
Oracles for Privacy-Preserving Machine Learning

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Minh Quan Do
Bachelor of Science

George Mason University, 2019

Director: Dr. Foteini Baldimtsi, Professor
Department of Computer Science

Fall Semester 2022
George Mason University

Fairfax, VA

Copyright © 2022 by Minh Quan Do
All Rights Reserved

ii

Dedication

I dedicate this thesis to all of the wonderful teachers who have helped me get to this point.

iii

Acknowledgments

I would like to thank the following people who made this possible: Dr. Foteini Baldimtsi,
Dr. Evgenios Kornaropoulos, and Dr. Giuseppe Ateniese.

iv

Table of Contents

Page

List of Figures . vii

Abstract . viii

1 Introduction . 1

2 Related Work . 7

2.1 Approaches . 7

2.1.1 Cryptographic Approaches . 7

2.1.2 Perturbation . 10

2.1.3 Privacy-Preserving Dimensionality Reduction (PPDR) 12

2.1.4 Hardware-based Approaches . 13

2.1.5 Distributed Machine Learning Techniques 14

2.2 Attacks . 18

2.2.1 Exploratory Attacks . 18

2.2.2 Causitive Attacks . 23

3 Definitions . 24

3.1 Cryptographic Preliminaries . 24

3.2 Machine Learning Preliminaries . 26

4 Defining Privacy Preserving Inference . 30

4.1 Definition of Privacy Preserving Inference 30

4.1.1 Security Properties . 32

4.2 Security Model . 32

4.2.1 Inference Server Setting . 33

5 Construction . 36

5.1 Interactions Between Oracles & Users . 38

5.2 PPIS Construction . 45

5.3 Security Analysis . 51

5.4 E�ciency . 54

5.5 Ways to Implement Oracles . 54

6 Discussion and Extensions . 56

v

6.1 Relations to Related Work . 56

6.2 Future Research Directions . 57

6.2.1 User-Side Adversaries . 57

6.2.2 Oracles for Training . 58

6.2.3 Relaxing Ownership Requirements 58

7 Conclusion . 66

Bibliography . 67

vi

List of Figures

Figure Page

2.1 Di↵erent configurations for SplitNN . 17

2.2 Di↵erent types of Exploratory Attacks . 19

2.3 Fingerprint representations . 20

2.4 Fingerprint reconstruction . 20

2.5 Images produced by model inversion . 21

2.6 Images produced by model inversion based on rounding 22

5.1 Preprocessor Oracle Interaction . 40

5.2 Model Oracle Interaction . 42

5.3 Postprocessor Oracle Interaction . 44

6.1 All-Internal Setting . 59

6.2 Inference Setting Workflow . 59

6.3 Training Server Setting Workflow . 60

6.4 Training & Inference Server Setting Workflow 60

6.5 Collaborative Training Setting Workflow . 61

6.6 Training Server Setting Workflow . 61

6.7 Federated Learning Setting Workflow . 62

6.8 MLaaS Setting Workflow . 63

6.9 Model Validation Setting Workflow . 64

vii

Abstract

ORACLES FOR PRIVACY-PRESERVING MACHINE LEARNING

Minh Quan Do

George Mason University, 2022

Thesis Director: Dr. Foteini Baldimtsi

Currently, the process of deploying machine learning models in production can leak

information about the model such as model parameters. This leakage of information is

problematic because it opens the door to a plethora of attacks that can compromise the

privacy of the data used to train the model. In this thesis, we will introduce definitions

for new primitives that are specifically designed for deploying machine learning models

into production in such a way that guarantees the privacy of the model’s parameters and

the underlying dataset. We will also provide definitions for security, propose a scheme for

deploying a model into production, and informally argue the security of our scheme.

Chapter 1: Introduction

On January 25th, 2017, Dr. Andrew Ng, former chief scientist at Baidu, co-founder of Cours-

era, and adjunct professor at Stanford University gave a lecture to the Stanford School of

Business; in his lecture he proclaimed that AI is the “new electricity” [1]. Fast forward five

years to today, we can definitively say that Dr. Andrew Ng’s statements might be an un-

derstatement. In today’s world, machine learning is used for a wide variety of applications;

from recommending content and items on video streaming platforms and online retail, to

predicting protein structures for drug discovery [2], to developing self-driving cars [3], and

even defeating world players in board games like Go and Shogi [4].

At its core, machine learning is the process of enabling computers to “learn” how to

conduct a specific task without being explicitly programmed to do so. For the most part,

the traditional approach of developing a machine learning model has four main phases (we

call these phases the model development process):

1. Data collection: aggregating data from various sources to create a dataset.

2. Exploratory data analysis: conducting basic data analysis to get a better under-

standing of the properties of the dataset.

3. Data preparation and preprocessing: data preparation includes cleaning and

partitioning the dataset for training and testing purposes, removing outlier data sam-

ples, etc. Data preprocessing is the process of converting the raw data samples into

feature vectors. This step could include dimensionality reduction, normalizing the

attributes of the data samples to be within a certain range, cropping images, etc.

4. Training: training the model.

1

Once the model is trained, the process of using the trained model to make predictions

on newly seen data is called inference. Generally speaking, inference is comprised of the

following phases (we call these phases the phases of inference):

1. Preprocessing: converting raw data samples into feature vectors. Note that the

preprocessing step used during inference is similar to the preprocessing step used in

training but usually not exactly the same.

2. Forward propagation: conducting a forward pass of the feature vector through the

model to output a prediction vector.

3. Postprocessing: convert the prediction vector into a more usable format. This could

include converting the raw prediction vector into probabilities, or confidence scores,

one-hot encoded vectors, etc.

The traditional approach of building machine learning models has some advantages be-

cause the data collection phase enables data science teams to have access to all available

data. This means that the process of conducting exploratory data analysis, data prepa-

ration, and model training are streamlined due to ease of access to the underlying data.

However, despite all the benefits of collecting and aggregating data, this approach is only

appropriate when the underlying data is not sensitive in nature.

In the case of sensitive data, there are often tight regulations and security measures in

place to control access to the data, which makes the process of data collection much more

di�cult. These challenges in dealing with sensitive data often come up in the healthcare

setting where access to the electronic medical records that are used to build models to

diagnose diseases [5] are controlled by the Health Insurance Portability and Accountability

Act (HIPAA) [6]. Additionally, sensitive data is also prevalent in government, military, and

intelligence agencies where machine learning is used for everything from drone warfare [7],

to neutralizing cyberattacks [8], to surveying areas using satellite imagery [8], to detecting

social unrest [8].

Due to the di�culties of collecting data in a traditional approach, a new field of research

2

called privacy-preserving machine learning (PPML) was developed to address the challenges

of preserving the privacy of data during both the training and inference phase [9]. In Al-

Rubaie et al.[9], the authors define three di↵erent roles Data Owner (DO), Computational

Party (CP), and Results Owner (RO) that are involved in the development and usage of

machine learning models. For our purposes, we also want to define another party called the

Model Owner (MO):

1. Data Owner (DO): the party that owns the data

2. Computational Party (CP): the party that performs the computation necessary

to either train the model or conduct inference using the model.

3. Model Owner (MO): the party that owns the parameters of the trained model.

4. Results Owner (RO): the party that obtains the predicted labels computed by the

MO.

Naturally if all roles are assumed by the same entity, then privacy is preserved; however,

the issue of privacy arises when these roles are distributed across two or more entities. For

example, if an entity collects its own data, trains its own model, and then uses the model

to make predictions for internal purposes, then the entity assumes all of the roles and owns

the entire process of development and usage of the model, thus, there are no concerns

about other entities exposing the contents of its dataset or the trained model’s parameters.

However, in situations where an entity needs to rely on another entity’s expertise and

resources to train a model or use a trained model, then this becomes an issue because either

the DO needs to hand the dataset over to the MO to train a model or conduct inference,

or the MO needs to hand the model over to the DO so that the DO could use the model to

conduct inference on its own data.

At the core of PPML are three questions that need to be addressed (we called these

questions the three fundamental questions of PPML):

3

1. How can the MO’s model parameters be hidden from the DO? (model

privacy).

2. How can the DO’s data be hidden from the MO? (data privacy)

3. How can computation be executed e�ciently and accurately without com-

promising model privacy and data privacy?

In an e↵ort to answer these question, many current PPML approaches require using

cryptographic techniques like homomorphic encryption, garbled circuits [10], and di↵erential

privacy, [11] or hardware-based approaches like trusted execution environments [12], or

novel collaborative machine learning techniques like federated learning and split learning to

conduct inference. While most of these approaches address privacy issues that arise during

the training phase and forward propagation, we observed that previous PPML approaches

often do not provide any kind of strict definition of security for data collection, exploratory

data analysis, data preparation, data preprocessing, and postprocessing of the labels.

With that said, the scope of the problem of securing all phases of training and inference

is far too broad; thus, we do not plan to address all phases of training and inference.

However, because many machine learning methods require the steps used for inference as a

subset of the steps used in training (e.g., training a neural network requires a forward pass

to compute the predicted labels and then a backward pass to update the parameters of the

model), we believe that narrowing the scope of the problem to just securing inference can

someday help us to solve the broader problem of conducting training securely.

Broadly speaking, the process of conducting inference can be viewed as a series of three

algorithms (we will refer to these three algorithms as an inference scheme): a procedure for

converting raw data samples into features vectors that are ready for inference (Preprocess), a

procedure for deploying a trained model (M), and a procedure for converting the predicted

labels of M into a more usable format (Postprocess). By extension, a privacy-preserving

inference scheme (PriPIS) is simply an inference scheme that emphasizes the privacy of the

data and the privacy of the model parameters.

4

Thus, the goal of this paper is to provide a theoretical construction of a privacy-

preserving inference scheme, define the settings and threat models, and informally argue its

security against various attacks.

Thesis Contribution. The contributions of this thesis can be summarized in the follow-

ing ways:

1. Privacy-Preserving Inference Scheme (PriPIS). We propose a definition for a Privacy-

Preserving Inference Scheme; a theoretical primitive specifically designed for conduct-

ing inference that emphasizes protecting the privacy of the DO’s data and the MO’s

trained model parameters. Due to the variety of attacks that take advantage of the

feature vectors and prediction vectors, we emphasize the need for securing the prepro-

cessing and postprocessing stages in addition to securing the execution of the model.

Thus, we designed a primitive to preserve the privacy of the DO’s data during the

preprocessing, forward propagation, and the postprocessing stage.

2. Oracle Construction & User Interaction. We provide a theoretical construction of

a PriPIS and describe how a user would interact with the oracles. For the user

interaction with the oracles, we devise a way to allow the user to verify the execution

of the oracle using artifacts produced during training. We then informally argue

the security of our construction against membership inference and model extraction

attacks in a setting we call the inference server setting 4.2.1. Through the construction

of the oracles, we demonstrate it is possible to decouple the role of the compute party

from the roles of data owner, model owner, and results owner.

3. Setting for PPML. In Section 4.2, we argue that PPML techniques cannot be secure

against attacks such as model extraction and membership inference if deployed into

the wrong setting. The reason we defined requirements for the setting is because

certain attacks on machine learning models such as model extraction and member-

ship inference only require the adversary to be able to query the model (i.e., oracle

access to the model) and to have access to the model’s prediction vector. Since there

5

are many use cases where user requires oracle access and access to prediction vec-

tors, an adversary can simply impersonate a user and conduct an attack; thus, no

privacy-preserving machine learning technique is resistant against model extraction

and membership inference in these settings because as of right now, it is still an open

research question on how to distinguish between an ordinary user and an adversarial

user. Thus, we would like to avoid settings where privacy is not guaranteed due to

the possibility of model extraction and membership inference. We also emphasize the

need for a more holistic view of PPML that encompasses not just the PPML technique

itself, but also the setting it is deployed in. Furthermore, we define the requirements

for a setting where a privacy-preserving inference scheme can be deployed and then

we identified a practical setting that fulfills those requirements.

Outline. We will begin by reviewing some previous works in Chapter 2. From there,

we will review some basic preliminary definitions for cryptography and machine learning

in Chapter 3. Once the basic preliminaries are defined, we will define the interface of our

privacy-preserving inference scheme in Chapter 4. Since there are no formal definitions for

a secure framework for conducting inference, we will define our own interface, define the

setting, and the parties involved in this setting. Afterwards we will develop our construction

and the interactions that need to occur to work with our construction in Chapter 5. Lastly

we will discuss directions for future research in Chapter 6.

