seen herein it’s still subject to sampling 

error.  By using simple point estimates for each 𝑃𝑃𝐷𝐷(𝑎𝑎𝑖𝑖|𝑑𝑑), 𝑎𝑎𝑖𝑖 ∈ 𝐹𝐹𝐴𝐴, sampling error could 

lead the decision maker to assume the adversary is using a suboptimal strategy, which in 

turn leads her to overestimate her utility from each strategy and may even suggest a false 

optimum.  While it's reasonable to base decisions around Algorithm 3.1 because, by 

Theorem 3.1, when analyzing the adversary's problem it maximizes the probability of 

predicting his true optimum, risk-averse decision makers may instead wish to 

characterize the uncertainty in each 𝑃𝑃𝐷𝐷(𝑎𝑎𝑖𝑖|𝑑𝑑) and employ a maximin strategy that 

maximizes utility subject to the worst (reasonable) case for the values of 𝑃𝑃𝐷𝐷(𝑎𝑎𝑖𝑖|𝑑𝑑), even 

at the expense of lower expected utility.  Such an approach might involve estimating 

confidence intervals for each 𝑃𝑃𝐷𝐷(𝑎𝑎𝑖𝑖|𝑑𝑑) and using these as uncertainty sets in a 

distributionally robust optimization.  Distributional robustness in ARA models was 
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studied in McLay, Rothschild, and Guikema (2012), but in their analysis uncertainty sets 

were taken as given rather than estimated analytically.  Intuitively, heuristically defined 

uncertainty sets such as 𝑃𝑃𝐷𝐷(𝑎𝑎𝑖𝑖|𝑑𝑑) ∈ �𝑃𝑃�𝐷𝐷(𝑎𝑎𝑖𝑖|𝑑𝑑) ± 5%�, where 𝑃𝑃�𝐷𝐷(𝑎𝑎𝑖𝑖|𝑑𝑑) are the point 

estimates used in this chapter, could be employed, but ideally future research will 

formalize rigorous methodologies to determine uncertainty sets. 

 

Lastly, while Algorithm 3.1 was seen to outperform an alternative which is the 

only algorithm previously employed to a decently sized ARA problem, further 

alternatives should continue to be explored as computational ARA is a very young field.  

For example, the alternative classes of statistical selection techniques mentioned in 

Section 3.2 could be employed in the ARA context.  This will allow the algorithm used 

here to be compared to other sophisticated methodologies to gain a better understanding 

of its value in solving this young class of game theoretic models. 

Appendix 3.A. Closed Form Solutions for 𝝍𝝍𝑫𝑫(𝒅𝒅,𝒂𝒂) and 𝜳𝜳𝑨𝑨(𝒅𝒅,𝒂𝒂) 

It’s shown here that 𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) and 𝛹𝛹𝐴𝐴(𝑑𝑑, 𝑎𝑎) can be solved analytically using the 

distributions and utility functions specified in Section 3.4.1. 

𝜓𝜓𝐴𝐴(𝑑𝑑,𝑎𝑎) = ∫ 𝑈𝑈𝐴𝐴(𝑑𝑑,𝑎𝑎, 𝑠𝑠, 𝑟𝑟)𝑝𝑝(𝑠𝑠|𝑑𝑑,𝑎𝑎)𝑑𝑑𝑑𝑑𝑆𝑆       (3.10) 

 = ∫ ∫ …∫ ∫
∑ 𝑟𝑟𝑖𝑖�1−𝑒𝑒

−4.6�𝑠𝑠𝑖𝑖−𝐶𝐶𝐻𝐻,𝑖𝑖−.05��𝑛𝑛
𝑖𝑖=1

𝑛𝑛
∙ 10𝑛𝑛ℎ1+.1

ℎ1
ℎ2+.1
ℎ2

𝑑𝑑𝑠𝑠1 …𝑑𝑑𝑠𝑠𝑛𝑛
ℎ𝑛𝑛−1+.1
ℎ𝑛𝑛−1

ℎ𝑛𝑛+.1
ℎ𝑛𝑛

 

 (since 𝑆𝑆𝑖𝑖|𝑑𝑑, 𝑎𝑎~𝑈𝑈𝑈𝑈𝑈𝑈(ℎ𝑖𝑖 ,ℎ𝑖𝑖 + .1) for all 𝑖𝑖) 
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 = ∫ …∫ �∫
𝑟𝑟1�1−𝑒𝑒−4.6�𝑠𝑠1−𝐶𝐶𝐻𝐻,1−.05��

𝑛𝑛
∙ 10ℎ1+.1

ℎ1
𝑑𝑑𝑠𝑠1�

ℎ2+.1
ℎ2

∙ℎ𝑛𝑛+.1
ℎ𝑛𝑛

 

 
∑ 𝑟𝑟𝑖𝑖�1−𝑒𝑒

−4.6�𝑠𝑠𝑖𝑖−𝐶𝐶𝐻𝐻,𝑖𝑖−.05��𝑖𝑖≠1

𝑛𝑛
∙ 10𝑛𝑛−1𝑑𝑑𝑠𝑠2 …𝑑𝑑𝑠𝑠𝑛𝑛. 

 

Focusing just on the term inside the “[ ]:” 

           (3.11) 

∫
𝑟𝑟1�1−𝑒𝑒−4.6�𝑠𝑠1−𝐶𝐶𝐻𝐻,1−.05��

𝑛𝑛
∙ 10ℎ1+.1

ℎ1
𝑑𝑑𝑠𝑠1 = 𝑟𝑟1

𝑛𝑛
∙ �1 − 10 ∙ 𝑒𝑒4.6�𝐶𝐶𝐻𝐻,1+.05� �− 1

4.6
𝑒𝑒−4.6𝑠𝑠1�

ℎ1

ℎ1+.1
�  

= 𝑟𝑟1
𝑛𝑛
∙ �1 + 10

4.6
∙ 𝑒𝑒4.6�𝐶𝐶𝐻𝐻,1+.05� ∙ �𝑒𝑒−4.6(ℎ1+.1) − 𝑒𝑒−4.6ℎ1��  

= 𝑟𝑟1
𝑛𝑛
∙ �1 + 10

4.6
∙ 𝑒𝑒4.6�𝐶𝐶𝐻𝐻,1+.05� ∙ (𝑒𝑒−.46 − 1) ∙ 𝑒𝑒−4.6ℎ1�  

≔ 𝐼𝐼1𝐴𝐴. 

 

From here, it's easy to show that repeatedly integrating over the elements of 𝑆𝑆 

yields: 

 𝜓𝜓𝐴𝐴(𝑑𝑑, 𝑎𝑎) = ∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝐴𝐴.     (3.12) 

At the time 𝜓𝜓𝐴𝐴(𝑑𝑑,𝑎𝑎) must be evaluated, 𝑑𝑑 and 𝑎𝑎 are assumed known and hence ℎ𝑖𝑖 

is known for all 𝑖𝑖.  𝑟𝑟𝑖𝑖 is also assumed known at this point, and everything 𝐶𝐶𝐻𝐻,𝑖𝑖 is a given 

constant.  Hence, ∑ 𝐼𝐼𝑖𝑖𝐴𝐴𝑛𝑛
𝑖𝑖=1  can be calculated by direct computation.  The defender's utility 

function has an almost identical form as the attacker's, and it’s easy to show that 

𝜓𝜓𝐷𝐷(𝑑𝑑,𝑎𝑎) = ∑ 𝐼𝐼𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝐷𝐷, where: 

𝐼𝐼𝑖𝑖𝐷𝐷 ≔ −𝑣𝑣𝑖𝑖
𝑛𝑛
∙ �1 + 10

4.6
∙ 𝑒𝑒4.6�𝐶𝐶𝐻𝐻,1+.05� ∙ (𝑒𝑒−.46 − 1) ∙ 𝑒𝑒−4.6ℎ1�.  (3.13) 
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Appendix 3.B. Formulation of 𝒂𝒂∗(𝒅𝒅) = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒙𝒙𝒂𝒂𝝍𝝍𝑨𝑨(𝒅𝒅,𝒂𝒂) as a Quadratic Integer 

Program 

At node A of Figure 3.1.b, the attacker's problem is to solve: 
 max

𝑎𝑎
𝑧𝑧 = ∑ 𝐼𝐼𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝐴𝐴       (3.14) 

 𝑠𝑠. 𝑡𝑡.  

∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1  

𝑎𝑎 ∈ {0, .1, .2, … , .9, 1}.  

 
Simply plugging in the formula for ℎ𝑖𝑖 given in Section 3.4.1 into (3.11) yields: 

𝐼𝐼𝑖𝑖𝐴𝐴 = 𝑟𝑟𝑖𝑖
𝑛𝑛
∙ �1 + 10

4.6
∙ 𝑒𝑒4.6�𝐶𝐶𝐻𝐻,𝑖𝑖+.05� ∙ (𝑒𝑒−.46 − 1) ∙ 𝑒𝑒−4.6ℎ𝑖𝑖�    (3.15) 

 = 𝐴𝐴1,𝑖𝑖 + 𝐴𝐴2,𝑖𝑖 ∙ 𝑒𝑒−4.6ℎ𝑖𝑖, 

  where 𝐴𝐴1,𝑖𝑖 ≔
𝑟𝑟𝑖𝑖
𝑛𝑛

 and 𝐴𝐴2,𝑖𝑖 ≔ 𝐴𝐴1,𝑖𝑖 ∙
10
4.6
∙ 𝑒𝑒4.6�𝐶𝐶𝐻𝐻,𝑖𝑖+.05� ∙ (𝑒𝑒−.46 − 1). 

 = 𝐴𝐴1,𝑖𝑖 + 𝐴𝐴2,𝑖𝑖 ∙ 𝑒𝑒
−4.6∙− 2

4.6∙log�
𝑐𝑐𝐴𝐴
𝑖𝑖 𝑎𝑎𝑖𝑖+1

𝑐𝑐𝐷𝐷
𝑖𝑖 𝑑𝑑𝑖𝑖+1

�−4.6𝐶𝐶𝐻𝐻
𝑖𝑖

 

 = 𝐴𝐴1,𝑖𝑖 + 𝐴𝐴2,𝑖𝑖 ∙ 𝑒𝑒−4.6𝐶𝐶𝐻𝐻
𝑖𝑖
∙ �𝑒𝑒

log�
𝑐𝑐𝐴𝐴
𝑖𝑖 𝑎𝑎𝑖𝑖+1

𝑐𝑐𝐷𝐷
𝑖𝑖 𝑑𝑑𝑖𝑖+1

�
�

2

 

 = 𝐴𝐴1,𝑖𝑖 + 𝐴𝐴2,𝑖𝑖 ∙ 𝑒𝑒−4.6𝐶𝐶𝐻𝐻
𝑖𝑖
∙ �𝑐𝑐𝐷𝐷𝑖𝑖 𝑑𝑑𝑖𝑖 + 1�

−2
�𝑐𝑐𝐴𝐴𝑖𝑖 𝑎𝑎𝑖𝑖 + 1�

2
, 

 
which is quadratic in 𝑎𝑎𝑖𝑖. 

 

Therefore, model (3.14) is a quadratic program with a discrete feasible region.  

Making the transformation 𝑎𝑎𝑖𝑖 → 10𝑎𝑎𝑖𝑖 and adjusting the objective function accordingly 

gives a small quadratic integer program which can be solved using off-the-shelf solvers. 
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Appendix 3.C. Stopping Criterion for Each Trial of Algorithm 3.1 

In steps 15 and 18 of Algorithm 3.1, the following stopping criteria is used based 

on a weighted sum of percentage changes in strategies across iterations.  The weights 

applied to each strategy are the number of samples allocated in the most recent iteration, 

normalized to sum to 1:  𝑤𝑤𝑖𝑖 = 𝑁𝑁𝑖𝑖/∑ 𝑁𝑁𝑖𝑖𝑖𝑖  .  This places the vast majority of the weight 

only on those strategies reasonably thought to be the optimum.  Using these weights, a 

weighted average percentage change between the current and each of the last four 

iterations is calculated, where percentage changes are defined with respect to the 

difference between the best and the worst expected utility at the current iteration, 𝛿𝛿 ≔

𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖𝛼𝛼𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝛼𝛼𝑖𝑖, where as in Section 3.4.3, αi represents the sample expected utility for 

strategy 𝑖𝑖.  This choice was made because dividing by expected utility itself causes 

unduly high percentage changes when 𝛼𝛼𝑖𝑖 is near 0.  Adding a subscript for the iteration 

number and assuming the current iteration is 𝑡𝑡, the weighted percentage change between 

the current iteration and iteration 𝑡𝑡′ is:  𝑞𝑞𝑡𝑡,𝑡𝑡′ ≔ ∑ 𝑤𝑤𝑡𝑡,𝑖𝑖 ∙ �𝛼𝛼𝑡𝑡,𝑖𝑖 − 𝛼𝛼𝑡𝑡′,𝑖𝑖�/𝛿𝛿𝑡𝑡  𝑖𝑖 .  The stopping 

criteria is that 𝑞𝑞𝑡𝑡,𝑡𝑡′ ≤ .05 for 𝑡𝑡′ = 𝑡𝑡 − 1, 𝑡𝑡 − 2, 𝑡𝑡 − 3, and 𝑡𝑡 − 4, indicating no significant 

changes over the last four iterations. 

Appendix 3.D. Proof of Lemma 3.1 and Theorem 3.2 

3.D.1. Lemma 3.1 

Wilson (1927) gives 1 − 𝛼𝛼 one-sided confidence intervals for 𝑝𝑝𝑖𝑖 of: 

𝑝𝑝𝑖𝑖 ≥
𝑁𝑁−𝑓𝑓𝑖𝑖+

𝑧𝑧2

2
𝑁𝑁+𝑧𝑧2

− 𝑧𝑧
𝑁𝑁+𝑧𝑧2

�𝑓𝑓𝑖𝑖(𝑁𝑁−𝑓𝑓𝑖𝑖)
𝑁𝑁3

+ 𝑧𝑧2

4
, where 𝑧𝑧 ≔ 𝛷𝛷−1(1 − 𝛼𝛼). (3.16) 
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By definition if 𝑝𝑝𝑏𝑏 > .5, then 𝐸𝐸𝑏𝑏 is the most likely outcome, and therefore if 𝑝𝑝𝑏𝑏 >

.5 with 1 − 𝛼𝛼 confidence, then 𝐸𝐸𝑏𝑏 is the most likely outcome with at least 1 − 𝛼𝛼 

confidence.  The qualifier "at least" 1 − 𝛼𝛼 confident is used, and this is a sufficient but 

not necessary condition, since it could be that 𝑝𝑝𝑖𝑖 < .5 for all 𝑖𝑖. 

3.D.2. Theorem 3.2 

Part 1 of the theorem is proved by showing that:  (1a) 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0 − 1 < 𝑁𝑁(𝑓𝑓𝑏𝑏); and 

(1b) 𝑁𝑁(𝑓𝑓𝑏𝑏) ≤ 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0 + 1.  Using Wilson's confidence intervals, part 1a is equivalent to 

showing: 

𝑓𝑓𝑏𝑏+𝑛𝑛0−1+𝑧𝑧2/2
2𝑓𝑓𝑏𝑏+𝑛𝑛0−1+𝑧𝑧2

− 𝑧𝑧
2𝑓𝑓𝑏𝑏+𝑛𝑛0−1+𝑧𝑧2

�𝑓𝑓𝑏𝑏(𝑓𝑓𝑏𝑏+𝑛𝑛0−1)
(2𝑓𝑓𝑏𝑏+𝑛𝑛0−1)3 + 𝑧𝑧2

4
< .5 ↔   (3.17) 

𝑛𝑛0−1
2

− 𝑧𝑧�𝑓𝑓𝑏𝑏(𝑓𝑓𝑏𝑏+𝑛𝑛0−1)
(2𝑓𝑓𝑏𝑏+𝑛𝑛0−1)3 + 𝑧𝑧2

4
< 0 ↔  

𝑓𝑓𝑏𝑏(𝑓𝑓𝑏𝑏+𝑛𝑛0−1)
(2𝑓𝑓𝑏𝑏+𝑛𝑛0−1)3 > �𝑛𝑛0−1

2𝑧𝑧
�
2
− 𝑧𝑧2

4
.  

Define 𝑔𝑔𝑐𝑐(𝑥𝑥) = 𝑥𝑥(𝑥𝑥+𝑐𝑐)
(2𝑥𝑥+𝑐𝑐)3, which will be used again when proving parts 1b and 2 of 

the theorem.  If 𝑥𝑥, 𝑐𝑐 ≥ 0, then 𝑔𝑔(𝑥𝑥) ≥ 0, and since 𝑓𝑓𝑏𝑏 ,𝑛𝑛0 − 1 ≥ 0, if it’s shown that 0 >

�𝑛𝑛0−1
2𝑧𝑧

�
2
− 𝑧𝑧2

4
, then part 1a will have been proved.  Note that: 

�𝑛𝑛0−1
2𝑧𝑧

�
2
− 𝑧𝑧2

4
= 1

4
�𝑛𝑛0−𝑧𝑧

2−1
𝑧𝑧

� �𝑛𝑛0+𝑧𝑧
2−1
𝑧𝑧

�.    (3.18) 

Clearly, 𝑛𝑛0+𝑧𝑧
2−1
𝑧𝑧

> 0.  Further, 𝑛𝑛0 − 𝑧𝑧2 < 1 and therefore 𝑛𝑛0−𝑧𝑧
2−1
𝑧𝑧

< 0.  It follows that 

1
4
�𝑛𝑛0−𝑧𝑧

2−1
𝑧𝑧

� �𝑛𝑛0+𝑧𝑧
2−1
𝑧𝑧

� = �𝑛𝑛0−1
2𝑧𝑧

�
2
− 𝑧𝑧2

4
< 0, and therefore part 1a has been proved. 
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Similarly to part 1a, part 1b is true if 𝑔𝑔𝑛𝑛0+1(𝑓𝑓𝑏𝑏) ≤ �𝑛𝑛0+1
2𝑧𝑧

�
2
− 𝑧𝑧2

4
 for all 𝑓𝑓𝑏𝑏.  For 

any value of 𝑐𝑐 > 0, calculus shows that 𝑔𝑔𝑐𝑐(𝑥𝑥) attains its maximum value at 𝑥𝑥 =

𝑐𝑐
2
�√3 − 1�, and 𝑔𝑔𝑐𝑐 �

𝑐𝑐
2
�√3 − 1�� = √3

18𝑐𝑐
.  Therefore, to prove part 1b it's sufficient to 

show √3
18(𝑛𝑛0+1) ≤ �𝑛𝑛0+1

2𝑧𝑧
�
2
− 𝑧𝑧2

4
.  Observe: 

√3
18(𝑛𝑛0+1) ≤ �𝑛𝑛0+1

2𝑧𝑧
�
2
− 𝑧𝑧2

4
↔       

2√3
9
≤ (𝑛𝑛0 + 1) �𝑛𝑛0+1

𝑧𝑧
− 𝑧𝑧� �𝑛𝑛0+1

𝑧𝑧
+ 𝑧𝑧� ↔  

2√3
9
≤ (𝑛𝑛0 + 1) �𝑛𝑛0−𝑧𝑧

2+1
𝑧𝑧

� �𝑛𝑛0+𝑧𝑧
2+1
𝑧𝑧

� ↔  

2√3
9
≤ �𝑛𝑛0+1

𝑧𝑧
� (𝑛𝑛0 − 𝑧𝑧2 + 1) �𝑛𝑛0+𝑧𝑧

2+1
𝑧𝑧

�.    (3.19) 

Noting each term in the product on the righthand side of (3.19) is greater than 1 and that 

2√3
9

= .3849 < 1, it follows that (3.19) is true, and therefore 1b is true. 

 

Part 2 of the theorem is a natural extension of part 1.  It’s already known 𝑁𝑁(𝑓𝑓𝑏𝑏) >

2𝑓𝑓𝑏𝑏 + 𝑛𝑛0 − 1 by part 1a.  To show 𝑁𝑁(𝑓𝑓𝑏𝑏) = 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0, following the same reasoning as 

part 1b a sufficient condition is that √3
18𝑛𝑛0

≤ �𝑛𝑛0
2𝑧𝑧
�
2
− 𝑧𝑧2

4
.  The reason this is not a necessary 

condition is that the point where 𝑔𝑔𝑛𝑛0(𝑓𝑓𝑏𝑏) attains its maximum, 𝑓𝑓𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛0
2
�√3 − 1�, 

may not be an integer, and the number of failures by definition is an integer.  A necessary 

and sufficient condition for 𝑁𝑁(𝑓𝑓𝑏𝑏) = 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0 is that max�𝑔𝑔𝑛𝑛0(𝑓𝑓𝑏𝑏−),𝑔𝑔𝑛𝑛0(𝑓𝑓𝑏𝑏+)� ≤
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�𝑛𝑛0
2𝑧𝑧
�
2
− 𝑧𝑧2

4
, where 𝑓𝑓𝑏𝑏− ≔ � √3

18𝑛𝑛0
� and 𝑓𝑓𝑏𝑏+ ≔ � √3

18𝑛𝑛0
�; this is true because 𝑔𝑔𝑐𝑐(𝑥𝑥) is unimodal 

for 𝑥𝑥, 𝑐𝑐 ≥ 0. 

 

To prove part 3 it must show that:  (3a) 𝑃𝑃(𝑁𝑁(𝑓𝑓𝑏𝑏)|𝑝𝑝𝑏𝑏) = 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 − 1),𝑓𝑓𝑏𝑏|𝑝𝑝𝑏𝑏) ∙

𝑝𝑝𝑏𝑏2; and (3b) 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗), 𝑖𝑖|𝑝𝑝𝑏𝑏) = ∑ 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1),𝑘𝑘|𝑝𝑝𝑏𝑏)𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘=𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

∙ 𝑝𝑝𝑏𝑏2−𝑖𝑖+𝑘𝑘 ∙

(1 − 𝑝𝑝𝑏𝑏)𝑖𝑖−𝑘𝑘 ∙ � 2
𝑖𝑖 − 𝑘𝑘�.  To see that 3a is true, note 𝑁𝑁(𝑓𝑓𝑏𝑏) − 𝑁𝑁(𝑓𝑓𝑏𝑏 − 1) = 2𝑓𝑓𝑏𝑏 + 𝑛𝑛0 −

(2(𝑓𝑓𝑏𝑏 − 1) + 𝑛𝑛0) = 2, and therefore if 𝑓𝑓𝑏𝑏 failures have already been observed through 

the first 𝑁𝑁(𝑓𝑓𝑏𝑏 − 1) trials the next two must both be successes, and hence 𝑃𝑃(!𝑁𝑁(𝑓𝑓𝑏𝑏 −

1),𝑓𝑓𝑏𝑏|𝑝𝑝𝑏𝑏) is multiplied by 𝑝𝑝𝑏𝑏2.  If anything less than 𝑓𝑓𝑏𝑏 failures had been observed 

through the first 𝑁𝑁(𝑓𝑓𝑏𝑏 − 1) trials, then the algorithm would have terminated because, by 

assumption, only 𝑁𝑁(𝑓𝑓𝑏𝑏 − 1) trials are required to terminate the algorithm when 𝑓𝑓𝑏𝑏 − 1 

failures have been observed, and thus the equality in 3a holds.  To prove part 3b, first 

note that, given 𝑖𝑖 failures occurred through the first 𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗) trials, the minimum 

number of failures through 𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1) is the larger of 𝑖𝑖 − 2 and the least number of 

failures that prevents the algorithm from terminating after 𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1 trials, or 𝑓𝑓𝑏𝑏 − 𝑗𝑗.  

