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ABSTRACT 

NEW METHODS OF SPECTRAL-DENSITY BASED GRAPH CONSTRUCTION 
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The past decade has seen the emergence of many hyperspectral image (HSI) analysis 

algorithms based on graph theory and derived manifold-coordinates. Yet, despite the 

growing number of algorithms, there has been limited study of the graphs constructed from 

spectral data themselves. Which graphs are appropriate for various HSI analyses—and 

why? This research aims to begin addressing these questions as the performance of graph-

based techniques is inextricably tied to the graphical model constructed from the spectral 

data. We begin with a literature review providing a survey of spectral graph construction 

techniques currently used by the hyperspectral community, starting with simple constructs 

demonstrating basic concepts and then incrementally adding components to derive more 

complex approaches. Throughout this development, we discuss algorithm advantages and 

disadvantages for different types of hyperspectral analysis. A focus is provided on 

techniques influenced by spectral density through which the concept of community 



 

 

structure arises. Through the use of simulated and real HSI data, we demonstrate density-

based edge allocation produces more uniform nearest neighbor lists than non-density based 

techniques through increasing the number of intracluster edges, facilitating higher k-

nearest neighbor (k-NN) classification performance. Imposing the common mutuality 

constraint to symmetrify adjacency matrices is demonstrated to be beneficial in most 

circumstances, especially in rural (less cluttered) scenes. Many complex adaptive edge-

reweighting techniques are shown to slightly degrade nearest-neighbor list characteristics. 

Analysis suggests this condition is possibly attributable to the validity of characterizing 

spectral density by a single variable representing data scale for each pixel. Additionally, it 

is shown that imposing mutuality hurts the performance of adaptive edge-allocation 

techniques or any technique that aims to assign a low number of edges (< 10) to any pixel. 

A simple k bias addresses this problem.  

Many of the adaptive edge-reweighting techniques are based on the concept of 

codensity, so we explore codensity properties as they relate to density-based edge 

reweighting. We find that codensity may not be the best estimator of local scale due to 

variations in cluster density, so we introduce and compare two inherently density-weighted 

graph construction techniques from the data mining literature: shared nearest neighbors 

(SNN) and mutual proximity (MP). MP and SNN are not reliant upon a codensity measure, 

hence are not susceptible to its shortcomings. Neither has been used for hyperspectral 

analyses, so this presents the first study of these techniques on HSI data. We demonstrate 

MP and SNN can offer better performance, but in general none of the reweighting 

techniques improve the quality of these spectral graphs in our neighborhood structure tests. 



 

 

As such, these complex adaptive edge-reweighting techniques may need to be modified to 

increase their effectiveness. 

During this investigation, we probe deeper into properties of high-dimensional data 

and introduce the concept of concentration of measure (CoM)—the degradation in the 

efficacy of many common distance measures with increasing dimensionality—as it relates 

to spectral graph construction. CoM exists in pairwise distances between HSI pixels, but 

not to the degree experienced in random data of the same extrinsic dimension; a 

characteristic we demonstrate is due to the rich correlation and cluster structure present in 

HSI data. CoM can lead to hubness—a condition wherein some nodes have short distances 

(high similarities) to an exceptionally large number of nodes. We study hub presence in 49 

HSI datasets of varying resolutions, altitudes, and spectral bands to demonstrate hubness 

effects are negligible in a k-NN classification example (generalized counting scenarios), 

but we note its impact on methods that use edge weights to derive manifold coordinates or 

splitting clusters based on spectral graph theory requires more investigation. 

Many of these new graph-related quantities can be exploited to demonstrate new 

techniques for HSI classification and anomaly detection. We present an initial exploration 

into this relatively new and exciting field based on an enhanced Schroedinger Eigenmap 

classification example and compare results to the current state-of-the-art approach. We 

produce equivalent results, but demonstrate different types of misclassifications, opening 

the door to combine the best of both approaches to achieve truly superior performance. A 

separate less mature hubness-assisted anomaly detector (HAAD) is also presented. 
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INTRODUCTION   

Remote sensing is the field of study concerned with acquiring information about 

objects of interest without physical contact (Schott, 2007). Remote acquisition of 

information has many military and civilian applications as well as an ever-growing set of 

commercial uses as evidenced by the explosion of imagery consumers and providers such 

as Google Earth, precision agriculture markets, and financial institutions. The list seems 

endless as any smart phone user can see their home from space or the road at the touch of 

a button. Remote sensors have continued to evolve and applications can be found across 

the electromagnetic spectrum (Figure 1-1).  
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Figure 1-1. Electromagnetic spectrum; image courtesy of Wikimedia.org.   

 

 

This research focuses on data from the visible-, near- , and shortwave-infrared parts 

of the spectrum dominated by solar reflected radiation (0.4-2.5 m), but can easily be 

extended to the thermal regimes. Specifically, we focus our attention on hyperspectral 

imaging systems (imaging spectrometers) that acquire (hundreds) of bands across the 

spectral range. The rich spectral content of these data enable finer material discrimination 

than possible with the more common multispectral imaging data (MSI), comprised of fewer 

broader bands (tens of bands or less). 

The remainder of this chapter will provide a brief introduction to HSI and common 

data analysis algorithms, citing the need to explore nonlinear methods over the more 

prevalent linear techniques. We provide a smooth transition from the common statistical 

and geometric techniques of the past several decades into analyzing graphs built from HSI 
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data and conclude with the specific spectral-graph related questions addressed by this 

research and detailed in subsequent chapters.  

1.1 Hyperspectral Imaging   
HSI sensors acquire hundreds of spectral radiance measurements for each two-

dimensional (2-D) spatial location in the acquired scene. The spectral measurement for a 

particular scene location (pixel) is called a spectrum (plural; spectra) and contains 

information about the chemical and physical properties of the sensed area and is the basic 

unit of measure in HSI; it may be thought of as a vector in a d-dimensional space, ℝ𝑑, 

where d is the number of spectral bands (Schott,  2007). The spectrum, 𝒙 =

[𝑥1, 𝑥2, … , 𝑥𝑑]
𝑇, is thus a vector composed of the individual brightness measurements from 

each band, and traces out a curve known as a spectral signature when plotted as a function 

of wavelength (Figure 1-2 bottom). The aggregate collection of all such measurements is 

called a hypercube, a three dimensional structure comprised of two spatial (x,y) dimensions 

and a wavelength dimension (𝜆) (Figure 1-2, top; Shaw and Burke, 2003). 
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Figure 1-2. A hypercube is a 2-D spatial arrangement of spectra (c) typically collected a line at a time (a,b) (Shaw and 

Burke, 2003). 

 

Spectra may represent physical units such as reflectivity, emissivity, or absorptivity 

or spectral radiance data which also contains information about the atmosphere and the 

sensor. We adopt a spectral reflectance convention from here on without loss of generality. 

The term spectral has multiple definitions based on the discussed discipline. 

Spectral remote sensing involves the use of several wavelength regimes for information 

acquisition, so spectral infers spectroscopy in this case. Graphs built from spectral data in 

this sense can be called spectral graphs (Benedetto et al., 2012a). This is not to be confused 

with spectral graph-theory which is concerned with the analysis of eigendecompositions of 
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matrices associated with graph characteristics. The corresponding definition should be 

clear from the context of the discussion.   

Pixels composed of predominantly one material in its instantaneous field of view 

(IFOV) will display spectra very similar to that of pure materials (Figure 1-2, bottom), 

while pixels composed of many materials will present as a composite spectrum where the 

mixing relationship is determined by the areal distribution and physical structure of those 

constituents. The goal of hyperspectral imaging is to analyze these spectra and separate 

them into their constituent parts so that quantitative statements can be made about pixel 

composition. Composition is a general term that may refer to solid materials when sensing 

the ground or gaseous species when sensing the atmosphere to name a few (Manolakis, 

Jairam, Zhang, and Rossacci, 2007; Griffin, Kerekes, Farrar, and Burke, 2001; Theiler, 

Foy, and Fraser, 2005). 

1.2 Hyperspectral Data Analysis   
Many different approaches for processing HSI data exist, that differ in their 

perspective on what the spectrum represents. As such, these methods utilize different 

means of characterizing spectral space and the subsequent techniques used in data analysis. 

We review the three most common spectrum perspectives and their spectral-space 

characterizations in Chapters 1.2.1 and 1.2.2 respectively to provide the requisite context 

of common data models, only to build out from there towards a graphical representations 

of HSI data. 
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1.2.1 Common Perspectives on Spectra   
There are three prevailing perspectives (or interpretations) on spectra from which 

algorithms have been developed: geometric, statistical, and spectroscopic. Each 

perspective results in a suite of methods and data models for processing spectral data that 

address a broad range of applications to include target detection, anomaly detection, 

classification, quantification, and change detection. A brief qualitative description of these 

models is provided in the remainder of this section and the reader is referred to Manolakis 

et al.  (2003); Manolakis, Lockwood, Cooley, and Jacobson (2009); Matteoli, Diani, and 

Corsini (2010); and Eismann (2012) for excellent reviews of common statistical and 

geometric data models. 

The GEOMETRIC perspective models each spectrum as a single deterministic point 

in ℝ𝑑. Spectra from a hypercube may therefore be thought of as a scattered set of points in 

d-D hyperspace. However, significant band-to-band correlation exists and the data reside 

in a lower dimensional subspace, ℝ𝑝, where 𝑝 ≪ 𝑑 (Schlamm, Resmini, Messinger, and 

Basener, 2010). Basis vectors for this subspace can be obtained from eigenvectors of the 

spectral covariance matrix 𝑪 (Manolakis et al., 2003; Boardman, 1990; Schott, 2007), or 

by finding the pure materials (endmembers) in the scene (Keshava, 2003; Boardman, 

1994). These methods are called vector subspace models and linear mixture models 

respectively. In the former case, orthogonal basis vectors are guaranteed by the eigen- or 

singular-value decomposition (SVD) of the spectral covariance matrix, whereas in the 

latter, the basis vectors are typically not orthogonal. Algorithms based on these geometric 

models treat either the background spectra, target spectra, or both, as existing within 

subspaces. Some common examples are the adaptive and generalized likelihood ratio test 
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subspace detectors (Manolakis et al., 2003) and orthogonal subspace projection (Harsanyi 

and Chang, 1994). 

Eigenvectors of the covariance may be obtained from principal components 

analysis (PCA) (Eismann, 2012), independent component analysis (ICA), or the SVD 

(Boardman, 1990) through maximizing data variance along each principal direction. These 

basis vectors do not represent real materials, but rather linear combinations of the canonical 

orthogonal spectral axes that best span the space (Boardman, 1990). A two dimensional 

subspace existing in three dimensions is shown in the left side of Figure 1-3. 

 

Band 1

Band 2

Band 3

basis 
vector 1basis 

vector 2

Subspace 
hyperplane

Linear Subspace Model

Band 1

Band 2

Band 3

Linear Mixing Model
(non-orthogonal basis)

Mixtures constrained
to simplex (convex)

defined by the endmembers  

Figure 1-3. Geometric interpretation of spectra leads to subspace algorithms or those exploiting convex set geometry 

(modified from Manolakis et al., 2003).   

 

A second common geometric model is the linear mixing model (LMM). The linear 

mixing model states spectra can be represented as linear combinations of scene 

endmembers (pure materials in the scene). These endmember spectra are not linearly 

independent and form the vertices of a p-1 dimensional simplex in spectral space, where 𝑝 
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is the number of endmembers. Convex set theory states if spectra are linear combinations 

of endmembers, then all spectra must reside inside within this simplex (Boardman, 1994) 

(Figure 1-3, right). This model is the most common model for representing the synthesis 

of mixed pixels from distinct endmembers (Keshava and Mustard, 2002). 

Both geometric representations have been used in many anomaly and target 

detection algorithms over the past several decades (Manolakis et al., 2009; Stein et al., 

2002; Boardman, 1998; Matteoli et al., 2010).  

The STATISTICAL perspective considers each spectrum as a 𝑑-D random vector, i.e.,  

a realization of a random spectral distribution and thus lives within a region of spectral 

space delineated by a probability density function (Figure 1-4).  

 

Band 1

Band 2

Band 3

cluster 1 pdf

cluster 2 pdf

Probability Density Model

 

Figure 1-4. The statistical perspective models spectra as a random vectors.   

 

Many parametric probability density functions possess elliptical symmetry, are 

quickly computed, and are simple to implement (Manolakis et al., 2003; Willis, 2009), with 
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the multivariate normal model (MVN) model being most prevalent in the HSI literature 

(Schlamm et al., 2011). Stochastic expectation maximization (SEM), the Reed-Xiaoli (RX) 

detector, and the spectral matched filter (SMF) are common statistical methods making use 

of the MVN for classification, anomaly detection, and target detection respectively 

(Manolakis et al., 2003; Eismann, 2012; Stein et al., 2002; Matteoli et al., 2010). However, 

as the spatial and spectral resolutions of hyperspectral data increase, parametric statistical 

models, especially the MVN, are less able to represent the actual data distributions 

(Schlamm and Messinger, 2011; Ziemann and Messinger, 2014a). As a result, techniques 

not reliant on parametric models need to be developed.   

The SPECTROSCOPIC perspective is physics-based (Eismann, 2012), where each 

spectrum represents a material’s chemical and/or physical properties related to interactions 

of electromagnetic radiation with matter (e.g., reflectivity, emissivity, transmissivity, or 

absorptivity). A material’s spectral response can be used to identify composition by 

examining the locations and depth of features in the spectrum. Each feature represents an 

identifying (diagnostic) aspect of the material due to its chemistry or physical structure. 

Figure 1-5 shows a spectroscopic markup of an infrared transmittance spectrum indicating 

some important vibrational modes. 
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Figure 1-5. Spectroscopic analysis of spectra identifies key electronic, vibrational, or rotational features in the 

spectrum (Edwards and Galuska).   

 

Some spectroscopic methods rely heavily on derivative analysis for the 

identification of these features so are most commonly found in lab and other terrestrial 

systems that have high signal-to-noise (SNR) ratios. The presence of these features at 

particular wavelengths are the data required to perform various HSI analyses. 

Physical quantities may also be derived from these data. For example, the quantity 

of a gaseous species within an IFOV is directly attributable to a differential radiance signal 

caused by the presence of the gas. Analysis of the differential magnitude can be used to 

estimate the quantity in mass or number of molecules (Turcotte and Davenport, 2010). 

Other common analyses include water depth extraction (Gillis, Bowles, Lamela, Rhea, and 

Bachmann, 2005) and temperature extraction (Jellison and Miller, 2006). 
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1.2.2 Hyperspectral Data Models   
Hyperspectral analysis algorithms need to autonomously characterize spectral 

space in order to adapt to scene content. There are three predominant means of modeling 

spectral space: parametric statistics, non-statistical, and nonparametric statistics; in the 

order of greatest to the least occurrence in the literature.  

Parametric statistical models are analytic constructs with inherent symmetries and 

smoothness due to their functional forms. Both are elliptically symmetric hence share many 

of the same advantages and optimal performance under the assumption of symmetric 

probability distributions described by the spectral covariance matrix (Manolakis et al., 

2003; Willis, 2009).  

The most ubiquitous model found in the literature is the MVN () due to its 

simplicity and ease of use (Manolakis, Rossacci, Cipar, Lockwood, Cooley, and Jacobson, 

2005). In (1), 𝒎 represents the data mean and all other terms are as previously described. 

 

 
𝑓(𝒙)  =  

1

(2𝜋)
𝑑
2  |𝐂|

1
2

𝑒
−
1
2
((𝒙−𝒎)𝑇𝐂−1(𝒙−𝒎))

 
(1.1) 

 

A limitation of the MVN model is that hyperspectral data typically violate the 

assumptions of multivariate normality (Manolakis et al., 2003). This non-normality is 

easily observed in the scatter plot of Figure 1-6 where the level sets (isocontours) of equal 

multivariate normal probability (Mahalanobis distance) are shown as concentric rings. The 

red triangles are considered more anomalous than the green square to the lower left, 

contrary to human interpretation. This situation arises because the data are not best 

described by a MVN, albeit these models have been very successful despite this limitation.  
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Figure 1-6. Two-band scatter plot of hyperspectral data shown with isocontours of Mahalanobis distance.   

 

The degree by which data deviates from MVN has been an active area of research, 

and various screening methods have been developed indicating when this model is 

appropriate; see Schlamm and Messinger (2011) for details. Manolakis et al. (2003) has 

suggested these data are better modeled by the t distribution instead of the MVN. 

The non-normal distribution of HSI data has been described in many publications 

(Manolakis et al., 2003, 2006). A few investigators have utilized non parametric statistical 

models to characterize spectral data under the premise that a more realistic descriptions of 

the non-normal HSI data will result in better analysis algorithms. Automated learning of 

these nonparametric models has proven to be a limiting factor (Matteoli, Veracini, Diani, 

and Corsini 2013). 

The LMM is a physics-based model where each spectrum in a 𝑑 band hyperspectral 

image can be represented as a weighted linear sum of no more than 𝑑 + 1 endmembers. 
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Representing the abundance of the 𝑖𝑡ℎ endmember, 𝒔𝒊, as 𝑎𝑖, the linear mixing model for 

𝑝 endmembers is given by  

 

𝒙 = 𝑎1𝒔1 + 𝑎2𝒔2 + …+ 𝑎𝑝𝒔𝑝 

= ∑𝑎𝑖𝒔𝑖 = 𝑺𝒂,

𝑝

𝑖=1

 

(1.2) 

 

where 𝑺 represents a matrix of endmember basis vectors [𝒔1, 𝒔2, … , 𝒔𝑝], and 𝒂 =

[𝑎1, 𝑎2, … , 𝑎𝑝]
𝑇
 is a matrix of weights (or coefficients) applied to the endmember basis to 

reconstruct the pixel spectrum, 𝒙. Under the LMM assumption, any pixel must reside 

within the convex hull of the endmembers as shown in Figure 1-7.  

 

Band 1
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EM1, EM2, & EM3

 

Figure 1-7. Linear mixing between three endmembers.   

 

Note that Eq. (1.2) also represents the subspace model, with simple substitution of 

the orthogonal basis vectors derived from PCA with those of the non-orthogonal basis 
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determined from endmember estimation algorithms and swapping the abundances with the 

projection of each spectrum on the corresponding eigenvector.  

Many researchers have examined segmenting imagery into clusters, and then 

modeling each cluster separately via the methods described above. This approach is 

intuitively appealing upon inspection of Figure 1-6 where one can argue the scene is better 

modeled by a mixture of many clusters with differing characteristics (Funk and Theiler, 

2001). 

In summary, hyperspectral data  

 

 are not linear 

 are not best described by a  multivariate normal model  

  are clustered into regions of similar materials 

 

These points have motivated investigators to continue exploration of new data models and 

analysis other than those previously described.  

1.3 Graphs as a Means for HSI Data Analysis   
Most of the statistical and geometric algorithms discussed thus far are linear 

methods, hence may be ineffective modeling nonlinearities present in HSI data most 

commonly caused by three phenomena: (1) variations in material reflectivity with 

illumination and viewing angle, i.e., the bidirectional reflectance distribution function 

(BRDF); (2) transmissive media such as water; and (3) intimate mixing found in many soils 
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(Keshava, 2003; Bachmann, Ainsworth, and Fusina, 2005). New methods are therefore 

required to analyze data exhibiting nonlinearities.  

In 2005, Bachmann et al. from the Naval Research Laboratory explored a new 

geometric perspective in HSI data analysis. They viewed spectra as vertices (nodes) in a d-

D graph, with edges connecting similar pixels. Their method models hyperspace geometry 

(or “structure”) without the limitations of strict statistical forms or linear subspaces. 

Bachmann et al. first applied methods derived from these spectral graphs towards the 

classification of wetland HSI imagery exhibiting nonlinear behavior. Several researchers 

have continued the development of graph-based techniques, building on the ideas presented 

in Bachmann’s seminal papers (Ziemann and Messinger, 2014a; Albano, Messinger, and 

Rotman, 2012b).  

Hyperspectral data do not inherently exist as a graph, so must be converted into 

graphical form by selection of a function or heuristic to enable graph-based analysis. The 

next couple chapters describe algorithms for this task. However, review of some basic 

graph terminology is in order before discussion can begin. This material provides the basis 

for understanding the many common graph construction techniques found in the 

hyperspectral remote sensing literature (Chapter 2) as well as new methods presented in 

this work (Chapter 3).  

A graph 𝐺 = (𝑉, 𝐸)  in its simplest form is defined as a pair of two finite sets: a 

vertex (or node) set and an edge set, denoted  V and E respectively. Vertices are points in 

d-D space determined by the coordinates of each spectrum. The size of the vertex set, |𝑉|, 

is the number of pixels in the hyperspectral image. We denote a general vertex by 𝑣, 
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whereas specific vertices (pixels) are indicated using subscripts, e.g., 𝑣𝑖. Note that the terms 

node, vertex, and pixel are used interchangeably throughout the text based on the context 

of the discussion. Directed edges (and hence graphs) utilize ordered pairs of points 

indicating the source and sink of the edge, i.e., 𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) represents an edge from 𝑣𝑖 

to 𝑣𝑗  (Figure 1-8). 
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Figure 1-8. Primitive graph elements and basic graph characteristics.   

 

A path 𝑃𝑖𝑗 , is an ordered set of edges tracing a path from 𝑣𝑖 to 𝑣𝑗  along edges 

existing within 𝐸. 𝑃1  is shown in blue to the bottom left of Figure 1-8. If the path comes 

back to the original vertex, it is called a cycle. In this case the cycle (𝐶11) sequence for the 

lower left graphs traverses from nodes 1,10,9,8,7,4,3,2,1, i.e., {P14,P41}. An edge from a 

vertex to itself is called a loop, i.e., 𝑒11 = (𝑣1, 𝑣1). Some graphs can also have multiple 

edges between the same two vertices.  
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There are several quantities related to the number of edges to a given node. The 

node in-degree 𝑑−(𝑣) is the number of edges incident upon a vertex, the node out-degree 

𝑑+(𝑣) is the number of edges leaving a vertex, and the node degree 𝑑(𝑣) is the sum of the 

two. An example is provided to the upper right of Figure 1-8. 

The edge set may be either directed or undirected (Figure 1-9). Directed edges (and 

hence graphs) utilize ordered pairs of points indicating the source and sink of the edge, i.e., 

(𝑣𝑖 , 𝑣𝑗) represents an edge from 𝑣𝑖 to 𝑣𝑗 . The ordering is irrelevant for undirected 

(bidirectional) edges, i.e., these edges simply indicate a relationship between pixels as 

shown in Figure 1-9b, with bold edges indicating bidirectionality. Undirected graphs 

without loops (𝑖 ≠ 𝑗) and multiple edges between the same endpoints are called simple 

graphs (West, 2001) and are most common in the HSI literature. Many methods to define 

these relationships are discussed in the following subsections. 

 

 

Figure 1-9. 2-D directed (a) and an undirected (bidirectional) simple graph (b).   

 

Central to all spectral graph construction techniques is the concept of a vertex 

neighborhood. A neighborhood, 𝑁(𝑣),  is a set of vertices that are related (deemed 
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“similar”) to the vertex being examined by some heuristic or analytical method. Edges are 

constructed between a vertex and all vertices in its neighborhood. Vertices with edges 

between them are said to be adjacent. A multitude of methods exist to define this 

neighborhood, and the size of the edge set, |𝐸|,  can vary greatly between methods for the 

same set of vertices. One of the simplest methods of neighborhood construction is to define 

the neighborhood as the k most similar pixels (fixed k). This is called a directed k-NN graph 

as each pixel is the source node of its nearest neighbor (NN) list and all neighboring pixels 

are the sink nodes1, i.e., the edges are directed.  

Vertex adjacency may be represented by multiple data structures. Of particular 

interest in spectral imaging is the adjacency matrix, [𝑨]𝑖𝑗 = 𝑎𝑖𝑗, where 𝑎𝑖𝑗 = 1 if an edge 

exists between 𝑣𝑖 and 𝑣𝑗 , and zero otherwise. 𝑨 is therefore an n x n binary asymmetric or 

symmetric matrix for directed and undirected graphs respectively, where n is the number 

of pixels in the image (Table 1-1).  

 

                                                 
1 We will sometimes denote the k nearest neighbors as 𝑁𝑁𝑘 . 
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Table 1-1. Adjacency matrices for the directed and simple graphs of Figure 1-9.   

 

Each row in Table 1-1 represents the neighborhood for the pixel represented by the 

row number. Notice that the first pixel does not have a neighborhood, i.e. it is an isolated 

vertex from an out-degree perspective. Nodes can have no edges (in or out) and be truly 

isolated. This concept will be important when we discuss anomaly detection, and is a 

common occurrence in many of the methods to be discussed. 

An HSI image with 𝑂(10 ) pixels has an adjacency matrix of size 𝑂(101 ). The 

need for efficient encoding and/or approximation is evident. Adjacency matrices are sparse 

(mostly zeros) because |𝑁𝑁| ≪ 𝑛, and it is common to find sparse matrix methods used to 

reduce storage and improve computational efficiency. 

Edges may also be encoded with the magnitude of the relationship between vertices 

by replacing the unitary edge contributions in 𝑨, with the value of a distance (similarity) 

measure. This weighted adjacency (affinity) matrix, [𝑾]𝑖𝑗 = 𝑤𝑖𝑗, is composed of non-

negative scalar values where (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, and zero otherwise (zero distances do not occur 

in practice due to natural spectral variability and noise). A graph may therefore be defined 

as 𝐺 = (𝑉, 𝐸, 𝑤), where w is a mapping associating each edge of unitary contribution in 𝑨 
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with a positive number representing vertex distance (similarity), i.e.,  𝑤:𝐸 → (0,∞), or 

simply 𝐺 = (𝑉,𝑾). We will see that this weighting matrix can be constructed from many 

different measures, especially those influenced by local spectral structure of the data. 