6

Chapter 2: Related Work

2.1 Approaches

In this section we will review the related work on PPML. We will organize the relevant works

in terms of the general approach used to obtain privacy. Overall, the PPML approaches

span many fields; some approaches are based on cryptographic concepts, others originate

from machine learning techniques, and some approaches even rely on hardware solutions.

Each of these approaches have their strengths and weaknesses, and they address di↵erent

parts of the model development process and the phases of inference but at the core, they

all try to answer the the three fundamental questions of PPML.

2.1.1 Cryptographic Approaches

Popular cryptographic approaches to protecting data privacy during inference include ap-

proaches that use homomorphic encryption, garbled circuits, and multi-party computation.

Homomorphic Encryption

A homomorphic encryption scheme enables computations to be performed on encrypted

data yielding a ciphertext containing the encrypted result [13]. A homomorphic encryption

scheme can be either somewhat homomorphic or fully homomorphic (FHE). Schemes that

are considered somewhat homomorphic can only enable either addition or multiplication

operations to be performed on encrypted data; whereas schemes that are fully homomorphic

can enable both addition and multiplication to be performed on encrypted data [13]. The

first fully homomorphic encryption scheme was developed by Craig Gentry in 2009 and is

used by many PPML approaches [14].

7

In 2019, Nandakumar et al. [15] sought to evaluate the feasibility of training neural

networks on encrypted data. In their paper, Nandakumar et al. demonstrated that it

was possible to train a neural network on encrypted data using FHE, achieve convergence,

and achieve reasonable accuracy. As revolutionary as Nandakumar was in his approach,

his work was limited because it only applied to a simple fully-connected 3-layer neural

network. Later on, other works such as CryptoNets [16] and Hesamifard’s approach [17]

was able to successfully apply FHE to deep convolutional neural networks. However, despite

the progress made in applying FHE to machine learning, there were still many problems

that make it infeasible to use FHE to train and conduct inference on models, some of these

problems include (but at are not limited to) the following:

• FHE schemes support a limited number of mathematical operations. Since

FHE schemes only support addition, subtraction, multiplication, and division; this

is a problem because many machine learning models often use non-linear activation

functions (such as ReLU) that cannot be easily calculated using FHE.

• FHE schemes introduce noise into the ciphertext and therefore requires

bootstrapping to be ran periodically. Although Nandakumar suggested ways

to address this performance issue in his paper, the performance issue is magnified

in the case of deep learning because deep neural networks contain more parameters,

therefore requiring more operations to be performed to train those parameters, which

leads to the FHE scheme introducing more noise into the network, and ultimately

leads to more bootstrapping and more time spent on inference and training.

• The message space must be in the integer domain. Feature values and model

parameters must be converted to integers before encryption can take place. This is a

problem because machine learning tasks extensively utilize floating point numbers.

• Ciphertext size. Depending on the FHE scheme used and the security level of the

scheme, the size of the ciphertext is considerably larger than the plaintext. This is

significant problem because the most advanced deep learning models can be quite

8

large (GPT-3 has about 175 billion parameters, assuming each paramter is 4 bytes,

that means the model requires about 700GB of storage space [18]).

Garbled Circuits

Another cryptographic approach involves the use of garbled circuits [10]. As described

by Bellare et al., a garbling algorithm Gb(f) ! (F , e, d) is a randomized algorithm that

takes as input a function f : {0, 1}n ! {0, 1}m and outputs three functions (F , e, d). The

encoding function e converts an initial input x 2 {0, 1}n into a garbled input X = e(x).

The garbled function F takes as input a garbled input X and computes a garbled output

Y ; i.e., Y = F (X). The decoding function d then converts Y into the final output y; i.e.,

y = d(Y) = f(x).

From the works we have reviewed, many PPML approaches use garbled circuits in ad-

dition to homomorphic encryption to perform training and inference. An example of how

garbled circuits is used in tandem with homomorphic encryption is how GAZELLE [19]

utilized FHE to compute linear operations (such as the matrix multiplication/addition in

linear layers) and then used garbled circuits to compute non-linear activation functions (such

as ReLU, sigmoid, and Tanh). However, the downside to using garbled circuits is that it

is even more computationally expensive than FHE [20][21]. Thus, approaches like Delphi

[20] and Hasmifard’s approach [17] have sought to eliminate the need for using garbled

circuits by substituting commonly used non-linear activation functions with their polyno-

mial approximations (e.g., quadratic approximation, numerical approximation, Taylor series

approximation, Chebyshev polynomials, etc.).

Multi-Party Computation (MPC)

Another cryptographic approach involves the use of MPC protocols like secret sharing.

Secret sharing splits a secret into multiple parts and distributes those parts among multiple

parties. The shares must be combined in order to reconstruct the secret; meaning the

individual shares alone are of no use. In the case of threshold secret sharing, only t number

9

of shares are required to reconstruct the secret, which makes secret sharing particularly

useful for situations where not all parties holding secrets can be expected to participate in

the act of secret sharing [22].

MPC protocols have been used to provide security during the inference process in dis-

tributed machine learning techniques like federated learning [23]. In federated learning, a

central server collects weights and model updates from multiple clients’ local model and

then add those weights and updates to create the global model ; the process of aggregating

those weights and updates uses a secure aggregation protocol. In the secure aggregation

protocol described by Bonawitz et al. [23], threshold secret sharing [22] was used to handle

aggregation to account for situations where a client loses communication with the central

server.

In summary, cryptographic approaches can be used to ensure data privacy and model privacy

during preprocessing and forward propagation; however cryptographic approaches cannot

guarantee data privacy during postprocessing because as soon as the labels are decrypted,

many attack vectors can take advantage of the decrypted labels.

2.1.2 Perturbation

The di↵erence between cryptographic approaches and perturbation approaches, is that cryp-

tographic approaches aim to protect the privacy of the data and the security of the data;

the ciphertext of the data ensures it is secure during transport as well as computation.

Perturbation approaches on the other hand only provide privacy of the dataset and noise is

introduced in a much less random manner than cryptographic approaches (e.g., noise intro-

duced by di↵erential privacy is usually gaussian noise [11]). Furthermore, in cryptographic

approaches, the noise will eventually be removed from the computation by either running

the Recrypt or the Decrypt algorithm [14]; whereas in perturbation approaches, computation

is deliberately carried out with the noise; therefore, the noise introduced by perturbation

approaches is never removed. Perturbation approaches can be grouped into two categories:

10

the probability distortion approach and the value distribution approach [24].

Probability Distortion Approach

Probability distortion approaches aims to anonymize the dataset by swapping the original

raw data samples with a distorted version of the dataset that has the same frequency count

statistics as the original data [25]. Probability distortion approaches are similar to the

numerous data imputation and data generation techniques to used prior to training machine

learning models. The only di↵erence between data imputation/generation and probability

distortion is that data imputation/generation approaches aim to enhance certain properties

of the dataset to improve training whereas probability distortion approaches aim to enhance

data privacy. Thus, probability distortion approaches can be used in the preprocessing

stage of training and inference to enhance data privacy. Unfortunately, the downside to

using probability distortion approaches is there are no strong security guarantees, meaning

probability distortion approaches might only be able to provide a false sense of security,

i.e., security through obscurity.

Value Distortion Approach

Value distortion approaches intend to introduce noise into the data to ensure data privacy.

Most perturbation approaches use di↵erential privacy to inject noise into features [11].

There has been numerous works using di↵erential privacy to train models and conduct

inference for a variety of tasks and data [26][27][28]. Al-Rubaie and Chang [9] noted that

di↵erential privacy is applied to machine learning in the following ways:

• Input perturbation: noise is added directly to the raw data samples. This approach

ensures the raw data samples are di↵erentially private and can be used to ensure data

privacy during the preprocessing phase.

• Algorithmic perturbation: in Abadi et al. [26], di↵erential privacy is applied to

the stochastic gradient descent algorithm by adding noise to the gradients to ensure

11

privacy of the gradients during training. Thus, this approach can be used to ensure

model privacy and data privacy during the forward propagation phase of inference.

• Output perturbation: adding noise to the output vector [29]. Depending on the

use case, this technique could be useful for enhancing privacy during postprocessing.

• Objective perturbation: adding noise to the objective function during training

[30]. This technique is only applicable during training and is not of interest to us as

we are only concerned with techniques used during inference.

In summary, probability distortion approaches aim to enhance data privacy by swapping

raw data samples for generated data samples in such a way where the statistical properties

of the original dataset is retained. Probability distortion approaches can often be used in

conjunction with data imputation/generation approaches during the preprocessing phase of

inference and training. Value distortion approaches on the other hand aim to enhance data

privacy and model privacy by introducing noise into the data, intermediate outputs, the final

output, and objective function using di↵erential privacy. The main downside of di↵erential

privacy is the noise that is introduced will also reduce the accuracy of the prediction vector;

thus, there is always a tradeo↵ between accuracy and privacy when using value distortion

approaches. However, depending on the setting, perturbation approaches can be used to

enhance data privacy and model privacy in all phases of training and inference.

2.1.3 Privacy-Preserving Dimensionality Reduction (PPDR)

PPDR aims to enhance privacy through dimensionality reduction techniques like indepen-

dent component analysis (ICA) [24], principle component analysis (PCA) [31], etc. In short,

dimensionality reduction techniques like ICA and PCA use a projection matrix to project

a high-dimensional feature vector into a lower-dimensional representation vector. PPDR

takes advantage of this process by introducing noise into the projection matrix produced

by ICA or PCA. Many of these PPDR approaches also leverage di↵erential privacy to de-

termine the amount of noise introduce into the projection matrix. Since ICA and PCA are

12

commonly used in the preprocessing phase of both training and inference, PPDR can also

be used to protect data privacy during the preprocessing phase.

2.1.4 Hardware-based Approaches

Hardware-based approaches utilize secure hardware solutions called Trusted Execution En-

vironments (TEE) also known as secure enclaves. TEEs have the following properties that

make it suitable for executing computation on sensitive data [12]:

• Separation Kernel: the separation kernel divides the system up into multiple par-

titions and guarantees strong isolation between the partitions.

• Data (spatial) separation: data within one partition cannot be read or modified

by other partitions.

• Sanitization (temporal separation): shared resources cannot be used to leak

information into other partitions.

• Control of information flow: communication between partitions cannot occur

unless explicitly permitted.

• Fault isolation: security breach in one partition cannot spread to other partitions.

Examples of TEEs include Intel SGX, ARM TrustZone, Keystone Enclave [32], and the

secure enclave in Apple’s M1 System-on-a-Chip. One of the most comprehensive works

that applied TEEs to machine learning is Ohrimenko et al. [33]. In their paper, Ohrimenko

et al. developed data-oblivious algorithms for running support vector machines (SVM),

matrix factorization, neural networks, k-means clustering, and decision trees on Intel SGX

processors.

Assuming the TEEs are correctly implemented; using TEEs for machine learning allows

for training and inference to be conducted without having to sacrifice fast computational

runtime for security (such as in the case of cryptographic approaches) or accuracy for

security (such as in the case of perturbation approaches). Furthermore, a hardware-based

13

approach is incredibly versatile and can be used to secure all parts of the training and

inference process. With all of that said, the downside to using a TEE is it requires special

hardware and if implemented incorrectly can still result in leakage of information outside

the TEE [34].

2.1.5 Distributed Machine Learning Techniques

Another approach to conducting privacy-preserving machine learning is by using distributed

machine learning techniques like federated learning [35] and split learning [36]. The main

idea with distributed ML approaches is data privacy can be enhanced by bringing the model

to the data instead of aggregating data like in the traditional model development process.

In the original federated learning paper, McMahan et al. [35] describes how federated

learning is conducted using the following steps (note that we will refer to the central server

as the model owner or MO and the clients as data owners or DOs):

1. A central server first decides how it will go about coordinating the training process.

According to [37], the central server will decide on the model’s architecture, which

DOs get to train the model, which DOs’ gradients get aggregated into the model, and

what metrics and procedures to use to measure the performance of the model.

2. The MO broadcasts an untrained model to various DOs.

3. The DOs train the model locally using their data and send the the gradients back to

the MO.

4. The MO would then aggregate the locally-computed gradients using a secure aggre-

gation protocol [23].

5. Once the gradients are aggregated, the Federated Averaging algorithm [35] is used to

update the model.

Once the training process is complete, the process of inference is as simple as taking the

trained model and doing a forward pass of the data through the trained model, the authors

14

do not mention any steps to secure the model after it has been trained.

Because the DOs train the model locally, there is no need to transfer data to the MO.

