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ABSTRACT 

EXAMINING ADAPTATION IN COMPLEX ONLINE SOCIAL SYSTEMS 

Ross Schuchard, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Andrew Crooks 

 

Online social systems, comprised of social media services and platforms including social 

networking (e.g. Facebook, LinkedIn) and microblogging (e.g. Twitter, Sina Weibo) 

applications, continue to gain traction among an ever-increasing global user base. The 

growing reliance upon online social systems to augment an individual’s daily workflow 

and the resulting interdependence between human and technical systems provide 

sufficient evidence to classify them as socio-technical systems. These interdependencies 

are complex in nature and are best defined from a complex adaptive system (CAS) 

perspective. 

 It is through a CAS lens that this dissertation examines two types of adaptation in 

online social systems using an array of Computational Social Science (CSS) tools. In the 

first type of adaptation, human actors are no longer the sole participants in online social 

systems, since social bots, or automated software mimicking humans, have emerged as 

potential threats to stifle or amplify certain online conversation narratives. The first part 
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of the dissertation addresses adaptation to these new types of actors by presenting a novel 

social bot analysis framework designed to determine the pervasiveness and relative 

importance of social bots within various online conversations. In the second form of 

adaptation, individual citizens and government entities modify their behaviors in relation 

to each other through censorship circumvention or detection. This second form of 

adaptation in the dissertation investigates the rise of digital censorship in online social 

systems, creating a new agent-based model inspired by the findings from an evaluation of 

a Turkish digital censorship campaign. 

 The social bot analysis framework results consistently showed that while users 

identified as social bots only comprised a small portion of total accounts within the 

overall research corpus, they account for a significantly large portion of prominent 

centrality rankings across all observed online conversations. Furthermore, bot 

classification results, when using multiple bot detection platforms, exhibited minimal 

overlap, thus affirming that different bot detection algorithms focus on the various types 

of bots that exist. Finally, the results of the Turkish digital censorship campaign showed 

marginal effectiveness as some Turkish citizens circumvented the censorship policies, 

thus highlighting an individual decision cycle to risk punishment and engage in online 

activities. The recognition of this citizen decision cycle served as the basis for the 

adaptation to digital censorship model, which used empirical evidence to stylize and 

template a simulation censorship environment. In all, this dissertation presents a unique 

CSS methodology to observe, measure and simulate social adaptation that exists in 

complex online social systems. 
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CHAPTER 1. INTRODUCTION  

The following introductory chapter provides the overarching motivation behind 

this dissertation. Section 1.1 presents a framework dedicated to analyzing adaptation in 

online social systems. Section 1.2 follows with two areas of focus and associated research 

questions for those topics. Section 1.3 introduces relevant background literature to place 

the key components of the dissertation into context, while Section 1.4 concludes with an 

overview of the dissertation’s structure.  

1.1. Motivation of the Dissertation 

The evolution of the World Wide Web (WWW) throughout the past decade and a 

half has ushered in a wave of new online social systems that are pervasive around the 

world. These systems, comprised of social media services and platforms, to include social 

networking (e.g. Facebook, LinkedIn), microblogging (e.g. Twitter, Sina Weibo) and 

crowdsourcing (e.g. Wikipedia, OpenStreetMap) applications, have come to characterize 

the participatory nature and the user-generated content driving the Web 2.0 (O’Reilly, 

2005) period and beyond. The explosive and sustained worldwide growth in online social 

system participation has resulted in these systems becoming an increasingly primary 

source for news (Pew Research Center, 2017) as well as enabling modern protests and 

political discussions (Pew Research Center, 2018). The ‘digital exhaust’ created by these 

online social systems produce tangible metadata that are readily accessible for 
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researchers to investigate social interactions and contributed content at unprecedented 

scales. Although the role of academia in analyzing online social systems effects on real-

world physical activities is relatively young and requires much additional scrutiny to 

develop associated research standards (Ruths & Pfeffer, 2014; Tufekci, 2014), many 

recent studies have produced noteworthy results examining the hybrid characteristics that 

emerge at the intersection of these ‘cyber’ and ‘physical’ interactions, to include political 

participation (e.g. Bode & Dalrymple, 2016; Gibson & Cantijoch, 2013; Vaccari et al., 

2015), emergency event response (Crooks et al., 2013; Imran et al., 2015; Sakaki et al., 

2013) and extremist activities (Berger & Morgan, 2015; Ferrara et al., 2016). 

The ability to discover potential causal linkages between online cyber actions and 

offline physical activities is a logical research endeavor that could produce substantial 

benefits. Theocharis and Van Deth (2018) propose an entire multi-dimensional taxonomy 

to both capture and differentiate between offline and online citizen participation in a 

standardized fashion. However, Croitoru et al. (2015) and Althoff et al. (2016) point out 

the significant scientific challenges and associated elusiveness in delineating tractable 

certainty between online and offline activities. Such an endeavor may not be justified 

given the increasing ubiquity and fusion of online social systems in the everyday 

activities of individuals. The growing reliance upon online social systems to augment an 

individual’s daily workflow and the resulting interdependence between human and 

technical systems will only further complicate how to define where a cyber and physical 

divide exists, if it exists at all. Kleinberg (2008) declares a convergence of technological 

and social networks due to the fact that social forces drove changes to the underlying 
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technical operating specifications of online social systems. Scholtes et al. (2014) goes so 

far as to argue that underlying technical systems (such as the WWW) and their associated 

users are inherently coupled and thus inseparable. As will be discussed below, such 

points of view suggest looking at the activities emanating from online social systems not 

from a differentiated cyber or physical standpoint, but from the standpoint that the 

activities are artifacts of a socio-technical system. 

The concept of a socio-technical system arose in the 1950s (Trist & Bamforth, 

1951), when industrial systems research sought to improve both manufacturing efficiency 

and employee workplace satisfaction. The goal of the socio-technical approach was to 

view technological machinery and human workers as combined systems, rather than 

isolated components (Mumford, 2006). Given the inherent coupling of technology and 

humans in today’s WWW applications, one could easily interpret online social systems as 

emblematic of socio-technical systems. In examining the evolutionary history of media, 

Stöber (2004) described the historical emergence of new media technology as not merely 

a consequence of technical inventions, but as a coupled process between innovation and 

social institutionalization. Fuchs (2005, 2007) has argued extensively that the WWW, 

especially the Web 2.0 period and beyond, should be viewed as a self-organizing socio-

technical system, as opposed to a purely technical system, in which human 

communicative actions continually refine the purpose and structure of the underlying 

technical specifications of the Internet. Figure 1 captures the intricacies of a socio-

technical system and the inherent interdependencies that exist between the social and 

technical subsystems. This identification of the WWW as self-organizing and adaptive in 
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nature presupposes the greater identification of the WWW, and online social systems, as 

complex adaptive systems. Fuchs (2007) has not been alone in making this assertion, as 

numerous works have followed in describing the WWW and online social systems as 

socio-technical systems that are real-world complex adaptive systems (Borge-Holthoefer 

et al., 2013; Niederer & van Dijck, 2010; Sayama et al., 2013). 

 

 
Figure 1: Socio-technical system comprised of interdependent technical and social subsystems (Source: Calero 
Valdez, Brauner, & Ziefle, 2016) 

 

The concept of near-decomposability (Simon, 1996), in which interdependence of 

system components generates complexity, is highly applicable in classifying the deeply 

interdependent nature of the social and technical components of online social systems. It 

adds further credence to the earlier assertions that view them as complex adaptive 
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systems. Just as we have observed the WWW evolve1 through a Web 1.0 to Web 2.0 

transition, we anticipate further evolution through a Web 3.0 and beyond (Berners-Lee et 

al., 2001; Hendler, 2009), since persistent adaptation continues to drive online social 

systems into artifacts of increasing importance in today’s global society. Given that 

adaptation is a key observable component of complex adaptive systems (Miller & Page, 

2007; Mitchell, 2011; Sayama et al., 2013), the examination of adaptation may serve as a 

more realistic framework through which to view the impact of evolving online social 

systems.  

1.2. Research Questions 

The primary theme of this dissertation research is the identification and analysis 

of adaptation in complex online social systems through the application of computational 

social science (CSS) methodologies and tools such as automated information extraction, 

agent-based modeling (ABM) and social network analysis (SNA). Specifically, this 

research examines social adaptation in complex online social systems from two distinct 

perspectives: (1) the adaptation of traditional social actors (i.e. humans) to new types of 

actors (i.e. social bots) in online social networks (Section 1.2.1) and (2) the adaptation of 

social actors (i.e. citizens, governments) to digital censorship practices in online social 

networks (Section 1.2.2). A general description of each adaptation perspective follows 

and serves as a primer to more in-depth discussions of the topics put forth in the 

                                                
1 Academic and commercial publications attempting to formally describe the evolution of the WWW are 
not in universal agreement as to the precision of terms and associated timelines, but a general consensus 
agrees to the categorization of Web 1.0 as a system in which users accessed content online and Web 2.0 as 
a system in which users became content creators in addition to consumers (Cormode & Krishnamurthy, 
2008). 
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subsequent Background Literature of Interest (Section 1.3) and the Dissertation Structure 

(Section 1.4) portions of this introductory chapter. 

1.2.1. Adaptation to Social Bot Actors in Online Social Networks 

Social bots, or automated software or computer algorithms designed to mimic 

human behavior and/or engage with human actors, have become ubiquitous actors in 

OSNs (Howard et al., 2018). The implications of human actors engaging, intentionally or 

not, with bot actors are numerous given the relative ease of deploying bots at scale. As I 

highlight in Section 1.3.1, there is a growing body of research dedicated to detecting bots 

of ever-increasing sophistication, but there is a complementary requirement to assess the 

impact bots are having within online conversations. In Section 1.4, I identify three 

distinct research efforts that contribute to the greater understanding of how human actors 

are adapting to bot actors within OSNs, while also attempting to characterize the 

adaptation of bots themselves. Specifically, this dissertation addresses the following 

research questions by analyzing harvested Twitter data from various online conversations 

enriched with classification data from multiple state-of-the-art bot detection services: 

How does social bot pervasiveness and relative importance compare across 

different online social network conversations? 

 To what extent do different social bot detection platform classification results 

overlap in the identification of bots within the same online conversation? 

1.2.2. Adaptation to Digital Censorship in Online Social Networks 

We have witnessed the power of OSNs to enable individuals to communicate and 

exchange ideas globally in a near-instantaneous fashion, especially in times of social 
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unrest (e.g. Arab Spring, Ukraine Crisis). The amplification of unfettered individual 

opinion stands as a challenge to authoritarian governments that seeking to quell the 

spread of specific information through the implementation of censorship practices. As I 

highlight in greater detail in Section 1.3.2, certain governments and their citizens 

continue to evolve their participative behaviors in OSNs in an attempt to enforce or 

circumvent censorship practices. It is this adaptation to censorship in OSNs from both a 

government and citizen perspective that I seek to analyze using harvested OSN data 

during specified periods of government censorship. Specifically, I follow the initial 

methodology presented in Section 1.4.2 to answer the following research question in 

relation to an observable Turkish government censorship campaign initiated to block 

Turkish citizens from using the Twitter platform: 

To what extent can an authoritarian government be effective in blocking its 

citizens from using an online social network during periods of social unrest? 

I then extract learned outcomes from this initial digital censorship analysis to 

inform the creation of an agent-based model, as described in Section 1.4.2, to analyze 

adaptation to censorship via simulation experimentation in an effort to answer the final 

research question of the dissertation: 

How do government entity digital censorship practices affect the decisions of 

individual citizens to continue participating in online social activities? 

1.3. Background Literature of Interest 

The following section provides pertinent background information on the two 

adaptation areas of focus this dissertation addresses. Although not intended to be a 



8 
 

comprehensive introduction to each topic, this section serves as a foundational piece for 

the more detailed literature reviews that accompanying each chapter within this 

dissertation. Section 1.3.1 provides an extensive introduction to the topic of social bots 

and ongoing works analyzing bot presence in online social systems. Section 1.3.2 

provides background information on digital censorship practices observed in online social 

systems, along with a brief introduction to the few ABMs that seek to address some 

aspect of digital censorship or the concept of risky collective action emanating from 

online activities. 

1.3.1. Online Social Bot Research 

According to recent Internet security reports, industry experts estimate that ‘bots’ 

have consistently accounted for approximately half of all web traffic in the past five years 

(Zeifman, 2017). The term bot, however, has broad meaning in the context of 

technological applications, since all forms of automated services or applications could 

potentially be construed as bots. For the remainder of this dissertation, I restrict the 

definition of bots, or social bots, to automated software or computer algorithms designed 

to mimic human behavior and/or engage with human actors within online social systems. 

Current social bot research primarily continues to focus on advancing initial bot 

detection techniques and classification efforts (e.g. Chavoshi & Mueen, 2018; Cresci et 

al., 2018; Stukal et al., 2017; Varol et al., 2017). While there is great need for detection 

techniques to keep pace with the rapidly evolving sophistication of social bots (Cresci et 

al., 2017), Abokhodair et al. (2015) observed that relatively simple bots are able to avoid 

detection by advanced bot detection efforts and operate freely, thus suggesting that social 
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bot detection methodologies cannot focus solely on sophisticated bots. Overall, there is 

ample opportunity for methodological improvement in bot detection research. The 2015 

Defense Advanced Research Projects Agency (DARPA) Twitter Bot Challenge 

recognized the difficulty of detecting bots in OSNs early and highlighted the need for bot 

detection systems to be semi-supervised in order to account for the far-ranging types of 

bots (Subrahmanian et al., 2016). 

In addition to simply publishing research describing bot detection methodologies 

and findings, some researchers have also transitioned their detection algorithms to open-

source bot detection platforms for other researchers to use. Davis et al. (2016) provides 

researchers access to its bot detection framework Botometer (formerly known as 

BotOrNot) by allowing researchers to submit questionable Twitter author names for 

classification. Botometer, in turn, accesses the current Twitter profile and activity of a 

queried user account and assesses the likelihood of the account being a bot by using a 

supervised Random Forest approach. Chavoshi et al. (2016) developed and launched 

DeBot, which provides researchers open access to a platform that uses an unsupervised 

warped correlation model to detect bots as opposed to relying on feature extraction.  

While detection algorithm research garners the most attention in the nascent field 

of social bot research, analysis dedicated to evaluating the prevalence of bots has risen 

recently. Social bot analyses have included examining bot evidence in the following OSN 

conversation use-cases: the 2016 U.S. presidential election (Bessi & Ferrara, 2016; 

Howard et al., 2018), the Brexit Referendum (Duh et al., 2018; Howard & Kollanyi, 

2016), financial trading markets (Cresci et al., 2019), the ongoing Ukrainian conflict 
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(Hegelich & Janetzko, 2016) and vaccinations (Broniatowski et al., 2018). Most 

methodologies, however, are limited to simplistic descriptive statistical and temporal 

analyses of observed bot tweet volumes. Furthermore, these analyses typically focus on 

single OSN conversation use-cases resulting from the employment of a single bot 

detection platform. As Kušen and Strembeck (2018) points out, bot studies focused on 

sole events make it difficult to generalize findings across this growing research area of 

interest. A problematic example of social bot research not heeding this critique is the 

recent proclamation by Pew Research (Wojcik et al., 2018) claiming that social bots are 

responsible for posting two-thirds of all tweeted website links to popular websites. Such a 

broad, generalized headline statement presents a misleading finding as the Pew Research 

team relied upon a bot detection sampling method using estimated results from a single 

bot detection platform service (i.e. Botometer) (Wojcik et al., 2018). 

1.3.2. Online Censorship Research 

Historically, governments have suppressed political dialogue in media through the 

implementation of various forms of censorship (Briggs & Burke, 2009). Such practices 

are typically customized to the environments in which information flows within a given 

society (Esarey & Xiao, 2011). The advent of OSNs (e.g. Twitter, Facebook, Sina Weibo 

and VKontakte), fueled by the Web 2.0 revolution, has significantly impacted global 

events throughout the past decade. For example, OSNs have been a contributing catalyst 

for the major social unrest in northern Africa and the Middle East (i.e. Arab Spring) and 

Ukraine (i.e. Euromaidan) and have therefore become the target of certain censorship 

practices. Governments have had to adapt their censorship practices beyond the 
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traditional sources of print, radio and television (Fourie, Bothma, & Bitso, 2013; 

Nunziato, 2010) to account for this new information media that has been shown to enable 

rapid collective action and potential political unrest. Certain governments have developed 

a wide range of options to attempt to control Internet dialogue, ranging from simple 

messaging of appropriate online behavior discourse to sophisticated content monitoring 

and filtering as well as fully restricting access to the WWW (Clark et al., 2017; Dainotti 

et al., 2014). Shirky (2011) provides one of the earliest extensive reviews of authoritarian 

regimes and despotic governments viewing social media platforms as highly problematic 

and highlights initial attempts by governments to implement digital censorship controls. 

The readily accessible nature of online social system data has afforded researchers 

the opportunity to evaluate Internet censorship to a fine level of granularity. As Meserve 

and Pemstein (2017) highlighted, even democracies have not been immune from 

government-level digital censorship when internal dissent became evident. Censorship is 

of course an incredibly broad field that covers a vast array of topics, but in the case of 

this dissertation I limit the focus to political censorship of social media by authoritarian 

governments. 

Any discussion of current digital censorship practices must begin with the most 

expansive digital censorship campaign, the Great Firewall of China. The Chinese 

government has instituted extreme measures to restrict access to social media platforms 

via the Great Firewall and to maintain control of political narratives via a vast array of 

surveillance programs (King et al., 2017). In highlighting the flexible constraint of 

Chinese censorship practices, King et al. (2013) discovered that the Chinese government 
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surprisingly tolerated some level of disparaging social media remarks directed at the 

Chinese government but immediately filtered or blocked messages tied to collective 

action or mobilization of protest efforts. Adding to the evidence of dynamic censorship 

practices, Bamman et al. (2012), while evaluating 56 million Sina Weibo messages and 

11 million Chinese language tweets, discovered non-uniform patterns of deletion based 

on message analyses from the provincial perspective. Further examples of Chinese 

explicit digital censorship include the specific restriction of citizen access to a litany of 

web services (e.g. Google, Facebook, Twitter and YouTube) (Bamman et al., 2012; Xu & 

Albert, 2014). 

Digital censorship exists in various forms globally and past examples include 

Azerbaijan (Pearce & Kendzior, 2012), Ukraine (Metzger & Tucker, 2017) and Turkey 

(Tanash et al., 2015). Metzger and Tucker (2017), while analyzing social media during 

the Ukrainian Euromaidan protests, concluded that the 2013 Ukrainian government’s 

censorship attempts to suppress social mobilization were ultimately unable to control 

social media messaging content. Tanash et al. (2015) conducted the first substantive 

evaluation of social media censorship in Turkey, finding evidence that the censorship rate 

of tweets in Turkey was at least two orders of magnitude higher than Twitter’s own 

transparency report. In a follow-up study, Tanash et al. (2017) presented a heuristic for 

observing self-censorship rates of Turkish twitter users immediately following the failed 

Turkish coup attempt in July 2016.  

Evidence has shown that attempting to circumvent or ignore digital censorship 

policies can lead to a wide variety of punishments. Surveying the evolving nature of 
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global censorship, Clark et al. (2017) detailed government-imposed penalties by the 

Turkish government on citizens breaching government policy via social media activity. 

The study highlighted that more than 1,600 social media-related arrests took place 

following the attempted Turkish coup in the summer of 2016 and that a further 10,000 

other citizens were actively investigated for their online activities. Yesil and Sözeri 

(2017) drew further attention to the legal ramifications associated with bypassing social 

media policies by providing an expansive analysis of the evolution of Turkish legal 

policies that enable OSN censorship. 

Sometimes digital censorship practices do not produce the effects anticipated by 

government entities. Nabi (2014) discovered that censorship practices were not only 

ineffective in restricting access to specific OSN content in Syria and Turkey, but that the 

attempted censorship ultimately produced the unintended effect of popularizing the very 

topics those governments were trying to censor. Through the analysis of Alexa, Google 

Trends, and YouTube statistics data, Nabi (2014) dubbed the ineffectiveness of these 

state-level censorship activities as the ‘Streisand Effect.’ Katz (2014) further warned that 

attempting to censor or restrict access to social media, while not the sole reason, can 

serve as a primary enabling factor behind social movement causes that lead to the 

potential mobilization of citizens into action. Consequently, social adaptation to digital 

censorship practices can be viewed as a collective action problem (Katz, 2014).  

The adaptive decision-making of citizens of heterogeneous populations 

attempting to circumvent the digital censorship practices and governments 

correspondingly trying to detect and prevent such censorship avoidance represents a 
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complex social situation. As such, it is an ideal subject for agent-based modeling. Few 

ABMs in the current literature focus specifically on digital censorship. Casilli and Tubaro 

(2012) developed an ABM that is an extension of Epstein’s (2002) model of civil 

violence to simulate the effects of online social media censorship during the 2011 

London Riots and to determine the extent to which the censorship would propel agent 

populations to physical acts of violence. Waldherr and Wijermans (2017) reviewed the 

Casilli and Tubaro (2012) ABM as the only current effort dedicated to online censorship, 

while presenting their own ABM design to model street protests that are informed or 

influenced by social media engagements. In an extension of the Granovetter (1978) 

threshold model, Funcke and Franke (2016) viewed online social network participation as 

an initial participation cue that could lead to eventual acts of greater physical 

consequence. While there are few models dedicated explicitly to social media 

interactions, we can look to more traditional ABMs to draw inspiration in modeling 

interactions of social conflict that are similar to censorship or its effects on a system. 

Lemos et al. (2013) provides an extensive review of ABMs focused on social conflict 

topics, to include collective action activities of civil disobedience, riots and revolution. 

The overarching theme among these mentioned models is that they focus exclusively on 

collective action events emerging in physical environments and not cyber environments.  

1.4. Structure of Dissertation 

This dissertation presents each chapter beyond the introduction (Chapter 1) and 

conclusion (Chapter 8) as stand-alone research papers. Each chapter can be classified as a 

published paper, awaiting publication decision or pending publication submission. The 
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chapters are grouped according to adaptation topic as shown in Figure 2, with Chapters 2-

5 presenting social bot analysis research and Chapters 6 and 7 focusing on digital 

censorship. The following two sections provide brief introductions to the chapters 

comprising each adaptation topic. 

 

 
Figure 2: Research components comprising chapters of this dissertation. 
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1.4.1. Adaptation to Social Bot Actors in Online Social Networks 

As discussed in Section 1.2.1, online social bots have emerged as observable 

actors within online social networks (OSNs), and their potential to diffuse information at 

scale and to influence opinion has given rise to many efforts to detect them. I view the 

growing emergence of social bots from an adaptation perspective in the sense that bots 

are adaptive actor themselves (i.e. they are continually evolving to detection methods), 

while regular human actors have to adapt to non-human bot actors within these systems. 

While methodologies employed to detect the evolving sophistication of bots continue to 

improve, much work can be done to characterize the impact of bots within OSNs and to 

potentially increase overall detection efforts. In the remainder of this section, I introduce 

three distinct use-cases presented in this dissertation that determine the pervasiveness, 

relative importance and effect of social bots in various OSN conversations. These use-

cases address the research questions posed in Section 1.2.1. 

Chapter 2 and Chapter 3 comparatively analyze bot evidence from the same 

Twitter corpus comprised of more than 30 million tweets stemming from three major 

global events in 2016 (the U.S. Presidential Election, the Ukrainian Conflict and Turkish 

Political Censorship). Chapter 2 serves as the initial social bot analysis research effort. 

Here I compare the conversational patterns of bots and humans within each event and 

examine the social network structure of each conversation to identify social bots 

exhibiting particular network influence, while also determining bot participation in key 

emergent network communities. Chapter 3 is an extension of Chapter 2 that introduces 

additional analysis techniques. The subsequent bot-related chapters build upon the initial 
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social bot analysis framework, but through the lens of different OSN conversation use-

cases. 

Chapter 4 presents the second bot use-case, which focuses on OSN conversations 

surrounding mass shootings in the United States. Specifically, this effort analyzes bot 

evidence in the Twitter conversations for the following five mass shooting events: the 

Santa Fe High School shooting (Santa Fe, Texas - May 2018), the Parkland High School 

shooting (Parkland, Florida - February 2018), the First Baptist Church in Sutherland 

Springs shooting (Sutherland Springs, Texas - November 2017), and the Route 91 Music 

Festival shooting (Las Vegas, Nevada - October 2017). 

While the previous bot use-cases rely upon a sole bot detection platform to 

identify social bots, the final bot use-case presented in Chapter 5 presents an ensemble 

bot detection framework using three different platforms to identify bots within the 2018 

U.S. midterm election OSN conversation. This is the first known effort to simultaneously 

use three separate bot detection services within the same study on near real-time data. 

Chapters 2-4 rely upon a sole bot detection platform for bot classification due to the 

historical nature of the observed OSN conversation data in those chapters. 

1.4.2. Adaptation to Digital Censorship 

As discussed in Section 1.2.2, the enabling features and increased usage of online 

social systems in times of social unrest (e.g. Arab Spring, Ukraine Crisis) have led to 

actors at both the individual and government levels to adapt their participative behaviors 

in social media networks. This includes the initiation of censorship practices by 

governments to restrict communication and the self-censoring of individuals out of fear 
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of reprisal from these governments. The study presented in Chapter 6 analyzes an online 

censorship use-case that eventually helps inform development of the adaptation to 

censorship ABM introduced in Chapter 7. 

Chapter 6 comparatively analyzes political social media dialogue from Twitter 

prior to and during a period of extreme dynamic censorship in an effort to determine the 

effect of dynamically-changing digital censorship policies on OSN participation. 

Historically, digital censorship studies focus on censorship practices such as the 

surveillance of Internet traffic patterns (Dainotti et al. 2014; Florio et al. 2014), or 

specific content filtering and/or content removal (Bamman, O’Connor, and Smith 2012; 

Meserve and Pemstein 2017; Parks et al., 2017; Tanash et al. 2017, 2015; Zhu et al. 

2013). This chapter, however, examines a censorship campaign to completely block 

access to an entire OSN platform. Through the application of social network analysis-

based framework, the chapter analyzes Turkish political online social media 

conversations harvested from Twitter in December 2016 when the Turkish government 

abruptly blocked access to Twitter twice in a one-week period. The analysis results 

evaluate the effectiveness of the Turkish government’s censorship implementation by 

identifying observable social network artifacts at the regional and global level of the OSN 

conversation. The results provide direct insights into the research question posed in 

Section 1.2.2. 

Chapter 7 serves as the final research contribution of this dissertation with the 

introduction of the adaptation to censorship ABM. Drawing upon the models reviewed in 

Section 1.3.2 and social psychology theory, Chapter 7 presents a novel model that looks 
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not only at how the social actors adapt to one another in a given locale but also at the 

finite technical adaptation components each actor can use. This includes technical cyber 

options such as an individual’s use of obfuscation technologies and a government’s 

ability to detect or deter such technologies. 
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CHAPTER 2. BOTS IN NETS: EMPIRICAL COMPARATIVE ANALYSIS OF 
BOT EVIDENCE IN SOCIAL NETWORKS2 

2.1. Introduction 

The increased dependency on online social networks (OSNs) for information and 

the unprecedented ability to instantaneously message global populations provides an 

opportunity to control or exploit the narrative of online conversations. Attempting to 

control or exploit the narrative of a certain topic becomes much easier in OSNs as ‘digital 

gatekeepers’ can employ social bots—computer algorithms designed to mimic human 

behavior and interact with humans in an automated fashion—to amplify a specific 

position or drown out its opposition at scale. This includes increasing the spread of fake 

news by orders of magnitude through a directed bot campaign (Lazer et al., 2018). The 

evolvement of social bot sophistication is a primary concern, as it has become very hard 

for humans to discern whether they are engaging in dialogue with a human or a bot 

(Ferrara et al., 2016). Given that recent studies estimate that social bots account for 9-

15% of all Twitter accounts (Subrahmanian et al., 2016; Varol et al., 2017), it is essential 

to understand the implications associated with human and machine dialogue, either 

intentional or not. 

                                                
2 This chapter was published in: Schuchard, R., Crooks, A., Stefanidis, A., & Croitoru, A. (2019). Bots in 
Nets: Empirical Comparative Analysis of Bot Evidence in Social Networks. In L. M. Aiello, C. Cherifi, H. 
Cherifi, R. Lambiotte, P. Lió, & L. M. Rocha (Eds.), Complex Networks and Their Applications VII (pp. 
424–436). Springer International Publishing. 
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Recent social bot research continues to build initial essential knowledge on the 

classification and detection of social bots (Chavoshi et al., 2016; Chu et al., 2012; Davis 

et al., 2016; Stukal et al., 2017; Varol et al., 2017). However, the establishment of social 

bot norms is difficult and predictively elusive given the evolving nature of bot 

sophistication. For this reason, studies continue to discover bot activity that does not 

align with previously published conceptions (Abokhodair et al., 2015). Beyond the 

necessary continued work associated with improved bot detection methods to move 

closer to ground truth discovery, there is also a growing need to present novel evaluation 

methodologies to better understand the effects of currently detected bots within social 

media conversations. Promising recent studies applying multidisciplinary approaches to 

social bot analysis include classifying bot emotion (Kušen & Strembeck, 2018), 

determining the political agenda of bots (Hegelich & Janetzko, 2016) and distorting 

political discourse with bots (Bessi & Ferrara, 2016; Forelle et al., 2015; Howard & 

Kollanyi, 2016). 

This chapter presents a unique methodological framework to comparatively 

analyze evidence of social bots found within OSN Twitter conversations about three 

major global events in 2016: (1) the United States Presidential Election, (2) the Ukraine 

Conflict and (3) Turkish Online Political Censorship. First, a comparative descriptive 

statistical analysis (Section 2.4.1) of these Twitter conversations determines the 

characteristics of human and social bot tweeting patterns. Next, applied social network 

analysis techniques sought to determine the relative influence of social bots within each 

of the associated conversation’s constructed retweet networks (Sections 2.4.2 - 2.4.4). In 
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total, this study evaluated more than 30.4 million tweets generated by 5.2 million distinct 

Twitter users, of which, bot enrichment processing recognized 14,661 users as bots 

responsible for 2.1 million tweets. 

The results of this study showed that social bot communication patterns were 

fairly consistent across the various observed online conversations. Furthermore, bots 

were found to have a higher engagement rate than humans for both in-group and cross-

group communication. Most interestingly, although online conversation participants 

recognized as social bots comprised only 0.28% of all OSN users observed in this 

chapter, they accounted for a significantly large portion of prominent centrality rankings 

across the three online conversations. In total, this work provides a new contribution to 

the growing study of social bots by applying social network analysis techniques across 

multiple online conversations to help determine the relative pervasiveness and 

importance of detected bots. 