Many common HSI graph construction methods result in simple graphs2, so the 

asymmetric adjacency matrix resulting from the directed k-NN relationship (Figure 1-9a) 

must be modified. There are two basic criterion for creating simple graphs from directed 

k-NN graphs, resulting in symmetric adjacency matrices: superset symmetry and mutuality. 

The resultant graphs from these adjacency matrix symmetrification methods have very 

different characteristics. For example, Figure 1-10 displays the adjacency matrices, 𝑨, for 

directed, superset symmetric, and mutual 3-NN graphs (top row). The directed 3-NN 

adjacency matrix shows a node’s neighborhood list (a row) with three entries, i.e., 𝑑+(𝑣) =

3. The column to the right and the row to the bottom of each adjacency matrix display the 

out- and in-degrees, 𝑑+(𝑣) and 𝑑−(𝑣) respectively. The corresponding directed graph is 

shown below the adjacency matrix, where directional edge arrows are shaded similarly to 

their source node. Application of the superset symmetric and mutual criteria result in the 

adjacency matrices and graphs shown in the center panel and right panels respectively. 

Lightly shaded ‘1s’ in the center column represent new adjacency matrix entries that 

symmetrify the directed 3-NN adjacency matrix by adding edges so that all directed edges 

become bidirectional (bold, no arrows), i.e., 𝑑+(𝑣) = 𝑑−(𝑣). Notice edges span large 

regions of space and some nodes have more than three incident edges (e.g., node four has 

                                                 
2 Simple and undirected graphs are not exactly the same, because undirected graphs can have self-loops 

and multiple edges between vertices. However, we use them interchangeably from this point forward. 
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six nearest neighbors). Dark shaded ‘0s’ in right column represent directed edges that are 

removed by enforcing the mutuality criterion. Notice the lack of edges spanning large 

regions of space (no edges to nodes six or seven) and no node has more than three incident 

edges, i.e., 𝑑(𝑣) ≤ 3. Notice the drastically different node in and out degrees for each 

adjacency matrix variant. This will be important in future chapters. 
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Figure 1-10. Directed, superset symmetric, and mutual 3-NN graph construction.   

 

Generation of the superset symmetric k-NN graph is a trivial extension of the 

directed k-NN graph, where all vertex pairs, (𝑣𝑖 , 𝑣𝑗),  are connected if 𝑣𝑖 ∈

𝑁𝑁𝑘(𝑣𝑗) or 𝑣𝑗 ∈ 𝑁𝑁𝑘(𝑣𝑖), where 𝑁𝑁𝑘(𝑣) represents the k nearest neighborhood of vertex 

𝑣, i.e., 𝑊 = max{𝑊,𝑊𝑇}. As a result, each node will have at least k neighbors with the 

node’s in-degree being proportional to the node’s local density (note that the node’s out-
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degree is fixed at k) (Figure 1-10, center). Forcing adjacency-matrix symmetry in this 

manner—adding edges to create a bidirectional graph—may connect clusters of varying 

density, and permits edges spanning large regions of spectral space to overly connect 

outlier nodes. Stringers, long chains of single nodes, can also extend from virtually 

anywhere if the conditions are right. This can produce a larger subgraph diameter should 

they extend from cluster edges.  

Generation of the mutual k-NN graph is also a trivial extension of the directed k-

NN graph, where all vertex pairs (𝑣𝑖, 𝑣𝑗), are connected if 𝑣𝑖 ∈ 𝑁𝑁𝑘(𝑣𝑗) and 𝑣𝑗 ∈

𝑁𝑁𝑘(𝑣𝑖), i.e., only existing bidirectional edges are retained (𝑊 = min {𝑊,𝑊𝑇}). The 

resultant adjacency matrix is symmetric and a subset (subgraph) of the superset symmetric 

k-NN adjacency matrix (graph) (Figure 1-10, right). Forcing adjacency symmetry in this 

manner reduces the possibility of connecting clusters of varying density; hence edges 

typically do not span large regions of feature space, leaving outlier nodes unconnected from 

denser regions (Kontschieder, Donoser, and Bischof, 2009).  

Adaptive variants of the fixed k-NN methods exist (Ziemann, Messinger, and 

Wenger, 2014b; Mercovich, Albano, and Messinger, 2011), where each node is assigned 

its own number of nearest neighbors, 𝑘(𝑖)3, based on a user-defined criterion typically 

related to data density or scale. The aforementioned adjacency matrix symmetrification 

methods produce node degrees for 𝑣𝑖 of at least 𝑘𝑖 and at most 𝑘𝑖, for the symmetric and 

mutual criteria respectively. As such, the simple graph’s minimum and maximum node 

                                                 
3 We will abbreviate 𝑘(𝑖) as ki at times for ease of reading. 
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degrees, 𝛿(𝐺) and Δ(𝐺) respectively, created by invoking the superset symmetry criterion 

(applies to directed graphs as well) are given by 
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where ki represents the vector of 𝑘(𝑖) values from the initial adaptive directed construction. 

Δ(𝐺) has a maximum of n-1 because simple graphs do not have self-loops. The minimum 

and maximum node degrees for simple graphs created enforcing the mutuality criterion are 

given by 
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As seen in (1.3) the maximum node degree can potentially take on very large values 

in directed graphs or graphs created by invoking the superset symmetry criterion, while the 

maximum degree is restricted in graphs enforcing the mutuality criterion (1.4). We also 

observe that the only way to obtain isolated vertices in directed graphs or graphs created 

by the superset criterion is for 𝑘(𝑖) = 0, a condition only possible with adaptive techniques, 

i.e., it is impossible for graphs constructed with a fixed positive k. Conversely, it is quite 

possible to have isolated vertices in graphs created by the mutuality criterion (1.4). We will 

see these node degree characteristics enable or inhibit the formation of vertices with special 

characteristics (hub vertices) in Chapter 6. Equations (1) and (2) apply to fixed k-NN 

graphs as well, where 𝑘(𝑖) = 𝑘, ∀𝑖. 
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Figure 1-11 displays an example spectral graph created from 2,643 vertices of a 

HSI dataset using the mutual 4-NN algorithm. The selected area consists of two 

homogenous regions and the border between them. Notice the significant edge density near 

the bulk of each distribution and the less dense sparsely connected region between the two 

clusters (mixing region). 

 

Figure 1-11. Two-dimensional graph created by the mutual 4-NN algorithm: a) with border regions, b) without.   

 

Notice the isolated points not connected to either the dense or sparse regions in 

Figure 1-11; a condition resulting from the mutuality constraint. This is a common 

occurrence for many graph construction algorithms and must be mitigated if the graph 

analysis algorithm requires connected graphs, i.e., graphs in which a path exists between 

any two vertices in 𝑉 by following edges in 𝐸.  

The success of any graph-based analysis is intimately tied to the quality of the graph 

constructed from the spectral data (Mercovich et al., 2011). Edges must be judiciously 

chosen to accurately model community structure inherent in the data without over (under) 
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connecting the nodes. Many of these graph construction techniques are founded on the k-

nearest neighbor (k-NN) relationship because of its adaptability to both scale and density 

as well as its ability to follow clusters of arbitrary shape. We will compare and contrast 

these methods in this research with the intent of providing a consolidated reference for 

these techniques as well as introduce new techniques addressing some of the weaknesses 

discovered in current methods. 

1.4 Research Objectives and Contributions   
Graph based analysis is a relatively new area of research in the HSI community. It 

has been just over a decade since its initial introduction, in contrast to the 30+ years of 

research into statistical and other geometric approaches. While much progress has been 

made, much research remains in order to fully understand the benefits and limitations of 

these techniques. The main benefit of graphical methods is the identification of clusters 

and trends of arbitrary shape, i.e., the data are not forced to predisposed distributional, 

functional, or geometric forms. For example, the MVN level sets indicated by the 

concentric rings in Figure 1-6 clearly do not model the data well, and the lower cluster in 

Figure 1-11 appears to have a slightly scalloped shape instead of a multivariate normal 

distribution. These characteristics can be better modeled through nonlinear graphical 

techniques instead of linear approximations (Prasad and Bruce, 2008).   

A primary objective of this research is to advance the utility of graph-based 

approaches by improving the construction of the spectral graph itself. Of critical 

importance is the concept of spectral density (point density in spectral space) as it gives 

rise to the concept of a cluster—community structure within the data. Ideally, clusters 
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should be dense (small intracluster spacing) and be well separated from other clusters (large 

intercluster spacing). This is the basis of many common internal cluster-validation 

techniques that ratio cluster separation to cluster dispersion. So compact clusters with big 

separation are good, and wide close clusters are bad. However, clusters are generally not 

“well” separated in HSI data. Mixing trends connect dense clusters due to boundary pixels 

partially filled with multiple materials. For example, the sparse area between the two 

clusters shown in Figure 1-11a are mixed pixels along the boundary between materials. 

This is evident in Figure 1-11b which reproduces the figure, but with boundary pixels 

removed. 

Mixed pixels are very much a part of HSI data structure and need to be represented. 

However, their importance in the data mode should not hold the same weight as those 

pixels in the denser communities of points where it should be easier to move between 

vertices. This deweighting can be encoded in the numbers of and/or strengths of the edges 

in the spectral graph. Spectral density metrics can be used to modify graph connectivity on 

a per pixel basis such that pixels in dense clusters are highly connected while those in less 

dense mixing trends are loosely connected. Note, it is possible mixed pixel regions can be 

very dense depending on the shape and size of the clusters with respect to the IFOV. For 

example, in the case where each pixel is comprised of multiple materials, every pixel will 

exist in these intermediate locations. Density metrics in this case would strongly connect 

the mixing trend. However, spatial correlations typically generate natural groupings in 

imagery, so this situation rarely arises. 
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The objectives detailed below describe focused areas of research targeted to 

improve graphical models of spectral data. Evaluating the improvement of the construction 

itself is difficult, so structure testing should be supplemented with applications that utilize 

graphical models, proving that any measured improvements in graph characteristics 

actually lead to improvements in graph-based analyses.  

1.4.1 Survey spectral-graph construction methods   
Many graph construction techniques have been described and employed in the HSI 

literature. However, no consolidated reference of techniques exists to our knowledge. As 

such, the first step in this research is a literature review of all utilized techniques and 

translate them into a common construct facilitating easier comparisons. This consolidated 

review was released as a technical survey paper to the remote sensing community through 

IEEE Transactions on Geoscience and Remote Sensing (TGRS) in August 2017 (Stevens, 

Resmini, and Messinger, 2017), filling a documentation gap in the remote sensing 

literature. This paper provides guidelines for parameter selection based on rigorous 

performance comparisons. 

1.4.2 Develop new spectral-graph construction techniques   
Armed with an understanding of the existing techniques, we focused on benefits 

and limitations of each technique, with the aim of generating and/or modifying new 

density-based graph-construction techniques to overcome discovered limitations. In doing 

so, we described the benefits and limitations towards various HSI analysis tasks such as 

classification, change detection, anomaly detection, and target detection.  
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Hyperspectral data are similar to extremely large databases with instances 

comprised of hundreds of attributes. In this case, the instances are pixels, and the attributes 

are the spectral bands. As such, we explored how the data mining community, and more 

broadly, the machine learning community creates graphs from large datasets with high 

numbers of attributes, and subsequently modified those techniques for spectral data. This 

development addressed a current research gap in that limited graph construction techniques 

have been investigated to date, so any new methods increase the number of tools available 

to the remote sensing community. These methods were also detailed in the 2017 IEEE 

TGRS paper. 

1.4.3 Study Impacts of High-Dimensional Data   
Given the high extrinsic dimension of hyperspectral data, it became evident a 

deeper probe into characteristics of high-dimensional data as they relate to graph 

construction was required because many of the studied methods utilize distance and 

similarity measures that are subject to the curse of dimensionality (Bellman, 1961). This 

led to studies on high-dimensional phenomenologies—specifically the concentration of 

measure and hubness—as they relate to graph construction. 

1.4.4 Develop Classification and Anomaly Detection Algorithms   
New measures of spectral similarity and graph creation provide the opportunity to 

modify existing state-of-the-art algorithms to leverage different types of information. As 

such, modification to two variants of the Schroedinger Eigenmaps with potential matrices 

(Czaja and Ehler, 2012; Cahill, Czaja, and Messinger, 2014) for classification and anomaly 

detection are presented as initial explorations into use of these new measures. 
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1.5 Dissertation Organization   
The remainder of this dissertation is organized as follows. In Chapter 2, we 

introduce h simple constructs demonstrating basic concepts and then incrementally add 

components to derive more complex approaches. Two new methods from the data mining 

and machine learning community, SNN and MP, are introduced in Chapter 3. All discussed 

methods are compared in Chapter 4, where we develop guidelines for the application of 

each method based on parametric studies into model parameters. We examine the impacts 

of high dimensional data on graph construction in Chapter 5, where we tie these effects to 

codensity. Chapter 6 provides a review of several graph-based HSI analysis algorithms, 

leading to the incorporation of SNN and MP into Schroedinger Eigenmaps in Chapter 7. 

We conclude with contributions and possible future research in Chapter 8. 
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2  

 

 

 

COMMON HSI GRAPH CONSTRUCTION TECHNIQUES 

There are a plethora of construction techniques found in the HSI literature, each 

introduced with its own, and sometimes different nomenclature. As such, we offer a survey 

of these techniques within a common framework, starting with basic graph construction 

techniques and then followed by those influenced by data density from which the concept 

of community structure arises. Some of the algorithms presented in the literature are 

admittedly not very useful for HSI analysis; however, they do provide good conceptual 

content that facilitates building more advanced concepts. That same approach is followed 

here, and these instructional techniques are noted as such. 

2.1 ϵ-Threshold Graphs (aka ϵ-NN Graphs) 
The threshold graph is very simple to construct and the fastest of all described 

methods. Given all pairwise distances (or similarities), an undirected edge is placed 

between two nodes if the distance, 𝑑(𝑣𝑖 , 𝑣𝑗) between them is less than a user-defined 

constant 𝜖 > 0. Specifically, 𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗)   is added to the edge set, 𝐸, if 𝑣𝑗   lies within 

the hypersphere of radius 𝜖 constructed about 𝑣𝑖 in spectral space, i.e., 𝑒𝑖𝑗  ∈

𝐸   𝑖𝑓𝑓  𝑑(𝑣𝑖 , 𝑣𝑗) ≤  𝜖 and 𝑖 ≠ 𝑗. The similarity based equation is obtained by replacing 

𝑑(𝑣𝑖 , 𝑣𝑗) with 𝑠(𝑣𝑖, 𝑣𝑗) and switching the direction of the inequality. This technique is not 

adaptive to scale or density because 𝜖 is a fixed global threshold (Kontschieder et al., 2009), 

generally producing unconnected graphs. 
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Figure 2-1. ϵ-threshold graph construction. 

 

Hyperspectral data typically displays a multitude of densities, so this technique is 

not widely used, but provides the foundation for understanding other graph construction 

techniques.  

2.2 k-Nearest Neighbor (k-NN) Graphs 
Nearest neighbor graphs are very common graph construction techniques in many 

disciplines. An edge is placed between 𝑣𝑖 and 𝑣𝑗  if 𝑣𝑗  is among the k-NN of 𝑣𝑖. The user 

defined parameter, k, is a global parameter indicating the number of edges exiting 𝑣𝑖, i.e., 

its out-degree. Given each node has its own set of k-NN, this relationship is not symmetric 

and therefore produces directed edges leading to an asymmetric adjacency matrix (von 

Luxburg, 2007). These graphs are also called directed k-NN graphs for this reason. 

Construction of the k-NN graph is conceptually very simple, but computationally 

expensive due to the evaluation of all pairwise distances and subsequent sorting. Many 

traditional indexing methods (e.g., R-tree, k-d tree) fail in high dimensional spaces such 

that exhaustive searching for nearest neighbors can outperform even the most complex 

indexing scheme (Hinneburg, Aggarwal, and Keim, 2000).  As such, several fast nearest 
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neighbor methods have been developed to generate approximate or exact k-NN lists 

(Merkwirth, Parlitz, and Lauterborn, 2000). 

k-NN graphs are locally adaptive to both density and scale which makes them 

particularly well suited to model clusters of varying density (Albano et al., 2012b), and 

shape (Ertöz, Steinbach, and Kumar, 2003), or follow mixing trends between clusters. 

Unfortunately, a global k-NN construction tends to over connect vertices in low density 

regions since the nearest neighbor may span a significant distance (or similarity). Another 

difficulty is selection of the user defined parameter k; values from five to 60 are common 

(Mercovich et al., 2011; Albano et al., 2012a) in the HSI literature. Selecting k too high 

tends to over connect the graph, whereas selecting k too low leaves the graph disjoint. This 

sensitivity to k is true of many k-NN variants and has prompted the development of 

adaptive algorithms that provide node-specific connectivity, 𝑘(𝑖).  

Many graph construction and analysis techniques promote, or require undirected 

(bidirectional) edges, i.e., simple graphs, so we need to modify the asymmetric adjacency 

matrix resulting from the directed k-NN relationship. There are two means of creating 

simple graphs from directed k-NN graphs, producing symmetric adjacency matrices: 

superset symmetry and mutuality. Mutual and superset symmetric k-NN graphs were 

described in the introduction and are not replicated here. Symmetric adjacency matrices 

provide for added benefits as well. For example, memory requirements are cut in half 

because only the upper or lower triangular portions of the adjacency matrix need be stored. 

This can be quite substantial for even average sized HSI cubes. Additionally, sparse matrix 

operations operating on only the triangular portions can reduce computation time. 
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All k-NN variants can produce disconnected graphs, so post processing is often 

required to ensure graph connectivity if required by the analysis algorithm (Chapter 2.6). 

Relatively speaking, graphs created by invoking the mutuality criterion are more 

disconnected that their directed or superset symmetry counterparts. An example of a 

mutuality-induced disconnected graph is shown to the upper right corner of Figure 2-4. 

2.3 Density Weighted k-NN (DW k-NN) Graphs 
Dense groupings of points in feature (spectral) space share similar attributes of 

similar magnitude and are therefore related. It makes intuitive sense these similar 

intracluster nodes should be more heavily connected to each other than to extracluster 

nodes. Indeed, Kameshwaran and Malarvizhi (2014) state that density based measures are 

the key to finding nonlinear structure, and we will find they are used extensively in HSI 

graph generation, both implicitly or explicitly. Given HSI data clusters exist at varying 

scales and density, we desire adaptive algorithms that adjust to hyperspace characteristics 

proximal to a pixel’s location. Additionally, the traditional notion of Euclidean density can 

be meaningless in high dimensional spaces due to the exponential growth in d-D volume 

(Ertöz et al., 2003), and even the discriminating power of Euclidean distance has been 

questioned in high dimensional spaces (Beyer, Goldstein, and Ramakrishnan, 1999). We 

note this here because many of the algorithms presented utilize traditional density-based 

constructs, and we should be mindful of the possible characteristics of high-dimensional 

spaces with their use. 

Mercovich et al. (2011) introduced the concept of density weighted k-NN to encode 

stronger relationships between similar nodes and promote more effective clustering by 
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minimizing the impact of extracluster pixels. The first step in the process is to assign each 

pixel a codensity (distance) score given by 
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where k represents the indices of node 𝑖′𝑠 nearest neighbors provided in non-decreasing 

order. Distances to a range of NN is specified through 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥   define the range of 

k values to average. Mercovich uses 𝑘𝑚𝑖𝑛 = 1 such that 𝛿(𝑣𝑖)  represents the average 

distance of the pixel’s 𝑘𝑚𝑎𝑥  neighbors. A node-specific number of neighbors, 𝑘(𝑖),  is then 

assigned to each node based on its position in the histogram of codensity measures 

(indicated by the node’s z-score). Mercovich found assignments based on integral z-score 

values in the range [-3,3] worked well for HSI clustering. The maximum 𝑘(𝑖) assigned to 

a pixel does not need to be the same as the number of neighbors used in codensity 

estimation, i.e., any maximum (𝑘𝑖𝑚𝑎𝑥) and minimum (𝑘𝑖𝑚𝑖𝑛) number of edges can be 

assigned to a pixel based on its z-score. As such, we generalize the mapping equation such 

that 𝑘(𝑖) ∈ [𝑘𝑖𝑚𝑖𝑛, 𝑘𝑖𝑚𝑎𝑥]. Mercovich set 𝑘𝑖𝑚𝑎𝑥 = 𝑘𝑚𝑎𝑥.  

Figure 2-2 shows a representative codensity distribution and the node specific 

connectivity count, 𝑘(𝑖), assigned by this method using 𝑘𝑖𝑚𝑎𝑥 = 30, 𝑘𝑖𝑚𝑖𝑛 = 1, six z-

score regions, 𝑘𝑚𝑖𝑛 = 1, and 𝑘𝑚𝑎𝑥 =  . The percentage of pixels assigned to each bin is 

shown above each step. Assigning 𝑘(𝑖) in this manner results in a large number of nodes 

with ~𝑘𝑖𝑚𝑎𝑥/2 edges and far fewer nodes with 1 or 𝑘𝑖𝑚𝑎𝑥  edges as shown by the k 
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mapping overlaid on the codensity histogram in Figure 2-2. The k mapping is a quantized 

inverse function of codensity where pixels residing in lower density regions (higher 

codensity) receive few edges (towards 𝑘𝑖𝑚𝑖𝑛) and pixels in high density regions (low 

codensity) receive more edges (towards 𝑘𝑖𝑚𝑎𝑥). 

 

Figure 2-2. Codensity histogram with node-specific NN assigned by DW k-NN. 

 

Mercovich et al. (2011) note that codensity distributions can take on non-normal 

forms based on scene content, but the normal assumption (through use of z-score) worked 

well for clustering. While some codensity distributions may appear relatively normal, they 

are never rigorously normal. We verified this by testing 56 chips of varying scene content, 

from different sensors, and spatial resolutions via the Kolmogorov-Smirnov test (α=0.005). 

In no instance did the test report normality under these loose conditions. Most codensity 

distributions were unimodal with a positive skew (like Figure 2-2). Albeit, z-score use 

under unimodal conditions is a reasonable approximation for many codensity distributions.  
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HSI codensity distributions are more normal with increasing number of bands as 

seen in Figure 2-2 (128 bands) if the data have higher intrinsic dimensionality (Francois, 

Wertz, and Verleysen, 2007). However, codensity distributions from a small number of 

bands are generally not normal. This non-normal behavior changes the intended mapping 

of z-score based methods, so care must be taken with their application. In these situations 

the cumulative density function (CDF) may be substituted for z-score, providing a method 

to drive connections from 𝑘𝑖𝑚𝑎𝑥 to 𝑘𝑖𝑚𝑖𝑛 independent of the codensity functional form 

while maintaining the intended mapping. 

For anomaly detection, the above 𝑘𝑖𝑚𝑖𝑛 can be appropriate. However, for 

classification, 𝑘𝑖𝑚𝑖𝑛 should be set on the interval [5,10] to avoid overly disconnecting 

pixels upon invocation of the mutuality criterion. This range was very consistent while 

trending many graph types over large ranges in k, improving absolute classification 

accuracies by upwards of ~4% percent (~2% on average). 

2.4 Adaptive Nearest-Neighbor (ANN) Graphs 
The natural nearest neighbor (NNN) graph described by Zou and Zhu (2011) 

provides a data-driven parameter-free method for the generation of node specific 

connectivity.  This method was first applied to hyperspectral imagery by Ziemann, 

Messinger, and Albano (2013) while exploring target detection methods based on manifold 

approximations recovered from spectral data. The novel aspect of NNN is that there are no 

user-defined parameters and the algorithm autonomously produces a node-specific 

connectivity proportional to local density.  
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The NNN method maintains a list of the number of times node 𝑣𝑖  has been 

identified as a neighbor by another node 𝑣𝑗 , i.e., 𝑣𝑖’s in-degree or reverse nearest neighbor 

count.  Node in-degrees are counted by sequentially examining the rth nearest neighbor for 

every pixel where 𝑟 = 1,… , 𝑘𝑚𝑎𝑥. For example, the first iteration adds edges between each 

node and its first nearest neighbor. 𝑘(𝑖) is incremented anytime pixel i appears as pixel j’s 

rth neighbor. This process continues until every pixel has been declared a neighbor by 

another pixel. Naturally, nodes located in regions of high spectral density appear as 

neighbors of other nodes more often than those in low density regions so their in-degrees 

will be higher. The algorithm connects each node to its 𝑘(𝑖) nearest neighbors given 

by 𝑁𝑁𝑟(𝑖)4 once the stopping criterion has been met. Isolated vertices will not exist 

because each pixel is guaranteed to be a member of at least a two-pixel connected 

component because 𝑘(𝑖) ≥ 1, ∀𝑖 is a termination requirement. High and low 𝑘(𝑖) values 

infer high and low density regions respectively. Like k-NN, this method generally produces 

unconnected graphs, so post processing methods to ensure connectivity are required for 

some analytical techniques.  

As intuitively appealing as the NNN construction may be, it does suffer from a 

pathological condition that can produce prohibitively long execution times and lower 

utility. Assume a node exists that is distant from every other node. Given NNN iterates 

until each node has been declared a neighbor by another node, the distant node will cause 

                                                 
4 Note that 𝑁𝑁𝑟(𝑖) is not 𝑣𝑖

′𝑠 reverse NN list, but rather 𝑣𝑖 ′𝑠 nearest neighbor list. 
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𝑛 − 1  iterations until termination, producing a complete graph (each pixel is connected to 

every other pixel). This is obviously not the intent. 