Thus, there is no need for the MO to create copies of the data for the sake of data locality,

which reduces the amount of resources the MO needs to invest into data storage infras-

tructure. Additionally, because the secure aggregation protocol preserves the privacy and

security of the DOs’ data,the sensitive nature of the DOs’ data is no longer a limiting factor

to the process of developing machine learning models. Regardless of what security measures

and regulations are in place, development of machine learning models will not be hindered

by access to data and a model can always be trained without compromising the security

and privacy of the underlying data.

In addition to preserving the privacy and security of data, FL can also enable the MO

to build better models and apply machine learning to more use cases as well. This is often

the case where data is more di�cult to obtain where no individual DO has enough data

to train an e↵ective model; however collectively, there is enough data to train a model. In

these situations, FL can enable the model to be trained on data acquired by multiple DOs

and the MO will no longer have to settle for training a lower performing model because the

MO does not have access to more data due to the DOs’ security and privacy concerns.

Unfortunately, despite all of the advantages of FL, FL also has some disadvantages.

Because the DOs have access to the weights of the public model, an adversarial DO can

conduct model inversion attacks ([38], [39]) that enable it to reconstruct the data of other

DOs and the MO by leveraging generative adversarial networks. Furthermore, it has even

been proven that a malicious server can easily elude the secure aggregation protocol and

recover model updates from the final aggregated value and can pinpoint the source of the

recovered data to specific DOs in the federation [40].

One of the most complex (and arguably creative) approaches to distributed learning

would be the many variations of split learning [36] (Figure 2.1). These configurations of

SplitNN can be tailored to perform learning and inference on a wide variety of settings

depending on the task at hand, the sensitivity of the data, and the amount of compute

15

available for each party. The main idea with the various configurations of SplitNN can be

summarized in the following steps:

1. Have the client (oftentimes the client is a data owner) conduct forward propagation

on a partial model up to a specific layer called the ”cut layer” (the output at the cut

layer is call ”smashed data”).

2. Perform some sort of processing on the smashed data if necessary (e.g., like concate-

nating the outputs in Figures 2.1c, 2.1d, 2.1e) and then send that processed smashed

data to another party (e.g., a server (like in Figures 2.1a, 2.1b, 2.1c, 2.1e) or another

client (like in Figures 2.1d, 2.1f)).

3. Continue with forward propagation using the processed smashed data as input.

16

(a) Vanilla SplitNN [36] (b) SplitNN without label
sharing [36]

(c) SplitNN for vertically par-
titioned data [36]

(d) Extended vanilla SplitNN
[36]

(e) SplitNN for multi-task
output with multiple parti-
tioned input [36]

(f) Multi-hop SplitNN [36]

Figure 2.1: Di↵erent configurations for SplitNN

The goal of these various configurations of SplitNN are 1) to enable machine learning

to be conducted in a collaborative manner and 2) to eliminate the need for DOs to share

its data during this collaborative training process. SplitNN does a great job of eliminating

the need to share data, but that alone is not enough to guarantee the privacy of DOs’

data. In fact, SplitNN provides only a form of security through obscurity, as it has been

demonstrated that a malicious server or a malicious client can hijack the learning process

17

and bring the model to an insecure state where the malicious party can recreate the client’s

data without having any access to the smashed data [39]. Thus, despite all of the measures

proposed by SplitNN to ensure the privacy of the training data, these measures are woefully

inadequate as it only provides a false sense of privacy and security to the clients and the

server.

In summary, neither SplitNN nor federated learning can provide data privacy and model

privacy in any of the phases of training and inference. However, these approaches do point

towards possible ways to operate in environments where data access is restricted and are

worth noting as sensitive data often reside in environments that limit data transfers (e.g.,

top secret data used by government, military, and the intelligence community). Since PPML

is often meant to be conducted on sensitive data, distributed machine learning techniques

could be used in conjunction with other PPML approaches to train models and conduct

inference in restrictive environments.

2.2 Attacks

Within the broad landscape of attacks on machine learning systems, Barreno et al. [41]

states that the various attacks can be divided into two categories: exploratory attacks and

causative attacks.

2.2.1 Exploratory Attacks

Exploratory attacks aim to compromise the privacy of the training dataset. Because the

primary goal of privacy-preserving machine learning is preserving the privacy of the model

parameters and the data, preventing exploratory attacks is the main goal. Examples of

exploratory attacks include reconstruction attacks [42], model inversion attacks, and mem-

bership inference attacks [43].

18

Figure 2.2: Di↵erent types of Exploratory Attacks

Reconstruction Attacks. As shown in Figure 2.2 (image retrieved from [9]), reconstruc-

tion attacks typically take place during the preprocessing phase where raw data samples are

converted to features vectors [9]. An example of a reconstruction attack is the tecnique de-

veloped by J. Feng and A. K. Jain where a fingerprint image (the raw data) is reconstructed

from its minutae representation (the features vector) as shown in Figure [42]. Fingerprint

recognition systems will typically convert a greyscale representation (Figure 2.3a) into a

minutae representation (Figure 2.3d) for ease of storage.

19

(a) Greyscale image (b) phase image (c) skeleton image (d) minutae image

Figure 2.3: Fingerprint representations

(a) Reconstructed from
phase image

(b) Reconstructed from
skeleton image

Figure 2.4: Fingerprint reconstruction [42]

For quite some time it was falsely believed that the minutiae representation does not contain

su�cient information to reconstruct the original grayscale fingerprint image; but as J. Feng

and A. K. Jain demonstrated in their paper, by first using the minutae representation to

reconstruct either the skeleton representation (Figure 2.3c) or phase representation (Figure

20

2.3b), they can generate images that are almost identical to the original greyscale represen-

tation as shown in Figure 2.4. Thus, when looking at the wider context of protecting data

privacy during the inference process, the existence of reconstruction attacks suggests that

preprocessing alone is not enough to ensure privacy of the data and there must be security

guarantees built into the preprocessing stage.

Model Inversion Attack. Another type of exploratory attack is a model inversion attack

[44]. The aim of a model inversion attack is to recreate the feature vectors used to create

an ML model by utilizing the responses received from that ML model. Despite this goal,

model inversion attacks cannot actually recreate a sample from the training dataset.

Figure 2.5: Images produced by model inversion. Model trained on the CIFAR-10 dataset.
Top: airplane, automobile, bird, cat, deer. Bottom: dog, frog, horse, ship, truck. [43]

21

Figure 2.6: Images produced by model inversion based on rounding output vector to the
nearest r [44]

As evidenced by the images in Figure 2.5, the images do not hold any resemblance to the

objects in the class. However, even though model inversion may not be great at recreating

the training images, model inversion could be used to extract statistical information about

the training dataset to make other attacks (such as membership inference attacks) more

e↵ective. Thus, there are a few valuable insights that model inversion attacks teach us about

preserving the privacy of the dataset: 1) the output vector leaks important information that

could be used to compromise the privacy of the dataset, 2) the amount of information leaked

largely depends on the format of the output vector (as evidenced by Figure 2.6) which

implies there must be privacy-preserving mechanisms introduced into the postprocessing

stage of inference, and 3) no party should have white-box access to the model when in

execution.

Membership Inference Attack. Another type of exploratory attack is a membership

inference attack. As shown in Figure 2.2, a membership inference attack is an exploratory

attack that aims to determine if a given data point was present in the training dataset used

to build a model [43]. One particularly famous membership inference attack is the shadow

models method developed by Shokri et al. [45]. In their paper, Shokri et al. demonstrated

that restricting the prediction vector to a single label, which is the absolute minimum a

model must output to remain useful, is not enough to fully prevent membership inference.

22

Thus, the valuable insight here is that it is not enough to just secure the execution of

preprocessing, forward propagation, and postprocessing; preserving privacy of the data also

requires carefully crafting the setting in such a way that does not allow adversaries access

to the prediction vectors.

Model Extraction Attacks. All of the previous exploratory attacks mentioned so far

have been focused on compromising data privacy; however, there is a class of exploratory

attack that is aimed at compromising model privacy called model extraction attacks [46].

In a model extraction attack, the aim is for the adversary to try to create a model that is

similar (if not identical) to the target model. The adversary only has black-box access to the

target model, it has no prior knowledge of the model parameters nor the training dataset.

Thus, the valuable insight here is that when crafting the setting, we must be cognizant to

ensure the role of the model owner and the results owner are assumed by the same party.

2.2.2 Causitive Attacks

Causative attacks are attacks that alter the training process through influence over the

training data. The primary aim of causative attacks are to bring the model to a state of

insecurity by tricking the model into misclassifying the points in a dataset (or just subset

of the points in a dataset like a specific class(es) of points) thereby reducing the accuracy

of the model. Examples of causative attacks include adversarial examples [47] where per-

turbations are introduced into an image to trick a model into misclassifying the image with

high confidence.

In general, the primary goal of PPML is to defend against exploratory attacks. However,

even though the objective of causitive attacks are not specifically aimed at revealing privacy,

there are a class of causitive attacks that are aimed at making models more vulnerable to

exploratory attacks like the Truth Serum Attack [48]. Thus, defending against causitive

attacks is also important to the goal of preserving data privacy.

23

Chapter 3: Definitions

We will start by discussing the necessary cryptographic preliminaries, then we will discuss

the preliminaries relevant to machine learning.

3.1 Cryptographic Preliminaries

Since our constructions are based on basic cryptographic primitives, we will start by re-

viewing the security definitions for these primitives.

Definition 1 (Private-Key Encryption Scheme). A private-key encryption scheme is com-

posed of three algorithms [13]:

• KeyGen(1n)! k: the key-generation algorithm which takes as input a security param-

eter 1n and outputs a key k.

• Enck(m)! c: the encryption algorithm takes as input a key k and a plaintext message

m and outputs a ciphertext c.

• Deck(c)! m: the decryption algorithm takes as input a key k and a ciphertext c and

outputs the plaintext message m.

Definition 2 (The CCA Indistinguishability Experiment (Private-Key Setting)). Let ⇧ =

(KeyGen,Enc,Dec) be a private-key encryption scheme, let A be a polynomial-time adver-

sary, and let n be the security parameter; the CCA indistinguishability experiment PrivCCAA,⇧

is defined like so [13]:

PrivCCAA,⇧ (n):

1. Generate key k KeyGen(1n).

24

2. Adversary A is given input 1n and access to encryption oracle Enck(·) and decryption

oracle Deck(·).

3. A outputs a pair of messages m0,m1 2M where m0,m1 is of the same length, M is

the message space associated with k, and m0 6= m1.

4. A uniform bit b 2 {0, 1} is chosen. The challenge ciphertext c Enck(mb) is com-

puted and given to A.

5. A continues to have access to Enck(·) and Deck(·) however A cannot query Deck(·)

on the challenge ciphertext itself.

6. A outputs a bit b0.

7. The output of the experiment is 1 if b = b0 (i.e., the experiment succeeds and A guessed

correctly) and 0 otherwise.

Definition 3 (CCA-Security (Private-Key Setting)). A private-key encryption scheme ⇧

is considered indistinguishable under chosen-ciphertext attack (i.e. CCA-secure) if for all

polynomial time adveraries A there is a negligible function negl such that [13]:

Pr
⇥
PrivCCAA,⇧ (n) = 1

⇤

1

2
+ negl(n)

Definition 4 (Message Authentication Code (MAC)). A message authentication code

(MAC) is composed of three algorithms [13]:

• KeyGen(1n)! k: the key-generation algorithm which takes as input a security param-

eter 1n and outputs a key k.

• Mack(m) ! t: the tag-generation algorithm takes as input a key k and a message m

and outputs a tag t.

• Vrfk(t,m) ! b: the verification algorithm takes as input a key k, a tag t, and a

message m and outputs a bit b 2 {0, 1}. It holds that Vrfk(Mack(m),m) = 1.

25

Definition 5 (Di�e-Hellman Key Exchange Protocol). The Di�e-Hellman key exchange

protocol is a way for two parties (we will refer to these parties as Alice and Bob) to agree

on a shared secret key. The protocol proceeds as follows [13]:

KeyExchange(1n):

1. Alice and Bob are both given security parameter 1n.

2. Alice runs a group generation algorithm G(1n) ! (G, q, g) to generate group G with

order q and generator g 2 G.

3. Alice chooses a uniform x 2 Zq, computes hA := gx, and sends (G, q, g,hA) to Bob.

4. Bob chooses a uniform y 2 Zq, computes hB := gy, and sends hB to Alice.

5. Bob outputs the key kB := hy
A
, Alice outputs the key kA := hx

B
.