2.2. Related Work 

The term bot has broad meaning in the context of technology and Internet 

applications, since all automated services or applications could be construed as bots. For 

the purpose of this chapter, we restrict the definition of bots, or social bots, to automated 

software or computer algorithms designed to mimic human behavior and/or engage with 

human actors within online social networks. Many recent works have contributed to the 

growing corpus of knowledge capturing social bot features that differentiate social bot-

generated activity from human-generated activity in OSNs (Boshmaf et al., 2013; Chu et 

al., 2012; Davis et al., 2016). 



23 
 

Some researchers have not only published their research on bot detection 

methodologies and findings but have also transitioned their work to open-source bot 

detection platforms for other researchers to use via a web application or an application 

programming interface (API). Davis et al. (2016) provide access to Botometer (formerly 

known as BotOrNot), which assesses the likelihood of a Twitter account being a bot by 

using a supervised Random Forest applied to extracted account features. Chavoshi et al. 

(2016) published DeBot, which employs an unsupervised warped correlation model to 

detect Twitter bots rather than feature extraction. 

Published research analyzing detected bots in specific OSNs has increased as the 

prevalence of bots has risen. Such studies include examining bot evidence in the 

following use-cases: the 2016 U.S. presidential election (Howard et al., 2018; Varol et 

al., 2017), Venezuelan political public opinion (Forelle et al., 2015), the Syrian civil war 

(Abokhodair et al., 2015), the Brexit Referendum (Howard & Kollanyi, 2016), the 

Ukrainian conflict (Hegelich & Janetzko, 2016; Zhdanova & Orlova, 2017) and Russian 

politics (Stukal et al., 2017). Most methodologies are limited to initial descriptive 

statistical and temporal analyses of the human versus bot tweet volumes. Although highly 

relevant contributions, these efforts focus on single events. As Kušen and Strembeck 

(2018) point out in their recent analysis of bot emotion across multiple events, bot studies 

focused on sole events make it difficult to generalize findings across this growing topic of 

interest. 
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2.3. Methodology 

In order to understand the patterns of bots across multiple global events and 

determine the relative bot impact within associated online conversations, this study 

employed a combination of comparative descriptive statistical analysis and social 

network analysis applications. This multi-faceted approach expands the literature of 

social bot analysis by comparatively analyzing multiple OSN use-cases and contributes 

new techniques to the field of bot research by adapting social network analysis methods 

to measure and define the impact or influence of social bots. The remainder of this 

section presents in detail the methodology steps used in this study as depicted in Figure 3. 

 

 
Figure 3: Overall methodology to analyze bot evidence across multiple Twitter OSN conversations. 

 

2.3.1. Data 

This study presented in this chapter focused on three major global online 

conversations harvested solely from Twitter in 2016. Summarized descriptions of each 

event conversation are as follows: (1) U.S. Presidential Election (Feb. 1-29, 2016): a one-

month period which captured the narrative surrounding the Republican and Democratic 
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party primary races prior to the U.S. general election when it became apparent that then-

candidate Donald Trump could win his party’s nomination, (2) Ukraine Conflict (Aug. 1-

31, 2016): a one-month period which captured the narrative surrounding the ongoing 

conflict in Ukraine as military activity and political rhetoric intensified between Russia 

and Ukraine around the 25th anniversary of Ukrainian independence from Russia, (3) 

Turkish Political Censorship (Dec. 1-31, 2016): a one-month period which captured 

Turkish political conversations before, during and after two distinct periods of censorship 

when the Turkish government banned Turkish citizens from using Twitter. 

Relevant keywords representing each of these events were crafted and submitted 

to extract associated tweets from the Twitter Standard Search API. The volumes of tweets 

returned were as follows: 24.8 million (U.S. Presidential Election), 1.4 million (Ukraine 

Conflict), 4.3 million (Turkish Censorship). Given the resulting large tweet volumes, all 

initial data storage and pre-processing took place in an Amazon Web Services EC2 

t2.2xlarge instance (8 vCPUs/32GiB). This allowed for rapid processing and the creation 

of individual graph objects for more rapid data analysis use at the local compute level. 

2.3.2. Bot Enrichment 

To determine the presence of bots within the acquired Twitter conversations, this 

study leveraged the DeBot open-source bot detection platform (Chavoshi et al., 2016). 

The decision to use DeBot was two-fold. First, the corpus of tweets came from 2016, so 

access to historical bot evidence was a requirement, which only DeBot currently 

provides. Second, the performance of DeBot’s unsupervised warped correlation process 

has outperformed other bot detection platforms to date (Chavoshi et al., 2017). To 
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determine bot presence, automated data processing procedures extracted tweet author 

names from the harvested tweet corpus and submitted them for classification via the 

DeBot API. The classification results were then merged with the existing database and 

labeled each tweet user as a bot (or not) and annotated the source of bot classification. 

This study produced and archived automated scripts to execute this enrichment phase 

with the hope of accounting for other bot detection services in the future. 

In total, this enrichment process classified 14,661 Twitter users as bots, which 

accounted for just 0.28% of total tweet corpus users. This relatively small population of 

users classified as bots was responsible for publishing 2.1 million tweets, or 6.8% of all 

tweets in this study. Table 1 provides detailed values for each event conversation. 

2.3.3. Construct Retweet Network 

Retweets accounted for 57.8% of all tweets in this study, with the Turkey 

Censorship conversation exhibiting the highest retweet density at 65.6%, followed by 

57.8% for the U.S. Election conversation and 49.8% for the Ukraine Conflict 

conversation. The parsed retweets from the originally harvested tweets served as the basis 

for the construction of retweet networks for each conversation. These resulting retweet 

networks serve as the primary artifacts required to examine the conversation via social 

network applications that include centrality analysis and community detection. 

To reveal the network structure from the harvested Twitter conversations, the 

study relied upon the constructed retweet networks for each of the events. The act of a 

Twitter user ‘retweeting’ a message of an originally authored tweet establishes the basis 

for an edge between two nodes, or users, in the retweet network. Specifically, when a 
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Twitter user (X) retweets an original tweet message from a given user (Y), one can then 

assign a directed edge weight value of 1 for initial retweets or add to the cumulative 

weight for existing edges. The resulting directed networks for each of the conversations 

were as follows: 2,557,805 nodes / 8,985,736 edges (U.S. Election), 250,541 nodes / 

537,459 edges (Ukraine Conflict), 1,075,833 nodes / 2,224,939 edges (Turkish 

Censorship). 

 

Table 1: Harvested Twitter corpus overview 
Corpus Tweets Retweets Users 
United States Election 24,773,795 14,321,387 3,472,114 
Bot Source (% of total) 1,882,809 (7.60%) 1,452,155 (10.14%) 6,875 (0.20%) 
    

Ukraine Conflict 1,370,363 681,806 383,237 
Bot Source (% of total) 55,718 (4.07%) 34,938 (5.12%) 2,486 (0.65%) 
    

Turkey Censorship 4,327,802 2,837,059 1,390,362 
Bot Source (% of total) 126,352 (2.92%) 83,582 (2.95%) 5,300 (0.38%) 

 
 

2.3.4. Analyzed Data 

The final phase of this study’s methodology was the application of a multi-faceted 

data analysis approach to the processed data from the three online conversations. Recall 

that the main purpose of this work was to identify potential common characteristics of 

social bots across multiple online conversations and ascertain any in-group (bot-to-bot) or 

cross-group (bot-to-human/human-to-bot) tendencies. Additionally, this study sought to 

classify the overall relative importance of bots within the conversations by examining bot 

positions within the social structure of the retweet networks and associated bot 
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membership within any emergent communities of said networks. Section 2.4 follows with 

detailed subsections discussing the specific methods used to achieve the purpose 

described above. 

2.4. Results and Discussion 

2.4.1. Bot and Human Participation Rates 

Cumulative distribution frequency (CDF) plots depicting tweet volume per author 

for each of the online conversations served as visual evidence to directly compare the 

conversation participation rates between bot and human authors. The resulting CDFs 

serve as comparative artifacts between the author types and the various conversations. In 

addition, a two-sample Kolmogorov-Smirnov (KS) test returned a D statistic metric to 

capture the absolute max distance between the bot and human distributions for each of 

the conversations. 

The CDFs, depicted in Figure 4, show similar general participation rate trends for 

both bots and humans across all conversations. The resulting distributions all exhibit a 

‘many-some-few’ fat-tail distribution, with most of the authors having extremely low 

tweet volume (i.e. fewer than 10 tweets), some authors with higher tweet volumes (i.e. 

10<x<1000) and very few authors with high tweet volumes (i.e. x = 1000+). 

Additionally, the results showed that human authors account for the largest tweet 

volumes per author across all conversations and have a higher concentration of low 

volume authors accounting for all tweet volumes. 

The KS test results between bot and human authors highlight the major difference 

in low tweet volume authors accounting for much larger portions of the entire tweet 
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conversation by humans. The conversations returned D statistic values of 0.529, 0.408, 

and 0.419 for the U.S. Election, the Ukraine Conflict and the Turkish Censorship 

conversations, respectively. These maximum values were all observed where the tweet 

volume per author was a single tweet as shown in each plot’s associated inset zoom. 

 

 
Figure 4: Cumulative distribution (CDF) plots of tweet volume per human (blue) and bot (red) for each online 
conversation: (a) U.S. Election, (b) Ukraine Conflict and (c) Turkish Censorship. Inset zooms provide 
granularity to capture the high density of authors with low tweet volumes. 

 

2.4.2. In-Group and Cross-Group Communications 

Figure 5 presents a consolidation of all in-group and cross-group communication 

frequencies observed in this study. This work defines in-group communication as retweet 

edges between like types of authors (i.e. bots retweeting bots or humans retweeting 

humans), while cross-group communication refers to retweets between different types of 

authors (i.e. bots retweeting humans or humans retweeting bots). While low retweet 

volumes appear to dominate for in-group and cross-group conversations across all of the 

online conversations, there exists a noticeable increase in retweet rates for all 
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conversations initiated by a bot author, as opposed to a human author. For all three online 

conversations, each bot-to-bot in-group and bot-to-human cross-group conversation has a 

relatively higher average edge weight. The bot-to-bot author average edge weight is 

160%, 272% and 102% higher than the human-to-human author average edge weight for 

the U.S. Election, the Ukrainian Conflict and Turkish Censorship, respectively. This 

suggests that either bots seek persistent contact more so than humans, or the high rate of 

single retweet volumes between so many different human edges dilutes any persistent 

human-to-human connections that exist. 
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Figure 5: Frequency distribution plots for (a) U.S. Election, (b) Ukraine Conflict and (c) Turkish Censorship 
retweets of in-group bot conversations (row 1), cross-group bot and human conversations (rows 2 and 3) and in-
group human conversations (row 4) 
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2.4.3. Centrality Analysis 

In social network analysis, centrality measurements allow for us to distinguish 

nodes in a network as more prominent, or important, than other nodes based on their 

relative position in the structure of the network (Wasserman & Faust, 1994). This study 

sought to classify the overall relative importance of bots within the online conversations 

of interest by using centrality measures. To do so, three relatively common centrality 

measures (degree, eigenvector, and betweenness) were calculated for each online 

conversation. Degree centrality is the most straightforward centrality, as it is calculated 

from the total number of direct connections a node shares with other nodes throughout 

the network. One could view degree centrality as a level of popularity in a network. 

Eigenvector centrality is a weighted sum of both direct and indirect connections for a 

given node that is based on the individual degree centrality score of each node with 

which it shares an edge (Bonacich, 2007). Thus, we can infer eigenvector centrality as a 

level of entire network influence. Betweenness centrality is the degree to which a node 

falls on the shortest path between other nodes in the network (Freeman, 1977). Therefore, 

we can characterize betweenness as a potential measure of information flow in a network. 

The consolidated results for the three centrality measure calculations across all 

three conversations are presented in Figure 6. The binned the results capture the density 

of bots falling within the top-N centrality valuations (where, N= 1000, 100, 50 or 10). Of 

note, Figure 6 provides both the raw number of bots and the total percentage of bots 

comprising the given population of top-N centrality values. The results clearly show that 

authors identified as bots, though they comprise just 0.28% of total conversation authors 
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in this study, account for a significantly large portion of prominent centrality rankings for 

each of the centrality measures across all conversations. Showing penetration into 

conversations as an influencer, the eigenvector valuations show that bots account for 43% 

of the top-100 nodes in the U.S. Election conversation, to include four of the top-10 

centrality value positions. In the Ukraine Conflict dialogue, bots show a gaining 

dominance of top eigenvector values, as the bot population accounts for 21%, 30% and 

50% at the top-100, top-50 and top-10 bins respectively. 

 

 
Figure 6: Bot evidence in top-N (N= 1000 / 100 / 50 / 10) [(a) degree (b) eigenvector (c) betweenness] centrality 
values for: U.S. Election (blue), Ukraine Conflict (green) and Turkish Censorship (red) 

 

Many studies point to the positive correlation of computed centrality values given 

the conceptual overlap that exists between the inputs required of the calculations (Valente 

et al., 2008). Given an expected correlation of centrality values, lack of correlation 

evidence provides an opportunity to further investigate a node for interesting behavior. 

This study conducted such an analysis by plotting correlation plots against each other as 

depicted in Figure 7. 
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Figure 7: Correlation of centrality measures for select centrality comparison: (a) U.S. Election eigenvector 
versus betweenness analysis, (b) Ukraine Conflict eigenvector versus betweenness analysis and (c) Ukraine 
Conflict eigenvector versus degree analysis. 

 

The depicted centrality correlation plots in Figure 7 provide compelling insights 

into some of the observed conversations. First, in the U.S. Election conversation plot 

(Figure 7a), we see very few correlation outliers on the plot. Interestingly, the top 

eigenvector and betweenness centrality node is the same human author, in this case, then-

candidate Donald Trump (@realDonaldTrump). Conversely, we see far more correlation 

outliers in the Ukraine conflict conversations. Specifically, the most divergent nodes are 

bots, which could be cause for greater investigation as to their specific tweeting behavior. 

In the eigenvector versus degree Ukraine plot (Figure 7c), the two most ‘influential’ 

nodes according to eigenvector centrality, which are bots, are actually not that popular 

given low degree centralities. This suggests these bots were able to infiltrate the 

conversation network by acquiring connections with popular nodes, while avoiding 

popularity, or detection, themselves. 
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2.4.4. Community Detection 

Community detection is another common application in social network analysis 

that allows researchers to uncover localized sub-graphs, or communities, of highly 

connected nodes that are otherwise less connected to the remainder of the network 

(Girvan & Newman, 2002). The Louvain (Blondel et al., 2008) method is one such 

community detection algorithm that is highly applicable for the identification of emergent 

community structure in large-scale network analyses. It seeks an undefined number of 

emergent communities by executing a two-stage greedy heuristic that iteratively 

optimizes modularity locally and culminates when global network modularity reaches a 

maximum value. For the purposes of this study, the resulting analysis sought to observe 

the density of bots within any defined community structure of the online conversations. 

Specifically, it was desirous to determine if bots clustered among themselves or if they 

dispersed among the larger human author communities, which would provide further 

explanation for the in-group and cross-group communication findings in Section 2.4.2. 

Table 2 outlines the evidence of bot density within the most populated emergent 

communities detected for each online conversation. In total, the community bot density 

analysis discovered 71.2% of all bots within the top-5 most populated communities for 

the U.S. Election conversation, with 75.9% and 53.1% for the Ukraine Conflict and 

Turkish censorship conversations, respectively. Although we see a dispersal of bot 

populations throughout all of the top communities, there are multiple instances in which 

the bot density is much greater than the community population percentage in relation to 

the total network population. This is representative of the higher in-group communication 



36 
 

rates found between bots in Section 2.4.2, while the general dispersal of bots supports the 

findings of cross-group communication evidence. 

 

Table 2: Bot density of largest emergent communities. 

Comm. 
U.S. Election Ukraine Conflict Turkish Censorship 

Bot Count 
(% of comm.) 

Comm. Size 
(network %) 

Bot Count 
(% of comm.) 

Comm. Size 
(network %) 

Bot Count 
(% of comm.) 

Comm. Size 
(network %) 

1 901 
(15.69% 

1,009,872 
(39.48%) 

454 
(21.25%) 

58,397 
(23.30%) 

787 
(16.39%) 

268,311 
(24.94%) 

2 1,305 
(22.73%) 

900,076 
(35.19%) 

166 
(7.78%) 

45,330 
(18.09%) 

277 
(5.77%) 

146,350 
(13.60%) 

3 1,345 
(23.43%) 

308,040 
(12.04%) 

267 
(12.50%) 

29,310 
(11.69%) 

1,172 
(24.40%) 

107,224 
(9.97%) 

4 337 
(5.87%) 

84,733 
(3.31%) 

12 
(0.06%) 

15,536 
(6.20%) 

287 
(5.98%) 

85,550 
(8.04%) 

5 242 
(4.20%) 

59,441 
(2.32%) 

616 
(28.84%) 

15,439 
(6.16%) 

27 
(0.56%) 

48,813 
(4.54%) 

 
 

2.5. Conclusion and Future Work 

In summary, this chapter presented a framework to characterize the pervasiveness 

and relative importance of bots in various OSN conversations of three significant global 

events in 2016. In total, over 30 million harvested tweets capturing the U.S. Presidential 

Election, the Ukrainian Conflict and Turkish Political Censorship OSN conversations 

served as the foundational data to compare the conversational patterns of bots and 

humans within each event. The study further examined the social network structure of 

each online conversation to determine if bots exhibited particular influence in a network, 

while also determining bot participation in key emergent network community subgraphs. 

The results showed that although Twitter participants identified as social bots comprised 

only 0.28% of all OSN users in this study, they accounted for a significantly large portion 

of prominent centrality rankings across the three conversations. This includes the 
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identification of individual bots as top-10 influencer nodes out of a total corpus 

consisting of more than 2.8 million nodes. Additionally, observed results showed that the 

most influential social bots had relatively low popularity, or degree centrality, suggesting 

influence can be obtained without popularity. In the case of social bots, popularity could 

be seen as a negative characteristic if trying to avoid detection. This finding is supported 

by previous findings in social media studies showing influence in a network is not 

necessarily driven by popularity (Cha et al., 2010). 

While this chapter contributes to the nascent literature of social bot analysis by 

introducing a comparative analysis framework based on social network analysis 

techniques, there are limitations to take into consideration. As Tufekci (2014) asserts, 

social media analyses must state their limitations in terms of validity and 

representativeness when attempting to account for issues such as the overemphasis of 

single platforms and sampling biases. These issues are not unique to the study presented 

in this chapter, however, relied on just one OSN platform (i.e. Twitter) that includes a 

sampling bias. Though the methodology presented is not bound to a particular social 

media platform type, this analysis was limited to currently available bot detection 

sources, which focus solely on Twitter. As the literature expands in the near future, this 

effort can hopefully expand to account not only for additional bot detection services 

using Twitter, but additional social media platform sources as well. Specifically, future 

efforts could seek to determine if the findings produced here hold with other bot detection 

algorithms. Further extensions of this initial work will closely examine any observable 

characteristics differentiating the emergent communities of interests. This will include 
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narrative analysis through natural language processing to determine any attempts by bots 

to polarize particular populations within the conversations. The results from such an 

analysis could increase the relevancy of this study by potentially extending the 

observable influence of social bots beyond online social networks and into other social 

activities. 
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CHAPTER 3. BOT PERSISTENCE 

3.1. Introduction 

The previous chapter (Chapter 2) presented a study that focused on developing an 

initial framework to characterize the pervasiveness and relative importance of social bots 

in OSNs. This current chapter extends this earlier work by providing a more robust 

contribution along three lines of effort. First, this chapter provides a more extensive 

centrality analysis in Section 3.4.2 by including additional centrality measures that are 

specific to complex communicative networks. Second, temporal centrality rank 

persistence results are presented for each online conversation to determine the relative 

staying power of certain social bots over time (Section 3.4.2). Finally, the evolution of 

ego networks for the most structurally relevant bots over time is conducted in an effort to 

better characterize the user types communicating with social bots (Section 3.4.3). 

As online social network (OSN) platforms (e.g. Twitter, Instagram, Sina Weibo) 

continue to attract dramatic global participation in terms of active user rates, they are 

becoming indispensable components of the online ecosystem (Blackwell et al., 2017). In 

the same sense that Fuchs (2005) describes the Internet as a socio-technological system, 

user devotion to OSNs has led to usage patterns that transcend simple messaging 

activities among networks of friends. In the United States (U.S.), OSN platforms recently 

surpassed print newspapers as a primary source for news, and they continue to gain 
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traction in relation to other traditional news sources such as television and radio 

(Mitchell, 2018). While the convenience of receiving ‘news’ within a multipurpose 

communication system is understandable, the sharing of real-world news in a social 

interaction environment may lead to unintended consequences. Sunstein (2018) suggests 

that the homophily-driven nature of OSNs results in the formation of echo chambers, 

which serve as fertile ground for the amplification of perpetuated false information, or 

fake news, among their members. 

Recent studies have pointed to evidence of fake news within OSN conversations 

(e.g. Grinberg et al., 2019; Lazer et al., 2018). Furthermore, while examining news 

stories within Twitter from 2006 to 2017, Vosoughi et al. (2018) discovered that false 

stories spread more rapidly and to a greater audience than true stories. In addition to 

struggling to decipher the veracity of news, OSNs also have trouble accounting for the 

veracity of user accounts. This is largely due to the proliferation of accounts belonging to 

social bots, which are computer algorithms designed to mimic human behavior and 

interact with humans in an automated fashion. While automated in nature, social bots are 

not universally designed for intentional malice, as many bots serve in benign or even 

helpful roles (e.g. news aggregator) (Ferrara et al., 2016). The increasing sophistication 

of bots has made it difficult for human users to discern fellow human users from social 

bots in OSNs (Ferrara et al., 2016; Ruths & Pfeffer, 2014). While Vosoughi et al. (2018) 

argued that social bots were responsible for spreading both false and true news at the 

same rates as humans, Shao et al. (2018) discovered that social bots amplified news 

stories from low-credible sources in a disproportionate fashion. Although such studies 
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have demonstrated the strong presence of social bots in OSNs, the full extent to which 

these bots introduce, spread or amplify information remains elusive. For this reason, it is 

essential to gain greater understanding of the implications associated with human and 

machine dialogue, either intentional or not. 

Initial social bot research continues to build upon a foundation of the 

classification and detection of social bots in OSNs (e.g. Chavoshi et al., 2016; Chu et al., 

2012; Davis et al., 2016). The increasing sophistication of bots and the ability of some 

bots to mimic human behavior are proving to be too complex for current passive 

detection methods (Cresci et al., 2017). Even some simple rules-based social bots 

continue to gain an influential role in networks and go undetected for extended periods of 

time (Abokhodair et al., 2015). Recent promising advances in active bot detection 

algorithm development follow an adversarial learning approach by employing genetic 

algorithms to detect evolving bots (Cresci et al., 2018, 2019b, 2019a). While bot 

detection methodologies are improving with respect to keeping pace with evolving bot 

sophistication, there exists ample opportunities to develop and test necessary social bot 

analysis techniques to better characterize currently detectable social bots. Recent initial 

social bot analysis studies, which rely upon an array of multidisciplinary approaches, 

have provided positive insights into social bot influence within OSN conversations 

involving healthcare issues (Broniatowski et al., 2018), elections (Howard et al., 2018; 

Stella et al., 2018), financial trading markets (Cresci et al., 2018, 2019) and protests 

(Suárez-Serrato et al., 2016). Given that social bots aim to mimic and replicate human 

behavior, some researchers suggest that a computational social science (CSS) paradigm 
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could provide a compelling framework for characterizing the influence that bots may 

have on OSN conversations (Ciampaglia, 2018; Strohmaier & Wagner, 2014). 

It is from a CSS perspective that this chapter extends the unique methodology and 

analysis framework presented in Chapter 2 to observe human and social bot behavior and 

interactions within OSN conversations in greater detail. This chapter observes the same 

OSN conversations but includes additional analytic techniques, so some of the following 

data description commentary serves as a refresher to the reader. This extended study 

relies upon acquired Twitter data associated with three major global events in 2016: the 

2016 U.S. presidential election primary races, the ongoing Ukrainian conflict involving 

Russia and Ukraine, and the Turkish government’s implementation of censorship 

practices against its own citizens. Bot enrichment procedures applied to the Twitter data 

then classify the bot status of all user accounts within the corpus. This enables a multi-

faceted data analysis approach that includes comparative descriptive statistical analysis 

methods and social network analysis techniques to determine the relative importance and 

persistence of social bots within each global conversation. Overall, the constructed 

corpus consists of over 28.6 million tweets produced by approximately 5 million distinct 

users, of which, the bot labeling process identifies 14,386 of those users as likely social 

bots producing more than 1.9 million tweets. This reproducible framework, which can be 

extended to other OSN conversations and additional bot detection algorithms, creates an 

opportunity to better describe currently detected bots, while also providing essential 

feedback loops to bot detection research. 
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The results of this study show that suspected social bot users, on average, attempt 

to initiate contact with other users via retweets at a rate far higher than human users. 

Through the application of social network analysis centrality measurements, the results 

discover that social bots, while comprising less than 0.3% of the total user population, 

display a profound level of structural network influence by ranking particularly high 

among the top eigenvector centrality users within the U.S. Election and the Ukraine 

Conflict OSN conversations. Further, in observing the temporal persistence of suspected 

social bots, the presented findings show that bot users maintain their density of top 

centrality rankings over the cumulative OSN conversations of interest. Finally, the most 

relatively influential social bots from the Twitter corpus display a distinct ability to 

attract higher in-degree edge connections from human users that retweet their original bot 

messages. These results are quite promising given this study relied upon one open-source 

bot detection platform which provides limited total conversational coverage, but precise 

positive bot classification. 

The remainder of this chapter is structured as follows. In the Background section 

(Section 3.2), a brief synopsis introduces current social bot detection methods and social 

bot analysis efforts. Enabling a Social Bot Analysis Framework (Section 3.3) provides a 

detailed overview of this study’s processes, which acquire and fuse the data sources to 

enable the subsequent analysis section. Analysis Results and Discussion (Section 3.4) 

focuses on the results of the comparative descriptive statistical analysis methods and 

social network analysis techniques from this study and discusses their implications across 
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the global event use-cases of interest. Finally, the chapter concludes with the Conclusion 

section (Section 3.5) and highlights potential future research opportunities. 

3.2. Background 

In the past 15 years, the digital data exhaust created by increasing OSN usage 

rates and the relative ease at which researchers can gain access to such data has led to the 

rapid emergence of social media research. As social media research norms continue to 

develop, studies have produced insights from OSN-extracted data on topics including 

disaster response (Avvenuti et al., 2016; Crooks et al., 2013; Sakaki et al., 2013), mental 

illness forecasting (Reece et al., 2017) and political polarization (Conover et al., 2011). 

The limitations and risks associated with using OSN data for research are well 

documented (Ruths & Pfeffer, 2014; Tufekci, 2014), but the adaptive nature of social 

bots participating in OSNs amplify these concerns and may lead to many additional 

research implications (Morstatter et al., 2016). 

The evidentiary rise of social bots in OSNs has led to a corresponding increase in 

research dedicated to bot detection (Murthy et al., 2016).The motivation and design 

methods associated with bots can vary dramatically, so a myriad of detection methods is 

necessary to account for the potential characteristics or activities attributable to certain 

social bots. In the following, we focus on two bot detection platforms, Botometer (Davis 

et al., 2016) and DeBot (Chavoshi et al., 2016), which exhibit very dissimilar design 

criteria but are both widely used in research due to the fact that they provide open access 

through web applications and application programming interfaces (APIs). 
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The Botometer (formerly named BotOrNot) bot detection platform employs a 

supervised ensemble Random Forest classification technique, which classifies potential 

Twitter accounts as bots according to six different classifiers based on more than 1,000 

extracted features from an associated Twitter account (Davis et al., 2016). Botometer 

assigns a probabilistic [0,1] score representing the likelihood that a Twitter account is a 

bot, with simple and sophisticated bots falling within score ranges of 0.8-1.0 and 0.5-0.7, 

respectively (Varol et al., 2017). The DeBot bot detection platform, on the other hand, 

relies upon an unsupervised warped correlation method to find correlated Twitter 

accounts that have more than 40 synchronous events within a given time window 

(Chavoshi et al., 2016). DeBot provides a binary positive or negative bot classification 

for a Twitter account at incredibly high levels of precision (Chavoshi et al., 2017), but at 

a cost of recall due to evaluating smaller populations of Twitter accounts (Morstatter et 

al., 2016). In contrast to Botometer, DeBot archives its detection results, which allows 

researchers to ascertain potential bot status for previously detected accounts from a 

historical perspective (Chavoshi et al., 2017). As Cresci et al. (2017) aptly asserts, 

individual bot detection methodologies are not designed to detect the wide range of 

operational social bot types, and they require continual refinement to keep pace with 

evolving bot sophistication. 

Social bot analysis is gaining traction as a means to better understand the impact 

of social bots and potentially provide essential feedback to bot detection research efforts. 

While social bot analysis currently lacks a formal definition, we submit an informal 

definition to be a multidisciplinary research effort employing quantitative and/or 
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qualitative methods with a stated purpose of better understanding detectable social bots 

and their behaviors in OSNs. Recent initial social bot analysis contributions examine the 

presence of detected social bots in Twitter conversations involving the 2016 U.S. 

presidential election (Bessi & Ferrara, 2016; Howard et al., 2018), the United Kingdom 

Brexit referendum (Duh et al., 2018; Howard & Kollanyi, 2016), the ongoing Ukrainian-

Russian conflict (Hegelich & Janetzko, 2016), financial trading markets (Cresci et al., 

2018, 2019) and the debates on vaccination (Broniatowski et al., 2018). These works 

have built the initial corpus of social bot analysis research, but much work is left to be 

done to introduce more advanced evaluation methods across greater use-cases of interest. 

One path to advancing these evaluation methods are social network analysis (SNA) 

techniques. 

Observable human and bot interactions in OSN platforms such as Twitter provide 

a prime opportunity to employ SNA techniques to evaluate the relative importance of 

detected bots in comparison to human users. A key finding in Boshmaf et al. (2013), 

Aiello et al. (2014) and Mønsted et al. (2017) is that social bot infiltration and subsequent 

interactions with human users in OSNs occur at surprisingly high rates. Learning from 

Cha et al. (2010) that relative influence in Twitter by users is not necessarily gained 

through popularity (i.e. associated follower volume), we can look to SNA techniques to 

derive influence in OSNs (Bakshy et al., 2011; Kwak et al., 2010; Riquelme & González-

Cantergiani, 2016; Weng et al., 2010). 

