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ABSTRACT 

APPLICATION OF REMOTE SENSING AND GOOGLE EARTH ENGINE FOR 

AGRICULTURAL MAPPING IN SOUTH ASIA 

Zhiqi Yu, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Liping Di 

 

Agricultural land use is one of the dominant land use types in South Asia (SA). A 

majority of SA population depends on agriculture for their livelihood. The agricultural 

activities and food production in SA are tightly related to the poverty level in many SA 

countries and has broader impact on global food security, climate change, economics, etc. 

To feed the growing population in SA with most of the land suitable for agriculture 

already cultivated, crop intensification and transitions from traditional agriculture to non-

crop, cash crops, and fishery are expected. These land use and land cover changes have 

profound impact on the regional and global food security and economics. Thus, timely 

producing agricultural land use data products with remote sensing technique are very 

important to achieve sustainable agriculture and monitoring such agriculture land use 

changes. However, the application of remote sensing in SA faces many challenges, e.g., 

persistent high cloud covers during monsoon seasons, very limited availability of ground 
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truth samples, and excessively small and irregularly shaped agriculture fields, etc. Thus, 

this dissertation study aims to design algorithms and tools to help monitoring agriculture 

land use changes in SA using remote sensing images and provide insight on addressing 

such challenges. As Google Earth Engine (GEE) is becoming increasingly popular in the 

remote sensing community, this dissertation also explores utilizing GEE’s potential for 

operational agriculture mapping and designing complex data processing workflows. To 

achieve the overall goal, this dissertation presents research for three objectives. 

Specifically, this dissertation first presents a novel workflow for inland fishpond mapping 

using spectral and spatial information derived from remote sensing images. This 

workflow was implemented on GEE and was tested in a case study in Singra Upazila in 

Bangladesh. The results showed that the method successfully detects fishponds with an 

F1 score of 0.64. Next, a GEE-based workflow that combines MODIS Terra and Aqua 

data and uses Harmonic Regression to reconstruct time-series Normalized Difference 

Vegetation Index (NDVI) for crop intensity mapping was presented. The method was 

used for crop intensity mapping in Bangladesh 2010 and showed a national average crop 

intensity of 1.66. Lastly, a GEE-based web application named RiceMapEngine was 

developed to provide a one-stop experience of rice mapping to higher-level officials and 

decision makers. This application was demonstrated in rice mapping for Chitwan district 

in Nepal. The result showed that this application can successfully help produce early-

season and post-season rice maps using GEE with very easy-to-use interfaces.  
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1. INTRODUCTION 

1.1. Research Background 

The United Nation introduced 17 sustainable development goals (SDGs) in 

September 2015 to guide the work of the organization and the entire globe in the 

following 15 years (United Nations, 2018). These SDGs cover a wide range of topics 

including poverty, food security, health, education, climate change, economy, social 

inequality, etc. Agriculture, which includes farming of both plants and animals when 

defined broadly, plays a major role in the SDGs. Over the course of human history, 

agricultural activity has significantly modified the land surface, and agriculture lands 

takes up nearly 40% of the global land area nowadays (Foley et al., 2005). The ever-

growing population on the planet poses great challenges to the food security (Weiss et al., 

2020). According to a report in 2020 by Food and Agriculture Organization (FAO), there 

are about 720 to 811 million people that are exposed to severe food insecurity in 2020, 

and the COVID-19 pandemic started from 2019 may have added approximately 100 

million people to the number (FAO et al., 2021). An estimate shows that the world's 

agricultural production must increase by 70 %–110 % from 2010 to 2050 to meet the 

projected demands caused by increasing populations and changing diets (FAO, 2009). As 

a result, the needs for increased agriculture yield, more arable cropland, cropland 

intensification, and food diversification are keys to solve food insecurity. In addition to 
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food security, agricultural activities are also intertwined with the ecological change and 

climate change. Agricultural activities produce various greenhouse gases from fertilizers, 

animal ruminants, and paddy rice cultivation, which contribute to the global warming 

(OECD, 2016). Agriculture crop intensification may cause soil degradation, and the 

overuse of fertilizers may also introduce water pollution and air pollution (Ni et al., 

2021a; J. Yu & Wu, 2018). In fact, the growing need of food with limited croplands often 

contradicts with the need for environment protection and sustainability (J. Yu & Wu, 

2018). Thus, understanding agriculture in terms of its spatial distribution and yield, and 

its complex relationships with environment, energy usage, air quality and climate change 

is the key to successfully reach SDGs.  

The SA region as shown in Figure 1 consists of Afghanistan, India, Pakistan, 

Bangladesh, Sri Lanka, Nepal, Bhutan and Maldives. The entire region covers about 5.2 

million square kilometers (km2) and is home to about 1.891 billion people, which 

accounts for 1⁄4 of the whole population on the planet. In addition to being one of the 

most populous regions in the world, the SA region is also one of the poorest regions in 

the world. According to the World Bank’s 2011 report, about 24.6% of the SA population 

lives under the international poverty line, and SA accounts for 29% of total population 

living in extreme poverty worldwide (World Bank, 2018). A majority of the population 

are engaged in agriculture activities. Moreover, a large portion of the terrain are 

inhospitable such that most of the population lives on less than half of the entire region, 

which significantly intensified the population density and the consumption of natural 

resources. There are 6 main climate systems in the SA region. Areas that are close to the 
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ocean are mostly in the tropical climate zone. The northern India, lowland area of Nepal, 

and northern part of Bangladesh are in humid subtropical zone. The inland area that 

includes northwestern India and Pakistan are in semiarid and desert zones. The east of SA 

region, which includes Bangladesh and around the northeastern, eastern, and southern 

fringe of India, are under the influence of seasonal monsoon. The high humidity brought 

by the monsoon rains and the hot temperature during summer provide a great condition 

for rice. As shown in Figure 1, the Ganges River Basin is home to soil with ample 

moisture. With large areas of alluvial soils and a high proportion of the land under 

intensive rice cultivation, these areas can provide food for a significantly large and dense 

population. The main farming system in this region, especially in the entire Bangladesh, 

West Bengal of India, and Terai belt region of Nepal, is rice farming. The rice growing 

seasons can range from one season in some lowland area to three seasons with the help of 

irrigations in the dry season (Biradar & Xiao, 2011; Gray et al., 2014). Due to the rapid 

urban expansion and population increase, the land availability per capita is decreasing, 

and thus a trend of farming intensification is expected. Moreover, as the profit of growing 

rice decreases, there is also a trend of farming diversification. For example, many farmers 

start to modify farmlands into fishponds as a replacement to cultivate fish for better 

profits (Hashem et al., 2014). The crop type and crop system changes in the last decade 

have huge impact on the overall health and economics of the SA region.  
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Figure 1. Agro-ecological zones of SA. Data source: Global Agro-Ecological Zones (GAEZ v4). 

 

 

 

Remote sensing technology has been evolving in the recent decades such that the 

observations for the earth are made with higher spatial resolution and higher revisit 

frequency. It has become an essential tool to non-destructively provide recurrent 

observations from local to the global scale for surveying and monitoring purpose (Weiss 

et al., 2020). Remote sensing is especially suitable for agriculture monitoring. As crop 

grows, biomass increases, and the land cover and canopy structure and density changes 

rapidly. Remote sensing technology can be used to detect such changes using either 
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optical sensors or radar sensors. Optical sensors usually provide multi-spectral 

information which can be used to derive indicators that are associated with biomass and 

vegetation health. Radar sensors on the other hand, provide information on the surface 

roughness and moisture content. The backscatter intensity and the cross-polarization can 

be used to characterize crop canopy structure changes and soil moisture changes, which 

are indirectly linked with biomass changes as crop grows. While passive optical remote 

sensing is extremely popular in studying vegetations due to their well-understood 

relationship to vegetation greenness, their usefulness decreases significantly when there 

is persistent cloud cover over an area. For regions like Bangladesh where monsoon 

season brings persistent cloud cover and high precipitation, passive optical remote 

sensing sensors suffer from severe missing data problem, which affects their ability to 

monitor vegetation health and predict crop yield during this period. Radar sensors 

typically work at frequency ranges that are not affected by the cloud and aerosols, which 

makes them desirable in applications that suffers from severe cloud cover problem. 

However, the relationship between the radar sensor recordings and vegetation physiology 

is less understood compared with multi-spectral sensor records. The distinct and yet 

complementary advantages and disadvantages of passive optical sensors and radar 

sensors make it beneficial to use them together for vegetation monitoring, especially for 

the SA region. 

Traditionally, remote sensing data processing takes non-trivial work because of 

the sheer volume of data that need to be downloaded to and processed on local 

workstations. However, the advent of Google Earth Engine (GEE) (Gorelick et al., 2017), 
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and the recent development from Microsoft, the Planetary Computer (PC) has made 

remote sensing data processing much easier thanks to the cloud computing infrastructure 

provided by Google and Microsoft. GEE provides researchers Application Programming 

Interfaces (APIs) to process and visualize remote sensing datasets by writing JavaScript 

code in the online code editor, which is shown in Figure 2. The online coding interface 

provides a highly integrated environment for data searching, API searching, asset 

management, coding area, print console and visualizations in the form of maps, charts, 

and text. The almost instant feedbacks that one can get from running data processing 

scripts using GEE help with spotting errors and mistakes early, and the immediate results 

can be quickly visualized and analyzed to progressively build complex processing 

pipelines. As a result, more and more research works are using GEE, and it has become 

so popular that it is shifting the paradigm for remote sensing research. In addition to help 

expediting remote sensing research, GEE and PC also offer powerful platforms to build 

web applications using their client APIs, which opens capabilities of building web 

applications that can conduct real-time remote sensing image processing. Such 

capabilities can bridge the gap between researchers or decision makers who don’t have 

programming or remote sensing expertise, and the critical information that remote 

sensing conveys.  

With the climate change, rapid urbanization, industrialization, market 

globalization, and the fast growth of population ongoing in SA region, the agriculture in 

SA is experiencing a series of changes. These changes include cropping intensification, 

transition from agriculture to more-profitable fishery, potential shrinkage of agriculture 
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lands, etc. It is important to utilize remote sensing technique and advanced cloud 

computing platforms to provide timely and accurate updates of these changes to 

stakeholders and decision makers. These data products will help enhance the 

understanding of the status-quo of the agricultural land use in SA region and help SA 

countries achieve 2030 UN SDGs eventually. In this dissertation, we mainly focus on the 

mapping tasks for monitoring transitions from agriculture to aquaculture, crop 

intensification, and monitoring paddy rice extents.  

 

 

 

 

Figure 2. GEE online coding interface. 
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1.2. Problem Statements 

The first mapping task is for monitoring changes from cropland to non-crop land 

use. Large conversion from cropland to non-crop, cash crop, and aquaculture use has 

been going on in South Asia countries. For example, high demands for fishes on the 

international market and high economic return of raising fish drive the significant 

conversion of agriculture to fishponds in Bangladesh, which make the food security and 

farmers’ income more vulnerable to international market fluctuations. Therefore, 

knowing the extent and the spatial distribution of the transitions is essential to mitigate 

such risks. Although there are a few research works that investigated mapping coastal 

fishponds in Bangladesh and India, inland fishpond mapping is rarely explored. The 

inland fishponds are much smaller, and the shapes are more irregular comparing with 

coastal fishponds. Moreover, the inland water bodies like rivers, lakes, and floods pose 

challenges to the mapping of inland fishponds. Thus, it is worthwhile to investigate this 

topic using remote sensing technique and address unique challenges of mapping inland 

fishponds.  

The second mapping task is for monitoring year-to-year crop intensity in SA 

region. With most of the lands that are suitable for rain-fed agriculture cultivated, crop 

intensification is expected to feed the growing population in SA region. However, crop 

intensification can introduce environmental issues such as soil degradation and water 

pollutions, which would impact the food security and climate change in the long term. 

Mapping cropping intensity using remote sensing data has long been investigated. 

Previous research has used various methods to reconstruct NDVI time-series and detect 
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cropping seasons by phenology or using heuristics. While several data products were 

produced at global and continental scale, there are rarely studies that focus on SA, which 

is heavily affected by the persistent cloud cover during monsoon seasons. Thus, this 

dissertation will investigate crop intensity mapping using remote sensing data with 

significant missing data problem caused by cloud covers and compare the remote 

sensing-derived crop intensities with statistical results.  

The last mapping task is for monitoring the change of paddy rice areas. As the 

most dominant crop type grown in many of the SA regions, rice is tightly coupled with 

the food security and the economics of the region. Knowing not only the area, but also 

the spatial distribution of paddy rice fields will help better predict food productions, 

which in turn will help decision makers better coordinate resources to ensure food 

security. Paddy rice mapping has been widely studied. Due to the unique transplanting 

phase, empirical methods can be used to detect paddy rice fields by identifying waters in 

the fields. Such methods often need ground truth data to calibrate and validate. However, 

ground truth samples for rice are hard to differentiate from other crop types on true color 

high resolution images because they all look similar, and the cloud may block views. 

Thus, it is important to have tools that can collect and validate paddy rice ground truth 

samples by examine the phenology of the sample. Although GEE has been used in many 

paddy rice mapping research works, there exists gaps between GEE’s computing power 

with decision makers because GEE requires knowledge in programming. There are rarely 

tools that can translate the computing power of GEE through easy-to-use user interfaces. 

Thus, it is extremely worthwhile to investigate the potential of GEE for building easy-to-
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use rice mapping tools for ground truth sample validation and fast paddy rice area 

monitoring.   

1.3. Research Objectives 

With the problems and knowledge gaps being stated in the last section, this 

dissertation aims to achieve the following objectives. 

Objective 1: Develop a novel GEE-based workflow to map inland fishponds. 

These research questions should be answered: How can inland fishponds be 

differentiated with other water bodies like rivers, lakes, and floods? How does the size of 

fishponds affect the mapping results? What spatial resolution of remote sensing images is 

needed to map fishponds?  

Objective 2: Investigate crop intensity mapping using remote sensing data and 

GEE.  

These research questions should be answered: How does monsoon cloud cover 

affect the mapping result? How to deal with missing data problem caused by cloud 

cover? How does the mapping result compare with non-spatial statistical results? 

Objective 3: Design a GEE-based software for ground truth sample validation 

and fast paddy rice mapping.  

These research questions should be answered: How to efficiently use GEE in the 

software? How to validate ground truth samples using their phenology? How to use the 

software to produce paddy rice maps with or without ground truth samples? A case study 

needs to be conducted to showcase how to use the software and the accuracies of the rice 

maps need to be assessed. 
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1.4. Dissertation Outline 

This dissertation contains 6 chapters, and they are arranged as follows: 

Chapter 1 gives a brief introduction to the background of this dissertation, the 

knowledge gaps, and the research objectives.  

Chapter 2 presents a detailed literature review on the physical principles of remote 

sensing for agriculture and the application of various ML models and GEE for agriculture 

mapping.  

Chapter 3 presents the background, methodology, and findings of the research to 

achieve the first research objective. A novel workflow that maps inland fishponds using 

both spectral and spatial information derived from remote sensing data is presented. A 

case study in the Singra Upazila in Bangladesh is conducted to assess the performance of 

the proposed method.  

Chapter 4 presents the research to achieve the second research objective. A GEE-

based workflow was designed to produce crop intensity maps using MODIS surface 

reflectance data. The workflow uses Harmonic Regression to reconstruct NDVI curves 

and uses an empirical threshold to detect crop growing seasons. The method was used to 

produce the crop intensity map for Bangladesh in 2010, and the results were compared 

with statistical data from Bangladesh Bureau of Statistics (BBS).  

Chapter 5 presents a GEE-based application to achieve the last research objective. 

The application was named RiceMapEngine, and it was designed for ground truth sample 

validation and paddy rice mapping. The background, software design, and main 

functionalities are discussed in this chapter. A case study of rice mapping operation in 
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Chitwan district of Nepal, 2021 is carried out and the accuracies of produced rice maps 

are discussed. 

Chapter 6 summarizes the major results and findings for each of the research 

objectives, and the limitations of the proposed methods are discussed.  
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2. LITERATURE REVIEW 

2.1. Physical principles of remote sensing applications in agriculture 

Remote sensing is widely applied in agriculture applications, e.g., crop type 

mapping (HAO et al., 2020; Kenduiywo et al., 2018; Manjunath et al., 2015; Schultz et 

al., 2015; Sun et al., 2019; Villa et al., 2015; S. Wang et al., 2019; H. Zhang et al., 2020a, 

2020b), crop pattern/system mapping (Gray et al., 2014; Guan et al., 2016; Jain et al., 

2013; L. Li et al., 2014; L. Liu et al., 2020a; Manjunath et al., 2015). Multispectral 

images have a long history of being used to map vegetations. The physical principles of 

vegetations identification with multispectral images, and vegetation indices that were 

designed to identify vegetations are discussed in the next question below. SAR images 

are less popular in mapping vegetations because it lacks critical spectral information. 

Nevertheless, a recent trend of using SAR along with multispectral images for crop 

classification can be observed (LIU et al., 2019). SAR images are sensitive to the 

geometric, and dielectric characteristics of vegetations, and because SAR emits long 

wavelength signals, it often can penetrate the canopy of vegetations, and even carry 

information about soil when the vegetation cover is not high (LIU et al., 2019). The 

backscatter response of vegetation depends on the canopy structure, surface roughness, 

soil conditions, and sensor configurations (signal frequency, polarization, incident angle, 

etc.) (Moreira et al., 2013). Vegetations reflects radar signals in a volume scattering 
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model. In the volume scattering model, the scatterers are the objects that are of the same 

order of the signal wavelength. The original polarized signal typically bounces between 

random scatterers in the volume and depolarizes. Thus, backscatters from volume 

scattering typically have high depolarization, and the response strength increases with the 

number of scatterers. Bare surfaces have weak depolarizing effect, and vegetation 

canopies are highly depolarizing. The cross-polarized signals (HV) increase with biomass. 

These characteristic lays foundation for many SAR-derived vegetation indices, e.g., radar 

vegetation index (RVI) (Mandal et al., 2020). Depending on different crop types, the 

backscatters show different patterns. For example, at C band, the backscatters in the 

wheat field are dominated by the ground scattering, attenuated by the vegetation layer. 

Thus, the backscatter increases as soil moisture increases (dielectric constant increase), 

and the backscatter decreases as biomass increases. The HH/VV ratio over the growing 

season corresponds well to the wheat biomass. Rice on the other hand, has a different 

mechanism. The backscatters in the rice field are dominated by the double bounces 

between vegetation and water. Thus, the HH and VV response increases as biomass 

increases. Similar to wheat, the HH/VV ratio corresponds well to the rice biomass.  