This sensitivity to isolated nodes led Ziemann et al. (2013) to add another stopping 

criterion (Ziemann et al., 2014b). Iteration terminates if  𝑘(𝑖) ∀ 𝑖 are unchanged after 

examining the rth nearest neighbors. The algorithm as described by Ziemann, is provided 

below where 𝑛𝑛𝑟(𝑖) is the rth nearest neighbor of pixel i, 𝑁𝑁𝑟(𝑖) is the set of r neighbors 

of the ith pixel, and 𝑁𝐵 (𝑟) is the number of nodes that have yet to be declared a neighbor 

by another node, i.e., those with 𝑘(𝑖) = 0. 

1) Initialize 

𝑟 = 1, 𝑘(𝑖) = 0, 𝑛𝑛 (𝑖) = ∅,𝑁𝑁 (𝑖) = ∅, 𝑛 = |𝑉|,𝑁𝐵 (0) = 0 

2) Find nearest neighbors 

∀𝒊, calculate the 𝒓𝒕𝒉 nearest neighbor, 𝑛𝑛𝑟(𝑖), and set 𝑁𝑁𝑟(𝑖) = 𝑁𝑁𝑟−1(𝑖)  ∪  {𝑛𝑛𝑟(𝑖)}. 

3) Identify reverse nearest neighbor counts 

∀𝒊, count the number of times i occurs in 𝑁𝑁𝑟(𝑗), 𝑗 = 1,… , 𝑛 and set 𝑘(𝑖) = 𝑐𝑜𝑢𝑛𝑡. 

a. if 𝑁𝐵 (𝑟) ≠  𝑁𝐵 (𝑟 − 1) continue to 3b else end 

b. If ∃𝑖 such that 𝑘(𝑖) = 0, increment r and return to step 2 else proceed to step 4. 

4) Build graph 

Connect 𝑣𝑖 to its 𝑘(𝑖) nearest neighbors from NNr(i). 

The additional stopping criterion 3a helps deter prohibitively long run times. 

Changing a single node at each iteration can still produce long execution times, but this has 

not been observed in practice. Ziemann’s variant is called the adaptive nearest-neighbor 

(ANN) graph and is the starting point for many adaptive methods to follow. ANN may still 

produce isolated pixels and post processing may be required to ensure graph connectivity.  
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2.5 Edge Reweighting  
The graph construction methods previously described create a graphs wherein 

edges are weighted by the metric used to determine distance (or similarity) to each node. 

These metrics are called primary metrics as they are used to determine initial edge weights. 

One may also change (reweight) initial edge weights based on some function or heuristic 

to reinforce particular properties from the primary metric space. In this research edge 

reweighting is based on measures of local spectral density, producing spectral-density 

weighted secondary measures. Reweighting does not change the structure of the graph, 

only the weights assigned to the edges, so in essence it is not a graph construction technique 

per se, but is addressed as such for continuity of the discussion. Note that some reweighting 

schemes we will encounter can sever edges by setting 𝑤𝑖𝑗 = 0, so they could be considered 

construction methods in their own right. 

The non-iterative contextual dissimilarity measure (NICDM) introduced by Jegou, 

Schmid, Harzallah, and Verbeek (2010) rescales distances based on measures of each 

node’s local scale as shown in (2.2). This method has not previously been used on HSI 

data, but provides a nice introduction for multiple methods in remaining subsections. 
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The spectral Euclidean distance, 𝑑(𝑣𝑖 , 𝑣𝑗), is rescaled by the geometric mean of the 

local scaling parameters for each pixel, 𝜎i and 𝜎𝑗 . Jegou defines the local scaling as the 

distance to the kth nearest neighbor, but any of the codensity measurements previously 
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described are viable local scale measures. Pixels i and j are therefore only similar if the 

spectral Euclidean distance between them is small relative to each pixel’s local spectral 

scale5.  

Zelnik-Manor and Perona (ZMP) (2004) introduce a locally adaptive scaling that 

transforms primary distance metrics into scaled affinities by taking the exponential of the 

negative squared NICDM as shown in (2.3), i.e., it is a radial basis function (RBF), or heat 

diffusion kernel, in spectral distance with parameters 𝜎𝑖 and 𝜎𝑗 . 
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Parameters are defined as per (2.2), but the negative exponential results in a 

rescaled space wherein the new similarity, 𝑠𝑖𝑗  ∈ (0,1].  Zelnik-Manor and Perona also 

used the distance to the kth nearest neighbor, but again any scale determination method 

previously discussed is applicable. The additional scaling parameter c, is included to 

provide user control over the support region of the RBF, and is not in Zelnik-Manor and 

Perona (2004) formulation, but we add it here to facilitate future discussion.  

Of course we’re free to simply choose a single scale (𝜎𝑖 = 𝜎𝑗 , 𝑐 = 1) and take 

advantage of the heat diffusion mapping in its simplest form (2.4), which is the initial 

method of Shi and Malik (2000). Using the heat kernel with a fixed scale is a very common 

method of creating similarity matrices, and has been used by many authors (Hou, Zhang, 

                                                 
5 NICDM is not a true distance metric as it only satisfies positivity and symmetry axioms, and not the 

triangle inequality; see Jegou et al. (2010). 
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Ye, and Zheng, 2013; Cahill, Chew, Wenger, 2015; Benedetto et al., 2012a; Gillis and 

Bowles, 2012) in one regard or another. It provides a connection between the Laplace-

Beltrami operator on a manifold and the graph Laplacian for the HSI data (Belkin and 

Niyogi, 2007). More on this aspect in Chapter 7. 
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Equation (2.4) method is known as non-local means in the image processing 

literature if the sum of the weights for each pixel is normalized to one (Buades, Coll, and 

Morel, 2005). 

He, Zhang, Wang, and Li (2009) use a simple global scaling parameter to control 

the influence of the heat diffusion kernel applied to a distance matrix. Weights are defined 

by  

 
𝑤ij = exp(−

𝑑(𝑣i, 𝑣𝑗)

2 
), 

(2.5) 

 

where d(𝑣i, 𝑣𝑗) denotes the cosine distance between pixels and 𝑤𝑖𝑗 is the pixel similarity 

measure derived from the cosine distance. 𝜖 is a user-defined constant controlling scaling 

properties. Squaring the exponential argument is the same weighting scheme used by Shi 

and Malik (2000) with 𝜎 = 2 ∈.  

We model an example after that of Schnitzer, Flexer, Schedl, and Widmer (2012) 

to demonstrate the effectiveness of locally adaptive scaling. Figure 2-3a displays a simple 

2-D grid of points representing three clusters of differing density. A Delaunay triangulation 
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is used to define edges between vertices to emphasize weight rescaling vice potential 

differences due to graph construction techniques (missing edges). Edge weights are 

initially set to the Euclidean distance between vertices and shaded such that bolder lines 

indicate stronger similarities due to shorter distances (b).  

 

Figure 2-3. Example dataset displaying three clusters of different density and edges weighting methods. 

 

The shorter the distance, the more similar the nodes and the thicker the edge. Notice 

nodes in the less dense outer clusters appear as dissimilar despite being quite similar (same 

average distances and density) to their surroundings. The thickest edges (shortest distances) 

are in the dense center cluster because Euclidean distance is a global measure. The resultant 

edge weights after the application of ZMP locally-adaptive scaling is shown in Figure 2-3c. 

Notice the stronger relationship between pixels in the lower density clusters and the weaker 
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edges in transition regions. Additionally, weaker edges are now apparent in the dense 

center cluster because weights are now relative to local density instead of a global distance 

scale. Figure 2-3d-f demonstrate a global heat kernel (2.4) at three scales commensurate 

with each cluster. Notice that the only the densest cluster has strong weights at a small local 

scale in (d). As the scale increases, the densest cluster becomes even more strongly 

connected, but not the intermediate cluster weights begin to get stronger. Lastly, at the 

largest scale, weights for the least dense cluster begin to strengthen while the two denser 

clusters are even stronger. Note that the data points shown in (a) need not be three clusters, 

but simply three regions of different density within the same cluster. 

Other variants are also possible, albeit we focus on mainly the adaptive measures 

for this research given its advocacy in the literature. 

2.6 Ensuring Graph Connectivity 
There are two primary methods to transform disjoint graphs into connected k-NN 

graphs: merger with a spanning tree or spatially-connected neighborhoods. Both of these 

methods can be applied to any graph variant enabling analysis using algorithms requiring 

graph connectedness. 

Merger with a minimum spanning tree (MST) is conceptually and practically 

simple. First, generate a MST that identifies the minimum weight tree using a subset of 

edges from the fully connected graph on the vertices, creating an undirected path to every 

vertex (Kruskal’s or Prim’s algorithm are examples). Supplementing the initial graph with 

MST edges to ensure connectivity is a simple matrix operation that can be performed in 

linear time (or less). Let 𝑊 be the original weighted adjacency matrix, 𝑊𝑀𝑆𝑇 be the MST 



44 

 

weighted adjacency matrix, and 𝑊𝐶 be the connected graph, then 𝑊𝐶 = max{𝑊,𝑊𝑀𝑆𝑇}. 

Edges present in both adjacency matrices remain, while MST edges are added (Figure 2-4). 

 

Figure 2-4. Connecting a graph via minimum spanning tree. (a) data points, (b) 1-NN graph, (c) MST, (d) k-

NN+MST graph. Green edges are MST additions. 

 

As can be seen, the disjoint graph in Figure 2-4(b) becomes connected in (d) by the 

addition of MST edges from (c), indicated in green. 

The connected-neighborhood method takes advantage of the high spatial 

correlation present in imagery, where adjacent pixels have a high probability of possessing 

similar composition. This is easily visualized by thinking about a grassy field, parking lots, 

or sandy beaches. This assumption does break down at material boundaries, but largely 

holds across the scene (Shi and Malik, 2000). As such, connecting any pixel to its proximal 

neighbors using four- or eight-connected neighborhoods is a reasonable approach towards 
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connecting graphs (border pixels are unwanted edges, but these are fewer in number). 

Practically, this is accomplished through a logical OR of the proper subdiagonal patterns 

shown in Figure 2-6 with the graph’s adjacency matrix. 

 

Figure 2-5. Encoding spatial relationships into an adjacency matrix. 

 

Distances do not need to be calculated as proximal pixels are completely defined 

by their row and column indices. The two methods can also be used together. For example, 

assume all pairwise distance measures are not available from the initial construction 

method, e.g., fast k-NN algorithms do not return a matrix of all pairwise distances. An MST 

can always be extracted from a spatial four or eight connected graph, facilitating 

application of the MST method to any graph construction method. 

2.7 Spatial-Spectral Methods 
Imagery is spatially correlated. i.e., an adjacent pixel has a high probability of being 

composed of the same material as the pixel being studied. As such, it makes logical sense 

to include spatial information while constructing the graph or performing analysis, 
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especially segmentation, clustering, or classification. Three common techniques found in 

the literature are described in the sections to follow. 

 Forcing relationships between proximal neighbors 

 Modifying edge weights 

 Fusing information while remapping the data  

Each of them can be combined with any of the graphs built from the spectral data described 

in the previous sections. 

2.7.1 Forcing relationships between proximal neighbors 
A spatial-spectral approach called locally weighted NN is described by Mercovich 

et al. (2011). Pixels are connected to their 𝑘 = 𝑔 + 𝑙 nearest neighbors, where g represents 

a number of global neighbors determined by the k-NN algorithm (any of the fixed k-NN 

based methods previously described would suffice) and l represents the number pixels 

selected from a local spatial neighborhood centered on the pixel of interest. The l pixels in 

the local region with the lowest spectral angle (𝜃𝑖𝑗) from the pixel of interest are used by 

Mercovich, but any other heuristic or metric could be used. The method may also be 

generalized to any technique producing a local neighborhood about each pixel, e.g., 

superpixel techniques that produce arbitrary shapes instead of rectangular regions centered 

on the test pixel. Figure 2-6 provides a toy example indicating the local and global pixels 

using triangles and dots at the pixel center respectively. A pixel’s local neighborhood is 

indicated by a dotted black box centered on the pixel of interest. 
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Global Neighbors

Local Neighbors

Local Region

Pixel of Interest

 

Figure 2-6. Locally-weighted NN connects a pixel with global and local neighbors (Mercovich et al., 2011). 

 

The best global neighbors may also be the best local neighbors, so each pixel is not 

guaranteed to have an out degree of k, albeit the algorithm could be modified to ensure k 

neighbors from outside the 𝑟 𝑥 𝑟 window.  This graph is also directed and can be made 

simple (undirected) by one of the two methods previously discussed. Mercovich describes 

performance with five local and 25 global neighbors. Note that the method extends to 

adaptive k-NN methods with 𝑘(𝑖) = 𝑔(𝑖) + 𝑙 pixels, where 𝑔(𝑖) represents the number of 

adaptive neighbors. 

Increasing local connectivity in this manner facilitates segmentation, clustering, 

and classification if regions demonstrate spatial coherence (Mohan, Sapiro, and Bosch, 

2006). Additionally, using spectral angle within a local region may help connect pixels 

composed of similar materials but with varying illumination, e.g., in and out of shadow. 

Spatially connecting pixels to their four- or eight-connected neighborhoods can be 

interpreted as a variant of the method where the selected local pixels are always based on 

relative position to the pixel of interest instead of a similarity metric. 
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Gillis and Bowles (2012) encode both spatial and spectral information into weights 

associated with only a pixel’s spatial neighbors. Constructing the graph in this way reduces 

the number of edges and facilitates faster solutions due to sparser matrix operations. 

Weights are defined by a spectrally-modified spatial diffusion kernel given by (2.6) for all 

pixels within the r x r region centered on the pixel of interest. 
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(2.6) 

 

𝜃𝑖𝑗  denotes the spectral angle between 𝑣𝑖  and 𝑣𝑗 , ∥ 𝑣𝑖 − 𝑣𝑗 ∥
2 is the squared spatial 

distance, and 𝜎 is a user defined spatial-scaling parameter. This weighting has a similar 

general form (feature space metric times a spatial window) to that described in Fan and 

Messinger (2014) or Shi and Malik (2000), but the weights are only encoded into pixels 

within the r x r spatial neighborhood, where 𝑟 ∈ [2,7].  

2.7.2 Modifying edge weights 
Fan and Messinger (2014) describe a graph-based hyperspectral image 

classification technique based on a split/merge paradigm using normalized cuts with a 

locally adaptive spatial-spectral graph. The spatial-spectral similarity graph is based on a 

Shi and Malik (2000) construction composed of the product of feature (spectral) similarity 

and spatial proximity terms. Fan and Messinger’s adaptation replaces the feature space 

term with a modified ZMP variant using locally adaptive scaling as shown in (2.7). 
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(2.7) 

 

The left hand side of (2.7) represents a Gaussian weighted locally-scaled spectral 

Euclidean distance, i.e., a spectral diffusion function similar to that in the ZMP method. 

The local scaling parameters, 𝜎i and 𝜎𝑗, are defined in Zelnick-Manor and Perona (2004) 

as the distance to the kth nearest neighbor; however in this treatment 𝑘(𝑖)  is determined by 

the ANN method.  

The additional scaling term in the denominator (𝑐𝑖𝑗) is an integer indicating the 

number of common neighbors between nodes i and j. This modification reduces (or 

eliminates) the impact of joining disparate regions by increasing the weight between nodes 

in the same cluster. Figure 2-7 shows two cases where the weight between AC is increased 

compared to that of AB despite being the same distance away because A and C have 

common neighbors. To the left of Figure 2-7, the common neighbor adjustment increases 

the similarity indicated by edge AC despite pixel A and B having the same density. In 

contrast, to the right of Figure 2-7, the AC similarity is increased because of the lower 

relative density (larger local scale) of pixel C to pixel A (𝜎𝐵 < 𝜎𝐴). In short, intuitively 

nodes A and C are more similar than nodes A and B due to their community structure. This 

aspect is reinforced via use of common neighbors in modifying the edge weights (2.7)—a 

concept we will exploit in Chapter 3.  
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𝜎𝐴 = 𝜎𝐵

(a)

𝜎𝐴 > 𝜎𝐵

(b)

 
Figure 2-7. Common nearest neighbors indicate community structure (modified from Fan and Messinger, 2014). 

 

The right hand side of (2.7) is a spatial diffusion (dampening) adjustment that 

performs two tasks: 1) it enforces connections between spatially proximal pixels (small  ∥

𝑣𝑖 − 𝑣𝑗 ∥), exploiting spatial coherence present in imagery and 2) inhibits growth of larger 

disjoint scene-wide clusters despite any apparent spectral similarity. As such, the graph 

becomes overly segmented and must undergo a merging step for clustering or 

classification. The spatial dampening constant, 𝜎𝑑, limits the size of spatially contiguous 

regions and is the only user-defined parameter.  

The lack of common neighbors severs the edge, so technically this can be 

considered a graph construction technique instead of an edge reweighting method.  

Methods that spatially window data have the potential to sever spectrally-similar edges, so 

they can be considered graph construction techniques as well. Should spatial terms simply 

modify an existing weight, reweighting is more appropriate. 

Hou et al. (2013) define a spatial-spectral distance measure called the joint spatial-

pixel characteristic distance (JSPCD) given by   
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where all terms are as previously described. An edge of unitary weight is defined between 

𝑣𝑖 and 𝑣𝑗  if they are mutual k-NN based on the above distance measure. Worst case, this 

method is 𝑂(𝑛2) due to evaluation of all pairwise distances, but the spatial diffusion kernel 

support can be leveraged to greatly reduce computation time. 

Benedetto et al. (2012a) discuss three spatial-spectral methods that were 

generalized into a single equation by Cahill et al. (2014). A fusion parameter 𝛽 controls 

the fractional weighting of measures on the spectral data (0 ≤ 𝛽 ≤ 1); naturally (1 − 𝛽) 

controls the contribution of the spatial coherency component. 

 

𝑑𝛽(𝑣𝑖 , 𝑣𝑗) = √𝛽(1 − 𝑒𝑥𝑝(
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Just as in Hou et al. (2013), a mutual k-NN graph is constructed from the 𝑑𝛽 

measures, but the weighted adjacency matrix is allowed to take on real values according to 

the output of the heat kernel in (2.4). Substituting 𝑑𝛽(𝑣𝑖 , 𝑣𝑗) into the standard heat diffusion 

equation and assigning 𝜎 = 1 provides the basis for three Benedetto variants (2012a) for 

performing dimensionality reduction prior to data classification. 
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2.7.3 Fusing information while remapping the data 
A powerful approach detailed by Cahill et al. (2014) is to forgo fusing spatial and 

spectral information during graph construction and introduce them separately in the 

manifold embedding process itself. Cahill et al. propose creating Schroedinger Eigenmaps 

(Czaja and Ehler, 2012) defined based on a graph Laplacian constructed from spectral 

information alone, while encoding spatial information into cluster potentials for use during 

the manifold embedding process. This variant is called Spatial-Spectral Schroedinger 

Eigenmaps (SSSE). We defer discussion of Schroedinger Eigenmaps until Chapter 7, but 

touch on two inherent benefits of this technology here. 

1. Spatial information is only encoded in the cluster potentials and is not used to 

modify the spectrally determined weights. As such, the size of the neighborhood 

can be made arbitrarily small while still accommodating edges between 

spectrally global neighbors. This avoids the over segmentation problem that can 

occur with windowing algorithms. 

2. Separation of spatial and spectral information facilitates studying the impact of 

changing spatial-weighting characteristics. This is an inherent weakness of the 

previously mentioned methods that would require regeneration of the entire 

graph because the spatial measures are embedded in the spatial-spectral 

weights. 

We will leverage this capability in Chapter 7 to study the impacts of changing the 

relative weighting of spatial and spectral contributions to manifold embedding and 

subsequent classification. Two new spectral similarity measures adapted from the data 
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mining and machine learning communities and introduced in the next chapter prior to 

comparing many of these methods in Chapter 4.  
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3  

 

 

 

NEW METHODS OF HSI GRAPH CONSTRUCTION 

Many of the methods in the previous chapter are built upon application of heat 

diffusion kernels on spectral measures where the region of support is controlled by scaling 

parameters in the denominator of the exponential. Fixed (𝜎) and adaptive (𝑐𝜎𝐼𝜎𝑗) options 

are both possible. Visualizations of the reweighting process provide an intuitive basis for 

understanding their function. Figure 3-1a shows Euclidean distances in native column wise 

order as well as those grouped by class identifier to the right for the SalinasA scene. Notice 

the shortest distances generally exist within each class, where classes are outlined in white 

in (b). The upper left block is the unclassified class and can be ignored. One may notice 

the second block is exceptionally well separated from the others. 
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 (a) (b) 

Figure 3-1. Pairwise Euclidean distance matrix for (a) SalinasA in native order and (b) class-sorted order. Classes are 

outlined in white in (b). 

 

Application of fixed (𝜎 = 10) and adaptive (𝑐 = 1) methods are shown in Figure 

3-2 to the left and right respectively. Notice the strong difference between the techniques 

where the adaptive method provides a visually appealing block structure with fewer 

stronger edges in each class block. However, the fixed scaling method retains the same 

general blocky structure as Euclidean distance because of the monotonicity of the heat 

kernel, but the interclass separation has now increased. 
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 (a) (b) 

Figure 3-2. Distance reweighting. (a) fixed-scale heat kernel and (b) adaptive heat kernel. Classes are outlined in 

white. 

 

Striations are apparent in the adaptively reweighted graph due to varying density in 

HSI clusters. Significant interclass scale variations exist indicating density is local to a 

pixel and not a class as a whole. Varying densities are expected, and suggests that the 

concept of scaling by codensity to “tighten” up clusters may not work well if clusters 

exhibit variation. However, it is possible, this interclass variability can be exploited by 

these techniques, so further testing is performed. 

The Davies-Bouldin Index (DBI) and Silhouette Coefficients (SC) (Figure 3-3) 

were calculated for the original and reweighted matrices to determine if the clusters are 

better represented in the reweighted space. DBI and SC both show a reduction in 

separability after adaptive reweighting.  
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Figure 3-3. DBI and SC internal cluster-validation methods. 
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Many codensity-based reweighting methods such as (2.2), (2.3), (2.7) depend on 

the product of codensities (𝜎𝑖𝜎𝑗), so much can be learned about these algorithms through 

examination of this quantity. The ratio 𝜎𝑖/𝜎𝑗 should be ~1.0 for all intraclass pairwise 

pixels if they have similar densities. Any deviation from 1.0 indicates intraclass density 

variations exist, which is not unexpected in real data. The question to be answered is if 

these intracluster variation impede the utility of density-based scaling. These codensity 

ratios are visualized by reordering pixels by class number to create a new vector from 

which a 𝑛 𝑥 𝑛 codensity similarity matrix S is created, where [𝑺]𝑖𝑗 = 𝜎𝑖/𝜎𝑗 (Figure 3-4, 

left). The resultant 𝑛 𝑥 𝑛 visualization should appear as a blocked matrix if intraclass 

codensities are somewhat similar, but distinct for each class (Figure 3-4, right).  

 

 
 (a) (b) 

Figure 3-4. Local scale ratios (𝝈𝒊/𝝈𝒋) for (a) real data and (b) synthetic data of relatively uniform class-density scales. 

Class blocks are outlined in white. 
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Variations within the diagonal blocks to the left confirm intraclass codensity (or 

scale) variations are responsible for the pattern seen in Figure 3-2. Given this behavior, it 

is worth exploring reweighting measures less sensitive to the local scale estimation in such 

variable data density. 

Several new spectral-density based graph construction techniques stemming from 

algorithms in the data-mining and machine learning literature are introduced next as 

potential alternatives to the codensity-based methods discussed in the previous chapter and 

discussed above. Of key interest are methods that do not rely on codensity because its 

viability as a measure of local scale is questionable, hence the impetus for examining 

variants of these particular techniques. Note that any of the spatial weighting techniques 

discussed in Chapter 2.7 may also be applied with these techniques to generate spatial-

spectral variants. 

3.1 Shared Nearest-Neighbor (SNN) Graphs 
The SNN similarity (Jarvis and Patrick, 1973) is based on the premise that similar 

nodes should have overlapping neighborhoods. If this is true, the similarity of two nodes, 

as measured by some primary measure, can be reinforced or “confirmed” by the presence 

of shared neighbors. The strength of the similarity between two nodes may therefore be 

recast (reweighted) in terms of the number of shared neighbors, i.e., the higher the number 

of shared neighbors, the more similar the nodes. SNN can be very effective in the presence 

of clusters not well modeled by symmetric parametric distributions due to its ability to find 

regions of varying shape and density, and is widely used in the data mining community 
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(Patidar, Agrawal, and Mishra, 2012). Variants of this method are presented as features-

space similarity measures based on this property as well as its codensity-independence. 

Given a vertex set 𝑉 consisting of 𝑛 = |𝑉|  vertices and a neighborhood size k, 

where 𝑘 ∈ ℕ+, let the k neighborhood set of vertex i be represented as 𝑁𝑁𝑘(𝑖) ⊆ 𝑉, and 

define the SNN similarity as the size of the neighborhood intersection between two nodes 

i and j (3.1). 

 𝑆𝑁𝑁(𝑖, 𝑗) = |𝑁𝑁𝑘(𝑖) ∩ 𝑁𝑁𝑘(𝑗)| (3.1) 

 

Whereas the initial implementation of SNN used fixed neighborhood sets (constant 

k), we recognize asymmetric neighborhoods as simply a generalization resulting from the 

use of adaptive density-based methods. We therefore define the more general density-based 

adaptive SNN measure as 

 𝑆𝑁𝑁(𝑖, 𝑗) = |𝑁𝑁𝑘𝑖(𝑖) ∩ 𝑁𝑁𝑘𝑗(𝑗)|, (3.2) 

 

where ki and kj are the size of the neighborhoods generated for vertices i and j respectively 

from any of the density-based techniques. The Jarvis and Patrick (1973) variant is a a 

special case of this generalization where 𝑘𝑖 = 𝑘𝑗 = 𝑘. 