Initial social bot research employing advanced social network analysis techniques 

to evaluate bot influence in OSNs is limited but growing. Aiello et al. (2014) applies the 
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PageRank and Hypertext Induced Topic Search (HITS) link analysis algorithms to judge 

the relative importance of an experimental bot. In observing the Catalan referendum 

Twitter conversation, Stella et al. (2018) uses an average PageRank valuation to compare 

suspected bot and human accounts, while also showing that bot interactions targeting 

human accounts positively correlates with the in-degree of human-to-human interactions. 

Perna and Tagarelli (2018) present the most promising effort to quantify social bot 

relevance with their ensemble machine learning framework, Learning-To-Rank-Social-

Bots (LTRSB). The LTRSB framework aims to provide a unifying method to rank bots 

based on the extracted features present in the available bot detection platforms (e.g. 

Botometer, DeBot, BotWalk) (Perna & Tagarelli, 2018). 

OSN research has turned into a burgeoning field in academia that has risen in 

stride with the overall rapid advancement in global social media usage. The increasing 

reliance upon OSN platforms as primary news sources by today’s digitally-focused 

citizens, however, highlights the need to better identify and analyze the implications of 

social bot actors participating in online dialogue. Therefore, there is an immediate need to 

develop research methods to account for social bot implications within the larger field of 

OSN research. 

3.3. Enabling a Social Bot Analysis Framework 

This study employs and extends a social bot analysis framework that focuses on 

the aggregation of multiple harvested Twitter conversations and bot detection results to 

better characterize the relative influence and persistence of social bots in OSNs. This 

section describes the processes to transform these data, which enable the ensuing 
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ensemble application of comparative descriptive analysis methods and SNA techniques in 

this study. Figure 8 summarizes the processes comprising the social bot analysis 

framework and detailed subsections constitute the remainder of this section. Data 

Acquisition and Processing (Section 3.3.1) presents the details behind each OSN 

conversation of interest and the associated keywords serving as the input parameters to 

harvest tweets. Bot Enrichment (Section 3.3.2) describes the bot labeling process for each 

Twitter user in this study’s corpus. Retweet Network Construction (Section 3.3.3) 

explains the process to build network objects for each OSN conversation, while Data 

Analysis Overview (Section 3.3.4) concludes the section by introducing the analysis 

methods comprising the subsequent sections of this chapter. 

 

 
Figure 8: Social bot analysis methodological framework overview depicting the processes required to transform 
data to enable comparative analysis. OSN conversation data focused on three 2016 global events served as the 
example use cases, including: the 2016 U.S. Election (UE), the Ukraine Conflict (UC) and Turkish Censorship 
(TC). 

 

3.3.1. Data Acquisition and Processing 

In the same fashion as Chapter 2, three major global events from 2016 serve as 

the OSN conversation use cases in this chapter’s study. Focusing solely on Twitter, the 



49 
 

analysis examined harvested tweets from four weeks of different topical conversations, to 

include a political election (2016 U.S. Presidential Election), a war/conflict (2016 

Ukraine Conflict) and censorship (2016 Turkish Censorship). By analyzing varied topics, 

this study seeks to determine social bot behavioral differences across a diverse set of 

conversations. The following introduces and briefly summarizes the three OSN 

conversations of interest: 

 

U.S. Presidential Election (February 1-28, 2016): This OSN conversation 

observes four weeks of tweets in February 2016 based on keywords associated 

with the 2016 U.S. Presidential Election. During this period, the election’s 

primary races to determine the Republican and Democratic party candidates for 

the general election are well underway. The Republican primary race attracts 

considerable social media attention as then-candidate Donald Trump gains 

substantial momentum towards securing the Republican nomination over Texas 

Senator Ted Cruz. The Democratic race develops into a two-candidate race 

between former Secretary of State Hillary Clinton and Vermont Senator Bernie 

Sanders. 

 
Ukraine Conflict (August 1-28, 2016): This OSN conversation observes four 

weeks of tweets in August 2016 based upon keywords associated with the 

ongoing conflict between Ukraine and Russia. At this point in time, it has been 

fewer than three years since the anti-Russian Euromaidan protests and the 
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subsequent annexation of Crimea by Russia. Military bravado and political 

rhetoric between these nations increases dramatically as the 25th anniversary of 

Ukrainian independence from Russia approaches (August 24, 1991). 

 
Turkey Censorship (December 1-28, 2016): This OSN conversation observes four 

weeks of tweets based on keywords associated with Turkish government 

censorship of OSNs, specifically Twitter, in December 2016. Following a failed 

coup attempt against the sitting Turkish government in July 2016, government 

officials are keen to monitor and suppress messaging campaigns on OSNs. In 

December 2016, the Turkish government explicitly blocks Turkish citizens from 

using Twitter immediately following two events. The first block period takes 

place in the aftermath of the public assassination of Andrei Karlov, the Russian 

Ambassador to Turkey, on December 19, 2016. Turkey initiates a second block 

on December 23rd immediately following the release of a video that shows two 

Turkish soldiers being burned alive. 

 

Based on the OSN conversation overviews as described above, Table 3 displays 

the representative keywords used associated with each topic. These keywords serve as the 

filter parameter to harvest associated tweets via the Twitter Standard Search API. 

Overall, the keyword harvest yields more than 28.6 million total tweets produced by 

approximately 5 million unique accounts with a breakdown for each OSN conversation as 

follows: U.S. Presidential Election ~23.3 million tweets (~3.3 million unique accounts), 
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Ukraine Conflict ~1.3 million tweets (~0.4 million unique accounts) and Turkish 

Censorship ~4.0 million tweets (~1.3 million unique accounts). In order to account for 

the storage and computation demands for such a large data corpus, all initial data 

processing took place within an Amazon Web Services (AWS) EC2 t2.2xlarge instance 

consisting of 8 vCPUs and 32GiB of RAM. In doing so, the AWS instance enabled the 

rapid creation specified data objects for processing at the local level, while also 

maintaining a scalable compute/storage platform to account for future data expansion. 

 

Table 3: Key word list of terms for submission to Twitter Standard Search API for each OSN conversation of 
interest in this study 

U.S. Election* 
(Language) 

Ukraine Conflict 
(Language) 

Turkish Censorship 
(Language) 

trump 
(English) 

clinton 
(English) 

ukraine 
(English) 

киев 
(Russian) 

turkey 
(English) 

erdoganblockedtwitter 
(English) 

@realdonaldtrump 
(English) 

hillary 
(English) 

ukrainian 
(English) 

київ 
(Ukrainian) 

türkei 
(Turkish) 

erdoganblockstwitter 
(English 

cruz 
(English) 

sanders 
(English) 

украина 
(Russian) 

crimea 
(English) 

turkish 
(English) 

twitterisblockedinturkey 
(English) 

@tedcruz 
(English) 

bernie 
(English) 

russia 
(English) 

spetsnaz 
(English) 

erdogan 
(English) 

direntwitter 
(English) 

makeamericagreatagain 
(English) 

gop 
(English) 

russian 
(English) 

specnaz 
(English) 

erdoğan 
(Turkish) 

resisttwitter 
(English) 

trump2016 
(English) 

gopdebate 
(English) 

kiev 
(English) 

putin 
(English) 

turkeycoup 
(English) 

occupytwitter 
(English) 

*Keywords submitted for the 2016 U.S. Election skew heavily toward capturing tweets associated with then-candidate Donald Trump. We provide representative 
inclusion of other candidates but attempt to capitalize on the almost celebrity status of Mr. Trump by including additional Trump-related keywords. 

 

3.3.2. Bot Enrichment 

To individually label each unique Twitter account user in the tweet corpus as a 

human or a suspected bot, the bot enrichment step relied upon the open-source DeBot bot 

detection platform (Chavoshi et al., 2016). DeBot was the logical bot detection platform 

to use as the detection service proof of concept for this study since, as the Background 

section (Section 3.2) details, the archival nature of DeBot allows for the classification of 
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the historical Twitter user accounts. Further, DeBot, via its unsupervised warped 

correlation method, detects bots at much higher precision rate than other bot detection 

platforms (Chavoshi et al., 2017). While such precision comes at the cost of lower recall 

and increases the risk of false-negative bots (i.e. automatically assessing non-assessed 

accounts as human accounts) as Morstatter et al. (2016) notes, DeBot is the logical 

platform to initially test this social bot analysis framework given the historical nature of 

our Twitter corpus. As further stressed in the Conclusion section (Section 3.5), future 

improvements in social bot analysis research will rely upon the increased availability of 

additional bot detection algorithms to researchers which will allow for a more 

comprehensive coverage of all types of bots. 

The bot enrichment process entails extracting all unique tweet author names from 

this study’s tweet corpus and passing them for classification via the DeBot API3. The 

returns simply classify the tweet author name as a suspected social bot or not (i.e. a 

human author). Parsing scripts then automatically label each user account and merge the 

bot classification results with the tweet corpus. This process is easily extendible to 

account for other bot detection platform results. While beyond the scope of this study due 

to the historical nature of the tweet corpus, future work should also consider tracking the 

suspension/deletion statuses of accounts as the typical activities of social bot accounts 

make them primary targets of such actions by Twitter (Ferrara, 2017). 

DeBot ultimately labels 14,386 Twitter user accounts as likely social bots based 

on the classification results. This includes restricting positive bot labels to accounts only 

                                                
3

 Accessible at https://www.cs.unm.edu/~chavoshi/debot/. 
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evaluated by DeBot prior through the dates of the Twitter corpus. While this population 

represents just 0.29% of the total unique user accounts in the corpus, social bots are very 

active, and account for an over twentyfold share of the corpus of published tweet 

(1,966,623 tweets, or 6.80% of the total) and over thirtyfold share of the corpus of 

published retweets (1,495,388, or 8.84% of the total). Table 4 below provides weekly and 

cumulative corpus metrics for each of the OSN conversations of interest. At the specific 

OSN conversation level, the U.S. Election corpus shows much greater weekly and 

cumulative tweet and retweet percentage contributions from social bot user accounts in 

comparison to the Ukraine Conflict and Turkey Censorship corpuses, even though the 

relative percentage of total bot accounts is much smaller in the election corpus. Further, 

social bots account for a higher percentage of total retweets in comparison to tweets 

across all conversations. 

 

Table 4: Twitter corpus overview at the weekly and cumulative perspective for each OSN conversation 
in this study. 

Corpus Week(s) Tweets Retweets Users 

 

United States Election 
Bot Source (% of total) 

 
 

Week 1 
(Feb. 1-7, 2016) 

 

4,054,560 
 

2,280,176 
 

1,029,090 
315,540 (7.78%) 235,815 (10.34%) 4,229 (0.41%) 

    
 

Week 2 
(Feb. 8-14, 2016) 

4,991,968 2,802,381 997,107 

423,976 (8.49%) 326,808 (11.66%) 4,260 (0.43%) 

    
 

Week 3 
(Feb. 15-21, 2016) 

5,704,997 3,284,436 1,215,948 

474,652 (8.32%) 373,496 (11.37%) 4,314 (0.35%) 

    
 

Week 4 8,580,214 5,071,862 1,661,688 

(Feb. 22-28, 2016) 573,950 (6.69%) 442,897 (8.73%) 4,720 (0.28%) 

    
 

Cumulative 23,331,739 13,438,855 3,313,230 

 1,788,118 (7.66%) 1,379,016 (10.26%) 6,776 (0.20%) 

 

Ukraine Conflict 
Bot Source (% of total) 

    
 

Week 1 306,544 155,151 75,653 

(Aug. 1-7, 2016) 12,605 (4.11%) 8,059 (5.19%) 1,445 (1.91%) 

 
 

Week 2 

 

305,796 

 

141,193 

 

107,281 

(Aug. 8-14, 2016) 13,764 (4.50%) 8,272 (5.86%) 1,200 (1.12%) 

    
 

Week 3 381,146 210,047 143,684 

(Aug. 15-21, 2016) 17,012 (4.46%) 11,212 (5.34%) 1,647 (1.15%) 

    
 

Week 4 280,761 133,985 122,845 

(Aug. 22-28, 2016) 8,772 (3.12%) 5,247 (3.92%) 1,126 (0.92%) 

    
 

Cumulative 1,274,247 640,376 364,422 

 52,153 (4.09%) 32,790 (5.12%) 2,436 (0.67%) 

Turkey Censorship 
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Bot Source (% of total)  

Week 1 709,530 442,429 305,239 

(Dec. 1-7, 2016) 18,243 (2.57%) 11,976 (2.71%) 1,892 (0.62%) 
 
 

Week 2 

 

894,900 

 

591,209 

 

410,035 

(Dec. 8-14, 2016) 27,349 (3.06%) 18,189 (3.08%) 2,705 (0.66%) 
    
 

Week 3 1,486,289 1,036,436 635,535 
(Dec. 15-21, 2016) 44,833 (3.02%) 29,696 (2.87%) 3,807 (0.60%) 

    
 

Week 4 917,937 571,393 425,435 

(Dec. 22-28, 2016) 25,575 (2.79%) 17,379 (3.04%) 2,702 (0.64%) 
    
 

Cumulative 4,008,656 2,641,467 1,322,010 

 116,000 (2.89%) 77,240 (2.92%) 5,174 (0.39%) 
    

 

3.3.3. Retweet Network Construction 

The practice of retweeting can produce a diverse range of conversational 

implications, but Twitter users that deliberately retweet are more likely trying to engage 

in conversation or directly share information (Boyd et al., 2010). In this study, retweets 

account for 58.4% (~16.7 million) of the total tweet corpus, with the specific 

conversation retweet densities of 57.6%, 50.3% and 65.9% for the U.S. Election, the 

Ukraine Conflict and the Turkish Censorship conversations, respectively. The act of a 

retweet between two Twitter users (i.e. nodes) results in an observable directed network 

connection (i.e. an edge). Each directed edge receives a weight value of ‘1’ for each 

initial directed retweet connection between two users and the edge weight increases for 

each additional number of retweets between the appropriate directional pair of users. 

A retweet serves as the primary artifact to extract a ‘node-edge’ network construct 

from a Twitter conversation and ultimately enables the application of the SNA methods 

introduced in the subsequent Data Analysis Overview section (Section 3.3.4). In total, 

each four-week OSN conversation of interest produces a fairly large cumulative directed 

retweet network to analyze: 2,431,030 nodes / 8,437,925 edges (U.S. Election), 238,714 
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nodes / 509,614 edges (Ukraine Conflict) and 1,030,381 nodes / 2,088,524 edges 

(Turkish Censorship). 

3.3.4. Data Analysis 

The following concludes the introduction of the social bot analysis 

methodological framework by discussing the last step, data analysis. While data analysis 

is an entirely broad characterization of a step, it is the noted culmination point of 

acquisition, normalization, fusion and transformation of the harvested Twitter 

conversation data that enables us to address the overall research questions by applying 

the methods put forth in the subsequent sections comprising the Analysis Results and 

Discussion (Section 3.4) of this chapter’s study. Furthermore, as this chapter seeks to 

contribute to the expansion of social bot analysis techniques, it does not portend that the 

proposed analysis methods are comprehensive, but merely foundational building blocks 

paving the way for future application methods. 

3.4. Analysis Results and Discussion 

This section presents the findings of the comparative descriptive statistical 

analysis methods and social network analysis techniques of this study and discusses the 

resulting implications of social bot evidence across the global event conversations of 

interest. By analyzing multiple significant global OSN conversations this analysis 

expands current social bot analysis literature. Further, the deployed methodological 

framework shows how the adoption of SNA techniques can provide quantifiable and 

comparative results to determine the relative impact or influence of suspected social bots 

in OSN conversations. Bot and Human User Communication Participation (Section 3.4.1) 
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compares the communication trends of human and bot Twitter users by observing 

participation volume and identifying the proclivity to engage with certain types of users. 

Temporal Persistence of Bot Centrality Rankings (Section 3.4.2) conducts centrality 

measurements within the retweet networks and evaluates the persistence of social 

centrality rankings over time. This section concludes with Prominent Bot Ego Networks 

(Section 3.4.3) dissecting the associated ego networks of the highest ranking eigenvector 

centrality bot from each OSN conversation. 

3.4.1. Bot and Human User Communication Participation 

The analysis first compares the communication participation patterns of bot and 

human users by examining the associated tweet and retweet volume rates. Table 5 

summarizes the corresponding average and median volume rates across all three OSNs. 

We see social bots exhibit much higher average and median participation rates, which is 

not surprising given the large volume of contributions made by such a small bot 

population. Of interest though, we see that the top human user account tweet volumes 

dominate the top bot account tweet volumes across all OSNs, while top bot account 

retweet volumes are dominant except in the case of the Turkish Censorship OSN. 
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Table 5: Overall conversation tweet contribution volumes by human and likely social bot users within each OSN 
conversation corpus of interest. 

Corpus User Type Average User 
Tweet Volume 

Median User Tweet 
Volume 

Min/Max User 
Tweet Volume 

(# of users) 

Average User 
Retweet Volume 

Median User  
Retweet Volume 

Min/Max User  
Retweet Volume 

(# of users) 

U.S. 
Election 

Humans 6.5 1.0 

Min: 1 
(1,920,647 users) 

5.4 1.0 

Min: 1 
(1,428,380 users) 

Max: 45,542 
(1 user) 

Max: 8,016 
(1 user) 

Bots 263.9 13.0 

Min: 1 
(1,032 users) 

267.0 10.0 

Min: 1 
(950 users) 

Max: 19,905 
(1 user) 

Max: 19,905 
(1 user) 

Ukraine 
Conflict 

Humans 3.4 1.0 

Min: 1 
(231,623 users) 

2.8 1.0 

Min: 1 
(146,879 users) 

Max: 28,072 
(1 user) 

Max: 1,265 
(1 user) 

Bots 21.4 4.0 

Min: 1 
(569 users) 

16.8 3.0 

Min: 1 
(523 users) 

Max: 2,623 
(1 user) 

Max: 2,508 
(1 user) 

Turkish 
Censorship 

Humans 2.9 1.0 

Min: 1 
(882,172 users) 

2.7 1.0 

Min: 1 
(647,261 users) 

Max: 10,065 
(1 user) 

Max: 28,072 
(1 user) 

Bots 22.4 4.0 

Min: 1 
(1,416 users) 

17.3 4.0 

Min: 1 
(1,331 users) 

Max: 1,936 
(1 user) 

Max: 4,966 
(1 user) 

 

Figure 9 presents the cumulative total tweet contribution percentages by human 

and bot users over the four weeks of harvested tweets for each OSN conversation. The 

U.S. Election (Figure 9a) and the Ukraine Conflict (Figure 9b) conversations both exhibit 

a gap between bot and human contribution percentages that begins to widen at 

approximately two weeks into the conversation and closes over the final days. A similar 

gap between users does not exist in the Turkish Censorship conversation (Figure 9c), 

while its initial conversation trajectory is much shallower until a spike in contributions 

takes place corresponding to the onset of the first censorship event in Turkey on 

December 19, 2016. This latter contribution spike, coupled with lower overall social bot 

tweet/retweet volumes and participation rates observed in Table 4 and Table 5, might be 

symptomatic of the Turkish Censorship conversation being an emergent topic during the 
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period of observations, as opposed to the already established U.S. Election and Ukraine 

Conflict conversations. 

 

 
Figure 9: Cumulative total tweet contributions over the four-week Twitter conversation span for: (a) U.S. 
Election (February 1-28, 2016), (b) Ukraine Conflict (August 1-28, 2016), (c) Turkish Censorship (December 1-
28, 2016). 

 

The volume of in-group and cross-group communication within OSN retweet 

conversations provides an additional opportunity to classify communication patterns. 

This study defines in-group communication as retweets between like types of users (i.e. 

humans retweeting humans and bots retweeting bots), while cross-group communication 

denotes retweets between different types of users (i.e. humans retweeting bots or bots 

retweeting humans). In terms of total retweet volume percentage for each conversation, 

humans dominantly retweet other human accounts at total volume rates of 84.92% (U.S. 

Election), 92.12% (Ukraine Conflict) and 94.74% in (Turkish Censorship), while bot in-

group retweet rates occur at relatively low rates of 1.38% and lower. To overcome the 

human dominance volumes, retweet interactions are normalized by average edge weight 
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of specified group pairings. Figure 10 summarizes the resulting average weighted edges 

of all inter-group and cross-group communication pairs for each of the OSN 

conversations of interest. We see that bots, from an average edge weight perspective, 

engage in higher intra-group and cross-group communication rates across all three 

conversations, with the U.S. Election conversation showing the highest cross-group and 

intra-group engagement edge weights of 1.96 and 2.46, respectively. 

 

 
Figure 10: In-group and cross-group retweet communication average edge weights of human (blue) and social 
bot (red) users within each OSN conversation: (a) U.S. Election, (b) Ukraine Conflict and (c) Turkish 
Censorship. Arrows express communication directionality (e.g. bot directed engagements with human accounts 
with an average retweet edge weight of 1.96 for the U.S. Election OSN). 
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To further place these overall in-group and cross-group interactions into context, 

Table 6 presents the average retweet edge weight for all communication pairings over 

time in. The results show that from the weekly and cumulative perspective social bots 

engage with their in-group bot and cross-group human edge pairs at higher rates, except 

for the third week of the Turkish Censorship conversation. These across the board higher 

rates suggest social bots, on average, are hyper-social in comparison to humans: they are 

much more persistent in attempting to initiate contact with other users in Twitter as 

opposed to average human users. 

 

Table 6: Average retweet edge weight for all inter-group and cross-group communications by human 
and bot users for each OSN conversation. 
   Average Retweet Edge Weight  

 Corpus Week(s) Bot-to-Bot Bot-to-Human Human-to-Bot Human-to-Human 

U.S. Election 

Week 1 
(Feb. 1-7, 2018) 2.04 1.83 1.44 1.29 

Week 2 
(Feb. 8-14, 2018) 2.61 2.08 1.69 1.47 

Week 3 
(Feb. 15-21, 2018) 2.68 1.94 1.61 1.32 

Week 4 
(Feb. 22-28, 2018) 2.42 1.96 1.58 1.35 

Cumulative 2.46 1.96 1.58 1.35 

Ukraine Conflict 

Week 1 
(Aug. 1-7, 2018) 3.02 1.47 1.39 1.15 

Week 2 
(Aug. 8-14, 2018) 3.84 1.71 1.55 1.21 

Week 3 
(Aug. 15-21, 2018) 2.42 1.32 1.31 1.12 

Week 4 
(Aug. 22-28, 2018) 2.64 1.58 1.36 1.15 

Cumulative 2.92 1.48 1.38 1.15 

Turkish Censorship 

Week 1 
(Dec. 1-7, 2018) 2.78 1.46 1.28 1.21 

Week 2 
(Dec. 8-14, 2018) 1.85 1.47 1.26 1.16 

Week 3 
(Dec. 15-21, 2018) 1.88 1.38 1.25 1.14 

Week 4 
(Dec. 22-28, 2018) 2.23 1.47 1.48 1.19 

Cumulative 2.03 1.43 1.30 1.17 
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3.4.2. Temporal Persistence of Bot Centrality Rankings 

Degree centrality is the total number of direct edges a node shares with other 

nodes in a network and does not recognize edge directionality. In a retweet network, 

degree centrality is synonymous with a Twitter user’s popularity in the network. In-

degree and out-degree centrality are simply degree centrality that take into account edge 

directionality. Nodes with higher in-degree centrality receive more directional edge 

contact from other nodes, while higher out-degree centrality signifies nodes that initiate 

more directional edge contact. In a retweet network, higher out-degree centrality equates 

to a Twitter user initiating more retweets, while higher in-degree means a Twitter user 

has more users retweeting its original messages. Eigenvector centrality is the weighted 

sum of all direct and indirect edges for a node that takes into account the individual 

degree centrality of each node in the network (Bonacich, 2007). From a retweet network 

perspective, eigenvector centrality is a global measure of influence within a conversation. 

Betweenness centrality measures the propensity of a given node falling on the shortest 

path between all other node pairs in a network (Freeman, 1977). We can view the 

betweenness centrality of a retweet network node as a measure of communication that 

flows through that specific node. Finally, PageRank is a derivation of eigenvector 

centrality, but places more importance on the degree value of the nodes that initiate edges 

with a node of interest (Brin & Page, 1998). Therefore, in a retweet network, a node with 

higher PageRank value receives more retweets from Twitter users that have greater 

popularity in the network. 
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To determine the relative importance of social bot users compared to human 

users, the study calculated the chosen centrality measures for the entire duration of each 

OSN conversation using the applicable centrality functions provided in the networkx 

Python package (Hagberg et al., 2008). Scale tests by the authors on larger Twitter 

datasets of at least twice the volumes of the events in this study (i.e. ~ 50 million tweets) 

comprising networks with cumulative edge volumes that are three times larger (i.e. ~25 

million edges) returned efficient centrality processing times (i.e. PageRank calculation 

was most time intensive calculation at ~5 min 20 sec) within in a cloud environment with 

the same specifications detailed in the “Data acquisition and processing” section (Section 

3.3.1). The rank order of the centrality results present the density of social bots within the 

top-N centrality ranking positions (where, N = 1000 / 500 / 100 / 50). The results (Figure 

11) clearly show that suspected bot users, while representing only 0.28% of all corpus 

users, account for a significant number of high centrality rankings, especially out-degree 

and eigenvector centrality rankings. The prevalence of social bots among the top ranks of 

out-degree nodes shows the above-mentioned hyper-social attitude of bots: they attempt 

to induce interaction by retweeting other users at a significantly higher rate that their 

human counterparts. In terms of influence, the results show that bots infiltrate some of the 

highest eigenvector centrality rankings within the U.S. Election and the Ukraine Conflict 

conversations, where bots account for 36.0% and 30.0% of the top-50 influential 

accounts, respectively. These results are quite substantial given the employment of just 

one bot detection source. 
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Figure 11: Social bot user evidence within the Top-N (where, N = 1000 / 500 / 100 / 50) [(a) degree (b) in-degree 
(c) out-degree (d) eigenvector (e) betweenness (f) PageRank] centrality rankings for the U.S. Election (blue), the 
Ukraine Conflict (green) and the Turkish Censorship (red) OSN conversations. Each bar chart represents the 
total social bot percentage of the range of accounts with a raw social bot account atop each bar. 

 

To evaluate the temporal persistence of social bot centrality rankings, we 

recalculate and directly compare centrality rankings in a cumulative fashion over the four 

weeks for each OSN conversation. In doing so, we are able to analyze the centrality 

ranking staying power of identified social bot accounts over time, as opposed to an 

overall snapshot of the entire corpus timeframe. Figure 12 (U.S. Election), Figure 13 

(Ukraine Conflict) and Figure 14 (Turkish Censorship) present a consolidated 

visualization depicting the density of bot (red block) and human (blue block) users as 

each conversation progresses on a weekly cumulative basis, while also annotating the 

individual accounts within each block. 
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Figure 12: Centrality ranking of top-25 bot (red) and human (blue) users over a cumulative four-week period 
for the U.S. Election OSN conversation for six centrality measures: (1) degree, (2) in-degree, (3) out-degree, (4) 
eigenvector, (5) betweenness and (6) PageRank. 
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Figure 13: Centrality ranking of top-25 bot (red) and human (blue) users over a cumulative four-week period 
for the Ukraine Conflict OSN conversation for six centrality measures: (1) degree, (2) in-degree, (3) out-degree, 
(4) eigenvector, (5) betweenness and (6) PageRank. 
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Figure 14: Centrality ranking of top-25 bot (red) and human (blue) users over a cumulative four-week period 
for Turkish Censorship OSN conversation for six centrality measures: (1) degree, (2) in-degree, (3) out-degree, 
(4) eigenvector, (5) betweenness and (6) PageRank. 
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The centrality ranking persistence of suspected bot users is visually evident over 

time across the cumulative conversations. The results show persistent bot density within 

each centrality ranking with especially high density associated with the out-degree and 

eigenvector centralities for the U.S. Election and the Ukraine Conflict conversations. This 

includes social bots achieving extremely high-rankings to include two of the top-5 out-

degree, eigenvector and centrality rankings within the Ukraine Conflict conversation 

(Figure 13) and seven and four of the top-10 out-degree and eigenvector centrality 

rankings, respectively, within the U.S. Election conversation (Figure 12). 

Observing the classification results of popular news source accounts (e.g. @CNN, 

@thehill, @AP) highlights the shortcomings of using only one bot detection service. For 

example, DeBot classifies @thehill as an automated bot account, but does not for @AP 

or @CNN. One can only assume, therefore, that coverage by DeBot has not evaluated 

those accounts by the time of this study. The account @FoxNews was later evaluated 

after this study by DeBot and determined to be an automated account on May 5, 2018, 

but this account maintained its original label given the evaluation dates of this study. 

Further extensions of this proof-of-concept work should include additional bot detection 

services, while consideration should be taken into potentially removing verified accounts 

from evaluation. 

3.4.3. Prominent Bot Ego Networks 

The following final Analysis Results and Discussion section (Section 3.4) 

investigates the ego networks of the highest ranking eigenvector centrality social bots 

from the U.S. Election (Twitter ID: 732980827, Username: ChristiChat) and Ukraine 
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Conflict (Twitter ID: 3346642625, Username: justfightX) OSN retweet conversations. No 

Turkish social bots achieved a high sustained eigenvector centrality ranking, so Turkish 

bots are excluded from consideration in this section. The ego_graph function provided in 

the Python networkx package derives the ego-networks based on immediately adjacent 

neighbors for each bot node of interest. The Bot and Human User Communication 

Participation section (Section 3.4.1) directly compares the extracted observable retweet 

network characteristics of these most relatively influential social bot users. Figure 15 

provides a proportionally-scaled ego network that depicts the inter-group and cross-group 

neighbor interactions of these top eigenvector social bots. While both of these influential 

bots engage in differing levels of inter-group communication with other bots and cross-

group communication with humans, both the U.S. Election and the Ukraine Conflict top 

eigenvector bots are able to establish in-degree and out-degree retweet connections with 

other top eigenvector ranking users. Further, each of these bot accounts are able to 

successfully solicit attention from human users that results in humans accounting for 

retweet rates 69.84% and 45.12% within the U.S. Election and Ukraine Conflict ego 

networks, respectively. 
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Figure 15: Ego network retweet patterns for the top-ranking eigenvector centrality bot accounts from the (a) 
U.S. Election and (b) Ukraine Conflict OSN conversation. 

 

3.5. Conclusion 

This chapter presented novel extensions of the social bot analysis methods 

presented in Chapter 2 and contributes to the expansion of the emergent area of social bot 

research. The unique social bot analysis methodological framework put forth enables the 

inclusion of additional bot detection platform services, while also opening the analysis 

window to account for new OSN conversations of interest. Through the lens of three 

major global event OSN conversations in 2016, the results confirmed the hyper-social 
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nature of bots: suspected social bots users make far more attempts on average than human 

users to initiate contact with other users via retweets. Social network analysis centrality 

measurements discover that social bots, while comprising less than 0.3% of the total user 

population, display a profound level of structural network influence by ranking 

particularly high among the top eigenvector centrality users within the U.S. Election and 

the Ukraine Conflict OSN conversations. Further, the results show that social bots exhibit 

temporal persistence in centrality ranking density across all of the OSN conversations. 

