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Abstract

RECEIVER DESIGN FOR MASSIVE MIMO WIRELESS SYSTEMS

Ping Xu

George Mason University, 2018

Thesis Director: Dr. Zhi Tian

Massive multiple-input multiple-output (MIMO) systems that employ a large number

of antennas at both receivers and transmitters have been widely considered for adoption

in next generation (5G) wireless networks. The deployment of massive MIMO promises

to enhance the received signal power for communications over millimeter-wave (mmWave)

spectrum, which in turn increases the throughput and system efficiency. Notwithstanding

the advantages of massive MIMO, several major technical challenges arise, which include

the difficulty and complexity in hardware implementation, precoder design and channel

estimation. In this thesis, we mainly focus on strategies that address the training overhead

issue for mmWave massive MIMO channel estimation. By utilizing the sparsity feature in

the angular domain of mmWave channels, we propose a gridless compressive sensing (CS)

technique based on atomic norm minimization (ANM). Particularly for massive MIMO

systems involving two-dimensional angle estimation, we develop a decoupled ANM (D-

ANM) approach that offers high-accuracy channel estimation at low complexity and little

training overhead. The proposed D-ANM approach is applied to mmWave massive MIMO

systems with uniform rectangular array employed at base station and extended to the multi-

user case. Investigation on the use of D-ANM for channel estimation in wideband mmWave



SIMO-OFDM systems is also carried out to cope with frequency-selective channel fading.



Chapter 1: Introduction

1.1 Background and Motivation

Massive multiple-input multiple-output (MIMO) systems that employ a large number of

antennas at both receivers and transmitters have been widely considered for adoption in

next generation (5G) wireless networks [1–5]. The deployment of massive MIMO promises

to enhance the received signal power for communications over millimeter-wave (mmWave)

spectrum, which in turn increases the throughput and system efficiency [4–8]. Moreover, the

short wavelength associated with mmWave frequency facilitates implementation of massive

antennas packed in small physical areas [3, 9]. In addition, moving to the mmWave regime

means that large portions of unused spectrum that support orders of magnitude larger

bandwidths (10s of GHz) comparing with existing systems can be used, which tackles the

spectrum crisis at the current wireless frequencies [8]. Therefore, massive MIMO is usually

coupled with mmWave communications to provide wireless services with good coverage, low

latency, and high data rate for 5G communications [1, 3, 4].

Notwithstanding the advantages of massive MIMO, several major technical challenges

arise in the efficient realization of mmWave and massive MIMO gains in practice, which

include the difficulty and complexity in hardware implementation, precoder design and

channel estimation [9]. The implicit assumption that a complete radio frequency (RF)

chain is dedicated for each antenna in traditional MIMO systems does not work any longer

for massive MIMO systems due to the high cost and power consumption of mixed signal

components. While the analog-only beamforming/combining architectures that do all the

required processing in the analog domain fail to perform sophisticated multi-stream or multi-

user processing [10,11], a widely adopted scheme that balances the system performance and

hardware limitations is the hybrid analog/digital architecture proposed in [12,13]. Hybrid
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architecture reduces the number of RF chains and partly alleviates the hardware constraints

while effectively collecting the antenna gains through precoding. However, it introduces

new problems on channel estimation and precoder design [13]. To achieve optimal design

of precoding matrices, it is necessary to obtain complete knowledge of the channel state

information (CSI), which is also critical for efficient transmission in wireless communica-

tion systems. However, the acquisition of CSI in mmWave massive MIMO systems using

traditional channel estimation approaches is infeasible considering the high computational

complexity and heavy training overhead induced by the large number of antennas [9].

It has been demonstrated that a mmWave channel usually exhibits a sparse multi-path

structure due to limited scattering, suggesting that only a small number of significant paths

dominate the propagation [14–16]. Therefore, compressive sensing (CS) based techniques

are proposed to utilize the sparsity feature of mmWave channels to reduce training overhead

in coherent channel estimation [13,17–23]. However, CS-based approaches may suffer from

considerable performance degradation in practice because they rely on an idealized on-grid

assumption. For a MIMO channel, such an assumption means that the values of the angle

of arrival (AoA) and angle of departure (AoD) of the dominant paths have to lie on some

known grids [23], while in practice, the values of AoA and AoD are continuous and off-the-

grid. Therefore, CS techniques experience a power leakage effect due to basis mismatch of

the on-grid assumption, which has been analyzed in [24].

In order to estimate the MIMO channel characterized by continuous angular information,

we resort to continuous spatial frequency or angle estimation techniques, for which consid-

erable efforts have been put to circumvent the basis mismatch problem [25–29]. Among

them, atomic norm minimization (ANM) has been proposed to deal with the continuous

parameters directly, bypassing the on-grid assumption [26–29]. ANM is developed as a

gridless CS approach, which retains the benefits of CS in terms of light-weight training

overhead. In particular, by exploiting the Vandermonde structure of a signal, ANM attains

super-resolution estimation, therefore outperforms the CS-based methods [26–28]. More-

over, different from the traditional super-resolution subspace-based methods that need to
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collect measurements from multiple snapshots to acquire signals’ statistical information,

ANM can work with only one or a few snapshots, which leads to short sensing time.

ANM can be further extended for two-dimensional (2D) harmonic retrieval through

vectorization [28], which motivates us to apply the 2D vectorized ANM (V-ANM) on esti-

mating narrowband mmWave massive MIMO channels based on the knowledge that both

the transmit and receive uniform linear arrays (ULAs) exhibit Vandermonde structures.

However, the computational complexity of V-ANM becomes unaffordable as the antenna

size increases in massive MIMO scenarios, even in a truncated version [30]. The high com-

plexity comes from the optimization formulation of V-ANM in the form of semi-definite

programming (SDP), whose computational complexity is mainly contributed by the size of

the semi-definite matrix in the optimization constraint that involves a large-size two-level

Toeplitz matrix constructed from the vectorized channel matrix [28].

The goal of this thesis is to develop a low-complexity high-accuracy channel estimation

approach for mmWave massive MIMO systems. While ANM-based approach has shown to

attain high estimation accuracy at little training overhead, the remaining key challenge is

to reduce the computational complexity, which is the focus of this thesis research.

1.2 Contributions of Thesis

To harness the potential of mmWave massive MIMO systems, it is important to obtain

accurate CSI through channel estimation. With this motivation and the aforementioned

challenges, the problem tackled in this thesis is to develop low-complexity high-accuracy

channel estimation solutions. The primary contributions of this thesis can be summarized

as follows:

1. We propose a low-complexity high-accuracy channel estimation algorithm for mmWave

massive MIMO systems. Leveraging the sparsity feature of mmWave channels, we de-

velop a sparse formulation of the mmWave channel estimation problem based on the

decoupled atomic norm minimization (D-ANM). The optimization problem is then
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solved by semi-definite programming (SDP). The approach is motivated by our work

originally designed for 2D harmonic retrieval [31]. Applying D-ANM in mmWave

massive MIMO channel estimation achieves super-resolution performance at reduced

complexity. Unlike V-ANM that couples 2D angular information to form one large-

size two-level Toeplitz matrix for SDP via vectorization, D-ANM does not involve

vectorization. Instead, D-ANM decouples the large-size two-level Toeplitz matrix in-

to two small-size one-level Toeplitz matrices, which leads to a reduced-size SDP for

efficient computation. The decoupling is done by introducing a new atom set based

on the channel structure in the D-ANM framework without losing optimality [31]. As

the size of the semi-definite matrix is reduced dramatically, the computational load

is decreased by several orders [31]. Since the number of antennas in massive MIMO

systems is usually on the order of hundreds, the computational complexity reduction

is nontrivial and benefits practical applications.