Hence, define 𝑘𝑘𝑚𝑚𝑚𝑚𝑛𝑛 = max{𝑓𝑓𝑏𝑏 − 𝑗𝑗, 𝑖𝑖 − 2}.  Also note the maximum failures through 

𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1) trials is the smaller of 𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1) = 2(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1) + 𝑛𝑛0 and the 

number of failures given to have occurred through 𝑓𝑓𝑏𝑏 − 𝑗𝑗 trials, or 𝑖𝑖, and hence 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≔

min{2(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1) + 𝑛𝑛0, 𝑖𝑖}.  Now 3b holds as a matter of definition, since there are 2 

trials between 𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗 − 1) + 1 and 𝑁𝑁(𝑓𝑓𝑏𝑏 − 𝑗𝑗), inclusive, the number of failures 
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occurring between these trials is 𝑖𝑖 − 𝑘𝑘, and there are � 2
𝑖𝑖 − 𝑘𝑘� ways for 𝑖𝑖 − 𝑘𝑘 failures to 

occur. 

Appendix 3.E. Robustness of Algorithm 3.1’s Results 

In Section 3.5 it was seen that for each value of 𝑛𝑛, a single run of the algorithm 

produced the true optimum in each case.  Also recall that when 𝑛𝑛 = 2 the algorithm 

terminated after 3 trials (and hence no trials produced a false optimum), when 𝑛𝑛 = 3, 7 

trials were required (and hence 2 failures occurred), when 𝑛𝑛 = 4, 5 trials were needed 

(hence, 1 failure), and when 𝑛𝑛 = 5 the algorithm required 3 trials (0 failures).  To gain 

further understanding as to the algorithm's ability to produce the true optimum and the 

required number of trials to terminate, it was reran several times for the case when 𝑛𝑛 = 4.  

Together with the results from Section 3.5 it was ran a total of 18 times for 𝑛𝑛 = 4 using 

the model parameters in Section 3.5, which amounted to 102 total trials.  In all 18 runs 

the true optimum was identified, but the number of trials required for termination could 

vary significantly.  The required number was concentrated towards the low end, with a 

mode of just 3 (the minimum possible) and an average of 5.7, but the maximum required 

was 13, which occurred only once.  Empirically, in over 102 trials the true optimum was 

selected 76.47% of the time.  Also of interest is the average time required for each trial; 

this was 52 minutes, and hence in Section 3.5.3 the algorithm was benchmarked against a 

greedy search that took approximately 5.7 ∙ 52/60 = 4.92 hours to terminate. 

 

To add further credence to the algorithm, it was reran 10 times for three 

alternative parameter sets when 𝑛𝑛 = 4, listed below.  The required number of trials and 
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time to termination are given in Table 3.2.  Table 3.2 also shows the true utility of the 

strategy selected, given as a percentage of the true optimum; the majority of the time the 

algorithm selects the true optimum, but when it doesn’t the true utility of the strategy 

selected is at a minimum 95.60% of the true optimum.  Lastly, using only the samples 

generated (i.e. not using knowledge of the true optimum) Table 3.2 lists the lower bounds 

on the probability of correctly selecting the optimal strategy (APCS).  As noted in 

Section 3.5.2, APCS can be a poor metric when multiple strategies provide nearly 

equivalent utilities.  To provide decision makers with a sensible measurement that 

assumes ambivalence between strategies that are virtually equivalent, the following 

modified version of equation (3.6) is defined: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) ≔ 1 − ∑ 𝛷𝛷�𝑢𝑢�𝐷𝐷(𝑑𝑑𝑖𝑖)−𝑢𝑢�𝐷𝐷(𝑑𝑑𝑖𝑖)

�𝑠𝑠𝑠𝑠𝑏𝑏
2+𝑠𝑠𝑠𝑠𝑖𝑖

2
�𝑖𝑖∈𝐼𝐼 ,    (3.20) 

where 𝑠𝑠𝑒𝑒𝑖𝑖 is the standard error of strategy 𝑖𝑖, 𝐼𝐼 ≔ �𝑖𝑖 | 𝑢𝑢�𝐷𝐷(𝑑𝑑𝑖𝑖)−𝑢𝑢�𝐷𝐷(𝑑𝑑𝑤𝑤)
𝑢𝑢�𝐷𝐷(𝑑𝑑𝑏𝑏)−𝑢𝑢�𝐷𝐷(𝑑𝑑𝑤𝑤) < 𝑥𝑥�, 𝑑𝑑𝑤𝑤 is the 

strategy with the lowest sample expected utility, and as before 𝑑𝑑𝑏𝑏 is that with the highest 

sample expected utility.  Equation (3.20) effectively considers any strategy that's within 

100 ∙ 𝑥𝑥 percent of the highest sample expected utility to be an acceptable strategy choice.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) was computed for 𝑥𝑥 ∈ {99%, 98%, 97%, 96%, 95%} and the results are 

reported in Table 3.2. 

Original parameters 

𝐶𝐶𝐻𝐻 = [. 4, .35, .4, .4], 𝑐𝑐𝐴𝐴 = [−.4984,−.4984,−.5529,−.6015], 

𝑐𝑐𝐷𝐷 = [−.4984,−.4373,−.4373,−.5529], 𝑣𝑣 = [1.3, .8, 1.25, .7], and 

𝑅𝑅 = [𝑅𝑅1,𝑅𝑅2,𝑅𝑅3,𝑅𝑅4], where 𝑅𝑅1~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 8, 1, 1.5), 
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𝑅𝑅2~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 5, .8, 2.5), 𝑅𝑅3~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(1, 1.5, 3.5), and 

𝑅𝑅4~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 3, .7, 1.1). 

 

Parameter set 2:  mirroring scenario.  In this scenario, the modes in the triangle 

distributions for 𝑅𝑅 equal 𝑣𝑣, and the upper and lower bounds are ±.3 from the 

modes. 

𝐶𝐶𝐻𝐻 = [. 4, .35, .4, .4], 𝑐𝑐𝐴𝐴 = [−.4984,−.4984,−.5529,−.6015], 

𝑐𝑐𝐷𝐷 = [−.4982,−.4373,−.4373,−.5529], 𝑣𝑣 = [1.3, .8, 1.25, .7], and 

𝑅𝑅 = [𝑅𝑅1,𝑅𝑅2,𝑅𝑅3,𝑅𝑅4], where 𝑅𝑅1~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(1, 1.3, 1.6),  

𝑅𝑅2~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 5, .8, 1.1), 𝑅𝑅3~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 95, 1.25, 1.55), and 

𝑅𝑅4~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 4, .7, 1). 

 

Parameter set 3:  low incentive scenario.  The status quo (𝐶𝐶𝐻𝐻) is relatively good 

for the decision maker at all but her least desirable battlefield (battlefield 4). 

𝐶𝐶𝐻𝐻 = [. 33, .33, .33, .4], 𝑐𝑐𝐴𝐴 = [−.5730,−.5210,−.6194,−.6015], 

𝑐𝑐𝐷𝐷 = [−.4108,−.4108,−.3390,−.5529], 𝑣𝑣 = [1.3, .8, 1.25, .7], and 

𝑅𝑅 = [𝑅𝑅1,𝑅𝑅2,𝑅𝑅3,𝑅𝑅4], where 𝑅𝑅1~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 8, 1, 1.5),  

𝑅𝑅2~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 5, .8, 2.5), 𝑅𝑅3~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(1, 1.5, 3.5), and 

𝑅𝑅4~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 3, .7, 1.1). 
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Parameter set 4:  randomized scenario.  These parameters bear no relation to the 

original parameter set. 

𝐶𝐶𝐻𝐻 = [. 39, .35, .37, .34], 𝑐𝑐𝐴𝐴 = [−.5827,−.5210,−.5529,−.5730], 

𝑐𝑐𝐷𝐷 = [−.5631,−.3540,−.4242,−.4982], 𝑣𝑣 = [2.3, 1.7, 3.4, 2.1], and 

𝑅𝑅 = [𝑅𝑅1,𝑅𝑅2,𝑅𝑅3,𝑅𝑅4], where 𝑅𝑅1~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2.8, 3, 3.1),  

𝑅𝑅2~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2.5, 3.4, 3.5), 𝑅𝑅3~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(. 8, 1.1, 1.9), and 

𝑅𝑅4~𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2.9, 3.2, 3.5). 
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Table 3.2.  Required trials, times, and lower bounds on PCS. 
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To benchmark results against the greedy search algorithm of Section 3.5.3, 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) was calculated for the 5 values of 𝑥𝑥 in Table 3.2 when the original parameters 

were used.  These evaluated to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(99%) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(98%) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(97%) =

−82.00%, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(96%) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(95%) = −19.76%.  Recall that APCS proper for 

the greedy algorithm was -82.00%.  In order to generate a bound greater than 95%, 𝑥𝑥 

must be set to 81% or lower, effectively taking the (unreasonable) position of being 

ambivalent between utilities that are within 81% of the true optimum. 
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4 ANALYZING THE SOUTH CHINA SEA FISHING DISPUTE AS A 

 
COMPLEX GAME:  EFFICIENT SAMPLE ALLOCATION VIA A 

 
RESPONSE SURFACE METHODOLOGY 

 
 
 

Note.  This chapter has been submitted for publication as a stand-alone article in Computational 

Economics. 

 

China, Vietnam, Malaysia, Brunei, the Philippines, and Taiwan all have 

overlapping territorial claims in the South China Sea (SCS).  Among the issues making 

the SCS a valuable natural resource is fish, where confrontations between the nations’ 

coast guards and fishermen have become routine.  This chapter studies this dispute in the 

game-theoretic context by formulating a model for allocating coast guard patrol craft 

across multiple fisheries as a way to impose costs on rival fishermen.  The game is 

complex because the SCS has many distinct fisheries, the biomasses of which behave as 

nonlinear processes (and generally, more-than-quadratic).  The most complicating factor 

in the model, however, is uncertainty in how the players behave.  As critics of game 

theory have noted, humans aren’t necessarily so “rational” that the standard game-

theoretic solution concepts have meaning in the real world.  More generally, if the 

underlying model is off slightly, the results could in theory differ greatly from real world 

outcomes.  To address each of these issues a novel evaluation criterion for games is 

introduced.  It’s akin to robust analysis and, not surprisingly, makes an already 
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computationally intensive game much more difficult.  Thus, a response surface 

methodology is used to analyze the game in a feasible amount of time. 
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4.1. Introduction 

The South China Sea (SCS) is one of the most profitable bodies of water for 

commercial fishing and has become the source of territorial disputes between its 

bordering countries.  Traditional United Nations defined exclusive economic zones 

(EEZs), which extend 200 nautical miles beyond a state’s coastline, are problematic in a 

congested maritime environment such as the SCS where China, Vietnam, Malaysia, 

Brunei, the Philippines, and Taiwan have all made territorial claims which overlap with 

those of at least one other state.  This situation has led to more than mere diplomatic 

jostling; real, physical clashes have occurred between fishermen and the coast guards and 

navies of rival nations, and in the most extreme cases have led to the loss of life.  The 

economic implications are also enormous as encroachments by one nation’s fishermen 

into waters claimed by another are a daily occurrence.  The parties in question have taken 

actions to improve their standing in the dispute.  On the one hand, some countries have 

equipped their fishermen with martial assets as a form of “maritime militia” to mitigate 

the deterrent effect of rival maritime patrols.  On the other, all nations other than China 

appear to be willing to cooperate to resolve the dispute via the multilateral fisheries 

management organization the Southeast Asian Fisheries Development Center 

(SEAFDEC).  The U.S. has also taken an interest in the dispute on account of its rivalry 

with China and the broader implications for control of the SCS. 

 

Given the SCS is vast and composed of multiple fisheries, it’s natural to model 

this dispute as a many-variate game of strategic resource allocation.  Each fishery can be 
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modeled using a bionomic model and the additional costs imposed by maritime patrols 

can be informed by recent empirical research on the subject.  There are multiple 

modeling challenges, however.  First, even the simplest bionomic models won’t lead to 

analytic solutions when multiple fisheries are in dispute, so sampling methods will be 

required.  Second, decently sized problems become computationally intensive and thus 

efficiency of sampling will be paramount.  While not commonly used in the game theory 

literature, this first pair of problems can actually be addressed straightforwardly using 

well-established techniques in response surface methodologies (RSM).  A third problem 

is a bit more nuanced and requires ingenuity. 

 

Traditionally, a game-theoretic model would predict the players’ behavior using a 

Nash equilibrium, or near-Nash equilibrium, but this can hide key risks when deviations 

from such model-prescribed behavior leads to large deviations in realized utilities.  

Deviations in behavior could result for several reasons: 

1. Foremost, the underlying model is almost surely not a perfect representation of 

the player’s utility functions, and deviations should thus be expected.  

2. Even if the model were perfect, if the players being modeled don’t possess the 

tools to find true optimal responses they’ll rather “satisfice” by finding a good 

solution that might be suboptimal.  This creates a host of possible strategies where 

the players might achieve stability, rather than a single true (near) Nash 

equilibrium. 
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This chapter introduces a novel metric to assess the risks stemming from such 

uncertainty in behavior, referred to as “behavioral uncertainty” for the remainder of the 

chapter.  For a variable upper-bound on the proximity to a Nash equilibrium, maximum 

and minimum attainable utilities will be found, thus capturing the range of possible 

outcomes for a given tolerance for how far players deviate from model-directed behavior.  

This added layer of complexity heightens the need for efficient sample selection, and the 

sampling algorithm developed shows superior performance against two simple 

benchmarks. 

 

The remainder of the chapter is organized as follows.  Section 4.2 reviews the 

literature on the SCS dispute, fishery games, concepts related to behavioral uncertainty, 

and response surface methodologies in general.  Section 4.3 presents the general model 

for the optimal response of a player, which is assumed to be arbitrarily complex and 

solvable only via a derivative-free, computationally expensive optimizer.  Section 4.4 

presents the sampling algorithm to analyze the game with motivating examples for the 

need to assess risks stemming from uncertainty in players behavior.  Section 4.5 provides 

examples to show the algorithm’s performance, and Section 4.6 concludes and comments 

on future research. 

4.2. Literature Review 

The South China Sea accounts for approximately one-tenth of all fish caught 

globally, making it one of the most economically important natural resources on the 

planet (“South China Sea Threatened by ‘a Series of Catastrophes’” 2019).  More 
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broadly, the SCS is economically and politically important due to its strategic 

implications for shipping, energy resources, and its potential military importance during 

war (Buszynski 2012; Yoshihara 2012).  Even under a more mild set of conditions, 

geography alone would likely lead to disputed claims of ownership as traditionally 

defined EEZs overlap.  In fact, each China, Vietnam, Malaysia, Brunei, the Philippines, 

and Taiwan have made claims that overlap with those of at least one other nation (Stearns 

2012).  The competitive environment in the SCS has contributed to the rapid growth in 

China’s coast guard to the point where it’s larger than that of its neighbors combined 

(Erickson 2018), and to the expansion of state-sponsored maritime militias, which are 

commercial fishermen armed with small-arms and water cannons intended to offset the 

deterrent effects of patrols (Erickson and Kennedy 2016; Zhang and Bateman 2017).  

Instances of fishermen clashing with coast guard patrols at sea are common; often, rival 

coast guards will confront one another in response to a distress signal sent by a fisherman 

(China Power Team 2020).  While this is a multilateral dispute, it’s often thought of 

through a China-versus-the-rest lens.  This isn’t entirely inappropriate, especially when 

viewed in terms of the implications for fisheries management and the emergence of 

SEAFDEC, an intergovernmental fisheries management organization including the major 

SCS nations other than China.  This chapter will take this view and present a two-player 

game; note, however, the sampling methodology developed is not contingent on the game 

having only two players. 
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From a modeling perceptive, bionomic models of fisheries represent a well-

established field and these models have been applied to relatively simple games to draw 

general insights.  Introductory texts on bionomic fisheries models and game theory in 

fisheries management are Clark (2006) and Grønbæk et al. (2020), respectively.  

Grønbæk et al. (2020) covers noncooperative and cooperative games, two- and many-

layer games, asymmetries, and discounted payoffs.  Advanced complicating factors such 

as multiple interacting species (Fischer and Mirman 1996), coalition formation in many-

player games (Long and Flaaten 2011), and uncertainty in stock levels and growth rates 

(Miller and Nkuiya 2016) have also been analyzed using games.  The most general 

conclusion drawn is that, as in other games modeling common-pool resources, fish 

become overexploited in a competitive environment. 

 

Optimal maritime patrol allocation has also been analyzed using game theory, 

though not through the lens of territorial disputes.  Rather, these models have taken 

fishing rights as given and determined how to allocate a single state’s patrols to combat 

illegal fishing (Fang, Stone, and Tambe 2015; M. Brown, Haskell, and Tambe 2014).  A 

related strand of research has conducted empirical analysis on the extent to which patrols 

(and other factors) can deter illegal fishermen (Petrossian 2015).  Crucially, empirical 

analysis has deliberately left out data on the SCS because it’s not clear the same 

relationships will govern undisputed and disputed EEZs.  Consider, for instance, the 

ability of maritime militias and interacting patrols to offset the effects of a single state’s 

patrols.  The true nature of the effect of patrols in the SCS is therefore an open question; 
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this chapter presents a simple model that in theory could be estimated with data, but that 

empirical research is left for follow-on research. 

 

What was defined as behavioral uncertainty in Section 4.1 has been studied in a 

variety of ways.  For instance, quantal response models assume players are more likely to 

play strategies with higher utilities, though they aren’t required to play the true optimal 

strategy with probability one (McKelvey and Palfrey 1995; Nguyen et al. 2013).  In 

recent years adversarial risk analysis (ARA) has emerged as a method incorporating 

uncertainty in the model parameters to derive probabilistic distributions of players’ 

behaviors; this derivation generally occurs by drawing Monte Carlo samples for the 

model parameters and then fitting an empirical distribution to realized behavior (Rios 

Insua, Rios, and Banks 2009; Banks, Rios, and Rios Insua 2016).  The approach used in 

this chapter to address behavioral uncertainty is both distribution- and parametric-free, 

making it akin to robust analysis.  Robust games, generally defined as assessing the 

worst-case scenario for an adversary’s behavior, have been addressed from a theoretical 

perspective in Aghassi and Bertsimas (2006), Kardes (2005), and Crespi, Radi, and 

Rocca (2020).  Robustness has been applied to realistic, though small, games in Brown, 

Haskell, and Tambe (2014) and McLay, Rothschild, and Guikema (2012). 

 

All the methodologies mentioned above to account for behavioral uncertainty 

either impose restrictive parametric forms on the game, do not scale well to large 

problems, or both, and hence the focus of this chapter on developing a response surface 
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methodology to analyze large, complex games.  RSM approximates a function that’s time 

consuming to compute, such as a player’s optimal response, using an instantaneously 

computable function which is calibrated to a small sample of realizations of the original 

function.  RSM has long been popular for approximating difficult optimizations and a 

taxonomy of methods was presented by Jones (2001).  This taxonomy decomposes RSM 

into interpolating and non-interpolating methods, and one-stage and two-stage methods 

where the latter generates subsequent sample points following an initial sampling of the 

decision space.  Polynomial regressions and other parametric models have traditionally 

been used as response surfaces but black-box models such as boosted regression trees and 

artificial neural networks can be incorporated as well (Hastie, Tibshirani, and Friedman 

2009).  Two-stage methods involve optimizing the response surface to pick subsequent 

sample points; this is feasible when using the aforementioned black-box models given 

cutting-edge global optimizers and increased computing power (Xu et al. 2015). 

4.3. The Fishing Dispute Game with Multiple Fisheries 

Two players, Blue and Red, are competing over 𝑘𝑘 fisheries and must allocate a 

fixed amount of maritime patrols to each.  This is akin to the SCS where the largest state, 

China, is largely in competition with a coalition of the others.  Section 4.3.1 introduces 

the fisheries model governing rent extracted from a fishery, and Section 4.3.2 states the 

optimal response problem of one player given the maritime patrol allocation of the other. 

4.3.1. A Fisheries Model with Costs Imposed by Patrols 

The biomass, 𝑥𝑥𝑖𝑖, of each fishery 𝑖𝑖 = 1: 𝑘𝑘 is modeled by the following model of 

growth and decay: 
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   𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑖𝑖𝑥𝑥𝑖𝑖 �1 − 𝑥𝑥𝑖𝑖
𝑍𝑍𝑖𝑖
�
𝛼𝛼𝑖𝑖
− 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖

𝛾𝛾𝑖𝑖𝐹𝐹𝑖𝑖.   (4.1) 

𝑟𝑟𝑖𝑖 is the natural growth rate of fish, 𝑍𝑍𝑖𝑖 is the fishery’s maximum carrying capacity, 𝐹𝐹𝑖𝑖 is 

the total amount of fishing in fishery 𝑖𝑖, and 𝑞𝑞𝑖𝑖 is the “catchability coefficient.”  When 

𝛼𝛼𝑖𝑖 = 𝛾𝛾𝑖𝑖 = 1, this is the common Gordon-Schaeffer model for fisheries.  𝛼𝛼𝑖𝑖 ≠ 1 allows 

the dependency between the natural growth rate and biomass to be nonlinear, and 𝛾𝛾𝑖𝑖 ≠ 1 

allows one to model “patchy” populations.  Populations that are more patchy (𝛾𝛾𝑖𝑖 < 1) 

remain relatively easy to catch when population declines because the remaining stocks 

stick together, while non-patchy populations become harder to catch as population 

declines because a smaller population is spread over the same geographic space.  The 

long-term biomass, given 𝐹𝐹𝑖𝑖, is found by setting (4.1) equal to 0, which can be 

computationally solved virtually instantaneously.  This long-term biomass will be 

denoted 𝑥𝑥�𝑖𝑖. 

 

Due to overlapping claims in the SCS, each player independently determines how 

many fishing quotas to issue for each fishery.  These choices will be made with the aim 

of maximizing the sum of resource rents from each fishery, which for Blue is defined as: 

   𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) = ∑ 𝜋𝜋𝐵𝐵,𝑖𝑖𝑖𝑖=1:𝑘𝑘      (4.2) 

   𝜋𝜋𝐵𝐵,𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖𝑥𝑥�𝑖𝑖
𝛾𝛾𝑖𝑖 − 𝜓𝜓𝐵𝐵,𝑖𝑖�𝐹𝐹𝐵𝐵,𝑖𝑖,    (4.3) 

where 𝑃𝑃𝐵𝐵 = �𝑃𝑃𝐵𝐵,1,𝑃𝑃𝐵𝐵,2, … ,𝑃𝑃𝐵𝐵,𝑘𝑘� and 𝑃𝑃𝑅𝑅 = �𝑃𝑃𝑅𝑅,1,𝑃𝑃𝑅𝑅,2, … ,𝑃𝑃𝑅𝑅,𝑘𝑘� hold Blue and Red’s patrol 

allocations for each fishery, 𝐹𝐹𝐵𝐵,𝑖𝑖 is the amount of quotas Blue allocated to fishery 𝑖𝑖, 𝑝𝑝𝑖𝑖 is 
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the price fetched for one metric ton of fish from fishery 𝑖𝑖, and 𝜓𝜓𝐵𝐵,𝑖𝑖 is the total cost of 

fishing for a Blue fishermen in fishery 𝑖𝑖. 