While this chapter’s study reports promising findings, it must account for its 

many limitations. Relying upon a single bot detection platform helped validate this 

study’s applied network analysis methods, but a sole source detection algorithm is not 

sufficient for overcoming known specific limitations that currently challenge all open-

source bot detection results (Cresci et al., 2017; Subrahmanian et al., 2016). Also, solely 

using data from a single OSN platform induces a litany of associated biases to include 

representativeness and sampling bias shortcomings (Tufekci, 2014). Ruths and Pfeffer 

(2014) further expands on social media data issues, while also singling out the inability to 

properly determine the presence of bots. While it is also in the spirit of this study to help 

improve overall bot detection methods, it is a reasonable perspective to state the current 

difficulties to determine ground truth effectiveness in detecting bots (Chavoshi & Mueen, 

2018; Cresci et al., 2017; Subrahmanian et al., 2016). Further, a binary classification 

between bots and humans is not entirely sufficient as cyborg accounts also exist, which 

Chu et al. (2012) coins as bot-assisted human or human-assisted bot account. 
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Immediate primary extensions of this work should expand beyond the proof of 

concept framework demonstrated here and aggressively seek the inclusion of additional 

bot detection algorithms for a more holistic bot labeling perspective. While there 

currently exists a limited number of open-source bot detection algorithms, a 

comprehensive collection of detection sources would ideally include access to the 

continually improving pre-existing detection platforms (Beskow & Carley, 2018; 

Chavoshi et al., 2017; Varol et al., 2017), as well as recent novel detection algorithms 

based on detecting evolving bot signatures (Cresci et al., 2018; Mazza et al., 2019). 

Further extensions of this work could aim to incorporate additional social media sources 

beyond Twitter as Hecking et al. (2018) describe in a cross-media information diffusion 

example sourcing data from Twitter, Wikipedia edits and other web-based sources. In the 

case of this study, if the analysis does not observe centrality measures beyond just degree 

and PageRank centrality, then we miss the important social rankings made available via 

out-degree and eigenvector centrality. Therefore, it is important to maintain an expansive 

centrality analysis to account for social bots by potentially incorporating additional 

centrality measures, such as percolation centrality (Piraveenan et al., 2013), that may 

perform well in ranking social bot prominence within networks. On its own, this study is 

a unique stepping stone that adds to the growing research efforts focused on 

understanding social bot behavior in global event conversations. 
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CHAPTER 4. BOTS FIRED: EXAMINING SOCIAL BOT EVIDENCE IN 
ONLINE MASS SHOOTING CONVERSATIONS 

4.1. Introduction 

Mass shootings have become their own distinct phenomenon separate from the 

likes of general homicide and mass murder due to their continued prevalence and the 

natural draw of media attention to extreme events (Schildkraut et al., 2018). While not a 

formally defined government statistic, a mass shooting has generally been defined as an 

incident resulting in the death of four or more victims, not including the killer (Dahmen 

et al., 2018; Silva & Capellan, 2019; Towers et al., 2015). Moffat (2019) tallies that 620 

people have been killed and more than 1,000 wounded from 70 mass shooting events 

beginning with the Columbine shooting in 1999 and concluding with the Parkland 

shooting in 2018. While the media reporting environment has changed drastically since 

the Columbine shooting with the advent of online social networks (OSNs) driven by the 

Web 2.0 paradigm, the general public’s interest in mass shooting coverage remains high 

given the recent historical increase in mass shootings and the associated debate on the 

polarizing topic of gun control (Newman & Hartman, 2017). Media research has shown 

that particular newsworthy events, such as mass shootings, lend themselves to journalistic 

framing, which is the purposive highlighting of different attributes of a single event to 

attract or sustain interest (Chyi & McCombs, 2004). Guggenheim et al. (2015) points to a 

reciprocal relationship in framing mass shooting narratives between traditional and OSN 
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media sources, but also highlights how OSN content creators and users transcend the 

typical journalistic gatekeeping norms of traditional media by openly expressing 

emotional reactions. 

In the United States, OSNs recently surpassed traditional print newspapers as a 

primary source for news and continue to gain traction on other traditional news sources 

such as television and radio (Mitchell, 2018). Mahabir et al. (2018) describes the current 

news ecosystem, comprised of both traditional news sources and online platforms (e.g. 

news websites/apps and social media), as highly participatory and fostering digital 

activism. Edwards et al. (2013) defines digital activism as an organized public effort 

orchestrated by supporters using digital media to make collective claims against a target 

authority. Given the highly contentious policy debates surrounding gun control that are a 

typical conversational byproduct in the immediate aftermath of a mass shooting event 

(Merry, 2016; Newman & Hartman, 2017), OSN conversations about mass shootings are 

a salient topic for digital activists. While a convenient means to access and publish 

content, OSNs have proven to be complicit in spreading and amplifying manipulated 

and/or blatantly falsified narratives (Bolsover & Howard, 2017; Lazer et al., 2018; 

Starbird, 2017; Vosoughi et al., 2018). A primary factor contributing to the skewed 

narratives in OSNs is the existence of vast populations of social media accounts 

controlled by social bots (Boshmaf et al., 2013). 

Social bots are computer algorithms that automatically produce content and 

interact with human OSN users (Ferrara et al., 2016). Social bot pervasiveness has led to 

numerous research efforts focused on developing novel bot detection methods (Beskow 
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& Carley, 2018.; Chavoshi et al., 2016; Davis et al., 2016) and examining how bots 

spread information (Aiello et al., 2014; Mønsted et al., 2017; Shao et al., 2018). Further 

introductory works have analyzed the presence of social bots in various polarizing OSN 

conversations such as elections (Bessi & Ferrara, 2016; Howard & Kollanyi, 2016), 

conflict (Schuchard et al., 2019) and vaccinations (Broniatowski et al., 2018; 

Subrahmanian et al., 2016). 

While some promising recent works have touched in various ways on the topic of 

social bots in OSN mass shooting conversations in various forms (Kitzie et al., 2018; 

Nied et al., 2017; Starbird, 2017), there is much depth that needs to be added through 

quantitative social bot analysis. In light of this, this chapter contributes to the literature by 

examining suspected social bots within Twitter conversations associated with four recent 

mass shooting events: the Las Vegas concert shooting (October 1, 2017), the Sutherland 

Springs church shooting (November 5, 2017), the Parkland school shooting (February 14, 

2018) and the Santa Fe school shooting (May 18, 2018). Specifically, this study analyzed 

the presence and contribution patterns of social bots in relation to human users in an 

effort to determine potential cross-conversational norms of bot behavior. The applied 

analysis sought to quantify and classify the mentioning rate of previous mass shooting 

events in subsequent events to potentially classify certain events with persistent salience. 

Finally, social network analysis centrality measures measured the relative structural 

importance of social bots in relation to other users within each of the OSN conversation 

networks. 
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This study’s results show that social bots participate and contribute to online mass 

shooting conversations in a manner that is distinguishable from human contributions. The 

cumulative conversation contribution rates of bots outpace humans throughout the 

Sutherland Springs and Santa Fe conversations. In the conversations involving the highly 

salient Las Vegas and Parkland shootings, human contributions initially outpace social 

bots, but an inversion takes place within the first week of each conversation as social bots 

become the dominant contributor for the remainder of the conversation. In terms of cross-

group communications, human accounts engaged suspected bot accounts at higher rates 

than bots engaged humans in all of the conversations. Finally, bots, while accounting for 

fewer than 1% of all corpus users, displayed significant prominence in the conversation 

networks, densely occupying many of the highest eigenvector and centrality measure 

rankings, to include 82% of the top-100 eigenvector values of the Las Vegas retweet 

network.  

The remainder of this chapter is as follows. First, the Background section (Section 

4.2) presents relevant associated literature. Next, the Data and Methods section (Section 

4.3) presents a detailed overview of the data acquisition and processing steps, as well as 

introducing the methods employed in the study. The Results and Discussion section 

(Section 4.4) presents the findings of applied methods to answer the study’s research 

questions, followed by the Conclusion section (Section 4.5). 

4.2. Background 

A recent study by Dahmen et al. (2018) found that a majority of journalists agreed 

that the traditional news coverage of mass shooting events has become routine due to 
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perceived formulaic reporting. However, some mass shooting events garner more initial 

and sustained attention than others, and traditional media studies have focused much 

effort on identifying how certain media reports are able to succeed at this (Schildkraut et 

al., 2018; Silva & Capellan, 2019). One means of achieving both initial and sustained 

attention is through dynamic frame changing, or emphasizing different aspects of a news 

event over its life span (Chyi & McCombs, 2004). In terms of mass shootings, Muschert 

and Carr (2006) applied and extended the dynamic framing concept by analyzing frame 

changes over the course of media reporting on nine school shootings from 1997 to 2001. 

This resulted in the ability to directly compare the highly salient Columbine school 

shooting event with eight less salient shooting events (Pearl, MS; Paducah, KY; 

Jonesboro, AR; Edinboro, PA; Springfield, OR; Conyers, GA; Santee, CA; El Cajon, 

CA) using the frame-changing spatial (community, regional, societal) and temporal (past, 

present, future) categorizations (shown in Figure 16) of Chyi and McCombs (2004). 

Schildkraut and Muschert (2014) extended Muschert and Carr (2006) to include the 

Sandy Hook Elementary School shooting in an effort to be able to directly compare to the 

Columbine shooting to another mass shooting of extremely high salience. 
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Figure 16: Two-dimensional analytical framework of Chyi and McCombs (2004) for comparing frame changes 
across similar media events. Source of figure: Schildkraut and Muschert (2014) 

 

Although emerging from traditional media research, the concept of media framing 

serves as a primary analysis method in OSN conversations involving mass shootings as 

well. Guggenheim et al. (2015) examined the framing of mass shooting events in both 

traditional and OSN media coverage and concluded that there is a reciprocal relationship 

between the two. That is, tweets respond to traditional media reports just as traditional 

media reports respond to tweets. To account for additional narrative contributors, Merry 

(2016) extended the concept of mass shooting narrative framing to include framing by 

interest groups in OSN Twitter conversations (i.e. National Rifle Association, Brady 

Campaign to Prevent Gun Violence). In other work, Starbird (2017) examined the 

propagation and shaping of alternative narratives emanating from tweeted URLs related 

to mass shooting events, exposing how OSN interactions can enable a conspiratorial 

ecosystem of alternative media. 
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Overall, Varol et al. (2017) estimated that social bots account for 9-15% of all 

Twitter user accounts. This relatively large bot population estimate and the associated 

unknown implications of human users engaging with non-humans in Twitter have led to 

the rapid emergence of bot detection and classification research. While the ever-

increasing sophistication of social bots mimicking human behavior has proven to be quite 

difficult phenomenon for researchers to keep pace with (Cresci et al., 2017), multiple bot 

detection research platforms have been launched to aid researchers in the overall 

detection and analysis of social bots in Twitter. Botometer4, formerly named BotOrNot, 

is a widely used open-source bot detection platform that employs a supervised random 

forest detection algorithm against more than 1,100 extracted unique account features 

(Davis et al., 2016; Varol et al., 2017). Botometer then returns a classification score on a 

normalized scale identifying an account as more ‘human’ or ‘bot-like’. Chavoshi et al. 

(2016) developed the open-source DeBot5 bot detection platform that employs an 

unsupervised warped correlation bot detection algorithm. Rather than relying on feature 

extraction, the DeBot platform provides a binary bot classification based solely on the 

synchronous temporal activities of Twitter accounts. 

While there is ample room for growth beyond the promising initial social bot 

analysis research identified in the Introduction section (Section 4.1) of this chapter, 

substantial introductory work is still needed to be started in analyzing bot activity in OSN 

conversations involving mass shootings. Kitzie et al. (2018) has produced the most recent 

bot-centric research covering mass shootings. It examined the retweet patterns and 
                                                
4

 Botometer is accessible at https://botometer.iuni.iu.edu. 
5

 DeBot is accessible at https://www.cs.unm.edu/~chavoshi/debot/. 
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associated narratives of more than 400 social bot accounts—identified by submitting a 

random sample of total user accounts for classification via Botometer—which were 

active in the Parkland school shooting Twitter conversation. Nied et al. (2017) conducted 

an exploratory analysis by hand-labeling suspected bots and examining alternative 

narratives—derived from the alternative narrative work of Starbird (2017)—in detected 

community clusters of OSN conversations of late 2015 discussing the Paris Attacks and 

the Umpqua Community College mass shooting. 

4.3. Data and Methods 

To address the research goals of discovering potential behavioral norms of social 

bots and the relative importance of bot accounts in relation to regular human contributors 

within and across mass shooting OSN conversations, this study relied upon the mixed 

methodology social bot analysis framework put forth in Schuchard et al. (2019). Figure 

17 presents that adopted framework with annotated modifications to account for mass 

shooting events, while the following subsections provide a detailed overview describing 

each stage of the framework. First, Data Acquisition and Processing (Section 4.3.1) 

introduces the data sources and the processing steps used to transform the mass shooting 

event conversation data and enable the subsequent applied analysis methods. Bot 

Enrichment (Section 4.3.2) details the bot identification and labeling process of the 

harvested Twitter user accounts. Retweet Network Construction (Section 4.3.3) outlines 

the steps taken to create a network graph object of the retweet network for each OSN 

mass shooting conversation. Finally, Data Analysis (Section 4.3.4) introduces the 
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methods employed to comparatively analyze the evidence of suspected bots across this 

study’s OSN mass shooting conversations of interest. 

 

 
Figure 17: Overview of social bot analysis framework illustrating methodological steps taken to analyze social 
bots within online social network conversations involving mass shooting events from October 2017 through May 
2018. 

 

4.3.1. Data Acquisition and Processing 

Four mass shooting events that took place within an eight-month period from 

October 2017 through May 2018 serve as the mass shooting use-cases analyzed in this 

study. While additional shooting events meeting the generally accepted mass shooting 

threshold of at least four or more deaths in a single event (Dahmen et al., 2018; Silva & 

Capellan, 2019; Towers et al., 2015) occurred during this period, the analysis deliberately 

focus on events that resulted in 10 or more deaths, since total victim counts serve as the 

most salient predictor of increased media coverage (Schildkraut et al., 2018). Table 7 lists 

these events in chronological order along with additional pertinent details. 
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Table 7: Summary of mass shooting events resulting in more than 10 deaths from October 1, 2017 through May 
18, 2018. 
EVENT DATE KILLED INJURED DESCRIPTION 

Las Vegas Concert Shooting 

(Las Vegas, Nevada) Oct. 1, 2017 59 418 

1 On October 1, 2017, gunman Stephen Paddock 
opened fire from his Las Vegas Mandalay Bay hotel 
room onto the Route 91 Country Musical Festival 
crowds killing 58 and himself, while injuring 418. 

Sutherland Springs Church 
Shooting 

(Sutherland Springs, Texas) 
Nov. 5, 2017 27 20 

2 On November 5, 2017, gunman Devin Kelley fired 
into the congregation of the Sutherland Springs First 
Baptist Church, killing 26 and himself, while injuring 
20. 

Parkland School Shooting 

(Parkland, Florida) Feb. 14, 2018 17 17 
3 On February 14, 2018, gunman Nikolas Cruz opened 
fire within the Marjory Stoneman Douglas High 
School in Parkland killing 17, while injuring 17. 

Santa Fe School Shooting 

(Santa Fe, Texas) 
May 18, 2018 10 13 

4 On May 18, 2018, gunman Dimitrios Pagourtzis 
opened fire within the Santa Fe High School in Santa 
Fe killing 10, while injuring 13. 

https://www.nytimes.com/interactive/2018/10/01/us/las-vegas-shooting-victims.html 
https://www.cnn.com/2017/11/05/us/texas-church-shooting/index.html 
https://www.cbsnews.com/feature/parkland-florida-school-shooting/ 
https://www.cnn.com/us/live-news/santa-fe-texas-shooting 

 

To derive the associated OSN conversations, the study examined harvested 

streaming tweets from the available Twitter public application programming interface 

(API) for a one-month period (28 days) following the date of each mass shooting event. 

In an effort to maintain a consistent collection paradigm for each event, the collection 

effort used Twitter API request parameters which relied on the same filter keywords: 

shooting, shot, shots, gunman, gunfire, shooter and activeshooter. The resulting corpus 

harvest for all four mass shooting events returned approximately 46.7 million tweets 

produced by approximately 13.6 million unique Twitter users. Table 8 provides volume 

metrics for each mass shooting event. We should note that the overall Parkland collection 

effort, although it employed the same search parameters and method, returned a 

substantially smaller total tweet volume due to the fact that the collection took place in a 

different storage and compute environment with different resource constraints. 
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4.3.2. Bot Enrichment 

The open-source DeBot bot detection platform (Chavoshi et al., 2016), which 

enables retrospective analysis of historically detected bots through an archival repository, 

served as the primary source for labeling likely social bot accounts within the harvested 

tweet corpus. This is because the historical dates of the tweets were beyond the temporal 

classification constraint of the Botometer open-source bot detection platform (Davis et 

al., 2016). DeBot has proven to classify bots at extremely high precision rates in relation 

to other social bot detection efforts, including Twitter (Chavoshi et al., 2016; Chavoshi et 

al., 2017). While DeBot classifies bots with great precision, one should acknowledge, in 

agreement with Morstatter et al. (2016), that such high precision comes at a cost to recall 

performance. 

The identification and labeling of social bot accounts followed a three-step 

process. First, the unique Twitter account name and numeric identification for each 

account present in the mass shooting event corpus are submitted for classification to the 

DeBot API. Next, DeBot returns a binary (True or False) bot classification for each user 

account. Finally, the DeBot classification results are merged with the existing corpus data 

by creating a true or false bot attribute for each account. In total, DeBot classified fewer 

than 1% of all corpus tweet account users, or contributors, as likely social bots 

responsible for producing ~1.63 million tweets and ~1.40 million retweets, or 3.49% and 

3.91% of the tweets and retweets in the corpus, respectively. Table 8 provides applicable 

social bot volume details for each of the OSN conversations. 
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Table 8: Overall tweet corpus volumes and suspected social bot contributions for each associated OSN mass 
shooting event conversation. 

CORPUS COLLECTION DATES TWEETS RETWEETS CONTRIBUTORS 
Las Vegas 

Bot source (% of total) Oct 1 – Oct 28, 2017 17,260,101 
719,509 (4.17%) 

13,258,233 
622,620 (4.70%) 

2,925,808 
39,956 (1.37%) 

Sutherland Springs 
Bot source(% of total) Nov 5 – Dec 3, 2017 13,641,103 

491,214 (3.60%) 
10,095,006 

418,775 (4.15%) 
4,996,779 

34,497 (0.69%) 

Parkland 
Bot source (% of total) Feb 14 – Mar 13, 2018 974,203 

52,207 (5.36%) 
802,227 

45,508 (5.67%) 
425,941 

8,441 (1.98%) 

Santa Fe 
Bot source (% of total) May 18 – Jun 14, 2018 14,856,795 

367,200 (2.47%) 
11,688,269 

316,374 (2.71%) 
5,262,635 

28,072 (0.53%) 

 
 

4.3.3. Retweet Network Construction 

The deliberate act of retweeting has been viewed as an artifact demonstrating a 

particular Twitter user’s propensity to share information or attempt to engage in direct 

conversation with other users (Boyd et al., 2010). Retweets accounted for 76.7% of the 

total mass shooting corpus, with approximately 35.8 million tweets identified as retweets. 

This overall high density of retweets permeates across each individual OSN event 

conversation, with retweet densities of 76.8%, 74.0%, 82.3% and 78.7% for the Las 

Vegas, Sutherland Springs, Parkland and Santa Fe shooting conversations, respectively. 

A retweet between two Twitter users (i.e. nodes) is an observable conversational activity 

that can be viewed as a directed connection, or edge, within a network construct. For 

example, one can assign a directed edge weight value of ‘1’ for an initial retweet between 

two users and increment previously established edges by ‘1’ for each subsequent 

directional retweet between the same two user nodes. 
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By iterating through each retweet in the corpus, the retweet network construction 

process ultimately created a social network graph of each OSN mass shooting 

conversation. The transformation of conversations into network graph objects enables the 

application of an array of social network analysis (SNA) methods, which is detailed in 

the subsequent Data Analysis Methods section. Overall, the OSN retweet conversations 

produced directed networks with the following node-edge characteristics: 4,926,906 

nodes / 11,864,672 edges (Las Vegas), 4,105,206 nodes / 8,987,800 edges (Sutherland 

Springs), 382,797 nodes / 751,255 edges (Parkland) and 5,264,937 nodes / 13,133,371 

edges (Santa Fe). 

4.3.4. Data Analysis Methods 

The following subsections provide a comprehensive introduction to the specific 

methods employed to comparatively analyze the evidence of suspected social bots across 

the OSN mass shooting conversations of interest. Each subsection describes the 

fundamental data requirement for each analysis method, a detailed characterization of the 

analysis method and any pertinent theoretical underpinnings. The combined effort of 

these Data Analysis Methods (Section 4.3.4) subsections provides necessary 

interpretative context to the presented findings in the subsequent Results and Discussion 

section (Section 4.4). 

4.3.4.1. Conversation Participation Rate Analysis 
To determine any potential contribution patterns of social bot accounts in 

comparison to regular human accounts, this section examined the cumulative tweet and 

retweet rates over the course of each observed online mass shooting conversation. The 

analysis accomplished this by bifurcating each mass shooting event corpus into separate 
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human and bot activity, then temporally indexing the contribution activity for each of 

these subsets. This allowed for a quantifiable and visual comparative analysis between 

human and bot temporal conversation contributions. The Conversation Contribution 

Inversion subsection present the results of this comparative analysis and discusses the 

effects of bots as potential narrative drivers within the Results and Discussion section. 

4.3.4.2. Analysis of Subsequent Mention of Previous Mass Shooting Events 
Many traditional media studies have focused on comparatively analyzing media 

attention between highly salient mass shooting events (e.g. Muschert & Carr, 2006; 

Schildkraut et al., 2018; Schildkraut & Muschert, 2014). To extend a comparative 

framework perspective to multiple OSN mass shooting conversations, this section sought 

to determine the sustained attention paid to previous mass shooting events in subsequent 

mass shooting events. The analysis accomplished this by observing the explicit mention 

rates of keywords associated with past events in subsequent events from both the human 

and suspected bot perspective. As previously explained, the tweet collection effort 

maintained a consistent collection paradigm by using the same filter keywords to harvest 

the overall conversations for each mass shooting event but required event-specific 

keywords to determine specific mentions within other event conversations. The most 

common descriptive words within the corpus for each mass shooting event served as the 

emergent keywords to tally subsequent mentions in other events. The resulting mention 

keywords followed an “event name / shooter name” paradigm, as the most common 

distinguishable words for each previous event included a derivation of the specific event 

(Las Vegas {‘vegas’}; Sutherland Springs {‘sutherland’}; Parkland {‘parkland’}) and 

reference to the identified shooter of each previous event (Las Vegas {‘paddock’}; 
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Sutherland Springs {‘kelley’}; Parkland {‘cruz’,’nikolas’}). In the Parkland case, 

duplication issues arose that required the differentiation between the shooter, Nikolas 

Cruz, and the Texan politician, Ted Cruz. Therefore, a bigram consisting of the first name 

‘nikolas’ combined with ‘cruz’ served for the mining mention counts within the corpus. 

Figure 18 provides a visual framework describing the process used for determining 

mention counts across events. The Previous Event Mention Rates subsection presents the 

normalized mention rate results and discusses the perceived implications of previous 

mass shooting event mentions by humans and bot accounts in the Results and Discussion 

section. 

 

 
Figure 18: Mention count discovery of previous mass shooting events within subsequent online mass shooting 
event conversations. For example, within the Santa Fe conversation corpus, a previous event mention count by 
both humans and bots is determined by references to event location (i.e. ‘vegas’, ‘sutherland’, or ‘parkland’) 
and event shooter (i.e. ‘paddock’, ‘kelley’, or ‘cruz & nikolas’). 
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4.3.4.3. Intra-group and Cross-group Interaction Analysis 
Having created retweet networks from the retweets of each OSN conversation, 

this section sought to determine if the interactions between (i.e. social bots retweeting 

humans or humans retweeting social bots) and among (i.e. social bots retweeting social 

bots or humans retweeting humans) the different accounts types (i.e. humans or bots) 

produced observable patterns. To do so, the analysis had to subset each mass shooting 

event network into separate retweet network edgelists representing each potential cross-

group and intra-group network edge relationship (i.e. bot-retweets-bot, bot-retweets-

human, human-retweets-bot, human-retweets-human). Table 9 presents the consolidated 

volumes associated with all derived edgelist relationships for each online mass shooting 

event. These edgelist volumes serve as the basis for the presented intra-group and cross-

group conversation rate results detailed in Intra-group and Cross-group Conversation 

Patterns subsection of the Results and Discussion section. 

 

Table 9: Retweet volumes of intra-group and cross-group conversation activity across all online mass 
shooting events. 

Corpus 

Intra-Group Retweet Volume  Cross-Group Retweet Volume 
Bot-to-Bot Human-to-Human  Human-to-Bot Bot-to-Human 

Las Vegas 153,468 11,931,552  704,064 469,152 

Sutherland Springs 67,219 9,307,052  369,181 351,556 

Parkland 4,552 711,027  45,692 40,956 

Santa Fe 23,953 11,027,195  344,700 292,421 
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4.3.4.4. Relative Importance of Conversation Contributors through Centrality Analysis 
This section takes further advantage of the graph construct of each derived 

retweet network through the application of SNA centrality measures. Centrality measures 

serve as a proxy to determine the relative importance of a node based on a given node’s 

structural network position vis-a-vis other nodes (Wasserman & Faust, 1994). Riquelme 

and Gonzàlez-Cantergiani (2016) presented a comprehensive survey examining the wide 

variety of available centrality measurements that can be used to measure the relative 

influence of contributing users in online Twitter conversations. In an effort to determine 

the relative importance of social bot actors in relation to human actors, the author chose 

to calculate the following four network centrality measurements based on their 

recognizability and efficient scalability to large-scale networks for all nodes within each 

of the mass shooting retweet networks: in-degree centrality, out-degree centrality, 

eigenvector centrality and PageRank centrality. 

In-degree and out-degree centrality are directional variants of degree centrality, 

which simply measures the total number of direct edges that a node shares with other 

nodes in a given network. In the context of a retweet network, in-degree centrality 

provides a cumulative inward activity tally of all inbound edges to a particular node, or 

the number of times a message from a particular Twitter account is retweeted by nodes in 

the network. The reverse is true of out-degree, as it measures all outward activity of a 

particular node, or the number of times a particular Twitter account initiates a retweet of 

other messages produced by nodes in the network. Measures of degree centrality can be 

viewed as a proxy for network popularity given the quantifiable number of direct 

connections, or conversation engagements. Eigenvector centrality, a more complex 
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derivation of degree centrality, queries the individual degree centrality of all nodes in a 

network and returns a weighted sum based on a particular node’s set of direct and indirect 

edges (Bonacich, 2007). Given the completeness of the eigenvector calculation across an 

entire network, we can view eigenvector centrality as a measure of global network 

influence in a retweet network. Lastly, the PageRank centrality measurement, derived 

from eigenvector centrality, places a weighted premium on the degree value of nodes that 

initiate edges with other nodes of the most relative importance (Brin & Page, 1998). 

From a retweet network perspective, user accounts with higher PageRank valuation 

receive more retweets from the more popular user accounts in the retweet network. The 

subsection Relative Importance of Social Bots in Online Mass Shooting Conversations 

within the Results and Discussion section presents the formal centrality analysis results 

and discusses the overall density of social bots within the highest ranking centrality 

measures. 

4.4. Results and Discussion 

The following section presents and discusses the results of the applied methods 

described in the previous Data and Methods section (Section 4.3). Through the 

acquisition of a Twitter data corpus from multiple online mass shooting conversations 

and the identification of social bots within this corpus, this study was able to apply the 

previously described analysis methods to comparatively analyze social bot conversation 

participation in relation to human user behavior and presents those findings in the 

subsequent Conversation Contribution Inversion (Section 4.4.1) and the Previous Event 

Mention Rates (Section 4.4.2) subsections. Furthermore, through the application of SNA 
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techniques to the mass shooting event retweet networks, the Intra-group and Cross-group 

Conversational Patterns (Section 4.4.3) subsection presents the findings of directional 

conversation interactions and the Relative Importance of Social Bots in Online Mass 

Shooting Conversations (Section 4.4.4) subsection presents the centrality analysis 

rankings of bots in relation to humans. 

4.4.1. Conversation Contribution Inversion 

Figure 19 provides a consolidated visualization of the cumulative contribution 

profiles for human and suspected bot accounts over the course of each mass shooting 

conversation. The results show that the pace of cumulative tweet contributions from bots 

exceeds that of humans through the entire conversation timeframe for the Sutherland 

Springs (Figure 19b) and Santa Fe (Figure 19d) shootings. However, with the Las Vegas 

(Figure 19a) and Parkland (Figure 19c) shootings, an inversion occurs as bots begin to 

outpace humans after five and seven days (annotated as gray shaded areas), respectively, 

and continue on as the dominant contributor in terms of a normalized contribution rate. 

To provide a comparative benchmark between the observed human and bot contribution 

rates, a two-sample KS test (introduced in Chapter 2) was conducted between the bot and 

human distributions for each of the conversations. The KS test results return a D statistic 

value representing the maximum difference between the bot and human distributions, 

along with a corresponding p-value assessing whether the bot and human distributions 

came for the same overall distribution. The D statistic results showed a fairly similar 

closeness between bot and human contributions across all conversations with D statistic 

values of 0.107 (p = 0.995), 0.1786 (p = 0.720), 0.1786 (p = 07205) and 0.0714 (p = 
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1.000) for the Vegas, Sutherland Springs, Parkland and Santa Fe shootings, respectively. 

Further  

 

 
Figure 19: Cumulative tweet conversation contributions of both human (blue) and bot (red) accounts for the 
one-month online conversations of the following mass shooting events: (a) Las Vegas concert shooting (October 
1 - 28, 2017), (b) Sutherland Springs church shooting (November 5 - December 3, 2017), (c) Parkland school 
shooting (February 14 - March 13, 2018), (d) Santa Fe school shooting (May 18 - June 14, 2018). Gray shaded 
areas depict human-led contribution rate periods. 