The key exchange protocol works because

kA = hxB = (gy)x = gyx

kB = hy
A
= (gx)y = gxy

3.2 Machine Learning Preliminaries

In this section, we will begin by defining the preliminaries related to machine learning

concepts, then we will define our construction, and lastly we will define what it means for

our construction to be secure in the presence of the attacks defined in section 2.2 2. We will

first define the basic machine learning preliminaries and then we will provide more formal

definitions for the four di↵erent roles we define in the introduction (link to introduction).

For our purposes, we restate the definition of a dataset provided by Yeom et al. [43]

in Definition 6 as the universal dataset. We also borrowed the definition of a model and a

training dataset from Yeom et al. [43] and made with a few small changes to the notation.

26

We will later on use the universal dataset to define other datasets. As an additive, we also

define additional concepts related to datasets such as a true label.

Definition 6 (Universal Dataset). Let X be the set of all possible raw data samples and

let Y be the set of all possible labels. We will refer to X ⇥Y as the ”universal dataset”.

A “data point” in a dataset is a tuple (x, y) 2 X ⇥Y where x 2 X is a raw data sample

and y 2 Y is a label given to the raw data sample (sometimes, we will also refer to y as the

“true label”).

Definition 7 (Machine Learning Model). We will define a machine learning model as a

function that takes as input a set of parameters P and a feature vector x0 and outputs a

prediction vector yp.

MP (x
0)! yp

If P is randomly initialized, then we consider the model to be “untrained”. If P has been

tuned by some learning process, then we consider the model to be “trained”. Sometimes we

will use MP to make predictions on a set of feature vectors, we denote this as MP (X 0)! Yp

where Yp is the set of prediction vectors.

Definition 8 (Training dataset). The training dataset (Xtrain,Ytrain) has the following

characteristics:

• (Xtrain,Ytrain) ⇢ X⇥Y

• The data points in the training set is sampled i.i.d. from X⇥Y. Thus, let Dtrain be

the distribution of the training dataset and let D be the distribution of X ⇥ Y, the

distribution of data points in the training set must be similar to the distribution of

X⇥Y; thus, Dtrain ⇠ D.

• The dataset (Xtrain,Ytrain) is be used to train model MP

The definition of an inference dataset, a preprocessing function, and a postprocessing

function are definitions we defined on our own.

27

Definition 9 (Inference Dataset). The inference dataset (Xinfer,Yinfer) has the following

characteristics:

• (Xinfer,Yinfer) ⇢ X⇥Y

• (Xinfer,Yinfer) \ (Xtrain,Ytrain) = ;

• The data points in the training set is sampled i.i.d. from X⇥Y. Thus, let Sinfer be

the distribution of the inference dataset, Strain ⇠ D.

Definition 10 (Preprocessing Function). A preprocessing function

Preprocess(x)! x0

converts a raw data sample x to a feature vector x0. Sometimes we will use a preprocessing

function to convert an entire set of raw data samples into a set of feature vectors in which

case we will denote this as Preprocess : X ! X 0 where X 0 is the set of feature vectors. We

will sometimes refer to (X 0,Y) as a “preprocessed dataset”.

Definition 11 (Postprocessing Function). A postprocessing function

Postprocess(yp)! y0p

converts a prediction vector yp into the final output vector y0p. Sometimes we will use a

postprocessing function to convert an entire set of prediction vectors into a set of feature

vectors in which case we will denote this as Postprocess : Yp ! Y 0
p where Y 0

p is the set of

output vectors.

We will now use Definitions 12-15 to provide more formal definition for the data owner,

model owner, computation party, and results owner roles.

Definition 12 (Data Owner (DO)). A data owner is a party that owns a partition of

X⇥Y, i.e., the DO owns dataset (XDO,YDO) where XDO ⇢ X and YDO ⇢ Y.

28

Definition 13 (Model Owner (MO)). The model owner is the party that owns the param-

eters of trained model MP after it has been train and retains ownership of the parameters

while it is used for inference.

Definition 14 (Computing Party (CP)). The computing party is the party that carries out

training and/or inference of the MO’s model.

Definition 15 (Results Owner (RO)). The party that obtains the predicted labels Yp and/or

output labels Y 0
p computed by trained model MP .

29

Chapter 4: Defining Privacy Preserving Inference

We will now define the core components of a privacy-preserving inference scheme (PPIS).

4.1 Definition of Privacy Preserving Inference

By researching the broad landscape of attacks covered in section 2.2, we were able to draw

some important insights on the design of a privacy-preserving inference scheme.

Recall that reconstruction attacks use the feature vectors to recreate the raw data sample

and there by poses a threat to the preprocessing stage of inference. The existence of

reconstruction attacks teaches us that preprocessing alone is not a substitute for secure

encryption. Therefore, we require that

1. A privacy-preserving inference scheme must ensure the privacy of the raw data samples

and feature vectors during the preprocessing stage.

Furthermore, in model inversion attacks, the adversary will try to recreate a feature vector.

Recall that model inversion attacks are possible because 1) the adversary has white-box

access to the model, and 2) the output vector leaks information that could be used to

compromise the privacy of the dataset. Thus, it is important that a privacy-preserving

inference scheme ensures that

2. No party should have white-box access to the model when in execution.

3. The postprocessing stage of inference must be secure in order to avoid leaking infor-

mation through the prediction vector.

Recall from the Introduction, inference is the process of taking a newly seen feature

vector that the model was not originally trained on, and then conducting a forward pass

30

of that feature vector through the model to get a prediction vector. We will give the

first definition of a privacy-preserving inference scheme (PriPIS) which we will denote as

⇧ML = (Setup,OPreprocess,OMP ,OPostprocess). The goal of a PriPIS is to conduct inference

meanwhile also protecting the privacy of the MO’s model parameters (e.g., the weights of

a neural network) and the privacy of a DO’s dataset from all other parties.

Definition 16 (Privacy-Preserving Inference Scheme). A privacy-preserving inference scheme

is comprise of the following four algorithms:

• Setup(MP ,Preprocess,Postprocess) ! (OPreprocess,OMP ,OPostprocess): The Setup al-

gorithm takes as input a trained model MP , preprocessing function Preprocess, and

postprocessing function Postprocess, and outputs three oracles OPreprocess, OMP , and

OPostprocess. The Setup algorithm is responsible for creating and setting up the three

oracles.

• OPreprocess(x) ! (x0,�pre): The OPreprocess oracle takes as input a raw data sample x

and outputs a feature vector x0 and a signature �pre. Note that x0 may or may not be

encrypted depending on the setting. The OPreprocess oracle is responsible for ensuring

the security of the execution of Preprocess, the privacy of the raw data sample and the

feature vector, and providing a way to remotely attest Preprocess executed faithfully

(this is what the signature �pre is used for).

• OMP (x
0)! (y,�MP): The OMP oracle takes as input a feature vector x0 and outputs

a prediction vector y and a signature �MP . Note that y may or may not be encrypted

depending on the setting. The OMP oracle is responsible for the security of the ex-

ecution of model MP , the privacy of the feature vector x0, the model parameters P ,

and the raw prediction vector y, and providing a way to remotely attest MP executed

faithfully (this is what the signature �MP is used for).

• OPostprocess(y)! (y0,�post): The OPostrocess oracle takes as input a raw prediction vec-

tor y and outputs an “output vector” y0 and a signature �post. Note that y0 may or

31

may not be encrypted depending on the setting. The OPostprocess oracle is responsible

for ensuring the security of the execution of Postprocess, the privacy of the raw predic-

tion vector and the output vector, and providing a way to remotely attest Postprocess

executed faithfully (this is what the signature �post is used for).

4.1.1 Security Properties

We require the following properties for the three oracles:

• Correctness: the output of the oracle (whether sent in the clear or after decryption)

must match the output of the algorithm it is running regardless if the algorithm is

ran inside or outside the oracle.

• Isolation: the entire execution of the algorithm takes place inside the oracle, no party

should be able see the intermediate outputs of any steps in the algorithm when the

algorithm is running inside the oracle. No outside party can view any information

inside the oracle.

• Indistinguishability: if the oracle were to require encryption of its input/output,

then the encryption scheme used to send information to/from the oracle must be

secure under chosen ciphertext attack (CCA-secure).

• Verifiability: the DO(s) must be able to verify the oracle executed the intended

algorithm faithfully.

4.2 Security Model

The design of our setting is based on the lessons learned from our review of attacks in Section

2.2. Recall the main lesson learned from membership inference attacks is that restricting the

prediction vector to a single label (the absolute minimum a model must output to remain

useful) is not enough to prevent membership inference attacks; thus, we can imply there is

no privacy-preserving inference scheme that is truly secure against membership inference

32

attacks if it is deployed in the wrong setting. Furthermore, since model extraction attacks

do not require any prior knowledge of a model’s parameters or training data, the key to

preventing model extraction attacks lies in ensuring the roles of model owner and results

owner are assumed by the same party. Therefore, we require that a setting must meet the

following criteria in order to deploy a privacy-preserving inference scheme:

PPML Setting Requirements

1. The model must be trained using only the data from a single DO.

2. During inference, only the DO that owns the training dataset and the inference dataset

can see the prediction vectors for the inference dataset.

The reason for these requirements is to develop a setting an adversarial DO or MO

cannot benefit from conducting a membership inference attack or a model extraction attack.

Simply speaking, if a party were to collect and train its own model, then there would be

no reason to conduct a membership inference attack because it already knows the what

samples are in its training dataset. Furthermore, there would be no reason for a party to

conduct a model extraction attack because it already has the model.

4.2.1 Inference Server Setting

Thus far, the one setting we are particularly interested in that fulfilled the above criteria is

the inference server setting. In the inference server setting, there are two parties: a user and

a server; the user needs additional computational power to conduct inference on a larger

scale but would like to protect the privacy of its training dataset and model parameters.

The server will act as the computation party that provides the extra compute power.

The user has collected and cleaned its own training dataset and has assumed the role

of data owner. In an e↵ort to protect the privacy of its training dataset (or in an e↵ort to

obey restrictions on moving its data), the user utilizes a local compute instance to train a

model on the training dataset it created beforehand, thereby also assuming the role of the

model owner. Because the user is the sole owner of the training dataset and it has trained

33

a model locally using only its data, the inference server setting meets the first requirement

in the PPML Setting Requirements. Additionally, the user wants to collect the prediction

vectors for a set of inference data for its own purposes thereby assuming the role of results

owner. Since the user is also the sole owner of the inference dataset in addition to assuming

the role of results owner, then the second requirement in the PPML Setting Requirements is

met. Thus, the inference server setting fulfils the criteria for deploying a privacy-preserving

inference scheme.

This setting is applicable to research labs that train models that operate on top secret

government or health data where the data cannot be moved o↵-premise due to access

restrictions. In the government, defense, and intelligence communities, it is not uncommon

for data to labeled as sensitive compartmentalized information and can only be accessed

inside a Sensitive Compartmented Information Facility (SCIF). In the healthcare setting,

there are often restrictions on accessing and moving patients’ electronic medical records

o↵-premise due to HIPAA. Thus, development teams in these settings must train their

models in their local compute environments however their models are often deployed in

situations where more compute power is needed to conduct inference on a large scale. In

these situations, they need to rely on cloud service providers for extra compute power but

would still require their models and datasets are kept private to all external parties including

the cloud service provider. Therefore, the following security requirements must be enforced:

Inference Server Setting Security Requirements

• The server (the compute party) must not be able to see the data samples belonging

to the user’s training dataset.

• The server must not be able to see the user’s model parameters.

• The server must not be able to see the prediction vectors computed by running the

user’s model on the user’s inference dataset.

Threat model. In the inference server setting, the adversary has infiltrated the compute

server and can see any data stored in the compute server’s memory but not the data stored

34

in the memory address space allocated to the oracle; by extension, this implies the adversary

cannot see the execution of the program inside the oracle. Additionally, the adversary has

access to the transcript of the communication between the server and the user and can see

the messages sent between the compute server and the user as well as the messages sent

between the oracle and the user (note that the messages might be encrypted). Finally, since

the adversary is on the server, it does not know the user’s data or model parameters.

35

Chapter 5: Construction

We will start o↵ by defining three subroutines that will be used to facilitate the user’s

interactions with the oracles. From there, we will use the interactions to construct the

oracles and construct the algorithms ran by the user to interact with the oracles.