 

𝜓𝜓𝐵𝐵,𝑖𝑖 of course accounts for standard operating and opportunity costs, but because 

the fisheries are in dispute costs imposed by patrols are also influential.  The following 

linear model is used for costs: 

 𝜓𝜓𝐵𝐵,𝑖𝑖 = 𝑐𝑐𝐵𝐵 + max�0, 𝛽𝛽𝐵𝐵𝐵𝐵𝑃𝑃𝑅𝑅,𝑖𝑖 − 𝛽𝛽𝐵𝐵𝐵𝐵𝑃𝑃𝐵𝐵,𝑖𝑖�.   (4.4) 

The term 𝛽𝛽𝐵𝐵𝐵𝐵 quantifies the effect Red patrols impose on Blue fishermen, and 𝛽𝛽𝐵𝐵𝐵𝐵 

quantifies the ability of Blue patrols to offset that effect.  The net effect of patrols on 

costs obviously cannot be negative, so the max{∙} function is used to keep costs at or 

above Blue’s level of operating and opportunity costs, 𝑐𝑐𝐵𝐵.  For simplicity it’s been 

assumed a patrol allocated to fishery 𝑖𝑖 does not have the range to influence other 

fisheries.  While in practice this may not be accurate, this assumption doesn’t affect the 

methodological approach of Section 4.4.  Equations (4.2), (4.3), and (4.4) can 

analogously be defined for Red. 

 

Once the patrol allocations for each player are given, it’s possible to derive Nash 

equilibrium fishing levels in each fishery if 𝛼𝛼𝑖𝑖 = 𝛾𝛾𝑖𝑖 = 1.  In the general case, equilibrium 

levels can be modeled as a function of (𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) using a truncated polynomial model.  To 

see this, consider the following: 
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Result 4.1. Equilibrium fishing levels, given patrols. 
1. Define 𝐹𝐹𝐵𝐵,𝑖𝑖

∗ �𝐹𝐹𝑅𝑅,𝑖𝑖,𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖� and 𝐹𝐹𝑅𝑅,𝑖𝑖
∗ �𝐹𝐹𝐵𝐵,𝑖𝑖,𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖� as the optimal fishing levels 

for Blue and Red, respectively, given the other’s fishing levels and each’s 

patrol allocation.  Define 𝑥𝑥𝑖𝑖�𝐹𝐹𝐵𝐵,𝑖𝑖,𝐹𝐹𝑅𝑅,𝑖𝑖� as the biomass given fishing levels 𝐹𝐹𝐵𝐵,𝑖𝑖 

and 𝐹𝐹𝑅𝑅,𝑖𝑖. 

2. 𝐹𝐹𝐵𝐵,𝑖𝑖
∗ �𝐹𝐹𝑅𝑅,𝑖𝑖,𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖� = 0 iff 𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖 �0,𝐹𝐹𝑅𝑅,𝑖𝑖

∗ �0,𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖��
𝛾𝛾𝑖𝑖
− 𝜓𝜓𝐵𝐵,𝑖𝑖 ≤ 0.  

Otherwise, 𝐹𝐹𝐵𝐵,𝑖𝑖
∗ �𝐹𝐹𝑅𝑅,𝑖𝑖,𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖� can be modeled using a non-computationally 

expensive design of experiment (DOE) over �𝐹𝐹𝑅𝑅,𝑖𝑖,𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖�; a polynomial 

regression is seen to fit sampled data with accuracy 𝑅𝑅2 ≈ .99.  The same 

holds for modeling 𝐹𝐹𝑅𝑅,𝑖𝑖
∗ �𝐹𝐹𝐵𝐵,𝑖𝑖,𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖�. 

3. Given the near perfect models for optimal response fishing levels in point 2, a 

non-computationally expensive DOE can be performed over (𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) to find 

equilibrium fishing levels as a function of patrols.  For each sample, first 

check if 𝐹𝐹𝐵𝐵,𝑖𝑖 or 𝐹𝐹𝑅𝑅,𝑖𝑖 are provably 0.  If neither are, standard nonlinear methods 

can find an equilibrium in less than one second, using the polynomial models 

for optimal responses.  Fitting a further polynomial for equilibrium fishing 

levels as a function of patrols has accuracy 𝑅𝑅2 ≈ .99. 

 

The sampling methods described in Result 4.1 don’t add a material amount of 

time to the broader problem of optimally allocating patrol vessels across many fisheries, 

as described in Section 4.4.  Denote the equilibrium fishing levels modeled via Result 4.1 

as 𝐹𝐹�𝐵𝐵,𝑖𝑖 and 𝐹𝐹�𝑅𝑅,𝑖𝑖.  Recalling that 𝑥𝑥�𝑖𝑖 is a function of 𝐹𝐹𝑖𝑖 = 𝐹𝐹𝐵𝐵,𝑖𝑖 + 𝐹𝐹𝑅𝑅,𝑖𝑖, and 𝐹𝐹�𝐵𝐵,𝑖𝑖 a function of 
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𝑃𝑃𝐵𝐵,𝑖𝑖 and 𝑃𝑃𝑅𝑅,𝑖𝑖, Blue’s rent (and analogously, Red’s) can be written strictly in terms of 

patrols: 

 𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) = ∑ �𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖
𝛾𝛾𝑖𝑖𝑥𝑥�𝑖𝑖 − 𝑐𝑐𝐵𝐵 − max�0, 𝛽𝛽𝐵𝐵𝐵𝐵𝑃𝑃𝑅𝑅,𝑖𝑖 − 𝛽𝛽𝐵𝐵𝐵𝐵𝑃𝑃𝐵𝐵,𝑖𝑖��𝐹𝐹�𝐵𝐵,𝑖𝑖𝑖𝑖 . (4.5) 

 

4.3.2. Optimal Response Function for patrols 

The optimal response functions for Blue and Red are the following: 
 𝑃𝑃𝐵𝐵∗(𝑃𝑃𝑅𝑅) ≔ argmax

𝑃𝑃𝐵𝐵
𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅)  𝑠𝑠. 𝑡𝑡.∑ 𝑃𝑃𝐵𝐵,𝑖𝑖 = 𝑃𝑃𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖=1:𝑘𝑘    (4.6) 

 𝑃𝑃𝑅𝑅∗(𝑃𝑃𝐵𝐵) ≔ argmax
𝑃𝑃𝑅𝑅

𝜋𝜋𝑅𝑅(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅)  𝑠𝑠. 𝑡𝑡.∑ 𝑃𝑃𝑅𝑅,𝑖𝑖 = 𝑃𝑃𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖=1:𝑘𝑘 ,   (4.7) 

where 𝑃𝑃𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑃𝑃𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 are the total number of patrols at Blue and Red’s disposal.  These 

functions are costly optimization problems, where the costs stem from needing to 

compute 𝑥𝑥� computationally, the need to model equilibrium fishing levels via a high-

degree polynomial, and the potentially high value of 𝑘𝑘.  Specifically, when 𝑘𝑘 = 10 these 

optimizations require an average of over three minutes to solve on a standard laptop, and 

when 𝑘𝑘 = 60 can take over 90 minutes.  Whether the purpose of analysis is to seek a pure 

Nash equilibrium or some measure of proximity to equilibrium, because no analytical 

solution to (4.6) and (4.7) exists these functions will need to be computed for several 

values of (𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅).  An efficient sampling technique is paramount and is the subject of the 

next section. 

4.4. Response Surface Methodology for Analyzing the Fishing Dispute Game 

4.4.1. Measuring Proximity to the Model-Defined Equilibrium 

Consider the following metric for the proximity of player strategies to a true Nash 

equilibrium: 
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 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) ≔ ��𝜋𝜋𝐵𝐵�𝑃𝑃𝐵𝐵
∗ (𝑃𝑃𝑅𝑅),𝑃𝑃𝑅𝑅�−𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅)�

2
+�𝜋𝜋𝑅𝑅�𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅

∗(𝑃𝑃𝐵𝐵)�−𝜋𝜋𝑅𝑅(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅)�
2

2
. (4.8) 

This metric simply measures the root mean squared deviation of the players’ realized 

utilities from the optimal attainable utilities from a unilateral move.  Clearly, at a Nash 

equilibrium 𝑒𝑒 = 0. 

 

Recall the points made in Section 4.1 for why seeking a pure Nash equilibrium, or 

a single near-Nash equilibrium if one does not exist, does not suffice.  First, the 

underlying model is at best an approximation of actual player behaviors.  A Nash 

equilibrium might be a sensible forecast of behavior, but any number of strategies may 

also be reasonable.  Second, players may satisfice rather than finding true optimal 

responses.  In each of these two cases, it seems sensible that pairs of strategies where 

𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) is small are more likely.  For this reason the following pair of optimizations is 

defined which will quantify how variable realized Blue rents are as a function of how 

large 𝑒𝑒 is allowed to be: 

 max
𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅

𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅)  𝑠𝑠. 𝑡𝑡. 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) ≤ 𝑑𝑑    (4.9) 

 min
𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅

𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅)  𝑠𝑠. 𝑡𝑡. 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) ≤ 𝑑𝑑.    (4.10) 

 

(4.9) and (4.10) give the largest and smallest possible Blue rents, respectively, 

such that 𝑒𝑒 remains less than some pre-specified level.  Solving these optimizations for 

various values of 𝑑𝑑 will capture how the risks stemming from behavioral uncertainty 

change as behavior is allowed to deviate further from model-specified optima.  As 
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motivating examples, consider Figures 4.1.a and 4.1.b, which were produced using the 

RSM described in Section 4.4.2.  Figure 4.1.a plots the solutions to (4.9) and (4.10) for 

increasing values of 𝑑𝑑 using an example where 𝑘𝑘 = 3 (line 16 in Table 4.1).  In this case, 

a pure Nash equilibrium exists as seen by the convergence of the upper- and lower-

bounds at 𝑑𝑑 = 0.  However, modest values of 𝑑𝑑 cause the bounds to diverge significantly.  

When 𝑑𝑑 = $2 million (only 2.11% of the rent Blue realizes at the Nash equilibrium), the 

upper-bound on 𝜋𝜋𝐵𝐵 is 16.11% higher than the lower-bound.  Figure 4.1.b illustrates an 

example where no Nash equilibrium exists (line 1 in Table 4.1).  Here, the smallest value 

of 𝑑𝑑 for which the RSM found two valid pairs of strategies is $3.25 million, which is 

quite small relative to the lower-bound on Blue rent at this value of 𝑑𝑑, $319 million.  

Nevertheless, the range of possible rents is quite large:  the upper-bound is 28.67% higher 

than the lower-bound. 

 
 
 

 
 Fig. 4.1.a. Existence of a true Nash  Fig. 4.1.b. No Nash equilibrium exists 
 equilibrium 

Figure 4.1. Bounds on 𝝅𝝅𝑩𝑩 for increasing values of 𝒅𝒅 in (4.9) and (4.10). 
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4.4.2. Response Surface Methodology for Optimizations (4.9) and (4.10) 

Given the lack of an analytical solution to (4.9) and (4.10) and the computation 

times noted in Section 4.4.1, a brute force search across the strategy space is infeasible 

for decently sized problems (e.g. 𝑘𝑘 = 10).  This is true even if one only wants to solve 

(4.9) and (4.10) for a single value of 𝑑𝑑, much less a continuum of values as in Figure 4.1.  

In light of this burden, a sampling method is required to analyze (4.9) and (4.10) for 

multiple values of 𝑑𝑑.  The essence of any such method can be encapsulated in Algorithm 

4.0: 

Algorithm 4.0 
1. Draw samples of (𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅).  For each sample: 

a. Compute 𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) and 𝜋𝜋𝑅𝑅(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅). 

b. Compute 𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵∗(𝑃𝑃𝑅𝑅),𝑃𝑃𝑅𝑅) by solving (4.6).  Similarly compute 

𝜋𝜋𝑅𝑅�𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅∗(𝑃𝑃𝐵𝐵)� via (4.7). 

c. Compute 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) using the results of steps 1.a and 1.b. 

2. Having drawn these samples, simply observe the maximum and minimum 

values of 𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) such that 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) < 𝑑𝑑, for varying values of 𝑑𝑑. 

 

The algorithm used in this chapter takes an iterative approach to step 1.  An initial 

set of samples is drawn, a response surface is then fit to the initial sampling, and 

subsequent samples are drawn that are likely to be the most informative based on 

information obtained via the response surface.  This is captured formally in Algorithm 

4.1: 
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Algorithm 4.1 
1. Generate initial samples as follows: 

a. Generate 𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 samples of (𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) using a modified Latin hypercube 

sample.  Specifically, generate points by allowing 𝑃𝑃𝐵𝐵,𝑖𝑖,𝑃𝑃𝑅𝑅,𝑖𝑖 ∈ [0,1] for 

all fisheries 𝑖𝑖, and then scale each sample so ∑ 𝑃𝑃𝐵𝐵,𝑖𝑖 = 𝑃𝑃𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖  and 

∑ 𝑃𝑃𝑅𝑅,𝑖𝑖 = 𝑃𝑃𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 . 

b. Generate 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢 samples of (𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) based on unilateral responses 

computed via a fast heuristic.  Specifically, define 𝑃𝑃𝐵𝐵′ (𝑃𝑃𝑅𝑅) and 𝑃𝑃𝑅𝑅′ (𝑃𝑃𝐵𝐵) 

as easily computable functions that give good responses for Blue to 

Red, and Red to Blue, respectively, though not necessarily optimal 

responses.  Then:  (i) generate a random sample of (𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅); (ii) 

randomly select a player, WLOG Blue, to move first; (iii) the sample 

point to be used to compute 𝑒𝑒 is �𝑃𝑃𝐵𝐵′ (𝑃𝑃𝑅𝑅),𝑃𝑃𝑅𝑅′ �𝑃𝑃𝐵𝐵′ (𝑃𝑃𝑅𝑅)��.  That is, Blue 

responds to the randomly generated 𝑃𝑃𝑅𝑅 via a fast heuristic, and Red in 

turn responds via a fast heuristic.  This sampling approach could 

conceivably provide a more representative sample of strategies 

employed near an equilibrium. 

c. For each sample point from steps 1.a and 1.b, use a global optimizer to 

find 𝑃𝑃𝐵𝐵∗(𝑃𝑃𝑅𝑅) and 𝑃𝑃𝑅𝑅∗(𝑃𝑃𝐵𝐵).  Then, compute 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅). 

2. Fit a response surface for 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) using currently drawn samples, denoted 

𝑒̂𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅).  If the fit is adequate, go to step 3.  Otherwise, generate one more 
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sample using the method in step 1.a, one more using the method of step 1.b, 

and repeat step 2. 

3. Define a discrete set 𝑑𝑑 = [𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑁𝑁], where 0 < 𝑑𝑑𝑖𝑖 < 𝑑𝑑𝑖𝑖+1.  For 𝑑𝑑𝑖𝑖 =

1,2, … ,𝑁𝑁, perform the following: 

a. Generate a random value of 𝑑𝑑 using the uniform distribution 

𝑈𝑈𝑈𝑈𝑈𝑈(𝑑𝑑𝑖𝑖−1,𝑑𝑑𝑖𝑖).  By definition consider 𝑑𝑑0 = 0. 

b. Use a global optimizer to solve the response surface analogue of (4.9): 

 max
𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅

𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅)  𝑠𝑠. 𝑡𝑡. 𝑒̂𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) < 𝑑𝑑.   (4.11) 

Denoting the solution (𝑃𝑃𝐵𝐵
∗,𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑅𝑅

∗,𝑚𝑚𝑚𝑚𝑚𝑚), compute 𝑒𝑒(𝑃𝑃𝐵𝐵
∗,𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑅𝑅

∗,𝑚𝑚𝑚𝑚𝑚𝑚), 

and add this to the set of samples.  Recalibrate 𝑒̂𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅). 

c. Repeat step 3.b, using a minimization rather than a maximization in 

(4.11). 

4. Repeat step 3 until a predefined computational budget is exhausted, then 

observe the maximum and minimum values of 𝜋𝜋𝐵𝐵(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) such that 

𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) < 𝑑𝑑, for varying values of 𝑑𝑑. 

 

The next section provides several examples implementing Algorithm 4.1.  In all 

cases, the following details apply: 

• The computational budget was set at 300 samples, regardless of 𝑘𝑘. 

• Examples where 𝑘𝑘 ≤ 10 used 𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢 = 2𝑘𝑘 in steps 1.a-b.  A few larger 

examples were performed with 𝑘𝑘 = 30 and 𝑘𝑘 = 60.  To ensure the bulk of 
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samples were still generated via the RSM, 𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 were set to 20 when 

𝑘𝑘 = 30, and 40 when 𝑘𝑘 = 60. 

• The fast heuristics in step 1.b are a COBYLA optimization (Powell 1998) 

with a random starting location and no restarts. 

• The response surface in step 3 is a boosted regression tree (Hastie, Tibshirani, 

and Friedman 2009).  In step 2, the number of trees to use and their depths is 

chosen via cross validation, and the criterion determining whether the fit is 

adequate is a cross-validated 𝑅𝑅2 exceeding 0.5.  To save time, cross validation 

is only performed in step 2 (not in steps 3.b and 3.c when recalibrating the 

surface). 

• In step 3, 𝑁𝑁 = 5, the points 0,𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑5 are evenly spaced, and 𝑑𝑑3 is set 

equal to the maximum value of 𝑒𝑒(𝑃𝑃𝐵𝐵,𝑃𝑃𝑅𝑅) found in the initial sampling. 

• COBYLA with 20 random restarts is used in steps 3.b and 3.c. 

 

For comparison, 300 samples were drawn while solely using the sampling 

techniques described in each steps 1.a and 1.b.  The next section will demonstrate the 

value added of the RSM-based algorithm over these benchmark approaches. 

4.5. Examples 

4.5.1. Baseline Parameter Values 

For all examples of the fishing dispute game considered, the parameters 𝑍𝑍𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑞𝑞𝑖𝑖, 

𝛼𝛼𝑖𝑖, and 𝛾𝛾𝑖𝑖 will not vary across fisheries and will simply be denoted 𝑍𝑍, 𝑟𝑟, 𝑞𝑞, 𝛼𝛼, and 𝛾𝛾.  The 

prices of fish found in each fishery, measured in billions of dollars per metric ton, will 
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vary from 1 to 3 in each example according to the following formula:  𝑝𝑝𝑖𝑖 = 1 + (𝑖𝑖 − 1) ∙

2
𝑘𝑘−1

 (i.e. linearly increasing prices from $1 to $3 billion).  Several other parameters are 

held fixed across examples and are provided here:  𝑟𝑟 = .4, 𝑞𝑞 = .0002, 𝑐𝑐𝐵𝐵 = 𝑐𝑐𝑅𝑅 = .12 

(measured in billions of dollars per unit of fishing), 𝑃𝑃𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡 = 9𝑘𝑘, 𝑃𝑃𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 = 15𝑘𝑘.  The values 

for total patrols were chosen so Red would have a comparable number of patrols to the 

Chinese Coast Guard when 𝑘𝑘 = 60, the largest example performed (Erickson 2018). 

4.5.2. Example:  Bounds on Rent, Effectiveness of Increased Patrols, and 

Implications for Negotiations 

In this example, 𝑘𝑘 = 60, 𝛼𝛼 = 𝛾𝛾 = 1, 𝛽𝛽𝐵𝐵𝐵𝐵 = 2 × 10−6, 𝛽𝛽𝑅𝑅𝑅𝑅 = 1.33 × 10−6, and 

𝛽𝛽𝐵𝐵𝐵𝐵 = 𝛽𝛽𝑅𝑅𝑅𝑅 = 8.33 × 10−7.  The coefficients on patrols were chosen such that 𝛽𝛽𝑅𝑅𝑅𝑅 < 𝛽𝛽𝐵𝐵𝐵𝐵 

to reflect the fact China has invested more in maritime militias than other states, and thus 

ought to be less effected by adversarial patrols.  Figure 4.2 plots the upper- and lower-

bounds of 𝜋𝜋𝐵𝐵 as estimated via Algorithm 4.1 (labeled “RSM”).  Also plotted are the 

bounds estimated using only the modified LHS technique of step 1.a (“LHS”), and those 

estimated via the unilateral response sampling technique of step 1.b (“uni”).  The benefit 

of Algorithm 4.1 is apparent from the figure.  For instance, when 𝑑𝑑 = $0.1 billion (which 

is small relative to 𝜋𝜋𝐵𝐵), the lower- and upper-bounds for 𝜋𝜋𝐵𝐵 found by Algorithm 4.1 are 

$1.82 billion and $2.49 billion, while the alternative methods estimate bounds of just 

$1.98 billion to $2.06 billion (for LHS) and $1.90 billion to $2.05 billion (the unilateral 

response method). 
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Figure 4.2. Bounds on 𝝅𝝅𝑩𝑩 for three sampling methods. 

 
 
 

Several more examples are summarized in Table 4.1, but before proceeding two 

policy-relevant questions are addressed which leverage the information obtained via 

Algorithm 4.1.  First, Blue may want to assess the potential gain from increasing her 

overall number of patrol craft.  Figure 4.3 plots both the upper- and lower-bounds on 𝜋𝜋𝐵𝐵 

for the current example’s parameters, and those resulting from doubling Blue’s patrols.  

Considering that the space between the bounds are the possible realized rents, the figure 

reveals that most outcomes that are possible from doubling patrols are also possible from 

not making further investments.  Further, the lower-bound obtained from doubling patrols 

is strictly less than the upper-bound from not doubling.  This is a conservative, though 
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valid, way to assess the potential benefit of increased patrols, as behavioral uncertainty 

presumes the underlying model for Red’s behavior is unknown, and hence a change in 

𝑃𝑃𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡 has an unknown effect.  Even with a perfect model, satisficing may lead to 

unpredictable effects.  Note this is only a static analysis of the effect of doubling Blue’s 

patrols:  in reality one should assess whether Red will respond with increased patrols of 

his own, or by taking actions to effect 𝛽𝛽𝑅𝑅𝑅𝑅 or 𝛽𝛽𝑅𝑅𝑅𝑅.  This isn’t undertaken in this chapter 

because much more goes into the decision to invest in patrols and militias than their 

effects on fishing, such as search-and-rescue operations, port security, and trafficking in 

persons. 