 

Persistent human contribution latency in relation to bots for the entirety of the 

Sutherland Springs and Santa Fe conversations suggests that human accounts lacked 

general interest compared to bots for these particular events. In contrast, the Las Vegas 

and Parkland events draw immediate human interest, but this initial interest subsides as 
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sustained bot contribution rates bypass humans after less than a week. While further 

investigations are required to validate such claims, they are beyond the scope of this 

study. However, in discovering the clear contribution rate differences between bots and 

humans in the Sutherland Springs and Santa Fe events, and more interestingly, the 

contribution inversion in the Las Vegas and Parkland events, we can conclude that social 

bots are an explicit sub-population of actors in online mass shooting event conversations. 

Further, in the same light that Merry (2016) identified special interest groups as narrative 

framing agents in social media, social bots should be considered as a potential actor 

capable of framing online narratives. 

4.4.2. Previous Event Mention Rates 

By executing the mention count discovery process introduced and illustrated 

(Figure 19) in the Data Analysis Methods section (Section 4.4.1), we are able to ascertain 

the rates at which bots and humans mentioned previous events in the subsequent mass 

shooting events of this study’s corpus. Within this paradigm, the observed historical 

event mention relationships are as follows: Las Vegas mentions within the Sutherland 

Springs, Parkland and Santa Fe conversations; Sutherland Springs mentions within the 

Parkland and Santa Fe conversations; Parkland mentions within the Santa Fe 

conversation. Table 10 presents the consolidated total mention volumes and mention rates 

of the Las Vegas, Sutherland Springs and Parkland mass shootings within the applicable 

subsequent mass shooting conversations. The author normalized the mention rates 

according to the unique bot and human populations within each conversation. The results 

show a clear partiality by both bots and humans towards mentioning associated event 
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names (i.e. ‘vegas’, ‘sutherland’, ‘parkland’) in lieu of the identified shooter (i.e. 

‘paddock’, ‘kelley’, ‘cruz’) when discussing previous mass shooting events. Furthermore, 

there are no mentions of Devin Kelley, the Sutherland Springs gunman, in any other mass 

shooting event conversation. Finally, while Sutherland Springs struggles to garner any 

attention by the time of the Santa Fe conversation, the results display a drastic increase in 

both human and bot mention rates of Las Vegas. While there is little research available to 

properly classify these observable patterns from an OSN-specific view, one can look to 

traditional media studies to potentially contextualize these findings. For example, Levin 

and Wiest (2018) discovered that media consumers paid significantly more attention to 

shooting events when the narrative focused on courageous bystanders as opposed to a 

victim or killer, while Silva and Capellan (2019) presented an extensive overview of 

observable media attention patterns in mass shooting media research. 
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Table 10: Bot and human mention rates of previous mass shooting events in subsequent mass shooting 
conversations. 

 
 

4.4.3. Intra-group and Cross-group Conversation Patterns 

Figure 20 presents an overall visualization of normalized intra-group (i.e. bots 

retweeting bots or humans retweeting humans) and cross-group (i.e. bots retweeting 

humans or humans retweeting bots) conversation patterns for each of the study’s OSN 

conversations. As previously mentioned, the author normalized the intra-group and cross-

group retweet volumes by the total retweet volume in each conversation. For example, 

the self-loops for humans and bots depicted in Figure 20 translate to 89.99% of all the 

retweets in the Las Vegas corpus resulting from human to human interaction, while bot-

to-bot retweets only account for 1.16% of retweets. Additionally, the directed cross-group 

activity between bots and humans in the Las Vegas conversation shows that humans 

retweeting bots comprises 5.31% of retweets, while bots retweeting humans comprises 

3.54% of retweets. In general, we see human-to-human interaction as the dominant 

Bots 34,497 Bots 8,441 Bots 28,072
Humans 4,962,282 Humans 417,500 Humans 5,234,563

Mentions Rate Mentions Rate Mentions Rate
Bot 12,431 0.36035 Bot 191 0.02263 Bot 3,860 0.13750
Human 165,927 0.03344 Human 2,362 0.00566 Human 71,016 0.01357
Bot 1,031 0.02989 Bot 0 0 Bot 367 0.01307
Human 9,858 0.00199 Human 0 0 Human 2,723 0.00052

Mentions Rate Mentions Rate Mentions Rate
Bot 13,462 0.39024 Bot 191 0.02263 Bot 4,227 0.15058
Human 175,785 0.03542 Human 2,362 0.00566 Human 73,739 0.01409

Bot 47 0.00557 Bot 226 0.00805
Human 674 0.00161 Human 3,399 0.00065

Bot 0 0 Bot 0 0
Human 0 0 Human 0 0

Mentions Rate Mentions Rate
Bot 47 0.00557 Bot 226 0.00805
Human 674 0.00161 Human 3,399 0.00065

Bot 8,334 0.29688
Human 141,176 0.02697

Bot 426 0.01518
Human 5,664 0.00108
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relationship across all of the mass shooting conversations. Moreover, human users 

retweet bots at a higher rate than bots retweet humans in each of the conversations, which 

demonstrates that humans are more responsible for spreading bot-generated content than 

bots themselves in each of the mass shooting conversations. This is an interesting finding, 

as previous social bot analysis has found bots to be more, on average, hyper-social than 

humans: they attempt to engage humans at persistently higher rates in retweet networks 

associated with election, conflict and political Twitter conversations as opposed to 

average human accounts (Schuchard et al., 2019; Stella et al., 2018). 

 

 
Figure 20: Intra-group and cross-group retweet interaction rates among and between human (blue) and 
suspected social bot (red) user accounts for a one-month period following the (a) Las Vegas, (b) Sutherland 
Springs, (c) Parkland and (d) Santa Fe shooting events. 
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4.4.4. Relative Importance of Social Bots in Online Mass Shooting Conversations 

The results of the centrality measurement ranking analysis, introduced in the Data 

and Methods section (Section 4.3), showed that many social bots, while accounting for 

just 0.82% of all contributors in this study’s corpus, displayed structural network 

importance by achieving high centrality ranking positions, especially in the eigenvector 

and out-degree centrality rankings. Figure 21 presents the consolidated centrality results, 

depicting the density of social bot accounts falling within the top-N, where N = 1000 / 

100 / 10, eigenvector, in-degree, out-degree and PageRank centrality rankings for each 

online mass shooting conversation. The out-degree ranking persistence shows the hyper-

social nature of these particular social bots across all conversations. More interestingly, 

social bots display exceedingly high eigenvector centrality valuations in the Las Vegas 

conversation, accounting for 82% and 60% of the top-100 and top-10 rankings, 

respectively. While also earning numerous high rankings across the other conversations, 

but not nearly as dominant. Given that eigenvector centrality serves as a potential proxy 

for total network influence, social bots could be construed as the most structurally 

influential nodes in the Las Vegas mass shooting conversation. 
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Figure 21: Social bot accounts in the top-N, where N = 1000/100/10, (a) eigenvector, (b) in-degree, (c) out-degree 
and (d) PageRank centrality measurement rankings within OSN mass shooting retweet networks discussing the 
Las Vegas (red), Sutherland Springs (green), Parkland (blue) and Santa Fe (purple) shooting events. 

 

4.5. Conclusion 

This chapter examined the presence, contribution patterns and relative importance 

of suspected social bots within four different online mass shooting conversations. By 

following a mixed methodology process focused on the normalization and fusion of 

associated Twitter conversation data with social bot detection results, this study presented 

a repeatable and agnostic process that can be extended to evaluate additional online mass 

shooting use cases of interest. While analyzing the cumulative contribution patterns of 
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both humans and bots, this study found that social bot accounts outpaced human 

contributions throughout the entirety of the Sutherland Springs and Santa Fe shooting 

conversations, while a reversal took place with the Las Vegas and Parkland cases as 

human accounts ceded initial rate dominance to bots after less than one week. Both bots 

and humans displayed a strong tendency to mention previous shooting events by 

referencing event locations as opposed to shooters themselves. The construction of 

retweet networks allowed us to observe the intra-group and cross-group engagements 

showing humans engaging bot accounts at a higher rate than bots engaging humans in all 

four conversation retweet networks. Moreover, the retweet network graph construct 

enabled the application of SNA centrality measurements to investigate the relative 

importance of social bots, which showed large populations of bots ranking prominently in 

overall eigenvector and out-degree centrality across all conversations. In the Las Vegas 

mass shooting conversation, social bots dominated the eigenvector centrality ranking 

results, accounting for 82% and 60% of the top-100 and top-10 accounts, respectively.  

This study is not immune from limitations. First, previous traditional media 

research efforts have shown significant bias in mass shooting media coverage based on 

event factors such as the race/ethnicity of the both the shooter and the victims, as well as 

the number of associated casualties (Duxbury et al., 2018; Schildkraut et al., 2018). 

Guggenheim et al. (2015) described the reciprocal relationship between traditional and 

social media discussing mass shooting events and one can assume the transference of this 

coverage bias. In other works, Tufecki (2014) points to well-known inherent biases 

associated with data emanating from OSNs, to include sampling and representativeness. 
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In addition, Ruths and Pfeffer (2014) echoed a similar critique of OSN data, while also 

stressing the inability of OSN providers to prevent or limit the distortion of social bot 

actors. 

This study serves as a compelling first step forward in providing the social bot 

analysis research necessary to identify and distinguish automated social bot contributions 

from intentional human dialogue in mass shooting OSNs. To date, it is the most 

comprehensive social bot analysis involving OSN mass shooting conversations. Given 

the evidence of contagion in the aftermath of mass shootings (Towers et al., 2015), it is 

essential to detect and prevent the potential amplification or glorification of such events 

by social bots. While social bot analysis is still in a nascent state and bot detection 

methodologies continue to evolve to account for the growing sophistication of bot 

developers (Cresci et al., 2017; Subrahmanian et al., 2016), this work provides a 

repeatable framework that is extendable to other OSN conversations and additional bot 

detection platforms. Finally, it provides requisite feedback to bot detection algorithm 

developers on associated detection performance against an array of different OSN 

conversations. 
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CHAPTER 5. BOTS IN ELECTIONS: AN ENSEMBLE BOT DETECTION 
COVERAGE FRAMEWORK 

5.1. Introduction 

The 2016 U.S. presidential election broke traditional campaign communication 

norms, as legacy institutions such as mainstream media sources (e.g. print, television and 

radio) and political-party organizations ceded much power and influence to unmediated, 

Internet-based technological platforms (e.g. online social networks (OSNs), online 

political blogs) (Persily, 2017). Previously, Gibson and Cantijoch (2013) identified the 

increasing active participatory nature of political engagement in OSNs and described 

such behavior as a new type of expressive political engagement. Since the 2016 U.S. 

election, OSNs have surpassed print newspapers as a primary news source and continue 

to gain traction in relation to television and radio sources (Mitchell, 2018). While the 

rapid rise of OSN platforms has reduced the barrier for individuals to actively participate 

in political dialogue, the relatively unsupervised nature of OSNs increases susceptibility 

to misinformation campaigns, especially with respect to political and election dialogue 

(Bovet & Makse, 2019; Grinberg et al., 2019; Howard et al., 2018). 

Social bots—automated software agents designed to mimic or impersonate 

humans— are prevalent actors in OSN platforms and have proven to amplify 

misinformation by orders of magnitude (Lazer et al., 2018). While the original design or 

purpose of social bots is not always nefarious, their impact can directly lead to the 
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intentional or unintentional spreading of false narratives (Ferrara et al., 2016). The 

inability for humans to readily discern whether they are engaging in dialogue with a 

human is a newly intractable problem with unknown implications. The rapidly evolving 

social bot problem has led to the recent emergence of numerous research efforts 

dedicated to the development of novel bot detection algorithms (e.g. Beskow & Carley, 

2018; Chavoshi et al., 2016; S. Cresci et al., 2018; Davis et al., 2016). Beyond detection 

algorithm development, introductory social bot analysis efforts have examined the 

prevalence and activities of detected social bots within general Twitter and Facebook 

conversations (e.g. Boshmaf et al., 2011; Mønsted et al., 2017; Shao et al., 2018). Further 

social bot analysis works have focused on detected bots within Twitter conversations 

involving specific topic areas such as the Brexit referendum (Duh et al., 2018; Howard & 

Kollanyi, 2016), stock market trading (Cresci et al., 2019), conflict (Schuchard et al., 

2019) and political elections (Bessi & Ferrara, 2016; Boichak et al., 2018; Stella et al., 

2018). 

The constantly evolving sophistication of social bots has proven challenging for 

even the most promising detection algorithms developed to date (Cresci et al., 2017). The 

ever-expanding range of potential bot characteristics and activity patterns demands 

continual refinement to existing detection methods or the development of entirely new 

methods to account for the most sophisticated bots. In summarizing the array of different 

detection approaches, Jiang et al (2016) cautioned that detection applications, while 

looking to maximize the detection of the most ‘suspicious’ behaviors, employ different 

definitions of suspicious behaviors. In effect, the design parameters of bot detection 
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algorithms will return results to which the algorithms are trained, and, thus, different 

detection strategies should detect different types of social bots. Recent efforts have 

focused on the evolving nature of bots by introducing adversarial learning detection 

algorithms (Cresci et al., 2018, 2019a). While such detection advances are quite 

promising, they serve no immediate role in assisting broad, multidisciplinary social bot 

analysis efforts, since they are not readily accessible to the larger research community. 

Therefore, most current social bot analysis research efforts rely primarily upon an open-

source bot detection platform service such as Botometer (Davis et al., 2016; Varol et al., 

2017) or DeBot (Chavoshi et al., 2016). 

As the results of the 2015 DARPA Twitter Bot Challenge summarized, no single 

detection algorithm is able to account for the myriad of social bots operating in OSNs 

(Subrahmanian et al., 2016). It is from this perspective that the following study expands 

current social bot analysis research by incorporating multiple social bot detection services 

to determine the prevalence and relative importance of social bots within an OSN 

conversation. Through the lens of the 2018 U.S. midterm elections, harvested tweets 

capturing the election conversation are analyzed for evidence of bots using three bot 

detection platform services: Botometer (Varol et al., 2017), DeBot (Chavoshi et al., 2016) 

and Bot-hunter (Beskow & Carley, 2018). The resulting suspected bot evidence serves as 

the basis for an ensemble of applied social network analysis (SNA) methods to determine 

the relative structural importance of bots in the conversation. Finally, a comprehensive 

bot detection coverage analysis evaluates the resulting overlap in performance among the 

employed bot detection services. 
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The results of this study show that bot and human accounts contributed 

temporally to the 43.5 million tweet election corpus at relatively similar cumulative rates. 

The multi-detection platform comparative analysis of intra-group and cross-group 

interactions shows that bots detected by DeBot and Bot-hunter persistently engaged 

humans at rates much higher than bots detected by Botometer. Furthermore, while bots 

accounted for less than 8% of all unique accounts in the election conversation retweet 

network, bots accounted for more than 20% of the top-100 and top-25 ranking out-degree 

centrality, thus suggesting persistent activity to engage with human accounts. Finally, the 

bot coverage overlap analysis shows that there existed minimal overlap among the bots 

detected by the three bot detection platforms, with only eight total bot accounts detected 

by all. 

The intra-group and cross-group analysis of the constructed retweet network 

shows that bots detected by DeBot and Bot-hunter persistently engaged humans at rates 

much higher than bots detected by Botometer. In addition, the intra-group and cross-

group interactions, when viewed from a consolidated bot account perspective, provide the 

first piece of evidence that minimal overall overlap existed between the set of bots 

detected by each detection platform. The centrality ranking results showed that bots, from 

an overall perspective, achieved large volumes of high centrality ranking positions 

despite their relatively small population size. The classification of relative importance by 

social bot accounts was most noticeable with bots detected by DeBot in the out-degree 

rankings and with bots detected by Botometer in the eigenvector rankings. Analysis of 

the overlap of bots detected by the detection platforms showed that no overlap existed 
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between the bots ranking in the top-50 centrality results. Moreover, the Jaccard similarity 

index showed little bot detection overlap from a pairwise perspective, while only eight 

bots out of a total of 254,492 unique bots in the overall tweet corpus were detected by all 

three detection platforms. 

The roadmap of this chapter is as follows. The Background section (Section 5.2) 

provides the necessary context for this study by introducing applicable previous works 

involving social bot detection and analysis. Next, the Data and Methods section (Section 

5.3) details the specific data acquisition and processing, as well as the applied methods, 

used in this study. The Results and Discussion section (Section 5.4) presents the pertinent 

findings of the study, and the chapter closes with the Conclusion section (Section 5.5). 

5.2. Background 

OSN research has emerged and evolved rapidly in concert with the global 

adoption of social media platforms throughout the past decade. While the limitations, 

biases and risks associated with using OSN data are widely discussed (Ruths & Pfeffer, 

2014; Tufekci, 2014), there have been many positive insights gained from OSN research 

contributions. Such works include OSN-findings related to disaster event detection 

(Crooks et al., 2013; Sakaki et al., 2013), suicide prevention and detection (Luxton et al., 

2012; Won et al., 2013) and cyberbullying (Hamm et al., 2015; Whittaker & Kowalski, 

2015). OSNs have even been described as transformational media in creating new 

avenues of political participation and dialogue (Persily, 2017; Theocharis & Deth, 2018). 

In a 61-million person Facebook experiment during the 2010 U.S. congressional 

elections, Bond et al. (2012) showed how social human ties are instrumental in spreading 
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both online and offline political behavior. Vaccari et al. (2015) identified that lower-

threshold political engagement activities in OSNs, such as posting political views, are 

strongly associated with higher-threshold activities such as campaigning for particular 

parties/candidates and attending offline political events. In a survey of active political 

Twitter users, Bode and Dalrymple (2016) discovered that a primary reason for engaging 

in political discourse on Twitter was due to a general lack of trust in mainstream media 

sources. 

The increasing use of OSNs for political communication dialogue has led to the 

rightful criticism of the transparency and validity not only behind the how social media 

platforms operationally promote certain narratives, but also of how the platforms verify 

accounts as humans or bots (Woolley & Howard, 2016). Not surprisingly, given the 

propensity for polarization and the observed emergence of echo chambers within political 

conversations in OSNs (Conover et al., 2011), social bot campaigns view the 

manipulation of political dialogue as a natural attack vector. With the emergent role of 

OSNs in the 2016 U.S. presidential election, as previously mentioned, recent social bot 

analysis efforts have expanded their focus greatly into political OSN conversations. 

These works include the examination of detected bots within the 2016 U.S. presidential 

election (Bessi & Ferrara, 2016; Boichak et al., 2018; Howard et al., 2018), the UK-EU 

Brexit referendum (Duh et al., 2018; Howard & Kollanyi, 2016), the 2018 Italian general 

election (Stella et al., 2018) and the 2017 Catalan referendum (Stella et al., 2018). While 

these election-focused social bot analyses relied upon an assortment of bot detection 

algorithms, they all used a single method to classify bots. This study significantly 
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expands this body work by aggregating the classification results of three bot detection 

platforms in an effort to provide a more holistic social bot analysis framework. The 

following introduces and highlights the three detection platform services employed in this 

study to classify bots within the 2018 U.S. midterm Twitter conversation. 

Botometer6, a widely used open-source bot detection platform created by 

researchers at Indiana University, is based on a supervised Random Forest ensemble 

classification technique that evaluates more than 1,000 extracted features for each 

analyzed Twitter account (Davis et al., 2016; Varol et al., 2017). Given the supervised 

nature of the underlying algorithm, Botometer requires and has updated its detection 

classification algorithm multiple times by retraining against new data (Varol et al., 2017; 

Yang et al., 2019). Botometer ultimately provides a likelihood estimate score on a [0,1] 

scale that an account is a bot, with simple bots scoring (0.8 – 1.0) and more sophisticated 

(i.e. human-like) bots scoring (0.5 – 0.7) (Varol et al., 2017). While popular, Botometer is 

limited by several significant factors, which have been thoroughly documented in 

previous works (Ferrara, 2017; Stella et al., 2018; Stukal et al., 2017). These limiting 

factors include an inability to retrospectively analyze historical tweets and to classify 

suspended/protected Twitter accounts, while its publicly available application 

programming interface (API) does not support large-scale analyses given inherited 

Twitter API rate limits. 

                                                
6 Botometer is accessible at https://botometer.iuni.iu.edu/. 
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DeBot7, an open-source bot detection platform developed by researchers at the 

University of New Mexico, adopts an unsupervised warped correlation method to detect 

and label as bots those Twitter accounts having more than 40 synchronous events in a 

given window of time (Chavoshi et al., 2016). The DeBot binary classification scheme 

detects bots with high precision, but it does so at a cost of total recall due to the limited 

sample size of overall Twitter accounts it evaluates (Chavoshi et al., 2017). While limited 

in coverage and susceptible to the precision/recall tradeoff of bot detection highlighted by 

Morstatter et al. (2016), historical DeBot results are easily accessible and have produced 

relevant results in social bot analyses (e.g. Kušen & Strembeck, 2018; Schuchard et al., 

2019). 

Finally, Bot-hunter, a newer bot detection platform developed by researchers at 

Carnegie Mellon University (CMU), applies a supervised Random Forest classification 

method to previously extracted Twitter data in a multi-tiered fashion with successive tiers 

incurring higher computational costs (Beskow & Carley, 2018). This deliberate tiered 

approach overcomes the limitations observed with Botometer (i.e. scalability and the 

classification of suspended accounts) by allowing bot classification to occur locally and 

against historical tweets, as opposed to classification in coordination with the Twitter 

API. In a similar fashion to Botometer, Bot-hunter returns a bot classification score for 

each Twitter account of interest on a normalized scale between 0 and 1. While Bot-hunter 

is not currently accessible via a public API, it was made available to this study upon 

request by the CMU research team. 

                                                
7

 DeBot is accessible at https://www.cs.unm.edu/~chavoshi/debot/. 
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5.3. Data and Methods 

This study breaks new ground in its use of multiple bot detection platforms to 

identify and analyze the presence of social bots within the 2018 U.S. midterm election 

OSN conversation. The following section details the study’s overall methodological 

framework as depicted in Figure 22. First, Twitter Data (Section 5.3.1) provides the 

essential background describing the capture, storage and processing stages required to 

develop the election midterm tweet corpus. Bot Enrichment (Section 5.3.2) details the 

steps taken to label the accounts within the election corpus with the three chosen bot 

detection platforms. Retweet Network Construction (Section 5.3.3) explains the process 

to derive a network structure out of the original election conversation corpus. The section 

concludes with Bot Analysis (Section 5.3.4), which introduces the applied analysis 

methods used in the remainder of the study. 

 

 
Figure 22: Social bot analysis framework employing multiple bot detection platforms. The framework enables 
the application of ensemble analysis methods to determine the prevalence and relative importance of social bots 
within OSN conversations discussing the 2018 U.S. midterm elections. 
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5.3.1. Twitter Data 

The 2018 U.S. midterm elections provided a new opportunity to build upon 

previous social bot analyses dedicated to examining the role of bots within OSN election 

conversations. Given the specific limitations of bot detection platforms as described in 

the Background section (Section 5.2), it was essential to properly prepare a collection 

plan well in advance of the planned 30-day collection window leading up to election day 

(November 6, 2018). As Zhang et al. (2018) asserts, keyword selection in social media 

studies can induce varying levels of selection bias. To mitigate this risk, this study chose 

the comprehensive panel of keywords shown in Table 11 to capture the 2018 midterm 

election corpus. This panel included generic keywords associated with the election (e.g. 

Election2018, midterms2018) as well as keywords referencing campaign phrases and 

high-profile races in order to account for both major U.S. political parties. 

The tweet collection process consisted of submitting the keyword panel to the 

publicly available Twitter standard streaming API for four weeks prior to the election day 

(October 10 thru November 6, 2018). The overall tweet collection process yielded a 

consolidated corpus consisting in excess of 43.5 million tweets produced by 

approximately 3.2 million unique accounts. Retweets accounted for approximately 83.2% 

of the tweet corpus with more than 36.2 million retweets produced by more than 2.3 

million unique accounts. Due to the large volume of harvested tweets and the subsequent 

data processing requirements as detailed in the remainder of this section, all immediate 

data processing and storage took place in a scalable 16vCPU and 64GB RAM Amazon 

Web Services (AWS) m5a.4xlarge instance. 
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Table 11: Election-related keywords submitted to capture relevant tweets associated with the 2018 U.S. midterm 
elections via the Twitter API. 

Generic Election  Campaign Phrases  Key Races 
       

Election2018 midterms  BlueWave RedWave  @ScottWalker 
midterms2018 2018midterms  FlipTheSenate maga  @WISuptTonyEvers 

democrat republican  FlipTheHouse kag  @tedcruz 
DNC RNC  VoteThemOut buildthewall  @BetoORourke 

DNC2018 RNC2018  HandsOffOurCare takeitback  @SenatorHeitkamp 
@TheDemocrats @GOP     @KevinCramer 
@SenateDems @SenateGOP     @FLGovScott 

@HouseDemocrats @HouseGOP     @ SenBillNelson 
       

 
 

5.3.2. Bot Enrichment 

To detect and label social bots in the collected election conversation corpus, this 

study relied upon three bot detection platforms: Botometer, DeBot and Bot-hunter. While 

the Background section (Section 5.2) provided a general overview of these platforms and 

their underlying detection algorithms, the remainder of this subsection presents the 

technical details explaining how the study used each detection platform to detect and 

label bots within the election conversation corpus of tweets. First, a technical explanation 

describes the processing and environmental considerations associated with each platform. 

Next, given the scoring scales of Botometer and Bot-hunter, a scoring analysis explains 

the chosen cutoff threshold for labeling accounts as bots. Finally, an aggregate and 

specific detection platform perspective presents the bot detection results. 

Currently, both DeBot and Botometer provide researchers open-source access to 

their hosted detection platforms via an API. However, due to individual API limitations, 

these two platforms required special access considerations to scale to the size of this 
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study’s tweet corpus. Upon request, the DeBot development team provided access to the 

entire DeBot archival repository. The resulting detection processing simply consisted of 

matching unique tweet account information from the election conversation corpus to 

discovered bot profiles in the DeBot repository. The Botometer API8 provides both an 

open-access free tier with a rate limit of 17,280 requests per day and a ‘professional’ paid 

tier, which aligns to the publicly available Twitter standard API rate limits, with a rate 

limit of 43,200 requests per day. Due to the size of the election corpus and Botometer’s 

reliance on evaluating associated tweet data directly via the Twitter API, this study 

required three Botometer professional paid tier licenses in order to process the entire 

corpus volume in a timely manner. The faster execution tried to help mitigate 

Botometer’s inability to process suspended or deleted accounts by evaluating accounts 

prior to their potential removal by Twitter. Bot-hunter does not currently provide a 

publicly available API, so the Bot-hunter team provided access to their platform upon 

request to process the raw tweets comprising the election conversation corpus. 

Both Botometer and Bot-hunter return a classification score for each of the 

accounts they evaluate that falls within a [0,1] distribution, with a higher valuation 

constituting a greater likelihood that an account is a bot. DeBot, as previously mentioned, 

provides a simple binary classification for an account. Many studies using Botometer 

have historically used a 0.5 score threshold to classify bots (Badawy et al., 2018; Boichak 

et al., 2018; Shao et al., 2018). While a clear binary cutoff threshold is a challenging 

decision to make, platforms like Botometer are providing the necessary transparency for 

                                                
8

 Botometer API information accessible at https://botometer.iuni.iu.edu/#!/api. 
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researchers to make an informed decision (Yang et al., 2019). This study used a highly 

conservative cutoff threshold of 0.80 to 1.00 to label accounts as detected bots, in a 

similar categorization paradigm of ‘most likely’ bots put forth by Broniatowski et al. 

(2018). This decision reflected a desire to determine the coverage overlap of the most 

certain bot accounts between different bot detection platforms. Figure 23 depicts the 

distribution of classification scores for both Botometer (Figure 23a) and Bot-hunter 

(Figure 23b), with the shaded gray areas highlighting the 0.80 to 1.00 score range. 

 

 
Figure 23: Resulting distribution of scores for Twitter accounts present within the 2018 U.S. midterm election 
tweet corpus using the (a) Botometer (pink) and the (b) Bot-hunter (orange) bot detection platforms. 

 

Table 12 provides a summary of the bot detection classification volume results 

across all three bot detection platforms, as well as an aggregate classification volume. 

The aggregate classification method labels an account as a bot if at least one of the bot 

detection results declares that account to be a bot. In total, the aggregate bot classification 

process labeled 254,492 unique accounts, or 7.95% of all accounts, as bots that were 
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responsible for contributing more than 5.7 million tweets (13.23% of all tweets) in the 

election corpus. From the specific detection platform perspective, Bot-hunter led all 

platforms by labeling 6.26% of all accounts as bots, followed by Botometer and DeBot 

with labeling rates of 3.80% and 0.64%, respectively. In terms of retweets, aggregate and 

specific platform bot labeling occurred at approximately that same rates; however, 

Botometer-labeled bot accounts retweeted at far lower rates in comparison to their regular 

tweet contribution rates. 

 

Table 12: Twitter corpus volume and contributor populations from the 2018 U.S. midterm election OSN 
conversation with associated bot detection platform classification results. 

Corpus Detection Platform Volume % of Total  Contributors % of Total 
       

Tweets  43,565,164   3,201,996  
Humans  37,800,157 86.77%  2,947,504 92.05% 

Bots  5,765,007 13.23%  254,492 7.95% 
       

 DeBot 2,201,858 5.05%  20,605 0.64% 
 Botometer 4,239,870 9.73%  121,780 3.80% 
 Bot-hunter 2,729,354 6.26%  130,553 4.08% 
       

Retweets  36,264,206   2,588,956  
Humans  31,242,038 86.15%  2,388,447 92.26% 

Bots  5,022,168 13.85%  200,509 7.74% 
       

 DeBot 1,991,654 5.49%  19,466 0.75% 
 Botometer 920,675 2.54%  87,590 3.38% 
 Bot-hunter 2,337,760 6.45%  107,861 4.17% 
       

 
 

5.3.3. Retweet Network Construction 

A retweet serves as an observable interaction within a Twitter conversation that 

has been shown to promote trust (Metaxas et al., 2015) and increase engagement between 

users (Boyd et al., 2010). This study focused on retweets as the primary interaction of 

interest between accounts within the election conversation corpus. By extracting the 
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directional nature of a retweet between two accounts, a logical node-edge paradigm 

emerges that can lead to the construction of an overall retweet network. For example, an 

initial retweet between two accounts receives a directional edge weight of ‘1’ and the 

edge weight increases by ‘1’ for each subsequent directional retweet between the same 

two accounts. Overall, the election corpus produced a retweet network, which served as 

the inherent graph object to enable the application of the SNA techniques described later 

in this study, consisting of 2,820,898 nodes and 24,511,110 edges. 

