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Abstract: The paper describes recent results from developing and testing LUS 
methodology for user modeling.  LUS employs AQ learning for automatically 
creating user models from datasets representing activities of computer users. The 
datasets are stored in a relational database and employed in the learning process 
through an SQL-style command that automatically executes the AQ20 rule 
learning program and generates user models. The models are in the form of 
attributional rulesets that are more expressive than conventional decision rules, 
and are easy to interpret and understand. Early experimental results from the 
testing of the LUS method gave highly encouraging results.  
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1 Introduction 
The rapidly growing global connectivity of computer systems creates a great need 
for effective methods that are able to detect unauthorized use of computers. 
Standard methods for assuring computer security, such as passwords, gateways, 
and firewalls not always provide sufficient protection from unauthorized accesses. 
Intruders typically exploit holes in the operating system or crack password files to 
gain access to the computer system and masquerade as legitimate users. As a 
result, detection of a sophisticated intruder is increasingly difficult, especially 
when there are many computer users or the intruder is an insider. 
  
The approach discussed in this paper, called Learning User Style (LUS), applies 
symbolic learning, specifically AQ learning, to induce typical patterns of 
interactions between individual users and computers.  Given records measuring 
various characteristics of the interaction between users and computers (in our 
project process LUS automatically creates models of user behavior (symbolic user 



signatures) by employing a machine learning program. The user models are in the 
form of rulesets relating the measured characteristics to the individual users.   

The rulesets are expressed in attributional calculus, a highly expressive, logic-
style language that can concisely represent complex relationships (Michalski, 
2001). In the experiments described here, the rules are created by AQ20 learning 
program, which is the most recent implementation of AQ-type inductive learning. 
An important characteristic of AQ learning is that the generated rulesets (user 
signatures) are easy to interpret and understand.  This means that they can be 
inspected and verified by experts, and hand-modified or extended, if desired. 

To develop effective user models, large training and testing datasets may be 
needed for each user. If there are many users, the datasets to be handled may 
become massive. This creates an issue of how to handle such massive sets 
effectively both for user model creation and model testing.  To address this 
problem, the learning system was integrated with a relational database and 
invoked through a create command of KQL, a knowledge generation language 
under development. 
 

3 Basic Concepts and Terminology 

To explain this research, we need to introduce some terminology. An event is a 
description of an entity or situation under consideration. In the context of user 
modeling, an event is vector of attribute-values that characterizes the use of 
computer by a user at a specific time or during a specific time period. 

A session is a sequence of events characterizing a user’s interaction with the 
computer from the login to the logoff. An episode is a sequence of events 
extracted from a session; it may contain just a few events, or all of the events in a 
session. In the training phase, it is generally desirable to use long episodes, or 
even whole sessions, as this helps to generate better user models. In the testing (or 
execution) phase, it is desirable to use short episodes, so that a user can be 
identified from as little information as possible. 

The report by Goldring et al. (2000) indicated that one of the most relevant 
characteristics of the user behavior is the mode attribute. Therefore, in initial 
experiments, we have concentrated on the user model employing sequences of 
values of this attribute determined from the process table. Specifically, events 
were n-grams of the mode attribute, that is, sequences of n consecutive values of 
the mode attribute extracted from the data stream. The behavior of a user was 
characterized by a set of consecutive, overlapping n-grams (events) spanning a 
given period of user interaction with the computer. 

The sequence of modes recorded in a session was transformed into a set of 
overlapping n-grams (events), each representing a sequence of n consecutive 
modes in the session’s log.  A set of events selected from one or more sessions of 
a specific user was used as a training set for learning this user’s signature.  In 
addition to a training set, a different set of testing events was created for each user 



for the purpose of testing the learned model.  Both training and testing sets were 
stored in a relational database connected to ORACLE DB through Squirrel SQL 
client  (see Section 6).   

Training sets for each user were submitted to an AQ-type symbolic learning 
program, AQ20, described briefly in the next section. The program generated user 
profiles (symbolic user signatures) in the form of attributional rulesets—sets of 
attributional rules characterizing the behavior of one user. 
 