 
 
 

 
Figure 4.3. Effect of doubling Blue patrols. 
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The second application explored concerns negotiations.  Blue and Red can each 

increase their rents by coming to a negotiated settlement for who is allowed to fish where, 

and in what quantities.  A common model for negotiations is the Nash bargaining 

problem (Nash 1953): 

   max
𝐹𝐹𝐵𝐵,𝐹𝐹𝑅𝑅

(𝜋𝜋𝐵𝐵 − 𝜋𝜋�𝐵𝐵)(𝜋𝜋𝑅𝑅 − 𝜋𝜋�𝑅𝑅),    (4.12) 

where 𝐹𝐹𝐵𝐵 = �𝐹𝐹𝐵𝐵,1,𝐹𝐹𝐵𝐵,2, … ,𝐹𝐹𝐵𝐵,𝑘𝑘�, 𝐹𝐹𝑅𝑅 = �𝐹𝐹𝑅𝑅,1,𝐹𝐹𝑅𝑅,2, … ,𝐹𝐹𝑅𝑅,𝑘𝑘�, and 𝜋𝜋�𝐵𝐵 and 𝜋𝜋�𝑅𝑅 are the “threat 

values” Blue and Red earn in the noncooperative disputed fisheries game.  The rents 𝜋𝜋𝐵𝐵 

and 𝜋𝜋𝑅𝑅 no longer depend on patrols as all agreed upon quotas are legal.  As a brief 

illustration of the effects of behavioral uncertainty on negotiations, (4.12) was solved 100 

times for randomly selected values of 𝜋𝜋�𝐵𝐵 ∈ [1.79,2.48] billion USD and 𝜋𝜋�𝑅𝑅 ∈

[2.88,3.22] billion USD (the latter was informed by running Algorithm 4.1 to obtain 

bounds on Red’s realized rents).  The results are unsurprisingly sizable, with 𝜋𝜋𝐵𝐵 ranging 

from $2.32 billion to $2.77 billion, and 𝜋𝜋𝑅𝑅 from $3.22 billion to $3.68 billion. 

4.5.3. Additional Examples 

Table 4.1 and Figure 4.4 provide several additional examples confirming the 

results of Section 4.5.1.  The model parameters 𝑘𝑘, 𝛼𝛼, 𝛾𝛾, 𝑍𝑍, 𝛽𝛽𝐵𝐵𝐵𝐵, 𝛽𝛽𝑅𝑅𝑅𝑅, 𝛽𝛽𝐵𝐵𝐵𝐵, and 𝛽𝛽𝑅𝑅𝑅𝑅 were 

all varied.  Table 4.1 shows how much larger the upper-bound on 𝜋𝜋𝐵𝐵 is relative to the 

lower-bound for various values of 𝑑𝑑.  To contextualize the results and keep examples on 

a similar scale, the metric 𝜋𝜋�𝐵𝐵 is defined as the average Blue rent among all samples found 

via Algorithm 4.1 where 𝑒𝑒 is in the bottom 5th percentile.  For increasing values of 𝑑𝑑/𝜋𝜋�𝐵𝐵, 

the percentage change between the bounds, �𝜋𝜋𝐵𝐵𝑈𝑈𝑈𝑈(𝑑𝑑) − 𝜋𝜋𝐵𝐵𝐿𝐿𝐿𝐿(𝑑𝑑)�/𝜋𝜋𝐵𝐵𝐿𝐿𝐿𝐿(𝑑𝑑), is listed.  

Figure 4.4 provides a scatter plot of these percentage changes found via Algorithm 4.1 
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versus those found via the benchmark approaches (for each example and value of 𝑑𝑑, only 

the benchmark which found the greater percentage change is plotted).  In the plot, 

different markers are used for different values of 𝑘𝑘. 

 

The examples in Table 4.1 use non-Gordon Schaeffer parameter settings (that is, 

𝛼𝛼 ≠ 1 and 𝛾𝛾 ≠ 1) and larger carrying capacities and smaller 𝛽𝛽 coefficients than the 

example in Section 4.5.2.  Values of 𝛼𝛼 greater than 1 imply growth rates are largest when 

biomass is less than 𝑍𝑍/2, and as seen in the table this has the effect of making behavioral 

uncertainty greater.  In contrast, 𝛾𝛾 ≠ 1 doesn’t appear to be an influential parameter for 

behavioral uncertainty.  Larger carrying capacities and smaller 𝛽𝛽 coefficients (implying 

more profitable fishing and lesser effects of patrols, respectively), each decrease 

behavioral uncertainty.  For all examples, the differences between lower- and upper-

bounds remain large.  A 45-degree line is plotted in Figure 4.4 to illustrate how much 

larger the difference in bounds found via Algorithm 4.1 is than that found by the best 

benchmark:  markers above the line indicate Algorithm 4.1 identified a larger range of 

possible rents.  With the exception of a single marker lying below the line when 𝑘𝑘 = 10, 

the only ones not well above it correspond to 𝑘𝑘 = 3.  This indicates a naïve sampling 

method performs well for only the smallest problems.  Once the strategy space reaches 

even a modest size, such as when 𝑘𝑘 = 5, the benchmark methods miss key sections of the 

strategy space.  The lone marker below the line can be explained by random sampling 

error, which is unavoidable in any sampling strategy. 
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Table 4.1 
Additional examples for the range of possible Blue rents, 

�𝝅𝝅𝑩𝑩𝑼𝑼𝑼𝑼 − 𝝅𝝅𝑩𝑩𝑳𝑳𝑳𝑳�/𝝅𝝅𝑩𝑩𝑳𝑳𝑳𝑳  𝒔𝒔. 𝒕𝒕.  𝒆𝒆 <  𝒅𝒅 ∙ 𝜋𝜋�𝐵𝐵 
𝒌𝒌 𝜶𝜶 𝜸𝜸 𝜷𝜷𝑩𝑩𝑩𝑩 𝒁𝒁 d = 2.5% d = 5% d = 7.5% d = 10% 

10 

1 1 
2 × 10−6 1 36% 44% 59% 64% 

1.3 × 10−6 1 21% 24% 27% 27% 
2 × 10−6 2 15% 17% 17% 17% 

1.5 1.25 
2 × 10−6 1 4% 27% 63% 90% 

1.3 × 10−6 1 26% 44% 49% 51% 
2 × 10−6 2 23% 25% 25% 25% 

1.5 0.75 
2 × 10−6 1 36% 45% 59% 65% 

1.3 × 10−6 1 22% 27% 28% 28% 
2 × 10−6 2 20% 20% 20% 20% 

0.5 1.25 
2 × 10−6 1 27% 30% 35% 35% 

1.3 × 10−6 1 16% 16% 16% 16% 
2 × 10−6 2 10% 10% 10% 10% 

0.5 0.75 
2 × 10−6 1 22% 25% 25% 25% 

1.3 × 10−6 1 11% 11% 11% 11% 
2 × 10−6 2 11% 11% 11% 11% 

3 1 1 
2 × 10−6 1 5% 19% 23% 30% 

1.3 × 10−6 1 11% 19% 22% 23% 
2 × 10−6 2 8% 10% 10% 10% 

5 1 1 
2 × 10−6 1 34% 44% 50% 54% 

1.3 × 10−6 1 16% 21% 25% 25% 
2 × 10−6 2 13% 13% 13% 13% 

30 1 1 
2 × 10−6 1 30% 43% 50% 58% 

1.3 × 10−6 1 22% 27% 27% 27% 
2 × 10−6 2 16% 20% 20% 20% 

60 1 1 

2 × 10−6 1 6% 36% 46% 53% 
1.3 × 10−6 1 19% 25% 26% 29% 
2 × 10−6 2 15% 19% 20% 20% 

Note.  In all examples, 𝛽𝛽𝑅𝑅𝑅𝑅 = (2/3) ∙ 𝛽𝛽𝐵𝐵𝐵𝐵, and 𝛽𝛽𝐵𝐵𝐵𝐵 = 𝛽𝛽𝑅𝑅𝑅𝑅 = (𝛽𝛽𝐵𝐵𝐵𝐵 + 𝛽𝛽𝑅𝑅𝑅𝑅)/4.  Parameters not noted 
equal the baseline values provided in Section 4.5.1. 
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Figure 4.4. Percentage differences of bounds estimated via Algorithm 4.1 vs. 

benchmarks. 
 
 
 

4.6. Conclusion and Future Work 

This chapter has introduced a complex model for the fishing dispute in the South 

China Sea, where the strategic allocation of maritime patrols for two players impacts 

realized rents.  The analysis wasn’t limited to seeking an idealized, single point (near) 

Nash equilibrium, but rather sought to characterize the range of possible realized rents as 

a functions of proximity to equilibrium.  This modelling framework was deemed 

necessary to account for what was termed behavioral uncertainty. 
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The formulated model is complex in the sense that an analytical solution does not 

exist and can only be analyzed by drawing computationally expensive samples.  In 

additional to highly nonlinear fishery models and a budget constraint on patrols, much of 

the computational difficulty was driven by the presence of multiple fisheries in the SCS, 

and the chapter successfully analyzed examples with up to 60 fisheries.  This was done 

by developing a sampling algorithm incorporating response surface methodologies, 

which was seen to vastly outperform two benchmarks. 

 

A general finding is that behavioral uncertainty plays a large role in realized rents 

across the breadth of examples.  In particular, when the root mean squared deviation of 

player rents from their optimal attainable rents (i.e. 𝑒𝑒) is just 2.5% of realized rents 

closest to a true equilibrium, the percentage increase from the lower- to upper-bound on 

rent can be as high as 36%.  When the root mean squared deviation is relaxed to 10%, the 

difference in bounds can reach 90%.  Refer to Table 4.1.  An example was performed to 

illustrate how these results effect the decision to invest in additional patrols and the 

results of a negotiated agreement on fishing rights, and it was seen that behavioral 

uncertainty ought to affect both significantly. 

 

This chapter didn’t attempt to derive the traditional theoretical results found in the 

RSM literature, such as guarantees for convergence, based on the presumption that 

sufficiently complex problems are better modeled by complex response surfaces that 
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won’t lend themselves to such analytical results.  In this case, a boosted regression tree 

was used but similarly complex surfaces are available.  A strand of future research would 

be to perform extensive experiments on a wide variety of problems, possessing a variety 

of overarching features, and attempt to identify factors where certain types of response 

surfaces perform well.  For example, a tree-based method performed well in this game of 

strategic resource allocation.  This may persist into other games of strategic resource 

allocation, as optimal behavior may suddenly shift in a discontinuous way once one 

battlefield becomes dominated by one player. 

 

One other point of future research is to operationalize the methodology developed 

here by engaging fisheries experts to truly model the SCS.  This chapter was 

experimental and tested an RSM-based methodology across several instantiations of 

fishery parameters.  It also assumed fisheries were dispersed enough such that each patrol 

vessel could be allocated to one and only one fishery at a time.  A virtue of the 

methodology used in this chapter is no assumptions were imposed on the underlying 

model, hence this latter point requires no modification to the methodology.  Another 

empirical point, mentioned earlier, is that research must still be performed to understand 

how patrols impose costs on fishermen in a disputed fishery; currently, the best research 

has only examined the effect of patrols on illegal fishermen under undisputed territorial 

rights.  By accurately modeling the parameters governing the SCS, and the effects of 

patrols on costs, policy makers will have a valuable tool for answer critical questions 

surrounding this fisheries dispute. 
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5 FISHERIES MANAGEMENT IN CONGESTED WATERS:  A GAME- 
 

THEORETIC ASSESSMENT OF THE EAST CHINA SEA 
 
 
 

Note.  This chapter is currently under peer-review as a stand-alone article with Environmental and 

Resource Economics. 

 

The East China Sea (ECS) poses a different challenge than the patrol allocation 

problem of the South China Sea analyzed in the last chapter.  In the ECS, fishing rights 

between China, South Korea, and Japan have essentially been agreed to.  However, 

fishermen from one country encroach on the rights of another on a daily basis.  Legal 

agreements bind the countries into punishing their own fishermen for such violations, but 

the continued, routine nature of encroachments suggest something deeper is going on.  

This chapter develops a game theoretic model where the nations’ lax monitoring, 

controls, and surveillance (MCS) policies allow illegally caught fish to enter ports 

without repurcussion.  Lax MCS thus gives nations a tacit way of illegally extracting rent 

from another’s waters.  Recognizing this, policy makers must negotiate not only on 

territorial rights in congested seas (as in Chapter 4), but also implement a mutually 

observable MCS policy.  Without each, illegal fishing will persit and rents, it’s seen, will 

be lower.  Methodologically this scenario can be modeled as a binary program and an 

algorithm is developed to find a provable Nash equilibrium when each of two nations 

own one fishery.  With multiple fisheries, the model becomes a nonconvex binary 
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program, something not often seen in the game theory literature where linear and convex 

quadratic programs predominate.  A modern global optimization technique (nested 

partitioning) is used in the multi-fishery case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 
 

5.1. Introduction 

The East China Sea (ECS) is a congested maritime environment in the sense that 

fishermen from multiple nations can access these waters with essentially equivalent 

operating costs.  A journey from China to Japan through the ECS, for example, can span 

less than 350 nautical miles, while one from China to South Korea can span only 200 

nautical miles.  As a point of fact, fishermen from each of these three nations have 

historically fished throughout the ECS under less restrictive fisheries management 

regimes.  Other congested maritime environments can of course be identified, such as the 

South China Sea (SCS) where disputes exist between all major SCS nations, but a 

distinguishing feature of the ECS is that legal agreements have been made on paper for 

who’s allowed to fish where (Rosenberg 2005). 

 

Despite such agreements between each China, South Korea, and Japan, illegal 

encroachments persist in high volumes (Hsiao 2020).  Writing this off as the behavior of 

self-interested criminals is unsatisfactory, as state-led monitoring, controls, and 

surveillance (MCS) of fisheries present cost-effective ways to deter illegal fishing, and 

yet MCS has been rated poorly among ECS nations by the United Nations Food and 

Agricultural Organization (FAO) (Petrossian 2019).  If these illegal encroachments were 

a true concern of the state, one would see more investment in MCS.  This chapter 

provides a game-theoretic explanation for how rational state policy can allow illegal 

encroachments to persist. 
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The chapter analyzes a congested maritime environment using a game with two 

players, Blue and Red.  A key modeling framework is that despite legally defined fishing 

waters, nations can tacitly allow illegal fishing by issuing excessive quotas in their own 

waters while letting economic principles determine whether each fisherman will fish in 

Blue waters, Red waters, or neither.  Coupled with a standard fisheries model, this 

economic determination is influenced by asymmetries in costs.  While the proximities of 

nations are assumed to render operating costs equivalent, asymmetries exist in the ECS 

on at least two accounts.  Opportunity costs are the most obvious asymmetry, as income 

opportunities in China differ greatly from South Korea and Japan.  The other source of 

asymmetry addressed is that arising from the deterrent effect of patrol crafts.  Not only 

can nations have differences in the quantity and quality of patrols, which impose costs on 

illegal fishing, but a nation’s fishermen also differ in their ability to resist patrols.  The 

latter point has garnered significant attention in recent years with the rise of so-called 

maritime militias; that is, fishermen armed with martial assets (often with state 

sponsorship) such as water cannons and small arms that embolden them to fish in illegal 

waters.  As will be shown, the low-cost player can extract rent from the high-cost 

player’s waters by issuing excessive quotas; one strategy the high-cost player can use to 

combat this is to issuing excessive quotas herself, reducing the attractiveness of her 

waters to illegal fishermen and creating a vicious circle of overfishing. 

 

As already alluded, fisheries management entails more than issuing the “right” 

amount of quotas.  MCS measures are also essential to ensure fishermen are fishing only 
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where allowed, catching the allowable species in the allowed quantities, and so on.  For 

the purposes of this chapter, MCS refers to such deterrent practices other than maritime 

patrols and includes measures such as port inspections and vessel monitoring systems.  It 

does not include sound practices for issuing quotas, which is treated as a separate 

decision variable.  The poorly-rated MCS observed in the ECS can also be explained 

through strategic interaction in a congested environment.  It’s seen that even if MCS is a 

cost-effective deterrent of illegal fishing in the single-state context, once a second player 

is introduced the incentive to invest in MCS vanishes. 

 

A critical component in the analysis is that each player can behave against the 

norms of agreed upon fishing rights while maintaining plausible deniability.  For 

example, a country, say China, cannot explicitly authorize fishermen to fish in South 

Korean waters, as if this were discovered the political consequences would be 

unacceptable.  This assertion is consistent with observed behavior as China has 

historically punished its fishermen caught in South Korean waters (Zhang 2016).  

Likewise, if it were discovered China were knowingly letting fish caught in South Korean 

waters in through its ports, the consequences would be unacceptable.  It might be asked, 

then, what is to be done, if an agreement is already on paper but countries nonetheless 

tacitly violate it?  To address this, the chapter assesses what enforceable policy on fishing 

quotas can be implemented to improve each player’s utility.  Such a policy involves an 

observable agreement on legal fishing levels, including legally allowed fishing by one 

player in the other’s waters, as well as mutually observable MCS regimes.  
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Unsurprisingly, the low-cost player, either by virtue of low opportunity costs or strong 

patrols and maritime militias, has leverage in negotiating such an enforceable policy.  

However, it’s found that in many situations only a reasonable amount of legally allowed 

fishing by the low-cost player in the high-cost player’s waters can lead to a significant 

and balanced benefit for each, and thus there’s likely a politically amenable solution to 

improve fisheries management in the ECS. 

 

The remainder of the chapter is structured as follows.  Section 5.2 reviews the 

literature on fisheries management in the ECS as it pertains to illegal fishing, game 

theoretic models of fisheries, and the deterrent effects of maritime law enforcement on 

illegal fishing.  Section 5.3 describes a model for the ECS as a two-player game where 

each player owns a specified number of fisheries; this includes a subgame to determine 

where fishermen with quotas will fish.  Section 5.4 derives analytical results for the case 

when each player owns a single fishery, and examples are presented for each the single- 

and multi-fishery cases.  Section 5.5 concludes and comments on future work.  Two 

appendices are provided with mathematical proofs and solution algorithms for the game. 

5.2. Literature Review 

Bilateral agreements delineating fishing rights in the ECS began to take form in 

the late 1990s, delineating regions that would fall under the jurisdiction of particular 

states as well as jointly managed areas.  These agreements have also included provisions 

for legal fishing by one country in the waters of another (Rosenberg 2005; Hsiao 2020).  

However, these agreements are not fully cooperative in the sense that they haven’t set 
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limits on domestic fishing; that is, a bilateral agreement between China and South Korea 

may specify legal Chinese fishing levels in South Korean waters, but not legal Chinese 

levels in Chinese waters.  This oversight has led to overfishing, and is perhaps the cause 

of current cutbacks on legally allowed foreign fishing (Yonhap News 2020).  Despite 

these agreements, illegal encroachments persist in large numbers.  An estimated 29,600 

instances of Chinese fishing vessels entering South Korean waters occurred in the second 

half of 2014 alone.  Further, and in support of the assertion states may only tacitly 

encourage illegal fishing but not outright allow it, Chinese officials have taken punitive 

action against its illegal fishermen when detained by South Korea and other countries 

(Zhang 2016).  Analyzing these disputes has been complicated by the rise of maritime 

militias, the most well-studied of which is the Chinese Maritime Militia.  These militias 

are fishermen who’ve been equipped with martial assets such as small arms and water 

cannons, generally through state-sponsorship, to oppose other nation’s fishermen and 

patrol craft (Erickson and Kennedy 2016; Zhang and Bateman 2017; Perry 2020).  In the 

most extreme cases, interactions between fishermen and maritime law enforcement has 

led to the loss of life on both sides (China Power Team 2020; Park 2020). 

 

A key tool for addressing illegal encroachments, and illegal fishing in general, is 

monitoring, controls, and surveillance (MCS), which includes measures such as 

inspections at ports of entry, onboard observers to monitor fishing activities, and satellite 

systems to track vessels (Pitcher, Kalikoski, and Pramod 2006).  The definition of MCS 

also often includes the issuance of quotas, but quotas issuance is treated separately in this 
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chapter.  Empirical studies have shown MCS to be an effective deterrent to illegal 

fishing, and while costs can vary widely irrespective of MCS quality its generally viewed 

as a cost-effective tool (Petrossian 2015; Mangin et al. 2018).  Fisheries management 

experts have, nonetheless, rated MCS practices among ECS nations as below average 

(Petrossian 2019).  Interestingly, studies have also found more generally that fisheries 

management tends to be weaker when nearby states are also not adhering to best 

practices, lending credence to the modeled results in this chapter for congested maritime 

environments (Borsky and Raschky 2011). 

 

From a modeling perspective fisheries disputes have often been studied through 

game theory.  In the well-studied problem of two or more players allocating quotas in the 

same fishery, models have shown overfishing will occur both when considering 

discounted payoffs and not.  When accounting for asymmetric costs a player’s utilities 

are seen to increase as another’s costs increase (Grønbæk et al. 2020).  While related to 

the findings of this chapter, the distinction is the model presented here considers multiple 

fisheries with legal definitions of who’s allowed to fish in each, introducing a 

criminological element into the analysis.  Models have accounted for additional 

complicating factors such as multiple interacting species (Fischer and Mirman 1996), 

coalition forming in many player games (Long and Flaaten 2011), and uncertainty in 

stock levels and growth (Miller and Nkuiya 2016), to name a few.  Models have also 

been used to optimize patrol strategies to combat illegal fishing.  These models discretize 

a nation’s waters and consider two players, the state and illegal fishermen, who must 
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determine how to deploy patrols and where to attempt illegal fishing, respectively.  

Factors such as heterogeneous illegal fishermen types, bounded rationality, and repeated 

play have all been incorporated (Fang, Stone, and Tambe 2015; M. Brown, Haskell, and 

Tambe 2014).  What has not been considered is situations with multiple states competing 

over resources utilizing either state-sponsored or tacitly encouraged illegal fishing. 

 

Regarding the economics of illegal fishing, researches have assessed the annual 

dollar amount of illegally caught fish to be between $10-$23.5 billion (Petrossian 2019).  

In addition to MCS, empirical studies have found the number of patrol craft per 100,000 

square kilometers to be a significant explainer of illegal fishing (Petrossian 2015).  

Deterrence has also been analyzed at the agent-level, where studies have shown 

fishermen do indeed rationalize their illegal fishing by pointing out the risks and costs 

associated with being caught don’t outweigh the benefits (King and Sutinen 2010; 

Kuperan and Sutinen 1998; Nielsen and Mathiesen 2003).  Lastly, note a gap in the 

empirical literature exists in understanding the impact of maritime militias on the 

willingness to fish illegally; while maritime militias have been studied extensively, no 

empirical evidence exists to quantify their impact. 