2. We apply the low-complexity high-accuracy D-ANM based channel estimation ap-

proach to the single-input multiple-output (SIMO) scenario where a 2D uniform rect-

angular array (URA) is deployed at the base station (BS). Simulation shows that

channel estimation for this scenario can be done even with only one transmit symbol.

We also apply the proposed algorithm to a downlink multi-user massive MIMO sys-

tem with some modifications. The proposed algorithm utilizes the sparsity feature of

mmWave channels and achieves good performance for multi-user systems.

3. We propose to estimate wideband mmWave channels using the low-complexity high-

accuracy D-ANM based algorithm. To alleviate the frequency-selectivity of wideband

channels, we resort to the orthogonal frequency division multiplexing (OFDM) tech-

nique to convert a frequency-selective fading channel into a group of flat fading chan-

nels. The antenna setting in this scenario is SIMO with an ULA deployed at the BS

and a single antenna for the mobile station (MS). The 2D Vandermonde structures are
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incorporated in spatial dimension (resulted from ULA) and frequency dimension (re-

sulted from OFDM). D-ANM can therefore be applied to estimate the OFDM-SIMO

channel.

1.3 Notations and Abbreviations

We use the following notations throughout this thesis: a is a scalar, a is a vector, A is

a matrix, and A represents a set. (·)T , (·)∗, and (·)H denote the transpose, conjugate,

and conjugate transpose of a matrix or vector, respectively. ‖a‖1 and ‖a‖2 are the `1

norm and `2 norm of a, respectively. diag(a) denotes a diagonal matrix with the diagonal

elements constructed from a. ‖A‖F , is the Frobenius norm of A. tr(A) is the trace of A.

The operation vec(·) stacks all the columns of a matrix into a vector. ⊗ is the Kronecker

product of matrices or vectors and ∗ denotes the convolution operation.

The abbreviations used in this dissertation are summarized in Table 1.1.

1.4 Organization of Thesis

The rest of this paper is organized as follows. Chapter 2 presents some preliminaries on

wireless communication systems and atomic norm minimization. Chapter 3 presents the

channel model and formulates the problem for single-user massive MIMO system. The low-

complexity high-accuracy channel estimation technique based on D-ANM is also proposed.

Chapter 4 applies the proposed D-ANM to the implementation of URA at the BS and

multi-user scenarios. Chapter 5 extends the D-ANM based channel estimation algorithm to

a SIMO-OFDM system. Conclusions and future works are finally presented in Chapter 6.
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Table 1.1: Summary of abbreviations

5G the fifth generation

AoA angle of arrival

AoD angle of departure

ANM atomic norm minimization

AWGN additive white gaussian noise

BS base station

CIR channel impulse response

CFR channel frequency response

CP cyclic prefix

CS compressive sensing

CSI channel state information

D-ANM decoupled atomic norm minimization

DFT discrete fourier transform

IDFT inverse discrete fourier transform

ISI intersymbol interference

mmWave millimeter-wave

MIMO multiple-input multiple-output

MS mobile station

MSE mean-squared-error

MMSE minimum mean square error

OFDM orthogonal frequency division multiplexing

RF radio frequency

SDP semi-definite programming

SIMO single-input multiple-output

SNR signal-to-noise ratio

UE user equipment

ULA uniform linear array

URA uniform rectangular array

V-ANM vectorized atomic norm minimization

6



Chapter 2: Preliminaries

2.1 Wireless Channel Models

Consider a typical scattering environment where Nr receive antennas receive a supposition

of multiple attenuated, delayed, and phase/frequencey shifted copies of the original signal

from Nt transmit antennas. Those copies caused by reflection, diffraction and scattering

from the surrounding objects are called multipath signal components. Without loss of

generality, consider uniform linear arrays (ULAs) with half-wavelength spacing, i.e. the

antenna spacing d and signal wavelength λ are related by d = λ
2 . Then the underlying

time-varying frequency response matrix of the channel in terms of the underlying physical

paths can be expressed as [9, 17]

H(t, f) =

√
NrNt

ρ

L∑
l=1

αlar(θr,l)a
H
t (θt,l)e

−j2πτlfej2πνlt, (2.1)

where ρ is the average path loss, L represents the total number of paths. In mmWave

environment, the value of L is usually small, meaning that the channel is dominated by

only L strong paths, therefore referred as ’sparse’ channel. The parameters αl, θr,l, θt,l,

τl and νl represent the complex path gain, angle of arrival (AoA) at the receiver, angle of

departure (AoD) from the transmitter, relative time delay and the Doppler shift associated

with the lth path, respectively. For the time delay and Doppler shift, we have τl ∈ [0, τmax]

and νl ∈ [−νmax/2, νmax/2], where τmax and νmax are the delay spread and (two-sided)

Doppler spread of the channel, respectively. The two steering vectors ar and at associated
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Table 2.1: Classification of wireless channels on the basis of channel and signaling parame-
ters

Channel Classification Wτmax Tνmax
Nonselective Channels � 1 � 1

Frequency-selective Channels ≥ 1 � 1

Time-selective Channels � 1 ≥ 1

Doubly-selective Channels ≥ 1 ≥ 1

with receive and transmit antenna arrays are given by

ar(θr,l) =
1√
Nr

[1, ej2π
d
λ

sin θr,l , . . . , ej2π
(Nr−1)d

λ
sin θr,l ]T ,

at(θt,l) =
1√
Nt

[1, ej2π
d
λ

sin θt,l , . . . , ej2π
(Nt−1)d

λ
sin θt,l ]T .

(2.2)

Suppose that the channel varies sufficiently slow over the signal duration T , that is, the

Doppler shift is small for all paths, or equivalently, Tνmax � 1, then (2.1) can be expressed

as

H(f) =

√
NrNt

ρ

L∑
l=1

αlar(θr,l)a
H
t (θt,l)e

−j2πτlf . (2.3)

If in addition, the bandwidth W of the channel is sufficiently small so that Wτmax � 1,

then a narrowband spatial model for the channel matrix is obtained:

H =

√
NrNt

ρ

L∑
l=1

αlar(θr,l)a
H
t (θt,l). (2.4)

It is obvious that the wireless channels can be broadly classified as nonselective, frequen-

cy selective, time selective, or doubly selective using the signal and channel parameters, see

Table 2.1 for exact definitions [17]. In this thesis, we mainly study the SIMO frequency-

selective channels with ULAs employed at the receivers, SIMO nonselective channels with
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uniform rectangular arrays (URAs) employed at the receivers and MIMO nonselective chan-

nels with ULAs employed at both receivers and transmitters. More details are given in the

corresponding chapters.

2.2 Atomic Norm Minimization (ANM)

Throughout science and engineering, one of the fundamental but challenging tasks is to

deduce the state or structure of a system from its partial, noisy measurements. The diffi-

culty mainly comes from the acquisition of enough measurements relative to the ambient

dimension of the signal of interest. In practice, however, the structures of those models of

interesting signals are usually constrained so that they only have a few degrees of freedom

relative to their large dimensions. For instance, the signature of a disease is usually consti-

tuted by a small number of genes, a molecular configuration may be completely specified by

a sparse collection of geometric constraints, etc. These kind of low-dimensional structures

play an important role in converting the ill-posed inverse problems to well-posed ones and

can be unified and formulated as convex optimization problems [32].