An SNN cosine similarity (Houle, Kriegel, Kröger, Schubert, and Zimek, 2010) 

may also be defined and is given by 

 
𝑆𝑁𝑁𝑐𝑜𝑠(𝑖, 𝑗) =

𝐼𝑉𝑖 ∙ 𝐼𝑉𝑗

√𝑘𝑖√𝑘𝑗
=
𝑆𝑁𝑁(𝑖, 𝑗)

√𝑘𝑖 ∙ 𝑘𝑗
, (3.3) 
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where IVv is the edge indicator vector for node v and ki, kj, and 𝑆𝑁𝑁(𝑖, 𝑗) are as defined in 

(3.1) and (3.2). 

From an imaging spectroscopy perspective, whereas symmetric globular clusters 

may exist in isolated regions of uniform material type, the presence of significant mixing 

can result in asymmetrically extended non-globular regions in hyperspace. Description by 

parametric forms is therefore difficult; hence the need to explore methods invariant to 

cluster shape such as SNN.  

The concept of overlapping neighborhood counts was first used in HSI graph 

construction by Fan and Messinger (2014) to modify the strength of a Gaussian-diffusion 

spectral similarity measure derived from Euclidean distance. This treatment differs in that 

the spectral-similarity is based entirely on SNN counts and variations thereof, instead of 

simply being a modifier of another technique.  

Creation of the SNN graph is conceptually simple, but more computationally 

expensive than the methods discussed thus far due to the intersection of nearest neighbor 

sets for counting shared neighbors. The SNN similarity is therefore a secondary measure 

generated from a primary distance (or similarity) metric. SNN graphs are generated from 

the following three steps: 

 

1) Compute the pairwise (dis)similarity matrix 

A primary distance (similarity) measure is used to define initial edges 

2) Construct a mutual k-NN graph 

Mutuality is imposed to avoid edges crossing regions of differing density and decrease 
computation time through a reduction in the number of required set intersections 

3) Redefine edge weights in terms of shared neighbor counts 
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The number of neighbors shared by the two nodes becomes the new edge weight, 
replacing the (dis)similarity score from the primary metric. Note that initial edges can be 
severed if SNN(i,j)=0, changing the physical structure of the graph. 

 

The SNN construct has many desirable qualities. First, SNN is built upon the k-NN 

relationship, which provides automatic density scaling because “nearest” is insensitive to 

local scale (Ertöz et al., 2003). Secondly, as a secondary metric built upon shared 

neighbors, it can overcome limitations in primary distance metrics due to contrast loss in 

high dimensions (Houle et al., 2010), an aspect of the curse of dimensionality (Chapter 5). 

Lastly, SNN has been proven to be resilient to the hub phenomenon affecting data mining 

in high dimensional spaces if used for distance prescaling (Flexer and Schnitzer, 2013). 

Note that whereas the HSI extrinsic dimension (number of bands) can be on the order of 

hundreds, the intrinsic (or inherent) dimensionality is often much less. Intrinsic dimensions 

on the order of tens of dimensions (or less) have been demonstrated (Schlamm et al., 2010; 

Heylen, Parente, and Scheunders, 2017). Regardless, it is prudent to study methods more 

resistant to challenges associated with the curse of dimensionality as intrinsic dimension 

will increase as higher spatial and spectral resolution system are developed. 

Conversely, as a secondary metric, SNN similarity is more computationally 

expensive to the point of being prohibitive if performing neighborhood intersection over 

every node. Calculating the SNN graph from every pixel takes 𝑂(𝑛2) + 𝑂(𝑛2𝑙𝑜𝑔(𝑛)) time, 

where the quadratic is the result of the pairwise distance calculation, and the logarithmic 

term is from the intersection over the entire dataset. However, SNN construction can be 

performed in reasonable time if working from an initial mutual k-NN construct or other 

method to reduce the number of required intersections such as starting with a limited, but 
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higher value for k or spatially limiting the pixels that can be connected (Fan and Messinger, 

2014). 

Figure 2-3(d) demonstrates the effectiveness of counting shared neighbors on an 

example Delaunay triangulation similar to Figure 2-3b. Edge weights are reweighted such 

that nodes in regions of similar density are more strongly connected whereas those in 

transition (intercluster) regions are deweighted. 

SNN edge weights are simply the number of nearest neighbors shared between two 

vertices associated by an edge. As such, this construct does not utilize any information 

about the node ordering within neighborhood lists. Clearly two nodes that have the same 

nearest neighbor are more likely to be similar than two nodes where the shared neighbor is 

the first in one list and the last in another. The SNN measure may be adjusted to include 

rank information (Jarvis and Patrick, 1973), wherein edge weights are redefined as 
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 (3.4) 

 

where k denotes the size of the NN set, and m and n are the ranks (positions) of the common 

neighbors in 𝑁𝑁(𝑖) and 𝑁𝑁(𝑗) respectively. Jarvis and Patrick note that ranked-

component contributions can also be added if multiplication is too severe. Each component 

of the summation in (3.4) has the same form, (𝑘 − 𝑚) + 1. The left part (𝑘 − 𝑚) produces 

a scalar inversely proportional to ranking, i.e., lower ranks result in higher scalars, but 

spans [0,k-1]. The “+1” aligns component contributions to [1,k], so that there are no zero 

components. 
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Users may threshold SNN weights as part of a clustering algorithm or leave the 

weights as is for analyses requiring connected graphs in subsequent processing (e.g., target 

detection). In the latter case, there are fewer artificial connections created during post 

processing to ensure connectivity, so the graph is more representative of data structure.  

Figure 3-5 illustrates the utility of rank dependent weights in a 3-NN toy example 

and subsequently reweighting each edge with its SNN score. Notice the simple SNN count 

produces the same edge weight of two for 𝑤𝑖𝑗 , 𝑤𝑗𝑘, and 𝑤𝑖𝑘 despite the fact 𝑣 𝑗  is not in the 

same cluster as 𝑣 𝑖  and 𝑣𝑘. The rank dependent SNN similarity measure shows that 

𝑣𝑖  and 𝑣𝑘  are much more similar than 𝑣𝑖  and 𝑣𝑗  or 𝑣𝑗  and 𝑣𝑘, in line with our expectations. 

k

i

j

a

b

c

3-NN(i)  =  {a, b, k}

3-NN(j)  =  {c, b, a}

3-NN(k) =  {b, a, i}

SNN Similarity

Count Rank Dep

wij 2 7

wjk 2 8

wik 2 12

 

Figure 3-5. Rank-dependent SNN similarity. Dotted ellipses touching the edge of each node denote its 3-NN. 
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It is interesting to note that this particular situation is avoided by an initial 

construction enforcing mutual k-NN, i.e., edges to node 𝑣𝑗  disappear because 𝑣𝑗 ∉

𝑁𝑁(𝑖) and 𝑣𝑗 ∉ 𝑁𝑁(𝑘).  

The mutuality constraint used in the construction of initial edges not only provides 

protection against edges spanning regions of different density, but also maintains a balance 

in nearest neighbor list size. Imbalanced nearest neighbor lists may cause dissimilar nodes 

to appear more similar than those that are in fact similar. For example, Figure 3-6 shows a 

case where the neighborhood size and geometric configuration is such that there is an 

imbalance in the intersections between pairs of nodes. In this case, 𝑣𝑖  or 𝑣𝑘  occupy a 

position in each other’s nearest neighbor lists. This reduces the number of possible nearest 

neighbors in the intersection by one for each node. Node 𝑣𝑗  doesn’t have either 𝑣𝑖  or 𝑣𝑘 in 

its nearest neighbor list, hence has a larger number of nearest neighbors left from which to 

form a neighborhood intersection set with other nodes. This imbalance creates an extra 

term in the sum from (3.4) for 𝑣𝑗  which may result in a higher similarity score and cause 

𝑣𝑖  and 𝑣𝑘  to appear more similar to 𝑣𝑗  than to each other (edge ik is weighted from two 

common neighbors edges, where edges ij and kj are weighted from three). Note that the 

magnitude of the imbalance effect decreases with increasing neighborhood size, so regions 

of low density are impacted the most e.g., lower density regions from adaptive nearest 

neighbor techniques. 
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Figure 3-6. Lack of the mutual constraint can lead to an undesired similarity score. 

 

The SNN similarity variants above do not account for the distance (or similarity) 

between nodes either, only their overlapping neighborhoods and ranks. A node may have 

the same rank with respect to two other nodes, but have vastly different distances 

(similarities) to those nodes. In this case it seems appropriate that this node contributes 

differently to the SNN score for each of the two nodes. A modified metric based Moëllic, 

Haugeard, and Pittel (2008) uses the shared nearest neighbor count, rank, and node 

similarity given by 
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 (3.5) 

 

where dsim is a dissimilarity measure between nodes. The more dissimilar the nodes, the 

larger the subtracted term, hence the smaller the component contribution. Similar nodes 

(low dissimilarity, small distance) result in smaller values being subtracted from k, 

increasing the component contribution. In this work, the cosine distance will be used as the 

dissimilarity metric to promote higher scores for those neighbors that may have varying 

illumination. The sensitivity of cosine distance to dark pixel selection is mitigated by the 
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fact only nearest neighbors are subject to the metric, i.e., dark pixels would be too far away 

to be initially selected. 

The asymmetric neighborhood variants are given by simply replacing the k’s in 

(3.4) and (3.5) by 𝑘𝑖 and 𝑘𝑗 respectively.   

3.2 Mutual Proximity Graphs 
Introduced by Schnitzer et al. (2012), mutual proximity (MP) transforms distances 

into similarities such that pixels with similar nearest neighbors are brought closer together, 

whereas those with dissimilar nearest neighbors are pushed farther apart. In this sense, 

mutual proximity is akin to local scaling except mutual proximity is a global vice local 

transformation.  

To calculate MP, distances between 𝑣𝑖 and all other nodes are assumed to originate 

from a known probability density function (P). Using node i’s distance distribution, P(𝛿𝑖), 

the distance from 𝑣𝑖  to 𝑣𝑗   (𝛿𝑖𝑗) can be interpreted as the probability 𝑣𝑗  is a neighbor of 𝑣𝑖 

by  

 ),(1)(1)( ijijij CDFPP    (3.6) 

 

where 𝐶𝐷𝐹 is the cumulative distribution function of P(𝛿𝑖). The probability a random node 

is a nearest neighbor of node i therefore increases with decreasing distance (or codensity). 

Obviously 𝛿𝑖𝑗 = 𝛿𝑗𝑖  and 𝛿𝑖𝑖 = 0 produces a probability of 1.0. This concept is represented 

graphically in the bottom of Figure 3-7 for a normally distributed distance distribution.  

Marginal distance distributions are shown below and to the left of the scatterplot for nodes 

i and j respectively. Using the lower marginal distribution as a reference, the probability a 
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random node k with distance 𝛿𝑖𝑘 is closest to node i is given by the dark shaded area to the 

right. Calculating the mutual proximity between nodes i and j is then reduced to a counting 

exercise over the region of joint support (𝛿𝑖 > 𝛿𝑖𝑗 and 𝛿𝑗 > 𝛿𝑗𝑖), normalized by the total 

number of points. 𝑃(𝛿𝑖 > 𝛿𝑖𝑗) >  𝑃(𝛿𝑖 > 𝛿𝑖𝑘) therefore indicates node j is more likely a 

neighbor of node i than node k. 

 

 

Figure 3-7. 2-D scatterplot of distances from nodes i (x axis) and j (y axis) to all other nodes and their MP. 

 

The distance distributions for 𝑣𝑖  and 𝑣𝑗  are naturally different, so 𝑃(𝛿𝑖 >

𝛿𝑖𝑗) and 𝑃(𝛿𝑗 > 𝛿𝑗𝑖) are not the same. This is similar to the directed relationships that 
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emerge in k-NN graphs where 𝑣𝑖  may be a nearest neighbor of 𝑣𝑗 , but 𝑣𝑗  may not be a 

nearest neighbor of 𝑣𝑖.  

Calculating mutual proximity is conceptually simple; count the number of nodes 

having distance > 𝛿𝑖𝑗  to both 𝑣𝑖 and 𝑣𝑗  and then divide by the number of nodes to 

normalize the probability (Schnitzer et al., 2012). This is shown graphically to the upper 

right in Figure 3-7 and represented by (3.7). 
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The mutual proximity reweighting for the previous three-cluster example with 

variable densities is shown in Figure 3-8(e).  

Counting exercises on large datasets can be computationally expensive, therefore 

we wish to find efficiencies wherever possible. For example, if we assume independent 

codensity distributions, then mutual proximity can be easily calculated via the product of 

the marginal distributions as  

 ,)()()( jijijiijI PPMP    (3.8) 

 

where the subscript ‘I’ indicates the independent marginal distribution assumption. 

Assuming independence did not adversely affect results on standard machine learning 

datasets in Schnitzer et al. (2012). Similar tests on HSI data are discussed in Chapter 4. 
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Figure 3-8. Example dataset displaying (a) three clusters of different density, (b) Euclidean distance weighting, and 

three edge reweighting methods: (c) ZMP, (d), SNN, and (e) MP. Performance measures (f). 

 

Comparisons of the different edge reweighting variants is provided in Figure 3-8. 

We repeat the data points and initial Delaunay triangulation edges in (a) and (b) for clarity. 

The resultant edge weights after the application of ZMP locally adaptive scaling, shared 

nearest neighbors, and mutual proximity are shown in Figure 3-8(c-e). Notice the stronger 

relationship between pixels in the lower density clusters and the weaker edges in transition 

regions. Additionally, weaker edges are now apparent in the dense center cluster because 

weights are now relative to local density instead of a global distance scale. Each graph is 

partitioned into varying numbers of clusters by the normalized cuts algorithm (Shi and 

Malik, 2000), with the resulting cluster uniformity shown in (f). The SNN method had the 

highest uniformity. 
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Euclidean distance is approximately normal due to the central limit theorem if 

features (bands) are generated from independent and identically distributed data (i.i.d.) 

(Jegou et al., 2010). Whereas most data are not i.i.d., Schnitzer et al. (2012) point out this 

approximation increases in accuracy with increasing intrinsic dimensionality. However, 

the empirical distribution can be used if the data are not reasonably modeled by an 

analytical distribution, sacrificing speed for performance. 

The computational complexity of mutual proximity is 𝑂(𝑛2) at a minimum due to 

the evaluation of all pairwise distances and intersections. The intersection rescaling does 

take additional time, but if we can assume the marginal distributions follow a functional 

form, we can use a pixel subset, S, to estimate the distributional parameters (|𝑆| ≪ 𝑛)). 

This reduces the number of rescaling calculations to 𝑆 ∗ 𝑛, resulting in linear rescaling 

complexity (Schnitzer et al., 2012). Additionally, one may use a fast NN technique, pulling 

far more neighbors than typically needed, but still orders of magnitude smaller than the 

|𝑉|. In this case, mutual proximity is calculated on the larger NN sets, with the larger part 

of the distribution simply being added as an offset because its sorted order doesn’t matter. 

We previously noted some of these techniques are computationally expensive 

without some means to reduce the number of pixels examined. Practically, running larger 

images on a single machine may become prohibitive. However, the recent availability of 

massively parallel commodity computing enables scalable processing on demand, reducing 

execution time to relevant levels (if you’re willing to pay for it).  A more pragmatic 

approach is the use of fast or approximate nearest-neighbor algorithms which can greatly 

decrease execution time with little reduction in performance (Benedetto et al. 2012a, 
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2012b). Quality degradation can be lessened by returning a larger k-NN list than necessary 

with fast or approximate k-NN, then whittling down those results. The use of partial k-NN 

lists does not preclude use of SNN because shared neighbors are likely within a fraction of 

nearest neighbors anyways. Additionally, errors in low mutual proximity values will not 

impact results as we’re only practically interested in the higher MP values, so a large 

fraction of pixel distances don’t need to be sorted and can just be lumped into a single term. 

For example, we return 20% of nearest neighbors and determine their sorted order for the 

empirical mutual proximity measure. The remaining 80% can simply be added as a bias 

without sorting all the distance because they don’t matter. 

We now have enough basic information to understand the rationale behind the five 

key performance issues studied in the next chapter. 
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4  

 

 

 

GRAPH CONSTRUCTION PERFORMANCE 

In the beginning of this thesis, we stated the performance of graph-based algorithms 

is dependent on the quality of the constructed graph. It is therefore good practice to study 

the resultant graph characteristics and relate them to common HSI processing tasks to 

ensure appropriate construction methods are selected for the desired analyses. For example, 

do mutual, superset symmetric, or directed graphs offer better performance? Does the 

answer change based on scene content? Should adaptive variants be utilized instead of 

fixed k methods? To begin to answer these questions, the performance of the previously 

described graph construction techniques is examined to determine which methods best 

preserve community structure of the data by answering five questions most relevant to data 

clustering, segmentation, and classification. 

 Which method is best for symmetrifying adjacency (or affinity) matrices: 

mutuality or superset symmetry? 

 Are spectral-density based adaptive construction techniques better than 

fixed neighborhood sizes for the same number of edges? 

 How do symmetrified matrices perform with respect to their directed 

counterparts? 

 Does edge reweighting after edge selection improve the community 

structure of neighborhood lists?  
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 Does prescaling primary metrics prior to k-NN graph construction improve 

performance? 

 

Algorithms described for instructional purposes were not evaluated. Note that the 

intent of the following sections is to study the resultant graph structure (characteristics) 

from these construction techniques, not to offer new classification algorithms. In doing so, 

we will see that some graph construction methods are better suited for classification-like 

tasks. We defer the analysis of geodesic distances and manifolds, also commonly used for 

anomaly and target detection, to a future publication.  

4.1 Metrics 
A simple majority-rules k-NN classification was used to test the performance of 

each graph construction technique. Summary accuracy metrics representing the percentage 

of correct class assignments are produced for each combination of image and graph type; 

ties are broken by assignment to the class with the shortest distance to the test pixel. Note 

that we use the k-NN classifier as a metric for studying the health (or uniformity) of k-NN 

lists, not to achieve the best absolute classification accuracy. More robust graph-based 

classification techniques exist that are better suited for such a comparison. 

Whereas the k-NN metric establishes summary classification performance for each 

graph construction technique, it shows limited difference between algorithms starting from 

the same set of initial edges, i.e., many of the adaptive techniques previously discussed 

start with an ANN graph. As such, their k-NN lists are identical so their majority-rules 

scores are the same (tie results may differ based on the metric). Essentially, the only 

difference between these graphs are the edge weights assigned after initial edge selection, 
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so many of the techniques previously discussed are referred to as edge reweighting schemes 

and produce “secondary” weights. To circumvent this problem, an additional test was 

applied to examine the structure of the k-NN list themselves. The simplest form of this test 

assigns a score to each nearest neighbor j based on its rank in pixel i’s k-NN list as 𝑘(𝑖) −

𝑟𝑎𝑛𝑘(𝑗) + 1, 𝑖 ≠ 𝑗. Each pixel’s rank-based neighborhood scores are summed and 

normalized to produce values in the interval (0, 𝑘(𝑖)]. Scaling to 𝑘(𝑖) ensures that pixels 

with high similarity to many neighbors receive more weight than pixels with high similarity 

to a small number of neighbors.  

Edge reweighting methods such as ZMP, MP, and SNN theoretically reshuffle the 

order of k-NN lists such that spectrally similar pixels more aligned with the density of the 

test pixel move closer whereas those in regions of differing density move farther away. As 

such, the above scoring method characterizes reshuffling by increasing the overall score 

when pixels of the same class as the test pixel move to lower ranks (closer to the test pixel) 

and dissimilar pixels move to higher ranks (farther away). While intuitively appealing, the 

scoring method does suffer from a shortcoming related to use of integer ranks. Two pixels 

that change ranks due to extremely small differences in their secondary edge weights will 

be assigned disproportionate changes in score due to integer ranking. Additionally, the 

method is insensitive to the case when pixels change weights dramatically, but retain their 

current ranking.  

To combat both disproportionate changes in score and lack of changing ranks, an 

additional step is taken during the scoring process. The first and last scores (ranks) are 

locked at the number of neighbors for the test pixel 𝑘(𝑖), and one respectively. All pixels 
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that fall in between are interpolated to their floating-point positions in rank space spanned 

by the first and last pixels. This interpolated rank is then used as the pixel score. In this 

way, pixels that change rank due to small differences in secondary weights are assigned 

scores that are virtually identical. The adjusted rank metric also handles the case when 

pixels retain their original rankings but shift relative to the test pixel, changing their 

resultant scores even though the ranks are unchanged. The improved (adjusted rank) metric 

is illustrated in Figure 4-1 for a pixel with 19 neighbors.  Notice that integral rank-based 

adjustments artificially increase node separation between the first two pixels, whereas 

fractional positions achieve weightings in line with node separation indicated by the 

distance metric, e.g., separation in rank space (left arrows) always equals one, while the 

adjusted rank score (right arrows) is proportional to pixel similarity.  
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Figure 4-1. Rank and adjusted-rank scoring for evaluating the structure of k-NN lists. 

 

As can been seen, the adjusted-rank scores of the two leftmost pixels (circles) are 

virtually the same because their distances from the pixel of interest are nearly identical. 

This is not true of the rank-only scoring that displays integer differentials (triangles). 

Additionally, there appears to be a separation between nearest neighbors into at least two 

clusters. Those in the cluster closest to the test pixel are assigned much larger relative 

scores than those pixels appearing to the right of the apparent cluster division. Bars to the 

left and right indicate the magnitude of the difference between two pixels for the rank-only 

and adjusted rank measures respectively. Note that this metric is appropriate for NN lists 

of the same size, so will only be used for the edge reweighting tests. 

A simpler neighborhood health metric that overcomes the requirement for the same 

sized NN lists is the 𝜙-edge ratio, defined as the number of edges between vertices with 
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differing class labels (ground truth class assignments) normalized by the number of edges 

in the graph (Ozaki, Shimbo, Komachi, and Matsumoto, 2011). Lower scores are thus 

indicative of more uniform NN lists. This metric is good for measuring changes in global 

k-NN health from prescaling tests as it quantifies the change in number of edges to similar 

pixels while avoiding the issues associated with weighted ranks when comparing NN lists 

of differing sizes for the same pixel.  

Additionally, one may simply count the number of pixels with improved k-NN 

health scores from any metric. While not indicative of the degree to which any edge weight 

changed, this metric gives a good indication of the number of pixels impacted by 

reweighting or rescaling schemes and can be useful for visualizing trends due to its 

quantized nature (improved, no change, degraded).  

4.2 Experimental Datasets 
Several datasets with substantial ground truth coverage acquired from the Purdue 

Multispec website (Baumgardner, Biehl, and Landgrebe, 1992), the Telecommunications 

and Remote Sensing Laboratory, Pavia University via the Grupo de Inteligencia 

Computacional (GIC) University of País Vasco, Spain website, and the National Institute 

of Standards and Technology (NIST)-MITRE Corporation partnership were used for the 

performance evaluation (Table 4-1). Atmospheric absorption bands were removed from all 

datasets prior to evaluation, except for the Microscene which was acquired in a lab.  
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Table 4-1. Classification Accuracy Datasets 

 

Some images were cropped to regions of dense ground truth coverage to avoid 

unneeded calculation, or reduced in scale by nearest neighbor resampling to increase spatial 

diversity. A true color composite of an example data set and associated ground truth map 

are shown in Figure 4-2a and b respectively. Appendix A contains image examples of all 

ground truth data. 

 

Dataset Sensor 
Data 

Type 

GSD 

[m] 
Bands 

Scene 

Type 
Source 

SalinasA AVIRIS rad. 3.7 204 rural GIC 

Salinas AVIRIS rad. 3.7 204 rural GIC 

Indian Pines AVIRIS rad. 20 193 rural Purdue 

Pavia ROSIS ref. 1.3 102 urban GIC 

Pavia Univ. ROSIS ref. 1.3 102 urban GIC 

Microscene SOC710 ref. 1.3E-4 80 ~rural MITRE 

The reference section provides websites for downloading test data. MITRE-provided data is from a partnership 

with NIST.  

Shorthand notation and acronyms: reflectance (ref.), radiance (rad.), ground sample distance (GSD), Reflective 

Optics System Imaging Spectrometer (ROSIS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), 

Surface Optics Corporation (SOC). Sensor descriptions may be found in the references.  
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 (a) (b) 

Figure 4-2. Indian Pines dataset for assessment of NN health. (a) true color image and (b) ground truth map 

(Baumgardner, et al., 1992). 

 

Unclassified ground truth pixels were used in graph construction, but removed from 

the classification metrics as they could also belong to a ground truth class, but simply were 

not labeled. 

4.3 Results 
We present several studies addressing the questions posed at the start of Chapter 4 

to demonstrate graph characteristics and determine construction practices required to 

promote the health of nearest neighbor lists for applications utilizing graph-based analysis. 

The intent here is to show how selection of certain graph construction methods/criteria 

compare to each other, not to maximize the value of any metric. We start with a comparison 

of overall classification accuracy to provide some high level perspective prior to 

specifically addressing the five questions posed at the start of this section. 

For this perspective test, 12 graphs—representing combinations of three adjacency 

matrix types (superset symmetry, directed, and mutual) and four edge allocation methods 
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(k-NN, DW k-NN, DW k-NN with CDF, and ANN)—are constructed for each of the six 

Table 4-1 datasets using 𝑘 = 𝑘𝑚𝑎𝑥 = max(𝑘𝑖𝐴  ). A k-NN classifier is used to generate 

overall accuracy measures, which are subsequently sorted in ascending order. Each method 

is then assigned a score equivalent to its rank in the sorted list, i.e., the highest overall 

accuracy receives 12 points, while the lowest receives one point. This process is repeated 

for all six images and the resultant scores are summed as a representation of general graph 

performance. Figure 4-3 displays the scoring results and peak-normalized marginal 

distributions associated with the adjacency matrix type and the edge allocation method. 