5.3. The Congested Environment Fishing Model 

The scenario is modeled as a two-player game between Blue (𝐵𝐵) and Red (𝑅𝑅).  In 

the general case, each player can have ownership of multiple fisheries.  Each fishery is 

modeled using the Gordon-Schaeffer model with a logistic growth function and constant-
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effort harvesting rate (Clark 2006).  The model for the 𝑗𝑗𝑡𝑡ℎ fishery of player 𝑖𝑖 ∈ {𝐵𝐵,𝑅𝑅}, 

which will be referred throughout this chapter as fishery 𝑖𝑖𝑖𝑖, is: 

𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 �1 − 𝑥𝑥𝑖𝑖𝑖𝑖
𝑍𝑍𝑖𝑖𝑖𝑖
� − 𝑥𝑥𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ,   (5.1) 

where 𝑥𝑥𝑖𝑖𝑖𝑖 is the current biomass in the fishery, 𝑍𝑍𝑖𝑖𝑖𝑖 is the carrying capacity, 𝑟𝑟𝑖𝑖𝑖𝑖 the natural 

growth rate, and 𝑞𝑞𝑖𝑖𝑖𝑖 the catchability coefficient.  𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 is the level of fishing effort in the 

fishery by fishermen who are authorized to fish in fishery 𝑘𝑘𝑘𝑘 (the 𝑙𝑙𝑡𝑡ℎ fishery of player 𝑘𝑘 ∈

{𝐵𝐵,𝑅𝑅}).  In other words, the variable 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 for 𝑖𝑖 ≠ 𝑘𝑘 or 𝑗𝑗 ≠ 𝑙𝑙 represents illegal fishing, 

whereas 𝐹𝐹𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 represents legal fishing.  No migration between fisheries is assumed.  In 

this chapter long-term biomass in each fishery is used to evaluate utilities.  Given all 

values of 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘, the solution to the differential equation (5.1) is: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑖𝑖 �1 −
𝑞𝑞𝑖𝑖𝑖𝑖 ∑ 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑟𝑟𝑖𝑖𝑖𝑖
�.     (5.2) 

 

To reiterate the key modeling framework, Blue and Red’s national strategy 

merely determines how many fishing quotas are allocate in their respective fisheries, 

denoted 𝐹𝐹𝑘𝑘𝑘𝑘 for each fishery 𝑘𝑘𝑘𝑘.  It’s assumed that without any explicit instruction from 

the state, individual fishermen with quotas decide where to fish based on economic 

principles.  The variables 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 will be determined via a subgame to be detailed 

momentarily. 

 

An individual fishermen’s revenue is a function of biomass.  Denoting the price of 

fish farmed from fishery 𝑖𝑖𝑖𝑖 as 𝑝𝑝𝑖𝑖𝑖𝑖, the revenue earned by a fisherman in this fishery is 
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𝑝𝑝𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖.  That fishermen’s rent is determined by subtracting out costs, which obviously 

includes operational costs, but also asymmetric opportunity costs and costs imposed 

through the efficacy of maritime patrols to deter illegal fishing.  It’s assumed all fisheries 

are in close enough proximity such that operating costs are the same in each and for each 

player.  In sum, the costs for a fisherman to fish in 𝑖𝑖𝑖𝑖 when he’s legally authorized to fish 

in 𝑘𝑘𝑘𝑘 is defined as follows: 

𝑐𝑐𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 = � 𝑐𝑐𝑘𝑘, if 𝑖𝑖 = 𝑘𝑘 and 𝑗𝑗 = 𝑙𝑙
𝑐𝑐𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑃𝑃𝑖𝑖 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑘𝑘, otherwise ,  (5.3) 

where 𝑐𝑐𝑘𝑘 is the combined operating and opportunity costs for fishermen from country 𝑘𝑘, 

𝑃𝑃𝑖𝑖 is the number of patrol craft employed per 100,000 square kilometers by country 𝑖𝑖, and 

𝑚𝑚𝑘𝑘 is the level of MCS used in country 𝑘𝑘.  The coefficient 𝛽𝛽𝑚𝑚 represents the deterrent 

effect of MCS on illegal fishing and is assumed constant for both players.  𝛽𝛽𝑘𝑘, in contrast, 

is the deterrent effect of patrols and is allowed to vary between players.  This reflects 

differing levels of maritime militias among ECS nations.  Considering these costs, the 

rent earned by a fisherman is 𝜋𝜋𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘. 

 

Total utilities realized by Blue and Red, 𝑢𝑢𝐵𝐵 and 𝑢𝑢𝑅𝑅, are the sum total of rents 

collected by their nation’s fishermen, minus expenditures on MCS.  MCS costs are 

modeled as a function of the level of MCS used; the flexible form 𝑎𝑎1𝑚𝑚𝑘𝑘
𝑎𝑎2 is used, where 

𝑎𝑎1 and 𝑎𝑎2 are constants.  The level of patrols is treated as a given constant rather than a 

decision variable, as in practice many other considerations affect investment in patrol 

craft; for instance, port security, detection of human trafficking, and search and rescue 



100 
 

operations, to name a few applications.  The utility functions for Blue and Red are 

therefore: 

𝑢𝑢𝐵𝐵 = ∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 − 𝑎𝑎1𝑚𝑚𝐵𝐵
𝑎𝑎2     (5.4) 

𝑢𝑢𝑅𝑅 = ∑ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑎𝑎1𝑚𝑚𝑅𝑅
𝑎𝑎2.    (5.5) 

By solving a subgame for the values of 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘, these utility functions collapse into 

expressions of the players’ overall decision variables (𝐹𝐹𝐵𝐵𝐵𝐵, 𝑚𝑚𝐵𝐵, 𝐹𝐹𝑅𝑅𝑅𝑅, and 𝑚𝑚𝑅𝑅). 

5.3.1. Subgame for Levels of Fishing in Each Fishery 

A state-issued fishing quota gives fishermen the legal right to bring fish into the 

country of issue.  States cannot explicitly direct fishermen to fish illegally; the decision 

on where to fish in a congested environment is therefore left to the fishermen, a choice 

which will be made based on economic principles.  Elementally, the following must hold 

for a fishermen’s choice to be economically rational:  (i) a fishermen will use a quotas iff 

he can earn nonnegative rent; (ii) if he’s fishing in fishery 𝑖𝑖𝑖𝑖, he must be earning at least 

as much rent as he could earn in any other fishery 𝑖𝑖′𝑗𝑗′, as otherwise he’d switch to the 

other.  These subgame principles can be modeled by the below binary program, where the 

legally authorized quotas in each fishery, 𝐹𝐹𝐵𝐵𝐵𝐵 and 𝐹𝐹𝑅𝑅𝑅𝑅, and the levels of MCS used, 𝑚𝑚𝐵𝐵 

and 𝑚𝑚𝑅𝑅, are given first-stage decision variables.  The binary program finds values of the 

subgame variables (SGVs) 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 such that points (i) and (ii) are satisfied for all 

fishermen. 
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min
𝑧𝑧,   𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘,   𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘,   𝑦𝑦𝑘𝑘𝑘𝑘

𝑧𝑧         (5.6) 

𝑠𝑠. 𝑡𝑡.  

Noninformative objective function     (5.6a) 

𝑧𝑧 ≥ 0            

Constraints on total fishing      (5.6b) 

∑ 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 < 𝐹𝐹𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖  ∀ 𝑙𝑙,𝑘𝑘 ∈ {𝐵𝐵,𝑅𝑅}  

Fishing only occurs where profitable, and is at least as profitable as any   

alternative fishery       (5.6c) 

𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ≤ 𝑀𝑀𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ∀ 𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘         

𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ≥ .0001𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ∀ 𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘  

𝜋𝜋𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ≥ −𝑀𝑀�1 − 𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘� ∀ 𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘  

𝜋𝜋𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ≥ 𝜋𝜋𝑖𝑖′𝑗𝑗′,𝑘𝑘𝑘𝑘 − 𝑀𝑀�1 − 𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘� ∀ 𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘, 𝑘𝑘′𝑙𝑙′  

No profitable quotas are left unused     (5.6d) 

∑ 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑦𝑦𝑘𝑘𝑘𝑘 ≥ 𝐹𝐹𝑘𝑘𝑘𝑘  ∀ 𝑘𝑘𝑘𝑘  

∑ 𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + .0001𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 𝐹𝐹𝑘𝑘𝑘𝑘  ∀ 𝑘𝑘𝑘𝑘  

𝜋𝜋𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑘𝑘𝑘𝑘) ∀ 𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘  

Nonnegativity and binary constraints     (5.6e) 

𝐹𝐹𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 ≥ 0 ∀ 𝑖𝑖𝑖𝑖, 𝑘𝑘𝑘𝑘  

𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘, 𝑦𝑦𝑘𝑘𝑘𝑘 ∈ {0,1}.  
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In the binary program (5.6), the parameter 𝑀𝑀 is an arbitrarily large constant.  The 

objective function is irrelevant as the purpose of the subgame is to find feasible values of 

the SGVs.  When each player has only one fishery, unique subgame equilibriums can be 

proven to exist (see Theorem 5.1).  Extensive random sampling indicates the guaranteed 

existence of a subgame equilibrium when each player has multiple fisheries, and while 

these subgame equilibria aren’t guaranteed to be unique in general, they are unique at all 

equilibrium points for the overall game found in Section 5.4.2.  An analytical formula for 

the subgame equilibrium can be found in the one-fishery case.  These results are 

formalized in Theorems 5.1 and 5.2. 

Theorem 5.1.  Existence of a unique subgame equilibrium. 

When Blue and Red each own only one fishery, any instantiation of the game’s 

parameters and choice of the overall game’s decision variables yields a unique 

subgame equilibrium. 

Proof.  See Appendix 5.A. 

 

Theorem 5.2.  Formulae for the unique subgame equilibrium via a 

partitioning of the parameter and decision space. 

Again assume Blue and Red each own one fishery.  The parameter and decision 

variable space can be partitioned, such that in each region of the partition 

analytical formulae exist for the subgame variables. 

Proof.  See Appendix 5.A. 
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5.4. Examples 

5.4.1. One Fishery per Player 

Because each player has only owns one fishery, subscripts 𝑖𝑖1,𝑘𝑘1 are replaced 

with 𝑖𝑖,𝑘𝑘, and 𝑘𝑘1 is replaced by 𝑘𝑘, for 𝑖𝑖,𝑘𝑘 ∈ {𝐵𝐵,𝑅𝑅}.  This most basic instantiation of the 

model is sufficient to understand why nations overfish, and why illegal encroachments 

persist, in a congested environment.  In addition to the analytical results in Theorems 5.1 

and 5.2, when each player has only one fishery it can be proven 𝑚𝑚𝐵𝐵 = 0 is always an 

optimal response for Blue, as is 𝑚𝑚𝑅𝑅 = 0 for Red.  Thus, Blue and Red’s utility functions 

become quadratic functions of only 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅, where the quadratic form comes from the 

fact SGVs turn out to be linear in 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅.  This result is formalized in Theorem 5.3, 

which implies MCS can be ignored in the one-fishery case.  It’s worth recalling the 

definition of MCS used in this chapter:  measures taken to ensure fishing is occurring 

where allowed, other than patrols.  In other words, 𝑚𝑚𝐵𝐵 = 𝑚𝑚𝑅𝑅 = 0 still allows for some 

degree of strong fisheries management, such as strictly managed quota systems, 

restrictions on access to fishing gear, and patrols.  Not using MCS amounts to giving 

fishermen with a legal quota a free pass to bring fishermen in through ports, irrespective 

of where it was caught. 

Theorem 5.3 

Assume Blue and Red each own one fishery.  For a given strategy of the other 

player, responding with 𝑚𝑚𝑘𝑘 > 0 can yield at most equivalent utility as using 

𝑚𝑚𝑘𝑘 = 0.  If costs of MCS are nonzero, then 𝑚𝑚𝑘𝑘 > 0 yields strictly less utility than 

𝑚𝑚𝑘𝑘 = 0. 
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Proof.  See Appendix 5.A. 

 

Theorems 5.1, 5.2, and 5.3 make it relatively straightforward to find an 

equilibrium for the overall game, allowing for thorough comparative statics.  Because the 

form of the subgame equilibrium depends on which section of the decision space the 

players’ decisions, 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅, place the game in, the players’ utilities likewise depend on 

this.  The key to finding an equilibrium is to find distinct intervals for 𝐹𝐹𝐵𝐵 where Red’s 

optimal response is a non-piecewise function of 𝐹𝐹𝐵𝐵, and distinct intervals for 𝐹𝐹𝑅𝑅 where 

Blue’s optimal response is a non-piecewise function of 𝐹𝐹𝑅𝑅, and finally seek pairs of 

intervals for 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅 where the players’ optima intersect.  Algorithm 5.2 in Appendix 

5.B details how the required intervals are found, and the concept is illustrated in Figure 

5.1.  In this illustration, an equilibrium exists at (𝐹𝐹𝐵𝐵,𝐹𝐹𝑅𝑅) = (878, 1193), where the solid 

grey and black lines intersect. 

  
 
 

 
Note.  Grey and black dashed lines demarcate intervals where Blue and Red’s 
optimal responses are non-piecewise, respectively. 

 
Figure 5.1.  Intervals where optimal responses are non-piecewise. 
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An important point is that an equilibrium isn’t guaranteed to exist for the overall 

game.  Comparative statics are performed in the following example, so in cases where an 

equilibrium doesn’t exist the point that minimizes the value of �𝑢𝑢𝐵𝐵∗ (𝐹𝐹𝑅𝑅) −

𝑢𝑢𝐵𝐵(𝐹𝐹𝐵𝐵,𝐹𝐹𝑅𝑅)�
2

+ �𝑢𝑢𝑅𝑅∗ (𝐹𝐹𝐵𝐵) − 𝑢𝑢𝑅𝑅(𝐹𝐹𝐵𝐵,𝐹𝐹𝑅𝑅)�
2
 is used in its place, where 𝑢𝑢𝐵𝐵∗ (𝐹𝐹𝑅𝑅) and 𝑢𝑢𝑅𝑅∗ (𝐹𝐹𝐵𝐵) 

are the optimal utilities Blue and Red can earn when responding to 𝐹𝐹𝑅𝑅 and 𝐹𝐹𝐵𝐵, 

respectively.  This point is easy to find given the information encapsulated in Algorithm 

5.2; one simply iterates through the distinct regions where each 𝑢𝑢𝐵𝐵∗ (𝐹𝐹𝑅𝑅) and 𝑢𝑢𝑅𝑅∗ (𝐹𝐹𝐵𝐵) are 

non-piecewise and solves a constrained polynomial optimization.  In this chapter the 

COBYLA method was used (Powell 1998). 

 

5.4.1.1. Example 5.1 

Consider the following parameter values, where carrying capacities are measured 

in millions of metric tons and prices are USD per million metric tons: 

𝑍𝑍𝐵𝐵 = 𝑍𝑍𝑅𝑅 = 2, 𝑟𝑟𝐵𝐵 = 𝑟𝑟𝑅𝑅 = .4, 𝑞𝑞𝐵𝐵 = 𝑞𝑞𝑅𝑅 = .0002, 𝑝𝑝𝐵𝐵 = 𝑝𝑝𝑅𝑅 = $3,000,000,000  

𝑐𝑐𝐵𝐵 = $200,000, 𝑃𝑃𝐵𝐵 = 30, 𝛽𝛽𝐵𝐵 = 600 

𝑐𝑐𝑅𝑅 = $120,000, 𝑃𝑃𝑅𝑅 = 50, 𝛽𝛽𝑅𝑅 = 400. 

The fisheries are symmetric, but Red faces substantially lower opportunity costs 

and also has more/better patrols and a higher prevalence of maritime militias.  These 

parameters were chosen as it’s akin to the ECS, where a less-developed country, China, 

has lower opportunity costs compared to South Korea and Japan, yet also has made large 

investments in patrols and maritime militias (Erickson 2018).  Table 5.1 shows the 

equilibrium solution for 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅 and the resulting SGVs, biomasses, and utilities.  The 
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solution that would maximize utilities if illegal encroachments were not a possibility 

(“Legal Optimum”) is also provided for comparison. 

  
 
 

Table 5.1 
Results for Example 5.1 

  Equilibrium Legal Optimum 
𝐹𝐹𝐵𝐵 1042 833 
𝐹𝐹𝑅𝑅 1269 900 
𝐹𝐹𝐵𝐵,𝐵𝐵 1042 833 
𝐹𝐹𝑅𝑅,𝐵𝐵 0 n/a 
𝐹𝐹𝐵𝐵,𝑅𝑅 103 n/a 
𝐹𝐹𝑅𝑅,𝑅𝑅 1166 900 
𝑥𝑥𝐵𝐵 0.8544 1.1667 
𝑥𝑥𝑅𝑅 0.8344 1.1000 
𝑢𝑢𝐵𝐵  $325,868,148.15   $416,666,666.67  
𝑢𝑢𝑅𝑅  $483,023,703.70   $486,000,000.00  

 
 
 

Each player is fishing substantially more than the legal optimum.  The intuitive 

explanation for this is that if one player, say Blue, were to use her legal optimum of 𝐹𝐹𝐵𝐵 =

833, then Blue biomass is relatively high and Red can issue excessive quotas to induce 

his fishermen to enter Blue waters.  In response, Blue issues excessive quotas to make her 

waters less desirable to illegal Red fishermen. 

 

Another key takeaway from this example is that Red’s utility is largely unaffected 

by illegal fishing; precisely, it’s 99.39% of the legal optimal utility.  Blue utility, in 

contrast, falls to 78.21% of her legal optimum.  The disparity comes from the fact Blue 

fishermen don’t fish illegally, because they can’t compete with Red fishermen in Red 
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waters due to asymmetries in costs.  Overall utility has declined to 89.61% of the legal 

optimum. 

 

To assess how much each player can gain from cooperation a Nash bargaining 

problem is solved (Nash 1953).  To simplify the analysis, it’s assumed each state agrees 

to implement MCS measures that make illegal fishing unviable, and that this is costless.  

In Section 5.4.2 the actual costs of MCS will be incorporated and each player will invest 

in MCS along a continuum.  The Nash bargaining problem is: 

max
𝐹𝐹𝐵𝐵,𝐵𝐵,   𝐹𝐹𝐵𝐵,𝑅𝑅,   𝐹𝐹𝑅𝑅,𝑅𝑅

(𝑢𝑢𝐵𝐵 − 𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁)(𝑢𝑢𝑅𝑅 − 𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁)    (5.7) 

𝑠𝑠. 𝑡𝑡.  𝑢𝑢𝐵𝐵 ≥ 𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁 and 𝑢𝑢𝑅𝑅 ≥ 𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁, 

where 𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁 and 𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁 are the “threat values,” defined as the noncooperative equilibrium 

utilities.  The additional simplifying assumption, which will also be dropped in Section 

5.4.2, is that 𝐹𝐹𝑅𝑅,𝐵𝐵 = 0.  This is sensible, and means that as compensation for 

implementing MCS, which will disproportionately benefit Blue, Blue must grant Red 

legal quotas in Blue waters.  It’s easy to see the optimal value of 𝐹𝐹𝑅𝑅,𝑅𝑅 is 𝐹𝐹𝑅𝑅,𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑟𝑟𝑅𝑅
2𝑞𝑞𝑅𝑅𝑍𝑍𝑅𝑅

�𝑍𝑍𝑅𝑅 −
𝑐𝑐𝑅𝑅
𝑝𝑝𝑝𝑝
� (as would be the case if Red analyzed his problem in isolation), and that 

for any value of 𝐹𝐹𝐵𝐵,𝑅𝑅 the optimal value of 𝐹𝐹𝐵𝐵,𝐵𝐵 is 𝐹𝐹𝐵𝐵,𝐵𝐵
𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑟𝑟𝐵𝐵

2𝑞𝑞𝐵𝐵𝑍𝑍𝐵𝐵
�𝑍𝑍𝐵𝐵 −

𝑐𝑐𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

� − 1
2
𝐹𝐹𝐵𝐵,𝑅𝑅.  

Thus, (5.7) can be solved via a univariate search over 𝐹𝐹𝐵𝐵,𝑅𝑅.  The solution is 𝐹𝐹𝐵𝐵,𝐵𝐵
𝑁𝑁𝑁𝑁𝑁𝑁 = 788, 

𝐹𝐹𝐵𝐵,𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 = 90, and 𝐹𝐹𝑅𝑅,𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 = 900, which yields utilities 𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁 = $372,881,667 (a 14.43% 

gain) and 𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = $535,770,000 (a 10.92% gain).  Notice that 10.25% of all fishing 

occurring in Blue waters is by Red fishermen.  While significant, this figure doesn’t seem 
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so high that a perception Blue politicians are giving up their sovereign territory to Red 

will emerge, and therefore may be politically amenable. 

 

5.4.1.2. Comparative Statics for Example 5.1 

Figure 5.2 shows how the results of Example 5.1 are affected by 𝑐𝑐𝑅𝑅.  Notice the 

same qualitative results hold as 𝑐𝑐𝑅𝑅 spans $100,000 to $200,000:  Red continues to earn 

near his legal optimum utility in the noncooperative case, while Blue achieves 

substantially less; under the Nash bargain, Red achieves significantly more than legality 

while Blue recoups some, though not all, of her legal utility.  This is true even when 𝑐𝑐𝑅𝑅 =

𝑐𝑐𝐵𝐵 = $200,000, indicating the influence of Red’s superior patrols and maritime militias 

is not trivial.  While not pictured, the bargaining solution is such that 𝐹𝐹𝐵𝐵,𝑅𝑅/�𝐹𝐹𝐵𝐵,𝐵𝐵 + 𝐹𝐹𝐵𝐵,𝑅𝑅� 

reaches a peak of 13.33% (when 𝑐𝑐𝑅𝑅 = $100,000), which as in Example 5.1 does not 

seem unreasonably high. 

 
 
 

 
Figure 5.2.  Sensitivity of utilities to 𝒄𝒄𝑹𝑹 in Example 5.1. 
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Table 5.2 provides a comparison of noncooperative and bargaining utilities for 

additional examples.  As when 𝑐𝑐𝑅𝑅 was shocked, Red persistently loses little under 

noncooperation while Blue loses a lot.  In certain cases Red’s noncooperative utility is 

actually significantly higher than his legal optimum; see particular the example of 

asymmetric carrying capacities, 𝑍𝑍𝐵𝐵 = 2 and 𝑍𝑍𝑅𝑅 = 1.5.  Unlike in Figure 5.1, the 

percentage of Red fishing in Blue waters under the bargain can get very high (as high as 

50.63%).  This may or may not pose a hindrance in negotiations. 

 
 
 

Table 5.2 
Additional examples 

Parameters 𝒖𝒖𝑩𝑩𝑵𝑵𝑵𝑵 𝒖𝒖𝑩𝑩𝑵𝑵𝑵𝑵𝑵𝑵 𝒖𝒖𝑩𝑩
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒖𝒖𝑹𝑹𝑵𝑵𝑵𝑵 𝒖𝒖𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵 𝒖𝒖𝑹𝑹

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 
𝑭𝑭𝑩𝑩𝑩𝑩

𝑭𝑭𝑩𝑩𝑩𝑩 + 𝑭𝑭𝑩𝑩𝑩𝑩
 

Baseline (Ex. 5.1) .33 .37 .42 .48 .54 .49 10.25% 

𝑍𝑍𝐵𝐵 = 𝑍𝑍𝑅𝑅 = 1 .08 .10 .13 .22 .24 .19 23.79% 

𝑍𝑍𝐵𝐵 = 𝑍𝑍𝑅𝑅 = 3 .57 .65 .71 .76 .85 .78 8.30% 

𝑝𝑝 = 2 .16 .19 .23 .31 .34 .29 16.51% 

𝑝𝑝 = 2,𝑍𝑍𝐵𝐵 = 𝑍𝑍𝑅𝑅 = 1 .02 .02 .05 .14 .15 .10 50.63% 

𝑝𝑝 = 2,𝑍𝑍𝐵𝐵 = 𝑍𝑍𝑅𝑅 = 3 .33 .37 .42 .48 .54 .49 10.25% 

𝑞𝑞 = .0001 .17 .20 .27 .44 .47 .38 23.73% 

𝑞𝑞 = .0003 .38 .43 .47 .51 .57 .52 8.25% 

𝑍𝑍𝑅𝑅 = 1.5 .25 .31 .42 .41 .46 .34 25.17% 

𝑍𝑍𝑅𝑅 = 1.75 .29 .34 .42 .45 .50 .41 17.72% 
Note.  All utilities and prices are measured in billions of USD.  Parameters not explicitly stated are the 
same as in Example 5.1. 
 