In the framework of applying convex optimization to solve the linear under-determined

inverse problems, the class of simple models considered are formed as linear combinations

of a few atoms from some (possibly infinite) elementary atom set. Some well-studied exam-

ples include `1-minimization for sparse recovery where the atoms are unit-norm one-sparse

vectors, nuclear norm minimization for low-rank matrix completion where the atoms are

unit-norm rank-one matrices, and so on. The optimization problem is therefore to minimize

the norms induced by the convex hull of the atom set and is referred to as atomic norm

minimization (ANM). To illustrate how ANM works, we apply it on a simple sparse signal

recovery problem.
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Suppose a signal x ∈ CM×1 can be denoted as a combination of some complex exponen-

tials, which in matrix-vector form is

x =
K∑
l=1

sla(fl) (2.5)

where sl ∈ C, fl ∈ [0, 1), [a(fl)]i = ej2π(i−1)fl , i ∈ {1, 2, ...,M}, K is the unknown model

order with K < M .

The atom set of a signal is defined as its simplest building blocks, the same way as the

unit-norm one-sparse vectors for sparse signals, unit-norm rank-one matrices for low-rank

matrices and so on. From the denotation of x in (2.5), its atom set is therefore a collection

of a(fl), denoted as A = {a(f) : f ∈ [0, 1)}.

The atomic norm of x induced by its atom set is defined accordingly as

‖x‖A = inf

{∑
l

|sl|

∣∣∣∣∣x =
∑
l

sla(fl),a(fl) ∈ A

}
. (2.6)

Equation (2.6) is obtained by convexifying the representation of x using the smallest

number of complex exponential components, that is

‖x‖A = inf

{
K

∣∣∣∣∣x =

K∑
l=1

sla(fl),a(fl) ∈ A

}
,

which, however, is an NP-hard problem and can not be solved by convex optimization.

Basically, the definition of atomic norm enforces sparsity in the atom set A. Interested

readers are referred to [32] for a detailed discussion about atomic norm.

Given the atom set defined above, the attempt on recovering x can be done via min-

imizing its atomic norm. In noise free case, the measurements obtained is denoted as x?
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and the optimization goes as follow:

min
x

||x||A

s.t. x = x?.

(2.7)

From the definition of atom set and atomic norm, we can see that ANM works directly on

continuous parameter space and utilizes the sparse feature of the signal of interest, therefore,

it avoids the basis mismatch problem encountered in CS techniques and reduces the number

of measurements needed for recovery. However, for the sparse signal to be recovered, it may

have infinite many possible combinations, therefore to search all the possible combinations

so that the minimum value of
∑

l |sl| can be obtained makes ANM untractable. One way

to turn the untractable ANM problem into a tractable one is to explore the structure of the

signal of interest. Researchers in [27] utilize the Vandermonde structure of the signal and

exploit the semidefinite characterization of ANM, obtaining the following proposition.

Proposition 2.2.1. For x ∈ CM that can be expressed as a linear combination of complex

exponentials,

‖x‖A = inf

 1

2M
trace(Toep(u)) +

1

2
υ :

Toep(u) x

xH υ

 � 0

 , (2.8)

where Toep(u) denotes the Toeplitz matrix whose first column is equal to u and is constructed

exactly from the atoms that constitute signal x when its atomic norm is minimized.

Proof: See Appendix A.

Therefore, to recover x with its noise-free measurements x? using ANM in its original

11



form (2.7) is equivalent to solve the following semidefinite programming (SDP):

min
u,x,υ

1

2M
trace(Toep(u)) +

1

2
υ

s.t.

Toep(u) x

xH υ

 � 0

x = x?.

(2.9)

For the noisy case where y = x + w, with y ∈ CM and w ∈ CM be the noisy mea-

surements and additive white gaussian noise (AWGN), respectively, the SDP for recovering

signal x is formulated as

min
u,x,υ

µ

2
(

1

M
trace(Toep(u)) + υ) +

1

2
‖y − x‖22

s.t.

Toep(u) x

xH υ

 � 0,

(2.10)

where µ is the regularization parameter. The SDP can be solved using the CVX toolbox [33].

So far we have introduced how the ANM problem arises and be solved. However, the esti-

mation parameters involved here is only one-dimensional (1D), to solve the two-dimensional

(2D) estimation problems such as 2D harmonic retrieval, approaches that include convert-

ing the signal to fit the ANM model has been proposed [28]. In [28], the signal of interest

is vectorized and an enlarged ANM problem is formed and optimized by the correspond-

ing SDP. Notice that the narrowband mmWave massive MIMO channel exhibits the same

structure as the 2D signal in [28], we propose a channel estimation method based on the

2D ANM. More details are given in Section 3.3.
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Chapter 3: Receiver Design for Millimeter-wave Massive

MIMO Systems

3.1 Channel Model and Problem Formulation

Consider a point-to-point millimeter-wave (mmWave) massive MIMO wireless system with

ULAs of Nt transmit and Nr receive antennas1. The array steering vectors of transmit and

receive antenna arrays are denoted as ar(θr) and at(θt), where θr and θt are angular direc-

tions of arriving and departing plane waves [9]. Receiver design in this thesis mainly focuses

on developing estimator to obtain accurate channel state information (CSI). CSI is usually

obtained by performing channel estimation within a period shorter than the coherence time

such that the channel is invariant during a training block of time length T . Suppose that

there is no Doppler shift and the channel experiences flat fading. As introduced in Chap-

ter 1, at mmWave frequency, a MIMO channel experiences limited scattering, leading to a

sparse multi-path propagation. For simplicity, assume that only L significant paths exist

in the mmWave massive MIMO channel, with L � min{Nr, Nt}. Then the spatial model

for the channel in the matrix form H, where H ∈ CNr×Nt , can be expressed as a linear

combination of L dominant paths as [9]

H =

√
NrNt

ρ

L∑
l=1

αlar(θr,l)a
H
t (θt,l)

=

L∑
l=1

slar(θr,l)a
H
t (θt,l)

= Ar(θr)SAH
t (θt),

(3.1)

1Generalization to a multi-user scenario and other types of uniform arrays will be discussed in Chapter
4.
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where ρ is the average path loss, αl represents the fading coefficient of l-th propagation

path, {θr,l} and {θt,l} are the AoA to the transmitter and AoD from the receiver of l-

th propagation path, respectively, ranging from 0 to 2π in radian. The path gains sl =√
NrNt
ρ αl are assumed to be uncorrelated and S = diag([s1, s2, . . . , sl]). The normalized

ULA steering vectors of transmit and receive antennas are given as (2.2), which are

ar(θr,l) =
1√
Nr

[1, ej2π
d
λ

sin θr,l , . . . , ej2π
(Nr−1)d

λ
sin θr,l ]T ,

at(θt,l) =
1√
Nt

[1, ej2π
d
λ

sin θt,l , . . . , ej2π
(Nt−1)d

λ
sin θt,l ]T ,

(3.2)

where the antenna spacing d and signal wavelength λ are related by d = λ
2 . It is clear that

the steering matrices Ar(θr) = [ar(θr,1), . . . ,ar(θr,L)] and At(θt) = [at(θt,1), . . . ,at(θt,L)]

incorporate Vandermonde structures, which are useful properties and will be utilized later.

For coherent channel estimation, the training symbol vector xi is transmitted over Nt

antennas at each time instant i (i = 1, · · · , T ) and passes through the channel H. The

received measurements yi are given by

yi = Hxi + wi, i = 1, · · · , T, (3.3)

where wi ∈ CNr is the AWGN at the receiver whose distribution is independent of H and

xi. The signal model can be concisely written in matrix form as

Y = HX + W, (3.4)

where Y = [y1, . . . ,yT ] ∈ CNr×T , X = [x1, . . . ,xT ] ∈ CNt×T and W = [w1, . . . ,wT ] ∈

CNr×T are the received data, transmitted data and the noise term over a time length T ,

respectively.