4 The AQ20 Learning System 
In this project, we used learning system AQ20, which is the latest implementation 
of the AQ learning methodology.  Among AQ20 features that are most important 
for user modeling are: 

1)  generation of attributional rules that are more expressive than conventional 
ones, and this produces more compact models 

2)  ability to cope with noisy data 

3) ability to work with continuous data without needing discretization.  (This 
feature has been added specifically for this project) 

4) ability to learn hypotheses according to a multi-criterion optimization function 

5) scalable implementation that can work efficiently with large numbers of 
training examples (e.g., in this project AQ20 learned from several million 
examples). 

A discussion of an initial (incomplete) AQ20 implementation, and the results from 
early experiments can be found in (Cervone, Panait, and Michalski, 2001). 
 

5  The “ Create ruleset”  Command 
In order to seamlessly integrate inductive learning and data mining capabilities 
with a database, a new language is being developed, called KQL (Knowledge 
Query Language), which includes SQL as a subset.  A major command of KQL is 
Create Ruleset that calls a learning program to create rules from a dataset selected 
from the database. The general form of this command is:  

  

Create Ruleset  <Output-tableset> from <Input-tableset> for <Consequent> Using 
<Parameter-table> 

where  

<Output-table>  is a relational table that will contain the ruleset to be learned. 
Individual rules in the ruleset are in the form:  

Consequent <=  Premise,  where  PREMISE is a conjunction of 
conditions involving one or more attributes (such conditions are called 
attributional conditions (Michalski, 2001)) 

<Input-table> is a relational table that stores training examples 



<Consequent> may specify just one value of the output attribute, in which case it 
is in the form of a simple condition [output-attribute=v], or all values of the output 
attribute, in which it is in the form [output-attribute=*], or, simply,  output-
attribute. In more general form, Consequent can be a product of attributional 
conditions.   

<Parameter-table> specifies all control parameters of the learning program (in this 
case, AQ20). 

In this project, the ruleset create command has been implemented so far in a 
somewhat more specialized form.  It uses Squirrel/KQL (CREATE RULES, 
FROM, FOR and USING are terminators). 

CREATE RULES [MULTIHEAD]  RuleSetFamily FROM  <DATA_TABLE>  
FOR <TARGET-CONCEPT>  USING  <PARAM_SPEC> 

<DATA_TABLE> : data_table 

 <TARGET> : Attributional_Complex  { [x=1,4,6] & [y > 6]}  

                        | Annotted_Attibute_list    

                        | All_attributes  [Except Attribute_list] 

                        | Target_table 

Annotated_Attribute_List : Annotated_Attribute_list Annotated_Attribute 

                                    | Annotated_attribute 

Annotated_Attribute : Attribute [For <attribute_values>] 

<PARAMETER_SPEC> : Table of parameters and values 

               | ID for parameter relational table 

               # IN here Char or Discr mode would be defined 

 

6  Squir rel SQL Client 
In this research we employed Squirrel, a complete SQL client.  Squirrel is a 
graphical Java program that allows one to view the structure of a JDBC database 
(Java Database Connection), browse the data stored in relational tables, issue SQL 
commands, etc.  The distribution of Squirrel is handled by the sourceforge 
network (www.sourceforge.com). The home page for the Squirrel SQL client is at 
www.sourceforge.net/projects/squirrel-sql/. The modifications that we have done 
to the Squirrel code involved a modification of the Squirrel GUI and handling of  
SQL queries. An option was also added to the Squirrel that allows one to import 
raw data in form of comma separated format (CSV). Squirrel does not come with 
such an option, as it was designed primarily to browse and issue SQL commands 
rather than import data. 

The Create-ruleset command was deeply integrated with the Squirrel program.  A 
new Java class (KQL-adapter) was created that first checks if the query is a 
“create ruleset”  command. If it is not, the control is passed back to Squirrel, which 
checks if the query is a valid SQL command. If it is, KQL-adapter creates SQL 
queries that retrieve target data and parameters from the database, store them in 



the AQ20 input file, and then runs AQ20 to generate rulesets. The resulting rules 
are displayed on the screen in text format.  