Random Sampling. The first algorithm, RandSample, will be used for randomly sam-

pling from a dataset. RandSample takes as input two sequences of items D1 and D2 and

an integer m which denotes the number of items the user wants to sample from D1 and D2

(note that D1 and D2 must have the same number of items and the items can be anything,

in our case, items will be either raw data samples, feature vectors, prediction vectors, or

output vectors). RandSample will randomly sample the same number of items from D1 and

D2 to create the sequences d1 and d2 where |d1| = |d2|.

Algorithm 1 Random Sampling

Function RandSample(D1, D2, m):

Require: |D1| = |D2|

Require: 1 m < |D1|

Let n = |D1|

Let I = {1, 2, ...,n}
Let d1 = () be an empty sequence
Let d2 = () be an empty sequence
for m times do

Randomly sample i 2 I
Append D1[i] to d1
Append D2[i] to d2
Remove i from I

end for
return d1, d2

36

Mixing Datasets. The second algorithm Mix will be used to combine two datasets to-

gether in a random manner. Mix takes as input a sequence of items obtained during training

(Dtrain) and a sequence of newly seen items to be used for inference (Dinfer) (note that just

like in RandSample, the items can be raw data samples, feature vectors, prediction vectors,

or output vectors). Mix then contatenates Dtrain and Dinfer together to create another

sequence of items D. Mix will then shu✏e the order of the items in D, store the indices

of the training items in I, and then return the shu✏ed sequence of items D and the set of

indices I.

Algorithm 2 Mix Datasets

Function Mix (Dtrain, Dinfer):

Let I = ()
Let D = Dtrain||Dinfer

Shu✏e D
Let i = 1
while i < |D| do

Let d = D[i]
if d 2 Dtrain then
Append i to I

end if
i := i+ 1

end while
return D, I

37

Separating the datasets. The third algorithm, Separate will be used to separate the

training items from the inference items from a sequence of items. Separate takes as input a

sequence of items D and a list of indices I where the indices indicate the location of training

items in D. Separate takes uses the list of indices to separate the training items from the

inference items.

Algorithm 3 Separate Datasets

Function Separate(D, I):

Let Dtrain = ()
Let Dinfer = ()
Let i = 1
while i < |D| do

Let d = D[i]
if i 2 I then
Append d to Dtrain

else
Append d to Dinfer

end if
i := i+ 1

end while
return Dtrain, Dinfer

5.1 Interactions Between Oracles & Users

The interaction between the user and each of the three oracles all follow a similar workflow:

1. User-side preparation: Assuming the user has kept the artifacts computed when it

ran Preprocess, MP , and Postprocess during training; the user will randomly sample

a few of the artifacts computed during training, mix those artifacts with the artifacts

computed during inference, and send it to the oracle.

2. Oracle execution: The oracle will run the artifacts through the algorithm installed

inside it and then send the outputs along with a tag over to the user for verification.

3. User verification: The user will categorize the outputs sent by oracle as either

training outputs (outputs derived from the oracle applying its algorithm on training

38

artifacts) or inference outputs (outputs derived from the oracle applying its algorithm

on inference artifacts). Theoretically, if the oracles executed properly, the training

outputs the user got from the oracle should be exactly the same as the training

outputs the user saw during training and the tags produced by the oracle can be

verified by using the input, the algorithm, and its respective training output.

39

Oracle User (Xinfer)

KeyExchange(1n)! k KeyExchange(1n)! k

RandSample(Xtrain,X 0

train
)! Xval,X 0

val

Mix(Xval,Xinfer)! X, I

Enck(X)! Cx
Cx

 ��������

Deck(Cx)! X

Let X 0

O
= ()

Let tO = ()

for x 2 X do
x0
O
:= Preprocessk(x)

Append x0
O

to X 0

O

t := Mack((x,Preprocess,x0O))

Append t to tO
end for

Enck(X 0

O
)! Cx0

O

Cx0
O

, tO
����������!

Deck(Cx0

O
)! X 0

O

Separate(X 0

O
, I)! X 0

O,train, X
0

O,infer

for i 2 {1, 2, ...,m} do
x := Xval[i]

x0 := X 0

val
[i]

x0
O
:= X 0

O,train[i]

t := tO[i]

m := (x,Preprocess,x0)

if x0 6= x0
O

or Vrfk(t,m) = 0 then

return 0 (invalid)

end if
end for
return X 0

O,infer

Figure 5.1: Preprocessor oracle interaction with oracle and user

In Figure 5.1, the prover is the server and the verifier is the user. The preprocessing

oracle Opre is running on the server’s compute instance and the oracle needs to be able to

prove to the user it ran the Preprocess algorithm correctly. The user needs to verify that

40

the server’s outputs are correct (thereby also verifying the Preprocess algorithm was ran

correctly).

The interaction starts o↵ with the user conducting key exchange with the oracle; this

ensures the compute party (in real life this would be the cloud service provider) does not have

access to the oracle and ensures the compute party cannot steal information from the oracle.

The user then uses the RandSample 1 algorithm to randomly sample raw data samples

from the user’s training dataset (Xtrain) to produce Xval. The RandSample algorithm

also randomly samples the corresponding features vectors computed when the user ran the

Preprocess algorithm during training (X 0

train
) to produce X 0

val
. The randomly sampled raw

data samples are mixed into the inference dataset to create dataset X and then all the raw

data samples are encrypted and sent over to the oracle. In this phase, the oracle learns

nothing about the user’s data samples because the encryption scheme that is used to encrypt

the raw data samples is indistinguishable (CCA-secure).

In the second part of the interaction, the oracle begins by first decrypting the ciphertext

to get the raw data samples. Due to the oracle’s isolation property, the server will not

learn any information regarding the user’s data through leakage. The oracle then runs

the Preprocess algorithm and converts the raw data samples into feature vectors that are

ready for inference. Once the feature vectors are computed, the oracle encrypts the features

vectors, uses Mac to generate tags, and then sends the ciphertext and tags back to the

server whom then sends it back to the user.

The third part of the interaction requires the to user to sort the feature vectors into

X 0

O,train and X 0

O,infer where X 0

O,train is the set of feature vectors computed by the oracle

running Preprocess on raw data samples from the training dataset and X 0

O,train is the set of

feature vectors computed on the raw data samples in the inference dataset. The user then

compares the feature vectors in X 0

O,train to the feature vectors computed during training

(X 0

train
). If any of the feature vectors from X 0

O,train do not match the corresponding feature

vector in X 0
train

or if Vrf reveals the tag to be invalid, the proof is invalid; otherwise, if all

41

the feature vectors match and all the tags are valid, the proof is valid.

Oracle User (X 0

infer
, MP)

KeyExchange(1n)! k KeyExchange(1n)! k

RandSample(X 0

train
,Yp,train)! X 0

val
,Yp,val

Mix(X 0

val
,X 0

infer
)! X 0, I

Enck(X 0)! Cx0

Enck(Mp)! CMP

Cx0 , CMP
 �������

Deck(Cx0)! X 0

Deck(CMP)!MP

Let Yp,O = ()

Let tO = ()

for each x0 2 X 0 do
yp,O := MP (x0)

Append yp,O to Yp,O
t := Mack((x0,MP , yp,O))

Append t to tO
end for

Enck(Yp,O)! Cy
Cy , tO

�������!

Deck(Cy)! Yp,O

Separate(Yp,O , I)! Yp,O,train , Yp,O,infer

for i 2 {1, 2, ...,m} do
x0 := X 0

val
[i]

yp := Yp,val[i]

yO := Yp,O,train[i]

t := tO[i]

if yp 6= yO or Vrfk(t,MP , yp) = 0 then

return 0 (invalid)

end if
end for
return Yp,O,infer

Figure 5.2: Model oracle interaction with oracle and user

42

The interaction between the user and the model oracle is very similar to the interaction

between the user and the preprocessing oracle. The main di↵erence between this interaction

and the interaction with the preprocessing oracle is that the user will send the model

parameters to the oracle in addition to feature vectors.

43

Oracle User (Yp,infer)

KeyExchange(1n)! k KeyExchange(1n)! k

RandSample(Yp,train,Y 0

p,train)! Yp,val,Y 0

p,val

Mix(Yp,val,Yp,infer)! Yp, I

Enck(Yp)! Cy
Cy

 �������

Deck(Cy)! Yp

Let Y 0

p,O = ()

Let tO = ()

for yp 2 Yp do
y0
p,O := Postprocessk(yp)

Append y0
p,O to Y 0

p,O

m := (yp,Postprocess, y0p,O)

t := Mack(m)

Append t to tO
end for

Enck(Y 0

p,O)! Cy0

Cy0 , tO
�������!

Deck(Cy0)! Y 0

p,O

Separate(Y 0

p,O , I)! Y 0

p,O,train , Y 0

p,O,infer

for i 2 {1, 2, ...,m} do
yp := Yp,val[i]

y0p := Y 0

p,val[i]

y0
O
:= Y 0

p,O,train[i]

m := (yp,Postprocess, y0p)

if y0p 6= y0
O

or Vrfk(t,m) = 0 then

return 0 (invalid)
end if

end for
return Y 0

p,O,infer

Figure 5.3: Postprocessor oracle interaction with oracle and user

The interaction between the user and the postprocessing oracle works exactly the same

44

as the preprocessing oracle; just replace the Preprocess algorithm with the Postprocess al-

gorithm, the user’s input is the prediction vectors, and the server’s response is the output

vector.

5.2 Construction of a Privacy-Preserving Inference Scheme

We will now give an example instantiation of our privacy-preserving inference scheme in

the inference server setting. Recall an inference scheme is composed of four algorithms:

⇧ML = (Setup,OPreprocess,OMP ,OPostprocess). Because we want the interface of a privacy-

preserving inference scheme to be as applicable to as many settings as possible, we do

not want to consider the algorithms ran on the user side as part of a privacy-preserving

inference scheme as these algorithms can di↵er greatly depending on the setting (e.g., the

verification process might be much di↵erent in the settings described in the future works

section). However, although the user side algorithms are not part of the inference scheme, it

is important to note that these user-side algorithms are no less important to the interactive

protocol than the algorithms in the inference scheme.

The overarching idea behind a privacy-preserving inference scheme is to run Preprocess,

MP , and Postprocess inside of an oracle to provide a secluded execution environment which

we can ensure the three algorithms are executed correctly and the user’s data is not leaked to

the compute party. The Setup algorithm is first ran by the compute party to set up the three

oracles one for each of the three algorithms. Once the oracles are set up, the algorithms

are installed into the oracle. As mentioned before, the oracles must fulfill the security

properties (section 4.1.1) of correctness, zero-leakage, indistinguishability, and verifiability,

we can ensure the privacy of the user’s data is ensured.

Setup. In real life, the Setup algorithm will be ran by the cloud service provider to create a

partition (perhaps by using the separation kernel inside a TEE or using a separate compute

server) and creates a secluded execution environment to set up the oracles.

45

Algorithm 4 Set Up Oracles

Function Setup(MP ,Preprocess,Postprocess):

1: Compute party creates OPreprocess, OMP , and OPostprocess

2: Compute party installs Preprocess into OPreprocess, install the model architecture of MP

without the trained parameters into OMP , and install Postprocess into OPostprocess

Preprocessing Oracle. The preprocessing oracle begins by using a key exchange protocol

to first agree on a private encryption key with the user (we will refer to the encryption key as

k). The user then uses a CCA-secure private key encryption scheme to encrypts its dataset

of raw data samples using the key k like so: Enck(X) ! Cx where Cx = {c1, ..., cn} is the

set of ciphertexts when n raw data samples are encrypted. The user then sends Cx over to

the oracle. The oracle then runs the decryption algorithm to obtain the raw data samples

from the user and proceeds to run the data samples through the Preprocess algorithm, then

encrypts and sends the feature vectors back to the user.

Algorithm 5 Preprocessing Oracle

Function OPreprocess(Cx):

1: Run KeyExchange(1n) with user to agree on key k
2: Run Deck(Cx)! X where X = {x1, ...,xn} is the raw data samples in plaintext
3: Let X 0

O
= ()

4: Let tO = ()

5: for x 2 X do
6: x0

O
:= Preprocessk(x)

7: Append x0
O

to X 0

O

8: t := Mack((x,Preprocess,x0O))

9: Append t to tO
10: end for
11: Run Enck(X 0

O
)! Cx0

O
where Cx0

O
is the ciphertext after encrypting the feature vectors

12: return Cx0

O

To interact with the oracle, the user must first run Preprocess.Prepare to pass data to the

oracle. Once the oracle has completed execution, the user must then run Preprocess.Verify

to validate the outputs of the oracle.