The task of receiver design in terms of channel estimation boils down to estimating the
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CSI in terms of H from {Y,X}, where Y is corrupted by AWGN noise W. CSI acquisition

is required for the design of transmitter (precoder) and receiver (combiner) for reliable data

transmission. However, conventional channel estimation methods do not work well in mas-

sive MIMO systems due to the large number of antennas, resulting in tremendous training

overhead and long sensing time. Therefore, this thesis tries to develop new techniques that

can not only reduce training overhead but also achieve high estimation accuracy. Before

introducing the proposed low-complexity high-accuracy algorithm for channel estimation,

two related works are summarized first.

3.2 Related Work I: Compressive Sensing (CS) Techniques

When the antenna size is large, as in massive MIMO systems, an ideal on-grid assumption

can be adopted, that is the angles in (3.2) fall onto L of the Nr or Nt directions on the

equal-spaced grids, or to say θr,l ∈ {0, 2π
Nr
, . . . , (Nr−1)2π

Nr
} and θt,l ∈ {0, 2π

Nt
, . . . , (Nt−1)2π

Nt
},

even though the L locations are unknown [19]. By this assumption, a virtual channel

representation is applied to characterize the sparse MIMO channel along fixed virtual receive

and transmit directions [9, 17], that is,

H = FrȞFH
t , (3.5)

where Fr ∈ CNr×Nr and Ft ∈ CNt×Nt are unitary discrete Fourier transform (DFT) ma-

trices. In this sense, the virtual channel matrix Ȟ and the original channel matrix H are

unitarily equivalent. The virtual channel matrix Ȟ is sparse and contains only L nonzero

entries corresponding to the L paths, with AoA information reflected by the nonzero rows

of Ȟ and AoD information reflected by the nonzero columns of Ȟ.

The sparsity feature of mmWave channel motivates the utilization of compressive sensing

(CS) techniques [34], which states that the reconstruction of a sparse signal can be done

using a small number of compressive samples collected from its linear projections. To utilize
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CS, the sparsity of Ȟ is illustrated in ȟ := vec(Ȟ), and the system model is reformulated

as [17]:

y = vec(Y) = ((FH
t X)T ⊗ Fr)ȟ + vec(W), (3.6)

where ⊗ represents Kronecker product. CS suggests that ȟ can be recovered by `1 mini-

mization as:

min
ȟ

µ‖ȟ‖1 + ‖y − ((FH
t X)T ⊗ Fr)ȟ‖22 (3.7)

where µ is the regularization parameter.

After recovering ȟ, the estimated channel Ĥ can be obtained by doing inverse spatial

Fourier transform on Ȟ. However, the estimation performance of CS techniques suffers

when the on-grid assumption is not guaranteed, that is, either AoA or AoD are continuously-

valued off-the-grid. As a result, the CS-based channel estimation methods may not work

effectively in practice.

3.3 Related Work II: Vectorized ANM (V-ANM)

For recovery of sparse continuously-valued signals, gridless CS in the form of atomic norm

minimization (ANM) has been advocated for frequency/angle estimation. While Section 2.2

gives some fundamental knowledge on how 1D ANM works for a sparse signal reconstruction

with continuous parameters, in this section, we show an direct application of 2D ANM in

mmWave massive MIMO channel estimation, which stems from the 2D harmonic retrieval

work in [28]. To utilize the 2D ANM approach for channel estimation, we vectorize both

sides of (3.4) to yield

y = vec(Y) = (XT ⊗ I)h + vec(W), (3.8)

where I is an identity matrix of size Nr ×Nr. Due to the vectorization operation in (3.8),

we call this technique vectorized ANM (V-ANM).

The vectorization operation on the channel matrix H in (3.1) shows that the vectorized
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channel h is of the form

h = vec(H) =
L∑
l=1

sla
∗
t (θt,l)⊗ ar(θr,l) =

L∑
l=1

sla2D(θl), (3.9)

where θl = (θr,l, θt,l), and a2D(θl) = a∗t (θt,l) ⊗ ar(θr,l) is an extended 2D array response

vector of length NrNt.

In (3.9), the vectorized channel h can be seen as a linear combination of L atoms a2D(θl),

and those atoms belong to the atom set AV , which is defined as

AV , {a2D(θ),θ ∈ [0, 2π)× [0, 2π)}. (3.10)

The atomic norm of h over its atom set AV is then given by

‖h‖AV , inf

{∑
l

|sl|

∣∣∣∣∣h =
∑
l

sla2D(θl) ,a2D(θl) ∈ AV

}
. (3.11)

Similar as the 1D ANM framework given in Section 2.2, the vector h is recovered

when (3.11) is minimized, which involves searching all possible combinations over the

continuously-valued angle space of infinite size. Hence, minimizing the atomic norm of

h in the form of (3.11) is not tractable. To reach a computational feasible solution, the

Vandermonde structure of atoms can be utilized to convert (3.11) into an equivalent semi-

definite programming (SDP) as follows [28]:

‖h‖AV , inf

1

2

(
υ + trace(T2D(u)

) ∣∣∣∣∣∣∣
T2D(u) h

hH υ

 � 0

 . (3.12)

Here both υ and u are optimization variables, T2D(u) is a two-level Toeplitz matrix of

size NrNt×NrNt constructed from a2D(θ), vector u ∈ CNrNt×1 is of size NrNt related with
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a2D(θ) [28]. Specifically, T2D(u) is defined by u as follows:

T2D(u) =



T0 T1 . . . TNt−1

T−1 T0 . . . TNt−2

...
...

. . .
...

T−(Nt−1) T−(Nt−2) · · · T0


, (3.13)

where each block Tb (−(Nt − 1) ≤ b ≤ Nt − 1) is an Nr ×Nr Toeplitz matrix of the form

Tb =



ub,0 ub,1 . . . ub,(Nr−1)

ub,−1 ub,0 . . . ub,(Nr−2)

...
...

. . .
...

ub,−(Nr−1) ub,−(Nr−2) . . . ub,0


. (3.14)

For illustration, a pseudocolor plot of the elements of a two-level Toeplitz matrix with

Nt = 8 and Nr = 6 is drawn in Figure 3.1. It is clear that the Toeplitz matrix has two

levels where the 8×8 matrices of size 6×6 in the first level are symmetric and the matrices

of size 6× 6 in the second level are Toeplitz.

Based on the two-level Toeplitz structure of T2D(u), the convex optimization of V-ANM

in the form of SDP can be formulated as

min
υ,u,h

µ

2
(υ +trace

(
T2D(u))) + ‖y − (XT ⊗ I))h‖22

s.t.

 υ hH

h T2D(u)

 � 0.

(3.15)

In (3.15), the first term of the objective function, along with the constraint, is the ANM

component for 2D channel reconstruction, the second term ‖ · ‖22 in the objective function

is the least squares fit of the measurement model (3.8) in the presence of noise, and µ is the
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Figure 3.1: Two-level Toeplitz matrix with Nt = 8, Nr = 6.

regularization parameter controlling the trade-off between the Toeplitz structure and the

noise tolerance to the observation [26].

As V-ANM deals with continuous angular values, it does not have the basis mismatch

problem as in CS-based methods and thus obtains better estimation performance. However,

V-ANM leads to much higher computational load than CS-based methods because of the

much enlarged size (NrNt + 1)× (NrNt + 1) of the semi-definite matrix in the constraint of

(3.15). The computational complexity goes extremely high when both Nr and Nt become

large for massive MIMO systems. In training stage, a low-complexity algorithm is always

desired so that channel estimation does not consume too much resources and more resources

can be used for subsequent transmission. This motivates us to develop super-resolution

channel estimation algorithm by utilizing both the sparsity feature and the Vandermonde

structure of mmWave MIMO channel to achieve high performance at reduced computational

complexity and shorter training time.
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3.4 Proposed Work: Decoupled ANM (D-ANM)

To retain the benefits of V-ANM at remarkably reduced computational complexity, an

efficient algorithm for 2D harmonic retrieval based on decoupled atomic norm minimization

(D-ANM) is developed in [31]. In this section, we show how it is adopted for channel

estimation in mmWave massive MIMO setting.