5.3.4. Bot Analysis Methods 

The following subsections introduce the specific analytic methods used to 

determine the prevalence, characteristics and relative importance of detected bots within 

the 2018 U.S. midterm election conversation corpus. Each method accounted for bots 

from an aggregate labeling perspective, as well as for each bot detection platform. The 

description for each associated analysis method includes the specific data requirement 

and any theoretical references necessary to enable the most interpretive context of results 

presented in the Results and Discussion section (Section 5.4). 

5.3.4.1. Contribution Rate Analysis 
Comparatively analyzing the temporal contribution patterns of bots and humans 

over time provided an opportunity to directly observe potential behavioral differences 

between the two sub-populations. Furthermore, this comparative context applied to 

differentiating the contribution patterns of bots detected by the various detection 

platforms used in this study. To accomplish this analysis, the entire election tweet corpus 

was divided into aggregate bot and human sub-populations. The resulting bot and human 

tweet contribution activities were then temporally indexed, resulting in a daily 



115 
 

contribution rate. This same process was extended to the individual detection platform 

bot classification results. The Results and Discussion section (Section 5.4) presents the 

consolidated findings of the cumulative contribution rate analysis. 

5.3.4.2. Intra-group and Cross-group Participation Analysis 
The constructed retweet network of the election conversation corpus enabled the 

observation of a multitude of communication interactions between bot and human 

accounts. These specific interactions can be reduced to intra-group (i.e. bots retweeting 

bots or humans retweeting humans) or cross-group (i.e. bots retweeting humans or 

humans retweeting bots) communication. To quantify the intra-group and cross-group 

communication volumes, applicable edgelists were created for each potential interaction. 

This included edgelists capturing the aggregate bot and human population interactions, as 

well as bot and human populations resulting from the individual bot detection platform 

results. These edgelists served as the foundational data source used to construct the 

visualization and associated results narrative presented in the Results and Discussion 

section (Section 5.4). 

5.3.4.3. Centrality Ranking and Bot Coverage Analysis 
Beyond the examination of prevalence and behavioral characteristics, it is 

reasonable to attempt to ascertain whether social bots can be construed as ‘important’ 

actors within an OSN conversation. SNA centrality measures provide an efficient means 

to make such an assessment. Centrality measures can imply relative node importance 

based on a given node’s structural position in relation to other nodes within a network 

(Wasserman & Faust, 1994). Social media research includes numerous applications of 

centrality analysis to determine the relative influence of contributing users in tweet 
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networks (Riquelme & González-Cantergiani, 2016). Following the aforementioned 

node-edge characterization of retweets between accounts, this study applied the following 

four centrality measures that are efficiently scalable to the election corpus retweet 

network: eigenvector, in-degree, out-degree and PageRank. 

Each of the applied centrality measures is a proxy for a specific form of relative 

importance within a retweet network. In-degree and out-degree centrality serve as a basis 

of popularity, given the cumulative direct inbound and/or outbound edges, or 

communication interactions, associated with each user account. Eigenvector centrality, 

which can be viewed as global measure of influence, is a more complex variant of degree 

centrality derived from the weighted sum of a given node’s complete set of direct and 

indirect edge connections. Finally, PageRank, is an extension of eigenvector centrality 

that weights a degree valuation higher for nodes that initiate edges with nodes that have 

the highest relative importance values (Brin & Page, 1998). Therefore, user accounts with 

the highest PageRank valuations in a retweet network are the recipients of more retweets 

from the most popular user accounts. Ranking the centrality results then allowed for the 

identification of the specific bots with relative structural importance, while also providing 

an opportunity to observe any redundant coverage between the detection platforms. In 

addition, the proposed method of ranking centrality results maintains the integrity of the 

ordinal ranking results of measures such as PageRank, which cannot produce an average 

global interpretation as attempted in other studies (Stella et al., 2018). The Centrality 

Ranking and Bot Coverage subsection (Section 5.4.3) within the Results and Discussion 

section (Section 5.4) presents these results. 
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5.4. Results and Discussion 

The following section presents the detailed results of the applied analysis methods 

described in the previous Data and Methods section (Section 5.3). Based on the bot 

detection results from three bot detection platforms, the Cumulative Bot Contribution 

Rates subsection (Section 5.4.1) facilitated the comparative analysis of bot and human 

temporal contributions to the overall 2018 U.S. midterm election OSN conversation. The 

Intra-group and Cross-group Comparison subsection (Section 5.4.2) details the 

interaction patterns between human and bot accounts. This section concludes with the 

Centrality Ranking and Bot Coverage subsection (Section 5.4.3) identifying social bots 

within the centrality analysis ranking results, while also presenting a bot coverage 

assessment based on the results of the detection platforms used in this study. 

5.4.1. Cumulative Bot Contribution Rates 

Figure 24 presents the cumulative contribution rates of bot and human accounts to 

the 2018 U.S. midterm election OSN conversation. The results shown in Figure 24a 

directly compare human and bot contributions rates, with an account being classified as a 

bot if any of the study’s three detection platforms positively detected it as such. Visually, 

the contribution patterns of both human and bot accounts are quite consistent throughout 

the four weeks, although bot accounts slightly outpace the daily cumulative contributions 

of human accounts for the entire period. Figure 24b directly compares the cumulative 

contribution rates of bot accounts according to the bot detection classification results for 

each of the detection platforms. The results initially show similar cumulative contribution 

rates by bots from each detection platform, but bot accounts detected by DeBot and Bot-
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hunter outpace Botometer-detected bots from September 25th through the November 6th 

election day. It is surprising to see the relatively consistent contribution rates across both 

analysis scenarios, which could suggest that the OSN election conversation elicited stable 

attention from both bot and human account contributors. While requiring further analysis, 

the observed cumulative contribution divergence by Botometer bots from DeBot and Bot-

hunter bots midway through the conversation collection period could potentially suggest 

that bots detected by Botometer shift their interest over time to conversational topics 

beyond the election discussion. 

 

 
Figure 24: Cumulative tweet contribution rates for the 2018 U.S. midterm OSN conversation (October 10 – 
November 6, 2018) from the (a) human (blue) / bot (red) and (b) DeBot (green) / Botometer (pink) / Bot-hunter 
(orange) account classification perspectives. 

 

5.4.2. Intra-group and Cross-group Comparison 

The construction of the election corpus retweet network allowed for the 

observation of communication interaction patterns between detected bot and human 
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accounts. Figure 25 presents the consolidated intra-group (i.e. bots retweeting bots or 

humans retweeting humans) and cross-group (i.e. bots retweeting humans or humans 

retweeting bots) patterns between bot and human accounts from the consolidated 

aggregate bot perspective, shown in Figure 25a (shaded in gray), as well as individual 

detection platform perspectives in Figure 25b-d. Across all bot detection platforms, bot 

accounts initiate interaction with human accounts at a much higher rate than with other 

bot accounts, with intra-group bot rates all below 0.50% for from the individual detection 

platform perspective. Social bot accounts detected by DeBot (Figure 25b) and Bot-hunter 

(Figure 25d) attempt to engage with human accounts at much higher rates than observed 

with bot accounts detected by Botometer (Figure 25c), thus suggesting the DeBot and 

Bot-hunter classification algorithms more readily identify bot accounts that are more 

social. Most interestingly, the combined bot sources perspective (Figure 25a) shows that 

when combining the individual bot detection platform results, there exists minimal 

overlap, or redundancy, in the consolidated set of detected bots due to the substantially 

decreased human intra-group rate and increasing rates for all other interactions involving 

bots. This initial bot coverage assessment is further investigated and discussed in the 

following Centrality Ranking Coverage subsection (Section 5.4.3). 
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Figure 25: Intra-group and cross-group retweet communication patterns of human (blue) and social bot (red) 
users within the 2018 U.S. midterm election OSN conversation according to each bot detection classification 
platform: (a) Combined Bot Sources (b) DeBot (c) Botometer (d) Bot-hunter. The combined bot sources results 
(shown in gray) classified an account as a bot in aggregate fashion if any of the three detection platforms 
classified the account as a bot. 

 

5.4.3. Centrality Ranking and Bot Coverage 

Figure 26 presents the centrality ranking analysis results by displaying the density 

of social bots within the top-N, (where N = 1000 / 500 / 100 / 25) centrality rankings 

according to each bot detection platform for the eigenvector, in-degree, out-degree and 

PageRank centrality measurements. Although social bots detected by DeBot and 

Botometer accounted for just 0.75% and 3.38% of all unique accounts in the retweet 

network, respectively, many displayed structural network importance by achieving top 

centrality out-degree and eigenvector rankings. Specifically, bots detected by DeBot 

accounted for more than 20% of the top-100 and top-25 out-degree ranking accounts, 

indicating a persistent social nature for these types of bots. Botometer-detected bots 
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achieved at least 50% more of the top-ranking eigenvector valuations than the other bot 

detection services. This could imply that Botometer detection techniques discover bots 

that are highly influential from a structural perspective in a network given their 

developed direct and indirect relationships with other accounts. 

 

 
Figure 26: Social bot account evidence within the top-N (where, N = 1000 / 500 / 100 / 25) centrality rankings [(a) 
eigenvector (b) in-degree (c) out-degree (d) PageRank] according to bot classification results from Bot-hunter 
(orange), Botometer (pink) and DeBot (green). 
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While all of the bot detection platforms detected few bot accounts within the in-

degree and PageRank centrality ranking results, the large variances shown between the 

out-degree and eigenvector results imply that specific detection methods detect specific 

types of bots. This concept is further evaluated by directly identifying each bot within the 

top-50 centrality rankings according to bot detection source and observing potential 

detection overlap. Figure 27 presents a detection classification ranking visualization with 

humans colored in blue and suspected bots colored according to their platform detection 

source. Interestingly, no bots detected within the top-50 rankings for each centrality 

measurement were detected by more than one detection source. This is further evidence 

that different detection algorithms are designed to identify different types of bots. 
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Figure 27: Top-50 bot (orange | pink | green) and human (blue) Twitter accounts within the 2018 U.S. midterm 
election OSN retweet network ranked by the following four centrality measures: (1) eigenvector, (2) in-degree, 
(3) out-degree and (4) PageRank. 
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The observation of minimal overlap within the consolidated set of detected bots 

from the retweet network discussed in the Intra-group and Cross-group sub-section 

(Section 5.4.2), coupled with the lack of detection overlap in the resulting centrality 

rankings, inspired a final bot coverage assessment of the entire election tweet corpus. The 

first step of this analysis consisted of a similarity assessment of the bot detection results 

derived from each of the bot detection platforms used in the study. The Jaccard index 

(𝐽",$) is a similarity valuation between two sets {A, B} resulting from dividing the 

intersection of the two sets |𝐴 ∩ 𝐵| by their union |𝐴 ∪ 𝐵| as shown in Equation 1. 

 

Equation 1: Jaccard similarity index 

𝐽",$ =
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

 

 

Table 13 presents the Jaccard similarity index results for all possible bot detection 

platform pairwise comparisons. Overall, there exist minimal levels of overlap between 

detection platforms as the highest observed similarity value is 7.62% observed between 

Botometer and Bot-hunter and the similarity values including DeBot are just 0.31% 

(DeBot and Botometer) and 1.13% (DeBot and Bot-hunter). The UpSet plot (Lex et al., 

2014) shown in Figure 28 visually presents the intersection values used to calculate the 

Jaccard index values, while also identifying a global bot detection overlap of just eight 

bot accounts between all three bot detection platforms. The top bar chart of the UpSet 

plot represents the intersection set size between detection results, while the connected dot 

plots below represent the detection platforms comprising each intersection set volume. 
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Table 13: Jaccard similarity index values representing the pairwise 
comparison results of the same bots detected between each bot detection 
platform: Botometer (BT), Bot-hunter (BH) and DeBot (DB). 

{𝐴	, 𝐵} |𝐴 ∩ 𝐵| |𝐴 ∪ B| 𝐽",$ 
DB , BT 388 123,551 0.314% 

DB , BH 1,477 131,235 1.125% 

BT , BH 16,565 217,322 7.622% 

 
 

 
Figure 28: Bot detection coverage analysis for bots detected within the 2018 U.S. midterm election OSN 
conversation using the Botometer, Bot-hunter and DeBot bot detection platforms. This figure is based on the 
UpSet intersection of sets visualization paradigm introduced by Lex et al. (2014). 
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5.5. Conclusion 

In summary, this chapter examined the prevalence and relative importance of 

detected social bots present within the 2018 U.S. midterm election OSN conversation. In 

expanding upon other social bot analysis works, it incorporated the use of three bot 

detection platforms in an unprecedented fashion, which enabled a comprehensive 

comparative analysis of bot coverage across the OSN conversation. Bot and human 

accounts contributed temporally to the 43.5 million tweet election corpus at relatively 

similar cumulative rates. The intra-group and cross-group analysis of the constructed 

retweet network showed that bots detected by DeBot and Bot-hunter persistently engaged 

humans at rates much higher than bots detected by Botometer. Additionally, the intra-

group and cross-group interactions, when viewed from a consolidated bot account 

perspective, provided the first piece of evidence that minimal overall overlap existed 

between set of bots detected by each detection platform. The centrality ranking results 

showed that bots, from an overall perspective, achieved many high centrality ranking 

positions despite their relatively small populations size. The classification of relative 

importance of social bot accounts according to certain centrality results was most notable, 

with bots detected by DeBot in the out-degree rankings and with bots detected by 

Botometer in the eigenvector rankings. Analyzing the overlap of bots detected by the 

detection platforms showed that no overlap existed between the bots ranking in the Top-

50 centrality results. Moreover, the Jaccard similarity index showed little bot detection 

overlap from a pairwise perspective, with only eight bots out of a total of 254,492 unique 

bots in the total tweet corpus having been detected by all three detection platforms. 
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The overall findings of the study are promising, but not immune from limitations. 

First of all, the analyzed OSN election corpus relied upon a single platform, Twitter. This 

reliance surely introduces platform representativeness and sampling bias issues as 

described in other works (Ruths & Pfeffer, 2014; Tufekci, 2014). Secondly, the keyword 

categorization of a midterm election is much harder to efficiently account for than to a 

more specific election like a single congressional or even presidential election. Thus, the 

keyword filters used to harvest tweets, while attempting to be representative and 

balanced, surely introduce an unknown level of potential selection bias as detailed by 

Zhang et al. (2018). Finally, while the focus of the study was on the cross-platform 

detection of bots via different sources, the ultra-conservative cutoff threshold focused on 

high bot precision undoubtedly contributed to an overall lower recall. While acceptable 

for the scope of this study, future work should seek to extend the cutoff threshold to 

account for more classification results. 

Future extensions of this work should seek to apply this multi-detection platform 

framework to other OSN use-cases of interest. This study focused on the most readily 

available and accessibly bot detection platforms in 2019, but the rapidly evolving 

research area of bot detection algorithms can hopefully contribute more accessible 

detection platforms to the greater research community soon. New options such as these 

would ideally include emerging detection methods that account for the evolving nature of 

bots, such as the adversarial approach put forth by Cresci et al. (2019a). In addition, 

detection work must begin accounting for other OSN platforms beyond Twitter. 

Ultimately, this study expands current social bot research by putting forth a reproducible 
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framework to evaluate bots from a multi-detection platform perspective, and the novel 

analysis methods produce actionable results for analysts to better understand the 

prevalence and relative importance of detected social bots. 
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CHAPTER 6. BLOCKING TURKISH VOICES: MEASURING THE IMPACT OF 
CENSORSHIP 

6.1. Introduction 

The advent of social media has undoubtedly had a significant impact on global 

events throughout the past decade. Social media platforms such as Twitter, Facebook, 

Sina Weibo and VKontakte have made near instantaneous global communication possible 

to all those who have access to an Internet connection. This access to a new form of 

media has given individual citizens an opportunity to voice their opinions, which has 

helped enable and fuel significant social movements including the Arab Spring 

movement across the Middle East (Khondker, 2011; Wolfsfeld et al., 2013), the 

Euromaidan demonstrations in Ukraine (Onuch, 2015) and the Gezi Park protests in 

Turkey (Budak & Watts, 2015; Kuymulu, 2013). As individual citizens have learned to 

harness these platforms to further mobilize and sustain these social movement efforts, 

governments have had to learn how to account for this new avenue of discourse that can 

bring about rapid collective action and even political unrest. Some authoritarian regimes 

and despotic governments view social media platforms as highly problematic and 

subsequently go to great lengths to constrain or censor collective sources of political 

views outside of government control (Shirky, 2011). 

Political censorship is by no means a new phenomenon, as many governments 

have a long history of controlling political discourse in the media (Briggs & Burke, 
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2009). The introduction of the Internet as a new medium to disseminate and access 

information has thoroughly complicated traditional censorship practices. Historically, 

governments seeking to control media could centralize authority over traditional sources 

such as print, radio and television (Nunziato, 2010). The decentralized nature of the 

Internet, amplified by the Web 2.0 revolution in which individuals became a primary 

contributor of content via social media platforms, thwarts these attempts at centralized 

control (Deibert et al., 2008; Meserve & Pemstein, 2017). Therefore, certain governments 

have developed a wide range of options to attempt to control Internet dialogue, 

specifically social media, ranging from simple messaging of appropriate online behavior 

discourse to sophisticated content monitoring and filtering as well as fully restricted 

access to the Internet (Clark et al., 2017). One instance is China’s (in)famous Great 

Firewall, which effectively prevents its citizens from visiting a litany of web services 

(e.g. Google, Facebook, Twitter and YouTube) while at the same time taking great pains 

to monitor political discourse (Xu & Albert, 2014). Meserve and Pemstein (2017) 

determined that even democracies were not immune from government-level digital 

censorship when internal dissent became evident. The various levels of censorship efforts 

throughout the world have led to different categorization frameworks of censorship at the 

country level and have been used to inform numerous censorship studies (Nisbet et al., 

2012; Warf, 2011). 

While the categorization of general censorship trends can provide useful insights 

for specific research efforts, there are limitations to such analyses. Given the proven 

ability of certain nations to drastically escalate the severity of their censorship practices, 
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general categorizations are fixed and may therefore not apply. For example, the 

expansive Internet surveillance actions of the Turkish government since the late 2000s 

and the rapid escalation of social media censorship tactics following a 2016 coup attempt 

as detailed by Yesil and Sözeri (2017) would be extremely difficult to categorize in a 

static fashion. 

To account for such dynamically changing censorship practices and their effects 

on regional and global social media conversations, this chapter puts forth a framework to 

comparatively analyze political social media dialogue prior to and during a period of 

extreme dynamic censorship. While other studies have looked at censorship via Internet 

traffic patterns (e.g. Dainotti et al. 2014; Florio et al. 2014), or specific content filtering 

and/or removal (e.g. Tanash et al. 2015; Zhu et al. 2013), this analysis focuses on a 

censorship campaign to completely block access to the Twitter social media platform. 

Specifically, a social network analysis-based framework is applied to Turkish political 

online social media conversations harvested from Twitter in December 2016 when the 

Turkish government abruptly blocked access to Twitter within Turkish-controlled 

Internet service twice in a one-week period. In doing so, the analysis of this chapter 

evaluated the effectiveness of such a censorship tactic on a given population by seeking 

observable social network artifacts at the regional and global level of the online 

conversation. In all, the analysis evaluated 4,257,556 tweets from November 27, 2016 

through December 26, 2016. 

The analysis results found the blocking campaign enacted by the Turkish 

government against the use of Twitter by Turkish citizens to be mildly effective. The 
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broad mechanism of blindly blocking access to the platform suppressed overall Turkish 

tweet volume activity during the censorship period in relation to the explosive volume 

growth observed globally. However, numerous Turkish Twitter users maintained their 

status as some of the most influential nodes in the Twitter network, while still discussing 

similar topics in the same fashion as the rest of the world. 

This chapter proceeds as follows. First, Section 6.2 presents the relevant 

background associated with digital censorship. The Methodology section (Section 6.3) 

introduces the applied methods used in this chapter. The Discussion and Results section 

(Section 6.4) presents the findings of the applied methods, while the Conclusion and 

Future Work section (Section 6.5) concludes the chapter. 

6.2. Background 

Censorship is an incredibly broad field that covers a vast array of topics, but in the 

case of this study we limit the focus to political censorship of social media by 

authoritarian governments. The Chinese government is well known for its extreme efforts 

to restrict access to social media platforms via the Great Firewall and to maintain control 

of political narratives via a vast array of surveillance programs. King et al. (2013) made 

the surprising discovery that the Chinese government displayed a higher than expected 

tolerance for disparaging social media remarks directed at the Chinese government but 

immediately silenced messages tied to collective action or mobilization of protest efforts. 

While evaluating 56 million Sina Weibo messages and 11 million Chinese language 

tweets, Bamman et al. (2012) discovered a non-uniform pattern of deletion practices 

based on message analysis at the provincial level. 
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Clark et al. (2017) surveyed the evolving nature of global censorship, providing 

details of government-imposed penalties on individuals based on their social media 

activity. The study points out that more than 1,600 social media-related arrests took place 

following the 2016 Turkish coup attempt and 10,000 were under active investigation. The 

Turkish government has shown a strong penchant for instituting rapid policy changes that 

enable government-led social media censorship practices to evolve with citizen usage 

patterns (Yesil & Sözeri, 2017). Recognizing the substantial fear instilled by the Turkish 

government with these social media penalties, Parks et al. (2017) conducted qualitative 

interviews to seek ground truth perspectives from Turkish citizens on their decisions to 

use or avoid social media. 

It is imperative to recognize Tanash et al. (2015) as the earliest substantive work 

to evaluate Twitter censorship in Turkey. The study examined tweet censorship requests 

submitted by the Turkish government to Twitter from late 2014 to early 2015. The 

findings showed that actual censored tweets from Turkey were two orders of magnitude 

higher than Twitter’s own transparency report and that most of these censored tweets 

contained political content that was often critical of the Turkish government. In a follow-

up study, Tanash et al. (2017) observed high rates of self-censorship by Turkish Twitter 

users immediately following the failed Turkish coup attempt in July 2016. 

In a precursor to Tanash et al.’s (2017) findings of self-censorship rate increases 

in Turkey, Nabi (2014) claimed that censorship is not only ineffective in restricting social 

media access, but it also produces an unintended effect of popularizing topics 

governments are attempting to censor. Classifying it as the ‘Streisand Effect,’ Nabi 
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(2014) showed through analysis of data from Alexa, Google Trends, and YouTube 

statistics, the level of ineffectiveness of past state level censorship activities in both 

Pakistan and Turkey. Katz (2014) further warned of unintended consequences from social 

media censorship practices by concluding that although social media itself is just one of 

many factors behind social movement, one cannot discount its potential to mobilize 

social actors into action. 

6.3. Methodology 

While other research has focused on limited censoring activities such as content 

filtering and deletion, this effort evaluates an attempt at total censorship. To determine 

the effectiveness of a social media censorship campaign dedicated to completely blocking 

access of a country’s population to a specific online social media platform, the following 

analysis applied methods borrowed from social network analysis to evaluate pre- and 

post-censorship network characteristics of the associated social media conversation. In 

this case, the rapid application of severe social media censorship against Twitter by the 

Turkish government in late 2016 served as the primary use case of interest. To provide 

further context for the discussions at both the regional and global level, natural language 

processing applications determined the convergent or divergent topics of discussion. The 

following subsections provide a detailed overview of the overall methodology and 

applied analytic techniques depicted in Figure 29. 
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Figure 29: Overview of methodology examining OSN censorship 

 

6.3.1. Data 

The primary data source for this study were online social media conversations on 

Twitter related to the ongoing Turkish political activities in the aftermath of the failed 

2016 coup attempt. Using the Twitter Standard Search API, English and Turkish 

language tweets were harvested from November through December 2016 based on 

relevant keywords associated with ongoing political activities (e.g. Gezi, coup, protests) 

and leaders (e.g. Erdogan, cumhurbaskani, Gülen) in Turkey. Truncation of the original 

corpus allowed for the creation of a subset corpus tweets created during the period 

immediately surrounding the Turkish censorship activities as described below. 

In December 2016, approximately six months after a failed coup attempt against 

the sitting government of Turkey, Turkish citizens faced two periods during which the 

Turkish government intentionally blocked access to Twitter. The first blocking instance 

took place in the aftermath of the December 19, 2016 assassination of Andrey Karlov, the 

Russian Ambassador to Turkey (McGoogan, 2016). In this instance, depicted with 

screenshot evidence in Figure 30, technical assessments estimated the duration of blocks 
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to Twitter, Facebook, YouTube and others to have lasted approximately 12 hours 

following the assassination (Hatmaker, 2016). Three days later, the Turkish government 

instituted an additional series of social media blocks in response to Islamic State fighters 

posting a propaganda video purporting to show two Turkish soldiers being burned alive 

(Solomon & Srivastava, 2016). The duration of these blocks was much longer, with 

reports claiming outages in Turkey for up to four days. 

 

 
Figure 30: Technical evidence informing initial blocking of Twitter within Turkey via tweet by 

@TurkeyBlocks9. 
 

In total, the subset censorship-related corpus covered a four-week period from 

November 27 through December 26, 2016 and included more than 4.2 million tweets, of 

which 2,802,127 (65.8%) were retweets. Two distinct epochs differentiate the corpus into 

distinct bins: the final week (December 19-26) serves as the censorship corpus and the 

preceding three weeks (November 27 through December 18) serve as the pre-censorship 

                                                
9 The Twitter account @TurkeyBlocks maps evidence of Internet censorship in Turkey. Access at https://twitter.com/turkeyblocks. 



137 
 

corpus. Figure 31 depicts these epoch distinctions with a gray shaded box over the 

censorship corpus period in the timeline presented in, along with daily tweet volumes for 

the entire corpus duration. 

 

 
Figure 31: Total daily tweet volume of online Twitter conversations harvested from keywords associated with 
Turkish political events from November 27, 2016 through December 26, 2016. The daily volumes highlighted in 
gray (December 19-26) depict the censorship period. 

 

6.3.2. Temporal and Spatial Patterns of Participation 

As Figure 31 shows, an obvious spike of tweet volume takes place in coordination 

with the events of the Russian ambassador assassination on December 19, 2016. 

Subsequently, there appears to be sustained high volume on December 20, with volume 

tapering precipitously through the second period of Twitter blocks in response to the ISIS 

video release. To initially assess the effectiveness of Turkey blocking its citizens from 

accessing Twitter, country-level aggregation allowed for the classification of tweet 

volumes at the country level as presented in Table 14. This required reliance upon those 

tweets with available geolocation information. Since country-level granularity was 
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necessary, the country location field available in the harvested tweets served as the 

primary filtering key. Previous studies have used this method to successfully determine 

country-level activity within social media analyses (Iman et al. 2017; Zhu 2017). 

 

Table 14: Overview of tweet corpus with geolocation features at the country-level perspective. 

 
 

Overall, the full 30-day tweet corpus contained 1,859,802 tweets (43.7%) with 

country-level geolocation features. To gain insight into whether the Turkish Twitter block 

had an effect on Turkish volumes, the time series chart depicted in Figure 32 displays the 

daily tweet volume percentage change for the top five volume producing countries, to 

include Turkey. An abrupt spike appears in the daily percentage volume change on 

December 19 for the United States, Canada and Great Britain, with a moderate increase 

for Germany and a fairly low increase for Turkey. This data suggests there was indeed a 

Country Tweets                  
(% of Total)

Retweets                  
(% of Total)

Tweets                  
(% of Total)

Retweets                  
(% of Total)

Tweets                  
(% of Total)

Retweets                  
(% of Total)

700,022 445,684 389,571 233,564 310,451 212,120
(37.64%) (39.97%) (36.40%) (36.49%) (39.32%) (41.16%)

229,612 132,231 168,535 96,363 61,077 35,868
(12.35%) (11.86%) (15.75%) (15.06%) (7.74%) (6.96%)

196,114 111,553 101,062 58,203 95,052 53,350
(10.54%) (10.00%) (9.44%) (9.09%) (12.04%) (10.35%)

82,969 55,589 57,367 37,417 25,593 18,172
(4.46%) (4.99%) (5.36%) (5.85%) (3.24%) (3.53%)

56,223 32,136 29,474 16,502 26,749 15,634
(3.02%) (2.88%) (2.75%) (2.58%) (3.39%) (3.03%)

Top-5 1,264,940 777,193 746,009 442,049 518,922 335,144
(68.01%) (69.70%) (69.71%) (69.06%) (65.72%) (65.04%)

All Countries 1,859,802 1,115,086 1,070,201 640,051 789,601 515,305

Germany

Canada

Full 30-Day Corpus                
(27 NOV - 26 DEC 16)

Pre-Censorship Corpus                
(27 NOV - 18 DEC 16)

Censorship Corpus                
(19 DEC - 26 DEC 16)

United States

Turkey

Great Britain
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drastic difference in interested volume for Turkey, the actual site of the event, relative to 

other countries. 

 

 
Figure 32: Daily percentage tweet volume change for the top five tweet producing countries within the tweet 
corpus. 

 

To extend this analysis to the author level, the analysis extended to observe 

specific tweet author volume rates for the top Turkish Twitter contributors (by tweet 

volume) during the pre-censor period and identified any volume rate differences observed 

in those author tweet volumes during the ensuing censorship period. In total, there were 

59,974 unique authors in the total authorship group identified as being from Turkey. 

Table 15 presents the top 20 Turkish authors (with anonymized names) accounting for 

10% of all Turkish tweets based on pre-censor corpus volumes. Additionally, Table 15 

provides a direct comparative metric between the pre-censor and censor periods in the 
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form of a daily average tweet rate. The results show a dramatic increase for the top author 

(tr_author_1) during the censorship period, while a considerable decrease (i.e. greater 

than a deviation 20 daily tweets) for tr_author_2, tr_author_4 and tr_author_8. 

 

Table 15: Top-20 pre-censor Turkish authors with associated pre-censor and censor period average tweet rates. 

Tweet Author 
Pre-Censor 

Tweet Volume 

% of Total 
Tweets from 

Turkey 

Pre-Censor 
Avg. Daily 
Tweet Rate 

Censor Tweet 
Volume 

Censor Avg. 
Daily Tweet 

Rate 
tr_author_1 3249 1.93% 135.4 1983 247.9 
tr_author_2 2158 1.28% 89.9 489 61.1 
tr_author_3 1237 0.73% 51.5 372 46.5 
tr_author_4 1122 0.67% 46.8 62 7.8 
tr_author_5 1005 0.60% 41.9 374 46.8 
tr_author_6 939 0.56% 39.1 346 43.3 
tr_author_7 821 0.49% 34.2 357 44.6 
tr_author_8 795 0.47% 33.1 93 11.6 
tr_author_9 650 0.39% 27.1 171 21.4 

tr_author_10 559 0.33% 23.3 274 34.3 
tr_author_11 529 0.31% 22.0 155 19.4 
tr_author_12 493 0.29% 20.5 216 27.0 
tr_author_13 454 0.27% 18.9 72 9.0 
tr_author_14 427 0.25% 17.8 179 22.4 
tr_author_15 423 0.25% 17.6 143 17.9 
tr_author_16 422 0.25% 17.6 160 20.0 
tr_author_17 413 0.25% 17.2 115 14.4 
tr_author_18 392 0.23% 16.3 240 30.0 
tr_author_19 383 0.23% 16.0 109 13.6 
tr_author_20 364 0.22% 15.2 129 16.1 

 
 

6.3.3. Centrality Analysis of Retweet Networks 

While the basic temporal analysis at the country and author levels provided 

artifacts confirming associated volume changes from the pre-censor to censor periods, 

this analysis sought to infer the relative importance of those countries’ and authors’ 
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activities in the online conversation. To do so, SNA applied centrality measures provided 

such a perspective on both the country and author discussion networks derived from 

messages that were retweets within the harvested Twitter collection. 