46

Algorithm 6 Preprocessing Oracle Preparation Algorithm

Function Preprocess.Prepare(Cx0

O
, I,Xtrain,X 0

train
,Xinfer):

KeyExchange(1n)! k
RandSample(Xtrain,X 0

train
)! Xval,X 0

val

Mix(Xval,Xinfer)! X, I
Enck(X)! Cx

return Cx, I

Algorithm 7 Preprocessing Oracle Verification Algorithm

Function Preprocess.Verify(Cx0

O
, tO, I,Xval,X 0

val
):

Deck(Cx0

O
)! X 0

O

Separate(X 0

O
, I)! X 0

O,train, X
0

O,infer

for i 2 {1, 2, ...,m} do
x := Xval[i]

x0 := X 0

val
[i]

x0
O
:= X 0

O,train[i]

t := tO[i]

m := (x,Preprocess,x0)

if x0 6= x0
O

or Vrfk(t,m) = 0 then

return 0 (invalid)

end if
end for
return X 0

O,infer

47

Model oracle. Once again, the oracle begins by using a key exchange protocol to first

agree on a private encryption key k with the user. The user uses a private key encryption

scheme and the key k to encrypt the feature vectors and the model parameters:

Enck(X
0)! Cx0

Enck(MP)! CMP

where Cx0 is the set of ciphertexts after encrypting n feature vectors and CMP is the encrypted

model. The user sends Cx0 and CMP to the oracle. The oracle then decrypts Cx0 and CMP

to obtain the feature vectors and the model, conducts inference, encrypts the prediction

vectors, and sends the encrypted prediction vectors back to the user.

Algorithm 8 Model Oracle

Function OMP (Cx0):

1: Run Deck(Cx0)! X 0 where X 0 = {x01, ...,x
0
n} is the feature vectors in plaintext

2: Run Deck(CMP)!MP where MP is the model with trained parameters P in plaintext
3: Let Yp,O = ()

4: Let tO = ()

5: for each x0 2 X 0 do
6: yp,O := MP (x0)

7: Append yp,O to Yp,O
8: t := Mack((x0,MP , yp,O))

9: Append t to tO
10: end for
11: Run Enck(Yp,O)! Cy where Cy is the encrypted prediction vectors
12: return Cy

48

The user uses the following algorithms to interact with the oracle:

Algorithm 9 Model Oracle Preparation Algorithm

FunctionModel.Prepare(Cx0

O
, I,X 0

train
,Yp,train,X 0

infer
):

KeyExchange(1n)! k
RandSample(X 0

train
,Yp,train)! X 0

val
,Yp,val

Mix(X 0

val
,X 0

infer
)! X 0, I

Enck(X 0)! Cx0

Enck(Mp)! CMP

return Cx0 , CMP

Algorithm 10 Model Oracle Verification Algorithm

FunctionModel.Verify(Cy, tO, I,X 0

val
,Yp,val):

Deck(Cy)! Yp,O
Separate(Yp,O , I)! Yp,O,train , Yp,O,infer

for i 2 {1, 2, ...,m} do
x0 := X 0

val
[i]

yp := Yp,val[i]

yO := Yp,O,train[i]

t := tO[i]

if yp 6= yO or Vrfk(t,MP , yp) = 0 then

return 0 (invalid)

end if
end for
return Yp,O,infer

49

The oracle begins by using a key exchange protocol to first agree on a private encryption

key k with the user. The user uses a private key encryption scheme and the key k to encrypt

the prediction vectors: Enck(Y)! Cy. where Cy = {cy, ..., cy} be the set of ciphertexts when

n prediction vectors are encrypted. Just as in the preprocessing oracle, the postprocessing

oracle decrypts, runs the prediction vectors through the Preprocess algorithm, encrypts the

output vectors, and then sends it back to the user.

Algorithm 11 Postprocessing Oracle

Function OPostprocess(Cy):

1: Run Deck(Cy)! Yp where Yp = {y1, ..., yn} is the prediction vectors in plaintext
2: Let Y 0

p,O = ()

3: Let tO = ()

4: for yp 2 Yp do
5: y0

p,O := Postprocessk(yp)

6: Append y0
p,O to Y 0

p,O

7: m := (yp,Postprocess, y0p,O)

8: t := Mack(m)

9: Append t to tO
10: end for
11: Run Enck(Y 0

O
)! Cy0 where Cy0 is the ciphertext after encrypting the output vectors

12: return Cy0

In a very similar fashion to the preprocessing and model oracles, the user must use the

following two algorithms to interact with the postprocessing oracle.

Algorithm 12 Postprocessing Oracle Preparation Algorithm
Function Postprocess.Prepare:

KeyExchange(1n)! k
RandSample(Yp,train,Y 0

p,train)! Yp,val,Y 0

p,val

Mix(Yp,val,Yp,infer)! Yp, I
Enck(Yp)! Cy

return Cy, I

50

Algorithm 13 Postprocessing Oracle Verification Algorithm
Function Postprocess.Verify:

Deck(Cy0)! Y 0

p,O

Separate(Y 0

p,O , I)! Y 0

p,O,train , Y 0

p,O,infer

for i 2 {1, 2, ...,m} do
yp := Yp,val[i]

y0p := Y 0

p,val[i]

y0
O
:= Y 0

p,O,train[i]

m := (yp,Postprocess, y0p)

if y0p 6= y0
O

or Vrfk(t,m) = 0 then

return 0 (invalid)
end if

end for
return Y 0

p,O,infer

5.3 Security Analysis

Correctness. Correctness of the verification algorithm is trivial as the oracle will produce

identical results to the user running Preprocess , MP , or Postprocess outside of the oracle

(this is described in the correctness requirement of the oracle).

Soundness. Soundness of the verification algorithm is as follows: let the output of Pre-

process , MP , or Postprocess be a string of bits, suppose the oracle has a failure probability

of p (i.e., assuming Verify returns 1, the probability the oracle fails to produce the correct

string of bits is p). The probability of any string being incorrect can be represented by the

51

following binomial distribution:

P (any string being incorrect) =

0

B@
n

r

1

CA pr(1� p)n�r =

0

B@
1

1

1

CA p1(1� q)1�1 = p

suppose the oracle returns n strings to the user Essentially, let n be the number of strings

sampled and r be the number of strings that are incorrect in our set of sampled strings; in

this case, we can set n = 1 because we are only sampling 1 string from the dataset, and we

can set r = 1 because we are interested in the case where only 1 string is incorrect, we can

say that the probability that any of the strings being incorrect in the verification algorithm

is also p.

We can think of the verification algorithm as randomly sampling a subset of size m from

the n strings in the inference set. Since the verification algorithm requires all m strings to

be correct in order to return 1, then the probability the verification algorithm will return 1

is as follows:

P (all m samples are valid) = (1� p)m

To account for the fact the samples are distributed randomly throughout the dataset; we

can think of this as calculating for the number of ways the verification algorithm can sample

m samples.

number of ways to sample a subset of size m from n samples =

0

B@
n

m

1

CA

Thus, the probability of the verification algorithm return 1 is

P (all samples are valid) =

0

B@
n

m

1

CA (1� p)m =
n!

(n�m)!m!
(1� p)m

52

When looking at the final equation, it is obvious to see that the more training samples are

sent to the oracle relative to the n, the more secure the verification algorithm becomes.

A larger m means the probability all m samples are valid decreases and the verification

algorithm will be less likely to return 1, which means it is much more di�cult for the oracle

to get away with making mistakes.

Resistance against ML attacks. The interactions are secure against reconstruction

attacks because the user’s data has been encrypted before it got to the adversary which

resides in the server; thus, the adversary cannot obtain any information about the under-

lying feature vectors because the encryption scheme used to encrypt the feature vector is

CCA-secure. The interactions are also secure against model inversion attacks, membership

inference attacks, and model extraction attacks because the adversary never has access to

the prediction vector, and because the user trained its model exclusively on its own data.

This means that the only information a model inversion attack could yield are the feature

vectors, which the user can easily compute by running the raw data samples through the

Preprocess algorithm. A membership inference attack is also pointless because the only

information it can yield is whether or not a data sample belongs to the training dataset,

which the user already knew. Lastly, the only information that can be gained from a model

extraction attack are the model parameters, which the user already knew.

Security in the inference server setting. Since all messages between the oracle and

the user are encrypted, the server cannot observe the user’s dataset, nor the model’s pa-

rameters, nor the prediction vectors being passed, therefore, the interaction fulfills all three

requirements in the Inference Server Setting Security Requirements.

Security of the Oracles. Recall in Section 4.1.1, the oracles must fulfill four proper-

ties: correctness, isolation, indistinguishability, and verifiability. Since the oracle is simply

running the algorithm without adding any extra security measures that would decrease the

accuracy of the model (such as di↵erential privacy), the correctness property of the oracles

53

holds. For this implementation of the oracles, we make the assumption that the isolation

property holds. Since we require the use of a CCA-secure private-key encryption scheme,

the indistinguishability property is fulfilled. Verifiability is fulfilled by using the Mac algo-

rithm for message authentication as well as the preparation and verification algorithm on

the user’s side.

5.4 E�ciency

The e�ciency of the interaction and of the oracles depends on two factors: the number of

samples in the inference dataset and the number of training samples sent to the oracle that

must be verified. Thus, the runtime of the oracles will increase linearly to the number of

of samples in the inference dataset; and the runtime of the verification algorithm will also

increase linearly to the number of training samples.

5.5 Ways to Implement Oracles

The easiest way to implement oracle would be for the compute party to dedicate an entire

server, with its own file storage, ram, GPU/CPU processors, etc. to running the oracles.

The compute party (i.e., a cloud service provider) acts as a resources allocator and assigns

servers to compute jobs and then reclaim those servers once compute jobs finish. The

advantage of this approach is that hardware-level isolation can be guaranteed; however, the

downside is that resource allocation may not be e�cient as the compute party will have to

allocate an entire server for even small tasks.

Another hardware-based approach would be to use a trusted execution environment like

Intel SGX, ARM TrustZone, Keystone Enclave, etc [12][32]. The TEE approach is likely to

be more e�cient than allocating an entire server but it still has its downsides. One of the

downsides to using TEEs is that it has been shown that TEEs are vulnerable to side-channel

attacks [34]. Although it is important to note that we are not sure how relevant these side-

channel attacks are to the privacy-preserving machine learning setting as the side-channel

54

attacks take advantage of the enclave’s memory access patterns; thus, while the adversary

may be able to infer details about the algorithm being ran, the individual data samples,

model parameters, etc might still be secure.

In addition to hardware-based approaches, software-based approaches could also be used

to implement the oracles. One particular software-base approach is to use a virtual TEE

like Open-TEE [49]. In short, a virtual TEE is a software implementation of a TEE that

is meant to be used as a tool to make it easier for application developers to develop and

debug applications for TEEs. Once an application has been developed and tested on a

virtual TEE, it can be compiled to run on an actual hardware TEE. Although virtual TEEs

are meant to be used as a tool for TEE application development, we do believe it can be

used to implement and run oracles without the need to be compiled to run on hardware

TEEs.

Another software-based approach would be to use secure encrypted virtualization (SEV)

to provide isolation of virtual machines and containers [50]. The idea behind SEV such as

AMD SEV is to use a trusted hypervisor to provide isolation. The benefit of using SEV is

that it simplifies software development. The downside is that using a hypervisor increases

the attack surface because it increases the amount of hardware and software that needs

to be trusted thereby increasing the likelihood of vulnerabilities introduced through the

trusted hypervisor.

55

Chapter 6: Discussion and Extensions

In this section, we will begin by discussing how our privacy-preserving inference scheme im-

proves upon currently existing privacy-preserving machine learning literature. Afterwards,

we will discuss future avenues for research, as well as the impacts of relaxing the criteria

for settings in which privacy-preserving inference schemes are be deployed.

6.1 Relations to Related Work

First and foremost, we have developed a theoretical framework for machine learning infer-

ence that emphasizes protecting the privacy of the dataset and the model parameters. Our

approach is an attempt to view the problem of securing inference in a much more holistic

way that also included securing preprocessing and postprocessing. This is in contrast to the

approaches we covered in section 2.1 where the primary goal was to ensure the privacy of

the data during forward propagation and generally ignored the leakage that resulted from

the prediction vectors and the preprocessing stage.

The privacy-preserving inference scheme we developed has also enabled us to emphasize

the separation of the ownership of compute resources and the ownership of the model,

algorithms, and data. In much of PPML literature, the compute party often also assumes

the role of model owner because it is responsible for carrying out training and inference [9];

we show that it is possible and preferable to decouple model ownership and ownership of

compute resources by using the isolation property of the oracles.