Instead of vectorizing the channel matrix H, we directly express it as

H =
L∑
l=1

slAD(θl), (3.16)

where AD(θl) = ar(θr,l)a
H
t (θt,l) can be viewed as the atoms forming H. Here, the 2D

angular information in both AoA and AoD is well incorporated in AD(θ), in contrast to

the augmented vectors A2D(θ) in (3.10).

Accordingly, we define the new atom set as follows [31]:

AD = {AD(θ), θ ∈ [0, 2π)× [0, 2π)}

=
{
ar(θr)a

H
t (θt), θr ∈ [0, 2π), θt ∈ [0, 2π)

}
.

(3.17)

Then, the atomic norm of channel matrix H over its atom set AD is given by

‖H‖AD , inf

{∑
l

|sl|

∣∣∣∣∣H=
∑
l

slAD(θl), AD(θl)∈AD

}
. (3.18)

The atomic norm of H is minimal only when those atoms corresponding to the true

θr,l and θt,l are selected to linearly describe H. For theoretical proof, one can refer to [31].

Notice that the vectorization operation from H to h is a one-to-one mapping, thus D-ANM

shares the same optimality as V-ANM.
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The equivalent SDP formulation of (3.18) is given by [31]:

‖H‖AD , inf

1

2

(
trace(T(ur)) + trace(T(ut))

) ∣∣∣∣∣∣∣
T(ut) HH

H T(ur)

 � 0

 . (3.19)

Here the two Toeplitz matrices T(ur) and T(ut) are constructed from ar(θr) and at(θt),

respectively. Parameterized by ur ∈ CNr and ut ∈ CNt , T(ur) and T(ut) are of the forms

T(ur) =



ur0 ur1 . . . ur(Nr−1)

ur(−1) ur0 . . . ur(Nr−2)

...
...

. . .
...

ur(1−Nr) ur(2−Nr) · · · ur0


,

T(ut) =



ut0 ut1 . . . ut(Nt−1)

ut(−1) ut0 . . . ut(Nt−2)

...
...

. . .
...

ut(1−Nt) ut(2−Nt) · · · ut0


.

(3.20)

It is obvious that the above Toeplitz matrices have a much simpler structure and a consid-

erably smaller size than the 2D Toeplitz matrix T2D(u) in (3.13), which would make the

associated computation much easier.

Therefore, estimating a narrow-band mmWave massive MIMO channel can be done by

recovering channel matrix H through D-ANM, which is formulated as

min
ur,ut,H

µ

2

(
trace(T(ur)) + trace(T(ut))

)

+ ‖Y −HX‖2F

s.t.

 T(ut) HH

H T(ur)

 � 0.

(3.21)
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The channel in terms of matrix H can be directly recovered by solving the SDP without

any additional operations. Furthermore, as the two-level Toeplitz matrix T2D(u) in V-

ANM is decoupled into two one-level Toeplitz matrices T(ur) and T(ut) in D-ANM, the

constraint size in SDP formulation is reduced from (NrNt + 1) × (NrNt + 1) in (3.15) to

(Nr +Nt)× (Nr +Nt) in (3.21). As the computational complexity of ANM based methods

mainly depends on the size of the SDP constraint, D-ANM has much lower computational

complexity than V-ANM, which is attractive to massive MIMO systems where the antenna

size is huge.

3.5 Simulation Results

In this section, we evaluate the performance of the proposed D-ANM based approach for

a point-to-point MIMO channel over mmWave, and compare its performance with V-ANM

and CS-based method in different simulation setups. The estimation performance is first

testified in terms of mean-squared-error (MSE) of the estimated channel Ĥ averaged over

1000 Monte Carlo trials. In each trial, the AoA/AoD and path gains of the MIMO channel

are all randomly generated. The training data X are binary symbols randomly generated

according to the Bernoulli distribution with equal probability. Due to the very high compu-

tational load of V-ANM, we set Nr = Nt = 8, L = 2 for illustration, though the proposed

D-ANM approach can be applied to large-scale cases. We first test the performance of these

methods in terms of average MSE versus different signal-to-noise ratio (SNR). All the three

methods are implemented using the CVX toolbox [33]. The MSE performance is given in

Figure 3.2. From Figure 3.2, we can see that both V-ANM and D-ANM outperform the

CS-based method in terms of lower MSE with the same SNR value. Moreover, when increas-

ing SNR, the MSE values for ANM-based methods keep decreasing while the MSE curve

for CS-based method flattens out, which corroborates that the basis mismatch problem is

inevitable in CS techniques and that ANM-based methods can achieve super-resolution in

angle/frequency estimation.

22



Figure 3.2: MSE versus SNR (Nr = Nt = 8, L = 2, T = 6).

Figure 3.3 shows how the MSE varies with sensing time T . It is shown that the two

ANM-based methods consume less sensing time than the CS-based method for the same

estimation accuracy. Further, the MSE curves of both ANM-based methods flatten out

when T reaches a moderate value while the CS-based method needs larger T , which indicates

that ANM can afford to use less training resources for the same estimation accuracy than

the CS-based method. Such saving in training time may improve the throughput of data

transmission as more time resources can be allocated for data transmission.

For the two ANM-based methods, both Figure 3.2 and Figure 3.3 indicate that D-ANM

always exhibits a trivial performance gap compared with V-ANM, which results from the

decoupling step. However, for the very large antenna size of massive MIMO systems, the

small performance gap is worthy to exchange for the significant reduction in implementation

complexity, which will be corroborated by the upcoming simulation results.

We also test the spectral efficiency and bit error rate (BER) performance to evaluate

the impact of channel estimation on the achievable system. For simplicity, binary phase

shift keying (BPSK) is adopted. Figure 3.4 and Figure 3.5 show the spectral efficiency
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Figure 3.3: MSE versus sensing time T (Nr = Nt = 8, L = 2, SNR = 15 dB).

versus the number of antennas and the sensing time T , respectively. Both figures indicate

that the spectral efficiency provided by V-ANM and D-ANM are much better than that of

CS-based method. Even though the resolution of CS-based method increases as the antenna

size increases, ANM-based methods still outperform the CS ones because the former can

achieve super-resolution performance. Moreover, the gap on spectral efficiency between

D-ANM and V-ANM are negligible when T becomes large. The spectral efficiency versus

SNR is shown in Figure 3.6 and the bit error rate (BER) performance versus SNR is shown

in Figure 3.7. Both figures show that D-ANM and V-ANM offer nearly the same spectral

efficiency and BER performance, and outperform the CS-based method.

Figure 3.8 compares the computational cost of the three methods, measured by the

average running time of one trial for the setting Nr = Nt = 8, L = 2, T = 6 and SNR = 15

dB. It can be seen that V-ANM has much higher computational complexity than D-ANM.

According to [31], the computational complexities of ANM-based methods depend on the

size of the Toeplitz matrices in their semi-definite constraints. For V-ANM, the matrix’s

size (NrNt + 1)× (NrNt + 1) results in a time complexity of O(N3.5
r N3.5

t log(1/ε)), where ε
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Figure 3.4: Spectral efficiency versus Nr (Nr = Nt, L = 2, T = 6, SNR = 15 dB).

is the desired recovery precision [31]. In contrast, for D-ANM, the matrix’s size shrinks to

(Nr+Nt)×(Nr+Nt) only, resulting in a reduced time complexity asO((Nr+Nt)
3.5 log(1/ε)).