Specific crop type classification often references the crop calendar information. 

As vegetation indices correspond well to vegetation biomass, and vegetation healthiness, 

time-series of vegetation indices are often used in the growing seasons of a specific crop 

growing season to see if the time-series match the biomass changes in the planting, 

growing, peak, and harvesting phases.  
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2.1.1. Vegetation Indices 

Vegetation indices (VI) are indices derived using spectral bands to characterize 

vegetations based on their biophysical features. Specifically, healthy vegetation absorbs 

blue- and red-light during photosynthesis and produce chlorophyll which reflects near-

infrared (NIR) waves which results in low reflectance in red band and high reflectance in 

the NIR band. Thus, VI often use the differences between reflectance of blue/red and NIR 

to enhance vegetations. A VI is effective if it is highly correlated with the biophysical 

parameters of vegetations and is less sensitive to noises coming from atmosphere and 

background soil.  

Basic vegetation indices are indices designed without considering noises from soil 

and atmosphere. Jordan (1969) derived Ratio Vegetation Index (RVI) which is just a ratio 

between red band and NIR band. Later Rouse et al. (1973) derived Normalized 

Difference Vegetation Index (NDVI) that is based on reflectance difference between red 

band and NIR band, and the difference is normalized by the sum of the red and NIR band 

such that the NDVI value is ranged from -1 to 1. Despite being sensitive to background 

soil brightness and atmosphere, NDVI is the most widely used VI nowadays (Wójtowicz 

et al., 2016).  

While basic VIs such as NDVI is concise and sufficiently effective, there are 

many efforts devoted to reducing impact of soil background and atmosphere on the 

vegetation identification. To reduce the atmosphere interference, Zhang et al. (1996) 

introduced IAVI. This index is based on the knowledge that red band is affected more by 

atmosphere than NIR band, and they used blue band to adjust red band values. Table 1 



16 

 

shows the equation of IAVI. Soil-Adjusted Vegetation Index (SAVI) proposed by Huete 

(1988) is an example of limiting impact of soil on remotely sensed vegetation data. 

Specifically, Huete (1988) identified that the impact from soil mainly come from the NIR 

signal that is scattered by vegetation canopy and then reflected by soil back to the sensor, 

and the impact is at peak when vegetation cover is around 50% when there is enough 

canopy to scatter and not too much to prevent soil reflected signals traveling back to the 

sensor. Table 1 shows the equations of SAVI. The constant L in the equation is inversely 

proportional to the vegetation cover, and according to Huete (1988), a fixed value 0.5 

should already make SAVI a better VI than NDVI. Based on SAVI, Richardson and 

Wiegand (1977) introduced Modified Secondary SAVI (MSAVI2) which replaces L in 

the SAVI with a function. In a later work by Liu and Huete (1995), they found that the 

interaction between soil and atmosphere result in reducing one can increase the other. 

Thus, they introduced Enhanced Vegetation Index (EVI) to simultaneously correct soil 

and atmosphere effects. As the equation in Table 1 shows, the coefficients 𝐶1 and 𝐶2 

corrects atmospheric effects to the red band using blue band, and the 𝐿 corrects soil 

effect. Due to the overall simplicity and effectiveness, NDVI and EVI are included as 

standard data products in the MODIS datasets for global vegetation monitoring. 

Aside from the above VIs that uses original spectral band to compute, another popular 

way to map vegetation is the Tasseled cap (TC) transformation (Kauth, 1976). Unlike 

VIs, TC transforms original image space into a new space where the first three 

components of the transformation are considered to represent brightness, greenness, and 

wetness. Thus, the second component is usually used to map vegetations.  



17 

 

Table 1. Vegetation indices, their equations, and references. 

Name Equation Reference 

RVI 
𝑅

𝑁𝐼𝑅
 (Jordan, 1969) 

NDVI 
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (Rouse et al., 1973) 

IAVI 

𝑁𝐼𝑅 − (𝑅 − 𝛾(𝐵 − 𝑅))

𝑁𝐼𝑅 + (𝑅 − 𝛾(𝐵 − 𝑅))
 

where 𝛾 = 0.65~1.12 

(R. H. Zhang et al., 1996) 

SAVI 

(𝑁𝐼𝑅 − 𝑅)(1 + 𝐿)

𝑁𝐼𝑅 + 𝑅 + 𝐿
 

𝑤ℎ𝑒𝑟𝑒 𝐿 = 0~1, 𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 0.5 

(Huete, 1988) 

MSAVI2 0.5 ∗ [(2𝑁𝐼𝑅 + 1) − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅)] 

(Richardson & Wiegand, 

1977) 

EVI 

2.5 ∗
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝐶1𝑅 − 𝐶2𝐵 + 𝐿
 

𝑤ℎ𝑒𝑟𝑒 𝐶1 = 6, 𝐶2 = 7.5, 𝐿 = 1 

(H. Q. Liu & Huete, 1995) 

 

 

 

 

2.1.2. Water Indices 

Water indices (WI) are used to detect vegetation water content and open water 

features. Open water feature reflects almost all energy in the visible spectrum, and it 

almost absorbs all signals within the NIR and short-infrared (SWIR) spectrum. 

Vegetation water content, however, is usually only characterized by the high absorption 

in the SWIR band. Because of this difference, WIs that are used to detect open water 

features typically uses the reflectance difference between optical spectrum and 
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NIR/SWIR spectrum, and WIs that are used to detect vegetation water content uses the 

reflectance between NIR and SWIR band (Ji et al., 2009; Ludwig et al., 2019; McFeeters, 

1996; Y. Zhou et al., 2017). Gao (1996) derived a normalized difference water index 

(NDWIGao) to enhance vegetation liquid water from satellite observations. It uses NIR 

reflectance subtracted by SWIR reflectance because the more water in the vegetation, the 

more SWIR signal will be absorbed, and thus this index positively corresponds to 

vegetation water content. The same equation is also named as Normalized Difference 

Moisture Index (NDMI). For open water features, McFeeters (1996) also derived a 

normalized difference water index (NDWI) to delineate open water features from satellite 

observations. It uses the difference between the reflectance in green and NIR band 

because water reflects some energy in green spectrum and almost absorbs all energy in 

NIR spectrum, thus water features have positive NDWI values. Xu (2006) pointed that 

built-up area can be falsely identified with NDWI because built-up structures also reflect 

more green signal than NIR signal. Thus, he introduced the Modified Normalized 

Difference Water Index (MNDWI) that uses SWIR band instead of NIR band. As a 

combination of NDWI and MNDWI, Guo et al. (2017) introduced the weighted NDWI 

(WNDWI). Instead of using either NIR band (NDWI) or SWIR band (MNDWI), it uses a 

weighted average of the two bands such that noises like turbid water and vegetation in the 

shadow can be suppressed. Feyisa et al. (2014) derived Automated Water Extraction 

Index (AWEI) that aims to reduce noise coming from shadow. The AWEI consists of two 

formulas, 𝐴𝑊𝐸𝐼𝑠ℎ for areas that are contaminated by shadows, and 𝐴𝑊𝐸𝐼𝑛𝑠ℎ for areas 
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that are not (Z. Wang et al., 2018). Feyisa et al. (2014) reported that AWEI has much 

more stable optimal thresholds than MNDWI.  

 

 

 

Table 2. Water Indices, their equations, and references. 

Name Equation Reference 

NDWIGao 
𝑁𝐼𝑅 − 𝑀𝐼𝑅

𝑁𝐼𝑅 + 𝑀𝐼𝑅
 (Gao, 1996) 

NDMI 

NDWI 
𝐺 − 𝑁𝐼𝑅

𝐺 + 𝑁𝐼𝑅
 (McFeeters, 1996) 

MNDWI 
𝐺 − 𝑀𝐼𝑅

𝐺 + 𝑀𝐼𝑅
 (Xu, 2006) 

WNDWI 

𝐺 − 𝛼𝑁𝐼𝑅 − (1 − 𝛼)𝑆𝑊𝐼𝑅1

𝐺 + 𝛼𝑁𝐼𝑅 + (1 − 𝛼)𝑆𝑊𝐼𝑅1
 

𝑤ℎ𝑒𝑟𝑒 𝛼 = 0~1 

(Guo et al., 2017) 

AWEI 

 

𝐴𝑊𝐸𝐼𝑛𝑠ℎ = 4 ∗ (𝐺 − 𝑆𝑊𝐼𝑅1) − (0.25 ∗ 𝑁𝐼𝑅 + 2.75 ∗ 𝑆𝑊𝐼𝑅2) 

𝐴𝑊𝐸𝐼𝑠ℎ = 𝑅 + 2.5 ∗ 𝐺 − 1.5 ∗ (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1) − 0.25 ∗ 𝑆𝑊𝐼𝑅2 
(Feyisa et al., 2014) 

 

 

 

 

2.2. Machine learning applications in agricultural mapping 

Machine learning (ML) is a subfield of Artificial Intelligence (AI) that aims to 

train computer systems to recognize patterns from data. The field has gone through an 

explosive advancement in the recent several decades such that its applications have 

expanded tremendously to various fields, and remote sensing is one of these fields. ML is 

widely applied in many remote sensing applications, especially land use and land cover 

(LULC) mapping. In LULC mapping, satellite/aerial images are converted into 
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classification maps in which pixels are labelled as their LULC types, and ML is playing 

an important role in this process. Advanced ML models such as support vector machine 

(SVM), decision tree (DT), neural network (NN) have been used in numerous research 

for LULC mapping and has achieved high accuracies comparing with traditional 

classification methods (Cai et al., 2018; Mira et al., 2019; Thenkabail et al., 2005; Z. Yu, 

Di, et al., 2018). ML is now widely accepted in remote sensing field as a standard tool for 

operational satellite image classification. For example, the National Land Cover Database 

(NLCD) classification for the contiguous U.S. uses decision tree as the classification 

model (Maxwell et al., 2018). As the spatial, temporal, and spectral resolution increases 

with the most recent satellite images, and more freely available optical and radar images 

available nowadays, applying ML to remote sensing applications have received 

unprecedented attention. The large volume of high spatial and temporal resolution images 

allows for more specific LULC mapping missions, such as crop type mapping and crop 

system mapping. The entire LULC mapping process is very complex. It involves critical 

steps like image selection, image pre-processing, feature extraction and selection, model 

selection, model training and validation, and post-classification processing. This review 

will look into agriculture mapping-related research that uses ML methods and summarize 

the ML methods they have used, and their findings about advantages and disadvantages 

of their selected models and what are factors that influence model performances.  

2.2.1. Supervised learning 

Supervised classification is the most widely used ML practice for crop mapping. 

Supervised classification relies on ground truth samples (Maxwell et al., 2018; S. Wang 
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et al., 2019). In remote sensing, ground truth samples are typically collected by 

conducing field surveys or manually digitizing sample points or polygons on 

georeferenced high-resolution images, such as Google Earth Pro (S. Wang et al., 2019). 

The ground truth samples are then used to sample from remote sensing images to be 

classified to get sensor readings and/or other derived features at these sample locations. 

The whole sample set is then divided into training and validation set/testing set. A ML 

model is then trained by an optimization algorithm on the training dataset to get the 

optimal parameter sets for the ML model. Lastly, the trained model performance is 

evaluated using the untouched validation set by comparing predicted label and true label 

of each sample. There are many ML models that fits in the supervised learning category, 

they can be roughly classified into parametric models and non-parametric models 

(Faridatul & Wu, 2018). Parametric models are ML models with fixed number of 

parameters. This category includes maximum likelihood estimations (MLE), logistic 

regressions (LR), NN, etc. Non-parametric models are models that do not assume a fixed 

size parameter model, i.e., the number of parameters will change as input size changes. 

Common non-parametric models include tree-based models such as k-nearest neighbors 

(kNN), DT, Random Forest (RF), and SVM with Radial Basis Function (RBF) kernel. 

We will look at each of these models in detail. 

kNN is one of the simplest non-parametric models in ML field. The model simply 

memorizes all the training data and predict new samples by selecting the k samples 

within the training dataset that are closest to the new sample and do a majority vote 

among all k samples to get the prediction (Xiao et al., 2021). This model is a “lazy” 
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model in that it does not take time in the training phase, instead, it takes most resources 

during prediction because the distances from training samples to the new sample need to 

be calculated every time a prediction is conducted (Maxwell et al., 2018). kNN model is 

known to suffer from outliers and high dimensionalities. Thus, it is not very well suited in 

remote sensing image classifications because remote sensing image classifications 

generally involve many dimensions. Xiao et al. (2021) explored using a subspace-KNN 

model to classify Sentinel-1 SAR data for 10 LULC classes (6 crop-related classes and 4 

other LULC classes). Mira et al. (2019) also used kNN in their research on classifying 

crop types using multi-temporal Sentinel-2 images. Specifically, they compared 

performances of standard kNN algorithm, DT, and RF when classifying 18 crop types in 

a 10km-by-10km area using 9 spectral bands from Sentinel-2 and 7 derived indices as 

features. Their results showed that RF performed the best which agrees with many other 

research work (Mira et al., 2019). More interestingly, their result showed that kNN 

performance dropped 2% when spectral indices are added into the feature set, resulting in 

a 480-dimension dataset. This can be attribute to the disadvantage of kNN model not very 

suitable for high-dimension data. Chakhar et al. (2020) did a comprehensive comparison 

of 22 models that are variations of 5 groups of ML models including kNN, discriminant 

analysis, SVM, DT, and ensembled trees. For kNN specifically, they included 6 

variations of kNN, i.e., different combinations of distance metric and k values. The 

distance metrics they included are Euclidean distance, cosine similarities, cubic distance 

and distant weights, and k values they tested are 1, 10, and 100. However, the reasoning 

behind choosing such parameters is not given. Their results showed that the kNN model 
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with Euclidean distance metric and k=1 performed best among all 6 models. The overall 

best performance is achieved by a subspace-kNN model (Chakhar et al., 2020). With 

more and more advanced models are introduced and researched, kNN has becoming less 

popular. Nonetheless, kNN is still one of the best models if training dataset is not too 

large and the dataset is well-balanced. It is not recommended to use kNN if data 

dimensionalities are large (Maxwell et al., 2018). In the reviewed research, the choice of 

k value seems arbitrary. Smaller k tends to have complex decision boundaries, which 

means high variance, and overly large k leads to high bias. Thus, choosing a good k value 

is pivotal for successfully applying kNN. Ensemble of kNN, such as subspace-kNN is 

generally reported to perform very well (Chakhar et al., 2020; Xiao et al., 2021). We will 

discuss ensemble of kNN in the ensemble section. 

SVM is a non-parametric binary classification model that aims to not only make 

good classification, but also maximize the confidence of classification by maximize the 

distance between decision boundaries to the sample points (Maxwell et al., 2018). The 

samples that are closest to the decision boundary are called support vectors. The support 

vectors help SVM solvers to find the Optimal Separation Hyperplane (OSH) that not only 

minimizes training error, but also maximizing the distances from support vectors to the 

OSH (S. Chen et al., 2020; Virnodkar et al., 2020). SVM can choose different kernels. 

Most commonly chosen kernels include linear kernel, and RBF (Sheykhmousa et al., 

2020). SVM with linear kernel is typically used on linearly separable data. When data is 

not linearly separable, RBF kernel is recommended. RBF kernel is used to transform data 

into higher dimensions in which data can be linearly separable (Sheykhmousa et al., 
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2020). Most research reported that using RBF kernel is preferred over linear kernel for 

remote sensing image classification (Feng et al., 2019; She et al., 2020; Virnodkar et al., 

2020). SVM generally works well with small sample size (S. Chen et al., 2020; She et al., 

2020). As SVM is a binary classifier by design, it is mostly used in two-class 

classification (Cui et al., 2020; She et al., 2020). Although it can be extended to classify 

multiple classes using one-vs-all or one-vs-one schemes, other multi-class classifiers by 

design are more preferable. Another drawback of SVM is reported by Sheykhmousa et al. 

(2020) that SVM is sensitive to overfitting. She et al. (2020) compared SVM, RF and NN 

for classification of maize and soybean using Multi-temporal Sentinel-2 images. Their 

result showed that the performance of SVM is the worst of the three, and RF performed 

best (She et al., 2020). Mazarire et al. (2020) compared SVM and RF on classifying nice 

crop types and their result showed that SVM achieved better performance than RF (95% 

vs. 85% OA). Zeyada et al. (2016) explored using SVM to classify rice, maize, grape, 

and cotton using RADARSAT-2 SAR data. They tested using polarimetric 

decomposition parameters as features and using 4 components from PCA transformation 

as features for classification and compared performance with DT and NN. Their results 

showed that SVM achieved best balance of training and testing error and SVM with 

polarimetric decomposition parameters performed slightly better than SVM with PCA-

derived components (Zeyada et al., 2016).  SVM is one of the most used ML models in 

remote sensing. Its performance is generally similar to more advanced models such as RF 

and NN with proper parameter settings. Because of its good performance, many recent 

research works still use SVM in their research (S. Chen et al., 2020; Jia et al., 2018), or to 
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compare with other models (She et al., 2020; Taona Mazarire et al., 2020), or to be used 

as a baseline model to validate new methods.  

DT is a tree-based non-parametric model. It builds a tree by repeatedly splitting 

data into subsets such that data that do not belong to the same class are not in the same 

node (Friedl & Brodley, 1997). Classification and Regression Tree (CART) introduced 

by Breiman (1984) is one of the most popular DTs. Training of a DT is basically 

selecting the best feature and splitting value at each node of the tree. The information 

gain or Gini impurity is usually used as metrics to determine how to best split a node. DT 

is well-known for its tendency to overfit because data can be split indefinitely until no 

leave nodes are impure (Friedl & Brodley, 1997). Thus, DT often employ pruning 

methods to combat with overfitting. These methods include setting maximum height of 

the tree, or minimum number of nodes in each leave node, etc. Many research works also 

build DT by manually setting split rules based on domain knowledge (Jiang et al., 2020; 

Tian et al., 2019). If a DT is built using information gain or Gini impurity, feature 

importance can be inferred by looking up how much each feature contribute to the node 

splitting. The feature importance can then be used to do feature selection. Research that 

used DT in their research often reported feature importance (Valcarce-Diñeiro et al., 

2019). Another important advantage of DT is that it is a very interpretable model (Friedl 

& Brodley, 1997; Z. Yu et al., 2020). However, many research works reported that DT 

cannot perform as well as other methods such as SVM and RF (Chakhar et al., 2020, 

2021; Mira et al., 2019; Zeyada et al., 2016). Indeed, as ensemble of DTs, e.g., RF, 
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Adaboost, Gradient Boosting, etc. becoming popular, DT is less used along in recent 

research.  