 

In this project we used Oracle 8.1.7 working under the Irix operating system. The 
modified by us Squirrel client can be used, however, with any database for which 
a JDBC connection is supported, such as MySQL, mSQL, PostgreSQL, and 
others. 

 

7. Datasets used in exper iments 
Datasets used in this experiment included information about 777 user sessions, 
collected from a Window operating system’s process table, and characterized 
activities of 23 different users.  The data were obtained from Dr. Thomas 
Goldring. Prior work done by Goldring et al. (2000) evaluated several existing 
methods for user modeling and indicated that an important attribute for user 
modeling is mode that characterizes the type of activity a user is engaged in at a 
given time, such as reading email, word processing, etc. Therefore, in our studies 
we also employed the mode attribute.  

To be able to apply a learning program to a sequential data stream, the data were 
transformed to collections of n-grams. Given a sequence of items, an n-gram is 
constructed using a sliding window of size n.  In our experiments we chose n=4, 
based on findings by Goldring et al. (2000).  

The raw data were transferred into 4,808,024 4-grams characterizing 24 users, 
labeled from User0 to User23. A different number of sessions were extracted for 
each user, and each session had different length, which led to different numbers of 
n-grams for each users (Figure 1 and 2). Another characteristic feature of this data 
was that the number of distinct events (n-grams, in this case) was significantly 
different from the number of total events. This means is that there were many 
repetitions of the same n-grams in the data streams from different users.  
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Figure 1:  Number of sessions per user in the Windows dataset 
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Figure 2:  The number of different 4-grams per user in the dataset. 

 

8 Creating user  models and matching them against testing episodes 

The original datasets were split into training and testing sets. The training set was 
subsequently split to different portions in order to determine the learning curve. 
Given a training set for each user, the AQ20 learning system learned rules models 
from them. These rules were subsequently tested on the testing set. The next 
section describes one of the experiments and obtained results.    

Testing of rulesets typically involves matching single events against the learned 
rules. Attributional rules created by an AQ-type learning program are matched to 
events by the ATEST program (Reinke, 1984; Michalski and Kaufman, 2000).  In 
the case of user modeling, to obtain meaningful results, one needs to match user 
models against a sequence of events (episode). To this end, a special method was 
developed that matches episodes with attributional rulesets  and determines a 
score. The method was implemented in EPICn (Episode Classifier for n-grams). 

The EPICn module calls the ATEST module for each of the distinct events in the 
episode, and for each decision class determines a degree of match between the 
corresponding ruleset Ri. and the episode. For each rule Ri,j in ruleset i, it 
calculates a degree of match, cijk, between event k and rule Rij, using the selected 
ATEST method. The degree of match between an event k and a ruleset Ri, called 
an event score for class i and event k, and denoted EVik, is defined: 

EVik   = Maxj=1…s(i)  (cijk  x  tij)                                                         (1) 

where tij is the number of training examples satisfying Rij.  



The degree of match between an episode and the ruleset Ri, called the episode 
score for class i and denoted EPi, is defined: 

EPi = EV ik

k = 1

z

�                                                                     (2) 

EPICn classifies the episode to the class with the highest episode score, if the 
episode score is above the score acceptance threshold (SATH), and the difference 
between the highest and the next highest episode scores is greater than the score 
acceptance tolerance (SATO). The score acceptance threshold and score 
acceptance tolerance allow the program to avoid making definite decisions when 
the episode score or the difference between the highest and the next highest 
episode scores are too small. In such cases, the program classifies an episode as 
“unknown.”  Up to this point, EPICn has run only with the acceptance threshold 
and the acceptance tolerance of 0, so that no classifications have been assigned 
“unknown.”  Since EPICn calls upon ATEST, both EPICn and ATEST have been 
integrated within the same program, which leads to a faster execution of the 
testing process. 

EPICn normalizes the scores defined in (2) so that for each episode, the sum total 
of degrees of match is 1. The definition of the episode score as stated in (2), is one 
of many possible such definitions. 