 

Figure 4-3. Summary classification accuracy for all scenes using three adjacency-matrix types and four edge-

allocation methods. 

 

The superset symmetric and directed adjacency columns clearly indicate the benefit 

of density-weighting as evidenced by the large step between k-NN and the density weighted 

variants. However, the same pattern is not apparent in the mutual columns, where the 
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mutual k-NN graph has a score on the order of the adaptive variants. This was traced back 

to a combination of ground truth sparsity for the urban scenes (especially the Pavia image) 

and pixel labeling. In the urban scenes, pixels of the same class exist that were not included 

in the ground truth pixel labeling, so they can reduce the number of edges to labeled pixels 

of the same class. Additionally, materials of interest are typically on smaller objects in 

clutter scenes, hence there is a higher probability of edges being labeled during ground 

truth generation. These edge pixels are composed of multiple materials, albeit largely the 

material of interest, and can switch class membership with varying k. This was explored 

by increasing k from 1 to 250 and tracking pixels that alternate from correct to incorrect, 

and vice versa, e.g., edges pixels in the Pavia scene comprise only ~25% of the ground 

truth data, but account for ~60% of pixels that continuously alternate class membership 

with k. 

4.3.1 Adjacency symmetrification method 
 Two methods are described in Chapter 1.3 for converting asymmetric (directed) 

adjacency matrices into symmetric (bidirectional, undirected) variants: superset symmetry 

and mutuality. The superset symmetry method forces all directed edges to be bidirectional, 

while the mutuality constraint only retains existing bidirectional edges. Are either of these 

methods better than the other? Under what circumstances? To address these questions, the 

classification accuracy of both adjacency symmetrification methods are compared with 

their directed counterpart (the initial directed graph) as a relative measure of nearest 

neighbor uniformity. Full confusion matrix analysis is used to assess statistical significance 

of the results. 
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Figure 4-4 displays differential accuracies for combinations of graph type and 

image, where the differential is constructed such that positive values indicate the 

symmetrified graph (via mutuality or superset symmetry) outperforms the directed k-NN 

counterpart. This is different than the previous test in that it compares symmetrified 

adjacency variants directly to their directed parent instead of examining performance of all 

methods to each other. The first row of Figure 4-4 contains results for a small k and 

𝑘𝑚𝑎𝑥  values calculated as the average 𝑘(𝑖)6 from the ANN algorithm. The second row is 

an analogous test, but with k set to the maximum ANN 𝑘(𝑖) value. Both are provided to 

demonstrate performance over a broad k range7. Note that ANN is the same in both rows 

as there is no notion of a k parameter. The k values for each scene are provided below the 

lower left of each graphic row. Scene ordering is shown in the lower left panel of the upper 

graph, and consistent for all tests. Fixed k-NN graphs nearly always benefit from invoking 

the mutuality criterion, while ANN shows a very small difference between all three 

adjacency matrices. Regions of overlap between symmetric and mutual variants are 

represented by an intermediate shading. Differential magnitudes are small, but noticeable. 

 

                                                 
6 This is also the number of iterations required for ANN to terminate. 
7 Results were trended over tens of k values to establish these relationships. We only provide two here as 

an example demonstrating observed trends. 
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Figure 4-4. Differential accuracy results for fixed and adaptive graphs at low (top) and high (bottom) k values. 

 

McNemar’s paired difference test was used to compare confusion matrices from 

each method and establish statistical significance with a critical value of 𝛼 = 0.0 . Any 

test statistically the same as the directed k-NN result is indicated with an ‘S’ (superset 

symmetry) or ‘M’ (mutual) above the respective test. A ‘Z’ above the bar indicates the 

symmetric and mutual results are statistically the same. Apparent trends and their 

significance are discussed in the bullets to follow.  

 Construction techniques enforcing adjacency symmetry by mutuality 

instead of superset symmetry are superior for capturing community 

structure in HSI data. This result is intuitive based on previous discussions, 

where the mutuality constraint provides protection from edges crossing 

regions of disparate densities, therefore promoting cluster uniformity. 
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 Superset symmetric results are statistically the same as the directed k-NN 

results for a large number of tests, suggesting adding additional edges in 

this manner does not produce much value. 

 Mutuality is always the poorest performer for the Pavia scene due to the 

previously described edge pixel condition. 

 Density-weighted construction methods generally have lower differential 

accuracy scores than the fixed k method, indicating that spectral-density 

weighting does a better job connecting intracluster pixels so there is less to 

be gained (or lost) from adjacency symmetrification, i.e., they natively 

produce higher edge allocation in denser regions more likely consisting of 

the same material. 

 The general pattern of reduced differential accuracy scores moving left to 

right in Figure 4-4 is consistent across a broad range of k values where ANN 

typically has the smallest differential accuracy, followed by the DW k-NN 

techniques, and then fixed k-NN indicating fixed k nearest neighbor lists 

have more intercluster edges than their adaptive counterparts. 

 The k-NN graph always displays the largest benefit from application of the 

mutuality constraint because there are an adequate number of neighbors for 

mutuality to reduce intercluster edges, i.e., all pixels are assigned k 

neighbors, and fewer pixels are subsequently disconnected from the graph. 

Isolated-pixel creation is problematic for mutual variants when ki is low. 



86 

 

 Symmetric and mutual variants are typically statistically different, except 

in the case of ANN and density-weighted k-NN with CDF, wherein some 

rural (less cluttered) scenes begin to show no difference. 

 

Examining the corresponding 𝜙-edge ratios for the maximum k plots (Figure 4-5), 

we see that they look very similar, but the percentage of 𝜙-edges is larger than the 

commensurate differential accuracy. This infers that differential accuracy is a function of 

𝜙-edge ratio, but that the relationship is not one-to-one. This is anticipated given adding 

some incorrect edges to a pixel with a large number of intracluster edges will likely not 

impact the overall classification accuracy. Similarly, adding correct edges to a correctly 

classified pixel does not improve the accuracy score. 

 

Figure 4-5. Differential 𝝓-edge ratio plots for the maximum k row in Figure 4-4. 

 

Grouping differential accuracies by scene type (rural vs. urban), we find the mutual 

method outperforms the directed and symmetric variants in scenes with large uniform 

regions by ~1 % on average. Should an investigator choose to invoke mutuality in a 

cluttered urban scene, these data indicate doing so from a fixed, rather than adaptive, k-NN 
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graph can be beneficial, albeit more urban data with ground truth should be investigated 

before this can be taken as a generalization, as this may simply be an artifact of object size 

relative to the GSD. At a minimum, ensuring 𝑘𝑚𝑖𝑛 ∈ [ ,10] will help mitigate this issue. 

4.3.2 Adaptive vs. fixed nearest-neighbor lists 
The previous section quantified the performance difference attained by invoking an 

adjacency matrix symmetrification method. However, those tests did not ensure the same 

number of edges in each graph construction. This section investigates the ability of 

adaptive and fixed k methods to encode community structure, while ensuring the number 

of edges are approximately the same, i.e., each adjacency matrix has essentially the same 

sparsity. We utilize the directed k-NN graph because the number of resultant edges is not 

dependent on the effects of a symmetrification method. Note that aligning the number of 

edges for the density weighted k-NN techniques involves distributing the total number of 

edges from ANN to each pixel based on the image’s codensity distribution and is not as 

simple as assigning the average 𝑘(𝑖) value to kmax for those algorithms.  

Investigation of the 𝜙-edge ratio with the aforementioned 𝑘(𝑖) assignments is used 

to demonstrate differences in the number of intercluster edges resulting from each 

construction method. Figure 4-6 displays differential 𝜙-edge ratios for each method across 

the same six datasets, where the differential is taken such that positive values indicate the 

adaptive technique creates fewer intercluster (more intracluster) edges than the fixed k 

technique enabling better clustering and higher classification accuracy.  
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Figure 4-6. Differential 𝝓-edge ratios between fixed and adaptive graph variants by scene. 

 

Figure 4-6 demonstrates that adaptive techniques have lower 𝜙-edge ratios than 

fixed k techniques. This was expected since these algorithms allocate more edges in dense 

(similar) regions, hence increasing the probability of connecting intracluster nodes. 𝜙-edge 

ratio tests are pixel-specific, therefore produce distributions of values that need to be 

compared. We utilize Welch’s Two Sample T-test to compare the means of each 

distribution. This test is fairly robust to deviations from normality for large sample sizes 

(true here), hence is applicable to our skewed distributions. Additionally, we compare the 

𝜙-edge ratio distributional forms with the Kolmogorov-Smirnov Test (K-S Test), because 

the test does not assume normality. The resultant p-values from both tests are combined 

with Fisher’s Method to produce a single p-value used for significance testing with 𝛼 =

0.0 . All tests rejected the null hypothesis that the fixed and adaptive k distributions were 

same (all results significant), hence no annotations are provided on the graphic. 
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An interesting point to note is that 𝜙-edge ratios upwards of ~9% are observed in 

Figure 4-6, but no such confusion difference was observed in previous tests. This is due to 

the fact that adding intraclass neighbors to pixels that would have already been classified 

correctly has no effect on the classification result. However, it does decrease the 𝜙-edge 

ratio because the neighborhood list becomes more uniform, i.e., the mapping from 𝜙-edge 

ratio to classification accuracy is not one-to-one; more on this in the next section. 

4.3.3 Construction performance with varying k 
To support conclusions from analysis of the two k values, 𝑘𝑖𝑎𝑣𝑔 and 𝑘𝑖𝑚𝑎𝑥 in 

Chapters 4.3.1 and 4.3.2 and provide a synoptic perspective across a broad k range, 

parametric studies on the four graph types in Figure 4-3 over 𝑘 ∈ [1,2 0] were performed. 

Several quantities were tracked over the entire range for the three adjacency matrix types 

(superset symmetric, directed, and mutual) via a series of three dashboard plots of six 

graphs each and displayed in Figure 4-7 through Figure 4-12. Each of these dashboards 

start with an introduction to the purpose of each graph, followed by the results for each 

respective experiment. Note that we only provide fixed k-NN and ANN graph construction 

results as the other density-weighted techniques are similar to ANN, but with varying 

magnitudes. We make additional notations about these other density-weighted graphs with 

each discussion if an interesting result was observed. 

The x axis of many plots to come spans 𝑘 ∈ [1,2 0] for k-NN graph construction. 

Note that for ANN graphs, the neighborhood size of each pixel varies, so edges are only 

created up to the size of the adaptive neighborhood, e.g., if 𝑘𝑖 = 20 and 𝑘𝑗 = 2 , edges 

from pixel i will not be scored when 𝑘 = 21; however, edges will continue to be created 
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and scored for pixel j as long as 𝑘 ≤ 2 . Pixel j ceases contributions after 𝑘 = 2 , and so 

on. This is very different than the fixed k-NN graph, where each pixel is assigned a 

neighborhood of size 𝑘 = 2 0 on the last iteration. We note that when 𝑘𝑖𝑚𝑎𝑥 has been 

reached, so the ANN plots level off because edges are no longer being allocated. We do 

this to facilitate comparison over the full range of k values from the fixed k-NN tests.  

On the first dashboard, we plot the overall accuracy, average accuracy, and 

intracluster edges for the k-NN graph in the top four plots (Figure 4-7). These three 

quantities use the y axis to the left. Additionally, the fractional number of pixels that are 

assigned to the unlabeled class by the k-NN algorithm are identified on the same plots 

(pixels assigned to zero) and read using the y axis on the right. Pixels assigned to zero are 

plotted to demonstrate method sensitivity to incomplete ground truth. The upper left and 

right plots show these quantities for the superset symmetric and directed k-NN graphs 

respectively, where the legend for all graphs is shown only once in the upper right plot. 

Mutual k-NN performance is shown to the center left, while a zoomed in cross graph 

summary graph is provided to the center right. All graphs show the average and maximum 

𝑘𝑖𝐴   values as dotted vertical lines. Some observations are readily apparent. 

 Overall and average accuracy generally decrease as k increases as seen in 

the superset symmetric and directed k-NN plots. These results are indicative 

of the fact that pixels are less apt to be from the same class as distance 

increases. Scene segmentation using an agglomerative strategy might be 

best served by seeding sub clusters with a small k value based on these 

results. 
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 The rate of performance degradation with k is slowest in the mutual k-NN 

graph indicating the benefit of the mutuality constraint. 

 At low k, the mutual k-NN graph performs poorly, but has a sharp rise in 

performance until it rolls over and begins the general downward trend at a 

slower rate than the superset symmetric or directed variants. This is an 

interesting result given that the percentage of intraclass pixels is highest at 

those values of k, but is explainable given the previous discussions on the 

mutuality criterion. Imagine the case where two pixels in a dense cluster 

center are each assigned one neighbor. The chance these two pixels are 

mutual neighbors is small even though these pixels are in the same dense 

cluster center. As the nearest neighbor list grows, these pixels have an ever 

increasing chance of being neighbors, hence surviving invocation of the 

mutuality criterion. Given the dense nature of data near cluster centers, it 

does not take long before pixels have at least one neighbor in common. As 

such, the superset symmetric and directed graphs have best k-NN 

classification accuracy at very low k (< 7). 

 Mutual k-NN graphs have the best performance over all methods as shown 

in the center right plot. The numbers on the plot at 𝑘𝑖𝑎𝑣𝑔 and 𝑘𝑖𝑚𝑎𝑥 indicate 

mutual k-NN outperforms superset symmetric graphs by 4.8% and 6.1% 

respectively. Directed k-NN graphs falls in between this extreme. The 

mutual k-NN graph has the highest performance at high k because of its 

ability to throw away directional edges that are not confirmed by 
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bidirectional relationships. The superset criterion forces every edge to be 

bidirectional, even those that cross class boundaries due to natural spectral 

variability, overlapping clusters, or mixed pixels that are identified with a 

single class while possessing some smaller percentage of a second material. 

Summary statistics on the number of edges from each pixel (as noted in the legend), 

with minimum and maximum 𝑘𝑖 values are shown as solid and dotted line types, 

respectively. Note that some of the curves between the adjacency matrix types overlap, 

making it difficult to comprehend the minimum to maximum relationship. A dotted vertical 

line is drawn from the minimum to maximum curves at 𝑘 = 17 , 200, & 22  for the 

superset symmetric, directed, and mutual variants respectively to mitigate this difficulty 

without creating additional plots. Placement at different k values avoids possible 

obscuration conditions.  Some noted observations:  

 Adjacency matrices created by superset symmetry have the most edges, 

follow by directed adjacency matrices. This is to be expected from (1.3). 

 Adjacency matrices created by invoking mutuality have a minimum node 

degree of zero at high k values, indicating there are some pixels (anomalies) 

far away from all other nodes. 

 The maximum 𝑘𝑖 observed in the mutual variant has a maximum 𝑘𝑖 slightly 

less than k. This is to be expected from (1.4) and given the probability of 

any two nodes having the exact set of mutual neighbors is slim.  
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 The minimum and maximum ki curves are the same for the directed k-NN, 

so there is no apparent dotted vertical line because they are stacked on top 

of each other. 

As for the number of edges that cross from labeled to unlabeled vertices, we see 

that this number just continues to grow slightly as k increases.  
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Figure 4-7. k-NN Dashboard #1: Accuracies, edges counts, and cross ground-truth edges for Indian Pines. 
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Similar observations for the ANN edge allocation technique are provided below. 

 ANN absolute and average accuracies more rapidly declines than their fixed k 

counterparts, but quickly level off at higher accuracy values. The rapid decline is 

due to including NN as a function of k, instead of the order in which the edges were 

created, i.e., it may take some time for a node to be declared a NN by another node, 

but we check the 𝑘 = 1 edge at the first iteration in this analysis. Checking the plots 

as a function of edge creation instead of simply k would change the rate at which 

both accuracies decline, but establish the same higher end result. 

 All ANN graphs have a slope of zero after 𝑘𝑖𝑚𝑎𝑥. Given there are no more new 

edges to be included in the analysis. The graphs are extended to the largest 𝑘𝑖𝑚𝑎𝑥 

observed in all imagery to maintain plot consistency, so this is simply an artifact of 

the chosen range definition. 

 The rate at which ANN curves approach the steady state after 𝑘𝑖𝑚𝑎𝑥 is slower than 

that of the fixed k graphs because not all pixels have 𝑘𝑖𝑚𝑎𝑥 neighbors. In fact, many 

have 𝑘 < 𝑘𝑖𝑚𝑎𝑥, so they stop contributing after 𝑘 > 𝑘𝑖. This has the impact of 

dropping many pixels from the analysis, only leaving those in dense regions (high 

𝑘𝑖 values), where adding an additional edge has little impact on classification 

performance (high chance of already being correctly classified). 

 Mutual graphs are still the best performing over the range [𝑘𝑖𝑚𝑖𝑛,𝑘𝑖𝑚𝑎𝑥], but by a 

much smaller margin (a factor of 2 to 3 times less). The directed variant is closer to 

the mutual variant in this case. However, in other density-weighted graphs, the 
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directed variant has appeared in various locations between the superset symmetric 

and mutual ranges; albeit the relative ordering always remains the same. 

 The 𝑘𝑖 plots display a very different story compared to the somewhat linear 

appearance in fixed k-NN graphs. First, all adjacency methods have vertices that 

are disconnected, i.e., 𝑘𝑖 = 0; this can be seen by all vertical lines extending from 

the maximum to zero. Some pixels always have a new edge added, hence the 

maximum ki is linear with k below the maximum ki value.  

 The edges crossing labeled to unlabeled data display a maximum because initially, 

when many pixels are examined (𝑘 < 𝑘𝑖), edges may still appear between some 

labeled and unlabeled pixels. Eventually, only pixels in denser regions (higher 

𝑘𝑖) remain. As such, only edges more likely to connect to pixels of the same class 

are added; this reduces rate of edge additions to unlabeled pixels and creates a 

reversal in the trend. 
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Figure 4-8. ANN Dashboard #1: Accuracies, edges counts, and cross ground-truth edges for Indian Pines.  
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The second dashboard tracks how nearest neighbor lists are impacted as edges are 

deleted (mutual criterion) or added (superset-symmetric criterion). We start by tracking the 

number of orphaned pixels for various values of k. Orphaned pixels are tracked by NaNs 

in this implementation, while pixels assigned to the unclassified class are labeled as class 

zero. Figure 4-9 observations are noted below. 

 Starting to the upper left in Figure 4-9, we see that the superset symmetric and 

directed variants do not have any orphaned pixels because every pixel has some 

number of outward edges, i.e., 𝑑+(𝑣) > 0. 

 The mutual k-NN graph does have a large number of orphaned pixels after 

invocation of the mutuality constraint. This was explained by the low probability 

of pixels being in each other’s NN lists if the list sizes are small (low k). These 

numbers can be quite high as evidenced by the 50% level attained by the mutual 

graph in the upper left plot and shown on the right y axis. 

 The number of pixels classified as the zero class (those that are better matches to 

unlabeled data or orphaned pixels) are ever increasing for the superset symmetric 

and directed graphs. This is due to increasing NN lists, which can contain more and 

more unlabeled data. We notice some protection from this phenomenon using the 

mutuality criterion as evidenced by the mutuality line having the lowest fraction of 

pixels classified as zero. 

 The center left plot classifies the edges that were dropped or added from the 

mutuality or superset symmetric criteria, i.e., for each directed edge that is either 

made bidirectional or dropped, we count whether the addition or deletion would 
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have improved (solid lines) or degraded (dotted lines) the health of the 

neighborhood list. We can see that the net effect of pixels added by the superset 

criterion is to degrade the structure of the NN list, while pixels removed by the 

mutual criterion improves NN list health. This supports the previous results. 

 The fraction of orphaned nodes created from the mutuality criterion shows a rapid 

decrease with k, and that (in general) cutting the edge between the pixels was the 

right thing to do, albeit, sometimes many good edges were severed (center right). 

 The total number of ratable pixels shows a steady decline with k, indicating the rate 

at which pixels are classified as the unlabeled class. We notice an initially sharp 

rise in the mutual variant due to the reduction in orphaned pixels with k. 

 As edges are added, pixels may switch classes due to the composition of its NN list. 

There are two conditions of changing class membership: pixels that were incorrect 

and changed to correct (I2C) and those that were correct and changed to incorrect 

(C2I). We plot the number of class-switching pixels for the superset symmetric and 

mutual variants from their directed counterpart (lower right). We observe that in 

general, the superset symmetric criterion causes more pixels to change to the wrong 

class while the mutual criterion results in more pixels becoming the correct class. 

Note that the initial decrease in the C2I-mutual plot is due to those pixels that begin 

initially correct in their directed graph, but are orphaned from their directed 

neighbor due to invoking mutuality. 
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Figure 4-9. k-NN Dashboard #2: Impacts from forcing bidirectional edges. 
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Similar to Dashboard #1, we describe how the observations change for the ANN edge 

allocation technique compared to the fixed k method (Figure 4-10). 

 Despite the apparent zero count of orphaned pixels shown in the upper left, there 

are actually a small number of orphaned pixels created from termination of the 

ANN before each pixel has been identified as a neighbor of other pixels; it’s just 

too small to see. 

 The number of pixels classified to the zero class levels out instead of increasing 

with k (upper right). This protection is offered by the ANN algorithm because high 

numbers of edges are only assigned in dense spectral regions. 

 While the edge addition and removal summary is essentially the same (center left), 

the ANN algorithm does reach a stable level because pixels in dense regions of 

spectral space receive high edge counts, so adding edges via the superset criterion 

has a high probability of being correct. Adding edges still has the highest chance of 

connecting interclass pixels, so the dotted line is the highest in the plot. 

 Initially, the number of severed edges connecting a pixel to the correct class can be 

high (center right) for the mutuality criterion. However, this effect quickly goes 

away, and the mutual ANN graphs reach a low level intraclass edge severing.  

 The number of ratable pixels remains higher as fewer pixels are assigned to the zero 

class (lower left) from smarter edge creation. 

 Class switching pixels (lower right) tell the same story as with the k-NN graph, but 

the magnitude of the difference between switching modes is much lower due to 

higher edge allocation in dense spectrally-similar regions. 
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Figure 4-10. ANN Dashboard #2: Impacts from forcing bidirectional edges. 
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The third dashboard represents a series of miscellaneous measures that make it 

easier to see differences in absolute and average classification accuracies and track the 

effects of increasing k on fixed and adaptive techniques. Observations are noted below. 

 Starting to the upper left in Figure 4-11, we see that the number of edges present in 

fixed k-NN graphs are monotonically increasing in k with the highest number of 

edges being allocated to superset symmetric graph and the least to the mutual 

variant. The directed graph falls in between. As k increases, all pixels receive larger 

NN lists, but these new edges don’t necessarily result in edges in the final graph. 

The superset symmetric criterion will likely continue to add additional edges, 

however, many of them will simply be reconfirming an existing edge, so the 

increase in k will roll off. However, not all directed edges create bidirectional paths, 

so enforcing the mutuality criterion only removes some of the potential edges, 

resulting in a lower increase in edge count. The situation with directed edges 

naturally falls in between. 

 The upper right shows the change in edge accuracy for each adjacency matrix 

variant, where we see the mutual criterion has the lowest 𝜙-edge ratio, a direct 

consequence of the protection afforded by the mutuality criterion. Adding new 

edges by the superset symmetric method adds more intercluster edges hence has 

the highest 𝜙-edge ratio. Again, the directed variant falls in between. 

 We also see that the mutual criterion has the largest inaccuracy at low k values. 

This is due to the low probability of pixels having each other as nearest neighbors. 
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 The center two panels display the differential accuracy between the superset 

symmetric and mutual variants and their directed counterparts. The winning 

method over the interval [𝑘𝑎𝑣𝑔, 𝑘𝑚𝑎𝑥] is indicated on each graph by a shaded 

region, where we see the directed k-NN graph performs better than the superset 

symmetric graph and the mutual graph outperforms the directed graph. These two 

results align with our discussions on superset symmetric graphs having the highest 

chance of creating intercluster edges, while the mutuality criterion provides 

protection via intercluster edges through “mutual” confirmation. 

 Both situations reverse for 𝑘 < 𝑘𝑚𝑖𝑛. At very low k, the superset symmetric 

criterion has the best chance of creating additional edges to intracluster pixels. It is 

only as k increases that this probability drops to the point relatively more 

intercluster edges as added. As for the mutuality criterion, this result is simply due 

to the low chance of having mutual neighbors with only a few edges. These two 

results do provide some guidance on setting a fixed k. 1) if using a low k, it is best 

to use the superset symmetric method. If enforcing mutuality, use at least 𝑘 = 10 

to get past the region of poor performance. Surprisingly, this 𝑘 = 10 dividing point 

is consistent in the imagery tested. We recommend all adaptive techniques that 

leverage mutuality add a bias to all k (~10) values to mitigate this situation. 

 The bottom left graphic is informational and shows that the [𝑘𝑎𝑣𝑔, 𝑘𝑚𝑎𝑥] interval 

is not larger than any class – a condition that can begin to reverse classification 

accuracy as every added edge will be errant. 
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Figure 4-11. k-NN Dashboard #3: Miscellaneous additional measures that vary with k. 
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Similar to Dashboards #1 and #2, we describe how the observations change for the ANN 

edge allocation technique compared to the fixed k method. Figure 4-12 observations are 

noted below. 