By decoupling model ownership and ownership of compute resources, we show it is

possible to create a setting in which privacy-preserving inference schemes can be deployed

safely where typical machine learning attacks are not applicable. Furthermore, we also

emphasized that preserving privacy also includes deploying the model into the right setting,

56

no inference scheme is privacy-preserving if deployed in the wrong setting. Lastly, we also

defined the criteria a setting must meet in order to deploy a privacy-preserving inference

scheme and identified a setting that met those criteria.

6.2 Future Research Directions

Thus far, we have looked at a setting (the inference server setting) where the adversary

existed on the compute party and only one party assumed the party of DO, MO, and RO.

Looking towards the future, we would like to look into ways to protect against adversaries

sitting on the user’s side. We are also interested in expanding the use of oracles to conduct

training as well as other settings where there are multiple parties collaborating with the

oracle (i.e., multiple DOs, MOs, and ROs).

6.2.1 User-Side Adversaries

When looking at situations where the adversary exists on the user’s server, then membership

inference and model extraction attacks become an issue. In cases where the user is careful

to encrypt its model parameters and raw data samples but the adversary can still see

the feature vectors and prediction vectors, the adversary can still conduct membership

inference attacks and model extraction attacks to compromise the privacy of the user’s

training dataset and model. Note that in this setting, there is an adversary sitting inside

the user’s compute environment, but the user itself is not adversarial.

Since many powerful machine learning attacks use the prediction vector to leak informa-

tion about the model parameters and data, we would like to look at ways to create what we

call secure label encoding (SLE). The main goal of developing SLE techniques is to develop

a label encoding format that can better mitigate model extraction attacks and membership

inference attacks than the one-hot encoding format. As mentioned in [46] and [44], this

problem is still an open research problem, and since we cannot find any literature on this

topic, we believe conducting research on SLE techniques could provide great benefits to

privacy-preserving machine learning.

57

6.2.2 Oracles for Training

Thus far, we have only looked into ways to preserve privacy for inference. In the future,

we would like to use the same oracles to train models as well. We believe the principle

of isolating the execution of the training process inside an oracle could achieve the same

level of privacy in a similar setting (i.e., a setting where an adversary has resides inside the

compute party but cannot view the execution inside the oracle). To conduct training, we

believe a few adjustments would have to be made to the Prepare and Verify algorithms since

it currently uses the outputs from training; however, we believe it is possible to execute

forward propagation and backpropagation inside an oracle just like in inference.

6.2.3 Relaxing Ownership Requirements

In retrospect, the requirements of our oracles and the requirements of our setting are very

strict, thus, we want to look at ways to relax these requirements and explore what attacks

are applicable to situations where ownership of data, model, and results is not assumed by

a single party.

Let Train(TD) ! MP be an algorithm that takes as input a training dataset TD =

(Xtrain,Ytrain) and outputs a trained model MP . Let Infer(ID,MP)! yp be an algorithm

that takes as input a set of data samples ID = Xinfer (i.e., the data samples of the inference

dataset, 8x 2 Xinfer , x /2 Xtrain) and a trained model MP and outputs a set of prediction

vectors yp.

58

In situations where the user does everything internally, the user collects its own training

data and does not share the training data with anyone else, trains a model exclusively on

its own training data, and uses its own model to conduct inference on its own inference

data, we can model the workflow like so:

User (TD, ID)
Train(TD)!MP

Infer(ID,MP)! yp

Figure 6.1: All-Internal Setting

In the All-Internal setting, data privacy and model privacy is guaranteed against all machine

learning attacks because the user assumes all four roles (data owner (DO), model owner

(MO), results owner (RO), and compute party (CP)).

The inference server setting that we covered previously can be modeled like so:

Oracle User (TD, ID)
Train(TD)!MP

MP , ID
 �������

Infer(ID,MP)! yp
yp

������! yp

Figure 6.2: Inference Setting Workflow

Recall that for the inference server setting, we required the user to own both the training

and inference dataset and conduct training locally; the only part of the workflow that was

not conducted by the user is inference, which was conducted by the oracle. Once again,

recall that the user’s data is secure during computation because the communication between

the user and the oracle is encrypted (assume all communication is encrypted for all of the

following diagrams) and the oracle’s isolation property ensures that no data is being leaked

59

from the oracle. Since the user owns the training and inference dataset, the trained model,

and the prediction vector, the user assumes all roles except for CP.

Using oracles, we believe the user can also safely outsource computation to handle

training securely like in the following two settings:

Oracle User (TD, ID)
TD

 �������

Train(TD)!MP

MP
�������! MP

Infer(ID,MP)! yp

Figure 6.3: Training Server Setting Workflow

Oracle User (TD, ID)
TD

 �������

Train(TD)!MP

MP
�������!

MP

MP , ID
 �������

Infer(ID,MP)! yp
yp

�������! yp

Figure 6.4: Training & Inference Server Setting Workflow

In both of the above settings (Figure 6.3 and Figure 6.4) privacy is still retained because

ownership of the training dataset, inference dataset, model, and results is still assumed by

one user.

However problems arise when we start to look at settings with multiple model owners,

data owners, and results owners. In the following setting (Figure 6.5), multiple data owners

pool their datasets together inside an oracle to build a model. Each user is a data owner

and owns its respective partition of the training dataset and owns its own inference dataset

60

which is not shared with the oracle.

User1 (TD1) Oracle User2 (TD2, ID2)
TD1
����!

TD2
 ����

TD = (TD1,TD2)
Train(TD)!MP

MP
�����!

Infer(ID2,MP)! yp,2

Figure 6.5: Collaborative Training Setting Workflow

This setting violates the first criterion of the PPML Setting Requirements: the model must

be trained using only the data from a single DO. In this case, User2 can conduct membership

inference attacks and compromise the privacy of User1’s dataset. Essentially, User2 can

conduct a membership inference attack and if the attack reveals that a data sample is in

the training dataset but is not in the User2’s training partition, then User2 will know that

it is in another user’s training partition.

Settings where model ownership is transferred from one user to another are also vulner-

able to membership inference attacks.

User1 (TD) User2 (ID)

Train(TD)!MP

MP
�������! MP

Infer(ID,MP)! yp

Figure 6.6: Training Server Setting Workflow

Because this setting violates the second criterion of the PPML Setting Requirements: during

inference, only the party that owns the training dataset and the inference dataset can see the

prediction vectors for the inference dataset, although User1 did not hand its dataset over

to User2, User2 can still use the model sent over by User1 to compromise the privacy of

61

User1’s training dataset.

In settings where there are multiple model owners, data privacy is also not guaranteed.

A good example of such a setting is the federated learning setting.

User1 (TD1, ID1) Oracle User2 (TD2, ID2)
M

 ����
M
����!

Train(TD1,M)!M1 Train(TD2,M)!M2
M1
����!

M2
 ����

SecAgg(M1,M2)!MG

MG
 ����

MG
����!

Infer(ID1,MG)! yp,1 Infer(ID2,MG)! yp,2

Figure 6.7: Federated Learning Setting Workflow

The main disadvantage of federated learning is that it breaks the first criterion of the

PPML Setting Requirements thereby leading to a plethora of attacks that allow users in the

federation to compromise the privacy of other user’s data [38], [51], [52]. Furthermore, since

federated learning also violates the second criterion of the PPML Setting Requirements,

there is reason to believe the prediction vectors computed using the global model could

enable model extraction to be used to steal other user’s local models. We have yet to see

a model extraction attack successfully conducted in the federated learning setting, however

we suspect it is possible for users to steal the parameters of other user’s local models as

there have been very powerful attacks that can elude the secure aggregation protocol used

by federated learning [40]. Furthermore, Kairouz et al. [53] also mentioned it is an open

question on what other protections would need to be put into place to protect against model

inversion attacks in the federated learning setting.

In the typical machine-learning-as-a-service setting, User1 has trained a model and is

now using its trained model as a service to make predictions for other users (User2 in

this instance). In this setting, User2 can conduct either a membership inference attack to

compromise the privacy of User1’s training dataset or compromise the privacy of User1’s

62

trained model parameters by conducting a model extraction attack.

User1 (TD) Oracle User2 (ID)

Train(TD)!MP

MP
�������!

ID
 ������

Infer(ID,MP)! yp
yp

������! yp

Figure 6.8: Machine-Learning-as-a-Service (MLaaS) Setting Workflow

According to Tramèr et al. [46], any setting where the results owner is not the same party

as the model owner, the results owner can use a model extraction attack to compromise the

security of the MO’s model parameters. Furthermore, an adversarial results owner can use

model extraction as a precursor to conduct membership inference attacks.

Model Validation Setting

Due to the numerous challenges in aggregating data, we were curious if there were any

machine learning settings that still protected the privacy of the data and model parameters

but still allowed for multiple DOs, MOs, and/or ROs. One of the settings we came up

with that we believe might fit these characteristics is a setting we coin the model validation

setting.

In the model validation setting, there are three parties: a user, a server, and other data

owners (we will refer to all other DOs as one party). Just like in the inference server setting,

the user has collected and cleaned its own training dataset and assumed the role of data

owner and also uses its local compute instance to train a model on the training dataset

thereby also assuming the role of the model owner. However, in this setting, the user needs

to validate the performance of its model against a broader set of data it does not have.

Therefore, in the model validation setting, the user is interested only in metrics like testing

accuracy derived from testing the model against other data owners. Thus, in this case,

63

there is no results owner because nobody needs to see the prediction vector on a particular

data sample. The server acts as the compute party and is responsible for aggregating data

from other DOs, testing the model against the aggregated data, and ultimately calculating

the statistics for the user.

This setting is relevant to situations where researchers have limited access to data in

which it may have enough data to train a model but does not have enough data to validate

its model. In other words, the user does not have enough data to create both a training

dataset and an inference dataset; in which case, the user is forced to use all data samples

for training and must rely on other DOs to validate its model. This setting is especially

applicable to healthcare as the datasets tend to have fewer data samples, biased (e.g.,

perhaps there are too many patients of the same race), and are often stored in silos [54][55].

The model validation setting is relevant to this scenario because the user likely has a small

dataset that likely contains bias and needs to evaluate its model on other DOs’ datasets

to ensure the model is not biased but the user cannot aggregate datasets from other DOs

because of data access restrictions.

The setting can be described in the following diagram:

User1 (TD1) Oracle User2 (ID2)

Train(TD1)!MP

MP
�����!

ID2
 �����

Infer(ID2,MP)! yp,2
AggStat(yp,2)! stat

stat
stat

 �����

Figure 6.9: Model Validation Setting Workflow

In the diagram, User1 trains a model using its own training dataset TD1 and then sends

the model to the oracle. The oracle collects data from User2 and uses it for inference. The

prediction vectors are aggregated and used to compute some statistical metric stat that is

then sent back to User1. We believe the aggregation of the prediction vectors should be

64

enough to ensure the privacy of User2’s data. More research will need to be conducted to

prove this.

In this setting, the following security requirements must be enforced:

• No other party can view a DO’s raw data samples (i.e., other DO’s and CP should be

able to view the DO’s raw data samples).

• No other party other than the MO should be able to retrieve the model parameters.

• No party can see the prediction vectors.

This setting does not violate the first criterion of the PPML Setting Requirements because

the model is trained using only the data of a single user. The second criterion is also

fulfilled because even though no DO owns both the training and inference datasets, no DO

has to the prediction vector either; therefore, membership inference nor model extraction

is possible.

Threat model. In the model validation setting, the adversary has infiltrated the compute

server and can see any data stored in the compute server’s memory and can see the data

sent between the compute server, the user, and the other DOs. The adversary can also see

the output of any oracle that runs on the server.

65

Chapter 7: Conclusion

In this thesis, we proposed a theoretical primitive, which we call a privacy-preserving infer-

ence scheme, that is designed to conduct machine learning inference in a way that protects

the privacy of the underlying user’s data. We emphasize the need for a more holistic

view of privacy-preserving machine learning that emphasized privacy-preservation during

the preprocessing, inference, and postprocessing stages. We also emphasized that privacy-

preserving machine learning solutions will always be vulnerable to attacks like membership

inference and model extraction unless deployed into the right setting. We then proceeded to

define the requirements for a setting to be deemed appropriate to deploy privacy-preserving

machine learning solutions and identified a setting that fulfills these requirements (the infer-

ence server setting). Lastly we developed a theoretical construction of a privacy-preserving

inference scheme, described how it worked in the inference server setting, and informally

argued why it is secure in the inference server setting.