Ensemble methods are becoming more and more popular in the ML field. Instead 

of using single learners as is with kNN, SVM, and DT as discussed before, ensemble 

learning combines multiple learners such that the combined learner is better than any 

learners used alone (Sonobe et al., 2018). Common ensemble methods include Bootstrap 

Aggregating (Bagging) and boosting.  

Bagging is an ensemble learning method that trains each model in the ensemble 

using a randomly drawn subset of the training set in order to promote model variance. 

Note that the subset is drawn with replacement, which means a sample can appear 

multiple times within a subset, and it can appear in multiple subsets. The models within 

the ensemble are equally weighted, which means each model contribute equally to the 

final prediction. RF is one of the most famous ML models that uses bagging ensemble 

strategy (Breiman, 2001; Pal, 2005). RF is built with many DTs. Each DT is trained with 

a bagged subset of training data, and during the training of each DT, only a randomly 

chosen subset of feature space is used to split a node. This additional layer of randomness 

makes RF different from other bagged trees. Because each tree is built with less data and 

less features, individual trees are less accurate but less correlated, which makes the 

ensemble more reliable (Maxwell et al., 2018). RF introduced many advantages over 

traditional DT. First of all, RF is robust against overfitting. As long as the number of 

trees in the RF is sufficiently large, even without pruning of individual trees, i.e., 

individual trees overfit, the overall ensemble is not overfitting (Breiman, 2001; Pal, 
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2005). Training RF is fast even with large number of trees because each tree is 

independent, which makes the training parallelizable. Similar to DT, RF can also infer 

feature importance. Other advantages include not sensitive to noise, and not sensitive to 

high dimensionality (Sheykhmousa et al., 2020). There are numerous research works in 

remote sensing that uses RF to classify crops. To name a few, Orynbaikyzy et al. (2020) 

used RF in their effort to classify crop types by fusing optical and SAR data at feature 

and decision level. Rahman et al. (2019) explored classifying early-season crop types in 

U.S. using automatically extracted trusted pixels as ground truth samples. They compared 

RF against other 5 models that found RF performed the best. Singha et al. (2019) used RF 

to produce 10m resolution paddy rice map for the entire Bangladesh using Sentinel-1 VH 

bands. RF is one of the most successfully applied ML models in remote sensing due to its 

simplicity, high accuracy and little data pre-processing required.  

Boosting is another form of ensemble. Instead of building a bag of uncorrelated 

learners, boosting builds a series of ‘weak learners’ one by one. A weak learner is a 

learner that performs slightly better than randomly guessing. Though each learner is not 

performing well, but as long as the performance of each one is slightly better than 

random guessing, the final model can be proven to converge to a strong learner. When 

using boosting, each learner is built trying to correct errors of the previous one 

(Sheykhmousa et al., 2020). The overall prediction is made by a weighted vote of all 

weak learners. The weights are distributed to weak learners based on their accuracy. 

Adaptive Boosting (Adaboost) is one of the most used tree-based boosting methods (Z. 

Zhou et al., 2015). Boosting is not as popular as RF in remote sensing field. Zhou et al. 
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(2015) used Adaboost to classify sugarcanes using time-series Chinese HJ-1 CCD images 

and their result showed their accuracy can reach to 93.6%. Li et al. (2015) applied the 

Adaboost strategy using SVM as weak learners to extract crop area. The advantage of 

boosting is that it can achieve very high accuracy (Han et al., 2014). It is also less likely 

to overfit if sufficient number of weak learners are used. However, many research works 

reported that boosting is more susceptible to overfitting (Sheykhmousa et al., 2020), 

which is contradicting to theory. Another disadvantage of boosting is that the learners 

need to be trained in sequence and there is no room for parallelism, which makes the 

training slow.  

Other than bagging and boosting, which are most popular ensemble methods, 

especially for ensemble of DTs, there are other ways to combine models for prediction. 

Traditional ensemble methods assume the same base learners, e.g., DT is used for RF. 

There are other general ensemble methods that can be used to integrate different models. 

Subspace ensemble is an approach that trains base learners with randomly selected 

subsets of features. Note the subset feature space is bootstrapped such that same feature 

may present in the same subset multiple times. Xiao et al. (2021) used kNN as the base 

learner for a subspace ensemble method in an attempt for classification of 10 crop types 

in China. Their subspace kNN trains a set of kNN models with bootstrapped subsets of all 

features, and the trained kNN models jointly produce the final prediction with a majority 

vote. Their result showed the subspace-kNN performed better than RF classifier, and the 

overall accuracy reached 98% (Xiao et al., 2021). Chakhar et al. (2021) and Chakhar et 

al. (2020) also used subspace kNN in their comparisons with 21 other models and found 
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that subspace kNN performed best using Sentinel-2 images for crop classification and it 

gets outperformed by SVM when using Sentinel-1 images. Ghazaryan et al. (2018) 

employed a decision-level fusion of classification results by SVM and RF using the 

subspace ensemble method. They trained a SVM and RF for each subset of features and 

combined all such SVM and RF models for final prediction. Super Learner (SL), also 

called stacking. It is an ensemble method that combines multiple models by assigning 

them weights such that cross-validated empirical risk is smaller (Sonobe et al., 2018). 

Sonobe et al. (2018) successfully applied SL in an attempt to combine RF and SVM for 

crop classification. Their result showed marginal improvement of combining RF and 

SVM over RF and SVM alone by 0.2%.  

Neural networks (NN), also called multi-layer perceptron (MLP), are gaining 

attention in recent years. NN is comprised of layers of interconnecting perceptron as a 

simulation to human brain (Abburu & Babu Golla, 2015). Each perceptron is no more 

than a linear combination of input features and a non-linear activation function. Though 

neural network methods have been introduced very early on, recently years see major 

development in this method through back propagation optimization method (Cai et al., 

2018). NN does not assume any structure, i.e., the structure of the NN is itself a 

hyperparameter. Some research claim that NN with only one hidden layer is considered 

shallow, and more hidden layers can be classified as deep NN (DNN) (Hänsch et al., 

2018). An increasing trend of applying NN in remote sensing field can be observed. Cai 

et al. (2018) used a DNN with 3 hidden layers in classifying major crops in the U.S. using 

CDL as ground truth. Their results showed that DNN outperformed SVM and RF. They 
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also reported that 3 hidden layers does not differ much from 7 hidden layers though 7 

hidden layers is more stable. Shelestov et al. (2017) compared all ML models provided 

on GEE including NN for crop type mapping. Their result showed that NN outperforms 

other models including SVM, CART, and RF. Zhang et al. (2021) used a NN in 

classification of major crops in U.S. using trusted pixels extracted from CDL. Though the 

details of configuration of their NN is not given. The NN is known to be a model that can 

approximate any function, which makes it a ‘universal’ model for any scenario. However, 

there are some major issues of using NN in remote sensing applications, especially crop 

mapping. As ground truth samples used in crop type mapping is generally acquired by 

field trips or manual digitization, the sample size is generally small. However, NN 

generally have large number of parameters, which means a large number of training 

samples are needed for NN to converge. Because of this, we see that some of the research 

that successfully applied NN uses some automatic sample generation process, such as 

sampling from existing data sources (Cai et al., 2018; C. Zhang et al., 2021).  

2.2.2. Unsupervised learning 

Unsupervised learning is a less popular choice compared with supervised 

learning. Unsupervised learning aims to identify patterns in the data. Clustering is the 

most common approach in unsupervised learning. Clustering-based algorithms group 

pixels into clusters without any prior of class information (Lu & Weng, 2007).  

K-means is one of the most widely used clustering methods. It starts by randomly 

choosing k centroids, and an iterative process is conducted until converge. Specifically, 

points are assigned to their closest centroid, and the new centroids are derived using 
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sample points that are assigned to each centroid, points are then assigned to new 

centroids, and new centroids are generated. Brinkhoff et al. (2020) performed k-means to 

cluster training samples, and they analysed clusters and filtered unwanted training 

samples for target classes. The filtered training set was used to classify 9 perennial crops. 

Gaussian Mixture Model (GMM) is a generalization of k-means. It is a 

probabilistic model that aims to find k unknown Gaussian distribution that maximizes the 

joint probability of all sample points. Instead of hard assigning sample points to centroids 

(Gaussian mean in GMM), each sample is given a probability of belonging to each 

Gaussian (S. Wang et al., 2019). Wang et al. (2019) explored using transferred RF model 

and unsupervised learning for crop type classification in US mid-west. Both k-means and 

GMM are explored in this study, and they found that GMM performs well in one state, 

but performed bad in other states, and k-means performed consistently bad.   

Ma et al. (2020) explored using an unsupervised classification method based on 

Principal Components Isometric Binning (PCIB) method to classify rice and maize. 

Despite that the results of their proposed method are slightly worse than using supervised 

classification with the RF model, the advantage of not requiring ground truth labels is 

potentially more suitable for large scale crop type mapping.  

2.3. Multi-sensor image fusion 

Combining multiple remote sensing data sources for land use land cover mapping 

has been studied for a long time. Although data from a single source has the advantage of 

being consistent in the data format, spatial resolution, and calibration, it is often 

inadequate for certain applications because the spatial resolution is too coarse, or the 
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revisiting time is too long. For example, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) can provide up to 1-2 days revisiting time, which is very 

suitable for global scale mapping and monitoring. However, its spatial resolution is only 

at most 250m, which can be too coarse for field-level mapping, especially for certain 

regions where field sizes are very small. Combining multiple remote sensing data sources 

is promising because a broader information content for the target object can be utilized, 

and the merits from each data source may be combined (Orynbaikyzy et al., 2019). In 

Pohl and Van Genderen (1998), the image fusion is to integrate different sources of 

remote sensing data to provide more information than that can be provided by each 

source alone. Fusing optical remote sensing data (MODIS, Landsat, Sentinel-2, etc.) and 

Synthetic Aperture Radar (SAR) data (RADARSAT, Sentinel-1, etc.) is especially useful 

because optical and SAR sensors offer very distinct aspects of the target object. 

Specifically, SAR is an active microwave radar sensor that emits polarized radio waves to 

the ground and record the backscattered energy from the targets. The backscattered signal 

carries information about properties of the surface, such as roughness, geometry, 

moisture, etc. (Moreira et al., 2013) SAR generally emits radio signal whose wavelength 

is much larger than the particles and water vapors in the atmosphere, which allow the 

signal to penetrate cloud without interference. This particular trait makes SAR a desirable 

data source because optical data typically suffer from cloud covers (Kulkarni & Rege, 

2020). On the other hand, optical sensors often provide rich multispectral measurement in 

the visual, near infrared (VNIR), and shortwave infrared (SWIR) spectrum range. 

Different objects absorb/reflect different portions of energy in the VNIR spectrum range 
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such that they have unique spectral signature, which is why multispectral images are 

crucial for identifying the sensed objects. Optical images and SAR images complement 

each other because multispectral images bring spectral information to SAR and SAR 

provide consistent observations regardless of the weather conditions.  

The image fusion can be done at three different levels, i.e., pixel-level, feature-

level, and decision level (Pohl & van Genderen, 1998). Pixel-level fusion is the lowest 

level that the image fusion can be applied. It aims to produce a new image dataset from 

multiple source datasets such that the new image dataset encompasses all information 

from the source datasets. The source datasets need to be co-registered and resampled to 

the same projection and same spatial resolution. Feature-level fusion is the fusion at 

object-level, i.e., an image segmentation step is first applied to identify objects, or pixels 

blobs, and then features for the objects are derived using different data sources for further 

analysis. Lastly, decision-level fusion is to conduct information retrieval from each data 

source individually, and then fuse the information together to resolve potential 

disagreement and reinforce the understanding of the observed objects (Pohl & van 

Genderen, 1998). The following discussion will focus on scientific approaches of 

combining optical and SAR image data. 

Pixel-level fusion between optical and radar images require the input images to be 

co-registered and resampled to the same map projection (Pohl & van Genderen, 1998). 

The SAR data also needs to tackle with speckle noise. Pixel-level fusion approaches of 

optical and SAR data can be grouped into several classes: component substitution, multi-

scale decomposition, hybrid, and model-based methods (Kulkarni & Rege, 2020). The 
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simplest form of pixel-level fusion is band stacking, i.e., combining optical time-series 

and radar time-series together such that each pixel has both spectral bands and SAR 

image bands (Blaes et al., 2005; Haack et al., 2000; Orynbaikyzy et al., 2019). 

Component substitution typically transform optical images into a new space, and the 

SAR image is used to replace a component which usually does not contain much spectral 

information. Most commonly used methods include Principal Component Analysis 

(PCA), Intensity-Hue-Saturation (HIS) transform, Gram-Schmidt (GS) orthogonalization, 

and Brovey Transform (BT). PCA is one of the most popular methods within this 

category (Herold & Haack, 2002; Orynbaikyzy et al., 2019). PCA is a method that 

transforms original image space into a new space in which components are orthogonal to 

each other (Z. Wang et al., 2005). If ranked by the corresponding eigen values, the first a 

few components preserve most of the information in the original image space. For 

optical-SAR image fusion, the multi-spectral image is transformed using PCA. The first 

component from the PCA result is then replaced by the SAR image, and the inverse PCA 

procedure is conducted to get the fused image (Kulkarni & Rege, 2020). Another 

component substitution technique is the IHS transform. It takes an RGB image and 

transform into the IHS color space where the color information is preserved in Hue and 

Saturation band, and the Intensity band can be substituted by another grey-level image 

(Kulkarni & Rege, 2020). It is a popular method in pan-sharpening where the intensity 

band can be substituted by the panchromatic band (El-Deen Taha & Elbeih, 2010). 

However, this method only works on RGB images, thus, it is not very suitable for 

agriculture applications in which NIR, and SWIR bands are very important. GS method is 
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similar to PCA. It is originally used as a pan-sharpening method (Maurer, n.d.). Unlike 

PCA, GS uses an arbitrary band as the first component, and other bands are computed to 

be orthogonal to the chosen band (Kulkarni & Rege, 2020). In optical-SAR image fusion, 

the SAR image is used as the first component and multispectral bands are computed to be 

orthogonal to the SAR image and then an inverse transform is conducted to get the fusion 

image (Yang et al., 2016). BT is a similar method to IHS. Its purpose is to normalize the 

RGB bands and to multiply the result by any other desired data to add the intensity or 

brightness component to the image (Z. Wang et al., 2005). Because it only uses 3 bands 

as input, its potential is limited for multispectral images. Multiscale decomposition 

methods are another group of pixel-level image fusion techniques. In these methods, the 

source images are first decomposed into sub-images at different scale using a 

multiresolution method, and then fusion is applied to sub-images at all scale, which then 

are converted back to get the fused images (Kulkarni & Rege, 2020). For optical-SAR 

image fusion specifically, the non-subsampled wavelet transform is a good choice 

because it is shift invariant, which means images from different sensors without co-

registration can benefit from this characteristic (Kulkarni & Rege, 2020). The choice of 

multiscale decomposition method and the fusion method are decisive parameters to 

successfully apply multiscale decomposition to image fusion. Hybrid methods are 

methods that combine the component substitution and multiscale decomposition methods. 

For example, the IHS transform is applied to multispectral image and the intensity band 

along with SAR images are used as input to a multiscale decomposition method. The 

fused image is then used to substitute the original intensity band, and the inverse IHS 
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transform is applied to get the final fused image (Kulkarni & Rege, 2020). Model-based 

methods mainly includes variational models and sparse-representation models. Zhang et 

al. (2010) extended the original variational model which was applied in pan-sharpening 

field to the optical-SAR image fusion. The variational model is an optimization problem 

that aims to find transform parameters that minimizes an energy function (Kulkarni & 

Rege, 2020; W. Zhang & Yu, 2010).  

Image fusion at feature level works with objects or features. Specifically, each 

sensor derives a set of features for the targeting object, and the derived features jointly 

grouped into different clusters. Then the features within the same group are fused 

together for further analysis (Zeng et al., 2006). The fusion techniques at feature-level are 

mostly drawn from fields like artificial intelligence, statistics, information theory, etc. 

The simplest form of feature-level fusion is to stack multispectral bands from 

multispectral images and backscatter bands from SAR images together for further 

analysis (Rajah et al., 2018). Further, sensor-specific features can be derived individually 

and used together for further analysis. Denize et al. (2019) derived multiple indices 

including NDVI, NDWI, NDSI from Sentinel-2 images, and derived multiple parameters 

from Sentinel-1 Single-look-complex (SLC) images and a VH/VV ratio. These 

parameters are used together as input to classification models in the later procedures. 

Decision level fusion is the fusion at the final step. It typically involves 

conducting mapping individually using input images and produce the final result with 

outputs from all input sources (Ghassemian, 2016). The fusion at decision level is to 

resolve conflicts between input sources and reinforce consensus among all sources. A 
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common method of fusion at decision level is voting. The voting can be unweighted, 

meaning that each input is treated equally, and they contribute equally to the final output. 

It can also be weighted to control the influence of each input source (Ghassemian, 2016). 

Another slightly different strategy is rank based. Instead of voting for a final fixed result, 

the final result can be a probability vector of all possible labels.  

2.4. GEE application in agriculture mapping 

Traditionally, remote sensing data processing takes non-trivial work because of 

the sheer volume of data that need to be downloaded and processed at local workstation. 

However, the advent of GEE (Gorelick et al., 2017), and the recent development from 

Microsoft, the Planetary Computer has made remote sensing data processing much easier 

thanks to the underlying cloud computing infrastructure. GEE provides researchers 

Application Programming Interfaces (APIs) to process and visualize remote sensing 

datasets by writing JavaScript code in the online code editor. The large catalog of remote 

sensing-related datasets available and the built-in data filtering APIs make it very 

convenient to select images that are relevant to the time frame and study area of interest 

(Amani et al., 2020). Aside from expediting research process, GEE is also beneficial to 

open research because researchers can share the scripts that generated the research 

results, which can be easily used by other researchers to reproduce the research. As a 

result, we can observe an exponentially increasing trend of GEE publication numbers 

since the introduction of GEE (Amani et al., 2020). GEE can also be used to build web 

applications. The advantage of building web application is that it can engage users who 

do not have JavaScript experience with easy-to-use GUIs. GEE JavaScript APIs include 
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built-in UI components such that researchers can build simple web applications right in 

the online code editor and host the applications with Google App Engine. O-LCMapping 

introduced by Xing et al. (2021) is one of such examples. O-LCMapping provides users 

with GUIs to select ground truth data on the map, specify satellite sensors, image date 

ranges, band combinations, machine learning (ML) models, and model parameters, and 

then use user-defined parameters in a supervised or unsupervised land cover 

classification workflow (Xing et al., 2021). AgKit4EE is a suite of useful functions for 

Cropland Data Layer (CDL) (C. Zhang et al., 2020). Zhang et al. (2020) used it and 

developed web applications to visualize CDL data based on user-defined configurations. 