 The graphs for the number of edges and edge sparsity show a distinctly different 

pattern than the fixed k graphs. Here we clearly see what appears to be a limit on 

the number of edges, i.e., the graphs roll over to a relatively constant value 

somewhere in between 𝑘𝑚𝑖𝑛  and 𝑘𝑚𝑎𝑥. This is explainable as adaptive techniques 

assign a pixel-specific number of edges to each pixel, with only the densest having 

out-degrees approaching 𝑘𝑚𝑎𝑥. As such, most pixels stop contributing edges to the 

summation and only a few pixels are left to contribute with each increasing k. 

Hence we see what appears to be a flattening somewhere in between, but in reality 

the graph isn’t completely flat until 𝑘𝑚𝑎𝑥. At 𝑘𝑚𝑎𝑥, there are no more pixels with 

edges, so the graph is truly flat. 

 𝜙-edge ratios demonstrate a faster roll over effects for the same reason. 
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Figure 4-12. ANN Dashboard #3: Miscellaneous additional measures that vary with k. 

. 
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To summarize, on average, density weighted methods perform as good as or better 

than the fixed k methods. The maximum overall accuracy differential from worst to best 

performer in these data is just shy of 7%, with 3% being typical. 

 

4.3.4 Edge reweighting effectiveness 
Simple confusion tests only demonstrate classification performance, and therefore 

cannot be used to evaluate the impact of edge reweighting because the original and 

reweighted nearest neighbor lists (and hence the classification results) are the same. 

Examination of the structure of the k-NN lists themselves provides evidence that pixel 

weights in each neighborhood have improved via edge reweighting techniques such that 

distances (similarities) of pixels like the test pixel are decreased (increased), whereas those 

unlike the test pixel are increased (decreased). The metric used to perform this analysis 

examines the structure of the neighborhoods themselves with respect to cluster uniformity 

and separation when class labels are available (Figure 4-1). 

Seven adaptive graph construction techniques employing edge reweighting were 

applied to the six images from the previous studies; an eighth, ANN, was used as an 

unweighted control using primary distance measures. Both the weighted rank and 

improved pixel count metrics produced effectively the same conclusion—that edge 

reweighting (post edge selection) is slightly detrimental to the community structure of the 

neighborhood lists. In short, more pixels had the structure of their nearest neighbor lists 

degrade instead of improve. In one case, Indian Pines, upwards of ~25% of the ground 

truth pixels with labels had their community structure degrade (Figure 4-13). The leftmost 

side of the bars in Figure 4-13 is read down and the inset black bar is read up, where the 
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lower and upper x axes are the percentage of pixels with improved neighborhood health 

scores and the global average rank-adjusted scores respectively. Algorithms are labeled to 

the left and data sets to the right. Some patterns are evident. 

 

 ANN occupies six of the top eight positions, indicating that NN lists are 

generally healthier without reweighting. 

 SNN variants are closer to the top of the list, showing the power of counting 

shared neighbors, but on average are no better than not reweighting. 

 The most complex scenes (Pavia and PaviaU) occupy more of the upper 

positions suggesting there is more relative benefit for complex (cluttered) 

scenes.  

 Reweighting techniques utilizing codensity generally have poorer 

performance than those that don’t. 

 

A graph construction method that reinforces inherent community structure 

facilitates accurate analysis; however in this case it appears edge reweighting, by any 

method, does not improve community structure—from a class separability perspective. 

This is contrary to what may be inferred from other papers (Fan and Messinger, 2014; 

Gillis and Bowles, 2012). However, graph construction methods used in those analyses 

were always followed by an analysis algorithm, i.e., the viability of the new graph 

construction technique itself was not the focus of the effort. Results in this section suggest 

those analysis methods may perform better with a simpler graph construction method; 

avoiding the additional complexity and computation time.  
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Note this is not to say all reweighting is detrimental for all applications. Indeed, 

reweighting by the heat diffusion kernel with fixed scales does drive intracluster pixels 

closer to the test pixel given the cluster assumption is valid. The performance issue 

discussed above is particular to adaptive-density edge reweighting techniques. 

 
Figure 4-13. Adaptive edge-reweighting effectiveness is detrimental to the NN health. 
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Anomaly and target detection methods rely heavily on weighted inter-relationships 

between pixels, as do some classification and clustering algorithms (e.g., normalized cuts). 

In order to more fully assess graph-construction method impacts on these algorithms, 

intracluster manifold distance measures and connected component structure should be 

evaluated. 

Overall, this result is interesting given the previous two sections and the utility these 

methods have shown in other fields, hence warrants more discussion. The pixels with 

improved neighborhoods is a quantized decision; improved, unchanged degraded. So 

despite the initially alarming large number of pixels with degraded neighborhood lists 

observed in Figure 4-13, we need to verify these are not small differences simply 

exacerbated by the sensitivity of the rank-based tests. The distributional forms of the 

adjusted rank measures were examined for significant deviations from their originally 

weighted counterpart using the K-S test (𝛼 = 0.0 ). The original and reweighted results 

are statistically the same for the Salinas, SalinasA, Pavia, and Microscene datasets. All 

methods are statistically different for the PaviaU and Indian Pines datasets, except for the 

NICDM and ZMP algorithms. Examining the ZMP and NICDM inset black bars for the 

PaviaU and Indian Pines datasets, we observe they have the smallest global health 

differentials, so relatively speaking there was less change than in the other datasets. 

The DBI and SC cluster validity measures were calculated to examine any 

overlapping nature of data clusters. The PaviaU and Indian Pines data had poor measures 

indicating a higher probability of class confusion for these data. To visualize this condition, 

we normalized the distribution of distances to a pixel by its codensity and examined the 
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interclass and intraclass distributions of codensity multiples. A possible strong overlap 

between some classes exists in these data (meadows, trees, asphalt, bitumen), hence 

neighbors are less likely from the same class than in a more isolated cluster situation. Note 

that a cluster’s diameter may be larger than the separation to other clusters simply due to 

its shape (elongated instead of isotropic), so some overlap towards larger codensities is 

possible and most likely the cause of significant overlap at low codensity multipliers. Some 

classes display very clean separation (tiles, water, bare soil) and should not likely be 

confused.  

Similar analysis to that of Figure 3-4 for all six datasets are examined, and 

significant interclass scale variation exists indicating that codensity scaling is local to a 

pixel and not a class as a whole (also not surprising). However, how well can density-based 

reweighting help in regions of varying density and overlapping classes? From these tests, 

we see that in most cases, pixels are simply shuffled around with little change to the 

accuracy of the neighborhood structure. In the case of overlapping classes (PaviaU and 

Indian Pines), the results can be detrimental by nearly any method. 

One may question how density-based approaches degrade neighborhood uniformity 

when used for edge reweighting, but improve edge allocation per pixel as in the first two 

experiments of this section. Per the above discussions, the reweighted edges produce 

nearest neighbor characteristics similar to those of the original weights even though the 

magnitudes of those weights are different. However, the use of density for edge count 

allocation is more forgiving in the sense that small variations in density in dense regions 

still produce “dense” values. So, in a gross sense, density can drive the number of edges, 
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but in a fine sense, reassigning weights based on density measures does not offer any 

improvement as currently defined (and measured).                                                                                                                   

4.3.5 Primary-metric prescaling versus edge reweighting 
Edge reweighting is applied to previously selected edges, whereas the primary 

metric scaling is applied to measures prior to edge selection; all examples shown thus far 

are based on reweighting preselected edges. Scaling metrics prior to edge selection 

facilitates inclusion of other information—density and/or shared neighbors—in the ranking 

process, so k-NN lists generated from prescaled primary metrics will differ from those 

presented thus far. Pixels in regions of similar density and spectral similarity should be 

brought closer together, whereas others are pushed away. As appealing as this may be, it 

often requires a primary metric for all pairwise distances (or similarities). This takes 

𝑂(𝑛2) time so is not practical even for modest size images on a single computer unless 

approximations can be made.  However, to be complete, it is reasonable to explore how 

much performance is potentially sacrificed for speed by performing a primary metric 

scaling on a full primary metric matrix.   

The same six images and four graph construction techniques from the first two 

studies are used to demonstrate differences in the number of between-class edges resulting 

from ZMP prescaling and its effect on classification accuracy (Figure 4-14).  
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Figure 4-14. Differential 𝝓-edge ratio plotted versus the differential confusion score for prescaling results. 

 

As can been seen in Figure 4-14, scaling the primary distance metric via ZMP prior 

to graph construction can be detrimental to the health of neighborhood lists, i.e., most tests 

display a negative 𝜙-edge ratio (quadrants II and III) indicating ZMP prescaling creates 

more intercluster (fewer intracluster) edges than simply using the primary metric. This is 

consistent with the results in the previous section, but surprising given the success of 

density weighting in other fields (Zelnick-Manor and Perona, 2004; Schnitzer et al., 2012). 

However, there is some benefit, especially in k-NN and ANN graphs, which all display 

positive differential confusion values despite the negative 𝜙-edge ratios, which says the set 
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of edges is more semantically correct as a whole. This indicates prescaling prior to edge 

selection can increase performance and support the method employed by Hou et al. (2013) 

and Benedetto et al. (2012a) that use k-NN graphs 

The mutual proximity method with the Gaussian independent assumption 

performed much worse than the ZMP method indicating the Gaussian assumption is not 

appropriate for these data, which is to be expected given pixels do not exhibit normal 

distance distributions (often skewed). To explore this concept further, prescaling by mutual 

proximity with the empirical distribution was tested on the SalinasA and Indian Pines data. 

Note that empirical mutual proximity uses the distribution of the data to determine the 

probability of pixels being neighbors and is not impacted by user selection of some 

arbitrary number of neighbors to average or any assumed distributional form. Empirical 

mutual proximity demonstrated the highest performance of all prescaling methods 

indicating that codensity-based measures may not the best representation of local scale for 

hyperspectral data. This result warrants more study given that it indicates a potential 

change in expectation compared to previous efforts. 

Flexer and Schnitzer (2012) studied a broad range of public machine learning 

datasets spanning low to very high intrinsic (hundreds) and extrinsic (thousands) 

dimensionality. For lower intrinsic-dimensional data, their results showed no gain, and 

often a reduction in performance (although the reduction was not statistically significant). 

HSI typically exhibits low intrinsic dimension (single digits to tens of dimensions) 

(Schlamm et al., 2010), so it is possible we are seeing the same effect here. Their results 
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did show significant improvement for higher intrinsic dimensionality data, so examination 

of more diverse, higher dimensionality HSI data should be added to future studies.  

Putting performance aside, the choice of edge reweighting or metric prescaling (for 

appropriate imagery) may be decided by the number of pixels to be analyzed since 

quadratic run time is often impractical for even modest sized images. However, some of 

these routines execute quicker using fast nearest neighbor algorithms that first return a 

larger number of neighbors than required, followed by edge reweighting and subsequent 

edge selection. Additionally, the emergence of massively-parallel scalable (cloud) 

computing opens a new realm of possibilities for quadratic run time algorithms if 

approximations are not possible. However, a better algorithm always scales better than 

more cores as data sizes grow.  

4.4 Summary and Contributions 
We have provided a survey of many common graph construction techniques used 

by the HSI community as well as introduced two new methods from the computer vision 

and data mining literature: shared nearest neighbors and mutual proximity. Graph 

construction techniques were analyzed to reveal characteristics most beneficial to the 

health of neighborhood lists. Specifically, invoking mutuality was shown to be superior to 

superset symmetry for symmetrifying adjacency matrices in most cases (except at low k), 

and adaptive density weighted edge allocation methods were demonstrated to produce 

more uniform nearest neighbor lists. Advanced adaptive reweighting and primary-metric 

prescaling techniques were shown to slightly degrade the community structure of spectral 

graphs, and can be detrimental to analysis techniques requiring edge weights closely 
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representing community structure, not to mention the additional computational load. This 

research questions the reweighting approaches published thus far for creation of spectral 

graphs as they do not perform the same way on real data as they do in well-constructed 

examples with uniform cluster density to demonstrate their conceptual function. 

The described neighborhood health metrics are good indicators for classification 

related tasks, but not complete for analyses that utilize edge weights, or require graph 

connectivity. As such, future research can quantitatively explore graph characteristics more 

important to hyperspectral anomaly and target detection, detailing which construction 

techniques are best suited for each task through analysis of the connected component 

structure and manifold distances on these graphs. Perhaps reweighted edges are beneficial 

to these techniques, albeit not beneficial to NN health. 

While adaptive reweighting methods did perform slightly more poorly, there is still 

promise for these techniques if they can be modified, e.g., remove dependence on codensity 

and use larger fixed k values to generate higher probabilities for overlap in SNN and MP. 

Until such further research is conducted, there does not seem to be much benefit from 

adaptive edge reweighting, so best to stick with a single scalar for modifying the heat 

diffusion kernel until better local density measures are available. Additional metrics should 

be explored that measure the same phenomenon from different perspectives. 
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CONCENTRATION OF MEASURE AND HUBNESS IN GRAPHS OF 

HYPERSPECTRAL DATA 

In the previous chapter, we began to question the use of codensity for rescaling 

primary metrics or reweighting edges. We attributed this to local scale variations that 

impacted the utility of characterizing local scale by a single number, codensity. In this 

chapter, we continue of exploration of possible effects impacting the use of codensity to 

represent data scale in high-dimensional spaces. 

The success of any graph-based analysis is naturally dependent upon the quality of 

the graph constructed from the spectral data (Mercovich et al., 2011). Edges must be 

judiciously chosen to accurately model community structure inherent in the data without 

over (or under) connecting the nodes. As discussed in Chapter 2, many common graph 

construction techniques are founded on the k-nearest neighbor (k-NN) relationship because 

of its adaptability to data scale and density as well as its ability to follow clusters of 

arbitrary shape. Characteristics of k-NN (graphs) in high-dimensional spaces have been 

explored by the data mining and machine-learning communities (Beyer et al., 1999; 

Radovanović, Nanopoulos, and Ivanović, 2010a; Durrant and Kabán, 2009). Their research 

indicates directed graphs (digraphs) and undirected graphs built without enforcing the 

mutuality criterion (either implicitly or explicitly) are subject to the impacts of hubs, a 

relatively newly discovered aspect of the curse of dimensionality (Radovanović et al., 



119 

 

2010a). Most spectral graph generation methods found in the remote-sensing literature 

utilize variants enforcing mutuality (Albano et al., 2012b; Mercovich et al., 2011; Ziemann, 

Messinger, Albano, and Basener, 2012); the superset symmetric criterion may produce 

better performance at low k values (either fixed or adaptive in nature). Additionally, the 

use of digraphs to advance graph construction and/or analysis techniques should not simply 

be dismissed in favor of simpler undirected graphs without additional research. 

The remainder of this chapter explores the hubness phenomenon and one of its 

requisite conditions, concentration of measure, in HSI data. We establish the relevance of 

these two aspects of the curse of dimensionality to hyperspectral data analysis through 

studies on 49 datasets, and offer perspective on their impacts to HSI analyses, especially 

as spectral resolutions continue to increase, e.g., AVIRIS next generation (AVIRIS-NG) 

has 425 bands. 

5.1 Concentration of Measure 
The curse of dimensionality is a catch all phrase referring to difficulties experienced 

while working in high dimensional spaces. Concentration of measure is one of many 

aspects of the curse affecting machine learning applications (Radovanović et al., 2010a; 

Schnitzer et al., 2012) through degradation in the efficacy of many common distance (and 

similarity) metrics with increasing dimensionality (Ertöz et al., 2003; Houle et al., 2010). 

That is to say, in high-dimensional vector spaces, all pairwise distances can appear similar, 

so much so that the concept of nearest neighbor itself is in question (Beyer et al., 1999). 

Other curse aspects include hyperspace sparseness (empty space phenomenon), volume 
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concentration to hyperspheres, computational inefficiencies, and diagonals being 

perpendicular to cardinal axes (Wang, 2011).  

Euclidean distance measures will largely be discussed from this point forward; 

results apply equally well to other distance and similarity measures (Francois et al., 2007; 

Radovanović, Nanopoulos, and Ivanović, 2010b; Heylen et al., 2017). 

Concentration of measure is typically expressed as a ratio of values representing 

data spread to data magnitude. Beyer et al. (1999) demonstrate that the relative contrast—

the normalized differential distance between a point’s closest and farthest neighbors—

decreases with increasing dimensionality in i.i.d. data, which can render the distance 

measure less efficient (even meaningless) in high dimensions. Using the origin as our 

reference point8, let 𝒙(𝑖) represent an instance (spectrum) of the dataset (spectral image) 

𝐷 ∈ ℝ𝑑 where |𝐷| = 𝑛, ‖∙‖𝑝 is the Lp–norm of the vector, 𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥‖𝒙
(𝑖)‖

𝑝
 and 

𝐷𝑚𝑖𝑛 = 𝑚𝑖𝑛‖𝒙
(𝑖)‖

𝑝
 for 𝑖 = 1,… , 𝑛, we find the relative contrast vanishes as 

dimensionality increases (5.1) (Beyer et al., 1999). 

 
0lim

min

minmax 


 D

DD

d
 (5.1) 

 

The maximum value of the vector norm (pixel magnitude) is a function of p, such 

that ‖𝒙(𝑖)‖
𝑝
∈ [0, ‖𝟏𝑑‖𝑝] if the data have been normalized, e.g., ‖𝟏𝑑‖2 = √𝑑 for the 

Euclidean (L2) norm.  

                                                 
8 Distances to each pixel from the origin are simply the vector norms, so we center our data to simplify 

notation. 
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Other authors utilize the standard deviation and expected value to represent spread 

and magnitude (Francois et al., 2007; Durrant and Kabán, 2009). In this case, the relative 

variance also concentrates as 

 
,0lim 

 


d

 (5.2) 

 

where 𝜎 = √𝑣𝑎𝑟(‖𝒙(𝑖)‖𝑝)
𝑝

 and 𝜇 = 𝐸 [‖𝒙(𝑖)‖
𝑝
] (Francois, 2007). Kabán (2010) shows 

that convergence of the relative contrast and relative variances are equivalent.  

Both (5.1) and (5.2) are true regardless of the value of p, but to different degrees 

for i.i.d. data (Francois et al., 2007). Many authors have explored this phenomenon for 𝑝 ∈

ℝ+, where we find that concentration is generally less severe with smaller values of p and 

norms with 𝑝 ≥ 3 are all but meaningless in high-dimensional spaces (Hinneburg, et al. 

2000; Aggarwal, Hinneburg, and Keim, 2001). We will focus solely on the L2 norm 

(without loss of generality) because it is the most widely used norm in the spectral remote 

sensing community. The subscript ‘p’ or ‘2’ is dropped for notational convenience. 

To illustrate this effect for two common metrics used in the spectral remote sensing 

literature—Euclidean and cosine distances—we recreate an analysis similar to that shown 

in Flexer and Schnitzer (2013) wherein we study the aforementioned contrasts as a function 

of increasing vector space (extrinsic) dimension9. The Figure 5-1a displays the behavior of 

Euclidean distance from the origin determined by the average statistics of 200 experiments, 

                                                 
9 The cosine similarity is more common in HSI analysis, but we use the cosine distance for continuity of 

the discussion. The same outcome applies. 
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each with 𝑛 = 10  points randomly drawn from the unit hypercube, [0,1]d, as well as the 

one standard deviation distances, the observed minimum and maximum distances from the 

origin, and the theoretical maximum (increases as √𝑑) and minimum (0.0) distances in ℝ𝑑.  

When dimensionality is low, the observed minimum and maximum norms are very 

close to 0.0 and √𝑑 respectively. However, as dimensionality increases, the average 

distance to the origin increases due to the addition of more terms in the L2 norm summation. 

Contrary to initial intuition, the empirical maximum and minimum distances no longer 

span the possible theoretical range, but rather occupy a small region of hyperspace, i.e., a 

thin hypershell centered at the origin10. At the same time, the standard deviation of 

distances remains about the same such that the ratio of spread to magnitude decreases with 

increasing dimensionality, i.e., the distance measure concentrates (Figure 5-1b). Thus, the 

discriminating power of Euclidean distance as a primary measure diminishes as the number 

of dimensions increases. Francois et al. (2007) point out that concentration is more a 

function of the intrinsic rather than extrinsic dimension, hence this effect is practically less 

severe than that expected from theoretical examination of independent variables, so we will 

explore this effect in correlated HSI data. The implication for spectral remote sensing is 

that user-defined scales such as 𝜎 in the heat kernel reweighting (2.4) are more difficult to 

determine (Belkin and Niyogi, 2003).  

Figure 5-1c demonstrates that the cosine distance concentrates as well, but for a 

different reason. The mean distance remains relatively constant and the standard deviation 

decreases with dimensionality, also concentrating measurements in high dimensions. The 

                                                 
10 This effect is largely independent of the number of samples (Beyer et al., 1999; Heylen et al., 2017). 



123 

 

functional form of the concentration function is proven in (Pestov, 2000). The implication 

for spectral remote sensing is that user-defined thresholds for spectral-angle based metrics 

such as the spectral angle mapper (SAM) are more difficult to select if the cosine similarity 

does indeed concentrate. 

It is interesting to note that Euclidean distance concentration (Figure 5-1a) can be 

made to look like the cosine distance concentration (Figure 5-1c) by simply normalizing 

the graph by √𝑑 (Figure 5-1e). In this case, the mean remains constant around 
1

√ 
= 0. 77 

and the standard deviation decreases. Zimek, Schubert, and Kreigel (2012) explain that 

these effects are simply the application of the central limit theorem with shrinking variance. 

 The traditional notion of density based on Euclidean distance can also be 

essentially meaningless in high dimensional spaces because data density decreases rapidly 

with increasing d-dimensional volume (Ertöz et al., 2003). As such, high dimensional 

spaces are sparse (Jimenez and Landgrebe, 1998) and methods using fixed distances to 

determine hyperspace density are destined to fail without modification (Ertöz, Steinbach, 

and Kumar, 2002). 

From a spectral-graph construction perspective, this implies adjacency (affinity) 

relationships should be built upon measures that do not rely on fixed density or distance 

thresholds in high dimensional spaces. k-NN graphs satisfy this constraint, however many 

edge reweighting methods are based on some measure of distance or density in high 

dimensions, and this phenomena may skew the intended purpose. Despite the shortfalls of 

Euclidean and cosine distances as primary distance measures in high dimensional spaces, 
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they can effectively serve as the basis for secondary measures such as shared nearest 

neighbors (Houle et al., 2010). 
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 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 

Figure 5-1. Concentration of Euclidean (top row), cosine distances (middle row), and normalized Euclidean distance 

(bottom row). 
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5.2 Enter Hubness 
Distance concentration in high dimensional spaces may give rise to the hub 

phenomenon11. The term hub originates in network theory and simply refers to a node with 

an in-degree greatly exceeding the average, i.e., nodes that have small distances (or 

equivalently high similarities) to a relatively large number of other nodes. We will see that 

hubs can unwantedly show up in nearest neighbor lists despite the lack of apparent 

similarity and have even been called obstinate nodes by Radovanović, Nanopoulos, and 

Ivanović (2010b). However, that does not mean all hubs are bad as hubs that promote 

strong intracluster relationships can be beneficial to many analyses. The existence of hubs 

in HSI graphs and their impacts on subsequent analysis (if any) has yet to be studied to our 

knowledge.  

To understand the formation of hubs, recall the previous discussion, wherein we 

established data volume concentrates in a hypershell about the data mean. This hypershell 

has a small but non-negligible thickness (Francois et al., 2007), so there will be some pixels 

closer to the mean than others. Radovanović et al. (2010a) explain how these pixels have a 

higher probability of being included in neighborhood lists of many other points and 

therefore can become hubs.  

Following the nomenclature of Flexer and Schnitzer (2013), let 𝑂𝑘  represent the 

number of k-occurrences of pixel 𝑖 ∈ 𝐷, where 𝐷 ∈ ℝ𝑑, i.e., the number of times a node 

occurs in the k-NN lists of other nodes12. As data dimensionality increases, the 𝑂𝑘 

                                                 
11 Hubs are a general problem in high-dimensional machine learning (Radovanović et al., 2010b). 
12 A k-occurrence is another name for a node’s in-degree, 𝑑−(𝑣). Note that the k-occurrence histogram 

may also be called the in-degree distribution. Nodes originating edges incident upon a vertex are also called 

reverse nearest neighbors. 
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distribution skews to the right (positive skew). This skew can be considerable if the right 

conditions exist (Zou and Zhu, 2011). We classify pixels with five times the number of 

average k-occurrences as hubs in this work.  

Prior to exploring hubness in HSI data, we first explore hubness in random normal 

data to obtain a qualitative understanding of the phenomenon (Figure 5-2). We measure 

the Euclidean distance from the mean and cosine distance from the first cardinal axis for 

i.i.d. data of dimensions 𝑝 = 3, 20, and 100, in the left, middle, and right columns 

respectively, then construct 5-NN graphs. We form the in-degree distribution, 𝑂 , and 

observe trends in node connectivity as a function of distance from the mean (or first 

cardinal axis). As can be easily seen in Figure 5-2, in higher dimensions, the node in-degree 

increases as distance decreases. This effect produces a few nodes with much higher in-

degrees than the rest of the dataset. These are hub nodes. 
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Figure 5-2. Skewness in the 𝑶𝟓 histogram of random normal i.i.d data for 𝒑 = 𝟑, 20, & 100 (top row). 𝑶𝟓 vs. the L2 

(middle row) and cosine (bottom row) distances from the mean. Modified from Radovanović et al. (2010a). 

 

Qualitatively, how can we explain these changes with dimension? Let us first begin 

by remembering the concentration phenomenon. In a single dimension, data will span the 

entire range. However, if we now add a second dimension (band), the probability of a point 

having simultaneous extreme values is now the product of the two independent probability 

distributions; hence it likely that the distribution will begin to show decreased density at 

the extremes (Figure 5-3). 
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Figure 5-3. Decrease in probability of extreme pixels in multidimensional i.i.d. data. 