Centrality analysis, emanating from the larger field of social network analysis, 

seeks to distinguish the relative importance of actors, or nodes, based on their structural 

position in a given network (Wasserman & Faust, 1994). The goal of centrality analysis 

in this work is to determine which actors, from the country and author perspective, played 

the most important roles in creating, disseminating and influencing information flow 

throughout the associated Turkish retweet networks. To accomplish this, centrality 

analysis evaluated the in-degree, out-degree and eigenvector centrality measures of 

authors and countries during both the pre-censor and censor period of the study. Both in-

degree and out-degree centrality are derivatives of the basic degree centrality 

measurement. Degree centrality is the summarized accounting of all connections, or 

edges, that an actor, or node, has within a network. In-degree and out-degree imply 

associated direction for a given edge, with in-degree accounting for inbound connections 

to a node and out-degree the opposite. Eigenvector centrality, still a derivative of degree 

centrality, is more elaborate as it presents a weighted sum of direct and indirect 

connections of a node that takes into account the individual degree centrality value of 

each node with which it connects in the network (Bonacich, 2007). 

The construction of a retweet network is straightforward. If Author A reads a 

tweet posted by Author B and retweets the original message of Author B, then a node-to-

node connection, or edge, results between Author A and Author B. An initial retweet 
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connection between two nodes is assigned an edge weight value of one, with subsequent 

retweets adding to the edge weight at increments of one. In terms of this analysis, we can 

view retweets as broadcasting or amplifying messages from original authors with 

directional implications. Therefore, the in-degree and out-degree centrality values served 

as the basis to quantitatively identify the actors who create or amplify the most 

information in the network, while using eigenvector centrality to determine top 

influencers. 

In terms of the total tweet corpus, retweets accounted for 65.8% (2,802,127 

tweets) of all tweets. As previously listed in Table 14, retweets with identifiable country-

level geolocation attributes totaled 1,115,086 tweets, or 59.9% of all geolocated tweets. 

To evaluate pre-censorship and censorship centrality results in a comparative fashion, we 

created separate retweet networks for each period. The resulting pre-censorship country 

and author networks consisted of 231 nodes / 6,186 edges and 238,682 nodes / 357,119 

edges, respectively. For the censorship period, the country and author networks consisted 

of 234 nodes / 6,053 edges and 214,757 nodes / 331,942 edges, respectively.  

The country centrality analysis sought to determine the most prominent and 

influential countries participating in the Turkish Twitter conversation before and during 

the censorship activities. Table 16 presents the findings for comparative centrality 

analysis by listing the calculated centrality values for all participating countries during 

the pre-censorship and censorship periods. To judge the effectiveness of the Turkish 

censorship campaign against its own citizens, a relative drop in the prominence of 

Turkey’s centrality values should be observable. Concurrently, specific countries should 
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countries serving as the top amplifier of Turkish-originated messages between the periods 

should also be observable. Finally, any considerable positive movement by any country 

in the centrality measure rankings could signify the country is filling part of the narrative 

void left by blocked Turkish sources. 

 

Table 16: Top 10 pre-censorship and censorship country centrality rankings. 

 
 

Overall, the results from the pre-censorship country rankings are to be expected. 

First, United States participation rates typically dominate global Twitter conversations, so 

as the United States leads all centrality values. Second, Turkey ranks within the top three 

across all measurements, which is expected given that the focus of the harvested tweets 

was Turkish politics. The interesting results appear during the censorship period in which 

Turkey maintains its in-degree rank but falls precipitously in out-degree rankings. 

Furthermore, Turkey maintained a steady eigenvector or influencer status during both 

periods. To further classify observed retweet network characteristics, Table 17 provides a 

Pre-Censorship Censorship Pre-Censorship Censorship Pre-Censorship Censorship

United States United States United States United States United States United States
Great Britain Great Britain Turkey Great Britain Great Britain Great Britain
Turkey Turkey Great Britain Germany Turkey Turkey
France Russia Germany Canada France Russia

Germany Germany Canada France Germany Syria
Russia Syria France Turkey Russia Germany

Canada Canada Italy India Belgium Canada
Belgium Qatar India Italy Syria Qatar

Syria France Australia Australia Canada France
Israel India Spain Spain Israel India

In-Degree Out-Degree Eigenvector
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detailed overview of the top country retweet pairs below in. In all, country pairs 

associated with Turkey fall in ranking dramatically during the censorship period, as 

Turkish retweet pairs account for slightly more than 7% of all retweet pairs during the 

censorship, down from more than 15% previous to censorship. 

 

Table 17: Top pre-censorship and censorship retweet country pairs. 

 
 

The author centrality analysis consisted of discovering the top 100 authors 

according to each centrality value during the pre-censorship and censorship periods. 

From there, the analysis determined the representation of Turkish authors within the 

resulting top 100 centrality rankings for both periods. The results showed that Turkish 

author population representation for in-degree and out-degree density dropped from 23 to 

11 and 14 to 8 authors, respectively, between the two periods. Eigenvector centrality 

representation stayed steady as Turkish authors’ representation rose minimally from 39 to 

40 authors in the top 100. Therefore, Turkish authors showed a decrease of in- and out-

Retweeting 
Country

Original Tweet 
Country

# of Retweets
% of Total 
Retweets

Cumulative %
Retweeting 

Country
Original Tweet 

Country
# of Retweets

% of Total 
Retweets

Cumulative %

United States United States 101,562 15.87% 15.87% United States United States 108,669 21.09% 21.09%
Turkey Turkey 47,310 7.39% 23.26% United States Great Britain 28,849 5.60% 26.69%

United States Turkey 21,684 3.39% 26.65% Great Britain Great Britain 18,450 3.58% 30.27%
Great Britain Great Britain 21,073 3.29% 29.94% Turkey Turkey 18,010 3.50% 33.76%
United States Great Britain 18,152 2.84% 32.78% United States Turkey 14,203 2.76% 36.52%
Great Britain United States 13,243 2.07% 34.84% United States Italy 12,697 2.46% 38.98%
Turkey United States 11,182 1.75% 36.59% United States Saudi Arabia 12,167 2.36% 41.34%

Germany Turkey 9,534 1.49% 38.08% Great Britain United States 12,096 2.35% 43.69%
Germany Germany 8,674 1.36% 39.44% United States Venezuela 11,523 2.24% 45.93%

United States Germany 6,945 1.09% 40.52% Turkey United States 5,947 1.15% 47.08%
Turkey Germany 6,140 0.96% 41.48% India United States 5,537 1.07% 48.16%

Germany United States 5,403 0.84% 42.33% Canada United States 5,518 1.07% 49.23%
Great Britain Turkey 5,073 0.79% 43.12% India India 5,365 1.04% 50.27%

Canada United States 4,885 0.76% 43.88% United States Germany 4,832 0.94% 51.21%
United States Canada 4,064 0.63% 44.52% United States Russia 4,488 0.87% 52.08%

Pre-Censorship Corpus Retweets Censorship Corpus Retweets
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degree prominence during the censorship period but maintained significant influence 

across the network with steady eigenvector centrality values. 

6.3.4. Topic Discovery within Emergent Network Communities 

Community detection in networks provides researchers an opportunity to uncover 

underlying structural sub-graphs, or clusters, within networks. The algorithms that fall 

under the classification of community detection seek to discover these clusters, or 

communities, by focusing on the comparatively higher rate of connections between some 

nodes that are otherwise more isolated from the rest of the network (Girvan & Newman, 

2002). There exist a wide range of community detection applications that can be used for 

different types of structured networks (Fortunato & Hric, 2016). The Louvain community 

detection method (Blondel et al., 2008) served as applied detection algorithm used to 

determine the existence of communities within both the pre-censorship and censorship 

retweet networks. The Louvain method has been quite popular for researchers given its 

ability to quickly scale to networks of immense size, while also not constraining the 

number of emerging communities to a predetermined number. The Louvain algorithm 

itself employs a two-stage greedy heuristic that seeks to first optimize modularity locally, 

then globally, while iterating until modularity reaches a maximum point. 

The analysis further sought to determine community structure during both the pre-

censorship and censorship periods for comparative purposes, while also examining the 

distribution of Turkish authors throughout each of the largest communities. The 

community detection results returned four primary communities for each period’s 

network. The four identified communities accounted for 74% and 85% of all retweet 
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traffic for the pre-censorship and censorship networks, respectively. In terms of Turkish 

author distribution among the top communities, we found the maximum Turkish author 

membership of a top community to be 38.2% and 26.2% for the pre-censor and 

censorship periods, respectively. However, the total membership rates in the top 

communities for Turkish authors decreased from 13.2% to just 6.4% during the period of 

censorship. A breakdown of author and tweet volume counts is provided in Table 18. 

 

Table 18: Top conversational topics for the most populated emergent communities. 

 
 

Beyond the identification of emergent community structure, this work sought to 

infer the particular conversational focus areas of each identified community in order to 

determine if common themes existed across the top communities and during the different 

periods of consideration. Furthermore, by observing the specific topics of focus by 

Author Population = 66,041 Turkish Authors = 6,698 Author Population = 28,734 Turkish Authors = 945 Author Population = 25,808 Turkish Authors = 9,858 Author Population = 12,288 Turkish Authors = 35
Total Tweets = 314,290 Turkish Tweets = 32,797 Total Tweets = 47,703 Turkish Tweets = 2,219 Total Tweets = 96,176 Turkish Tweets = 39,891 Total Tweets = 27,347 Turkish Tweets = 169

Topics (All Authors) Topics (Turkish Authors) Topics (All Authors) Topics (Turkish Authors) Topics (All Authors) Topics (Turkish Authors) Topics (All Authors) Topics (Turkish Authors)
Turkey Erdoğan Turkey Turkey Erdoğan Erdoğan Trump Turkey
Erdoğan Turkey intlspectator intlspectator Turkey Cumhurbaşkanı Turkey Gulen
Kurdish Mavi Syrian people Cumhurbaşkanı Turkey blackmail Trump
Syria Marmara Aleppo killed tcbestepe Katıldı business SashaToperich
attack davası missing stadium Aleppo Aleppo Maddow year
killed Cumhurbaşkanı stadium Besiktas attack Emine president journalists
US İsrail killed Erdoğan DailySabah Şehit attention schools
ISIS AKP explosion Istanbul PKK Törenine kurteichenwald US

journalists düştü Trump Blasts Katıldı Cenaze extradite Worst
die Sonuna US bus against hope explosive jailed

Author Population = 69,589 Turkish Authors = 1,267 Author Population = 42,364 Turkish Authors = 218 Author Population = 32,224 Turkish Authors = 3,742 Author Population = 20,452 Turkish Authors = 5,351
Total Tweets = 146,296 Turkish Tweets = 3,094 Total Tweets = 104,328 Turkish Tweets = 362 Total Tweets = 138,516 Turkish Tweets = 13,032 Total Tweets = 50,789 Turkish Tweets = 14,744

Topics (All Authors) Topics (Turkish Authors) Topics (All Authors) Topics (Turkish Authors) Topics (All Authors) Topics (Turkish Authors) Topics (All Authors) Topics (Turkish Authors)
Turkey Turkey Turkey Turkey Turkey Erdoğan Turkey Erdoğan
Russian Russian Russian terror Russian Turkey Erdoğan Turkey

ambassador ambassador attacks attacks ambassador Russian Russian Russian
shot intlspectator terror Germany Erdogan ambassador ambassador ambassador

Ankara shot Germany realDonaldTrump ISIS ISIS Cumhurbaşkanı ISIS
killed Erdoğan civilized Switzerland killed soldiers Aleppo soldiers

assassination Ankara realDonaldTrump worse soldiers video AlabedBana video
gunman Reuters Ambassador civilized shot Putin shot Putin
attack killed terrorist Russian media blocked killed killed
police gunman Allahu ambassador police killed Ankara Karlov

Pre-Censorship Community Topics

Censorship Community Topics
Community 1 Community 2 Community 3 Community 4

Community 1 Community 2 Community 3 Community 4
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Turkish authors, the results could serve as another avenue to assess whether the Turkish 

government block of Twitter was successful. 

Natural language processing applications allowed for the derivation of the most 

discussed topics for each of the top communities by tokenizing the text field for all tweets 

created by a community, while also creating an additional subset for Turkish authors of 

each community. Table 18 shows the consolidated results listing the top 10 topic words 

for each community and the Turkish subset. The results showed that while there was a 

diversity of topics in the top communities during the pre-censorship period, the 

assassination of the ambassador dominated the censorship period discussions across all 

communities, to include the Turkish community subsets. 

6.4. Discussion and Results 

The following section links together the most pertinent results from the analytical 

methods deployed in this study in order to shed light on the original research question to 

determine the effectiveness of a social media censorship campaign dedicated to 

completely blocking access to a specific online social media platform. As observed in 

Figure 32, Turkish tweet volumes lagged behind the sharp increases of other countries 

immediately following the assassination of the Russian ambassador. One can assume that 

an event of such magnitude would drive additional social media interest in the given 

locale, so the governmental block appeared to successfully contain expected growth 

volume. Observations of top author volume were inconclusive as the top author had a 

sharp increase in volume during the censorship period, while some volumes dropped, but 

the remainder of the top 20 stayed nearly the same. This result suggests the effectiveness 



148 
 

of the blocking campaign was not entirely successful, as the blocks did not account for 

many of the top volume authors in Turkey. 

To characterize relative importance of countries and authors within the tweet 

conversations, centrality measures results showed that Turkey’s ability to initiate retweets 

was severely diminished and country retweet pairs dropped substantially during the 

censorship period. However, Turkey maintained consistency in popularity with outside 

countries by maintaining a high in-degree rate and eigenvector ranking. Therefore, the 

blocks appeared to have succeeded only in blocking the initiation of retweets, while many 

Turkish nodes maintained their influence across the network during the censorship 

period. Finally, Turkish participation in the four most populous emergent communities 

fell from 13.2% to just 6.4% during the censorship period. Interestingly though, Turkish 

authors tweeted exactly about the topic (i.e. the Russian ambassador assassination) that 

the Turkish government was trying to censor throughout the censorship period. 

Overall, there is evidence to support claims that the Turkish government blocking 

campaign of Twitter in December 2016 was indeed successful, but in a limited sense. The 

campaign stymied explosive usage within the Turkish population during an extreme 

event, but by not targeting the most influential Turkish authors in a more specific manner, 

the primary Turkish voices in Twitter remained largely influential. 

6.5. Conclusion and Future Work 

In summary, this chapter examined a social media censorship case in which a 

national government blocked access to an entire social media platform. The conclusions 

showed that the effort displayed mild success by harnessing message volumes in response 
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to an extreme political act of violence, but Turkish Twitter users maintained their status 

as influential nodes in the observed networks. Further, community detection results 

coupled with natural language processing showed that active Turkish Twitter users 

during the censorship period continued to discuss topics related to the incidents the 

Turkish government was trying to censor. 

This analysis effort is not void of challenges and limitations. As Tufekci (2014) 

states, studies involving social media data must clearly state their limitations in terms of 

validity and representativeness. In this case, the representative sampling of harvested 

tweets emanated from the platform specifically targeted by the Turkish government, but 

collection efforts clearly did not capture the entire conversation taking place on Twitter 

due to API limitations. Furthermore, while resolving location at the country-level should 

result in a fairly reliable resolution level, one cannot fully validate the geolocation data 

provided by Twitter. 

A primary extension to this work would be to incorporate a deliberate collection 

plan focused on harvesting tweets from countries beyond Turkey that have a high 

propensity to also censor or block access to Twitter. This would allow for a comparative 

analysis of censorship effectiveness between the countries. An additional extension 

would be to examine rates of self-censorship as posed by Tanash et al. (2017) and Nabi 

(2014). Such an analysis would provide insight into when populations recognize that the 

cost of participating in a censored environment is simply not worth the effort or risk. 

Still, the unique methodology put forth in this chapter adds to the field of literature 
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investigating the evolutionary practices of censorship taking place in today’s online 

social networks. 
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CHAPTER 7. ADAPTATION TO DIGITAL CENSORSHIP: A SOCIAL 
SIMULATION APPROACH 

7.1. Introduction 

Throughout history, governments have turned to the practice of censorship as a 

means to suppress political dialogue (Briggs & Burke, 2009). The specific censorship 

tools and techniques employed have been driven by the media environments through 

which information can potentially be obtained (e.g. print, radio, television, Internet) 

(Esarey & Xiao, 2011). The accessible and decentralized nature of Internet-related 

information sources such as online social network (OSN) platforms (e.g. Facebook, 

Twitter, Sina Weibo) provides a new challenge for governments seeking to use 

censorship practices (Fourie et al., 2013). Recent observable challenges to governmental 

authority by citizens include OSN-enabled collective action ranging from non-violent 

digital activism (Edwards et al., 2013) to physical mass protests against oppressive 

regimes (Bohdanova, 2014; Tufekci & Wilson, 2012). Correspondingly, governments, in 

some cases, have enforced censorship efforts through physical means by punishing (e.g. 

prison, legal constraints) citizens who ignore or bypass censorship measures (Parks et al., 

2017; Yesil & Sözeri, 2017). 

Digital censorship can assume many forms, but generally consists of filtering 

available content, restricting access to certain sources or even implementing country-

wide Internet outages (Clark et al., 2017; Dainotti et al., 2014). Examples of OSN 
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censorship are globally numerous and well documented. The most prominent example, 

the Great Firewall of China, employs a hybrid censorship strategy that fully restricts 

citizens from many web services the government cannot advise or control (e.g. Google, 

Facebook, Twitter, YouTube), while also closely monitoring citizen usage of permittable 

web services (Bamman et al., 2012; King et al., 2013; Xu & Albert, 2014). Other blatant 

digital censorship implementations include Azerbaijan (Pearce & Kendzior, 2012), 

Ukraine (Metzger & Tucker, 2017) and Turkey (Parks et al., 2017; Tanash et al., 2015). 

Clark et al. (2017) noted, unsurprisingly, that repressive regimes are more likely to 

implement digital censorship practices, but Meserve and Pemstein (2017) noted specific 

cases in which even democratic governments circumscribed the digital participation of its 

citizens. 

The ever-increasing digital participation of citizens to contribute and access 

information in OSNs globally and the emerging digital censorship practices of certain 

governments to limit or prevent OSN usage has led to a dichotomous situation. 

Determining the implications of such a situation where citizens and governments (i.e. 

social actors) are adapting to each other’s cyber actions (e.g. digital activism, digital 

censorship) and physical actions (e.g. mass demonstrations, punishment) is a complex 

problem that cannot be easily understood. Therefore, the chapter introduces an agent-

based model (ABM) to examine the adaptive dynamics of a complex adaptive system of 

citizens choosing to engage or not engage in online discussions, while a government 

entity attempts to enforce censorship policies. Inspired by previous ABMs focused on 

emergent collective action from digital participation (Borge-Holthoefer et al., 2013; 
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Piedrahita, Borge-Holthoefer, Moreno, & González-Bailón, 2018) and the social identity 

model of collective action (SIMCA) framework (Van Zomeren et al., 2008), this model 

introduces a novel perspective of evaluating both cyber and physical environment 

adaptation to censorship practices by examining a particular population’s technological 

skillset (i.e. technical savviness), in addition to the population’s social identity and 

perception of its government’s legitimacy. The resulting adaptation to censorship model 

serves as an easily extendable template to explore any digital censorship environment 

given the acquisition of pertinent input data as described in this chapter. Such a model 

provides an opportunity to simulate certain scenarios that can potentially answer how and 

why Turkish citizens were able to circumvent digital censorship as described in Chapter 

6. 

The remainder of this chapter is as follows. First, the Background section (Section 

7.2) presents pertinent background literature discussing the communication theory 

relevant to collective action in censorship environments, obfuscation techniques to 

bypass online censorship tactics and a brief review of collective action ABMs using OSN 

data. Section 7.3 introduces and explains the model, while Section 7.4 presents an 

experiment comparing the results of the model when incorporating different data input 

parameters representative of two government entities known to participate in digital 

censorship practices. Finally, Section 7.5 concludes the chapter with a summary of 

findings and potential areas of further work. 
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7.2. Background 

Political censorship is a pre-emptive tactic aimed at suppressing information flow 

to prevent the collective action of a population (King et al., 2013). OSNs have enabled 

major collective action events, such as the 2011 Tahrir Square protests in Egypt (Howard 

et al., 2011) and the 2013 Euromaidan protests in Ukraine (Bohdanova, 2014), by serving 

as a conduit of information which, in turn, helped mobilize citizens. To further delve into 

the genesis of collective action from an OSN media participation perspective, one must 

look to a theoretical underpinning to further analyze explicit factors that led to a tipping 

point threshold of action. Social identity—an individual’s sense of belonging to a certain 

group (e.g. culture, race, economic class) (Tajfel, 1979)—serves as a primary driver of 

inter-group conflict that can lead to collective action (Polletta & Jasper, 2001; Tajfel et 

al., 1979). While social identity is a primary-enabling factor of collective action, it is not 

the sole direct or indirect factor (Van Zomeren et al., 2008). To account for additional 

observable factors of collective action, numerous research efforts have focused on 

developing multi-factor integrative theories of collective action (Kawakami & Dion, 

1995; Stets & Burke, 2000; Van Stekelenburg & Klandermans, 2013; Van Zomeren et 

al., 2008). The implementation feasibility of each integrative theory into a model is data 

dependent and the Van Zomeren et al.’s (2008) social identity model of collective action 

(SIMCA) framework was the most compatible with the adaptation to censorship model 

data used in this chapter. Van Zomeren et al. (2008) based the SIMCA model on the three 

dominant socio-psychological perspectives discovered across 180 analyzed collective 

action studies: (1) perceived injustice (2) efficacy (3) social identity. Recent research by 
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Chan (2017) provided an exemplar on evaluating how alternative media, such as OSNs, 

potentially shaped the SIMCA model (2008) antecedents of collective action. 

In terms of preventing collective action, censorship efforts can occasionally lead 

to unpredictable or unintentional outcomes. Using data from Google Trends, You Tube 

Video Statistics and Alexa Web Rankings, Nabi (2014) discovered that state-level digital 

censorship campaigns in Pakistan and Turkey were not only ineffective at restricting 

citizen access to online content, but actually popularized the content. Self-censorship, an 

additional potential consequence of censorship affecting an individual’s efficacy, is a 

socio-psychological ‘filter’ causing an individual to withhold information intentionally or 

voluntarily (Bar-Tal, 2017). Cook and Heilmann (2013) categorized self-censorship 

resulting from political censorship practices as public self-censorship. In evaluating 

tweets published by Turkish citizens before and after the failed 2016 coup, Tanash et al. 

(2017) attributed the measurable decline in the volume of tweets censored by the Turkish 

government to Turkish citizens self-censoring their online Twitter participation. Finally, 

pluralistic ignorance is an additional factor that can potentially have a detrimental effect 

on collective action due to shared misperceptions of injustice or social identity. Pluralistic 

ignorance is a social psychology term used to describe the shared false perceptions of 

individuals about the internal preferences of others (Miller & McFarland, 1987; 

O’Gorman, 1986). Evidence of such dissonance has been used in research to explain 

prevailing observed sentiment associated with topics such as segregation (O’Gorman, 

1975), climate change (Geiger & Swim, 2016) and college alcohol consumption (Prentice 

& Miller, 1993).  
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Citizens originally countered censorship in traditional media sources by turning to 

OSNs to share information, and now digital censorship practices are causing citizens to 

develop methods to bypass information restraints imposed on OSNs (Behrouzian et al., 

2016). Parks et al (2017) described the dynamic OSN strategies citizens use to avoid 

digital censorship as ‘transmit-trap’ dynamics. Citizens can potentially bypass censorship 

practices by deploying an array of circumvention tools. Mou et al. (2016), for example, 

presented an overview of circumvention tools ranging in technical sophistication level, 

concluding that micro-level characteristics of individuals (e.g. technical savviness, 

demographics, gratifications) served as the primary factor for circumvention tool usage. 

ABMs have been used to study a wide range of complex social phenomena within 

the research fields of economics (Epstein & Axtell, 1996), conflict (Geller & Alam, 2010; 

Pires & Crooks, 2017) and political science (Axelrod, 1993). In the case of this chapter, 

ABMs serve as a logical modeling framework to account for the complex human 

dynamics characterizing the emergence of collective action. Lemos et al (2013) presented 

a thorough review of ABMs that investigated social conflict—largely extensions inspired 

by Epstein’s (2002) civil violence model—to include examples accounting for the role of 

digital communication (i.e. actions in a cyber environment) influencing physical 

collective action (i.e. actions in a physical environment) with the purpose of informing a 

future model that includes additional attributes and roles for people in protests. In 

attempting to explain the emergence of the Arab Spring uprisings, Makowsky and Rubin 

(2013) developed an ABM to observe the institutional, technological and social 

mechanisms responsible for revolution and discovered that access to online 
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communications play an important role in the sustainability of physical power for 

authoritarian regimes. Casilli and Tubaro (2012) directly addressed online censorship 

through an ABM implementation of the 2011 United Kingdom riots, determining that 

online censorship (i.e. cyber environment activity) of any level resulted in civil protest 

(i.e. physical environment activity) with higher levels of violence. Additional proposed 

model efforts related to censorship and OSN participation scenarios include the role of 

social media (i.e. cyber environment activity) in street protests (i.e. physical environment 

activity) (Waldherr & Wijermans, 2017) and the extension of the Granovetter (1978) 

threshold model to account for online interactions (i.e. cyber environment activity) as a 

form of participation that could lead to collective action in a physical environment 

(Funcke & Franke, 2016). 

While previous works that directly focused on modeling online censorship are 

sparse, the adaptation to censorship model presented in this chapter not only adds to the 

literature, but also differentiates itself from the few online censorship-related models. 

First, previous online censorship models (Casilli & Tubaro, 2012; Funcke & Franke, 

2016; Makowsky & Rubin, 2013; Waldherr & Wijermans, 2017) viewed collective action 

as a physical environment outcome (e.g. street protest, riot, government change), while 

the focused outcome in this work is a community’s collective action decision to 

participate in an online cyber environment during a censorship event. Additionally, this 

model explicitly models the heterogeneous technical capabilities of a given population 

and government entities based on available empirical data, which is has not been 

attempted other censorship model efforts. 
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7.3. Adaptation to Censorship Model 

The following sections introduce and explain the adaptation to censorship model 

presented in this chapter using the Overview, Design concepts and Details (ODD) 

protocol (Grimm et al., 2010). Section 7.3.1 introduces the model’s purpose and entities. 

Section 7.3.2 presents the underlying concepts associated with the model’s design, while 

Section 7.3.3 describes the model’s implementation and resulting output. The source code 

of the model, developed using NetLogo 6.0.4 (Wilensky, 1999), is available for 

download at https://www.comses.net/codebase-release/df2fa006-6f2a-4ec8-b29b-

7e358f43b2e1/. 

7.3.1. Overview 

7.3.1.1. Purpose 
The purpose of the model is to explore how a population adapts to government-

imposed digital censorship practices and to illustrate the extent to which the decisions 

individual citizens make to participate in further online activities are based upon the 

perception of their physical and cyber environments. Specifically, the model maps citizen 

attributes to the three antecedents (i.e. perceived social identity, efficacy and injustice) of 

the SIMCA framework (Van Zomeren et al., 2008) as shown in Figure 33. This model is 

designed as a foundational framework that is adaptable to specific digital censorship use-

cases or situations, employing an abstraction of reality that seeks to be in qualitative 

agreement with obtainable empirical data sources (i.e. Level 1 ABM classification 

(Axtell & Epstein, 1994)). The simplification of real complex systems into an observable 

model form requires a litany of assumptions to be made (Batty & Torrens, 2005), which 

the following sections detail. 
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Figure 33: Mapping of SIMCA antecedents to citizen attributes in censorship model. 

 

7.3.1.2. Entities, State Variables and Scales 
The model observes citizens making decisions to engage in online activities when 

facing the digital censorship practices of a government entity of a specified country or 

locale. Citizens ultimately decide to participate in online communications (see Section 

7.3.3.3) by evaluating their physical and cyber social network environments. The 

government, in turn, monitors and punishes citizens engaging in online conversations as 

described in Section 7.3.3.3. Figure 34 provides a flow diagram capturing the model’s 

logic and processes that are further detailed in the remainder of Section 7.3. 

The primary entity in the model is an agent representing an individual citizen. The 

citizen agents are heterogeneous actors characterized by unique state variables, or 

attributes, such as technical savviness, risk tolerance and government perception. The 
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technical savviness attribute is a measure of a citizen’s general ability to use Internet 

technologies, where ‘technically-savvy’ citizens with higher valuations are more likely to 

use tools to obfuscate their online actions from government detection. The assignment of 

initial technical savviness levels is based on a given locale’s available empirical 

distribution of technical talent (OECD, 2016) and serves as a proxy for efficacy. OECD 

reports the percentage of population that falls within each ICT proficiency level and the 

model GUI allows for the user to input a population percentage for each proficiency 

level. Risk tolerance is a citizen attribute representing a personal threshold to act in the 

face of potential retribution and serves as a determinant in a citizen’s decision to 

participate in online communication. While initial risk tolerance levels are assigned 

randomly, research suggests that individual risk tolerance is a stable attribute over time, 

predominately determined by localized socialization (Dohmen et al., 2012; Sahm, 2012) 

and represents this model’s social identity proxy component. The government perception 

attribute serves as a proxy of an individual citizen’s perceived sense of injustice resulting 

from a government’s decisions to digitally censor online communication. The initial 

government perception value for a given locale is based on results from World Economic 

Forum empirical survey data (Schwab, 2018). 

Further citizen attributes include binary classifiers such as ‘participant’ and 

‘punished’ that account for the status of a citizen throughout a model run. The initial 

designation of citizens as online participants is proportional to the total model population 

according to the Internet participation rate of a given locale’s population as reported by 

the World Bank (2017). Online participants engage with one another according to a scale-
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free distribution of degree connections, which is an observable distribution in online 

participation (Johnson et al., 2014). The assignment of punishment to a citizen is 

condition-based as described in Section 7.3.3.3 and symbolizes any type of digital 

censorship punishment (e.g. prison, probation, fines) as described by Parks et al. (2017) 

and Yesil and Sözeri (2017). 