When Nr = Nt = N , the computational load is reduced on the order of O(N3.5) from V-

ANM to D-ANM. Thus, D-ANM enjoys huge complexity reduction over V-ANM, which is

attractive for massive MIMO scenarios, especially when the performance gaps in estimation

stage between D-ANM and V-ANM can be neglected in transmission stage in terms of

spectral efficiency and BER performance. To summarize, the proposed D-ANM based

channel estimation technique achieves better estimation performance at low computational

complexity.
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Figure 3.5: Spectral efficiency versus sensing time T (Nr = Nt = 8, L = 2, SNR = 15 dB).

Figure 3.6: Spectral efficiency versus SNR (Nr = Nt = 8, L = 2, T = 6).
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Figure 3.7: BER versus SNR (Nr = Nt = 8, L = 2, T = 6).

Figure 3.8: Computational complexity: Running time versus Nr (Nr = Nt, L = 2, T =
6, SNR = 15dB).

27



Chapter 4: Extensions

In this chapter, we apply D-ANM to two practical cases where either a uniform rectangular

array (URA) is employed at the base station (BS) or multi-user interference is present in a

mmWave massive MIMO system.

4.1 Uniform Rectangular Arrays

Consider a single-input multiple-output (SIMO) setting in which the BS employs an Mr×Mc

(Mr,Mc � 1) URA. The uplink channel estimation is done by letting the BS collect and

process the training data transmitted from a single-antenna mobile station (MS). Again,

assume there exists only L dominant paths. Following [35], the channel model for a SIMO

URA setting is formed as

HR =
L∑
l=1

slAR(Φl), (4.1)

where the array steering matrix AR(Φl) for the l-th path can be decoupled into column

and row vectors as

ac(ϕc,l) =
1√
Mc

[1, ej2π
dc
λ

sinϕc,l , . . . , ej2π
(Mc−1)dc

λ
sinϕc,l ]T ,

ar(ϕr,l) =
1√
Mr

[1, ej2π
dr
λ

sinϕr,l , . . . , ej2π
(Mr−1)dr

λ
sinϕr,l ]T ,

(4.2)

with sinϕc,l = sinαl, sinϕr,l = sinβl cosαl, αl, βl being the elevation and azimuth AoA,

respectively, and dc and dr being the column and row antenna spacings, respectively.
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Accordingly, we can define the atom set for the SIMO URA channel matrix HR as

AR = {AR(Φ), Φ ∈ [0, 2π)× [0, 2π)}

=
{
ac(ϕc,l)a

H
r (ϕr,l), ϕc,l ∈ [0, 2π), ϕr,l ∈ [0, 2π)

}
.

(4.3)

The system model for this scenario therefore is formulated as

Yi = HRxi + Wi, i = 1, . . . , T, (4.4)

where xi is the pilot symbol sent from MS and Wi is the AWGN collected at the BS at

time instant i. Correspondingly, the estimation of HR by D-ANM can be formulated as

min
vc,vr,HR

µ

2

(
trace

(
T(vc)

)
+ trace

(
T(vr)

))

+
T∑
i=1

‖Yi −HRxi‖2F

s.t.

 T(vr) HH
R

HR T(vc)

 � 0,

(4.5)

where vc ∈ CMc and vr ∈ CMr , T(vc) and T(vr) are of the same structures as T(ur)

and T(ut) defined in Section 3.4. In (4.5), the matrix-form array geometry is reflected

through two small-size vectors vc and vr to reduce computational complexity, without

loss of optimality. This is a key advantage of the proposed D-ANM method for channel

estimation. In contrast, when angular information is concerned, traditional array processing

techniques for URA arrays require the vectorization of the array manifold matrix while the

D-ANM avoids vectorization, which not only drastically reduces the computational cost but

also shortens the sensing time.

The pilot symbols xi sent from transmitter is only a scalar at each time instant i for
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i = 1, . . . , T , however, (4.5) works well even for T = 1, meaning that the sensing time can

be reduced to T = 1 with only one pilot symbol sent. This is because (4.5) effectively

utilizes the structure of HR, which is a large channel matrix constructed from only a few

angular parameters. Therefore, D-ANM provides efficient channel estimation technique for

SIMO systems with URAs employed at the BS, with only one training symbol needed for

estimation.

4.2 Multi-user Massive MIMO

Now consider an uplink channel estimation where a BS serves J (J ≥ 2) MS’s, each of

which is equipped with a ULA. The system model extends that in (3.4) to

Y =

J∑
j=1

HjXj + W, (4.6)

where Y ∈ CNr×T is the received training data collected at the BS during T sensing time

slots, Hj ∈ CNrj×Ntj is the channel between j-th user and the BS which is also dominated

by Lj paths, Xj ∈ CNtj×T is the training symbol sent from j-th user and W ∈ CNr×T is

the AWGN.

As the channel in an mmWave massive MIMO system is very sparse, it enables a chance

to estimate all channels Hj simultaneously with high accuracy. Given all pilot symbols Xj

transmitted from J transmitters and the measurements Y collected from the receiver, the
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BS estimates all Hj from Y as follows:

min
{urj ,utj ,Hj}Jj=1

J∑
j=1

µ

2

(
trace

(
T(urj)

)
+ trace

(
T(utj)

))

+ ‖Y −
J∑
j=1

HjXj‖2F

s.t.

 T(utj) HH
j

Hj T(urj)

 � 0, j = 1, . . . , J.

(4.7)

Each channel Hj holds the same structure as H defined in Section 3.1 for j = 1, . . . , J ,

therefore (4.7) adequately captures the structured information for channel estimation. From

the formulation we can see that the estimation accuracy is affected by the number of users

in the system, the inter-user interference and the length of training block T .

4.3 Simulation Results

For the mmWave wireless system that employs an URA at the BS, we simulate its spectral

efficiency using the channel estimated by D-ANM, and compare it with the ideal case where

the perfect CSI is known. The URA is composed of Mc = Mr = 8 antennas and the number

of dominant paths in the channel is set to be L = 2. The number of training symbols sent

at the receiver side at each time instant is only one. Still, D-ANM achieves good estimation

performance, as depicted by Figure 4.1.

For the multi-user system with J users, we set Nrj = Nr, Ntj = Nt, Lj = L, ∀j,

and T = 6. We test the cases for J = 2, 3, 4, and measure their spectral efficiencies and

BER performance, shown in Figure 4.2 and Figure 4.3, respectively. The gap on spectral

efficiencies between D-ANM and the perfect CSI increases when the number of users goes

large. This is because the number of unknowns to be estimated in D-ANM increases as the

number of accessing users increases, resulting in a decrease in estimation accuracy, which
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Figure 4.1: Spectral efficiency versus SNR for URA (Mc = Mr = 8, L = 2).

is also corroborated by BER performance. The estimation accuracy can be improved by

increasing either the antenna size or sensing time. Overall, the modified D-ANM approach

is appealing for mmWave massive MIMO multi-user systems.
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Figure 4.2: Spectral efficiency versus SNR for multi-user (Nr = Nt = 8, L = 2, T =
6, SNR = 15dB).

Figure 4.3: BER versus SNR for multi-user (Nr = Nt = 8, L = 2, T = 6, SNR = 15dB).
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Chapter 5: D-ANM for Frequency-selective

SIMO-OFDM Systems

5.1 Background and Motivation

Previous chapters discuss the channel estimation for narrowband mmWave massive MI-

MO/SIMO systems, however in reality, mmWave channels are wideband and frequency-

selective with severe path-loss [9]. To combat the severe path-loss and achieve reliable

communications, beamforming with large-scale antenna arrays is inevitable, which requires

the knowledge of AoA or AoD [36]. As implementing beamforming with large-scale an-

tenna arrays in BS’s is much easier than that in user equipments (UEs) and most often

users may not want to carry so many antennas, therefore, in this work, we consider a

wide-band SIMO system where the large-scale antenna array in the form of ULA is only

employed at the BS. While the channel between the BS and UE is time-dispersive, result-

ing in frequency-selective fading, we adopt the orthogonal frequency division multiplexing

(OFDM) technique to convert the frequency-selective fading into flat fading.