 

This effect increases as we add additional dimensions, where it is increasingly 

difficult to find values that are simultaneously low (or high). As such, we should begin to 

see data concentrate towards the center of the distance distribution (denser regions in right 

column of Figure 5-2). Radovanović et al. (2010a) describe how there are some nodes 

closer to the mean as data concentrates. These nodes have a higher chance of being closer 

to the mean within the hypershell and at the same time closer to many other nodes. Hence 

we observe a few pixels, closest to the mean, but at the same time highly connected to other 

nodes (high 5-occurrence values). 

We now create a similar plot to Figure 5-2 for real HSI data (Figure 5-4). The left 

graph shows the 30-occurence histogram for a Microscene hypercube (Allen, Resmini, 

Deloye, and Stevens, 2013). Notice the long right tail (positive skew) and the few nodes 

with much higher in-degrees (filled circles) than most other nodes. Interestingly, hubs are 

anomalous pixels of sorts because they occupy the few farthest positions in the k-
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occurrence histogram just as outliers occupy the few farthest positions in distance (or 

similarity) histograms (Radovanović et al., 2010a)13. 

 

 

Figure 5-4. Hub location and skewness of the 30-occurrences histogram for an example Microscene hypercube. 

 

From a geometric perspective, hubs often have shorter codensities than other nodes. 

This can easily be seen to the right of Figure 5-4 where all 12 hubs are located towards the 

far left of the codensity distribution, i.e., hubs exist in denser regions of spectral space.  

Radovanović et al. (2010a) quantify hubness (h) as the skewness (normalized third 

moment) in the distribution of k-occurrences given by 
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(5.3) 

 

where 𝜇 and 𝜎 are the mean and standard deviation of the k-occurrence distribution 

respectively.  

                                                 
13  𝑘𝑎𝑣𝑔 = 𝑘 = 30 because the mutuality or superset symmetry criteria have not been enforced—yet. 
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As an example of how hubs can impact community structure, consider the case 

where the k-NN lists associated with many nodes all contain node b. Each node then has 

(k-1) nearest neighbors from which to establish connectivity (edges) describing community 

structure amongst other nodes. This is especially true if ki is small because hubs can occupy 

enough NN positions in a node’s neighborhood to reduce the fidelity of inferred localized 

structure and algorithms like k-NN may repeatedly count hubs in NN lists.  

Hubs also adversely impact the structure of the resultant graph because b can only 

have k-NN if invoking the mutuality criterion, i.e., many edges to node b are lost after 

imposing mutuality.  

Edges incident upon hubs can be good or bad. Good edges enforce community 

structure (e.g., nodes in dense cluster centers), while bad edges may traverse regions of 

differing density to connect intercluster nodes, corrupting geodesic distances described by 

manifolds (Francois et al., 2007). We will study the existence of good and bad hub edges 

in graphs of HSI data towards the end of this chapter. 

To understand how this skewness changes with dimensionality, we again turn to 

the Euclidean and cosine distances calculated from the uniform distribution on the unit 

hypercube. Figure 5-5 plots the skewness (hubness) of the 30-occurrence histogram as a 

function of data extrinsic dimensionality, where we see hubness is more a function of the 

intrinsic, not extrinsic, dimensionality (Radovanović et al., 2010a). Hubs exist in relatively 

denser regions of spectral space and to the right of the 30-occurrence histogram (filled 

circles to the left). Histogram bins with zero values have been removed in Figure 5-4 for 

ease of viewing. There are 12 hubs in these data with skewness of h=1.39. 
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Figure 5-5. Hubness of Euclidean and cosine distances for i.i.d. data on [0,1]d . 

 

We will see that hubs do exist in graphs of HSI data, and the current trend towards 

higher spectral resolution systems that collect large areas will increase the probability of 

hubs, especially in urban scenes which can demonstrate higher intrinsic dimensionality due 

to the larger diversity of materials. However, higher dimensionality alone does not 

guarantee concentration of measure, so hubs are not always present in real high-

dimensional data as shown in Durrant and Kabán (2009).  

Real data are often comprised of multiple clusters and are therefore not well 

represented by the single cluster example of Figure 5-5. Radovanović et al. (2010a) prove 

that hubs are associated with cluster centers in multicluster data instead of the dataset mean. 

To verify this in HSI data, we plot 30-occurences versus pixel distances from the data and 

cluster means in Figure 5-6; cluster means are determined with a simple k-NN algorithm 

with k set to twice the intrinsic dimension. Combining the concepts from Figure 5-4 (short 
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distances) and Figure 5-6 (dense spectral regions), we find that hubs are associated with 

the densest spectral clusters. 

 

 

Figure 5-6. Hub location with respect to the data (left) and cluster means (right) for the hyperdesert scene. 

 

Real data also exhibits some correlation, the impacts of which are explored in the 

next section. We will find correlation can strongly impact distance concentration in real 

data which can ultimately influence the presence of hubs. 

Recall the three graph types discussed in Chapter 2: directed k-NN graphs, mutual 

k-NN graphs, and superset symmetric k-NN graphs. Of the three types, mutual k-NN graphs 

are the only types not susceptible to hubness because each node can have at most k incident 

edges as a result of the mutuality criterion; Δ𝐺 in (1.4). Most common methods of spectral 

graph generation make use of the mutuality criterion hence are not susceptible to hubs. 

However, recent studies have shown that using the symmetric criterion may be better for 

the small k conditions (Chapter 4), so the impact of hubs is a topic of concern. Additionally, 

while much of the remote sensing literature has focused on simple graphs, the possibility 
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of using directed graphs should not be ignored as this technology matures. Both undirected 

k-NN graphs created using the superset criterion and directed k-NN graphs are susceptible 

to hubness because they do not practically limit the number of edges incident upon a vertex; 

Δ(𝐺) in (1.3).  

In contrast to fixed k-NN methods, adaptive k-NN algorithms increase the size of 

k-NN lists in relatively higher density regions of spectral space per (1.3) and (1.4). These 

denser regions (near cluster centers) are exactly where hubs are located (Figure 5-6), so 

increasing the number of edges can facilitate the formation of hubs. Studying fixed and 

adaptive methods on the same datasets will provide insight into this situation.  

5.3 Concentration of Measure in HSI Data 
Let us begin by first exploring concentration of pairwise distances within HSI data 

because it is one of the necessary conditions for hubness to emerge (Radovanović et al., 

2010a). Forty-nine datasets with varying numbers of bands, sensors, altitudes, spatial 

resolutions, data types (reflectance or radiance), and scene content (e.g., urban, rural, snow, 

ocean, and desert) are used to explore the magnitude of distance concentration in HSI data. 

Dataset details are provided in Table 5-1. 
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Table 5-1. Hyperspectral Evaluation Data 

 

Dataset Bands Sensor 
Alt. 

[km] 

GSD 

 [m] 

Data 

Type 
Source 

 HyperDesert 189 Hyperion 705 30 rad. USGS 

 Deepwater-Rad 316 Prospectir 1.7 2.2 rad. Spectir 

 Deepwater-Rad2 316 Prospectir 1.7 2.2 rad. Spectir 

 Microscene13 80 Pika II 0.3 1E-4 ref. NIST 

 MidWest 189 Hyperion 705 30 rad. USGS 

 Rockville 189 Hyperion 705 30 rad. USGS 

 BlueDotMS 128 SOC710 0.3 1E-4 ref. NIST 

 RedSea-Rad 128 Prospectir 1.5 1.95 rad. Spectir 

 Syracuse 189 Hyperion 705 30 rad. USGS 

 JasperRidge 204 AVIRIS 19.4 19.37 ref. USGS 

 Tuscon2 189 Hyperion 705 30 rad. USGS 

 Tuscon 189 Hyperion 705 30 rad. USGS 

 Botswana 145 Hyperion 705 30 rad. GIC 

 Phoenix 189 Hyperion 705 30 rad. USGS 

 Albuquerque 189 Hyperion 705 30 rad. USGS 

 Cuprite 192 AVIRIS 20.3 20.3 ref. USGS 

 NorthLA 189 Hyperion 705 30 rad. USGS 

 MicroArray 80 Pika II 0.3 1E-4 ref. NIST 

 Sacramento 189 Hyperion 705 30 rad. USGS 

 Foster1 33 Hama gnd. 1 ref. Manchstr 

 MicrosceneLeaf 80 Pika II 0.3 1E-4 ref. NIST 

 ColumbiaRiver 189 Hyperion 705 30 rad. USGS 

 LunarLake 197 AVIRIS 21.4 21.4 ref. USGS 

 Vegas 189 Hyperion 705 30 rad. USGS 

 IPines 200 AVIRIS 20 20 rad. GIC 

 Rochester2 189 Hyperion 705 30 rad. USGS 

 Rochester 189 Hyperion 705 30 rad. USGS 

 Cuprite-Rad 316 Prospectir 3.3 4 rad. Spectir 

 Cuprite-Ref 316 Prospectir 3.3 4 ref. Spectir 

 PaviaU 103 ROSIS 2.3 1.3 ref. GIC 

 Foster2 33 Hama gnd. 0.02 ref. Manchstr 

 MoffetField 203 AVIRIS 21.5 21.5 ref. USGS 

 Gulf-Rad 316 Prospectir 1.6 2 rad. Spectir 

 PurdueIPines 193 AVIRIS 20 20 rad. Purdue 

 Fairbanks 189 Hyperion 705 30 rad. USGS 

 Gulf-Ref 316 Prospectir 1.6 2 ref. Spectir 

 Reno-Ref 316 Prospectir 1.5 2 ref. Spectir 

 Pavia 102 ROSIS 2.3 1.3 ref. GIC 

 Beltsville-Rad 316 Prospectir 0.7 0.65 rad. Spectir 

 Barilla 360 Prospectir 0.7 1 ref. RIT 

 Reno-Rad 316 Prospectir 1.5 2 rad. Spectir 

 CookeCity 126 HyMap 1.4 3 ref. RIT 

 Beltsville-Ref 316 Prospectir 0.7 0.65 ref. Spectir 

 Conesus 360 Prospectir 0.3 0.5 ref. RIT 

 AvonField 360 Prospectir 0.7 1 ref. RIT 

 DCmall 191 HYDICE 6 3 rad. Purdue 

 KSC 176 AVIRIS 18 18 rad. GIC 

 SalinasA 204 AVIRIS 3.7 3.7 rad. GIC 

 Salinas 204 AVIRIS 3.7 3.7 rad. GIC 

Dataset characteristics. Shorthand notation and acronyms: reflectance (ref.), radiance (rad.), University of 

Manchester (Manchstr), Hamamatsu (Hama), ground based-side looking (gnd.), United States Geological Survey 

(USGS), Rochester Institute of Technology (RIT), Kennedy Space Center (KSC), National Institute of Standards & 

Technology (NIST), Grupo de Inteligencia Computacional (GIC), District of Columbia (DC), National (Nat.), Ground 

Sample Distance (GSD), Reflective Optics System Imaging Spectrometer (ROSIS), Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS), Surface Optics Corporation (SOC), Hyperspectral Digital Imagery Collection Experiment 

(HYDICE). 

Most data may be obtained via sources in Appendix A. Bold datasets have associated class labels (ground truth). 
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To measure concentration, we determine the fraction of pixels from a dataset of 

size n that have at least 50% of all other pixels (j) within some scale factor (c) of pixel i’s 

codensity measurement, 𝛿𝑖 (5.4). Codensity is calculated as the average of the distances to 

each pixel’s third through fifth nearest neighbors (2.1) in this experiment. The logical test 

inside the parenthesis results in a binary output {0,1} which is summed to count the number 

of pixels passing the condition over 𝑐 ∈ [1,2 ]. 

 
1

𝑛 − 1
∑((∑𝑑(𝑣𝑖 , 𝑣𝑗) < 𝑐 ∙ 𝛿𝑖

𝑗

) ≥
𝑛 − 1

2
)

𝑖

,     ∀𝑗, 𝑗 ≠ 𝑖 
(5.4) 

 

Similar plots were used to explore the concentration phenomena (Durrant and 

Kabán, 2009) and (Beyer et al., 1999), and we adapt them here to be consistent with our 

use of codensity as a more robust measure of data scale than simply the 1-NN distance. 

Results are shown in Figure 5-7, where we see a very broad range of concentration amongst 

these data. Concentration curves are shaded by the data’s intrinsic dimension (Heylen et 

al., 2017), where black represents data with the highest intrinsic dimension, and lite grey 

the lowest. A broad range of concentration characteristics are exhibited by these data, and 

we can see that data exhibiting higher intrinsic dimension is generally more concentrated 

than those with lower intrinsic dimension. 

Table 5-1 datasets are sorted by concentration ranking, where the concentration 

rank is determined by sorting the codensity multiplier (x axis) values of a concentration 

curve’s intersection with a line drawn from the upper left (0,1) to the lower right (25,0). 
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This assigns a concentration rank of one and 49 to intersections in the upper left and lower 

right respectively. The Spearman rank correlation of intrinsic dimension with 

concentration rank is 0.50, indicating some dependency, but there must be other factors at 

play.  

 

Figure 5-7. Distance concentration of Table 5-1 datasets shaded by intrinsic dimension. 

 

To explore how the existence of cluster structure and correlation influences our 

results, we permuted the pixel locations in every band to reduce correlation and cluster 

structure, hence artificially increasing the data’s intrinsic dimension without altering the 

distribution of intraband pixel intensities (Francois et al., 2007). The intrinsic dimension 

increased, but did not approach the extrinsic dimension due to the strong spatial coherence 

in HSI datasets, i.e., randomly selecting a band value from another pixel in a scene with a 

few large clusters has a good chance of selecting similar (intracluster) values, loosely 

preserving some band-to-band correlation. Similar concentration analysis to Figure 5-7 
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reveals all datasets but five (KSC, MidWest, Foster1, Foster2, Deepwater-Rad) are ~100% 

concentrated by a codensity multiplier of two (2𝛿𝑖), demonstrating the importance of 

cluster structure and correlation in reducing the concentration effect. 

 

Figure 5-8. Distance concentration of permuted HSI data. Notice these data are concentrated by much smaller 

multiples of the codensity measurement. 

 

For comparison purposes, i.i.d. data is ~100% concentrated by 1.2𝛿𝑖 and 1.0 𝛿𝑖 of 

the codensity for data spanning the minimum (80) and maximum (360) dimensions of the 

data in Table 5-1, respectively. The i.i.d. data are much more concentrated than that 

observed in Figure 5-7, again indicating the concentration effect is far less severe in real 

data than synthetic examples due to the presence of band-to-band correlation and cluster 

structure (Durrant and Kabán, 2009; Kabán, 2011; Zimek et al., 2012). 

The concentration phenomenon is not new to the spectral community, as it was 

discussed in the hyperspectral remote sensing literature by Jimenez and Landgrebe (1998) 

during development of a supervised classification method based on projection pursuit. 



139 

 

Concentration of measure has received little attention since their initial description. GSD’s 

have decreased, and extrinsic dimensions of HSI data has increased over the past twenty 

years, hence the reason for a new study using a larger set of diverse imagery.  

Notably, Beyer et al. (1999) also examined the concentration effect in hyperspectral 

imagery, although not noted as such. They found that hyperspectral data does concentrate 

such that the expected dynamic range is much smaller than anticipated, but does not 

approach that of i.i.d. data. Their result is supported by our experimentation. Beyer also 

noted that supplementing the feature (spectral) vector with a large number of additional 

features such as shape metrics actually decreased contrast between objects, contrary to the 

intent of the added features—an effect that should be studied in all high-dimensional 

datasets when spatial, spectral, and shape measures are possibly concatenated into large 

feature vectors.  

5.4 Hubness in Graphs of HSI Data 
 We now explore hubness in graphs of HSI data and relate it to the distance 

concentration effect using the Table 5-1 datasets. There have been no studies on the 

hubness of HSI k-NN graphs using fixed or adaptive neighborhoods to our knowledge; 

however, hubness has been exploited to estimate the number of endmembers present in 

HSI data (Heylen et al., 2017). To quantify hubness in each image, we set 𝑘 = 30 and 

calculate the skewness of the resulting 30-occurrence histogram using (5.3). We do this for 

both the original and intraband-permuted data to explore the impacts of data structure—

interband correlation and natural clustering—on hubness.  
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Table 5-2 (left) displays the extrinsic dimension (edim), DBI, SC, intrinsic 

dimension (idim)14, hubness measure h, and the number of hubs (nhubs) of the original 

data. The DBI and SC cluster validity measures will be used to associate various quantities 

with cluster compactness and separability, and are described later in this section. Note the 

table is sorted by intrinsic dimension of the original, correlation- and structure-rich data to 

facilitate inspection of changes in hubness with intrinsic dimension. 

Initial inspection of idim reveals that HSI data exhibits low inherent dimensionality, 

often an order of magnitude, or more, below its edim (Schlamm et al., 2010).  The hubness 

measure is also low for these data, indicating a relatively lower potential of hubs for real 

data compared to the i.i.d. datasets of Figure 5-5 or the permuted HSI data. We also see 

only a few datasets exhibit hubs at 𝑂𝑘 >  𝑘𝑎𝑣𝑔; note that any row with 𝑛ℎ𝑢𝑏𝑠 = 0 have 

the “0” removed for ease of reading.  

                                                 
14 Intrinsic dimension is estimated via the method of Levina and Bickel (2005) to remain consistent with 

cited publications (Schnitzer et al., 2012; Heylen et al., 2017). 
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Table 5-2. Hubness and Intrinsic Dimension Estimates 

Dataset 

Shortname 
edim DBI SC idim h nhubs ∆idim ∆h ∆nhubs ∆h ∆nhubs As-Obtained ID 

 Gulf-Ref 316 0.59 0.61 5.9 0.7 1 29.3 10.7 1212 0.1 4 Suwannee_0609-1331_ref.dat  

 CookeCity 126 0.70 0.54 7.4 0  39.8 6.1 863 0.1  image_refl.dat  

 Reno-Ref 316 0.66 0.52 7.6 0.1  72 17.7 1296 0.1  0913-1248_ref.dat  

 Cuprite-Ref 316 0.78 0.43 7.7 0.3  32.2 13.3 1412 0.2  0614-1124_ref.dat  

 SalinasA 204 0.58 0.63 7.9 0.4  23.8 3.7 116 -0.1  SalinasA.dat  

 MoffetField 203 0.75 0.51 8.2 0.4  56 5.4 1206 0.1  M-f970620t01p02_r03_sc02.a.dat  

 Foster2 33 0.74 0.48 8.3 0.6  12.5 1.9 289 0.1  ref_ribeira1bbb_reg1.dat  

 Conesus 360 0.65 0.73 8.4 1.7 20 33.3 7.6 995 -0.3 12 0920-1714_pol_ref.dat  

 MicrosceneLeaf 80 0.56 0.60 8.6 1.4 10 29.9 5.4 1176 0.1 23 20130215_microscene_18.dat  

 Reno-Rad 316 0.62 0.55 8.7 0.3  27.8 11.1 1241 0.1  0913-1248_rad.dat  

 Salinas 204 0.55 0.62 8.8 0.3  18.8 6 660 -0.1  Salinas.dat  

 DCmall 191 0.58 0.57 8.8 0.1  18.6 7.4 827 0  WashingtonMall.dat  

 PaviaU 103 0.66 0.51 8.9 0.6  37.2 8.9 1284 0.1  PaviaU.dat  

 Barilla 360 0.68 0.51 9.1 0.2  54.9 14.9 1270 0  0920-1844_pol_ref.dat  

 Pavia 102 0.69 0.53 9.5 0.7  35 5 1083 0.1 5 Pavia.dat  

 PerdueIPines 193 0.71 0.47 9.6 0.2  16.4 4.1 522 0  

19920612_AVIRIS_IndianPine_Site3.

dat  

 LunarLake 197 0.73 0.47 9.7 0.4  53.4 21.8 1394 0.1  L-f970623t01p02_r07_sc02.a.dat  

 AvonField 360 0.62 0.54 9.7 0.3  48.3 10.3 1106 0  0920-1851_pol_ref.dat  

 JasperRidge 204 0.89 0.35 9.8 0.4  52.3 7.8 1151 0  J-f970403t01p02_r03_sc05.a.dat  

 KSC 176 1.61 0.91 10 2.1 38 24.3 2.4 624 -0.6 5 KSC.dat  

 IPines 200 0.92 0.38 10.1 0.4  13.4 4.7 565 0  Indian_pines.dat  

 Beltsville-Ref 316 0.75 0.45 10.1 0  28 11.9 1277 0  0810_2022_ref.dat  

 Foster1 33 0.82 0.40 10.6 0.7  9.3 1.5 262 0  ref_braga1bb_reg1.dat  

 Cuprite 192 0.93 0.33 11 0.5  51.5 16.9 1484 0.2  C-f970619t01p02_r02_sc04.b.dat  

 Albuquerque 189 0.74 0.41 11.3 1 1 10.8 11.1 1164 0 3 EO1H0330362001292110PF.dat  

 MidWest 189 0.76 0.37 11.3 1.1 1 17.2 8.1 814 0.1 6 EO1H0240342001268110KP.dat  

 Cuprite-Rad 316 0.78 0.43 11.5 0.5  31 8.3 1263 0.1  0614-1124_rad.dat  

 uArray 80 0.75 0.46 12.3 0.9 1 25.5 7.1 1251 0.1 6 20130215_microarray_3.dat  

 Microscene13 80 0.81 0.37 12.3 1.3 4 27.3 5 995 0.1 13 20130215_microscene_13.dat  

 Tuscon 189 0.73 0.40 12.5 0.3  8.5 7.4 630 0.1  EO1H0360382001121111PP.dat  

 NorthLA 189 0.79 0.39 13.1 0.5  11.7 7.3 793 0  EO1H0410362001236112P2.dat  

 Sacramento 189 0.86 0.37 13.1 0.4  13 6.2 804 0  EO1H0440332002077110KY.dat  

 Beltsville-Rad 316 0.77 0.43 13.4 0.2  14.7 8 1144 0.1  0810_2022_rad.dat  

 Tuscon2 189 0.70 0.42 13.6 0.6  11.1 7.2 1216 0  EO1H0360382001265111P0.dat  

 Vegas 189 0.73 0.46 13.7 0.7  11.1 7.5 1072 0 1 EO1H0390352001222112P0.dat  

 Rochester 189 0.81 0.51 13.7 1.9 38 12.4 1 135 0.3 43 EO1H0160302001237111PP.dat  

 Rockville 189 0.75 0.37 13.8 0.7  12.5 8.1 1115 0  EO1H0150332002114111KZ.dat  

 Rochester2 189 0.74 0.54 13.9 2.1 36 9.8 1.4 193 0.3 24 EO1H0170302001260112KP.dat  

 Phoenix 189 0.76 0.40 14.6 0.8 1 11.5 11.8 1139 0 3 EO1H0370372001304111P2.dat  

 HyperDesert 189 0.94 0.29 14.6 1.6 25 16.5 9.2 1047 0.2 46 EO1H0330372008364110KBa.dat  

 BlueDotMS 128 1.02 0.31 14.9 1.4 12 42.6 4.3 888 0.2 41 I200_L0-511_11-8-2014_10.25.57.dat  

 Gulf-Rad 316 0.82 0.46 15.3 0.6  16.8 9 1215 0.1  Suwannee_0609-1331_rad.dat  

 Botswana 145 0.84 0.36 15.8 0.5  15.1 9.6 760 0  Botswana.dat  

 ColumbiaRiver 189 0.82 0.41 16.4 1.7 23 12.9 0.1 24 0.1 39 EO1H0470282001221110KP.dat  

 Syracuse 189 0.87 0.36 16.5 1 2 15.6 4.6 939 0.1 10 EO1H0150302001246110PP.dat  

 RedSea-Rad 128 0.83 0.39 18.2 1.7 30 22.8 3.5 874 0 18 0509-0440_rad.dat  

 Fairbanks 189 0.79 0.41 19.8 0.5  19.2 3.7 422 0  EO1H0690142002090110KZ.dat  

 Deepwater-Rad2 316 0.86 0.27 30.1 1.4 18 12 9.3 884 0.1 31 0612-1615_rad_sub.dat  

 Deepwater-Rad 316 0.86 0.27 30.1 1.4 18 11.8 8.4 896 0.1 31 0612-1615_rad_sub.dat  

 Original Data (k=30) Permuted Data ∆s Adaptive ∆s  

Extrinsic dimension (edim), Davies-Bouldin Index (DBI), Silhouette Coefficient (SC), intrinsic dimension (idim), hubness (h), and the number of hubs 

(nhubs) for the original HSI data using k=30 to left and sides of the table (sorted by intrinsic dimension). Corresponding differential permuted data 

measures (center), where the differential is taken as Δ𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, such that positive values indicate permuted data exhibits more 

of each quantity. Note permuted differentials and hubness have been rounded for ease of reading, without loss of generality. The differential hubness (Δℎ) 
and hub count differences between the fixed k and ANN reveals that ANN produce more hubs than its fixed k analog. Hub count differences of zero have 

been removed for ease of reading. As-obtained dataset IDs are provided in the rightmost column. 
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Permuted data results are shown as differential metrics—hubness (Δℎ), inherent 

dimension (Δ𝑖𝑑𝑖𝑚), and number of hubs (Δ𝑛ℎ𝑢𝑏𝑠)—to enable easy inspection of the 

impacts of permuting intraband pixel locations (Table 5-2, center). All differential metrics 

are positive, where the differential is taken such that positive values indicate data with less 

structure displays stronger distance concentration and more hubs. Recall that permuting 

pixel locations within each band lowers the interband correlation, weakens the community 

structure of the data, and increases the intrinsic dimension. These conditions should all 

increase distance concentration (Durrant and Kabán, 2009, Francois et al., 2007; Kabán, 

2010), facilitating the formation of hubs. One can easily notice that the hubness, intrinsic 

dimension, and the number of hubs are much higher for the permuted data than its more 

correlated and clustered counterpart. Some permuted datasets have upwards of 5% of their 

data as hubs. 