Another type of web application that can be implemented using GEE is free-form web 

applications that only uses GEE-provided computing power rather than the UI 

components. This type of web applications is much more flexible but require 

substantially more work to design, implement, and deploy. Climate Engine is a 

sophisticated software that provides users with plenty of options to visualize and 

download climate and remote sensing data for natural resource monitoring purposes 

(Huntington et al., 2017). Yalew et al. (2016) presented a GEE-based web framework for 

agricultural land suitability assessment named AgriSuit. The framework uses GEE in the 

backend for data processing and computing and implements a web-client to collect user 

inputs and visualize processing results (Yalew et al., 2016). REMAP is a web application 

for land cover classification similar to the O-LCMapping except that it uses GEE Python 

APIs instead of JavaScript APIs (Murray et al., 2018).  



39 

 

3. INLAND FISHPOND MAPPING IN BANGLADESH 

3.1. Background 

Fishery in Bangladesh has been increasing rapidly in the last few decades as a 

major source of food and economic growth (Hashem et al., 2014). According to the 

International Food Policy Research Institute (IFPRI), the fish farming market has grown 

25 times in all aspects of the aquaculture industry in the last three decades. Shahin et al. 

(2015) also reported that the total fish production increased from 4.99 Lac MT (100,000 

metric tons) in 1998-1999 to 14.47 Lac MT in 2012-2013. Though rice is still the major 

food source for Bangladesh, the booming aquaculture is bringing diversity to the dietary 

structure of people in Bangladesh and gradually improving people’s health conditions 

(Thilsted, 2012). However, the growing aquaculture puts pressure on already limited 

croplands. In recent years, a great portion of croplands has gradually transformed to other 

land use types, such as fishponds, brickyards, and residential area in Bangladesh 

(Hashem et al., 2014). With Earth Observation (EO) data, especially newly published 

Sentinel-2 MSI 10m resolution images, mapping and monitoring individual fishponds 

become feasible.  

There are many research works focus on mapping aquaculture ponds in coastal 

area (Ottinger et al., 2017; Prasad et al., 2019; Virdis, 2014). However, inland fishponds 

differ from coastal aquaculture ponds in that inland fishponds are typically owned by 
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individual families, which means they can have arbitrary shape and size and they are not 

necessarily well-aligned as many coastal aquaculture ponds do. Some key features of 

fishponds in Bangladesh are that:  

1) they are usually filled with water all year round,  

2) they are small, and  

3) like many other man-made objects, they have regular boundaries and simple 

shapes such as rectangles.  

To address 1), multi-temporal and multi-spectral remote sensing images should be 

used. High-resolution images are the most suitable data to address 2). Specifically, based 

on the research conducted by Belton and Azad (2012), the average size of homestead 

fishponds in Bangladesh is between 0.08 to 0.1 ha, the median value can be even less due 

to the skewness towards a few large fishponds, which can go up to over 100 ha each. 

Fishponds with such small size are challenging to detect on medium-resolution (2 – 30m) 

remote sensing images, and it is almost not feasible to do with low-resolution (> 30m) 

images. However, high-resolution images such as SPOT (Satellite Pour l’Observation de 

la Terre) and IKONOS are usually not available free of charges. Sentinel-2 MSI L1C data 

has become increasingly popular for land use and land cover (LULC) mapping in recent 

years mainly because of its finer spatial resolution (10m) and temporal resolution (10 

days before Sentinel-2B launches and 5 days after) (Du et al., 2016; Ludwig et al., 2019b; 

X. Yang et al., 2018). The significant improvement of both spatial resolution and 

temporal resolution offered great potentials of improving existing applications and 
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enabling new missions such as object detections (X. Yang et al., 2018). Therefore, this 

research uses Sentinel-2 MSI L1C data for fishpond mapping.  

Water indexes (WI) such as Normalized Difference Water Index (NDWI) 

(McFeeters, 1996b), Modified Normalized Difference Water Index (MNDWI) (Xu, 

2006a), and Automated Water Extraction Index (AWEI) (Feyisa et al., 2014a) have been 

developed to enhance water features on multi-spectral images. Most of the WIs utilize 

low reflectance of water in near-infrared (NIR) and shortwave-infrared (SWIR) spectrum 

(Ji et al., 2009b; Ludwig et al., 2019b; McFeeters, 1996b; Y. Zhou et al., 2017a). NDWI 

takes the difference between the green band and the NIR band, which produce positive 

values for water and negative values for other LULC types (McFeeters, 1996b). To 

address false positives from built-up using NDWI, Xu (2006a) introduced MNDWI, 

which is calculated with green and SWIR bands. Previous research reported that MNDWI 

generally has a more stable threshold than NDWI (C. Huang et al., 2018; Ji et al., 2009b; 

H. Jiang et al., 2014). Aside from the NDWI and MNDWI that use 2 bands to compute, 

AWEI uses 5 bands to compute, and it aims to reduce false positives coming from 

shadow pixels (Feyisa et al., 2014a). The AWEI consists of two formulas, AWEIsh for 

areas that are contaminated by shadows, and AWEInsh for areas that are not (Z. Wang et 

al., 2018a). Feyisa et al. (2014a) reported that AWEI has much more stable optimal 

thresholds than MNDWI.  

While water classification on multispectral remote sensing images has been 

extensively studied, most of the research focuses on identifying general water bodies at 

national or even global scale (Fisher et al., 2016; Pekel et al., 2016), or selected water 
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bodies in small study sites rather than identifying subclasses of water bodies. Therefore, 

how to discern fishponds from other water features is a major challenge in this study, and 

feature 3) of fishponds is utilized to address the problem.  

Object-based features (OBF), also referred to as geometrical features in Yu et al.  

(2006), shape metric in Jiao et al. (2012), have been used in previous research as ancillary 

features in object-based image analysis. In a research work conducted by van der Werff 

and van der Meer (2008), shape measures were extracted from Landsat image objects and 

were used to help classify spectrally identical objects, e.g., rivers and different shapes of 

lakes. Jiao et al. (2012) used 10 shape metrics to classify 8 LULC classes including rivers 

and ponds on SPOT-5 images. Their results showed that such metrics can well 

characterize all LULC classes quantitatively. For water features specifically, they 

characterized rivers as elongated, concave, and complex, while ponds were round, 

rectangular, convex, and simple (Jiao et al., 2012). Both research works reported that 

OBFs significantly improved classification accuracy especially when objects are 

spectrally similar. However, previous research typically works with high-resolution 

images or objects that are large compared to the pixel sizes, it is unclear how such OBFs 

will help with classifying small objects on relatively coarse resolution images.  

Therefore, we introduce an automatic workflow that incorporates spectral-based 

filtering with multi-temporal Sentinel-2 images and spatial-based filtering with OBFs for 

fishpond classification. The workflow was implemented on GEE (Gorelick et al., 2017). 

A case study in Singra Upazila in Bangladesh is conducted to test the performance of the 

workflow. 
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3.2. Study Area and Dataset 

 

 The study area of the case study we chose is the Singra Upazila (24°30′N 89

°08′E) in Bangladesh as shown in Figure 3. It is a sub-district of Natore district in 

Northern Bangladesh that consists of 13 unions. More than three-hundred thousand 

people live in around 530 km2 areas with a density of 607 persons per km2. Around 80% 

of people in this area are engaged with agriculture, more specifically rice crop farming. 

Since this area is located within one of the largest flood plains of the country, most of the 

agricultural fields are flooded in the rainy season every year. A recent trend of land use 

change from crop fields to fishponds has been found in this area because of the larger 

profit of fish culturing than growing rice.  
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Figure 3. Study area: Singra Upazila. 

(Upper left: location of the study area in Bangladesh. Upper right, lower left, and lower right: example 

fishponds within the study area.) 

 

 

 

 

The dataset used in this study is the Sentinel-2 MSI Level-1C product hosted on 

GEE. It was preprocessed by radiometric and geometric corrections. As a result, the 

Sentinel-2 Level-1C is a Top-of-Atmosphere (TOA) reflectance dataset that consists of 

100 km by 100 km image tiles projected in UTM/WGS84. The Multi-spectral instrument 
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(MSI) sensors onboard Sentinel-2 satellites collect images with 13 spectral bands in the 

visible/near-infrared (VNIR) and SWIR spectrums, and the spatial resolutions of the 

spectral bands vary from 10m to 60m. The bands that were used in this study are listed in 

Table 3. The MGRS (Military Grid Reference System) tile number of images used in this 

study is 45RYH.  

 

 

Table 3. The Sentinel-2 Level-1C bands used in this study. 

Sentinel-2 Band # Band Name in WI formula Wavelength (μm) Spatial Resolution (m) 

Band 3 Green 0.537 – 0.582 10 

Band 8 NIR 0.767 – 0.908 10 

Band 11 SWIR1 1.539 – 1.681 20 

Band 12 SWIR2 2.072 – 2.312 20 

 

 

 

 

3.3. Method 

The methodology we used can be divided into two parts, (1) spectral filtering and 

(2) spatial filtering. The spectral filtering phase conducts image segmentation on multi-

temporal Sentinel-2 images to detect all-year flooded water features. The spatial filtering 

phase further classifies water features into fishpond class and non-fishpond class based 

on OBFs. A diagram of the workflow is shown in Figure 4. Details are discussed in the 

following subsections.  
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Figure 4. Proposed Workflow for fishpond mapping. 

 

 

 

 

3.3.1. Data Preprocessing 

Multi-temporal images are first prepared for the detection of all-year flooded 

water features rather than seasonal water features such as rice paddy and flooding 

(Ludwig et al., 2019b; Razu Ahmed et al., 2017; Xiao et al., 2005b). Specifically, all 

Sentinel-2 Level-1C images with less than 10% cloud cover in 2016 were collected. The 

images that satisfy the selection criteria are the four images in Jan 16th, Jan 31st, Apr 30th, 
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and Oct 17th, 2016. Here we denote the image collection as {𝑇𝑖}, 𝑖 = 1,2, … , 𝑛, where n is 

the total number of images. Note that due to extremely high cloud cover during monsoon 

seasons, no images are available between May and September.  

Three WIs, i.e., NDWI, MNDWI, and AWEInsh were calculated for each selected 

image 𝑇𝑖. We denote the three WI image collections as {𝑁𝐷𝑊𝐼𝑖}, {𝑀𝑁𝐷𝑊𝐼𝑖}, {𝐴𝑊𝐸𝐼𝑖}. 

AWEIsh was not used because most fishponds are in rural areas where the noise from 

shadow is minimal. For the convenience of notation, the rest of the paper use AWEI to 

refer to the AWEInsh. Figure 5 shows the WI images for a selected area. As shown in the 

figure, fishponds show consistently high WI values while rice paddy and floods show 

seasonal variations.  
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Figure 5. WI images of four dates in 2016 in an example area within the study area.  

Value ranges for NDWI and MNDWI are -1 to 1, and -2 to 2 for AWEInsh. No color stretches are applied. Higher 

WI values are shown in darker colors. 
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3.3.2. Spectral Filtering 

The threshold selection of WIs is the key factor of accurately mapping water on 

multispectral images (C. Huang et al., 2018; X. Yang et al., 2018). An empirical 

threshold 0 is chosen by default for many WIs (Ji et al., 2009b; McFeeters, 1996b; Sheng 

et al., 2016). However, due to mixed pixels of water and other land cover types, the 

optimal WI thresholds usually depend highly on the scene and locations (Feyisa et al., 

2014a). Therefore, previous research uses dynamic thresholds to adapt to varying 

situations. Among many automatic thresholding algorithms, the Otsu method introduced 

by Otsu (2008), which is an automatic grey-level image segmentation algorithm that 

iteratively finds the optimal threshold that maximizes inter-class variance, is widely used 

for water body mapping (Calvario Sanchez et al., 2018; Donchyts et al., 2016; Du et al., 

2016; Jakovljević et al., 2019; Kordelas et al., 2018; Ludwig et al., 2019b). In Yin et al. 

(2013), the Otsu method achieves the best performance among 8 other automatic 

thresholding methods, and its performance is on par with support vector machine (SVM) 

and optimal thresholds. The Otsu method is represented by Equation 1: 

 

 

Equation 1. Otsu segmentation algorithm. 

σ2 = 𝑝0(μ0 − μ)2 + 𝑝1(μ1 − μ)2  

𝑝0 =
𝑛0

𝑁
, 𝑝1 =

𝑛1

𝑁
  

𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥σ2  
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where σ is the between-class variance, 𝑝0 and 𝑝1 are probabilities of two classes 

respectively, μ0 and μ1 are mean pixel values of class 0 and class 1 respectively, μ is 

mean pixel values of the whole data, 𝑛0 and 𝑛1 are numbers of instances of the two 

classes, 𝑁 is the total number of instances, and 𝑡∗ is the optimal threshold.  

Many threshold selection methods favor bimodal histograms because thresholds 

can be easily found in the valley of two peaks without much uncertainty (H. Liu & Jezek, 

2004; F. Zhang et al., 2018). Therefore, it is reasonable to do a pre-masking to reduce the 

number of non-water pixels in threshold selection for fishponds that are typically small 

and scarcely scattered in a large area. To achieve that, we adapted and modified a 

technique that was used in previous research (Donchyts et al., 2016; H. Liu & Jezek, 

2004; F. Zhang et al., 2018). Specifically, a preliminary thresholding step was conducted 

using a forgiving threshold to loosely identify water features, and then buffers are 

generated around the water features to include some but not all non-water pixels. Detailed 

steps of this approach are described below:  

a) An empirical threshold 0 was used for all multi-temporal MNDWI images, denoted as 

{𝑀𝑁𝐷𝑊𝐼𝑖}, to loosely classify water features.  

b) All classified MNDWI images were combined by inserting logical operator AND 

between images to get a single layer mask, denoted as 𝑀, where pixel value 1 

represents all-year flooded water features.   

c) The mask from b) was then vectorized by connecting neighboring same-value pixels.  

d) Buffer polygons were generated from each water feature. The buffer distance was set 

to 5 pixels.  
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e) The buffered polygons were then rasterized as a binary mask image for pixel 

selection. 

In the above steps, step a) and b) were to identify all-year flooded water features, 

step c) and d) aimed to generate a pixel selection mask that includes only a portion of all 

pixels, the masking operation is illustrated as follows: 

 

 

 

{𝑊𝐼𝑖 ⊕ 𝑀} = {𝑊𝐼𝑖
′}, 𝑊𝐼 ∈ [𝑁𝐷𝑊𝐼, 𝑀𝑁𝐷𝑊𝐼, 𝐴𝑊𝐸𝐼] 

 

 

 

Masked WI image collections {𝑊𝐼𝑖
′} were then used as input to the Otsu method, 

which produces thresholds for all images 𝑊𝐼𝑖
′ within each collection {𝑊𝐼𝑖

′}. The 

thresholds were then used to segment original WI images 𝑊𝐼𝑖 into binary classes, the 

segmented image collections are denoted as {𝑊𝐼𝑖
∗}. Then, each segmented WI image 

collection, i.e., {𝑁𝐷𝑊𝐼𝑖
∗}, {𝑀𝑁𝐷𝑊𝐼𝑖

∗}, {𝐴𝑊𝐸𝐼𝑖
∗} is self-combined by inserting logical 

operator AND between pairs of images, which produces single-layer consensus results 

where pixel value 1 represents all-year flooded water features. With all three single-layer 

results, the final all-year flooded water feature classification result was generated by 

conducting majority vote among all three layers, pixels that get more than 1 vote will be 

labeled as 1, the rest are labeled 0.  

3.3.3. Spatial Filtering 

The binary image generated from the spectral filtering part was firstly vectorized 

by connecting neighboring homogeneous pixels, which groups connecting pixels into 
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objects. For each water feature vector object, several OBFs were computed using its 

perimeter, area, and the perimeter and area of its convex hull. The OBFs were then used 

to further classify all water features into fishponds and non-fishponds.  

3.3.3.1. Object-based features 

OBFs are representations of geometries which are usually used as auxiliary 

features in object detection (R. Chen et al., 2018; K. Liu et al., 2010). OBFs are effective 

in measuring the shape complexity of polygons (Jitkajornwanich et al., 2018; Moser et 

al., 2002). In this research, we mainly used OBFs that can be calculated with perimeters 

and the area of the target object and its convex hull because the workflow is implemented 

on GEE which has limited functionalities for object-based analysis. Table 4 summarized 

the OBFs that we used in this research. 
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Table 4. OBFs that were used in this research 

OBF ID Full Name Formula 

IPQ Iso-Perimetric Quotient 
4π𝐴

𝑃2
 

SOLI Solidity 
𝐴

𝐴𝑐
 

PFD Patch Fractal Dimensions 
2 ln

𝑃
4

ln 𝐴
 

CONV Convexity  
𝑃𝑐

𝑃
  

SqP Square pixel metric 1 −
4√𝐴

𝑃
 

 

 

 

IPQ, also known as FORM (form factors), SI (shape index), is a widely used 

measurement of shape compactness (Jiao et al., 2012; W. Li et al., 2014; Moser et al., 

2002; van der Werff & van der Meer, 2008; Q. Yu et al., 2006). The IPQ measures 

similarities between an object and the most compact shape, i.e., circles, and it is scale-

invariant. The range of IPQ is 0 to 1 with 1 being full circles and 0 being infinitely 

complex shapes. SOLI (Solidity) measures the extent to which an object is convex or 

concave (Jiao et al., 2012). The range of solidity is between 0 and 1 with 1 being 

completely convex. PFD (patch fractal dimensions) or simply fractal dimension is 

another widely used measurement of shape complexity (Jiao et al., 2012; Moser et al., 

2002). In the equation in Table 4, the perimeter of the geometry is divided by 4, which 

accounts for the raster bias in perimeters. PFD values are close to 1 when geometry 
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shapes are simple, e.g., squares and rectangles. It approaches 2 when shapes become 

complex. CONV (convexity) is a measurement of the convexity of a geometry similar to 

SOLI. The value range for CONV is between 0 and 1 with 1 being convex shapes, and 

values less than 1 for objects with irregular boundaries (van der Werff & van der Meer, 

2008). Lastly, SqP (Square pixel metric) is a very similar metric with IPQ, it measures 

the shape convexity of an object. SqP is 0 for a square and approaches 1 as the shape 

becomes more complex (Frohn, 2006). 