Again, to utilize the potential performance gain of mmWave large-scale antenna sys-

tems, CSI has to be obtained accurately by doing channel estimation. However, traditional

channel estimation approaches can not be directly applied to SIMO-OFDM systems due to

the heavy training overhead and high computational complexity caused by the large number

of antennas [37]. By adopting the usual assumption in most literatures that each scatterer

in an mmWave channel contributes to only one single path which is parameterized by its

delay and AoA, CS-based methods can be applied for SIMO-OFDM channel estimation.

While CS-based methods succeed in estimating the channel with much less pilot overhead

or obtaining higher accuracy with a constant number of pilots compared with traditional
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Figure 5.1: Baseband OFDM.

methods [36,38,39], they suffer from considerable performance degradation in practice due

to their on-grid assumptions, which in the SIMO-OFDM setup means that the values of

delays and AoAs have to lie on some predefined grids [23].

Motivated by the framework of D-ANM for 2D mmWave channel estimation with high

accuracy at reduced complexity and little training overhead, we propose a D-ANM based

approach for SIMO-OFDM systems after observing that Vandermonde structures are incor-

porated in both spatial dimension (resulted from ULA) and frequency dimension (resulted

from OFDM). Before introducing the estimation scheme, fundamentals of OFDM systems

are first described.

5.2 Description of OFDM Systems

Orthogonal frequency division multiplexing (OFDM) technique is usually adopted to convert

a frequency-selective channel into a parallel collection of frequency-flat channels by dividing

the entire channel into a group of narrow subchannels [40]. Moreover, when utilizing cyclic

prefix (CP), which is done by extending an OFDM symbol with some portion of its head

or tail, intersymbol interference (ISI) is avoided. A block diagram of a baseband OFDM

system is shown in Figure 5.1.

Suppose that the OFDM system divides the channel into N parallel subchannels. The
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binary information-bearing data are coded and modulated, after which an inverse discrete

Fourier transform (IDFT) is done to obtain the time domain OFDM symbol {x(n)} of

length N , where

x(n) = IDFT{X(k)}

=
1√
N

N−1∑
k=0

X(k)ej2πkn/N , n = 0, . . . , N − 1.

(5.1)

The CP of length Ncp is added to x(n) to eliminate ISI, resulting in the time sample

x̃(n), where

x̃(n) =


x(N + n), n = −Ncp,−Ncp + 1, . . . ,−1

x(n), n = 0, 1, . . . , N − 1

. (5.2)

The transmitted signal x̃(n) then passes through the frequency-selective channel with

additive noise, resulting in measurements ỹ(n):

ỹ(n) = x̃(n) ∗ h(n) + w(n), −Ncp ≤ n ≤ N − 1, (5.3)

where w(n) and h(n) are the AWGN and channel impulse response (CIR) between the

transmit antenna and receive antenna, respectively. The CIR is modeled as

h(n) =

L∑
l=1

αlδ(n− τl), 0 ≤ n ≤ N − 1, (5.4)

where L is the number of paths, αl and τl are the complex path gain and normalized

propagation delay of l-th path, respectively.

At the receiver, the prefix of ỹ consisting of Ncp samples is removed, resulting in a
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received data sequence of length N :

y(n) = ỹ(n+Ncp), n = 0, 1 . . . , N − 1. (5.5)

Afterwards, y(n) is sent to DFT block to obtain the frequency domain data:

Y (k) = DFT{y(n)}

=
1√
N

N−1∑
n=0

y(n)e−j2πkn/N ,

k = 0, . . . , N − 1.

(5.6)

Theoretically, ISI is totally eliminated. With H(k) = DFT{h(n)} be the N -point DFT

channel frequency response (CFR) of h(n), the relationship between frequency domain data

Y (k) and CFR H(k) in the absence of noise is given in [41], which is

Y (k) = H(k)X(k), k = 0, . . . , N − 1. (5.7)

With AWGN w(n), and W (k) = DFT{w(n)}, the received signal in frequency domain

is of the form

Y (k) = H(k)X(k) +W (k), k = 0, . . . , N − 1. (5.8)

In compact vector-matrix form, the received frequency domain sample of all N subcar-

riers is

Y = diag(X)H + W, (5.9)

where X = [X(0), . . . , X(N −1)], H = [H(0), . . . ,H(N −1)]T and W = [W (0), . . . ,W (N −

1)]T are row vectors. Note that both X and W are frequency domain data. Traditional

channel estimation approaches such as least square (LS) estimator, minimum mean square

error (MMSE) estimator are usually done in frequency domain with pilot aided.
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Figure 5.2: Pilot arrangements: (a) block-type pilot arrangement and (b) comb-type pilot
arrangement.

To insert pilot symbols, there are two different arrangements, the block-type pilot ar-

rangement and the comb-type pilot arrangement, as shown in Figure 5.2. Block-type channel

estimation usually assumes slow-fading, meaning that the channel is constant over one or

more OFDM symbol periods, which is not true in practice for mmWave channels. Therefore

in this work, to meet the need for channel equalization or tracking in fast fading scenarios,

we adopt the comb-type pilot arrangement to do channel estimation, in which the pilot

symbols are multiplexed with the data within an OFDM symbol. The main idea in comb-

type channel estimation is to estimate the channel conditions at the pilot subcarriers first

and then estimate the overall channel by means of interpolation.

As the estimation performance using comb-type pilot arrangement is directly affected

by the number and/or locations of pilot subcarriers used for the initial estimation [42],

therefore, to obtain an accurate estimation, the number of pilot subcarriers needs to be

high, making traditional LS estimator and MMSE estimator suffer from high computational

complexity.
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5.3 Channel Model and Problem Formulation

Assume that the time dispersive channel to be estimated is composed of L scatters and each

scatter contributes to one single path parameterized by its delay and AoA. The time-domain

CIR for the receive antennas, denoted by h(n) is given by [41]:

h(n) =

L∑
l=1

αla(θl)δ(n− τl), 0 ≤ n ≤ N − 1 (5.10)

where h(n) = [h1(n), . . . , hNr(n)]T , αl and τl are the complex path gain and normalized

propagation delay of l-th path, respectively. The receive array response vector of l-th path

associated with corresponding AoA θl is by a(θl) = [1, ej2π sin θld/λ, . . . , ej2π sin θl(Nr−1)d/λ]T ,

where d and λ are the antenna spacing and the wavelength, respectively.

The CFR at k-th subcarrier is given by

H(k) = DFT{h(n)}

=
1√
N

N−1∑
n=0

L∑
l=1

αla(θl)δ(n− τl)e−j2πkn/N

=
1√
N

L∑
l=1

αla(θl)e
−j2πkτl/N

k = 0, . . . , N − 1.

(5.11)

Stack the CFR of all N subcarriers into a matrix gives the expression of H ∈ CNr×N in
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(5.11) as

H = [H(0), . . . ,H(N − 1)]

=
1√
N

L∑
l=1

αla(θl)e
T (τl)

= A(θ)SET (τ )

=
L∑
l=1

slAE(fl)

, (5.12)

where e(τl) = [1, ej2πτl/N , . . . , ej2π(N−1)τl/N ]T , sl = 1√
N
αl, E(τ ) = [e(τ1), . . . , e(τL)], S =

diag[s1, . . . , sL], A = [a(θ1), . . . ,a(θL)], AE(fl) = a(θl)e
T (τl).