 
9  Exper iment 1 (7 users):  

The AQ20 allows the user to tune the learning process to the problem at hand by 
specifying program control parameters (Michalski and Kaufman, 2000).  In the 
experiment described below, the control parameters were: 

ambiguity = empty  
mode = Theory Formation and Pattern Discovery 
maxstar = 1 & maxrule = 1 
LEF = (MinNumSelectors, 0.3) (MaxNewPositives, 0.1) 
LEF1 = (MaxQ)(MaxNewPositives, 0.0) (MinNumSelectors, 0.0) 
LEF2 = (MaxTotalQ)(MaxNewPositives, 0.0) (MinNumSelectors, 0.0) 

 
Several experiments were performed using different combinations of parameters. 
In every results (characterized by predictive accuracy on the testing set) were very 
similar. This means that AQ20 was not very sensitive to the input parameters in 
this application. 
 
For this experiment the dataset was divided into two parts, the first 80% 
(chronologically) of the sessions for training and the last 20% for testing.Error ! 
 



8489550653244138656

6470635952455371425

54565692626201230064

627480935152532263

5705081947744977842

6711542085852143481

616828357352363450

Total -Total +Distinct -Distinct +User

 

Table 1: Distribution of total and distinct events. 
 

Initially, we experimented on a smaller dataset, consisting of the data from users 
0-6 only.  Testing was done both on the first 50% of the testing set, and then on 
the full testing set based on rules generated from training sessions that used 4%, 
33%, 66% and 100% of the total training data.  Table 1 illustrates the large 
difference between distinct events and total events, and it explains why some of 
the rules that have rather high rule quality according to the Q(w) measure 
(Kaufman and Michalski, 1999) when this is computed using the total events 
appear to be quite poor when the Q is compared using distinct events. 
 
To illustrate results obtained in this experiment, below are the first two rules from 
the set of 17 rules generated as a User 1 model (the rules are represented in the 
form of generalized n-grams, in which each position is occupied not by a single 
value but by a set): 
 
  # -- This learning task took: 11.92 seconds of system time  
  # -- Number of rules for User 1 = 17 
  # -- Number of the distinct events in the target class:              348 
  # -- Number of the distinct events in the other class(es):       5214 
  # -- Number of the total training events in the target class:  20858 
  # -- Number of the total training in the other class(es):      671154 
 
[User = 1]  
�

 <{netscape,msie,telnet,explorer,web,acrobat,logon,rundll32,system,welcome,help}, 
 {netscape,msie,telnet,explorer,web,acrobat,logon,welcome,help} 
 {netscape,msie,telnet,explorer,web,acrobat,logon,printing,welcome,dos,help} 
 {netscape,msie,telnet,explorer,web,acrobat,logon,rundll32,welcome,dos,help}> 
  : pd=262,nd=58,ud=118,pt=20718,nt=140,ut=3197,qd=0.607308,qt=0.986414  

 
  

�
 <{netscape,telnet,office,acrobat,rundll32,welcome,help} 
  {netscape,msie,telnet,web,acrobat,logon,printing,rundll32,dos,help} 
  {netscape,msie,telnet,explorer,logon,rundll32,help} 

        {netscape,msie,telnet,network,acrobat,printing}> 
        : pd=74,nd=6,ud=6,pt=16565,nt=17,ut=7,qd=0.195631,qt=0.79334  
 
The rules were learned by AQ20 from all events in the training set, running in the 
PD mode using LEF1 rule selection criterion.  The first rule states that User 1 
behavior is characterized by a set of 4-grams, in which the first position is 
occupied by any mode from the first set  { netscape, msie, telnet, …} , the second 



position is occupied by any mode from the second set { netscape, msie, ..help} , etc. 
This rule thus describes compactly 11979  4-grams. 
 
The lines marked by # provide supplementary information about the experiment. 
The first line gives information about the system (kernel) time spent on learning 
the user model (from 20858 training examples). The next line specifies the 
number of rules learned for User 1. Lines 3-6 specify numbers of different 
example types used in the experiment.  
Each rule is accompanied by annotations that represent various characteristics of 
the rule. Parameters pd and pt represent the number of distinct positive examples 
and the total positive examples, respectively, that are covered by the rule.  
Similarly, nd and nt represent the number of distinct negative and the total 
negative examples, respectively, covered by the rule. Parameters qd and qt 
indicate the rule quality measure, which takes into consideration both the number 
of positives covered out of all positives, and the number of negatives covered out 
of all negatives in the dataset.  The difference between qd and qt is that qd is 
computed over distinct positives and distinct negatives, whereas qt is computed 
over the total positives and total negatives. 
 