 
 
5.4.2. Three Fisheries per Player 

A limitation of the one-fishery case is it doesn’t allow for a comparison of optimal 

levels of MCS when illegal encroachments are and are not a concern.  In an uncongested 
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environment with one fishery, a state clearly has no incentive to spend on MCS since 

fishermen only have a single fishery to choose from.  In reality, states are responsible for 

multiple fisheries and proper management requires measures to verify fishermen are 

catching only where allowed.  This makes the single-fishery model inadequate to 

understand the observed poor MCS practices in the ECS.  Thus, this subsection considers 

a scenario where Blue and Red own three fisheries each, shows there is an incentive to 

use strong MCS if it’s assumed illegal encroachments are not a possibility, but that this 

incentive vanishes in a congested environment where encroachments are a possibility. 

 

With multiple fisheries the problem is not conceptually different, as the same 

subgame, (5.6), still must be solved.  The analytical challenge with multiple fisheries 

relates to dimensionality, as the proof of Theorem 5.2 involves enumerating all possible 

combinations of the binary variables, 𝑦𝑦𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 and 𝑦𝑦𝑘𝑘𝑘𝑘, and deriving necessary and sufficient 

conditions and formulae for the subgame equilibrium for each combination.  This is 

burdensome even with two fisheries per player.  An alternative solution methodology is 

to pick random starting values for all 𝐹𝐹𝑘𝑘𝑘𝑘 and 𝑚𝑚𝑘𝑘, allow the players to sequentially 

respond optimally to the other, stopping once neither player can gain more than 0.1% in 

utility.  Blue’s optimal responses are found using the subgame (5.6), but with 𝐹𝐹𝐵𝐵𝐵𝐵 and 𝑚𝑚𝐵𝐵 

now included as decision variables and the objective functions replaced with the utility 

function (5.4); an analogous statement holds for Red’s optimal response.  This can lead to 

a nonconvex program (even when 𝑚𝑚𝐵𝐵 = 0), so a global optimization method is required; 

this chapter used nested partitioning (Shi and Ólafsson 2000). 
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5.4.2.1. Example 5.2:  One Player with Three Fisheries 

Analyzing a single-player example (i.e. an uncongested environment) allows one 

to establish a situation where MCS is a cost-effective measure to deter illegal fishing in 

the absence of foreign encroachments.  The parameters used are similar to Example 5.1, 

but now there are three fisheries with different prices: 

𝑍𝑍𝐵𝐵𝑗𝑗 = 2, 𝑟𝑟𝐵𝐵𝐵𝐵 = .4, 𝑞𝑞𝐵𝐵𝐵𝐵 = .0002 ∀ 𝑗𝑗 ∈ {1,2,3} 

𝑝𝑝𝐵𝐵1 = $3,000,000,000, 𝑝𝑝𝐵𝐵2 = $2,250,000,000, 𝑝𝑝𝐵𝐵3 = $1,500,000,000, 

𝑐𝑐𝐵𝐵 = $200,000, 𝑃𝑃𝐵𝐵 = 30, 𝛽𝛽𝐵𝐵 = 600 

𝛽𝛽𝑚𝑚 = 6,000, 𝑎𝑎1 = 3,393,400, 𝑎𝑎2 = 0.5. 

 

MCS costs are difficult to estimate as state spending can vary widely, irrespective 

of MCS quality.  Empirical research has nonetheless concluded MCS is cost-effective, so 

this example uses values of 𝑎𝑎1 and 𝑎𝑎2 which (a) lead to MCS being used in the one-state 

case, and (b) lead to spending falling within the range of observed MCS spending among 

highly-rated countries (see (Mangin et al. 2018) for spending among nations, and 

(Petrossian 2019) for a summary of U.N. FAO ratings of MCS regimes).  This approach 

is sufficient to illustrate the broader point:  MCS is used when a state operates in 

isolation, but is not used in a congested environment. 

 

Optimizing Blue strategy yields investment in MCS of 𝑀𝑀𝑀𝑀𝑆𝑆𝐵𝐵
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≔

𝑎𝑎1�𝑚𝑚𝐵𝐵
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�

𝑎𝑎2 = $50,759,462, and fishing quotas of �𝐹𝐹𝐵𝐵1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐹𝐹𝐵𝐵2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐹𝐹𝐵𝐵3
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� =

(876, 776, 632).  Blue’s optimal utility is 𝑢𝑢𝐵𝐵
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = $770,036,329.  As shown next, in 
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the congested environment neither Blue nor Red will invest in MCS, and Blue’s utility 

will fall substantially. 

 

5.4.2.2. Example 5.3:  Two Players, Three Fisheries Each 

This example extends Example 5.2, where Red now owns three fisheries which 

are symmetric to Blue’s.  Red’s costs, patrols, and maritime militias are as they were in 

Example 5.1:  𝑐𝑐𝑅𝑅 = $120,000, 𝑃𝑃𝑅𝑅 = 50, 𝛽𝛽𝑅𝑅 = 400.  The iterative search methodology 

described at the beginning of Section 5.4.2 is used to find the following equilibrium: 

 𝑀𝑀𝑀𝑀𝑆𝑆𝐵𝐵𝑁𝑁𝑁𝑁 = $0, (𝐹𝐹𝐵𝐵1𝑁𝑁𝑁𝑁 ,𝐹𝐹𝐵𝐵2𝑁𝑁𝑁𝑁 ,𝐹𝐹𝐵𝐵3𝑁𝑁𝑁𝑁) = (1220, 1002, 443) 

 𝑀𝑀𝑀𝑀𝑆𝑆𝑅𝑅𝑁𝑁𝑁𝑁 = $0, (𝐹𝐹𝑅𝑅1𝑁𝑁𝐶𝐶 ,𝐹𝐹𝑅𝑅2𝑁𝑁𝑁𝑁 ,𝐹𝐹𝑅𝑅3𝑁𝑁𝑁𝑁) = (1346, 1301, 1191). 

 

Overall, the players are fishing more than would be the case in an uncongested 

environment; Blue’s legal optima was provided in Example 5.2, and Red’s is 

�𝐹𝐹𝑅𝑅1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐹𝐹𝑅𝑅2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝐹𝐹𝑅𝑅3
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� = (964, 869, 733).  The solution to the subgame at this 

equilibrium point is shown in Table 5.3, and is unique.  Uniqueness was verified by 

attempting to solve (5.6) multiple times, each time with a single added constraint stating a 

SGV is above or below its value in Table 5.3; all attempts resulted in an infeasible 

program.  The off-diagonals of Table 5.3 represent illegal fishing and it’s seen Red is the 

only player fishing illegally.  Each of these results mirror what was found in the one-

fishery case.  The new finding is that while MCS was viewed as a valuable investment in 

the uncongested scenario of Example 5.2, the players now do not invest in MCS. 
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Table 5.3 
Subgame equilibrium for Example 5.3 equilibrium 

  Legally Authorized Fishery 
Utilized Fishery 𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 

𝐵𝐵1 1220 0 0 0 128 12 
𝐵𝐵2 0 1002 0 0 0 144 
𝐵𝐵3 0 0 443 0 0 276 
𝑅𝑅1 0 0 0 1346 0 0 
𝑅𝑅2 0 0 0 0 1173 0 
𝑅𝑅3 0 0 0 0 0 759 

 
 
 

The utilities realized at this equilibrium are 𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁 = $490,945,571 and 𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁 =

$994,985,413.  Legal utilities are 𝑢𝑢𝐵𝐵
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = $770,036,329 and 𝑢𝑢𝑅𝑅

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = $964,078,848; 

the large decline in Blue utility and relative insensitivity of Red utility again mirrors the 

one-fishery case.  To assess the value of cooperation, the Nash bargaining problem (5.7) 

is again solved, but now MCS costs are accounted for and each player is allowed to fish 

legally in each fishery of the other.  Nested partitioning was used to arrive at the solution 

𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁 = $54,733,849, 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = $56,347,437, and the fishing levels detailed in 

Table 5.4.  The corresponding utilities are 𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁 = $618,337,318 (a gain of 25.95%) and 

𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = $1,160,859,577 (a gain of 16.67%). 

 
 
 

Table 5.4 
Nash bargaining quotas for Example 5.3 

  Fishery 
Player 𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 
Blue 800 726 91 14 59 10 
Red 58 86 640 896 836 720 
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As in the one fishery case, it’s useful to examine how many quotas are being 

granted for foreign fishermen to fish in domestic waters.  In all but fishery 𝐵𝐵3, the 

percentage of foreign fishing is small.  Fishery 𝐵𝐵3 has in effect been given to Red as 

payback for cooperating (87.55% of all fishing here is by Red fishermen).  This may 

cause political problems, but examining this is beyond the scope of this chapter. 

 

5.4.2.3. Additional Examples with Three Fisheries per Player 

The results of Example 5.3 are generalized in Table 5.5, which compares 

noncooperative equilibrium utilities, Nash bargaining utilities, and legal utilities for 

alternative values of 𝑃𝑃𝐵𝐵 and 𝑐𝑐𝑅𝑅.  Note that because 𝑃𝑃𝐵𝐵 only enters the model in the term 

𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵, shocking 𝑃𝑃𝐵𝐵 can also be used to assess the sensitivity to 𝛽𝛽𝑅𝑅.  Nash bargaining MCS 

expenditures are also listed.  All examples exhibit the same pattern as past findings.  Of 

note, Blue’s utility increases substantially under both noncooperation and bargaining as 

𝑃𝑃𝐵𝐵 increases from the baseline value of 30 patrols craft per 100,000 square kilometers, to 

50.  The gain from increasing 𝑃𝑃𝐵𝐵 from 50 to 100 is also significant.  Of course, viewing 

this decision in isolation neglects the possibility Red may respond by investing in more 

maritime militias, offsetting the increase in Blue patrols.  The strategic interaction 

between investments in patrols and maritime militias is left as a point of future research. 
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Table 5.5 
Utilities for additional examples with multiple fisheries 

    𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁 𝑢𝑢𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁 𝑢𝑢𝐵𝐵
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁 𝑢𝑢𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 𝑢𝑢𝑅𝑅

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 

Parameters   billions of USD   millions of USD 

Base  (Ex. 5.3)   .49 .62 .7700 .99 1.16 .9641   54.73 56.35 
𝑃𝑃𝐵𝐵 = 50   .59 .67 .7715 .97 1.07 .9641   46.53 48.25 
𝑃𝑃𝐵𝐵 = 100   .63 .71 .7748 .91 1.02 .9641   34.12 60.63 

𝑐𝑐𝑅𝑅 = $150,000   .58 .69 .7700 .86 .98 .8887   44.08 52.17 
𝑐𝑐𝑅𝑅 = $200,000   .71 .76 .7700 .72 .77 .7704   50.77 51.36 

 
 
 

5.5. Conclusion and Future Work 

This chapter modeled a scenario akin to the ECS, where two maritime nations in 

close proximity faced the decisions of how many legal fishing quotas to issue and how 

much to invest in MCS.  Consistent with observed behavior in the ECS, the model 

predicts illegal encroachments on account of excessive issuance of quotas.  Also 

consistent with observed behavior, each state underinvests in MCS.  The chapter thus 

provides a rational explanation for illegal encroachments and substandard MCS beyond 

the typical explanations of uncontrollable criminal activity and a lack of political will to 

implement strong MCS.  A bargaining problem was also solved which quantified the 

substantial gains to be had from cooperation.  In the bargain, the player with lower costs, 

either by virtue of lower opportunity costs or more patrols and maritime militias, is seen 

to achieve more than the optimal utility he could achieve in the absence of a nearby 

player.  This gain is realized through legal quotas for the low-cost player in the high-cost 

player’s waters. 
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The Gordon-Schaeffer fisheries model with logistics growth and a constant-effort 

harvesting rates was used throughout this chapter.  Future research ought to perform 

similar analysis with alternative fisheries models.  Additional complicating factors should 

also to be assessed, such as migration of species, discounted payoffs, and stochastic 

growth and harvest rates.  Problems with many more than three fisheries, and more than 

two players, are perhaps the most critical point of future research as such a scenario is 

required to truly model the ECS, and thus use the model for policy recommendations.  

All of these model extensions will require sophisticated computational techniques. 

 

A few other lines of future work are pertinent.  As mentioned in Section 5.2, an 

empirical analysis of the effectiveness of maritime militias is lacking in the literature.  

Such a study would improve the analysis presented here by giving evidence-based 

assessments of 𝛽𝛽𝐵𝐵 and 𝛽𝛽𝑅𝑅.  Accounting for illegal third-parties, such as long-distance 

fishermen entering the ECS and unloading their catch at far-off ports would also add 

realism to the model.  Lastly, congested maritime environments where there is not a legal 

delineation of fishing rights is an important area of study.  Such is the situation in the 

SCS, for example, where the consequences of opposing nations’ patrol craft confronting 

one another becomes an important consideration that wasn’t relevant in this chapter.  Not 

only do interacting patrols likely reduce the deterrent effect of patrols (as fishermen can 

sound a distress call if confronted by opposition patrols), but the threat of escalation to 

greater conflict may increase. 
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Appendix 5.A. Proofs of Theorems 5.1-3 

This appendix restates and proves Theorems 5.1, 5.2, and 5.3.  Throughout, 

notation is used that assumed each player owns only one fishery.  To support the proofs, a 

useful, nonrestrictive assumption is stated. 

Assumption 5.1.  Based on the statistical improbability of the contrary, it’s 

assumed open access levels (the levels of biomasses at which rents are 0) are 

never exactly identical for Blue and Red fishermen.  That is, 𝑐𝑐𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

≠ 𝑐𝑐𝑅𝑅+𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

 and 

𝑐𝑐𝐵𝐵+𝛽𝛽𝐵𝐵𝑃𝑃𝐵𝐵𝑅𝑅
𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

≠ 𝑐𝑐𝑅𝑅
𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

. 

 

5.A.1. Proof of Theorem 5.1 

Theorem 5.1.  Existence of a unique subgame equilibrium. 

When Blue and Red each own only one fishery, any instantiation of the game’s 

parameters and choice of the overall game’s decision variables yields a unique subgame 

equilibrium (SGE). 

Proof. 

It’s first be proved that for any instantiation, a SGE exists.  Consider the following 

algorithm which takes the parameters and (𝐹𝐹𝐵𝐵,𝐹𝐹𝑅𝑅) as given and seeks values of the 

SGVs: 
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Algorithm 5.1.  Finding a SGE. 

1. Initiate 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝑅𝑅𝑅𝑅 = 0. 

2. Determine the set of SGVs, 𝐹𝐹′, to increase in the next iteration of the 

algorithm, per below. 

 

Define the rents produced by each SGV as 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵 − 𝑐𝑐𝐵𝐵, 𝜋𝜋𝑅𝑅𝑅𝑅 =

𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝑅𝑅 − 𝑐𝑐𝐵𝐵 − 𝛽𝛽𝐵𝐵𝑃𝑃𝐵𝐵𝑅𝑅, 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝐵𝐵 − 𝑐𝑐𝑅𝑅 − 𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵, and 𝜋𝜋𝑅𝑅𝑅𝑅 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝑅𝑅 − 𝑐𝑐𝑅𝑅; 

e.g. the SGV 𝐹𝐹𝐵𝐵𝐵𝐵 produces rent equivalent to 𝑅𝑅𝐵𝐵𝐵𝐵.  Define the maximum 

achievable rent as: 

 𝜋𝜋′ = max�

𝜋𝜋𝐵𝐵𝐵𝐵 ,𝜋𝜋𝑅𝑅𝑅𝑅, 0;  if 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑅𝑅 ,𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 < 𝐹𝐹𝐵𝐵
𝜋𝜋𝐵𝐵𝐵𝐵 ,𝜋𝜋𝑅𝑅𝑅𝑅 , 0;  if 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 < 𝐹𝐹𝑅𝑅 ,𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵

0;  if 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑅𝑅 ,𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝐵𝐵 = 𝐹𝐹𝐵𝐵
𝜋𝜋𝐵𝐵𝐵𝐵 ,𝜋𝜋𝑅𝑅𝑅𝑅,𝜋𝜋𝐵𝐵𝐵𝐵 ,𝜋𝜋𝑅𝑅𝑅𝑅 , 0;  otherwise

. (5.8) 

 

If 𝜋𝜋′ = 0, stop.  Otherwise, include all SGVs in 𝐹𝐹′ whose corresponding rent 

equals 𝜋𝜋′, and can be increased without decreasing another SGV; that is, only 𝐹𝐹𝐵𝐵𝐵𝐵 

and 𝐹𝐹𝑅𝑅𝑅𝑅 may only be in 𝐹𝐹′ if 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 < 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑅𝑅, and similarly 

for 𝐹𝐹𝐵𝐵𝐵𝐵 and 𝐹𝐹𝑅𝑅𝑅𝑅. 

 

Before describing steps 3 through 6, note the following properties are maintained 

throughout the algorithm: 
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Algorithm 5.1, Property 1.  SGVs are never allowed to go below 0, nor are the 

total quotas used by Blue (Red) allowed to exceed 𝐹𝐹𝐵𝐵 (𝐹𝐹𝑅𝑅), so constraints (5.6b) 

and (5.6e) are satisfied throughout the algorithm. 

 

Algorithm 5.1, Property 2.  If a SGV is greater than 0, it must produce positive 

rent which is at least as great as the corresponding player’s rent in the other 

waters.  Therefore, constraint (5.6c) governing equality of rent are satisfied 

throughout the algorithm. 

 

3. If |𝐹𝐹′| = 1, then WLOG assume 𝐹𝐹′ = {𝐹𝐹𝐵𝐵𝐵𝐵}.  Note this implies 𝐹𝐹𝑅𝑅𝑅𝑅 = 0; it’s 

known 𝑅𝑅𝑅𝑅𝑅𝑅 < 𝑅𝑅𝐵𝐵𝐵𝐵 = 𝑅𝑅′ (otherwise 𝐹𝐹𝑅𝑅𝑅𝑅 would be in 𝐹𝐹′), and because the equality 

of rent constraints are maintained throughout the algorithm, 𝐹𝐹𝑅𝑅𝑅𝑅 = 0. 

3.1. If 𝐹𝐹𝐵𝐵𝐵𝐵 = 0, increase 𝐹𝐹𝐵𝐵𝐵𝐵 until 𝜋𝜋𝐵𝐵𝐵𝐵 = 0, 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝐵𝐵, or 𝜋𝜋𝐵𝐵𝐵𝐵 equals one 

of 𝜋𝜋𝑅𝑅𝑅𝑅, 𝜋𝜋𝐵𝐵𝐵𝐵, or 𝜋𝜋𝑅𝑅𝑅𝑅 (whichever occurs first).  Return to step 2. 

3.2. If 𝐹𝐹𝐵𝐵𝐵𝐵 > 0 and 𝜋𝜋𝐵𝐵𝐵𝐵 > 𝜋𝜋𝑅𝑅𝑅𝑅, increase 𝐹𝐹𝐵𝐵𝐵𝐵 until 𝜋𝜋𝐵𝐵𝐵𝐵 = 0, 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝐵𝐵, 

𝜋𝜋𝐵𝐵𝐵𝐵 = 0, 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅, or 𝜋𝜋𝐵𝐵𝐵𝐵 equals one of 𝜋𝜋𝑅𝑅𝑅𝑅 or 𝜋𝜋𝐵𝐵𝐵𝐵 (whichever occurs 

first).  Return to step 2. 

3.3. If 𝐹𝐹𝐵𝐵𝐵𝐵 > 0 and 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 > 0, increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 1, decrease 𝐹𝐹𝐵𝐵𝐵𝐵 

at rate 𝛥𝛥 = 𝑍𝑍𝐵𝐵𝑞𝑞𝐵𝐵𝑟𝑟𝐵𝐵𝑟𝑟𝑅𝑅
𝑟𝑟𝐵𝐵(𝑍𝑍𝐵𝐵𝑞𝑞𝑅𝑅𝑟𝑟𝑅𝑅+𝑍𝑍𝑅𝑅𝑞𝑞𝑅𝑅𝑟𝑟𝐵𝐵), and increase 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 𝛥𝛥 until 𝜋𝜋𝐵𝐵𝐵𝐵 = 0, 

𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝐵𝐵, 𝐹𝐹𝐵𝐵𝐵𝐵 = 0, 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 = 0, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 (whichever 

occurs first).  Return to step 2.  Note:  𝛥𝛥 is defined so equality of Red rents 
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is preserved; also note the total quotas being used by Red fishermen does 

not change. 

3.4. If 𝐹𝐹𝐵𝐵𝐵𝐵 > 0 and 𝜋𝜋𝐵𝐵𝐵𝐵 = 0, increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 1 and decrease 𝐹𝐹𝐵𝐵𝐵𝐵 at 

rate 𝛥𝛥 = 𝑞𝑞𝐵𝐵
𝑞𝑞𝑅𝑅

 until 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝐵𝐵 or 𝐹𝐹𝐵𝐵𝐵𝐵 = 0 (whichever occurs first).  Return to 

step 2.  𝛥𝛥 is defined so Blue biomass is not changed; Blue fishermen 

merely replace Red ones. 

 

4. If |𝐹𝐹′| = 2 and both SGVs in 𝐹𝐹′ represent the same player, then assume 

WLOG 𝐹𝐹′ = {𝐹𝐹𝐵𝐵𝐵𝐵,𝐹𝐹𝑅𝑅𝑅𝑅}.  Note:  𝜋𝜋𝑅𝑅𝑅𝑅 > 𝜋𝜋𝐵𝐵𝐵𝐵, since Blue is achieving equality of 

rent; hence, 𝐹𝐹𝐵𝐵𝐵𝐵 = 0. 

4.1. If 𝐹𝐹𝑅𝑅𝑅𝑅 = 0, increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 1 and 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 𝛥𝛥 = 𝑟𝑟𝑅𝑅𝑍𝑍𝐵𝐵
𝑟𝑟𝐵𝐵𝑍𝑍𝑅𝑅

, until 

𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 = 0, 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 = 𝜋𝜋𝑅𝑅𝑅𝑅 (whichever 

occurs first).  Return to step 2.  𝛥𝛥 was derived so equality of Blue rents is 

maintained. 

4.2. If 𝐹𝐹𝑅𝑅𝑅𝑅 > 0 and 𝜋𝜋𝑅𝑅𝑅𝑅 > 0, increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 1 and 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 𝛥𝛥 =

𝑟𝑟𝑅𝑅𝑍𝑍𝐵𝐵
𝑟𝑟𝐵𝐵𝑍𝑍𝑅𝑅

 until 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 = 0, 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵, 𝜋𝜋𝑅𝑅𝑅𝑅 = 0, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 =

𝜋𝜋𝑅𝑅𝑅𝑅 (whichever occurs first).  Return to step 2.  𝛥𝛥 was again defined to 

preserve equality of Blue rents. 

4.3. If 𝐹𝐹𝑅𝑅𝑅𝑅 > 0 and 𝜋𝜋𝑅𝑅𝑅𝑅 = 0, increase 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 1 and decrease 𝐹𝐹𝑅𝑅𝑅𝑅 at 

rate 𝛥𝛥 = 𝑞𝑞𝐵𝐵
𝑞𝑞𝑅𝑅

 until 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵 or 𝐹𝐹𝑅𝑅𝑅𝑅 = 0.  Return to step 2.  𝛥𝛥 is 
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defined so Red biomass is not changed; Blue fishermen merely replace 

Red ones. 