Comb-type pilots are used for channel estimation, but we only consider transmitting

one OFDM symbol at each time instant. The OFDM symbol before CP addition is com-

posed of Np pilot symbols and N − Np information bearing symbols. The Np pilot sym-

bols are transmitted over Np uniformly separated subcarriers whose indices are in the set

P := {p1, p2, . . . , pNp} with pi = (i − 1)M + 1, where M = N/Np. The transmitted pi-

lot vector and received pilot sample vector are XP = [X(p1), X(p2), . . . , X(pNp)]
T and

YP = [Y(p1),Y(p2), . . . ,Y(pNp)], respectively and they are related by

YP = HPdiag(XP) + WP , (5.13)

where WP = [W(p1),W(p2), . . . ,W(pNp)] ∈ CNr×Np is the AWGN and the CFR HP =
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[H(p1),H(p2), . . . ,H(pNp)] ∈ CNr×Np of Np subcarriers is of the form

HP =
1√
N

L∑
l=1

αla(θl)e
T
P(τl)

= A(θ)SET
P(τ )

=
L∑
l=1

slAP(fl)

, (5.14)

where eP(τl) = [ej2π(p1−1)τl/N , . . . , ej2π(pNp−1)τl/N ]T and EP(τ ) = [eP(τ1), . . . , eP(τL)].

To estimate the CFR in the form of matrix H, the CFR at subcarriers P in the form of

HP needs to be estimated from {YP ,XP} first, where YP is corrupted by noise WP , then

H can be obtained through interpolation.

5.4 D-ANM based Channel Estimation

Following the frame work of D-ANM, we define the atom set for the SIMO-OFDM pilot

symbol incorporated channel HP as

AP = {AP(f), f ∈ [0, 2π)× [0, τmax)}

=
{
a(θl)e

T
P(τl), θl ∈ [0, 2π), τl ∈ [0, τmax)

}
.

(5.15)

Note that the channel in equation (5.12) and (5.14) both have the 2-D Vandermonde
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structures, therefore, we can adopt (3.21) to estimate the channel through pilots:

min
ur,uτ ,Hp

µ

2

(
trace(T(ur)) + trace(T(uτ ))

)

+ ‖YP −HPdiag(XP)‖2F

s.t.

 T(uτ ) HH
P

HP T(ur)

 � 0.

(5.16)

The estimation of HP is done after collecting all frequency domain data, that is, after

an DFT operation on the time domain measurements y(n). Once HP is estimated, H can

be obtained through the following operation:

H = DFTN{IDFTNp{HP}}. (5.17)

By applying D-ANM to SIMO-OFDM systems, basis mismatch problem that exists

in CS techniques can be avoided. The continuously-valued AoA and time delay can be

obtained easily using matrix pencil and pairing (MaPP) [31]. The angular information can

be utilized for beamforming in large-scale antenna arrays.

5.5 Simulation Results

In the SIMO-OFDM system, we consider deploying Nr = 8 antennas in the form of ULA at

the BS and dividing the wideband carrier into N = 64 narrowband subcarriers using OFDM.

The number of pilots used for estimation isNcp = 8, transmitted on the subcarriers of indices

{1, 9, 17, 25, 33, 41, 49, 57}. We adopt a BPSK modulation and randomly generate AoA

and time delays in the range of [0, 2π] and [0, τmax). The overall channel H is obtained

using (5.17) after obtaining the estimates of HP . To evaluate the performance of D-ANM,

we test the MSE and spectral efficiency versus SNR, shown in Figure 5.3 and Figure 5.4,

respectively.
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Figure 5.3: MSE versus SNR (Nr = 8, L = 2, N = 64, Ncp = 8).

From the simulations, we can see that D-ANM achieves better performance than CS-

based techniques, as the parameters that characterize the channel are continuously-valued

and off-the-grid. Further work will be done to exploit the effects of pilot locations on

estimation performance.
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Figure 5.4: Spectral efficiency versus SNR (Nr = 8, L = 2, N = 64, Ncp = 8).
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Chapter 6: Conclusions and Future Works

6.1 Conclusions

In this thesis, by leveraging the framework of D-ANM for 2D harmonic retrieval and utiliz-

ing the sparsity feature of mmWave channels, we develop a low-complexity high-accuracy

channel estimation approach for mmWave large-scale antenna array systems. The proposed

method retains the super-resolution property provided by ANM, and outperforms the state-

of-the-art CS-based methods in both estimation performance and training resource saving.

Meanwhile, through decoupling, D-ANM achieves good estimation performance at much

lower computational complexity. As a result, it is very attractive in offering a desired trade-

off between estimation performance and computational complexity for practical mmWave

massive MIMO systems. We also apply the proposed algorithm to two practical scenarios,

including the URA antenna implementation and the multi-user case. Simulations show

that D-ANM has good performance for both cases. Finally, we consider frequency-selective

channels and develop a pilot-aided channel estimation approach based on D-ANM for the

SIMO-OFDM systems.

6.2 Future Works

There are several possible directions for future research:

1. In Chapter 3, we only estimated a 2D mmWave channel, with the assumption that

the channel experiences frequency flat fading and there is no multipath delay in the

system. However, in practice, the wireless environment is more complex, therefore, it

would be both meaningful and interesting if we can extend D-ANM to higher dimen-

sions and take time delays and Doppler spread into considerations.
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2. Throughout the thesis, we focused on estimating digital channels at low complexities,

without considering the hardware constraints. However, it is impossible to realize the

digital baseband precoding and channel estimation in massive MIMO systems due to

the high power consumption caused by the large antenna size. Therefore, we need

to consider hybrid analog/digital architectures for implementation and develop more

practical channel estimation algorithms.

3. The channel estimation step occupies resources for transmission, therefore, it may

be of significance if non-coherent detection can be done with desired performance.

The non-coherent detection may be realized by adopting multiple symbol differential

detection (MSDD) scheme.
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Appendix A: Proof of Proposition 2.2.1

Denote the value of the right hand side of equation (2.8) as SDP(x). Let x =
∑

l sla(fl),

where sl = |sl|ejθl . Define u =
∑

l |sl|a(fl), υ =
∑

l |sl|, and

Toep(u) =
∑
l

|sl|a(fl)a
H(fl).

Therefore, Toep(u) x

xH υ

 =
∑
l

|sl|

a(fl)

e−jθl


a(fl)

e−jθl


H

� 0, (A.1)

indicating SDP(x) ≤ 1
2M trace(Toep(u)) + 1

2υ =
∑

l |sl| = ||x||A.

Conversely, suppose for some u and x satisfying

Toep(u) x

xH υ

 � 0, (A.2)

then we have Toep(u) � 0 and Toep(u) � 1
υxxH by Schur complement condition. Form a

Vandermonde decomposition

Toep(u) = VDVH ,

where V = [a(f1), ...,a(fr)],D = diag([d1, ..., dr]) with dl’s being real and positive values

and r = rank(Toep(u)). Since VDVH =
∑

l dla(fl)a
H(fl) and ‖a(fl)‖ =

√
M , we have

1
M trace(Toep(u)) = trace(D).

Using this Vandermonde decomposition and the matrix inequality in equation(A.2), then

it follows that x falls within the column space of Toep(u), or equivalently, x =
∑

l wla(fl) =

Vw for some vector w = [· · ·wl · · · ]T . Let q be any vector such that VHq = sign(w), where
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sign(w) is the sign vector of w, then trace(D) = qHVDVHq ≥ 1
υVwwHV = 1

υ (
∑

l |wl|)2,

which implies that

1

2M
trace(Toep(u)) +

1

2
υ =

1

2
trace(D) +

1

2
υ

≥
√

trace(D)υ ≥
∑
l

|wl| = ||x||A,

equivalently, SDP(x) ≥ ||x||A. Therefore we conclude SDP(x) = ||x||A.
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