Figure 2 describes the performance of user models on the testing data. The 
darkened column indicates the matching score for the correct user model. As 
figure shows, in every testing case the correct user model was indicated. 
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Figure 2: Confidence matrix for rules learned from the complete training set. 

In order to determine how sensitive is performance to the size of the training set, 
we have performed experiments in which the learning set was varied from 4%,  
33%, 66% and 100% of the training data. The results are shown in Figure 3. As 
the figure shows,  the perfomance was about .6 (60%) correct when the training 
set had only 4% of the events (random guessing is about 14% correct).  
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Figure 3:  The learning curve for 7 users.  

 

10 Exper iment 2 (24 users) 

The experiment involved learning user models for 24 users, using nearly 5 million 
training examples (the complete training set). Results were tested on 
approximately one million testing examples (the complete testing set). Results are 
illustrated in Figure 4.  As before, darkened columns represent the matching score 
for the correct user model. As the figure shows, all users were classified correctly 
except one, User 11.  This seems to be due to the fact that the dataset for user 11 
had only a small number of sessions and a very small number of events per 
session (Figure 1 and 2). In some cases, e.g., for users 6 and 14, the matching 
score was the same for the correct models as for a few other models. This 
indicates insufficient discrimination. 
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Pr edictive Accur acy f or  100% testing, 100% tr aining
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Pr edictive Accur acy f or  100% testing, 100% tr aining
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Figures 4-10:  Results from testing 24 user models. 



To illustrate the rules obtained in this experiment, below a selection of the rules 
learned for User 0. The learning time was larger in experiment 1, as expected, 
since  have here 24 users rather than 7.  
 
  # -- This learning took:  
  # -- System time 767.15 sec 
  # -- Number of rules for this class = 52 
 
  # -- Number of distinct training events in the target class:           
346 
  # -- Number of distinct training events in other classes:           
71,931 
  # -- Total number of training events in the target class:          
1,826 
  # -- Total number of training events in the other classes:     
 3,750,169 
 
[user=0]  
    

�
 <{explorer,install,multimedia,system,time}, 

        {multimedia,system}, 
        {explorer,install,system}, 
        {explorer,install,multimedia,system}, 
        :pd=64,nd=31,ud=8,pt=916,nt=404,ut=11,qd=0.124322,qt=0.348035  
 
    

�
 <{explorer,install,office,rundll32,system,time}, 

        {multimedia,system}, 
        {install,multimedia,rundll32,system,time}, 
        {explorer,install,rundll32,system,time}> 
        :pd=68,nd=42,ud=9,pt=919,nt=73,ut=11,qd=0.121131,qt=0.466232 
 
    

�
 

<{explorer,help,install,mail,multimedia,rundll32,system,time,web}, 
        {help,install,logon,mail,office,rundll32,system,time,web}, 
        {help,install,mail,office,printing,rundll32,system,time,web}, 
        {help,install,rundll32,system,time} 
        
:pd=140,nd=343,ud=41,pt=1316,nt=701,ut=66,qd=0.1159,qt=0.470102  
 
    

�
 <{install,office,printing,system}, 

        {install,rundll32,time}, 
        {install,multimedia,office,sql,system,web}, 
        {explorer,install,multimedia,rundll32,system,web} 
       :pd=43,nd=4,ud=2,pt=397,nt=4,ut=2,qd=0.11,qt=0.21 
 

10 Conclusion 
 

The presented LUS method employs AQ20 learning program to learn user models 
from n-grams representing interactions between users and the computer. In view 
of the large datasets involved in this application,  to make the learning  and testing 
processes easier to handle, the learning systems was deeply integrated with a 
relational database, accessible through Squirrel, an SQL  client. The obtained 
results for a small number of users (7) indicated perfect recognition rate. In the 



case of a larger number of users (24), there was one misclassification, which was 
likely due to a small number of training examples used.   
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