 

5. If |𝐹𝐹′| = 2 and the SGVs in 𝐹𝐹′ represent different players, there are two 

general cases to consider. 

5.1. Assume each player is fishing domestically, so that 𝐹𝐹′ = {𝐹𝐹𝐵𝐵𝐵𝐵,𝐹𝐹𝑅𝑅𝑅𝑅}; 

note this implies 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵𝐵𝐵 = 0, so the equality of rent constraints aren’t 

violated.  Increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 1 and 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 𝛥𝛥 = 𝑟𝑟𝑅𝑅𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵
2𝑍𝑍𝐵𝐵

𝑟𝑟𝐵𝐵𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅
2𝑍𝑍𝑅𝑅

 until 𝜋𝜋𝐵𝐵𝐵𝐵 =

𝜋𝜋𝑅𝑅𝑅𝑅 = 0, 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝐵𝐵, 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑅𝑅, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 equals one of 𝜋𝜋𝑅𝑅𝑅𝑅 or 𝜋𝜋𝐵𝐵𝐵𝐵 

(whichever occurs first).  Return to step 2.  𝛥𝛥 was determined so 𝜋𝜋𝐵𝐵𝐵𝐵 =

𝜋𝜋𝑅𝑅𝑅𝑅 is maintained. 

5.2. Assume both players are fishing in one fishery.  WLOG, let 𝐹𝐹′ =

{𝐹𝐹𝐵𝐵𝐵𝐵,𝐹𝐹𝐵𝐵𝐵𝐵}.  Unless 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅 this represents an infinitesimally small 

portion of 𝑥𝑥𝐵𝐵-space:  𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵 − 𝑐𝑐𝐵𝐵 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝐵𝐵 − 𝑐𝑐𝑅𝑅 − 𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵 → 𝑥𝑥𝐵𝐵 =

𝑐𝑐𝐵𝐵−𝑐𝑐𝑅𝑅−𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵−𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

.  As soon as 𝑥𝑥𝐵𝐵 decreases by an infinitesimal amount, Blue 

fishermen are receiving higher rent in Blue waters if 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 < 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅, and 

Red is receiving higher rent otherwise. 

5.2.1. If 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅, then as 𝑥𝑥𝐵𝐵 changes Blue and Red rents 

change by the same amount.  Increase 𝐹𝐹𝐵𝐵𝐵𝐵 and 𝐹𝐹𝐵𝐵𝐵𝐵 at the same rate 

until 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝐵𝐵𝐵𝐵 = 0, 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝐵𝐵, 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝑅𝑅, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 

(whichever occurs first).  Return to step 2. 
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5.2.2. If 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 ≠ 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅, WLOG assume 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 > 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅.  Increase 

𝐹𝐹𝐵𝐵𝐵𝐵 until 𝜋𝜋𝐵𝐵𝐵𝐵 = 0, 𝐹𝐹𝐵𝐵𝐵𝐵 = 𝐹𝐹𝑅𝑅, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 (whichever occurs 

first).  Return to step 2. 

 

6. If |𝐹𝐹′| = 3, assume WLOG 𝐹𝐹′ = {𝐹𝐹𝐵𝐵𝐵𝐵,𝐹𝐹𝑅𝑅𝑅𝑅,𝐹𝐹𝑅𝑅𝑅𝑅}.  Note it’s impossible to have 

the player who’s only fishing in one fishery be fishing illegally.  For example, if 

Blue’s rents are equal, then Red’s is greater in Red waters and hence 𝐹𝐹𝐵𝐵𝐵𝐵 cannot 

be in 𝐹𝐹′:  𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵 = 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝑅𝑅 − 𝛽𝛽𝐵𝐵𝑃𝑃𝐵𝐵𝑅𝑅 → 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝐵𝐵 − 𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵 < 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝑅𝑅.  It’s also 

known 𝐹𝐹𝐵𝐵𝐵𝐵 = 0.  Similarly to step 5.2 this represents an infinitesimally small 

portion of (𝑥𝑥𝐵𝐵, 𝑥𝑥𝑅𝑅)-space:  𝐹𝐹𝐵𝐵𝐵𝐵,𝐹𝐹𝐵𝐵𝐵𝐵 ∈ 𝐹𝐹′ → 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵 − 𝑐𝑐𝐵𝐵 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝐵𝐵 − 𝑐𝑐𝑅𝑅 −

𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵 → 𝑥𝑥𝐵𝐵 = 𝑐𝑐𝐵𝐵−𝑐𝑐𝑅𝑅−𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵−𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

; and 𝐹𝐹𝐵𝐵𝐵𝐵 ,𝐹𝐹𝑅𝑅𝑅𝑅 ∈ 𝐹𝐹′ → 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵 = 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝑅𝑅 −

𝛽𝛽𝐵𝐵𝑃𝑃𝐵𝐵𝑅𝑅 → 𝑥𝑥𝑅𝑅 = 𝑥𝑥𝐵𝐵 + 𝛽𝛽𝐵𝐵𝑃𝑃𝐵𝐵𝑅𝑅
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

= 𝑐𝑐𝐵𝐵−𝑐𝑐𝑅𝑅−𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵−𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

+ 𝛽𝛽𝐵𝐵𝑃𝑃𝐵𝐵𝑅𝑅
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

. 

6.1. If 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅, then 𝜋𝜋𝑅𝑅𝑅𝑅 and 𝜋𝜋𝑅𝑅𝑅𝑅 decline at the same rate as 𝑥𝑥𝑅𝑅 

declines.  Increase 𝐹𝐹𝑅𝑅𝑅𝑅 and 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 1, and increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 𝛥𝛥 =

𝑟𝑟𝐵𝐵𝑍𝑍𝑅𝑅(𝑞𝑞𝐵𝐵+𝑞𝑞𝑅𝑅)
𝑟𝑟𝑅𝑅𝑍𝑍𝐵𝐵𝑞𝑞𝐵𝐵

, until 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑅𝑅, 𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 = 𝜋𝜋𝑅𝑅𝑅𝑅 = 0 

(whichever occurs first).  Return to step 2.  𝛥𝛥 was derived to preserve 

equality of rent. 

6.2. If 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 > 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅, then 𝜋𝜋𝑅𝑅𝑅𝑅 declines faster than 𝜋𝜋𝑅𝑅𝑅𝑅 as 𝑥𝑥𝑅𝑅 declines.  

Increase 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 1 and increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 𝛥𝛥 = 𝑟𝑟𝐵𝐵𝑍𝑍𝑅𝑅𝑞𝑞𝑅𝑅
𝑟𝑟𝑅𝑅𝑍𝑍𝐵𝐵𝑞𝑞𝐵𝐵

, until 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑅𝑅, 

𝐹𝐹𝐵𝐵𝐵𝐵 + 𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵, or 𝜋𝜋𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑅𝑅𝑅𝑅 = 0 (whichever occurs first).  Return to 

step 2.  𝛥𝛥 preserves equality of rent for Blue. 



123 
 

6.3. If 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵 < 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅, then 𝜋𝜋𝑅𝑅𝑅𝑅 declines faster than 𝜋𝜋𝑅𝑅𝑅𝑅 as 𝑥𝑥𝑅𝑅 declines.  

Increase 𝐹𝐹𝑅𝑅𝑅𝑅 at rate 1 and increase 𝐹𝐹𝐵𝐵𝐵𝐵 at rate 𝛥𝛥 = 𝑟𝑟𝐵𝐵𝑍𝑍𝑅𝑅
𝑟𝑟𝑅𝑅𝑍𝑍𝐵𝐵

, until 𝐹𝐹𝐵𝐵𝐵𝐵 +

𝐹𝐹𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐵𝐵 or 𝜋𝜋𝑅𝑅𝑅𝑅 = 0 (whichever occurs first).  Return to step 2.  𝛥𝛥 was 

derived to preserve equality of rent for Blue. 

 

The proof this algorithm always produces a SGE is clear after noting two 

additional properties to accompany Properties 1 and 2.  Rereading the algorithm, the 

following properties are apparent: 

Algorithm 5.1, Property 3.  𝜋𝜋′ is nonincreasing for every step.  More precisely, 

it’s either constant (steps 3.4 and 4.3) or decreasing linearly (all other steps).  

Steps 3.4 and 4.3 eventually terminate and result in either:  𝜋𝜋′ = 0 on account of 

all profitable quotas being used; or performing step 3.1 or 4.1 in the next iteration.  

Therefore 𝜋𝜋′ will eventually reach 0. 

 

Algorithm 5.1, Property 4.  𝜋𝜋′ = 0 implies either all quotas are exhausted, or 

neither player can achieve positive rent with their remaining quotas, and hence 

constraint (5.6d) is satisfied at the algorithm’s termination. 

 

Properties 1 through 4 combined mean all subgame constraints are satisfied at the 

algorithm’s termination, and hence it produces a SGE. 
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To complete the proof of Theorem 5.1, it’s now shown whenever a SGE exists, it 

must be unique.  This is shown in two parts:  first, if there exists a SGE resulting in 

biomasses 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 , it’s shown any SGE must yield these biomasses; next, it’s 

shown biomasses at SGE are sufficient to uniquely determine the values of the SGVs. 

 

Assume Algorithm 5.1 was used to produce a SGE with biomasses 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆  and 

𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 .  Now consider an alternative SGE; its biomasses and SGVs will be referenced 

using the “prime” superscript (′) to differentiate between the original SGE, superscripted 

by 𝑆𝑆𝑆𝑆𝑆𝑆.  Assume one of the biomasses has increased; WLOG, 𝑥𝑥𝐵𝐵′ > 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 .  This means at 

least one player, WLOG Blue, was previously fishing in Blue waters and is now fishing 

less in Blue waters:  0 ≤ 𝐹𝐹𝐵𝐵,𝐵𝐵
′ < 𝐹𝐹𝐵𝐵,𝐵𝐵

𝑆𝑆𝑆𝑆𝑆𝑆 .  If Blue fishermen are not fishing in Red waters 

under the new SGE (𝐹𝐹𝑅𝑅,𝐵𝐵
′ = 0), then they’re using all available quotas in Blue waters:  

𝐹𝐹𝐵𝐵,𝐵𝐵
′ = 𝐹𝐹𝐵𝐵; otherwise constraints (5.6c) in the subgame would be violated stating Blue 

doesn’t leave profitable quotas unused.  This contradicts 𝐹𝐹𝐵𝐵,𝐵𝐵
′ < 𝐹𝐹𝐵𝐵,𝐵𝐵

𝑆𝑆𝐺𝐺𝐺𝐺 ≤ 𝐹𝐹𝐵𝐵, so assume 

instead Blue fishermen are fishing in Red waters.  𝐹𝐹𝑅𝑅,𝐵𝐵
′ > 0 implies 𝑥𝑥𝑅𝑅 has also increased, 

since by (5.6c) 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 − 𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅 → 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵′ > 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 − 𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅 and 

𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵′ ≤ 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝑅𝑅′ − 𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅 → 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑥𝑥𝑅𝑅′ .  Since both biomasses have increased, at least 

one player’s fishermen are using less overall quotas, hence they have quotas to use which 

are profitable at these higher levels of biomass (otherwise, the original SGE would 

violate (5.6c)), thus (5.6d) is violated and this is not a SGE.  In sum, there can be no SGE 

with 𝑥𝑥𝐵𝐵 > 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 , and by analogy none with 𝑥𝑥𝑅𝑅 > 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 . 
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Assume instead one of the biomasses has declined; WLOG, 𝑥𝑥𝐵𝐵′ < 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 .  At least 

one of the players, WLOG Blue, must be using more quotas in Blue waters:  𝐹𝐹𝐵𝐵,𝐵𝐵
′ >

𝐹𝐹𝐵𝐵,𝐵𝐵
𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 0.  She would have used this larger amount of quotas in Blue waters under the 

original SGE so as not to violate (5.6e), unless 𝐹𝐹𝑅𝑅,𝐵𝐵
𝑆𝑆𝑆𝑆𝑆𝑆 > 0 and Blue fishermen were 

earning greater or equal rent compared to Blue waters.  This implies 𝑥𝑥𝑅𝑅′ < 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 , as 

otherwise Blue would now be receiving strictly greater rent in Red waters, entailing 

𝐹𝐹𝐵𝐵,𝐵𝐵
′ = 0.  Because both biomasses have declined, at least one player’s fishermen are 

using more overall quotas, implying in the original SGE they had additional quotas to use 

which were profitable at higher biomasses (if not, (5.6c) would be violated in the new 

SGE), hence (5.6d) was violated by the original SGE, a contradiction.  In sum, under any 

SGE, Blue biomass must be 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 , and by analogy Red must be 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 . 

 

Knowing any SGE must have the same levels of biomass, the proof SGEs are 

unique is concluded by showing biomasses can uniquely determine the values of the 

SGVs.  First note biomasses can immediately identify which SGVs must be 0.  For 

example, if Red biomass is less than 𝑐𝑐𝐵𝐵+𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅
𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

 (Blue’s so-called open access level in Red 

waters), then 𝐹𝐹𝑅𝑅,𝐵𝐵 = 0; similar statements hold for 𝐹𝐹𝐵𝐵,𝐵𝐵, 𝐹𝐹𝐵𝐵,𝑅𝑅, and 𝐹𝐹𝑅𝑅,𝑅𝑅.  If 𝑥𝑥𝐵𝐵𝑆𝑆𝐺𝐺𝐺𝐺 >

𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 −
𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅
𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

, then Blue fishermen earn greater rent in Blue water and 𝐹𝐹𝑅𝑅,𝐵𝐵 = 0; similar 

statements hold for 𝐹𝐹𝐵𝐵,𝐵𝐵, 𝐹𝐹𝐵𝐵,𝑅𝑅, and 𝐹𝐹𝑅𝑅,𝑅𝑅.  Now consider three possibilities:  only one SGV 

is potentially nonzero; only two are potentially nonzero; and three are potentially 

nonzero.  Note four nonzero SGVs is impossible, as either 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 −
𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅
𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

, implying 
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𝐹𝐹𝑅𝑅,𝐵𝐵 = 0, or 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 −
𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅
𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

, implying 𝐹𝐹𝐵𝐵,𝐵𝐵 = 0, or 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 −
𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅
𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

, implying 

𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 −
𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

< 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆  and 𝐹𝐹𝐵𝐵,𝑅𝑅 = 0. 

 

If only one SGV may be nonzero, assume WLOG this is 𝐹𝐹𝐵𝐵,𝐵𝐵.  It’s apparent this 

has a unique value; simply increase 𝐹𝐹𝐵𝐵,𝐵𝐵 until 𝑥𝑥𝐵𝐵 = 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 .  If two nonzero SGVs are 

possible there are three general cases.  First, assume one player may be fishing in one 

fishery, and the other player in the other; WLOG, 𝐹𝐹𝐵𝐵,𝐵𝐵 and 𝐹𝐹𝑅𝑅,𝑅𝑅 may be nonzero.  As 

when only one SGV could be nonzero, the unique SGE is clear:  increase 𝐹𝐹𝐵𝐵,𝐵𝐵 until 𝑥𝑥𝐵𝐵 =

𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 , and do likewise for 𝐹𝐹𝑅𝑅,𝑅𝑅.  If instead one player is fishing in both waters, assume 

WLOG 𝐹𝐹𝐵𝐵,𝐵𝐵 and 𝐹𝐹𝑅𝑅,𝐵𝐵 may be nonzero.  Again, the unique solution mandates 𝐹𝐹𝐵𝐵,𝐵𝐵 and 

𝐹𝐹𝑅𝑅,𝐵𝐵 are increased until stocks are depleted to 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 .  Lastly, assume both 

players may be fishing in one fishery; WLOG, 𝐹𝐹𝐵𝐵,𝐵𝐵 and 𝐹𝐹𝐵𝐵,𝑅𝑅 may be nonzero.  It’s known 

𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 ≥
𝑐𝑐𝐵𝐵

𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵
 and 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 ≥

𝑐𝑐𝑅𝑅+𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

, and by Assumption 1 one of these inequalities must 

be strict; WLOG, assume 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 > 𝑐𝑐𝑅𝑅+𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵𝐵𝐵
𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

.  By subgame constraint (5.6d), Red 

fishermen must use all quotas, 𝐹𝐹𝐵𝐵,𝑅𝑅 = 𝐹𝐹𝑅𝑅.  To uniquely determine 𝐹𝐹𝐵𝐵,𝐵𝐵, simply increase it 

until 𝑥𝑥𝐵𝐵 = 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 .  The final case assumes three SGVs may be nonzero; WLOG, 𝐹𝐹𝐵𝐵,𝐵𝐵, 

𝐹𝐹𝐵𝐵,𝐵𝐵, and 𝐹𝐹𝑅𝑅,𝑅𝑅.  𝐹𝐹𝑅𝑅,𝑅𝑅 must be that which depletes Red biomass to 𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 .  From here, the 

same logic can be applied as when only 𝐹𝐹𝐵𝐵,𝐵𝐵 and 𝐹𝐹𝐵𝐵,𝑅𝑅 were allowed to be nonzero to 

determine their unique values; the one amendment is that 𝐹𝐹𝐵𝐵,𝑅𝑅 = 𝐹𝐹𝑅𝑅 − 𝐹𝐹𝑅𝑅,𝑅𝑅, rather than 
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𝐹𝐹𝐵𝐵,𝑅𝑅 = 𝐹𝐹𝑅𝑅.  In sum, knowing the biomasses at the subgame equilibrium allows the SGVs 

to be uniquely determined. 

 

To summarize the proof of Theorem 5.1:  (i) by Algorithm 5.1 and the associated 

proof, a SGE always exists; (ii) if there exists a SGE resulting in biomasses 𝑥𝑥𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆  and 

𝑥𝑥𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 , then any SGE must result in these biomasses; (iii) SGE biomasses are sufficient to 

uniquely determine the SGVs, and hence a unique SGE always exists. 

5.A.2. Proof of Theorem 5.2 

Theorem 5.2.  Formulae for the unique subgame equilibrium via a partitioning of 

the parameter and decision space. 

Assume Blue and Red each own one fishery.  The parameter and decision variable space 

can be partitioned, such that in each region of the partition analytical formulae exist for 

the subgame variables. 

Proof. 

The proof uses Theorem 5.1, as well as the notion that subgame equilibria can be 

categorized into various “forms.”  The form of a subgame equilibrium defines which 

SGVs are nonzero and whether each player’s quotas are exhausted.  For example, one 

form of a SGE could be 𝐹𝐹𝐵𝐵,𝐵𝐵,𝐹𝐹𝐵𝐵,𝑅𝑅 ,𝐹𝐹𝑅𝑅,𝑅𝑅 > 0, 𝐹𝐹𝑅𝑅,𝐵𝐵 = 0, 𝐹𝐹𝐵𝐵,𝐵𝐵 = 𝐹𝐹𝐵𝐵, and 𝐹𝐹𝐵𝐵,𝑅𝑅 + 𝐹𝐹𝑅𝑅,𝑅𝑅 = 𝐹𝐹𝑅𝑅.  

For each possible form, it’s straightforward to derive necessary and sufficient conditions 

for the SGE to have that form, as is deriving the analytical formulae for the SGVs.  

Continuing the example form just mentioned, the formulae for the SGVs are derived by 
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noting that since 𝐹𝐹𝐵𝐵,𝑅𝑅 ,𝐹𝐹𝑅𝑅,𝑅𝑅 > 0, Red’s rents must equate (by (5.6c)):  𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑍𝑍𝐵𝐵 �1 −

𝑞𝑞𝐵𝐵
𝑟𝑟𝐵𝐵
�𝐹𝐹𝐵𝐵 + 𝐹𝐹𝐵𝐵,𝑅𝑅�� − 𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑅𝑅 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑍𝑍𝑅𝑅 �1 − 𝑞𝑞𝑅𝑅

𝑟𝑟𝑅𝑅
𝐹𝐹𝑅𝑅,𝑅𝑅�.  Combined with 𝐹𝐹𝐵𝐵,𝑅𝑅 +

𝐹𝐹𝑅𝑅,𝑅𝑅 = 𝐹𝐹𝑅𝑅, this yields a linear system with two equations and two unknowns, which has 

solution: 

𝐹𝐹𝐵𝐵,𝑅𝑅 = −𝑟𝑟𝑅𝑅𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵
2𝑍𝑍𝐵𝐵𝐹𝐹𝐵𝐵+𝑟𝑟𝐵𝐵𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

2𝑍𝑍𝑅𝑅𝐹𝐹𝑅𝑅+𝑟𝑟𝑅𝑅𝑟𝑟𝐵𝐵[𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑍𝑍𝐵𝐵−𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑍𝑍𝑅𝑅−𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵−𝛽𝛽𝑚𝑚𝑚𝑚𝑅𝑅]
𝑟𝑟𝐵𝐵𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅

2𝑍𝑍𝑅𝑅+𝑟𝑟𝑅𝑅𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵
2𝑍𝑍𝐵𝐵

  (5.9) 

𝐹𝐹𝑅𝑅,𝑅𝑅 = 𝑟𝑟𝑅𝑅𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵
2𝑍𝑍𝐵𝐵𝐹𝐹𝐵𝐵+𝑟𝑟𝑅𝑅𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

2𝑍𝑍𝐵𝐵𝐹𝐹𝑅𝑅−𝑟𝑟𝑅𝑅𝑟𝑟𝐵𝐵[𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑍𝑍𝐵𝐵−𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑍𝑍𝑅𝑅−𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵−𝛽𝛽𝑚𝑚𝑚𝑚𝑅𝑅]
𝑟𝑟𝑅𝑅𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵

2𝑍𝑍𝐵𝐵+𝑟𝑟𝐵𝐵𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅
2𝑍𝑍𝑅𝑅

.  (5.10) 

 

𝐹𝐹𝐵𝐵,𝐵𝐵 = 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅,𝐵𝐵 = 0 is given.  Identifying necessary and sufficient conditions 

is a simple matter of checking which of constraints (5.6c) and (5.6d) are applicable, and 

imposing strict positivity constraints.  In this example, those conditions are: 

Positivity of 𝐹𝐹𝐵𝐵,𝑅𝑅:  0 < 𝐹𝐹𝐵𝐵,𝑅𝑅       (5.11) 

Positivity of 𝐹𝐹𝑅𝑅,𝑅𝑅:  0 < 𝐹𝐹𝑅𝑅,𝑅𝑅       (5.12) 

Blue fishermen achieve nonnegative rent in Blue waters:  𝜋𝜋𝐵𝐵,𝐵𝐵 ≥ 0  (5.13) 

Red fishermen’s rents are nonnegative:  𝜋𝜋𝐵𝐵,𝑅𝑅 ≥ 0.    (5.14) 

 

By virtue of (5.9) and (5.10), constraints (5.11) – (5.14) are linear in 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅.  