3.3.3.2. Ground truth sample collection  

To classify fishponds based on OBFs, we first manually digitized fishponds in 

randomly selected 7 of 13 unions that are within the Singra Upazila as ground truth data. 

Of the 7 unions, 3 randomly selected unions were then used to derive positive samples for 

training purposes, and the rest 4 unions were used to evaluate the method. Note that 

positive samples were simply a subset of water feature objects generated from the 

spectral filtering process that intersects with ground truth fishpond polygons. The reason 

why manually digitized ground truth polygons were not used directly for training purpose 

is that manually digitized polygons have over-simplified boundaries which cannot 

represent the true shapes of water feature polygons generated by segmenting remote 

sensing images.  

In addition to positive samples, i.e., fishponds, negative samples of non-fishpond 

water features were collected using the JRC Yearly Water Classification dataset (Pekel et 

al., 2016). The JRC dataset provides 30-m resolution images of seasonal and permanent 

water features every year since 1984. Permanent water features from a region on Tibetan 
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Plateau were extracted as negative samples. The reasons to select a region on Tibetan 

Plateau rather than inside Bangladesh include: 

1) Bangladesh does not include enough permanent water bodies for classification.  

2) Tibetan Plateau has over 1200 lakes larger than 1 sq. km, and multiple river streams 

(G. Zhang et al., 2017). 

3) Tibetan Plateau has over 4000 m average altitude, which significantly limited human 

activities such as fishery. Therefore, there are rarely any artificial water features in 

the area. 

The JRC dataset is a 30-m resolution dataset, which is 9 times the resolution of 

Sentinel-2 MSI in terms of the pixel area. As a result, same-area objects on the JRC layer 

should have much simpler boundaries than on Sentinel-2 images. More specifically, 

same-shape objects on Landsat images should be 9 times as large as they are on Sentinel-

2 images. According to Belton and Azad  (2012), fishponds in Bangladesh are typically 

within a range of 0.02 ha and 100 ha. Therefore, to compensate for the simplification of 

shapes caused by the difference of spatial resolutions between the JRC dataset and 

Sentinel-2 images, water features that are 9 times the size of fishponds, i.e., water 

features that are within 0.18 ha to 900 ha in the region were selected. The geographic area 

used to select training samples is shown in Figure 6. In total 708 positive samples and 

1086 negative samples were used in the training process.  
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Figure 6. Locations of the region used to select training and test samples.  

(Upper left: the region on Tibetan Plateau for selecting negative samples; upper right: blue unions are for 

training positive samples; grey unions are for testing samples). 

 

 

 

 

3.3.3.3. Fishpond Classification 

The last step of the workflow is to classify water feature polygons based on their 

OBF values. We compared two widely used classification models, i.e., the Logistic 

Regression (LR) model and Decision Tree (DT) model that are easy to implement on 

GEE and easy to interpret. The model with better performance was then selected and 

implemented as the classifier in the workflow.  

DT is a widely used classifier that recursively partitions feature space to form 

purer small subspaces (Breiman et al., 1984). DTs are easy to interpret as decision rules 
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are no more than a few chained thresholds on features. Moreover, DT provides feature 

importance score that can help with feature selection. LR is a widely used binary 

classifier. It has a solid theoretical background, and it is very fast to run due to its 

simplicity (Kleinbaum & Klein, 2010). It is also very simple to implement. A major 

reason of choosing LR and DT in this experiment is that it is trivial to transplant the fitted 

models to GEE because LR can be implemented as thresholding the weighted sum of all 

feature values, and DT can be implemented as a set of nested IF-ELSE statements.  

3.3.4. Accuracy Assessment 

As mentioned in the previous section, we manually digitized fishponds in our test 

site for 2016, which is the study year of this research, based on Google Earth historical 

satellite images. Among all digitized fishponds, a small portion was used for training 

purpose and the rest are used as testing samples. As we only have positive samples for 

testing, the evaluation was then based on the hit rate. Specifically, an identified fishpond 

is considered correctly identified if its centroid is within a ground truth polygon, hence a 

hit. A partial confusion matrix can be constructed with 1) TP (true positives), number of 

hits, 2) FP (false positive), number of all classified fishponds minus the number of hits, 3) 

FN (false negative), number of all ground truth polygons minus the number of hits. 

Precision, Recall, and the F1 score can then be calculated. The equations to calculate the 

evaluation metrics were shown in Equation 2: 

 

 

 



58 

 

Equation 2. Accuracy assessment metrics for fishpond classification. 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐 × 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
  

 

 

 

 

3.4. Results 

3.4.1. Fishpond Classification Results 

An LR classifier and a DT classifier were built using training samples. The 

classifiers were built and validated using a 5-fold cross-validation scheme. Specifically, 

the training dataset was split into 5 parts, and for each iteration, 4 of them were used as 

training set and the last one was used as validation set. To avoid building an 

overcomplicated DT classifier such that it is inconvenient to transplant the model on GEE 

and also to reduce overfitting, we limited the max depth of the DT to 3. Moreover, to 

further reduce overfitting, the minimum samples in the leaf node is set to 50. Table 5 

shows the cross-validation results for both LR and DT. From the table we can see that DT 

generally performs slightly better than LR as the average training and validation scores of 

DT are both around 3-4% higher than LR. The training score and validation scores are 

close, which means the models are not overfitting. The weights of the trained LR model 

are shown in Table 6. The tree structure of the trained DT model is shown in Figure 7. 

From the figure, we can see that the leaf nodes of the left branch of the tree are all 

fishpond class, thus, the tree can be simplified by representing all leaf nodes on the left 
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branch as one node with splitting criteria 𝑆𝑞𝑃 ≤  0.134, which simplified the 

transplantation of the model on GEE.  

 

 

 

Table 5. 5-fold cross validation score of implemented LR and DT models. 

Iterations 

LR DT 

Training score Validation 

score 

Training score Validation score 

1 0.824 0.827 0.858 0.840 

2 0.819 0.839 0.866 0.850 

3 0.819 0.842 0.856 0.880 

4 0.831 0.791 0.870 0.847 

5 0.825 0.816 0.869 0.839 

Average 0.824 0.823 0.864 0.851 

 

 

 

 

Table 6. Coefficients of OBFs using the optimal LR model 

Intercept IPQ SOLI PFD CONV SqP 

-10.216 4.667 2.454 2.102 4.816 -3.552 
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Figure 7. DT tree structure. 

(In each node, from top to bottom, are the node-splitting criteria, the total number of samples in this node, the 

class distribution of the samples in this node, and the majority class of this node.) 

 

 

 

 

Figure 8 shows fishpond classification results of three example subareas. The first 

subarea (left column) is a small village that contains densely located fishponds. By 

comparing the AWEI image in Figure 8(a) and the ground truth layer in Figure 8(d) we 

can see that the majority of fishpond boundaries are visually clear to identify while some 

fishponds are too close and small to identify individually. The second subarea (middle 

column) is a village with more scattered fishponds. Due to increased gaps between 

fishponds, their boundaries are easier to identify, and thus most of the fishponds are 

correctly identified. The third subarea (right column) is a village beside a river. As shown 

in Figure 8(i) and Figure 8(l), both LR and DT successfully rejected river body objects 

due to their elongated and concave shapes. For all three subareas, the results produced by 

LR (last row) is slightly better than DT (third row) because LR results have less false 

negatives such as the circled fishponds in Figure 8(g) – (l).   
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Figure 8. Fishpond classification results of three example subarea.  

(Red polygons represent fishponds and yellow polygons represent water bodies identified by spectral filtering 

and rejected by spatial filtering. From top to bottom row: AWEI image on Apr 30th, ground truth data, 

classification results by DT, classification results by LR. Green circles in subfigure (g) – (l) highlights differences 

between results obtained from DT and LR.) 
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Figure 9 shows another village with a few irregular-shaped fishponds, e.g., the ‘L’ 

shaped fishpond on the left side of the region labeled as 1. Both LR and DT misclassified 

most of the fishponds in this region. Specifically, fishpond ‘1’ was misclassified because 

of its concave shape. As discussed in the methodology, OBFs are mostly designed to 

measure shape compactness and convexity, and the primary assumption of using OBFs to 

classify fishponds is that fishponds have relatively simpler shapes than other water 

objects. Fishpond ‘2’ is in fact a group of small fishponds according to the ground truth 

data shown in Figure 9(b). The overly small gaps between such small fishponds cannot 

be identified and thus they were recognized as one giant fishpond with complex shapes. 

Lastly, fishpond ‘3’ was misclassified due to its elongated shape. As a result, any small 

fluctuations on the longer side can significantly affect convex hull based OBFs such as 

SOLI and CONV. The misclassification of fishpond ‘2’ and ‘3’ indicate the huge 

influence of spatial resolution on the fishpond recognition. Fishponds are generally small, 

some of them are as small as 200 sq. meters, which is roughly 2 pixels on a Sentinel-2 

image. The relatively coarse spatial resolution not only over-simplified boundaries of 

small fishponds but also amplifies the differences of OBFs caused by tiny changes to the 

shapes.  
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Figure 9. Examples of unsatisfactory classification results.  

(Red polygons represent fishponds and yellow polygons represent water bodies identified by spectral filtering 

and rejected by spatial filtering. From left to right: AWEI image on Apr 30th, ground truth data, classification 

results by DT, classification results by LR.) 

 

 

 

 

3.4.2. Evaluation 

The proposed method was evaluated using the holdout testing dataset in 4 of the 

unions within the study area. The results are shown in Table 7. Specifically, the LR 

model identified in a total of 841 fishponds within the test unions, and the DT model 

identified 789 fishponds. Of all the classified fishponds, LR correctly classified 663 of 

the 841, the precision score is 0.788. DT correctly classified 610 of 789, the precision 

score is 0.773. As a comparison, the ground truth data contains in total 1232 fishponds 

within the test region. From the table, we can see that LR has dominantly better 

performance on the test dataset with all metric scores higher than DT even though DT 

performed better during training. The precision score of LR is 1.5% higher than DT, and 

the recall rate of LR is over 4% higher than DT. The overall F1 score of LR is 3.6% 

higher than DT. Therefore, LR is recommended to be implemented as the classifier for 

fishponds. 
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 Table 7. Evaluation of LR and DT on the test dataset. 

 LR DT 

# of ‘hits’ (TP) 663 610 

# of classified fishponds 841 789 

# of ground truth fishponds 1232 1232 

Precision 0.788 0.773 

Recall 0.538 0.495 

F1 score 0.640 0.604 

 

 

 

 

3.5. Discussion 

3.5.1. Importance of the pixel selection technique 

Figure 10 shows the comparison of histograms of WI values with and without 

pixel selection as well as optimal thresholds derived by the Otsu method. From the figure, 

we can see that most of the histograms show bimodal distributions. One peak on the high-

value side indicates water types and the peak on the lower WI value side indicates other 

land cover types. Comparing thresholds derived using the Otsu method with and without 

pixel selection step, we can find that most threshold values are close such that whether to 

use pixel selection may not result in much difference. However, there are a few 

exceptions that the thresholds derived with pixel selection are quite different from that 

without. Specifically, thresholds derived with pixel selection on the NDWI image on Jan 

1st and MNDWI and AWEI images on Apr 30th all fall out the valleys of the histograms, 

which significantly changes the class distributions of the segmented images. Figure 11 

shows an example of such differences for the MNDWI image on Apr 30th. The figure 

clearly shows that the segmentation result with pixel selection is much better than 

without because the latter includes a lot of false positives, especially in the southwest 
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region of the study area. Moreover, the boundaries of fishponds cannot be clearly 

identified due to the false positives as shown in the upper right subfigures. The pixel 

selection is especially effective when the target class is scarce that the difference between 

the target class and other classes is shadowed by variations within other classes. For 

example, the histograms of NDWI on Jan 1st and MNDWI on Apr 30th in Figure 10 show 

two peaks, and the Otsu method finds the threshold in the valley if no pixel selection is 

applied. However, such peaks just represent the internal variations of non-water types 

instead of between water class and non-water class. By applying the pixel selection 

technique, the number of non-water type pixels is significantly reduced to the same level 

as water features and thus produce better segmentation results. The thresholds derived 

using the Otsu method are shown in Table 8.  

 

 

Table 8. Otsu method derived thresholds for WIs. 

(Left column: with pixel selection; right column: without pixel selection. Threshold pairs that lead to significant 

differences in threshold results are highlighted.) 

      NDWI       MNDWI        AWEI 

2016-01-01 0.067 -0.141 0.118 0.082 -0.148 -0.328 

2016-01-31 -0.033 -0.052 0.235 0.243 0.100 0.132 

2016-04-30 -0.165 -0.203 -0.117 -0.269 -0.830 -1.172 

2016-10-17 -0.138 -0.078 0.162 0.242 0.216 0.520 
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Figure 10. Histograms of WIs for four image dates within the study area.  

(Blue histograms: without pixel selection technique; orange histograms: with pixel selection technique. Vertical 

lines represent thresholds found by the Otsu method for the two histograms.) 
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Figure 11. Comparison of water feature segmentation results for the MNDWI image on Apr 30th.  

(Left side: with pixel selection technique; right side: without pixel selection technique.) 

 

 

 

 

3.5.2. Object-Based Features 

Five OBFs, i.e., IPQ, SOLI, PFD, CONV, and SqP were calculated for all 

vectorized all-year flooded water features. Figure 12 shows the paired scatter plot of OBF 

values of training data samples. Specifically, the diagonal subfigures show the 

distribution of each OBF values for fishponds and non-fishpond types, and the off-

diagonal subfigures show the scattered points on the 2D space of the corresponding OBF 

features. From the diagonal subfigures, we can see that IPQ, CONV, and SqP provide 

good class separability because the peaks of distributions are well separated while the 

distributions of SOLI and PFD have a lot of overlap. From the most upper-right subplot, 

we can also see that SqP and IPQ show a near quadratic relationship as all points align on 

a simple curve. This can be proved using the formula of the two features. From all 
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subfigures, the most likely feature pairs that may provide linear separability is the pair of 

PFD and SqP because the positive samples and negative samples roughly align along the 

opposite sides of the 𝑦 = 𝑥 line visually. Other pairs of features do not show clear 

separability between the two classes. 

 

 

 

 
Figure 12. Paired scatter plots of OBFs.  

(Diagonal plots are histograms of each OBF for fishpond and non-fishpond classes. Off-diagonal plots are 

scatter plots of corresponding feature pairs of fishponds and non-fishponds samples.) 
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3.5.3. Limitations and future work 

The major limitation of the work is that the spatial resolution of Sentinel-2 images 

is not high enough to map extremely small-scale fishponds. A great portion of the inland 

fishponds are only a few pixels large, and the pixel outlines certainly cannot accurately 

represent the true shape of these fishponds. However, Sentinel-2 is currently the only 

operational optical satellite that provides continuous and high-resolution multi-spectral 

data free of charges. Thus, until new missions are launched, 10 m resolution is the best 

spatial resolution for long-term and continuous mapping of inland fishponds. Another 

limitation is that cloud covers in monsoon seasons limited the number of images that can 

be used. Thus, a few previous research works use Synthetic Aperture Radar (SAR) 

images instead of optical images for aquaculture pond mapping in SA (Ottinger et al., 

2017; Prasad et al., 2019). As SAR uses microwave spectrum that can penetrate clouds, 

and it does not rely on the presence of sun, it can provide significantly better temporal 

coverage for regions with heavy cloud contaminations. Moreover, water features have 

very low backscatter comparing with other LULC types such that they stand out on SAR 

images. However, SAR images are generally contaminated with speckle noises that needs 

to be preprocessed by filtering, which will somewhat reduce the spatial resolution of the 

product, and edges may not be preserved. The reduced spatial resolution may not affect 

large objects mapping such as coastal aquaculture ponds, it may have a major impact on 

the performance of mapping small-scale inland fishponds. Recent research showed that 

the integrative usage of optical and SAR sensors, especially Sentinel-1 and Sentinel-2, 
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has great potential in LULC mapping in monsoon area (Steinhausen et al., 2018), and this 

is a very promising direction of improving the current state of inland fishpond mapping. 

3.6. Conclusion 

Inland fishery is growing fast in Bangladesh and many other SA countries such as 

India. The underlying LULC change, especially the transition of agriculture land to 

aquaculture land may put pressure on already limited agriculture land for large 

populations. Mapping and monitoring inland fishponds are essential to understand such 

LULC change. While there are many research works focus on mapping coastal 

aquaculture ponds, there is little research effort that focus on mapping inland fishponds 

which are typically small and cluttered. Thus, this chapter presents a GEE-based 

workflow that uses multi-temporal Sentinel-2 images for fishpond mapping in the context 

of a case study in the Singra Upazila in Bangladesh. The workflow first applies a 

spectral-based filtering that automatically segments multi-temporal images using WIs and 

generates an all-year-flooded water feature mask. A key step in the spectral filtering is to 

apply a pixel selection technique that limit number of pixels used in image segmentation, 

which is essential to map small objects in a large area. Then a spatial-based filtering was 

applied to classify all-year-flooded water objects into fishponds and non-fishponds using 

OBFs. We used five OBFs to characterize water objects and trained a LR and a DT 

model using the five OBFs as features. The LR model achieved better results than DT, 

and the trained LR model was used in the workflow for final classification. In a case 

study in the Singra Upazila in Bangladesh, we manually digitized fishponds using Google 

Earth historical images and tested our method. The proposed workflow achieved around 
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79% precision and 54% recall rate. Lastly, the workflow was implemented on GEE and 

thus can be easily reapplied to new regions. This work demonstrated the use of GEE for 

general remote sensing research.  

This chapter is a slightly modified version of Yu et al. (2020) and has been 

reproduced here with the permission of the publisher, i.e., MDPI, and the copyright 

holder, i.e., Zhiqi Yu. 
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4. CROP INTENSITY MAPPING WITH REMOTE SENSING DATA 

4.1. Background 

SA that mainly includes Bangladesh, India, Nepal, Bhutan, Pakistan, and Sri 

Lanka, is one of the most intensively farmed regions in the world (Gray et al., 2014). The 

entire region accounts for almost 40% of the world’s harvested rice area, and Bangladesh 

specifically, is the fourth largest rice producing country in the world (Gumma, 2011). The 

ever-growing population and limited lands arable and available for farming all poses 

severe challenges to the global food security (HAO et al., 2019). According to Gray et al. 