Overall, we showed that by using the isolation property of the oracles in our privacy-

preserving inference scheme primitive, a privacy-preserving inference scheme can be resilient

to attacks on machine learning models if deployed in the right setting; thereby, suggesting

that it is possible to decouple ownership of computational resources from ownership of the

model, results, and data. In the future, we would like to provide an actual implementation

of our construction and look into ways to relax the strict assumptions of our setting.

66

Bibliography

[1] A. Ng, “Andrew ng: Artificial intelligence is the new electricity - youtube,” Jan 2017.

[Online]. Available: https://www.youtube.com/watch?v=21EiKfQYZXc

[2] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-

vunakool, R. Bates, A. Ž́ıdek, A. Potapenko et al., “Highly accurate protein structure

prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[3] “Artificial intelligence &; autopilot.” [Online]. Available: https://www.tesla.com/AI

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,

L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforcement learning algorithm

that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp.

1140–1144, 2018.

[5] J. R. Ayala Solares, F. E. Diletta Raimondi, Y. Zhu, F. Rahimian, D. Canoy,

J. Tran, A. C. Pinho Gomes, A. H. Payberah, M. Zottoli, M. Nazarzadeh,

N. Conrad, K. Rahimi, and G. Salimi-Khorshidi, “Deep learning for electronic

health records: A comparative review of multiple deep neural architectures,”

Journal of Biomedical Informatics, vol. 101, p. 103337, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1532046419302564

[6] Centers for Medicare & Medicaid Services, “The Health Insurance Portability and Ac-

countability Act of 1996 (HIPAA),” Online at http://www.cms.hhs.gov/hipaa/, 1996.

[7] P. Scharre, Army of None: Autonomous Weapons and the Future of War. Old Say-

brook, CT: Tantor Audio, 2018.

67

https://www.youtube.com/watch?v=21EiKfQYZXc
https://www.tesla.com/AI
https://www.sciencedirect.com/science/article/pii/S1532046419302564

[8] M. Roth, “Artificial intelligence at the cia - current applica-

tions,” Nov 2019. [Online]. Available: https://emerj.com/ai-sector-overviews/

artificial-intelligence-at-the-cia-current-applications/

[9] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning: Threats and

solutions,” IEEE Security & Privacy, vol. 17, no. 2, pp. 49–58, 2019.

[10] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled circuits,” in

Proceedings of the 2012 ACM Conference on Computer and Communications Security,

ser. CCS ’12. New York, NY, USA: Association for Computing Machinery, 2012, p.

784–796. [Online]. Available: https://doi.org/10.1145/2382196.2382279

[11] C. Dwork, “A firm foundation for private data analysis,” Communications of the

ACM, January 2011. [Online]. Available: https://www.microsoft.com/en-us/research/

publication/a-firm-foundation-for-private-data-analysis/

[12] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: what

it is, and what it is not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1. IEEE,

2015, pp. 57–64.

[13] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2020.

[14] C. Gentry, A fully homomorphic encryption scheme. Stanford university, 2009.

[15] K. Nandakumar, N. Ratha, S. Pankanti, and S. Halevi, “Towards deep neural network

training on encrypted data,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

[16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,

“Cryptonets: Applying neural networks to encrypted data with high throughput and

accuracy,” in Proceedings of The 33rd International Conference on Machine Learning,

ser. Proceedings of Machine Learning Research, M. F. Balcan and K. Q. Weinberger,

68

https://emerj.com/ai-sector-overviews/artificial-intelligence-at-the-cia-current-applications/
https://emerj.com/ai-sector-overviews/artificial-intelligence-at-the-cia-current-applications/
https://doi.org/10.1145/2382196.2382279
https://www.microsoft.com/en-us/research/publication/a-firm-foundation-for-private-data-analysis/
https://www.microsoft.com/en-us/research/publication/a-firm-foundation-for-private-data-analysis/

Eds., vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 201–210.

[Online]. Available: https://proceedings.mlr.press/v48/gilad-bachrach16.html

[17] E. Hesamifard, H. Takabi, and M. Ghasemi, “Deep neural networks classification over

encrypted data,” in Proceedings of the Ninth ACM Conference on Data and Application

Security and Privacy, 2019, pp. 97–108.

[18] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,

G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,

C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are

few-shot learners,” 2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[19] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A low latency

framework for secure neural network inference,” in 27th USENIX Security Symposium

(USENIX Security 18), 2018, pp. 1651–1669.

[20] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A cryp-

tographic inference service for neural networks,” in 29th USENIX Security Symposium

(USENIX Security 20), 2020, pp. 2505–2522.

[21] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving ma-

chine learning,” in 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp.

19–38.

[22] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, p. 612–613, nov

1979. [Online]. Available: https://doi.org/10.1145/359168.359176

[23] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,

D. Ramage, A. Segal, and K. Seth, Practical Secure Aggregation for Privacy-Preserving

Machine Learning. New York, NY, USA: Association for Computing Machinery,

2017, p. 1175–1191. [Online]. Available: https://doi.org/10.1145/3133956.3133982

69

https://proceedings.mlr.press/v48/gilad-bachrach16.html
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3133956.3133982

[24] K. Liu, H. Kargupta, and J. Ryan, “Random projection-based multiplicative data

perturbation for privacy preserving distributed data mining,” IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 1, pp. 92–106, 2006.

[25] C. K. Liew, U. J. Choi, and C. J. Liew, “A data distortion by probability

distribution,” ACM Trans. Database Syst., vol. 10, no. 3, p. 395–411, sep 1985.

[Online]. Available: https://doi.org/10.1145/3979.4017

[26] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang, “Deep learning with di↵erential privacy,” in Proceedings of the 2016 ACM

SIGSAC conference on computer and communications security, 2016, pp. 308–318.

[27] A. D. Sarwate and K. Chaudhuri, “Signal processing and machine learning with di↵er-

ential privacy: Algorithms and challenges for continuous data,” IEEE signal processing

magazine, vol. 30, no. 5, pp. 86–94, 2013.

[28] Z. Ji, Z. C. Lipton, and C. Elkan, “Di↵erential privacy and machine learning: a survey

and review,” arXiv preprint arXiv:1412.7584, 2014.

[29] K. Chaudhuri, A. D. Sarwate, and K. Sinha, “A near-optimal algorithm for

di↵erentially-private principal components.” Journal of Machine Learning Research,

vol. 14, 2013.

[30] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Di↵erentially private empirical risk

minimization.” Journal of Machine Learning Research, vol. 12, no. 3, 2011.

[31] X. Jiang, Z. Ji, S. Wang, N. Mohammed, S. Cheng, and L. Ohno-Machado,

“Di↵erential-private data publishing through component analysis,” Transactions on

data privacy, vol. 6, no. 1, p. 19, 2013.

[32] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanović, “Keystone: An open

framework for architecting tees,” arXiv preprint arXiv:1907.10119, 2019.

70

https://doi.org/10.1145/3979.4017

[33] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,

and M. Costa, “Oblivious Multi-Party machine learning on trusted processors,” in

25th USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX

Association, Aug. 2016, pp. 619–636. [Online]. Available: https://www.usenix.org/

conference/usenixsecurity16/technical-sessions/presentation/ohrimenko

[34] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side chan-

nels for untrusted operating systems,” in 2015 IEEE Symposium on Security and Pri-

vacy, 2015, pp. 640–656.

[35] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

e�cient learning of deep networks from decentralized data,” Reading, Massachusetts,

1993.

[36] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning for

health: Distributed deep learning without sharing raw patient data,” arXiv preprint

arXiv:1812.00564, 2018.

[37] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,

J. Konečnỳ, S. Mazzocchi, H. B. McMahan et al., “Towards federated learning at scale:

System design,” arXiv preprint arXiv:1902.01046, 2019.

[38] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information

leakage from collaborative deep learning,” in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, 2017, pp. 603–618.

[39] D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the tiger: Inference attacks

on split learning,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security, 2021, pp. 2113–2129.

[40] D. Pasquini, D. Francati, and G. Ateniese, “Eluding secure aggregation in federated

learning via model inconsistency,” arXiv, 11 2021.

71

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko

[41] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can machine learning

be secure?” in Proceedings of the 2006 ACM Symposium on Information, computer and

communications security, 2006, pp. 16–25.

[42] J. Feng and A. K. Jain, “Fingerprint reconstruction: From minutiae to phase,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 2, pp. 209–223,

2011.

[43] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine

learning: Analyzing the connection to overfitting,” 2017. [Online]. Available:

https://arxiv.org/abs/1709.01604

[44] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit

confidence information and basic countermeasures,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, ser. CCS ’15. New

York, NY, USA: Association for Computing Machinery, 2015, p. 1322–1333. [Online].

Available: https://doi.org/10.1145/2810103.2813677

[45] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference

attacks against machine learning models,” 2016. [Online]. Available: https:

//arxiv.org/abs/1610.05820

[46] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing

machine learning models via prediction APIs,” in 25th USENIX Security Symposium

(USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016, pp.

601–618. [Online]. Available: https://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/tramer

[47] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” 2015.

[48] F. Tramèr, R. Shokri, A. S. Joaquin, H. Le, M. Jagielski, S. Hong, and N. Carlini,

72

https://arxiv.org/abs/1709.01604
https://doi.org/10.1145/2810103.2813677
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1610.05820
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer

“Truth serum: Poisoning machine learning models to reveal their secrets,” 2022.

[Online]. Available: https://arxiv.org/abs/2204.00032

[49] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-tee – an open virtual

trusted execution environment,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1,

2015, pp. 400–407.

[50] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni, “An exploratory

study of attestation mechanisms for trusted execution environments,” 2022. [Online].

Available: https://arxiv.org/abs/2204.06790

[51] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting unintended feature

leakage in collaborative learning,” 2018.

[52] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep

learning: Passive and active white-box inference attacks against centralized and

federated learning,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,

may 2019. [Online]. Available: https://doi.org/10.1109%2Fsp.2019.00065

[53] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,

K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open prob-

lems in federated learning,” Foundations and Trends® in Machine Learning, vol. 14,

no. 1–2, pp. 1–210, 2021.

[54] M. J. Willemink, W. A. Koszek, C. Hardell, J. Wu, D. Fleischmann, H. Harvey,

L. R. Folio, R. M. Summers, D. L. Rubin, and M. P. Lungren, “Preparing medical

imaging data for machine learning,” Radiology, vol. 295, no. 1, pp. 4–15, Apr 2020,

32068507[pmid]. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/32068507

[55] G. Varoquaux and V. Cheplygina, “Machine learning for medical imaging:

methodological failures and recommendations for the future,” npj Digital Medicine,

73

https://arxiv.org/abs/2204.00032
https://arxiv.org/abs/2204.06790
https://doi.org/10.1109%2Fsp.2019.00065
https://pubmed.ncbi.nlm.nih.gov/32068507

vol. 5, no. 1, p. 48, Apr 2022. [Online]. Available: https://doi.org/10.1038/

s41746-022-00592-y

74

https://doi.org/10.1038/s41746-022-00592-y
https://doi.org/10.1038/s41746-022-00592-y

Biography

Minh Quan Do received a Bachelors of Science in Bioengineering from George Mason Uni-
versity in December 2019, and he will soon be graduating from George Mason University
with a Masters of Science in Computer Science. He has 2 years of industry experience as a
lead machine learning engineer at the Leidos Innovation Center’s AI/ML Accelerator. As of
October 2022, he has completed a temporary position at CGI Federal as a blockchain engi-
neer where he researched ways to utilized zero-knowledge proofs to develop attribute-based
access control systems (ABAC).

75

	List of Figures
	Abstract
	 Introduction
	 Related Work
	Approaches
	Cryptographic Approaches
	Perturbation
	Privacy-Preserving Dimensionality Reduction (PPDR)
	Hardware-based Approaches
	Distributed Machine Learning Techniques

	Attacks
	Exploratory Attacks
	Causitive Attacks

	 Definitions
	Cryptographic Preliminaries
	Machine Learning Preliminaries

	 Defining Privacy Preserving Inference
	Definition of Privacy Preserving Inference
	Security Properties

	Security Model
	Inference Server Setting

	 Construction
	Interactions Between Oracles & Users
	PPIS Construction
	Security Analysis
	Efficiency
	Ways to Implement Oracles

	 Discussion and Extensions
	Relations to Related Work
	Future Research Directions
	User-Side Adversaries
	Oracles for Training
	Relaxing Ownership Requirements

	 Conclusion
	Bibliography