The government entity in the model is an exogenous actor and not explicitly 

observable via specific government agents. Future extensions of this model could include 

such government agents dispersed throughout the model environment, but that is beyond 

the scope of this initial model. The government ‘acts’ through a punishment function 

(Section 7.3.3.3) and derives its capability to detect online citizen participants through a 

government technical capability valuation that is a variable model input parameter. The 

author used available information and communications technology (ICT) expenditure 

data (United Nations, 2018) as a proxy to assign a particular government’s technical 

capability. 

Within the model, citizens interact in both a physical and cyber environment. The 

highly stylized physical environment is meant to simulate a citizen’s physical social 

network, which consists of a 30 by 30 cell grid that has a uniform density of one citizen 

per cell. Connections in the physical environment are based on direct connections with 

citizens populating directly adjacent cells, and physical position does not change during a 

model run. The cyber environment represents an online social network consisting of edge 

links between citizens choosing to participate in online activities in the model. The cyber 

network exhibits a scale-free degree distribution in the simulated OSN and is recreated in 
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each step in a model run to account for citizens’ daily opportunity to participate online. 

The temporal scale for each time step is currently notional. Future improvements to this 

model will introduce a temporal element based on the granularity of available data, which 

the author anticipates to potentially be from the day, hour and minute perspective. 

Therefore, the current default run time (i.e. max censorship period) of the model is 365 

days, however this remains a notional threshold in the model’s current development 

stage. 

 

7.3.1.3. Process Overview and Scheduling 
In each time step, each citizen makes three sequential observations and one 

decision. First, the localized technology skill spillover model (Section 7.3.3.3) enables a 

citizen to potentially increase its technical savviness attribute by observing the technical 

savviness of the local physical neighbors (i.e. adjacent eight neighbors). Next, each 

citizen conducts a physical and cyber environment observation to inform its decision to 

participate online, which comprises the steps of the overall online participation decision 

model. Upon completion of the online participation decision model by all citizens, the 

government executes the exogenous government punishment model to punish those 

citizens it can detect as participating in online activities. The citizen and government 

decision models continue to repeat themselves in the same order until the model reaches 

the maximum censorship time limit set by the user prior to initialization of the model. 

 



163 
 

 
Figure 34: Adaptation to online censorship model logic and processes flow diagram. 

 

7.3.2. Design Concepts 

Aggregate monitors track and report global community statistics based on average 

and total citizen attribute calculations. These include the community-level measures of 

risk tolerance, tech savviness and government perception. Furthermore, dynamically-

updated global counts report each step the different citizen classification populations of 

non-participant, participant and punished, while also graphically depicting each citizen 

classification in color (i.e. non-participant = blue, participant = green, punished = red). 

The changing classification of a citizen is based upon interactions among citizens within 

the cyber and physical environments. These state variables update state variables each 

step of the model.  



164 
 

As further detailed in Section 7.3.3.3, citizens sense the physical and cyber 

environments in two different ways. In the physical environment, citizens sense the state 

variables of their adjacent neighbors and modify their own state variables accordingly. In 

the cyber environment, a citizen observes participation via its degree value, which is the 

number of total connections it has with other citizens within the online social network. If 

the citizen’s degree is lower than the average total degree of the online social network, 

then it senses there is a general overall community participation issue and decides not to 

continue to interact in the cyber environment. 

Stochasticity exists in many forms within the model. The initial parameterization 

of the model includes the random assignment of individual attribute values according to 

the distributions as detailed in Table 19. The initial participant selection at the onset of 

the model is random. Additionally, the first citizen edge pair is chosen randomly to begin 

the construction of the online social network during each time step. While the entities 

execute fairly simple decision processes, the overall model enables potential emergence 

from a global perspective given the multitude of individual interactions based on 

stochastic attributes. 

7.3.3. Details 

7.3.3.1 Initialization 
Upon initialization of the model, a citizen is created for each cell in the default 

size grid representing the physical environment, thus resulting in a total community 

population of 900 citizens. Each citizen then receives its initial attributes according to the 

model input parameter details listed in Table 19. The assignment of initial technical 

savviness values for each citizen follows an empirical distribution derived from data 



165 
 

detailing ICT proficiency levels across a specific country’s population as reported by 

OECD (2016). Initial government perception values follow a similar assignment process 

as citizens receive assigned values according to country-specific opinion data of 

government performance as reported by the World Economic Forum (Schwab, 2018). 

The classification of citizens as online participants is initially assigned randomly and is 

proportional to the reported country-level Internet usage population rates by the World 

Bank (2017). Given these three attributes are reported with country specificity, the model 

user must modify the input parameters observed for the desired country of interest. The 

experiment presented in Section 7.4 provides country-specific examples on how to 

account for these parameter inputs. Finally, risk tolerance is assigned randomly to each 

citizen to induce stochasticity to the model and remains constant based upon observed 

theoretical factors (Dohmen et al., 2012; Sahm, 2012). The final initialization step is the 

assignment of the government technical capability attribute. This value represents the 

volume of citizens government entity can observe during the model and potentially 

initiate the punishment process. The model uses international ICT trade volume data 

reported by the United Nations (2018) as a proxy to determine an individual country’s 

technical capability and categorically bins countries according to total ICT trade volume 

as follows: very high, high, moderate, low and very low. 

7.3.3.2. Input Data 
This model relied entirely on publicly available open-source data. The primary 

data sources used to stylize the model parameters include OECD (2016), the World 

Economic Forum (Schwab, 2018), the World Bank (2017) and the United Nations 

(2018). An extensive literature review shaped the estimation of certain parameters such 



166 
 

as censorship punishment (Parks et al., 2017; Yesil & Sözeri, 2017), risk tolerance 

(Dohmen et al., 2012; Sahm, 2012) and the scale-free characterization of the online social 

network (Johnson et al., 2014). Table 19 provides a consolidated summary of the model’s 

input parameters. The default parameters settings represent data for Turkey, which serves 

as the primary censorship entity in Chapter 6 and further analyzed in the remainder of 

this chapter. 

 

Table 19: Adaptation to censorship model input parameters. 

Parameter Range Default Reference 
Citizens    
Technical savviness 0-1 Empirical Distribution OECD (2016) 

Risk tolerance 0-1 Normal (0,1) Dohmen et al. (2012); Sahm (2012); 
Author estimation 

Government perception 0-1 0.41 World Economic Forum (Schwab, 
2018) 

Online participant T/F T/F World Bank (2017) 

Punishment T/F T/F Parks et al. (2017); Yesil & Sözeri 
(2017); Author estimation 

    
Participants    
Network connections 
(degrees) ³ 0 0 Johnson et al. (2014) 

Total online participants 0-1 0.65 World Bank (2017) 
    
Government    

Technical capability 0-1 0.20 United Nations (2018); Author 
estimation 

    

 

7.3.3.3. Sub-models 
The citizen agent and exogenous government entity decisions made in this model 

are human in nature, thus must be grounded in relevant theory. The following section ties 

the theoretical concepts introduced in the background section (Section 7.2) to the sub-
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model processes occurring within the model and observes how each process potentially 

affects the SIMCA (Van Zomeren et al., 2008) core antecedents of perceived injustice, 

efficacy and social identity antecedents. The dashed gray boxes shown in Figure 34 

annotate the logic and processes comprising each sub-model. 

Localized Technology Skill Spillover. Relative physical proximity to human 

capital expertise can lead to a spillover of knowledge and skill (Jovanovic & Rob, 1989; 

Malmberg & Maskell, 2002; Moretti, 2004). In the specific instance of technology skill, 

knowledge from skilled humans spills over to less-skilled humans, thus resulting in the 

general overall increased knowledge of a localized labor population (Fang et al., 2008). 

In this sub-model, citizens can potentially improve their technical savviness level based 

upon technical knowledge spillover from adjacent neighbors. From a SIMCA 

perspective, a citizen can view a technical savviness increase as a potential boost to its 

overall perceived efficacy. At each step in the model, if a citizen observes that the 

average technical savviness of its neighborhood (i.e. eight adjacent neighbors) in the 

physical environment exceeds its current individual technical savviness level, then it can 

increment its current level by a fixed value 0.1. This sub-model process repeats itself at 

each step of the model until a citizen attains the maximum allowed technical savviness of 

1.0. 

Citizen Online Participation Decision. A citizen’s decision to participate in online 

social network activities within the cyber environment is based upon three factors: the 

physical environment, the cyber environment and individual risk tolerance. First, a citizen 

observes its physical environment to determine if any of its neighbors (i.e. eight adjacent 
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cells) have been punished by the government. If a citizen does not observe a punishment 

in the neighborhood, then it increases its overall government perception value by 0.01 

and sets its physical environment check status to true, while decreasing its government 

perception by 20% if observing neighborhood punishment. The corresponding changes to 

government perception affect an individual’s overall feeling of perceived injustice. Next, 

a citizen observes its cyber environment by comparing its degree value (i.e. number of 

connections to other digital participant citizens) with the average degree of the entire 

cyber online network. If the individual citizen degree exceeds the average network 

degree, then it increments its government perception value by 0.01 and sets its cyber 

environment status check to true. A degree value of 0 indicates that the citizen either was 

not an online participant or did not make any online connections as a participant during 

the previous step. If either the physical or cyber check fails, then the applicable status 

check is set to false and the government perception is decreased by 0.01 per failure. 

Finally, the citizen has all of the information required to make a decision to participate in 

online activities. If a citizen passed both environmental checks and its individual risk 

tolerance is above 0.50, then it will decide to participate in the online social network 

activities. While each citizen will execute the online participation decision model for 

each step of the model, the government perception parameter values will not surpass the 

maximum or minimum threshold of 1.0 and 0.0, respectively. 

Exogenous Government Punishment. Historical evidence shows the proclivity of 

some government entities to administer a range of punishments to citizens attempting to 

circumvent digital censorship policies (Clark et al., 2017; Parks et al., 2017; Yesil & 
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Sözeri, 2017). This model simulates the act of government punishment as the last sub-

model process in a time step. The exogenous government entity observes a given 

population of citizens in the physical environment based on the assigned government 

technical capability attribute. If an observed citizen is an online participant and has a 

technical savviness value less than 0.90, then the government will punish the citizen. 

Those citizens with a technical savviness level above 0.90 are considered to have 

obfuscation tools that prevents the government from detecting their activities. A 

punishment results in an immediate 50% degradation of a citizen’s technical savviness 

and government perception, thus effectively destroying a citizen’s perceived efficacy to 

participate online in the cyber environment and instilling the highest level of perceived 

injustice. The punishment lasts according to the user-defined number of time steps. 

7.4. Proof of Concept Experiment and Results 

Before introducing the proof of concept experiment and results, it must be stated 

that this model underwent extensive verification processes. Each function passed 

localized logic testing to ensure all code performed as expected. Furthermore, 

incremental scale tests were conducted to test the scalability of code as larger populations 

and more interactions were introduced to the model. Finally, parameter sweeps were run 

to account for all potential parameter selections. These verification steps were intentional 

and essential to set the foundation for this model to be used as a reproducible template for 

various experimentation as shown in the remainder of this section. Section 7.4.1 presents 

a sensitivity experimental analysis to better understand the relationship between the 

baseline model parameters. Section 7.4.2 follows with an introduction to a comparative 
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country analysis, which is followed by the presentation of the experiment’s results in 

Section 7.4.3. 

7.4.1. Baseline Model Parameter Analysis 

To better understand the relationship among the model’s parameters in a baseline 

setting, this section presents a sensitivity analysis. Table 20 provides a consolidated list 

of the baseline parameters for the simulation runs comprising the sensitivity analysis. 

Following the framework (Section 7.3.3.2) to use Turkish-specific data for the model’s 

baseline parameters, additional baseline parameters decisions for the sensitivity analysis 

simulation runs were made that included fixing the punishment term to be 90 time steps, 

running the simulation for 365 time steps and repeating a simulation run for 100 times for 

each particular parameter set. The sensitivity analysis focuses on how the mean 

community government perception and technical savviness values change over time 

when varying the initial government technical capability and technical savvy tiers model 

parameters. 

 

Table 20: Baseline simulation settings for parameter sensitivity analyses 
Simulation Variable  Parameter Setting 
Number of simulation runs (per 
setting) 

 100 

Time steps (t) (per run)  365 
Punishment term  100 
Number of participants  0.65 
Perception of government  0.41 
Government technical capability*  0.20 
Technical savvy tiers*   

Very high  0.09% 
High  6.90% 

Moderate  18.6% 
Low  15.9% 

Very low  57.7% 
*Variables serve as varied parameter test cases as explained in Section 7.4.1. 
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The government technical capability is the assigned attribute of the exogenous 

government entity to detect citizens participating in online activities during a digital 

censorship period. This is a fixed attribute that does not change during a simulation run. 

This analysis varies the government technical capability value across the following 

values: 0.20, 0.40, 0.60 and 0.80. Figure 35 visualizes the effect that the assigned 

government technical capability value has on the mean government perception and 

technical savviness values over the course of the simulation runs. Generally, we see a 

similar relationship exhibited between the mean government perception and technical 

savviness values for each of the government technical capability settings over time. An 

immediate stability between the government perception and technical savviness is 

observed, followed by a sharp increase in both values this is initially led by technical 

savviness after 90 time steps, but eventually surpassed by government perception as both 

values appear to stabilize after approximately 200 time steps. The primary effect 

observed from the variance of government technical capability is the difference between 

the government perception and technical savviness during the initial (0-90 time steps) and 

subsequent (200 to 365 time steps) periods of stability. As the government technical 

capability increases from Figure 35a through Figure 35d, the difference observed 

between government perception and technical savviness during the initial stability period 

diminishes, while it greatly expands in the subsequent period.   
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Figure 35: Resulting effect on the mean population government perception and technical savviness values over 
time due to varying the initial technical capability parameter of the government entity. 

 

In contrast, the following analysis examines the effect of varying an overall 

population’s initial technical savviness level and how it influences the mean government 

perception and technical savviness levels over time. This particular analysis assigns 

initial technical savviness levels proportionally across the five technical savviness levels 

in an effort to emulate a very high, moderate and very low technically savvy population. 

Specifically, the very high technically savvy population consists of 60% very high, 30% 

high, 8% moderate, 2% low and 0% very low technical savvy citizens. The moderate 
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technically savvy population consists of 2% very high, 23% high, 50% moderate, 23% 

low and 2% very low technical savvy citizens. Finally, the very low technically savvy 

population consists of 0% very high, 2% high, 8% moderate, 30% low and 60% very low 

technical savvy citizens. Figure 36 visualizes the effect that these different initial 

technical savviness population assignments have on the mean population government 

perception and technical savviness levels over time. All three populations show an initial 

spike in technical savviness levels corresponding with the expiration of the initial 

punishments at the 100th time step. However, we see a primary difference with the very 

high technical savvy population as it gradual decays the remainder of the simulation run 

after the initial spike after 100 time steps, while the very low and moderate populations 

continue to increase the mean technical savvy level. Additionally, upon initialization, the 

very low population shows that it has very little technical savviness to lose as there is a 

minimal initial decrease in comparison to the larger initial drops observed in the 

moderate and very high populations. 
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Figure 36: Resulting effect on the mean population government perception and technical savviness values over 
time due to varying the initial model population technical savviness levels (low (a), moderate (b) and high (c)). 

 

7.4.2. Experiment Overview 

The following overview introduces an experiment using the adaptation to 

censorship model with available open-source data from two countries that engage in 

digital censorship practices: Turkey10 and Russia11. According to the input parameter 

descriptions and sources presented in Section 7.3, Table 21 provides the country-specific 

input parameters that the user must input to the model’s front end graphical user interface 

(GUI), shown in Figure 37, prior to initialization. There is no requirement to input a 

group_1 (i.e. Very Low) technical savviness population percentage as the model 

automatically assigns this level to all citizens that do not receive a rating of group_2 or 

above. 

 

                                                
10 Chapter 6 presents details on past Turkish digital censorship practices. 
11 Freedom House country-level report details past Russian digital censorship practices available at 
https://freedomhouse.org/report/freedom-world/2019/russia. 
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Table 21: Country-specific input parameters for adaptation to censorship model experiment. 
Input Parameter GUI Selector Russia Turkey 

Internet Users num_of_participants 76% 65% 

Government Technical Capability gov_tech_cap 60% 20% 

Perception of Government perception_of_gov 49% 41% 

Technical Savviness    
Very High group_5 5.50% 0.09% 

High group_4 20.4% 6.90% 
Moderate group_3 25.6% 18.6% 

Low group_2 14.9% 15.9% 
Very Low -- 33.6% 57.7% 

 
 

 
Figure 37: Snapshot of model GUI displaying input parameters for Turkey. 

 

The experiment compares the impact of increased punishment duration on the 

collective action antecedent proxies for perceived injustice (i.e. community perception of 

government) and efficacy (i.e. community technical savviness) after a fixed-period of 

digital censorship. The purpose of such an experiment is to gain potential insights into 

how the censorship practices of two governments with significantly different technical 

capabilities can affect their own distinct citizen populations. In addition to the parameters 

listed in Table 21, the country-specific simulation experiments varied the punishment 



176 
 

duration parameter from 5 to 365 time steps in increments of 40 time steps. Overall, 100 

simulation runs were conducted for each of the 10 different punishment durations for 

each country, thus, the experiment consisted of 2,000 total simulation runs. 

7.4.3. Experiment Results 

Figure 38 depicts how varying punishment durations affect the overall mean 

community perception of the Russian (black) and Turkish (brown) governments over 365 

times steps. While distinctly different populations, the overall trend of both country 

perspectives follow a similar gradual decay in the mean perception of government by 

citizens, with a precipitous drop occurring when punishments extend beyond 285 time 

steps. The more positive view of the Russian government by its citizens in comparison to 

the Turkish government and its citizens is maintained consistently across the simulation 

runs, but it should be noted that the standard deviation ranges (depicted with error bars) 

are much greater for the Russian results. If preservation of positive government 

perception is a goal of these countries, then the simulation results show that any potential 

digital censorship benefits gained when punishments extend beyond 285 time steps come 

at a steep cost of citizens viewing their government’s actions as increasingly unjust.  

 



177 
 

 
Figure 38: Impact of varying punishment duration on mean citizen government perception. Solid dots represent 
the mean value, while the error bars represent the standard deviation over 100 simulation runs. 

 

The resulting effects of varied punishment duration on community technical 

savviness levels, as shown in Figure 39, follow somewhat similar patterns to the effects 

displayed on government perception. Overall, the mean citizen technical savviness levels 

exhibit much lower variability in terms of standard deviation. Furthermore, while 

government perception levels decayed somewhat steadily with increased punishment, 

mean technical savviness levels appeared to increase when punishment duration 

increased to 45 and 285 time steps, respectively. Finally, the similar precipitous drop 

observed in government perception is not observed with mean technical savviness until 

the final increase to 365 time steps. However, the same interpretation exists from a 

government perspective as extending punishment durations beyond 285 time steps 

induces a severe drop in mean citizen technical savviness. In contrast to government 
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support though, a particular government might want to restrict the advancement of their 

population’s skillset to circumvent the very censorship practices instilled by it. 

 

 
Figure 39: Impact of varying punishment duration on mean citizen technical savviness. 

 

The precipitous declines observed in government perception and technical 

savviness after punishment durations of over 285 time steps require further investigation. 

Figure 40 shows the observation patterns of the SIMCA antecedents (i.e. risk tolerance, 

government perception and technical savviness) over the course of a typical simulation 

run where punishment durations exceed 285 time steps. Following a relative long period 

of stable community-level metrics, which could be characterized as rampant self-

censorship, the red box annotated in Figure 40 captures a sharp divergence between the 
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technical savviness and government perception after 200 time steps, followed by a rapid 

recovery in government perception as highlighted by the red box in Figure 40. Upon 

further investigation, this interesting stability change is the result of many citizens 

reaching the 0.90 technical savviness threshold over time, thus preventing the 

government from detecting their online activities moving forward. The rise in mean 

government perception is also interesting as fewer punishments take place due to the 

government not being able to detect citizens that have reached the 0.90 technical 

savviness threshold, thus resulting in a corresponding rise in government perception. 

 

 
Figure 40: Typical adaptation to censorship model simulation run results from 365 time steps for punishment 
durations greater than 285 time steps. 
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7.5. Conclusion 

This chapter introduced a novel ABM to examine the decisions citizens make to 

participate in online activities when facing digital censorship policies imposed by a 

government entity. The adaptation to censorship model captures the complexities of a 

heterogeneous population of citizens and governments (i.e. social actors) adapting to each 

other’s cyber actions (e.g. digital activism, digital censorship) and physical actions (e.g. 

mass demonstrations, punishment). This initial baseline model relied upon all open-

source data to parameterize the model in a templated fashion to allow for future 

extensions and iterations of the model. Following the SIMCA framework of Van 

Zomeren et al. (2008), the primary outputs of the model capture how citizen attributes 

serving as proxies for the antecedents of collective action evolve throughout various 

simulation run experiments. The experiment presented in this chapter parameterized 

model runs according to available public data associated with Russia and Turkey. The 

comparative results showed that overall levels of government perception and technical 

savviness declined precipitously when both government entities extended the punishment 

duration of citizens beyond approximately 285 time steps. Furthermore, the model 

captured potential self-censorship evidence as both the Russian and Turkish populations 

exhibited relatively stable technical savviness and government perception levels until a 

growing number of citizens achieved a 0.90 technical savviness threshold to avoid 

government detection.  

There are, of course, primary limitations associated with the presented model. 

First, this Level-1 model, in the Axtell and Epstein (1994) schema, does not support 
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validation steps in its current state. This limitation is justifiable in the near-term as the 

baseline model, while populated with empirical data, is meant for initial exploratory 

analysis to inform a more sophisticated version of the model. Furthermore, the data used 

to support the initial parameterization of the model, as demonstrated with the proof of 

concept experiment, was purposefully limited and restricted to only easily-accessible data 

sources for the purpose of immediate reproducibility. Future extensions will include 

additional data sources dependent on the availability for given locales of interest. Such 

data sources include OSN data (e.g. Twitter, VKontakte), network traffic data (e.g. VPN 

connections, sensor placements) and additional sources (e.g. race, religion, economic 

status) that could serve as further proxies for the antecedents of collective action. 

Immediate extensions of the model should focus on ascertaining data at finer level 

of granularity to support the determination of a temporal time step in a simulation run at 

the daily or hourly level. Such granularity is achievable via timestamps available from 

harvestable OSN platforms (e.g. Twitter, VKontakte). The use of OSN platform data 

should be deliberate to account for their well-known biases (Ruths & Pfeffer, 2014; 

Tufekci, 2014), while also exercising extreme caution to validate OSN participation 

patterns at the hyper-local level in targeted digital censorship campaigns (Reuter & 

Szakonyi, 2015). An additional immediate model extension will afford the government 

entity the capability to increase its technical capability over time by gaining technical 

competence each time it punishes a citizen with a certain level of technical savviness. 

Furthermore, the government technical capability can potentially decrease over time as 

the public will become aware of government techniques over time. This tactical 
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awareness is similar to the strategic decisions governments contemplate when using 

cyber weapons as discussed by Edwards et al. (2017). 

The adaption to censorship model presented in this chapter is a baseline 

abstraction of reality, and, as such, is meant to serve as an initial starting point leading to 

a more complex model. This initial version, however, does highlight the potential for 

using an ABM to examine such a complex phenomenon and lays the foundation for 

future extensions as described previously. Understanding the complexity of interactions 

resulting from digital censorship campaigns is essential in helping aid oppressed citizens 

that are seeking to access and share information. 
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CHAPTER 8. CONCLUSION 

8.1. Summary of Dissertation Results 

Overall, this dissertation examined the range of complexity associated with social 

interactions that take place in rapidly evolving socio-technical systems. Specifically, this 

dissertation provided primary, original contributions to the nascent research fields of 

social bot analysis and digital censorship. The remainder of this section summarizes the 

observed results from each of this dissertation’s chapters. 

The methodological framework set forth in Chapters 2 and 3 established the initial 

foundation for all social bot research in the dissertation. The framework successfully 

created a reproducible process map for fusing bot detection classification results with 

harvested OSN conversation data. These processes enabled the application of quantitative 

analysis techniques that have not previously been conducted in the field of social bot 

research. Comparative social bot analysis results presented in the first two social bot 

chapters showed that social bots, while comprising only a small portion of the total tweet 

corpus author population (using one bot detection platform), attained substantially high 

centrality rankings and could be inferred as actors of relative social importance in the 

overall social network. Applying the same methodology to identify social bots within 

OSN mass shooting conversations, Chapter 4 found that social bots attained similar levels 

of structural social influence. Finally, Chapter 5, the culmination of the increasingly more 



184 
 

rigorous social bot analysis methods applied in this dissertation, extended the framework 

to incorporate three separate bot detection platforms. Ultimately, the results of Chapter 5 

showed that the separate bot detection platform algorithms detected different types of 

bots with little overlap in the classification of bot accounts actively participating within 

the 2018 U.S. midterm election OSN conversation. 

Chapters 6 and 7 addressed the second adaptation research focus area of the 

dissertation, digital censorship. Chapter 6 took advantage of a Twitter data collection 

harvest focusing on the aftermath of the failed 2016 Turkish coup and captured two 

emergent periods of digital censorship. The subsequent analysis allowed for the 

evaluation of the Turkish government’s digital censorship attempt to block access to 

Twitter. The results showed that while the censorship campaign was marginally 

successful, it did not fully restrict the most active voices from continuing to participate in 

OSN conversations. The observation of continued digital participation in the face of 

government-imposed censorship mandates led to the development of the adaptation-to-

censorship model presented in Chapter 7. This model parameterized citizen and 

government social actors with empirical data sources to simulate the decision process 

citizens undergo to determine if they should continue to engage in online activities. Using 

attribute proxies representing the collective action antecedents of the SIMCA framework 

(Van Zomeren et al., 2008), citizens with various technical expertise examine both their 

physical and cyber environments to determine if they will continue to engage in online 

activities, while attempting to potentially circumvent digital censorship efforts.  
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8.2. Contributions of Dissertation 

As shown in this dissertation, social bot adaptation and digital censorship in 

online systems both require accounting for a myriad of social complexities. Given the 

complex nature of such a task, the overarching research methodology required this 

dissertation to follow a true computational social science (CSS) multi-disciplinary 

approach as presented in Figure 41. By following this approach, this dissertation was able 

to fuse data acquisition and processing, social science theory and computational modeling 

to present novel contributions back to the respective social bot and digital censorship 

research areas of interest. Specifically, the array and scale of so many different social bot 

analysis use-cases have not been conducted in such a simultaneous fashion before. This 

achievement necessitated the use of extensive data acquisition and processing skills, 

including scalable cloud deployments to account for the variety and volume of required 

data. Furthermore, the consolidation of these data enabled the application of social 

network analysis (SNA) techniques that have not been previously attempted in social bot 

analysis. This included the incorporation of social science theory such as media framing 

theory (Chyi & McCombs, 2004) and the SIMCA framework (Van Zomeren et al., 2008) 

to derive greater understanding of the underlying data results. The resulting applied SNA 

analyses employed in Chapters 2-5 directly led to a comparative analysis framework 

capable of identifying social bot pervasiveness and, more importantly, the social bot 

accounts of relative structural importance (Research Question 1). The multi-detection 

platform demonstration in Chapter 5 proved that different bot detection algorithms 

recognize different types of bots, thus answering Research Question 2 of this dissertation. 
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This feedback to the larger social bot research field as it recognizes the essential 

requirement to go beyond the use of sole bot detection to account for as many types of 

bots as possible. Finally, the digital censorship research presented in Chapter 6 showed 

how computational methods can evaluate the effectiveness of an authoritarian 

government’s digital censorship campaign (Research Question 3) and can serve as the 

foundation for the creation of a simulation model (Chapter 7) to better infer the decision-

making processes of social actors facing digital censorship practices (Research Question 

4). 

 

 
Figure 41: Overview of computational social science multi-disciplinary approach used in this dissertation to 
research social adaptation in complex online systems. 
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8.3 Future Work 

Beyond the individual extensions mentioned at the conclusion of each chapter, 

such as the inclusion of additional use-cases viewed on other OSN platforms using a 

greater variety of bot detection platforms, the immediate comprehensive future work 

motivation for this dissertation is the consolidation of the social adaptation areas of focus 

(i.e. social bots, online censorship). Figure 42 visualizes the proposed intent to logically 

link social bot research and digital censorship research to inform a more robust ABM of 

digital adaptation. Such an iterative feedback framework could account for the 

shortcomings that exist for each of these research areas when viewed in isolation. For 

example, it is not possible to accurately determine the motivation of bots with given 

detection methodologies, so simulation could provide an avenue to test potential 

motivational theories. Furthermore, social bot research and digital censorship research are 

dependent upon available OSN data. Therefore, to proceed past easily accessible data 

platforms, such as Twitter, and to account for other digital participatory environments 

(e.g. Facebook, LinkedIn), one could consider using this dissertation’s ABM to simulate 

these potential environments. Ultimately, emergent simulation results could lead to 

additional investigative ideas within the digital censorship and social bot research areas.  
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Figure 42: Vision to logically link social bot and digital research through an ABM implementation. 

 

As presented and discussed in Chapters 2-5, social bot research currently focuses 

on the binary classification of OSN accounts as bot or human. While some bot detection 

platforms attempt to classify the sophistication of bots via a scoring continuum (e.g. 

Botometer (Davis et al., 2016), Bot-hunter (Beskow & Carley, 2018)), it is essential to 

move beyond a binary results approach and to further identify and detect bots according 

to motivation or intent. A potential set of rules or a bot ‘Turing-test’ could help inform 

detection algorithms to provide greater transparency and increase the speed by which bots 

are currently identified and understood. Media gatekeepers must lead such an endeavor 

and rectify the ongoing struggle with disruptive technology enabling fake news. Failure 

to do so could result in the eventual dissolution of trust in any media sources. 

The research put forth in this dissertation facilitates immediate greater situational 

understanding of adaptation in complex online social systems, while enabling a potential 
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roadmap to account for the ever-evolving and increasing sophistication of future social 

bots and digital censorship campaigns. To keep pace with the growing sophistication of 

bots, more advanced bot detection algorithms, such as Cresci et al. (2019b), should 

immediately be made available as a detection source for the social bot analysis 

framework described in this dissertation. This would allow for a more active (i.e. real 

time) detection posture, as opposed to the current open-source detection platforms (e.g. 

Botometer, DeBot), which are more passive in nature. The incorporation of the latest 

detection algorithms would overcome the current OSN user verification and account 

deletion issues that hamper detection platforms, while also posturing the research 

community to account for more complex media messaging by bots, such as image and 

video format. 
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