(2014), nearly 95% of SA land suitable for rain-fed agriculture was under cultivation in 

1992, which leaves it very little room for cropland expansion. Thus, to produce more 

food for the growing population, and accounts for the changing diet, the agriculture 

intensification, i.e., increasing the number of crop planting cycles within a year, is 

expected (Qiu et al., 2016). According to a projection, the world’s agricultural production 

needs to increase 70% - 110% to account for the increasing population from 2010 to 

2050. However, increasing cropping cycles within a year may bring environmental issues 

such as degraded soil quality, water pollution, forest degradation, and climate change (L. 

Liu et al., 2020b; Qiu et al., 2016). Thus, timely update of large-scale cropping intensity 

information is crucial for understanding food production and environmental monitoring 

(L. Liu et al., 2020b; Qiu et al., 2016).  
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Crop intensity is defined as the number of cropping cycles planted per year (Gray 

et al., 2014; Tatsumi, 2016; M. Zhang et al., 2021). Mapping crop intensity using remote 

sensing data is an extensively explored area. Satellite sensors can provide large-scale 

observations at mid to fine spatial resolution every few days, which is ideal for 

monitoring crops at national and continental scale. Numerous research works have 

explored using various datasets and different modelling methods for crop intensity 

mapping. Hao et al. (2019) used harmonized Landsat and Sentinel-2 dataset and modelled 

the time-series NDVI and EVI using sixth degree polynomial function. They identified 

cropping intensity from the modelled NDVI and EVI curves by counting the number of 

valid peaks in the curves, and they tested the method at four study sites located in North 

America, South Africa, SA, and East Asia (HAO et al., 2019). Qiu et al. (2016) used a 

modified Isolines of Wavelet Spectra method to automatically classify crop intensity 

using Moderate Resolution Imaging Spectroradiometer (MODIS) EVI time-series 

datasets in Hunan province in China. Their result was compared with in-situ data, and the 

overall accuracy is at 88.9%. Gray et al. (2014) also used a method based on the MODIS 

land cover product, which involves curve smoothing using a Loess filter and heuristic 

filtering. They also used the total number of valid peaks in the time-series as the 

representation of cropping intensity. Their method was applied to the entire Asia region 

and was compared with national inventory statistics. Zhang et al. (2021) produced the 

GCI30 global 30m cropping intensity dataset using mainly Landsat data. They derived 

NDVI, EVI, and LSWI and detected cropping intensity for non-rice croplands and 

flooded paddy rice separately. In a broader context, cropping intensity detection is a 
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specific application of phenology modelling and detection using satellite images. There 

are many methods that have been applied to detecting crop phenology phases and 

seasonalities based on model-fitting with time-series data. Sakamoto et al. (2005) 

explored using wavelet and Fourier functions to fit time-series MODIS EVI data to detect 

crop phenology. Jönsson and Eklundh (2002) used an asymmetric Gaussian model to fit 

Advanded Very High-Resolution Radiometer (AVHRR) NDVI time series over Africa.  

Despite that abundant research on crop intensity mapping and crop phenology 

detection using various dataset and method, a knowledge gap remains to be explored 

using harmonic regression model for crop intensity mapping in Bangladesh where cloud 

cover is persistent during monsoon seasons. Thus, this research aims to explore using 

Harmonic regression and MODIS surface reflectance product for crop intensity mapping. 

4.2. Study Area 

Bangladesh is one of the most populous and densely populated countries in the 

whole world. It is also one of the poorest countries in the world. Around 57% of its total 

land is arable, 45% of its population conduct agricultural activities for living, and 

agriculture takes up 16% of its GDP (Nasim et al., 2018). The climate system in 

Bangladesh is mainly in the sub-tropical monsoon climate system which is characterized 

by the uneven distribution of temperature and rainfall (Nasim et al., 2018). During 

monsoon seasons, temperatures are high, and precipitations are high. In the winter 

however, the temperature is low, and weather is dry but sunny. Adapting to this climate 

system, Bangladesh mainly has two crop planting seasons, namely Kharif season and 

Rabi season (Mohsenipour et al., 2018). The Kharif season extends from May to 



75 

 

November, which is humid and hot, and the Rabi season extends from December to 

April, which is dry and cold. Rainfed Aman rice is mainly grown in the Kharif season 

and irrigated Boro rice is grown in the Rabi season. The Kharif season may further divide 

into two smaller seasons, one from mid-March to mid-July, and the other from mid-July 

to mid-November. 

4.3. Method 

4.3.1. Datasets 

The remote sensing data that is used in this research is the MODIS Terra/Aqua 

Surface Reflectance product 8-day Global 250m. The data products are hosted on the 

GEE cloud servers and are accessed through GEE JavaScript API using GEE online 

script editor. This research selected all available images between Jan 1st 2010 and Jan 1st 

2011. Because the dataset has a temporal resolution of 8 days, there are in total 46 images 

available within one year. Thus, the total number of images that were used in this 

research is 92 with 46 from MODIS Terra Surface Reflectance product and the other 46 

from MODIS Aqua Surface Reflectance product.  

Aside from remote sensing data, this research also uses the administrative 

boundaries of Bangladesh at the country level and at district level. The country level is 

used to clip MODIS images to the extent of study area and the district level boundaries 

are used to calculate per-district crop intensity to compare with district-level cropping 

intensity data from Bangladesh Bureau of Statistics (BBS). 
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4.3.2. Preprocessing 

The MODIS Surface Reflectance data is preprocessed before used for analysis. 

The preprocessing mainly includes four steps, first is to use the ‘State’ band from the 

MODIS surface reflectance product to mask cloud pixels, second is to clip the selected 

images using the boundary of our study area, and the third is to combine Terra and Aqua 

MODIS Surface Reflectance product as one dataset, lastly, we compute the NDVI for all 

the surface reflectance images. 

The first two bits from the ‘State’ band of the MODIS surface reflectance images 

are dedicated to cloud state, thus, a bitwise ‘and’ operation was conducted on the ‘State’ 

band to extract the cloud mask. Each of the MODIS images derive a cloud mask 

individually. The boundary of the Bangladesh country was used to clip all to the extent of 

the study area. The MODIS Terra/Aqua Surface Reflectance data on the GEE is itself a 

composite dataset that covers the entire globe, which means that no mosaicking is needed. 

The third step uses a simple heuristic to combine Terra and Aqua MODIS Surface 

Reflectance product. As discussed before, Bangladesh has a sub-tropical monsoon 

climate system, and during the monsoon season, the persistent cloud cover prevents 

optical sensors like MODIS to observe the ground. The combination of Terra and Aqua 

may mitigate the problem. Specifically, the heuristic is that since Terra and Aqua passes 

the same location at same day in the morning and afternoon respectively, during this few 

hours’ time period, the crop condition can be treated as the same. Thus, we can assume 

that the only difference between Terra and Aqua MODIS Surface Reflectance for the 

same day is the cloud cover because the cloud may present in morning but not in the 
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afternoon, and vice versa. The mathematical representation of this step is shown in 

Equation 3: 

 

 

 
Equation 3. Simple combination of MODIS Terra and Aqua Surface Reflectance products. 

Vcombined = {

reduce(𝑉𝑇𝑒𝑟𝑟𝑎,  𝑉𝐴𝑞𝑢𝑎),  𝑖𝑓 𝑉𝑇𝑒𝑟𝑟𝑎,  𝑉𝐴𝑞𝑢𝑎 ≠ 𝑁𝑎𝑁

𝑉𝑇𝑒𝑟𝑟𝑎 | 𝑉𝐴𝑞𝑢𝑎,       𝑖𝑓 𝑉𝑇𝑒𝑟𝑟𝑎 or 𝑉𝐴𝑞𝑢𝑎 =  𝑁𝑎𝑁

𝑁𝑎𝑁,        𝑖𝑓 𝑉𝑇𝑒𝑟𝑟𝑎 and 𝑉𝐴𝑞𝑢𝑎 = 𝑁𝑎𝑁

 

 

 

 

Where the 𝑉𝑇𝑒𝑟𝑟𝑎 and 𝑉𝐴𝑞𝑢𝑎 are surface reflectance values for Terra and Aqua 

respectively, and 𝑁𝑎𝑁 indicate that this pixel is masked because of clouds. The 𝑟𝑒𝑑𝑢𝑐𝑒() 

function can be any function that combines the two values from Aqua and Terra, e.g., 

mean value, max value, etc. In this research, since we are computing NDVI, we used 

maximum function because most NDVI composite product uses maximum functions. 

The last step is to compute NDVI from surface reflectance. The NDVI is 

calculated as Equation 4: 

 

 

 
Equation 4. NDVI 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 

 

 

 

Where 𝜌𝑁𝐼𝑅 is the surface reflectance in near infrared band, which is band 2 in 

MODIS, and 𝜌𝑅𝑒𝑑 is the surface reflectance in the red band, which is band 1 in MODIS. 
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4.3.3. Harmonic Regression 

Similar to other cropping intensity mapping research, this research detects the 

cropping cycles based on crop phenology (Gray et al., 2014; HAO et al., 2019; Jain et al., 

2013; L. Li et al., 2014; L. Liu et al., 2020b; Tatsumi, 2016; M. Zhang et al., 2021). At 

the beginning of a crop season, there are little vegetation cover, which associates with 

low NDVI values. If the crop is rice, the fields will be filled with water during the 

transplanting phase, which also yields low NDVI values (Dong et al., 2016). As crop 

grows, the greenness and biomass increases, which can attribute to the increase of NDVI 

during this period. After the greenness of crops reach the maximum and become mature, 

the harvesting will happen, which decreases the biomass and expose more bare soil, thus 

the NDVI values decreases during this time (Huang et al., 2019). Thus, the NDVI values 

of one cropping cycle should show a ‘bell’ shape. There are many research works that 

identify the start-of-season (SOS) and end-of-season (EOS) to detect a crop season 

(Huang et al., 2019; Whitcraft et al., 2015). One simple method to detect such ‘bell’ 

shape is using thresholds on the NDVI curves. The SOS and EOS happens when the 

NDVI curve crosses the threshold lines (Huang et al., 2019). This research uses a 

variation of this method, which is simpler and easy to implement on GEE. Specifically, a 

single threshold that is between the valleys of the NDVI curve, which signals SOS and 

EOS, and the peak of NDVI curve, was set. The number of cropping cycles were 

calculated by counting how many times the NDVI curve crosses the threshold line. As a 

valid cropping season should start and end lower than the threshold, and the peak should 

be higher than the threshold, a cropping season should cross the threshold line exactly 
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twice. Thus, the number of times that crosses the threshold line divide by 2 should be the 

number of cropping cycles.  

Harmonic Regression, also called Harmonic Analysis of Time Series (HANTS) 

(Roerink et al., 2000; J. Zhou et al., 2012, 2015), is a technique that uses Fourier series, 

i.e., sine and cosine series of different frequencies as base to model the input signal. It is 

a very popular method in curve smoothing and gap filling for time series remote sensing 

data analysis. Many research works use HANTS to reconstruct NDVI time series with 

missing data (Malamiri et al., 2020; Roerink et al., 2000; J. Zhou et al., 2015). The 

mathematical representation of the harmonic regression is shown in Equation 5: 

 

 

 
Equation 5. Harmonic Regression 

𝑉(𝑡) = 𝑎0 + ∑ (𝑎𝑖𝑐𝑜𝑠(2𝜋𝑖𝑡) + 𝑏𝑖𝑠𝑖𝑛(2𝜋𝑖𝑡))𝑛
𝑖=1 , 𝑡 =

𝐷𝑜𝑌

#𝑑𝑎𝑦𝑠
 

 

 

 

Where 𝑡 is the ratio between the 𝐷𝑜𝑌 (day of year) and the number of days in the 

given year, thus it is between 0 and 1. 𝑛 is the number of Fourier series that is chosen for 

the model, the higher the 𝑛, the more variations in the original data can be captured in the 

fitted model. In this study, 𝑛 is chosen to be 3.  

For each pixel, the 46 values corresponding to each time stamp in the year 2010 

were used to fit the model. Then we used 0.5 as the threshold to find the number of 

crossings between the threshold and the fitted curve. The 0.5 is used according to Hao et 

al. (2019). 
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4.4. Results 

Figure 13 shows the crop intensity map derived from this research. The map 

shows four classes, single cropped land, double cropped land, triple cropped land, and 

other land cover land use classes shown as background color. we can see that the 

dominant crop intensity in Bangladesh is two seasons, followed by one season. Three 

seasons are relatively rare. As we can see from the result, the main area that conduct 

single season cropping is the northern east part of Bangladesh, some coastal area, and 

small areas in the west. The northern east part of Bangladesh that is at around 91-degree 

east, 24 to 25 degree north is the Haor region, which is a wetland ecosystem that is 

completely flooded by the runoff water from rivers and canals during monsoon seasons. 

After the monsoon season and the surface water dry up, a season of rice is generally 

grown in the Rabi season utilizing the remaining moisture in the soil and the help from 

irrigation (Alam et al., 2010). Our method successfully identified the Haor region as 

single cropped land. Most of the cropland in Bangladesh is conducting double season 

cropping as expected. It is the most common cropping system in Bangladesh with one 

Kharif season for rainfed rice, and a Rabi season for irrigated rice or wheat. Triple 

cropped area is mainly distributed in the central region and some small area in the 

northern western part of Bangladesh.  
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Figure 13. The crop intensity results derived by our method. 
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Table 9 shows the comparison between the statistics derived from remote sensing-

based method and the statistics published by BBS for 2010. BBS publishes national 

statistics that cover many aspects including forestry, agriculture, land use and land cover, 

etc. every a few years. From the table we can see that the remote sensing-derived crop 

intensity is generally lower than the statistics. For example, the Khagrachhari district 

shows 1.45 cropping intensity from our method while the official statistic shows 2.12, 

which means the overall cropping pattern for this district is double cropping while our 

result shows less than double cropping. The underestimation can also be seen in the 

national summary, where our method shows the overall cropping intensity for 

Bangladesh is 1.655 while the official statistics show 1.91.  

 

 

 
Table 9. District and region-wise crop intensity summary from our result and statistics from BBS 

Region Name District Name 
Crop Intensity  

by our method 

Crop Intensity 

from BBS 

Bandarban Bandarban 1.157534 1.38 

Barisal  

Barisal 1.72627 

1.76 
Bhola 1.543641 

Jhalokathi 1.680704 

Pirojpur 1.617375 

Bogra  
Bogra 1.980268 

2.35 
Joypurhat 1.301246 

Chittagong 
Chittagong 1.599386 

1.99 
Cox's Bazar 1.702732 

Khagrachhari Khagrachhari 1.456341 2.12 

Rangamati Rangamati 1.276831 1.44 

Comilla  

Brahmanbaria 1.560693 

1.82 Chandpur 1.719748 

Comilla 1.490053 

Dhaka  

Dhaka 1.874435 

1.72 

Gazipur 1.712432 

Manikganj 1.345053 

Munshiganj 1.831956 

Narayanganj 1.436767 
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Narsingdi 1.765473 

Dinajpur  

Dinajpur 1.661731 

2.11 Panchogarh 1.598903 

Thakurgaon 1.997417 

Faridpur  

Faridpur 1.618574 

1.92 

Gopalganj 1.458369 

Madaripur 1.725696 

Rajbari 1.693322 

Shariatpur 1.624316 

Jamalpur 
Jamalpur 1.772047 

2.29 
Sherpur 1.847076 

Jessore  

Jessore 1.653473 

2.28 
Jhenaidah 1.937731 

Magura 1.845971 

Narail 1.637942 

Khulna  

Bagerhat 1.49646 

1.34 Khulna  1.267695 

Satkhira 1.572612 

Kushtia  

Chuadanga 1.855318 

2.56 Kushtia 1.60264 

Meherpur 1.842816 

Mymensingh  

Kishoreganj 1.579946 

2.15 Mymensingh 1.642374 

Netrokona 1.600508 

Noakhali  

Feni 1.823093 

2.11 Lakshmipur 1.681078 

Noakhali 1.538954 

Pabna  
Pabna 1.573781 

2.03 
Sirajganj 1.912778 

Patuakhali  
Barguna 1.399497 

1.49 
Patuakhali 1.346188 

Rajshahi  

Chapai Nawabganj 1.529636 

1.80 
Naogaon 1.64282 

Natore 1.461503 

Rajshahi 1.602412 

Rangpur  

Gaibandha 1.613909 

2.02 

Kurigram 1.706694 

Lalmonirhat 1.697256 

Nilphamari 1.723727 

Rangpur 1.854516 

Sylhet  

Habiganj 1.920637 

1.54 
Maulvibazar 1.667063 

Sunamganj 1.290713 

Sylhet 1.308794 

Tangail Tangail 1.848917 1.92 

Summary  1.655 1.91 
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4.5. Discussion 

We believe the main reason why our method is underestimating cropping 

intensity is because we used only first 3 Fourier series in the harmonic regression, which 

caused the fitted model to be underfitting. Figure 14 shows examples of NDVI time-

series for single cropped land, double cropped land, and triple cropped land, and the fitted 

curve using harmonic regression with first 3 Fourier series. As we can see, for single 

cropping cycle and double cropping cycles, the model fits well with the original data. 

However, the fitted curve for triple cropping cycle shows some underfitting, especially at 

the end of the second season at around 210 DoY where the curve should be expected to 

drop lower but instead, it only drops a little and climbs back up for the third season. 

Because of that, the detected cropping cycles may not include the second one simply 

because the valley point is higher than the threshold. Thus, a future direction to improve 

this work is to use more than 3 Fourier series for model fitting.  

 

 

 

 

 

Figure 14. Example NDVI time-series and fitted curves for single cropping cycle (left), double cropping cycle 

(middle), and triple cropping cycle (right). 
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Another reason for the underestimation is that the majority of the time-series have 

large portion of missing values due to cloud cover in the monsoon season. Gray et al. 

(2014) reported that they also experienced difficulties detecting more than two cropping 

cycles in a year due to missing value problems.  

Another issue with the current method is that the threshold 0.5 is chosen 

empirically. If ground truth data are available, the threshold can be derived statistically to 

maximize the performance on the ground truth data, and then apply it for the mapping, 

which should be more robust than applying thresholds empirically. 

4.6. Conclusion 

This chapter explored using MODIS Surface Reflectance product on GEE for 

crop intensity mapping in Bangladesh for 2010. To overcome the missing value problem 

caused by the persistent cloud cover during the monsoon season, we first did a 

combination of MODIS Terra and Aqua Surface Reflectance products, and then we 

applied the harmonic regression to reconstruct smooth and gap filled NDVI curves. 