Also note (5.13) ensures 𝜋𝜋𝐵𝐵,𝐵𝐵 ≥ 𝜋𝜋𝑅𝑅,𝐵𝐵, since by construction 𝜋𝜋𝐵𝐵,𝑅𝑅 = 𝜋𝜋𝑅𝑅,𝑅𝑅 → 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵 −

𝛽𝛽𝑅𝑅𝑃𝑃𝐵𝐵 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑅𝑅 = 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝑅𝑅 → 𝑝𝑝𝐵𝐵𝑞𝑞𝐵𝐵𝑥𝑥𝐵𝐵 > 𝑝𝑝𝑅𝑅𝑞𝑞𝑅𝑅𝑥𝑥𝑅𝑅 − 𝛽𝛽𝐵𝐵𝑃𝑃𝑅𝑅 − 𝛽𝛽𝑚𝑚𝑚𝑚𝐵𝐵 → 𝜋𝜋𝐵𝐵,𝐵𝐵 > 𝜋𝜋𝑅𝑅,𝐵𝐵.  (5.14) 

ensures 𝜋𝜋𝑅𝑅,𝑅𝑅 ≥ 0, since 𝜋𝜋𝐵𝐵,𝑅𝑅 = 𝜋𝜋𝑅𝑅,𝑅𝑅.  This same procedure for finding the subgame 
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equilibrium formula and necessary and sufficient conditions can be done for all possibly 

forms (there are a total of 29), and is omitted for space.  With this notion in hand the 

proof of the theorem is as follows: 

• For a subgame equilibrium of a particular form:  (i) the SGVs must solve an 

associated system of linear equations and unknowns with a unique solution; 

(ii) necessary and sufficient conditions exist for the SGE to have that form. 

• Given values of the parameters and decision variables, produce a SGE via 

Algorithm 5.1.  By Theorem 5.1, this is the unique SGE. 

• The SGE will have some form.  By the necessity of the conditions for each 

form, those conditions must hold, and hence the 29 sets of conditions 

encompass the entire parameter/decision space. 

• If any other set of conditions held, then by sufficiency a SGE of another form 

would hold, which is impossible because SGEs are unique. 

• Therefore, for any instantiation of the parameters and decision variables the 

conditions of one and only one form may hold.  This completes the proof. 

 

5.A.3. Proof of Theorem 5.3 

Theorem 5.3 

Assume Blue and Red each own one fishery.  For a given strategy of the other player, 

responding with 𝑚𝑚𝑘𝑘 > 0 can yield at most equivalent utility as using 𝑚𝑚𝑘𝑘 = 0.  If costs of 

MCS are nonzero, then 𝑚𝑚𝑘𝑘 > 0 yields strictly less utility than 𝑚𝑚𝑘𝑘 = 0. 
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Proof. 

WLOG assume Blue is using non-zero MCS:  𝑚𝑚𝐵𝐵 > 0.  Unilaterally changing 

strategy to 𝑚𝑚𝐵𝐵 = 0 only affects the costs imposed on Blue fishermen in Blue waters.  If 

𝐹𝐹𝑅𝑅,𝐵𝐵 does not change at subgame equilibrium on account of the change in 𝑚𝑚𝐵𝐵 (because it 

was not previously profitable to illegally fish in Red waters, and is still not), then all 

SGVs are unchanged and Blue’s utility is either the same (if MCS is costless) or has 

increased (if MCS costs money).  If 𝐹𝐹𝑅𝑅,𝐵𝐵 does change, then it increases due to the 

reduction in costs.  This means either:  (i) Blue extracts rent from Red waters, improving 

her utility; or (ii) Blue fishermen have diverted from Blue to Red waters.  In the latter 

case, Blue can simply issue more quotas to replace those who diverted to Red waters, 

establishing a subgame equilibrium equivalent to that when 𝑚𝑚𝐵𝐵 > 0, but with a higher 

value of 𝐹𝐹𝑅𝑅,𝐵𝐵.  By the previous logic, Blue utility has increased.  This completes the 

proof. 

Appendix 5.B. Algorithm to Find Intervals where Optimal Responses are Non-

Piecewise 

This appendix provides an annotated algorithm to identify intervals in 𝐹𝐹𝐵𝐵-space 

where Red’s optimal response is a non-piecewise function, and likewise for Blue’s 

optimal response in intervals of 𝐹𝐹𝑅𝑅-space.  The algorithm works by finding which 

conditions partitioning the subgame equilibrium forms (see Appendix 5.A.2) could be 

satisfied, given the model parameters, and then identifies key intersections of the 

conditions. 
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Algorithm 5.2.  Identifying the critical intervals of 𝑭𝑭𝑩𝑩 and 𝑭𝑭𝑹𝑹. 

Given values of 𝑍𝑍𝐵𝐵, 𝑍𝑍𝑅𝑅, 𝑐𝑐𝐵𝐵, 𝑐𝑐𝑅𝑅, 𝛽𝛽𝐵𝐵, 𝛽𝛽𝑅𝑅, 𝑃𝑃𝐵𝐵𝐵𝐵, 𝑃𝑃𝐵𝐵𝑅𝑅, 𝑟𝑟𝐵𝐵, 𝑟𝑟𝑅𝑅, 𝑞𝑞𝐵𝐵, 𝑞𝑞𝑅𝑅, 𝑝𝑝𝐵𝐵, and 𝑝𝑝𝑅𝑅: 

 

Eliminate infeasible SGE forms (as defined in Appendix 5.a) and unnecessary 

conditions, based on parameter values 

1. Remove impossible forms.  Particularly, identify all forms with conditions 𝑎𝑎 >

𝑏𝑏 where the parameters lead to 𝑎𝑎 < 𝑏𝑏, and rule these forms out. 

2. Remove unnecessary conditions.  Particularly, for each remaining form identify 

the greatest lower bound on each 𝐹𝐹𝐵𝐵, 𝐹𝐹𝑅𝑅, 𝑞𝑞𝐵𝐵𝐹𝐹𝐵𝐵 + 𝑞𝑞𝑅𝑅𝐹𝐹𝑅𝑅, and 𝑟𝑟𝑅𝑅𝑍𝑍𝐵𝐵𝑞𝑞𝐵𝐵𝐹𝐹𝐵𝐵 −

𝑟𝑟𝐵𝐵𝑍𝑍𝑅𝑅𝑞𝑞𝑅𝑅𝐹𝐹𝑅𝑅 (including the lower bound of 0) and eliminate all but the greatest 

lower bound.  Do the same for the smallest upper bound, including infinity.  Rule 

out any form where the greatest lower bound exceeds the smallest upper bound. 

3.  Treat all remaining conditions as equalities and label them 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁, where 

𝑁𝑁 is the number of unique conditions after converting them to equalities. 

 

Identify where the remaining conditions intersect 

4. Loop through conditions 𝑐𝑐1 through 𝑐𝑐𝑁𝑁−1. 

   4.1. Call the current condition 𝑐𝑐𝑖𝑖.  Loop through conditions 𝑐𝑐𝑖𝑖+1 to 𝑐𝑐𝑁𝑁. 

4.1.1. Call the second condition 𝑐𝑐𝑗𝑗.  If conditions 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗 

intersect, record the intersection (both the values of 𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑅𝑅, and 

which conditions cross at this point).  Note:  in this chapter there is 
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at most one intersection per pair of conditions, since all conditions 

are linear. 

 

Order the conditions by 𝐹𝐹𝑅𝑅-value as a function of 𝐹𝐹𝐵𝐵, and vice versa 

5. For all conditions that are not parallel to the 𝐹𝐹𝑅𝑅-axis (i.e. 𝐹𝐹𝐵𝐵 = 𝑎𝑎, 𝑎𝑎 constant), 

determine the order of these conditions, from smallest to largest, at 𝐹𝐹𝐵𝐵 = 0.  Store 

the order associated with 𝐹𝐹𝐵𝐵 = 0. 

6. Loop through the values of 𝐹𝐹𝐵𝐵 at which conditions intersect, from smallest to 

largest, found in step 4. 

6.1. Call the current 𝐹𝐹𝐵𝐵 value 𝐹𝐹𝐵𝐵′ , and associate the previous ordering of 

the conditions with 𝐹𝐹𝐵𝐵′ .  This ordering will be modified in step 6.2. 

6.2. Loop through all 𝐹𝐹𝑅𝑅 values such that (𝐹𝐹𝐵𝐵′ ,𝐹𝐹𝑅𝑅) is an intersection point 

for conditions, starting with the smallest such value. 

6.2.1. For each value of 𝐹𝐹𝑅𝑅, reorder the conditions intersecting at 

(𝐹𝐹𝐵𝐵′ ,𝐹𝐹𝑅𝑅) from smallest to largest to the immediate right of 𝐹𝐹𝐵𝐵′ .  

Note:  because the conditions are linear, this can be done by 

ordering the conditions according to their slopes. 

7. Steps 5 and 6 have created an ordering, from smallest to largest, of the 

conditions’ 𝐹𝐹𝑅𝑅-values when 𝐹𝐹𝐵𝐵 is within a specified interval.  Repeat steps 5 and 6 

with 𝐹𝐹𝑅𝑅 and 𝐹𝐹𝐵𝐵 inverted to create an ordering by 𝐹𝐹𝐵𝐵-value, given 𝐹𝐹𝑅𝑅. 
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Create a sequence of critical conditions and SGE forms between values of 𝐹𝐹𝐵𝐵 and 

𝐹𝐹𝑅𝑅 where intersections occur 

8. Again loop through the values of 𝐹𝐹𝐵𝐵 at which conditions intersect, from 

smallest to largest, found in step 4. 

8.1. Call the current 𝐹𝐹𝐵𝐵 value 𝐹𝐹𝐵𝐵′ .  Loop through the conditions 𝑐𝑐1 to 𝑐𝑐𝑁𝑁 to 

the immediate right of 𝐹𝐹𝐵𝐵′ , from smallest to largest, as found in steps 5 

through 6. 

8.1.1. Call the current condition 𝑐𝑐𝑖𝑖.  Record the SGE form directly 

below condition 𝑐𝑐𝑖𝑖, and label it 𝑟𝑟𝑖𝑖. 

8.1.2. If 𝑟𝑟𝑖𝑖 ≠ 𝑟𝑟𝑖𝑖−1, then add condition 𝑐𝑐𝑖𝑖−1 to a list of critical 

conditions associated with 𝐹𝐹𝐵𝐵′ , at which the SGE form changes.  

Also add form 𝑟𝑟𝑖𝑖−1 to a similar list. 

9. Step 8 provides a list of conditions, for any interval of 𝐹𝐹𝐵𝐵-space, at which Red’s 

decision 𝐹𝐹𝑅𝑅 causes the game to move from one SGE form to another.  Repeat step 

8 with 𝐹𝐹𝑅𝑅 and 𝐹𝐹𝐵𝐵 inverted to create a similar list for conditions on 𝐹𝐹𝐵𝐵, given 𝐹𝐹𝑅𝑅. 

 

Identify values of 𝐹𝐹𝐵𝐵 where the sequences of critical conditions found in step 8 

changes, indicating the possibility the formula for the optimal response will 

change 

10. Begin a list of left-endpoints for values of 𝐹𝐹𝐵𝐵, demarcating intervals.  Initiate 

the first element as 𝐹𝐹𝐵𝐵 = 0.  Loop through the values of 𝐹𝐹𝐵𝐵 identified in step 4 

(from smallest to largest). 
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10.1. Call the current 𝐹𝐹𝐵𝐵 value 𝐹𝐹𝐵𝐵𝑖𝑖 .  If the sequence of critical conditions 

associated with 𝐹𝐹𝐵𝐵𝑖𝑖  differs from that associated with 𝐹𝐹𝐵𝐵𝑖𝑖+1, as identified in 

step 8, add 𝐹𝐹𝐵𝐵𝑖𝑖+1 to the list of left-endpoints. 

 

Now, for each interval in 𝐹𝐹𝐵𝐵-space, find constrained optimal responses where 

Red’s response is constrained to be between consecutive critical conditions.  Add 

additional values of 𝐹𝐹𝐵𝐵 to the list identified in step 10 in order to eliminate any 

piecewise response function. 

11. Loop through the values of 𝐹𝐹𝐵𝐵 identified in step 10. 

11.1. Call the current 𝐹𝐹𝐵𝐵 value 𝐹𝐹𝐵𝐵𝑖𝑖 .  Loop through critical conditions 

associated with 𝐹𝐹𝐵𝐵𝑖𝑖 . 

11.1.1. Call the current critical condition 𝑐𝑐𝑗𝑗, and note this 

represents the upper bound on 𝐹𝐹𝑅𝑅 before moving the game into a 

new SGE form, while 𝑐𝑐𝑗𝑗−1 is the lower bound.  Call the form the 

game is in while 𝑐𝑐𝑗𝑗−1 ≤ 𝐹𝐹𝑅𝑅 ≤ 𝑐𝑐𝑗𝑗 and 𝐹𝐹𝐵𝐵𝑖𝑖 < 𝐹𝐹𝐵𝐵 < 𝐹𝐹𝐵𝐵𝑖𝑖+1, 𝑣𝑣𝑖𝑖𝑖𝑖.  Call the 

formula for Red’s optimal response between these bounds 𝑓𝑓𝑖𝑖𝑖𝑖.  

Determine whether 𝑓𝑓𝑖𝑖𝑖𝑖 intersects either 𝑐𝑐𝑗𝑗 or 𝑐𝑐𝑗𝑗−1 at any point 

between 𝐹𝐹𝐵𝐵𝑖𝑖  and 𝐹𝐹𝐵𝐵𝑖𝑖+1. 

11.1.1.1. If there is no intersection, perform the following: 

11.1.1.1.1. If 𝑐𝑐𝑗𝑗−1 < 𝑓𝑓𝑖𝑖𝑖𝑖 < 𝑐𝑐𝑗𝑗, then 𝑓𝑓𝑖𝑖𝑖𝑖 is the optimal 

response that keeps the game in form 𝑣𝑣𝑗𝑗 .  Record 𝑓𝑓𝑖𝑖𝑖𝑖 
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as the optimal response between 𝐹𝐹𝐵𝐵𝑖𝑖  and 𝐹𝐹𝐵𝐵𝑖𝑖+1, 

constrained to 𝑐𝑐𝑗𝑗−1 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗. 

11.1.1.1.2. If 𝑓𝑓𝑖𝑖𝑖𝑖 < 𝑐𝑐𝑗𝑗−1, then the optimal response 

that keeps the game in form 𝑣𝑣𝑖𝑖𝑖𝑖 is 𝑐𝑐𝑗𝑗−1.  This is so 

because Red’s utility function is concave.  Record 

𝑐𝑐𝑗𝑗−1 as the optimal response between 𝐹𝐹𝐵𝐵𝑖𝑖  and 𝐹𝐹𝐵𝐵𝑖𝑖+1, 

constrained to 𝑐𝑐𝑗𝑗−1 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗. 

11.1.1.1.3. If 𝑐𝑐𝑗𝑗 < 𝑓𝑓𝑖𝑖𝑗𝑗, then the optimal response 

that keeps the game in form 𝑣𝑣𝑖𝑖𝑖𝑖 is 𝑐𝑐𝑗𝑗.  Again, this is 

so because Red’s utility function is concave.  

Record 𝑐𝑐𝑗𝑗 as the optimal response between 𝐹𝐹𝐵𝐵𝑖𝑖  and 

𝐹𝐹𝐵𝐵𝑖𝑖+1, constrained to 𝑐𝑐𝑗𝑗−1 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗. 

11.1.1.2. If there is an intersection, identify the smallest, 

insert that value of 𝐹𝐹𝐵𝐵 into the list identified in step 10 

immediately following 𝐹𝐹𝐵𝐵𝑖𝑖 , and go to step 11.1.1.1.1.  Note 

the series of critical conditions associated with the inserted 

value is identical to that associated with 𝐹𝐹𝐵𝐵, and 𝑓𝑓𝑖𝑖𝑖𝑖 does 

not intersect 𝑐𝑐𝑗𝑗−1 or 𝑐𝑐𝑗𝑗 between 𝐹𝐹𝐵𝐵𝑖𝑖  and the new value of 

𝐹𝐹𝐵𝐵𝑖𝑖+1 (because 𝐹𝐹𝐵𝐵𝑖𝑖+1 is by construction the smallest such 

point). 
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Now determine the unconstrained optimal response for each interval in 𝐹𝐹𝐵𝐵-space, 

adding additional values of 𝐹𝐹𝐵𝐵 to the list created in steps 10 and 11 to ensure no 

piecewise optima exist 

12. Loop through the list of left-endpoints identified in steps 10 and 11. 

12.1. Call the current 𝐹𝐹𝐵𝐵 value 𝐹𝐹𝐵𝐵𝑖𝑖 , call its associated critical conditions 

𝑐𝑐𝑖𝑖1, 𝑐𝑐𝑖𝑖2, …, 𝑐𝑐𝑖𝑖𝑖𝑖, and call the utility function computed at the optimal 

response between critical conditions 𝑐𝑐𝑗𝑗−1 and 𝑐𝑐𝑗𝑗 𝑢𝑢𝑖𝑖𝑖𝑖∗ .  Let the incumbent 

optimal utility be 𝑢𝑢𝑖𝑖𝑖𝑖∗ = 𝑢𝑢𝑖𝑖1∗ .  Loop through 𝑐𝑐𝑖𝑖2 to 𝑐𝑐𝑖𝑖𝑖𝑖. 

12.1.1. Call the current condition 𝑐𝑐𝑖𝑖𝑖𝑖.  Compare 𝑢𝑢𝑖𝑖𝑖𝑖∗  to 𝑢𝑢𝑖𝑖𝑖𝑖∗ . 

12.1.1.1. If they intersect between 𝐹𝐹𝐵𝐵𝑖𝑖  and 𝐹𝐹𝐵𝐵𝑖𝑖+1, identify the 

smallest such intersection and insert it into the list of left-

endpoints as 𝐹𝐹𝐵𝐵𝑖𝑖+1. 

12.1.1.2. Set the incumbent to max�𝑢𝑢𝑖𝑖𝑖𝑖∗ ,𝑢𝑢𝑖𝑖𝑖𝑖∗ �, evaluated 

between 𝐹𝐹𝐵𝐵𝑖𝑖  and the possibly updated value of 𝐹𝐹𝐵𝐵𝑖𝑖+1, noting 

these two functions do not intersect anywhere in this 

interval. 

12.2. Record the optimal Red utility and response, given any Blue strategy 

𝐹𝐹𝐵𝐵𝑖𝑖 ≤ 𝐹𝐹𝐵𝐵 ≤ 𝐹𝐹𝐵𝐵𝑖𝑖+1, as 𝑢𝑢𝑅𝑅,𝑖𝑖
∗ = 𝑢𝑢𝑖𝑖𝑖𝑖∗  and 𝑓𝑓𝑅𝑅,𝑖𝑖

∗ = 𝑓𝑓𝑖𝑖𝑖𝑖∗.  Also record the pair of 

conditions it’s known to lie between, denoted 𝑐𝑐𝑅𝑅,𝑖𝑖
𝐿𝐿𝐵𝐵 and 𝑐𝑐𝑅𝑅,𝑖𝑖

𝑈𝑈𝑈𝑈. 

13. Loop through the list of left-endpoints identified in steps 10 through 12. 
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13.1. Call the current 𝐹𝐹𝐵𝐵 value 𝐹𝐹𝐵𝐵𝑖𝑖 .  If the optimal response (and utility) is 

the same in 𝐹𝐹𝐵𝐵𝑖𝑖 ≤ 𝐹𝐹𝐵𝐵 ≤ 𝐹𝐹𝐵𝐵𝑖𝑖+1 and 𝐹𝐹𝐵𝐵𝑖𝑖+1 ≤ 𝐹𝐹𝐵𝐵 ≤ 𝐹𝐹𝐵𝐵𝑖𝑖+2, and is constrained by 

the same lower- and upper-bounds, then 𝐹𝐹𝐵𝐵𝑖𝑖+1 can be removed from the 

list.  That is, if 𝑓𝑓𝑅𝑅,𝑖𝑖
∗ = 𝑓𝑓𝑅𝑅,𝑖𝑖+1

∗ , 𝑐𝑐𝑅𝑅,𝑖𝑖
𝐿𝐿𝐿𝐿 = 𝑐𝑐𝑅𝑅,𝑖𝑖+1

𝐿𝐿𝐿𝐿 , and 𝑐𝑐𝑅𝑅,𝑖𝑖
𝑈𝑈𝑈𝑈 = 𝑐𝑐𝑅𝑅,𝑖𝑖+1

𝑈𝑈𝑈𝑈 , then remove 

𝐹𝐹𝐵𝐵𝑖𝑖+1. 

14. Steps 10 through 13 have determined Red’s optimal response, given 𝐹𝐹𝐵𝐵 is 

within a specified interval.  Repeat these steps with 𝐹𝐹𝑅𝑅 and 𝐹𝐹𝐵𝐵 inverted to identify 

Blue’s optimal response function, given 𝐹𝐹𝑅𝑅. 
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6 CONCLUSION 
 
 
 
Game theory has clearly captured the attention of policy makers, but in its truest 

form as the mathematical study of strategic interaction, has made limited headway in 

influencing their decisions.  It’s clearly made a worthy contribution in influencing the 

lexicon of qualitative analysis and, on occasion, identified a directional relationship 

governing human affairs not otherwise obvious.  The actual outputs of quantitative 

models, however, have generally not been used in policy development.  This is likely due 

to:  (i) the use of incredibly simplistic and small models; and (ii) a general resistance to 

mathematical modeling by decision makers who, correctly, recognize the world as more 

complex than any model.  This dissertation sought to show games can have a more direct 

influence on policy by integrating sophisticated models and techniques into analysis.  

Point (i) was responded to by dropping traditional assumptions requiring low-level 

polynomials and minimal constraints in favor of more complex problems, and using 

efficient algorithms to analyze the corresponding games.  Point (ii) was responded to by 

emphasizing stochasticity and robustness, in the hopes these approaches would pacify 

decision makers’ worries of using the “wrong” model. 

 

Even with stochastic and/or robust approaches, qualitative decision-making will 

still make the ultimate verdict on a policy decision.  It may be that a particular decision 
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maker only wants a model to inform him or her if there’s a directional relationship at play 

in the environment.  The analysis conducted here is still valuable in this case:  using a 

more advanced model than a conventional toy model can refute (or confirm) a directional 

relationship proposed by the latter.  In other words, it seems archaic to continue relying 

on models with simplistic assumptions, even when one’s aims are limited.  Operations 

research has produced advanced techniques outside of the game theoretic context that can 

and ought to be applied to games. 

 

This dissertation provided three examples using advanced operations research 

techniques in complex games, and the analysis was thus limited to a small set of 

techniques available.  Promising avenues of follow-on research were noted in the 

conclusions of Chapters 3, 4, and 5, and all essentially centered around expanding the 

methods used here to bigger and more complex problems.  Additional comments on lines 

of future research would be extraneous, but it’s worth emphasizing that the problems 

analyzed in this dissertation don’t come near the level of size and complexity of the most 

challenging problems policy makers face.  For instance, the U.S. Department of Defense 

routinely uses large-scale simulation models, where single runs to produce one realization 

of utility may take hours.  Contrast this to the problem of Chapter 4, where evaluating the 

proximity to equilibrium took roughly 3 hours for a model with 60 fisheries, but 

evaluating a player’s utility for a given pair of strategies was virtually instantaneous.  

Problems as large as these will likely always exceed game theory’s ability to analyze 

them in isolation.  In these cases, modelers must consider whether the problem can be 
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decomposed into constituent parts amenable to game-theoretic analysis, and if so, what 

interactions are at play affecting the conclusions of those individual analyses. 
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