Lastly, an empirical threshold 0.5 was used for crop intensity detection. The result 

showed that the spatial distribution of cropping intensity generally matches with the 

expected cropping intensity in Bangladesh. The average cropping intensity derived using 

this method is underestimating the actual average cropping intensity according to the 

statistics from BBS. Our method indicates the overall cropping intensity is 1.655 while 

the official statistics shows 1.91. The main reason for this underestimation is still the 

missing value problem. When the majority of a cropping season is under the influence of 

cloud cover, it is very hard to reconstruct.  
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5. RICE MAPPING WITH GEE-BASED WEB APPLICATION  

5.1. Introduction 

Rice is one of the most important food sources that feed more than half of the 

global population (Ni et al., 2021b). Paddy rice area accounts for nearly 11% of overall 

cropland area globally (Xiao et al., 2006). Rice cultivation is especially popular in SA 

and Southeast Asia (SEA) due to ample rainfall and warm temperatures. It is the 

dominant crop type in many agrarian SA and SEA countries such as Bangladesh, Nepal, 

and Vietnam. According to International Rice Research Institute, paddy rice fields in 

SEA along accounts for almost 30% of the world rice harvest. Thus, rice farming in SA 

and SEA is important to the regional and global food security, which is a pivotal theme in 

United Nation’s 17 Sustainable Development Goals (SDG). Decision makers and 

planners depend on timely reported information on paddy rice area and vegetation growth 

to estimate rice yields and plan resource allocations and contingency plans accordingly. 

Thus, timely producing accurate rice extent maps is crucial for helping the formulation of 

strategic agricultural plans that ensures food security, especially for densely populated 

countries like Bangladesh, India, and Vietnam (Rimal et al., 2018).  

Remote sensing datasets including both optical multi-spectral sensors, 

e.g., Moderate Resolution Imaging Spectro-radiometer (MODIS), Landsat, and Sentinel-

2, and radar sensors, e.g., RADARSAT and Sentinel-1 have long been used in rice 
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mapping (Dong et al., 2016; Inoue et al., 2020; Onojeghuo et al., 2018). Dong et al. 

(2016) summarized three categories of methods that are generally used by previous 

research in mapping rice using remote sensing images. The first category is to use 

statistical approaches like supervised learning and unsupervised classification on images 

from certain stages of rice planting. For example, Onojeghuo et al. (2018) combined 

NDVI time-series during the rice growing period derived using Landsat images and 

polarization bands, i.e., VV and VH from Sentinel-1A images, and used supervised 

classification models including Support Vector Machine (SVM) and Random Forest (RF) 

to classify paddy rice fields in northeastern China. Their best results were from using 

time-series VH and NDVI with RF, which yields a 96.7% accuracy. Chen et al. (2020) 

trained multiple RF models using combinations of all polarization bands from Sentinel-1 

and NDVI, LSWI, and EVI derived from Sentinel-2 for paddy rice classification. Their 

results showed that best accuracy is achieved with the combination of VV, VH, and EVI. 

The second category is to use time-series data and threshold-based segmentation 

methods, and the last category is by detecting the transplanting phase, during which the 

fields are flooded. Vegetation index like NDVI or water indices like Land Surface Water 

Index (LSWI) or Modified Normalized Difference Water Index (MNDWI) can be used 

during this phase to detect water in the fields. This distinct phase of paddy rice phenology 

is widely used in previous research. Xiao et al. (2005b) classified paddy rice in southern 

China by comparing LSWI and NDVI during the transplanting phase till the full canopy 

exists. Their assumption was that during the transplanting phase, LSWI will be greater 

than NDVI (Xiao et al., 2005b). They further revised the algorithm by adding EVI into 
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the comparison and relaxed the decision margin from LSWI greater than NDVI to LSWI 

+ 0.05 greater than NDVI or EVI (Xiao et al., 2006).  

Previous research has demonstrated that paddy rice classification by detecting the 

transplanting phase or by supervised classification with time-series remote sensing data 

can yield satisfactory results. Web-based applications that uses GEE APIs can effectively 

reduce the barrier of JavaScript programming and offer remote sensing data processing 

workflows to a wider range of people. While there are web applications like O-

LCMapping and REMAP that allow general land cover classification, which may be used 

for rice mapping, there are certain challenges that need to be addressed for rice mapping. 

Specifically, collecting ground truth samples for rice just by inspecting high resolution 

true color images like Google Earth Satellite layers is not adequate because different crop 

types cannot be differentiated on true color images. Thus, this research aims to address 

this issue by developing a web application, which we named RiceMapEngine, that allows 

users to refine ground truth samples based on their phenology information. The 

RiceMapEngine will utilize the computing power and data catalog of GEE for fast paddy 

rice mapping by supervised classification or phenology-based approach. 

5.2. Methods 

5.2.1. Software Design  

The RiceMapEngine is designed as a modern single-page web application (SPA). 

A SPA is an application that loads entirely when it opens. It differs from a traditional 

server-rendering web application, e.g., a Tethys-based web application, which 

dynamically renders webpages at the server-side throughout the entire life cycle of the 



89 

 

web application. We believe SPA suits the design of RiceMapEngine better because of 

several reasons: 

1) SPA is more suitable for complex interactions between users and the 

application, such as uploading/modifying ground truth samples, and going 

back and forth between each stage of crop mapping, etc. 

2) GEE requests can take seconds or even minutes to respond, which is not user 

friendly. Thus, RiceMapEngine tries to reduce the number of calls to the 

backend GEE APIs as much as possible. A powerful SPA frontend can 

alleviate the load of backend. 

3) SPA develops UI as reusable components, which is more suitable for open 

source. 

The overall software architecture is illustrated in Figure 15. The frontend shows 

the map component and controls for user input, and the backend essentially serves as a 

proxy that translate requests from frontend into GEE Python API calls. The entire 

application is organized as 3 different apps, namely, phenology explorer, empirical 

thresholding, and supervised classification. Each of these apps represents a stage of the 

crop mapping process.  
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Figure 15. Overall architecture of RiceMapEngine. 

 

 

 

 

On the frontend side, the three apps are organized behind client-side routing. SPA 

and client-side routing enables these apps to share commonly used components like 

header, map, and footer, and only reload necessary parts of the pages depending on the 

current URL, which is extremely helpful when the web map component needs to be 
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shared across all apps. A redux store is used to hold states and data of current user 

session, e.g., user-selected dataset name, image date range, user-uploaded ground truth 

samples, etc. This model-view-like structure is very friendly to open-source because a 

new application can be easily added to the entire application by adding a client-side-route 

and a new redux store slice.  

To facilitate the use of SPA for frontend design, the backend of the application is 

developed as an API server using Django framework in Python. The backend uses a 

Google Service Account to authenticate all GEE requests for the application as the 

application starts up. The Google Service Account associates GEE requests to the 

account itself, rather than an end user, which is recommended for developing applications 

or RESTful APIs. As the heart of the backend, a suite of frequently used functions for 

data processing, such as selecting and filtering datasets on GEE, and computing features, 

is implemented using GEE Python APIs. These functions are implemented to be as 

generic as possible in order to handle a range of possible inputs. For example, the 

compute_feature function dynamically selects the formula and bands for computation 

according to the input satellite name and the feature name as the function arguments.  

5.2.2. Core Functions 

5.2.2.1. Dataset Filtering 

As satellite datasets on GEE are organized as ee.ImageCollection objects, the first 

step of using remote sensing datasets from GEE is often applying filters to select the 

relevant portion of the dataset. Apart from filtering datasets by the date range and the 

study area, additional filters can be applied to different datasets, e.g., maximum cloud 
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cover, descending and/or ascending orbit, etc. RiceMapEngine allows users to select a 

range of publicly available satellite datasets including both passive optical sensors and 

active radar sensors. Table 10 lists all the datasets that are included in the 

RiceMapEngine application. For optical datasets, the application allows users to specify 

the maximum percentage of cloud cover for the image without looking up the specific 

property from the metadata of the dataset. For radar dataset, i.e., Sentinel-1 SAR dataset, 

a default interferometric wide (IW) swath mode filter is applied, and users can select to 

include images in descending and/or ascending orbit.  

 

 

Table 10. GEE datasets that are available in RiceMapEngine. 

Dataset Name GEE Asset ID Features 

Sentinel-1 SAR GRD: C-band  COPERNICUS/S1_GRD VH, VV, CR, RVI 

MOD13Q1.006 Terra Vegetation 

Indices 16-Day Global 250m 

MODIS/006/MOD13Q1 NDVI, EVI 

USGS Landsat 5 TM Collection 1 

Tier 1 TOA Reflectance 

LANDSAT/LT05/C01/T1_TOA NDVI, EVI, NDWI, 

MNDWI 

USGS Landsat 8 Collection 1 Tier 1 

TOA Reflectance 

LANDSAT/LC08/C01/T1_TOA NDVI, EVI, NDWI, 

MNDWI 

Sentinel-2 MSI: MultiSpectral 

Instrument, Level-1C 

COPERNICUS/S2 NDVI, EVI, NDWI, 

MNDWI 
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5.2.2.2. Preprocessing 

The preprocessing module mainly include three functions, computing an index-

like feature, make composite, and speckle filtering for SAR data.  

The RiceMapEngine uses the concept of ‘feature’ to denote a single indicator for 

time-series analysis, and classification. The feature can be either a single band, such as 

the VH polarization band from Sentinel-1, or a computed value using multiple bands, 

such as NDVI. For optical sensors, the RiceMapEngine provides two most popular 

vegetation indices, NDVI and EVI, and two commonly used water indices, namely 

Normalized Difference Water Index (NDWI), and Modified Normalized Difference 

Water Index (MNDWI). NDVI is the most popular vegetation index for measuring 

biomass. Enhanced Vegetation Index (EVI) is a more advanced vegetation index because 

it addressed some atmospheric conditions and canopy background noise problems with 

NDVI. NDWI is one of the most popular indices for mapping surface water. MNDWI is a 

modification to the NDWI, and it mainly addressed the problem of the false positives 

with built-up area using NDWI. For radar sensors, the VV band, VH band, cross ratio, 

and radar vegetation index (RVI) is provided by default. The VV band and VH band are 

original polarization bands from Sentinel-1 data, and they have been used for rice 

mapping in previous research (N. Chen et al., 2020; Onojeghuo et al., 2018). Table 10 

lists all the features that can be selected or computed for each of the included datasets in 

the RiceMapEngine.  

The next main preprocessing step is making composites. This step is very 

important because the study area may sit across swaths, which lead to inconsistent time-
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series for area located on different swaths. The composite can also help reduce cloud 

cover problem. The main parameters in making composites are 1) how many days of 

composite is needed, and 2) what composite type to use, i.e., which aggregation method 

to use for observations within a composite date range. RiceMapEngine allows user to 

enter the days of composite they need, and a default 15-day composite is provided. The 

composite type can be selected from mean, maximum, minimum, median, and mode, 

which are most common aggregation methods for making composites. For example, 

maximum composite is constantly used for making NDVI or EVI composite.  

Lastly, the speckle filtering preprocessing step is very important for SAR image 

processing. Speckles are unique to SAR images. They are made from constructively or 

destructively compounding signals of neighboring pixels, which deteriorate the quality of 

SAR images and makes it hard to interpret SAR images (Z. Yu, Wang, et al., 2018). 

There are many speckle filtering methods. Spatial multi-looking is probably the simplest 

form of speckle filtering (Z. Yu, Wang, et al., 2018). Although such speckle filters often 

reduce spatial resolution of the original images, the fast computation and convenience 

make them extremely popular. A boxcar filter is one of such filters that does spatial 

average for each pixel. The filter can be easily implemented on GEE with a square kernel 

function. Another slightly more advanced multi-look speckle filter is Lee filter (Lee et al., 

2015). In addition to the average intensity within the window, the Lee filter also takes 

local variance into computation (Rubel et al., 2021). Later, a modification based on Lee 

filter was introduced by Yommy et al. (2015), and it was named Refined Lee filter. We 

implemented these 3 speckle filters in the system, however, due to the limited 
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computation resources allocated to GEE users, the refined Lee filter and the Lee filter 

fails to consistently run through all processing steps due to their increased computation 

intensity. Thus, the boxcar speckle filter of window size 5 is used as default for speckle 

filtering in the system.  

5.2.2.3. Phenology Inspection 

One important feature of RiceMapEngine is that it allows inspecting phenology of 

ground truth samples. Ground truth samples for rice mapping may include samples from 

different crop types, which are indifferentiable from single-look high resolution images 

like Google Earth. Phenology-based indicators like start-of-season, peak-of-season, end-

of-season, and season length can help effectively differentiate different crop types (Tian 

et al., 2019). The transplanting phase of rice phenology uniquely differentiate it from 

other crop types(Motohka et al., 2009). Thus, ground truth samples of rice can be verified 

if the transplanting phase can be identified from its phenology.  

RiceMapEngine implements this function by combining the dataset filtering 

function and the preprocessing function. Specifically, users need to specify which 

satellite dataset and the time frame of the images to be used. Then the preprocessing steps 

are applied on the selected satellite dataset to produce a consistent composite. The 

composite is then sampled at each ground truth sample location to get the time-series 

values. Then, the ground truth samples with time-series values appended to their property 

list are returned to the front end for visualizations. A time-series line chart will be plotted 

for a selected ground truth sample such that users can inspect the time-series to identify 

phenology-based indicators. In addition to time-series phenology curve selected by users, 
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RiceMapEngine also loads month-by-month false color composite for each month within 

the selected time frame. The false color composite is made using an optical remote 

sensing dataset. The dataset is dynamically selected depending on the selected frame. For 

example, Sentinel-2 TOA reflectance dataset will be used if the time frame starts after 

June 2015 because the first image of Sentinel-2 was captured in June 2015. The month-

by-month false color composites serve as visual clues aside the time-series phenology 

curve to assist inspecting the selected ground truth sample.  

5.2.2.4. Classification 

The last core function is paddy rice classification. RiceMapEngine provides two 

methods of rice mapping, one based on empirical statistics and the other based on ground 

truth samples. Both methods produce binary-class classifications, i.e., rice and non-rice. 

The first method implements a simple threshold-based classification. After 

specifying the parameters for dataset filtering and preprocessing, users can specify time 

frames of satellite image data to be used and the thresholds for the feature values during 

such time frames. Pixels that satisfy the conditions will be classified as rice while others 

are classified as non-rice crop types. The mathematical representation of this method is 

shown in Equation 6. 

 

 

 
Equation 6. Phenology-based thresholding method for rice classification. 

𝑅𝑖𝑐𝑒 = (𝑎1 ≤ 𝑋1 ≤ 𝑏1 ) 𝐴𝑁𝐷 (𝑎2 ≤ 𝑋2 ≤ 𝑏2) 𝐴𝑁𝐷 … 𝐴𝑁𝐷 (𝑎𝑛 ≤ 𝑋𝑛 ≤ 𝑏𝑛) 
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Where 𝑋𝑖 are observations within time frame 𝑖, and 𝑎𝑖, 𝑏𝑖 are thresholds for time 

frame 𝑖. The rice mapping results take the logical and operation of thresholding results 

from all time frames.  

The second method is supervised classification. This method requires users to 

upload ground truth samples as zipped shapefiles. After applying the dataset filtering and 

preprocessing steps, which are standard procedures for many tasks in RiceMapEngine, 

users can specify classification-specific parameters like the time frame of images to be 

used, which model to use, training details, etc. Table 11 shows the supported 

classification models and their GEE APIs. Internally, the selected image datasets will be 

filtered and preprocessed into composites, and the uploaded ground truth samples will be 

used to sample from the composites to attach image data to the samples. Then the 

selected model will be trained using the training set of the ground truth samples. The 

trained model will be used to produce the rice map. Lastly, the accuracy assessment step 

is conducted using the testing set. The confusion matrix, overall accuracy (OA), and 

Kappa coefficient will be reported.  

 

 

 
Table 11. Supported classification models in RiceMapEngine 

Model name GEE API Reference 

Random Forest ee.Classifier.smileRandomForest (Breiman, 2001) 

Gradient Boosting ee.Classifier.smileGradientTreeBoost (Friedman, 2001) 

CART ee.Classifier.smileCart (Breiman et al., 1984) 

Support Vector Machine ee.Classifier.libsvm (Noble, 2006) 
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5.3. Results 

5.3.1. Main Workflows 

5.3.1.1. Phenology Explorer 

The first major function of RiceMapEngine is called phenology explorer. It aims 

to allow users to fine tune the ground truth samples using time-series satellite data as 

evidence and derive empirical thresholds for different phenological stages. It enables an 

interactive experience for users to examine ground truth samples collected from the field. 

The steps to use this function are as follows: 

1) Upload ground truth samples to the app, the supported formats for the ground 

truth data are zipped shapefile and GeoJSON. The ground truth samples are 

then converted to JSON objects and stored in the frontend redux store. 

Samples are then showed in a list as well as on the map. 

2) Choose the property and the property value that is the target class, e.g., ‘rice’ 

value in the property ‘cereal’. The samples that match the selection are 

highlighted both in the list and on the map, which helps differentiate samples 

that belong to the positive class and the negative class. 

3) Specify the dataset name, filtering criteria, and preprocessing methods.  

4) Select the date range of interest. The date range of interest defines the time 

frame that the images will be loaded. It also initializes mini zoomed-in maps 

corresponding to each month within the time frame for sample inspection at 

finer resolution later. 
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5) Send a request to the backend and fetch time series feature values for all 

samples. Also load monthly false color composite for each of the mini 

zoomed-in maps. 

6) Show the time-series feature values as a chart when a feature is selected either 

from the list of samples or the map. The sample should also be highlighted in 

each of the mini zoomed-in maps such that the whereabouts at the sample 

location can be examined for each of the month within the selected time frame. 

7) Examine a sample according to the chart of the time series curve and the 

zoomed-in mini maps to identify if the sample is valid, otherwise, delete the 

sample or edit the sample location on the map and go back to step 5 for 

another iteration. 

If satisfied with the quality of samples, users can enter the date ranges of the 

sowing, peak, and/or harvesting phase, and get the minimum and maximum values for 

that phase. The minimum and maximum are derived using all values within the time 

frame of the phase from all samples that belong to the positive class. Outliers are 

eliminated using the ‘interquartile’ rule. The interquartile is defined as the third quartile 

minus first quartile, and the outliers are identified as any values that are outside the range 

between (quartile1st–  1.5 ∗  interquartile ) and (𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒3𝑟𝑑 +  1.5 ∗  𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒). 

After removing outliers, the minimum and maximum thresholds are defined as the 

(𝑚𝑒𝑎𝑛 − 𝑠𝑡𝑑) and (𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑).  
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5.3.1.2. Empirical Thresholding 

The empirical thresholding function aims to allow users to classify the target crop 

type using known threshold values or empirical threshold values derived from the 

phenology explorer. This function can be used independently but is recommended to be 

used after phenology explorer. Crop type mapping often times rely on domain knowledge 

such as phenology and crop calendar. Such information is very helpful for choosing a 

specific time frame that can best differentiate the target crop type with other crop types. 

This function provides a simple method for unsupervised classification using domain 

knowledge. The steps to use this function is rather simple: 

1) Specify the dataset name, filtering criteria, and preprocessing methods. 

2) Specify the auxiliary datasets including the boundary for classification, which 

can be a predefined Nepal district boundary, or an uploaded zipped shapefile, 

and a crop mask, which should be a public asset on GEE. The crop mask for 

Nepal is used as default. 

3) Switch on sowing, peak, and/or harvesting phases and specify the time frame 

and threshold values for each phase that is turned on. 

4) Run the classification on the backend, and when completed, show the 

classification result for each of the turned-on phases and a combined result 

from all phases. The estimated area of the target crop type will also be 

calculated.  

5) Export classification results as single-band GeoTIFF images where the target 

crop is of value 1 and other classes are of value 0.  
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5.3.1.3. Supervised Classification 

Supervised classification function provides another method for rice mapping 

along with empirical thresholding. This function allows users to upload ground truth 

samples or use the ground truth samples uploaded from the phenology explorer, for 

supervised classification. The steps to use this function are as follows: 

1) Specify the dataset name, filtering criteria, and preprocessing methods. 

2) Upload ground truth samples or reuse ground truth samples uploaded from 

phenology explorer and specify the property and property value as the target 

class label. 

3) Specify the classification-related parameters, including the date range of 

images to be used in classification, the ratio of data to be used in model 

training, the GEE classification model to be used and the corresponding model 

parameters.  

4) Run the supervised classification and return the result as XYZ tiles to be 

visualized on the map. 

5.3.2. User Interface Design 

Figure 16 shows the main UI of the RiceMapEngine. There are 6 different panels 

along with the map component, and each panel serves for different purposes: 

Panel (1) shows GUIs of data filters and preprocessing setup. The options of 

features dynamically change along with the selection of dataset. 
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Panel (2) shows the date range selectors for the sowing, peak and harvesting 

phenology stages and the threshold values for the corresponding season. Each season can 

be switched on or off to include or exclude it in the workflow.  

Panel (3) shows GUI controls for classification parameters, including the date 

range of images to be used, the model to be used, and the model parameters for the 

selected model.  

Panel (4) shows the zoomed-in false color monthly composites for selected date 

range. Each month within the date range is shown as a small map. When a ground truth 

sample is highlighted, all maps will center at the sample such that the whereabouts at the 

sample location during the selected time period can be clearly observed.  

Panel (5) shows the container of ground truth samples, Users can upload ground 

truth samples as zipped files and the samples will be shown in the container as a list. In 

order to differentiate rice class with other classes, the class field and class value need to 

be selected from the properties of the samples. For example, the ‘Rice’ value from a 

property named ‘Crop type’ need to be selected to differentiate rice samples and other 

samples. 

Panel (6) is a panel that shows the time-series of selected satellite data for the 

selected ground truth sample.  
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Figure 16. UI panels implemented in the RiceMapEngine. 

 

 

 

 

In addition to the panels, the main component that occupies the screen is the map. 

The map was implemented using Leaflet web mapping library. The map stays stationary 

across different workflows and the UI panels change according to the current selected 

workflow. For phenology explorer, panel (1), (4), (5), and (6) will show up. For empirical 

thresholding, only panel (2) will show up, and lastly, panel (3) will show up for the 

supervised classification workflow.  

5.3.3. Case Study 

The RiceMapEngine was used for rice mapping operations in Nepal 2021, and it 

will be used for rice mapping operations in 2022 and onwards. This case study shows 

how RiceMapEngine was used for the Chitwan districts in the Terai belt region of Nepal. 

In short, the phenology explorer workflow was used to inspect the phenology of ground 

truth samples collected in 2020 to identify stale samples, transplanting time frame, and 
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the empirical thresholds for Sentinel-1 SAR data in the transplanting time frame. Next, 

the empirical thresholding workflow was used to produce the early-season rice map for 

2021 using thresholds derived from the last step. Lastly, the supervised classification 

workflow was used to produce post-season rice maps for 2021 using ground truth 

samples collected during the main season 2021.  

Figure 17 shows the location of Chitwan district within the Terai belt region, and 

the cropland mask is applied. The ground truth samples that are used in this case study, 

including 356 samples collected in 2020 and 294 samples in 2021 are also showed on the 

figure. Field trips were conducted by local authorities during the main seasons in 2020 

and 2021 to collect the ground truth samples. Both sets of ground truth samples include 

samples of multiple crop types in addition to rice, and the non-rice crop types are grouped 

as one class in the subsequent classifications.  



105 

 

 
Figure 17. Chitwan district overlayed with crop mask and ground truth samples from 2020 and 2021. 

 

 

 

 

5.3.3.1. Early-season rice mapping in 2021 

One key feature of RiceMapEngine is to support rice mapping with simple 

thresholding. This allows early-season mapping if empirical thresholds can be known in 

front. In this case study, the early-season rice map of Chitwan in 2021 was produced 
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using ground truth samples from 2020. Specifically, the ground truth samples from 2020 

was uploaded to the phenology explorer, and the time period of phenology data was set to 

Jan 1st to Dec 31st, 2020. Figure 18 shows the zoomed-in maps for one of the rice 

samples. From the false color composite images for each of the month, we can see that 

cloud cover completely blocks view from May to September, and the images in October 

show signs of bare soil around the sample location, which indicate the harvesting phase.  

 

 

 

 
Figure 18. Zoomed-in maps showing month-by-month false-color composites at a rice sample location. 

 

 

 

 

As we can see, the optical images are blocked by cloud cover during the critical 

transplanting and growing season of rice. Thus, the Sentinel-1 SAR data was chosen for 

phenology inspection. The VH band from Sentinel-1 SAR data was chosen as the feature 

to plot. A 15-day median composite processing is included in the preprocessing pipeline. 

Figure 19 shows the time-series of VH band for the same rice sample as shown in Figure 

18. As Sentinel-1 SAR data is not interfered by cloud cover, the time series is thus 

continuous. From the time-series we can clearly match the curve with the month-by-
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month false color composites because the VH curve shows low values for October, which 

means the biomass is low. From the curve we can also see the peak is sometime in 

September, and the transplant phase should have happened mid-July. By using both the 

optical sensor readings and the sensor readings from radar sensors, the phenology stages 

of rice can be clearly identified. Based on the observed phenology, necessary corrections 

or deletion can be done to samples if the classes of the samples do not match with their 

observed phenology.  

 

 

 

 
Figure 19. Time-series VH band values of the selected rice sample. 

 

 

 

 

Based on the phenology of the rice samples, the transplanting time frame can be 

roughly estimated. In this case study, the transplanting phase was set from June 15th to 

July 31st, and the derived VH band value ranges during this period is from -23.67 to -
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16.89. This range is then used in the empirical thresholding workflow to make early-

season rice map for 2021. The early-season map for 2021 can be produced right after the 

transplanting phase using Sentinel-1 SAR images during the selected time frame for the 

transplanting phase. Figure 20 shows the produced early-season rice map. The reported 

area of the paddy rice fields according to this early-season rice map is 27958.251 ha. The 

ground truth samples collected during the main season 2021 were used to validate the 

early-season rice map 2021. Table 12 shows the confusion matrix of the early-season rice 

mapping result. As we can see from the matrix, most samples are correctly classified. 

There are only 5 false negative samples that were incorrectly classified as non-rice, and 

there are 44 false positive samples that were incorrectly classified as rice. As suggested 

by the number of false positive samples, the early-season classification result should be 

over estimating paddy rice area. 
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Figure 20. Early-season rice map for Chitwan district 2021. 

 

 

 

 

 
Table 12. Confusion matrix of early-season rice map for 2021. 

 Rice Non-rice 

Rice 127 44 

Non-rice 5 118 

 

 

 

 

 
Table 13. Accuracy assessment of post-season rice map for 2021. 

Metrics Value 

Overall Accuracy 0.833 

Kappa  0.670 
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The ground truth samples from 2020 was used to derive an early-season rice map 

for 2021 based on the assumption that the transplanting phase happens at roughly the 

same time across years, and the satellite recordings are stable across years. These 

assumptions need to be true such that the VH band value range derived using ground 

truth samples from 2020 can extrapolate to 2021. However, if such assumptions are not 

valid, especially when the transplanting phase windows are different across years, the 

uncertainty level of the early-season rice map may be high. Nonetheless, the early-season 

rice map can still be very useful for planning purpose as it can be produced quickly, and 

more importantly, the map is produced without requirement of ground truth samples from 

the current year.  

5.3.3.2. Post-season rice mapping in 2021 

As discussed in the previous section, the early-season rice map can be derived 

purely from empirical thresholds without the need of ground truth samples. When the 

main season is over, the post-season rice map can be derived using newly acquired 

ground truth samples during the growing season. ICIMOD conducted field trips in the 

entire Terai belt region during the main growing season of rice in 2021 and collected over 

8000 ground truth samples. There are 294 samples located in Chitwan district. A 

straightforward supervised classification can be conducted using satellite images. In this 

case study, we again used Sentinel-1 SAR images as it is not affected by cloud covers. 

The same 15-day median composite is applied to produce consistent and continuous time-

series. The image date range is chosen from June 1st, 2021, to Nov 1st, 2021, to roughly 

include the main season of rice with some margin on both sides. The model we used was 
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RF model with 200 estimators, and the rest parameters are set with default values. To 

validate classification results, a random 70% of the 294 samples were used in model 

training and the rest were used for accuracy assessment.   

Figure 21 shows the result of the post-season classification. The reported area of 

paddy rice fields according to the post-season rice map is 21220.913 ha. The confusion 

matrix created using the 30% testing samples is shown in Table 14 and the OA and 

Kappa scores are shown in Table 15. From the result, we can see that the classification 

result is satisfactory as both the OA and Kappa scores are higher than 0.9 which means 

the classification result agrees well with the ground truth data.  
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Figure 21. Post-season rice map for Chitwan district 2021. 

 

 

 

Table 14. Confusion matrix of the post-season rice map 2021. 

 Rice Non-rice 

Rice 53 2 

Non-rice 1 36 

 

 

 

Table 15. Accuracy assessment of post-season rice map 2021. 

Metrics Value 

Overall Accuracy 0.967 

Kappa  0.932 
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Comparing the post-season rice map and the early-season rice map, we can see 

that the post-season rice map shows less paddy rice area than the early-season map, 

which means the early-season rice map has a lot of overestimations. The actual area 

reported by RiceMapEngine for early-season rice map is 27958.251 ha and the reported 

area for post-season rice map is 21220.913 ha. Thus, around 25% of the area shown on 

the early-season map is false positives.  

5.4. Conclusion 

This chapter presents a rice mapping application, named RiceMapEngine, that 

uses GEE Python APIs to provide advanced rice mapping workflows to remote sensing 

researchers and decision makers. The most desirable feature of RiceMapEngine is that it 

allows user to use GEE services without possessing programming skills, which can 

bridge the gap between many researchers and the GEE. The software design and 

architecture of RiceMapEngine are discussed in detail. Three main workflows, namely 

phenology explorer, empirical thresholding, and supervised classification are introduced., 

and a case study for rice mapping in the Chitwan district of Nepal using the workflows is 

demonstrated and discussed. In this case study, the phenology explorer workflow was 

used to identify transplanting time frame and identify low-quality ground truth samples. 

Then in the empirical thresholding workflow, the thresholds for the VH band of Sentinel-

1 SAR data within the transplanting phase were calculated and were used in the 

threshold-based classification, which yields the early-season rice maps for 2021. After 

the season was over and ground truth samples for 2021 were collected, the 

RiceMapEngine was used to conduct post-season rice mapping using models trained with 
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the ground truth samples for 2021. This case study shows that RiceMapEngine can be 

used for year-to-year continuous rice mapping operations with the early-season maps that 

provides in-time estimates of paddy rice area and extents, and the post-season maps that 

provide most accurate estimates of main season paddy rice area and extents.  
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6. SUMMARY AND CONCLUSIONS 

SA region is home to more than a quarter of the world’s undernourished people, 

and the region is also one of the poorest regions in the world (FAO, 2009). Agriculture is 

the very important to SA region because it is one of the major economic sources for this 

region and the food production is crucial for global food security. According to FAO, 

around 57% of the land in SA is dedicated to agriculture, and for countries like 

Bangladesh, the number can go up to 70% (FAO, 2009). To feed the growing populations, 

the agriculture lands in SA are experiencing several changes including transitions from 

agriculture to more-profitable fishery and crop intensification. These changes not only 

have impact on the food security, but it also has profound impact on the environment and 

climate change. As climate variability accounts for nearly one third of the crop yield 

variability, the climate change will impact the crop yield significantly, which pose great 

challenges to the global food security (Ray et al., 2015). Thus, it is very important to 

monitor the extent and health of agriculture timely to detect changes of existing 

agriculture lands. This dissertation aims to design novel algorithms and tools using 

remote sensing dataset for agriculture mapping and monitoring in SA region. This 

overarching goal is fulfilled by achieving the three research objectives as introduced in 

section 1.3. Each research objective is discussed in detail in a single chapter. Here we 
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summarize the major findings for each of the objectives and the theoretical and 

methodological contributions respectively.  

Objective 1: Develop a novel GEE-based workflow to map inland fishponds. 

Chapter 3 presents a GEE-based workflow that uses spectral and spatial 

information derived from remote sensing images for inland fishpond mapping. The 

workflow first derives multi-temporal WI series to identify persistent water features, and 

then it derives OBFs from the shapes of these water features to classify them into 

fishponds and non-fishponds. A major finding is that to accurately classify fishponds 

which are small and grouped as scattered clusters, applying the pixel selection technique 

will significantly help reduce false positives. A case study in Singra Upazila was 

conducted. We manually digitized fishponds in this Upazila and validated the 

performance of the workflow. The result showed that the presented workflow achieved a 

precision score of 0.788 and the recall score is 0.538, and the F1 score is 0.640. The main 

limitation is that the 10 m spatial resolution of the remote sensing images we used is not 

high enough to identify extremely small fishponds, especially when they are close 

together. The entire workflow was implemented on GEE such that the results can be 

easily reproduced, and the method can be applied to a different area conveniently. 

Objective 2: Investigate crop intensity mapping using remote sensing data and 

GEE.  

Chapter 4 presented a GEE-based workflow that uses MODIS Terra and Aqua 

surface reflectance data for crop intensity mapping in Bangladesh. Facing the challenge 

of severe missing data problem caused by persistent cloud cover during monsoon season, 
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this research first combines Terra and Aqua data to mitigate cloud issues, and then we 

adopt Harmonic Regression to reconstruct NDVI curves because it is well-suited to 

periodic signals just like the repeating seasons year after years and that it produces a 

continuous and smooth function regardless of the presence of missing data. A simple 

heuristic was applied on the reconstructed NDVI time-series to obtain the number of 

cropping cycles. Specifically, the heuristic uses a threshold of 0.5 to detect the peaks of 

the reconstructed NDVI curves in a growing season. A valid crop cycle should cross the 

threshold line twice. The crop intensity map of Bangladesh 2010 was produced using this 

method. The spatial distribution of different crop systems roughly matches with the geo-

physical characteristics of Bangladesh. The crop intensity map was aggregated to district 

level and the average crop intensity in each district was compared with statistics from 

BBS. The comparison showed that the map result underestimated the crop intensity. The 

national average crop intensity was 1.91 for 2010 according to the statistics and our result 

showed 1.66. The main reason behind the difference is the persistent cloud cover during 

monsoon seasons. The clouds may block the view of an entire crop season in between the 

winter and main season such that it cannot be reconstructed from the NDVI time-series. 

Objective 3: Design a GEE-based software for ground truth sample validation 

and fast paddy rice mapping.  

These research questions should be answered: How to efficiently use GEE in the 

software? How to validate ground truth samples using their phenology? How to use the 

software to produce paddy rice maps with or without ground truth samples? A case study 
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needs to be conducted to showcase how to use the software and the accuracies of the rice 

maps need to be assessed. 

Chapter 5 presented a GEE-enabled web application named RiceMapEngine. The 

web application encapsulates several reusable modules to simplify data processing 

workflow. Users of this application interact with the application through GUIs that are 

more intuitive and convenient to use than writing code. The GUI will help higher level 

officials and decision makers to use GEE-based rice mapping workflows with ease. Three 

main workflows, i.e., phenology explorer, empirical thresholding, and supervised 

classification were designed and implemented in the RiceMapEngine. The phenology 

explorer handles ground truth sample validation by showing users with time-series 

satellite data in the form of charts and images. Empirical thresholding can be used to 

produce paddy rice maps using only empirically derived thresholds. Supervised 

classification can be used as another method to produce paddy rice maps using ground 

truth samples validated from phenology explorer. A case study for rice mapping 

operation in Chitwan district of Nepal was carried out. The case study used phenology 

explorer workflow to validate ground truth samples from 2020 and derived the time 

frame and empirical thresholds for the transplanting phase. The thresholds and time 

frame were then used in the empirical thresholding workflow for early-season rice 

mapping in 2021. After the 2021 main season ends and ground truth samples were 

collected in the season, the post-season rice map was produced using the supervised 

classification workflow. Using phenology explorer, we successfully identified the 

transplanting phase inspecting the time-series Sentinel-1 images. The early-season rice 
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map achieved an OA of 0.833 and the Kappa score of 0.67. The post-season rice map 

achieved an OA of 0.967 and the Kappa score of 0.932. Despite that early-season rice 

map is less accurate than post-season rice map, mostly because of the overestimation, 

early-season rice maps require no ground truth samples, and it can be produced right after 

the transplanting phase of rice, which can be extremely helpful for early planning and 

resource allocations.  

In summary, this dissertation has several main contributions: 1) presented a 

solution to integrate spectral, temporal and spatial information for inland fishpond 

identification, which can help monitor the ongoing transitions from agriculture to 

aquaculture in SA; 2) Presented a workflow on GEE that combines MODIS Terra and 

Aqua surface reflectance data and applies Harmonic Regression for crop intensity 

mapping, which can help monitor the spatial distribution of crop intensity in addition to 

traditional statistical data; 3) Designed a GEE-enabled web application that allows one-

stop experience of refining ground truth samples and producing paddy rice maps, which 

will make it far more convenient to monitor paddy rice extent. 
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