Upon examination of the original and permuted data as a whole, the Spearman rank 

correlation15 between intrinsic dimension and hubness measure is 0.85, largely due to all 

permuted datasets having higher hubness and intrinsic dimensions than their original 

counterparts. These results indicate data structure may be a causative factor for lower 

intrinsic dimension and hubness, a similar result to that shown in other studies (Durrant 

and Kabán, 2009; Heylen et al., 2017). However, taking original and permuted datasets 

individually, we have much weaker Spearman rank correlations of 0.51 and 0.39 

respectively, indicating maintenance of the marginal band-distributions (via permutation) 

                                                 
15 The Spearman rank correlation is used to account for the nonlinear relationship between hubness and 

intrinsic dimension (Figure 5-5). 
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does not guarantee the same characteristic measures. Note that the lower intrinsic 

dimension in structured high-dimensional data suggests the data lie along a manifold within 

ℝ𝑑 (Francois et al., 2007), hence the success of data reduction techniques in HSI 

processing. 

Two cluster validation measures, DBI and SC (Figure 3-3), are used to estimate the 

cluster separability in the Table 5-1 data. Both DBI and SC ratio a measure of cluster 

dispersion to cluster separation. Low and high values indicate better separability in DBI 

and SC respectively (Tan, Steinbach, and Kumar, 2006).  

The previous discussion underscores importance of cluster structure and correlation 

in reducing distance concentration and subsequent hub formation.  

So far, we have established that hubness in real data is not as severe as that observed 

in synthetic data generated with independent bands (Figure 5-5) or even in the same data 

with permuted pixel locations within each band. HSI data are often highly correlated; hence 

the intrinsic dimension is typically much lower than the extrinsic dimension (Schott, 2007; 

Schlamm et al., 2010). The small number of hubs in Table 5-2 suggests there is little risk 

regarding this phenomenon—at least for classification of these data by k-NN or similar 

counting techniques. However, some datasets have upwards of 38 hubs, and we will see 

this condition is exacerbated in adaptive k-NN graphs. As such, impacts of these hubs 

cannot be fully explored without data having a larger fraction of labels covering scenes 

displaying a higher number of hubs.  

Several classification methods, e.g., normalized cuts, as well as anomaly and target 

detection algorithms rely on edge weights and subsequent geodesic distances along 
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manifolds. These algorithms must also be tested to appreciate the breadth of hub impacts 

to HSI analysis techniques, so more studies of this nature should be conducted as the use 

of graph- and manifold-based methods proliferate.  

Some graph generation techniques produce disconnected graphs, hence can be 

connected by supplementation with a MST. These spanning trees may also be impacted by 

edges from cluster means to other classes if hub edges are included in the MST. 

The Waikato Environment for Knowledge Analysis (WEKA) (Witten, Frank, and 

Hall, 2016) is used to explore relationships between the following 11 variables: hubness, 

intrinsic dimension, extrinsic dimension, GSD, altitude, data type, sensor, SC, DBI, 

concentration rank, and the number of hubs. Each of these 11 variables is used in its 

continuous form as well as its ordinal rank so that nonlinear correlations can be 

investigated. Two Weka functions are used to assess these relationships: the 

CorrelationAttributeEval  and a J48 decision tree  with 10-fold cross validation. These 

methods require nominal attributes, so continuous values are first binned using the 

Discretize function where the group (bin) number is the class identifier. Observations in 

these analyses are presented in the bulleted points to follow. 

 HSI data containing compact, separated clusters is less concentrated. 

 Lower altitude (smaller GSD) data is less concentrated than its larger GSD 

counterparts. This is attributable to less mixing with smaller pixels, so the 

data are more clustered (fewer mixing trends). 

 Radiance imagery has a higher intrinsic dimension and higher number of 

hubs than reflectance imagery. 
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 Data with lower cluster structure measures (high DBI and low SC) display 

more hubs. However, hubs are present virtually over the entire DBI and SC 

range. 

 The number of hubs has a strong dependence on the hubness measure 

(trivial) and intrinsic-dimension rank (using ranks accounts for potential 

nonlinearities not captured in the linear correlation coefficient). The 

dependence on intrinsic dimension can be observed in Table 5-2 by the fact 

there are more datasets with hubs towards higher intrinsic dimensions, 

albeit there are some datasets with higher hubness at lower intrinsic 

dimensions.  

 Inherent dimension is not dependent on the number of bands (extrinsic 

dimension), and is more correlated with scene types and GSD.  

 SC and DBI are inversely, nonlinearly proportional to each other 

(expected). This provides confidence both metrics are measuring similar 

phenomena, but does demonstrate they measure the phenomenon 

differently. 

These relationships are aligned with the previous theoretical discussions, and 

supported by results found in other disciplines (Francois et al., 2007; Durrant and Kabán, 

2009; Radovanović et al., 2010a). 

Our discussion to this point has been on establishing the presence of hubness in real 

HSI data using directed fixed k-NN graphs (or variants enforcing the superset criterion). In 

Chapter 2, we discussed adaptive k-NN variants, wherein each pixel is assigned its own 
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neighborhood size. We hypothesized that hubness may be a larger problem in density-

weighted adaptive graphs because larger neighborhoods are assigned to pixels in denser 

regions—exactly where hubs reside.  

This hypothesis is tested using the Table 5-1 datasets by investigating the presence 

of hubness at a threshold of  𝑘𝑎𝑣𝑔, noting that 𝑘𝑎𝑣𝑔 =
1

𝑛
∑ 𝑘(𝑖)𝑖  for adaptive algorithms, 

where 𝑛 = |𝑉| and 𝑘𝑎𝑣𝑔 varies by dataset. We construct directed fixed and adaptive graphs 

of the Table 5-1 data using approximately the same number of edges, i.e., 𝑘 = ⌈𝒌𝒊𝑎𝑣𝑔⌉, 

where the ceiling is taken to provide a conservative estimate. Differential hubness (Δℎ) and 

hub count differences (Δ𝑛ℎ𝑢𝑏𝑠) are shown to the right of Table 5-2, where the differential 

is taken such that positive values indicate higher measures for the adaptive techniques. We 

can see that hubness is stronger, and correspondingly the number of hubs are higher, in 

graphs built from adaptive techniques as indicated by positive Δ𝑛ℎ𝑢𝑏 values. Hubs may 

therefore be a larger concern in adaptive k-NN graphs than in their fixed k counterparts for 

the same number of edges, and even more of a concern for situations when ∑ 𝑘(𝑖) > 𝑛𝑘𝑖 , 

where k is a typical number of fixed k-NN. 

Also note that edge allocation by adaptive methods generally increased the number 

of hubs in datasets that already displayed hubness in their original directed graphs; i.e., 

hubs were only introduced into two of the remaining datasets (Vegas and Pavia), and in 

small quantities. Several authors state that the distribution of the data itself must also be 

considered when discussing concentration effects (Durrant and Kabán, 2009; Francois et 

al., 2007; Kabán, 2011), indirectly supporting this observation, and providing additional 
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proof to the claim data structure and intrinsic dimension contribute to concentration, which 

facilitates the creation of hubs. 

Thus far, we have established that hubs exist in fixed, and to a greater degree, 

adaptive nearest-neighbor graphs of HSI data. However, the nature of these hubs is still 

unknown; i.e., are they good hubs that promote strong intracluster connectivity near cluster 

centers or bad hubs that have intercluster edges, corrupting geodesic distances calculated 

on manifolds (Francois et al., 2007). Radovanović et al. (2010b) mention that high intrinsic 

dimension and hubness alone are not sufficient to introduce bad hubs, but rather cluster 

assumption16 violations are also required for bad hubs to appear, i.e., natural cluster 

composition of two or more classes. Natural spectral variability and non-distinct clusters, 

resulting from spectral mixing, present an opportunity for this to occur. We wish to 

therefore understand the nature of HSI hubs given these very common characteristics of 

HSI data17.  

Hub classification (good or bad) can be made by simply comparing the class label 

of each hub vertex to those in its reverse nearest neighbor list. We characterize the 

percentage of good hubs as 1.0-ϕ-edge ratio, where the ϕ-edge ratio is defined as the total 

number of edges between vertices with different class labels normalized by the number of 

edges in the reverse nearest neighbor list (Ozaki et al., 2011). Higher scores are thus 

indicative of hubs more connected to pixels of the same class (good hubs). 

                                                 
16 Pairwise edges in dense regions should be from vertices of the same class. 
17 From a practical standpoint, incorrect class labels can also produce the appearance of bad hubs.  
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Seven of the datasets listed in Table 5-1 have associated class labels. Of them, only 

Microscene13 and BlueDotMS produce hubs for both fixed and adaptive k-NN graphs by 

our current definition, 𝑂𝑘 ≥  𝑘𝑎𝑣𝑔. As such, we relax the criterion to 𝑂𝑘 ≥ 4𝑘𝑎𝑣𝑔, to 

increase the number of hubs for both methods, resulting in hub appearance in the Pavia 

dataset. Even with this relaxed hub definition, the Salinas A, Salinas, PaviaU, and 

PurdueIPines datasets do not exhibit any hubs.  

The number of hubs for both the fixed k and ANN graphs of Pavia, BlueDotMS, 

and Microscene13 are provided in Table 5-3, where we observe the ANN algorithm has 

generated more hubs due to the nature of its construction. Table 5-3 also displays the 

overall goodness measure (good), as well as the percent (%NN) of the reverse nearest 

neighbors used in the assessment (i.e., the percentage of nearest neighbors with ground 

truth) for each construction method. Although hubs are attributable to dense clusters, 

interclass (short circuiting) edges can still arise as indicated by goodness scores <1.0. Fixed 

and adaptive techniques do produce more good hubs than bad in this limited test, which is 

expected. While not exhaustive (only seven of 49 sets have ground truth, of which only 

three displayed hubness), this does provide some insight into hub character in HSI data. It 

appears most hubs are good, promoting string intracluster connectivity; however, short 

circuiting can occur. The impact of these short circuits will be explored in a future study 

exploring manifold distances through these graphs. 
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Table 5-3. Hub Characterization (Good vs. Bad) 

 

 

Table 5-3 demonstrates that some hubs in graphs of HSI data produce upwards of 

10% of their edges crossing class boundaries. To determine if these edges around hubs are 

responsible for more semantic errors than edges around normal vertices, we rerun the same 

analysis, but for non-hub vertices. There were mixed results for this small dataset, where 

normal vertices produced more and fewer semantic errors than hubs by 2-4.5%. Semantic 

errors from hubs near cluster centers may be more impactful to manifold techniques than 

semantic errors on class peripheries; hence this requires additional study on more datasets 

with class labels. Should hubs impact distances along manifolds, similarity methods less 

prone to hubness such as mutual proximity, localized scaling, and shared nearest neighbors 

should be investigated. 

5.5 Summary and Contributions 
Many HSI graph construction techniques are founded on the k-NN relationship 

because of its local adaptability to data scale, shape, and density. k-NN relationships can 

be impacted by hubness wherein some nodes influence a relatively large number of k-NN 

lists and potentially decrease the utility of the derived graphical construct. We presented 

Dataset 
4𝒌𝒂𝒗𝒈 

nhubs 
good %NN 

ANN 

nhubs 
good %NN 

Pavia 7 1. 000 96.6 32 1.000 97.6 

BlueDotMS 84 0.913 98.7 222 0.908 99.1 

Microscene13 30 0.999 94.6 82 0.999 94.7 

Fixed k-NN and ANN hub characterization to the left and right respectively. The number of hubs, 

overall hub goodness (good), and the percentage of the nearest neighbor lists that could be evaluated 

(%NN) are reported for each graph type. We see that some hubs do produce edges that cross cluster 

boundaries (good<1.0). 
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the first known study of hub presence and characterization in HSI graphs constructed from 

fixed and adaptive neighborhood-construction methods found in the hyperspectral remote 

sensing literature. The studies indicate that the hubness phenomenon does exist in graphs 

of HSI data (more so in adaptively built graphs), but not as strongly as that found in i.i.d. 

data of similar dimension. This fact is attributed to the relatively low inherent 

dimensionality of HSI data compared to its extrinsic dimension as well as cluster structure 

in HSI data. From a k-NN classification perspective, the presence of hubs did not 

negatively impact classification results (counting tasks), but expanded analyses are 

required to explore the hub impacts on analysis methods utilizing edge weights, e.g., 

spanning trees, target detection, spectral methods for clustering, segmentation, and 

classification. As this is a new area of study, much work remains to fully explore the 

implications on hyperspectral analyses using datasets with a fuller complement of class 

labels, scene diversity, and sensor characteristics. 
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6  

 

 

 

GRAPH-BASED HSI ANALYSIS ALGORITHMS 

Several mechanisms produce nonlinearities in hyperspectral data, e.g., transmissive 

media such as water (Bachmann et al., 2005; Gillis et al., 2005) and intimate mixing found 

in many fine soils and sands (Keshava, 2003). Additionally, higher spatial and spectral 

resolution systems produce complex clutter that may not be well modeled by traditional 

statistical and linear methods (Ziemann and Messinger, 2014a). As such, investigators are 

exploring non-linear methods to better represent the intrinsic structure of HSI data with the 

intent of producing more accurate analyses. This chapter provides an overview of the 

remote sensing literature from 2004-2017 to touch on the breadth of HSI graph- and 

manifold-based research and development.  

6.1 Segmentation, Clustering, and Classification 
Segmentation, clustering, and classification are similar analyses wherein imagery 

is divided into components. The main difference between them is that classification assigns 

a label to a group while clustering and segmentation do not (Schott, 2007). Clusters may 

not be spatially connected, whereas segmentation results are spatially connected. The bulk 

of the surveyed graph- or manifold-based literature prior to 2012 is focused on these types 

of analyses. 
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6.1.1 Segmentation and Clustering 
Mohan, Sapiro, and Bosch (2006) present a spatial-spectral technique for the 

segmentation of spectral imagery based on local linear embedding (LLE). Spatial 

coherence is introduced into the distance measure used in generating the LLE embedding 

by replacing the Euclidean distance component differences by those of a 3 x 3 spatial patch. 

Superpixel spectral similarities are high if the query pixel and its proximal neighbors (in 

the spatial window) are high. Mohan et al. report a 15% increase in classification accuracy 

over using spectral measures alone.   

A divisive hierarchical clustering technique based on maximization of the graph 

modularity is described by Mercovich (2011). Graph modularity is a measure of the 

number of edges within a group of nodes to that from a random distribution. The larger the 

number, the more community structure present, i.e., maximizing this measure produces 

purer clusters. An adjacency graph of unitary weights is constructed using the method of 

Chapter 2.7.1. The maximum modularity of the graph is recursively examined and a 

subgraph split is performed if the modularity exceeds a threshold. This continues through 

each leaf in the tree with no restriction on the number of pixels in any node at each level. 

Following each split, a subgraphs are rebuilt and the process is repeated until a stopping 

criterion is met (either minimum cluster size or modularity threshold). Upon completion, 

the method produces a hierarchical cluster map where each level has varying levels of 

detail, which was proven to provide better separation of materials than k-means, especially 

when the number of classes is not known a priori. Mercovich notes the method is similar 

to normalized cuts, but uses the eigenvector corresponding to the maximum eigenvalue as 
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opposed to that corresponding to the minimum eigenvalue, enabling faster processing of 

large imagery. 

Albano, Messinger, and Rotman (2012) describe the application of the commute 

time distance (CTD) transformation as a means to embed spectral data into a new feature 

space prior to traditional spectral analysis. The CTD feature space is based on a Markov 

model of a random walk on the graph, quantified by the average distance traveled from one 

vertex to another and back. Distance between two nodes in the CTD space is small if there 

are many paths between nodes or the weights between them is small, i.e., it does not take 

long to get from one node to the other (useful for clustering). Conversely, the distance 

between nodes in CTD space is large if there are few paths between nodes or the weights 

between them are large (useful for anomaly and rare target detection). Albano notes that 

unlike principal component imagery, CTD feature space images are correlated to physical 

materials. Additionally, the method separates large or small groupings of materials equally 

well in contrast to PCA where a material must be present in large enough quantities to 

impact the covariance matrix. Testing demonstrated some improvement in clustering 

results when compared to k-means clustering. 

Gillis and Bowles (2012) describe a segmentation technique based on a modified 

normalized cuts algorithm of Shi and Malik (2000). A spatial-spectral graph is constructed 

(2.6) and normalized cuts recursively partitions the graph into segments. The main benefit 

of the technique was the novel encoding of spatial and spectral information into edges only 

connecting pixels within and r x r window centered on each pixel. The resultant adjacency 

matrix is very sparse, resulting in quicker solutions for larger image. Edge encoding into 
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only spatially proximal pixels results in potentially segmented clusters of the same material 

that may need to be merged afterwards. 

Fan and Messinger (2014) describe a hyperspectral image segmentation technique 

based on a split-merge method using normalized cuts with a locally adaptive spatial-

spectral graph (2.7). The overly segmented graph is passes through a segment merging step 

to produce the final segmentation. The method outperformed the agglomerative, k-means, 

and mixture model clustering on the two images tested. 

6.1.2 Classification 
Bachmann, Ainsworth, and Fusina (2005) describe a nonlinear method to classify 

wetland imagery using manifold coordinates derived by the isometric mapping (ISOMAP) 

algorithm that preserves geodesic distances in spectral space. Their move towards 

nonlinear methods was driven by the strong nonlinearities caused by varying fractions and 

depths of water in wetland imagery. Gilles et al. (2005) describes the mechanics for 

generating these nonlinear trends, where changing water depths trace out a curve in spectral 

space for fixed water quality (biomass and sedimentary load) and bottom types. Differing 

water quality and bottom conditions simply trace out different curves. Bachmann proves 

the data have a more compact representation in manifold coordinates than that of the 

traditional linear minimum noise fraction (MNF) as well as demonstrating enhanced 

separability of spectrally similar classes. 

Bachmann et al. (2005) offers two solutions to address the high ISOMAP 

computational-complexity: 1) tiling the image and stitching the resultant sub manifolds 

together into an aligned global coordinate system (divide, conquer, and merge strategy) 
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and 2) registration to a global subsampled backbone manifold. Computational and memory 

scaling, better sub manifold alignment across tiles and artifact reduction are later provided 

(Bachmann, Ainsworth, and Fusina, 2006). High performance computing solutions using 

commercial general purpose graphical processing unit (GPGPU) hardware are also 

investigated to reduce execution times into the single minutes range for scene sizes 𝑂(10 ) 

(Topping, 2009). 

Chen, Crawford, and Ghosh (2005) implement a classification strategy called 

shortest path k-NN (Sk-NN) classifier which also use an ISOMAP-derived manifold 

embedding followed by the k-NN classification. They demonstrate Sk-NN is competitive 

with the more advanced best-basis hierarchical classifier and the hierarchical support 

vector machine (SVM) classifiers; all tested methods are better than k-NN in spectral space. 

Motivated by Bachmann’s success, He et al. (2009) derived manifold coordinate 

descriptions based on diffusion geometry. Spectrally decomposing the affinity matrix 

produces a set of diffusion maps (feature space bands) which can be rearranged to generate 

diffusion coefficients, embedding the nonlinear spectral data into a Euclidean diffusion 

space. Euclidean distance in this space corresponds to the diffusion distance which tracks 

with the data manifold. The authors employ a backbone-based alignment process similar 

to that described in Bachmann et al. (2005) to provide consistent scene-wide diffusion 

coordinates. Testing on several datasets showed better material separability than those 

based on a simple principal components analysis (PCA). Figure 6-1 shows a full scene 

diffusion map composite product (614x512) merged with backbone alignment processing 
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generated in 12 minutes (1.5 minutes backbone generation, 11 minutes for the full scene 

reconstruction). 

 

 

Figure 6-1. Diffusion geometry coordinates (bands 5-6-7) for the Moffet field scene as shown in He et al. (2009). 

 

He notes that diffusion geometry may be more scalable to full size imagery than ISOMAP. 

Benedetto, et al. (2012b) describe three methods to include spatial information in 

Laplacian Eigenmaps for classification analysis. The graph Laplacian (Chapter 7) is a 

matrix on the nodes defined by 𝑳 = 𝑫 −𝑾, where 𝑫 is a diagonal matrix composed of 

node degrees, i.e., [𝑫]𝑖𝑖 = ∑ 𝑤𝑖𝑗𝑗  , and W is the weighted adjacency matrix. Solving for 

the eigenvectors of 𝑳 produces a set of manifold coordinates that are treated as a new 

feature space. Spatial information can be used in the construction of 𝑳, and Benedetto et al. 

offers three variants.  

 

The first is Eigen coordinate concatenation. 
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 Construct pure mutual k-NN spectral and pure mutual k-NN spatial graphs 

based on (2.9), i.e., 𝛽 = 1 and 𝛽 = 0 respectively, followed by heat kernel 

reweighting (2.4) with 𝜎 = 1. Note, all edges locations are identified by 

the spectral neighbors. 

 Compute the Eigenmaps of each graph and simply concatenate Eigenmap 

coordinates into a supervector in manifold space,  ℝ𝑝+𝑠, where p and s are 

dimensions of the spectral and spatial manifold embeddings respectively. 

 

 The second method produces a fused single Laplacian created by elementwise 

multiplication or addition of the spatial and spectral Laplacians, as well as matrix 

multiplication trimmed to take on the same sparsity as the spectral weighted adjacency 

matrix. Subsequent determination of the Laplacian eigenvectors produces the manifold 

embedding. 

The third method simply sets the 𝛽 parameter in (2.9) for the distance measure, 

followed by subsequent heat kernel weighting and Laplacian generation. 

All three methods provide superior results over classifications based on graphical 

constructs composed from spatial or spectral information alone. All top performing 

methods utilize spatial information in the graph construction as well as the spatial-spectral 

Laplacian. 

Benedetto et al. (2012a) discuss the use of cluster potentials in Schroedinger 

Eignemaps (Chapter 7) to improve classification accuracy. Cluster potentials provide 

additional information during the eigendecomposition of the Laplacian matrix in the form 
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of a small number of pixels that should remain close to each other in the embedding. This 

additional information was provided from a k means clustering on the data to indicate 

which pixels should be linked in the potential matrix. The authors demonstrate the use of 

cluster potentials improves results over standard Laplacian Eigenmap clustering. Note the 

method does have a sensitivity to the user-defined the number of clusters in that it controls 

the number of groupings employed in generating the cluster potential; this is a common 

problem for any algorithm requiring similar input. 

 Hou, Zhang, Ye, and Zheng (2013) propose a classification method based on 

Laplacian Eigenmaps using (2.8) called the Laplacian Eigenmap Pixel Distribution-Flow 

(LE PD-Flow). Laplacian Eigenmaps are created over a permuted set of eigensolutions to 

Laplacian matrices constructed over a set of spectral scales (𝜎) using a supervector 

comprised of spatial and spectral feature measures, and the rate of change (trend) is tracked 

across each spectral scale and used to influence the classification. They report better results 

than PCA and ISOMAP feature mapping followed by k-means classification, but the 

repeated eigendecomposition produces much longer run times than other methods. Hou et 

al. note this method is most appropriate for imagery with large spatially-homogeneous 

regions. 

Spatial-spectral Schroedinger Eigenmaps (SSSE) are described by Cahill, Czaja, 

and Messinger (2014), wherein the Laplacian matrix is built upon spectral similarity alone, 

while the Schroedinger potential matrix (see Chapter 7) encodes spatial proximity as well 

as spectral similarity. This encoding not only forces spatially proximal pixels together, but 

also provides even stronger attraction between pixels that are spatially close and spectrally 
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similar. Unlike Benedetto (2012a), spatial relationships are simply encoded based on pixel 

location in the image and are not the result of a clustering algorithm, basically relying on 

the spatial correlation present in imagery. An advantage of this construct is the separation 

of spatial and spectral weights, where unlike the many methods in Chapter 2.7.2 that 

encode spatial relationships directly into the weight matrix, SSSE keeps them entirely 

separate, only using spatial information in the Eigenmap solution (Chapter 2.7.3). This 

facilitates much faster parametric studies on spatial effects and permits an arbitrarily small 

spatial scale without disconnecting spectrally similar neighbors at larger spatial distances. 

Classification results shown are the highest of any reviewed method. 

Cahill, Chew, and Wenger (2015) demonstrate how to modify SSSE such that 

expert knowledge can be included in the Eigenmap solution for the benefit of spatial-

spectral dimensionality reduction and classification. Given a small set of expert-labeled 

pixels, a matrix similar to the spatial cluster potential is created and added to the spatial-

spectral cluster potential to further enforce that some pixels (the expert-labeled pixels) must 

be close together in the lower dimensional representation from the Eigenmap solution. This 

is akin to Benedetto using a clustering result to define cluster potential pixels, but only 

using a very small subset of the closest matches. Cahill et al. demonstrate the inclusion of 

a small number of expert labeled points can correct misclassification errors. 

6.2 Anomaly Detection 
Basener, Ientilucci, and Messinger (2007) describe the first HSI graph-based 

anomaly detection algorithm called the Topological Anomaly Detector (TAD). TAD first 

creates a graph from 10% of the shortest pairwise L2 distances to connect the most similar 



160 

 

pixels. This construction connects the densest regions in spectral space which represents 

background (abundant) classes. The background is then defined as the set of connected 

components of size 𝑛 > 0.02|𝑉|. The degree of pixel “anomalousness” is the distance to 

any of these larger background graph elements. Therefore, isocontours in anomalousness 

are not bound to a smooth form as in statistical methods, but are rather data-driven and can 

take on arbitrary shapes as shown in Figure 6-2 for TAD and the RX algorithm (MVN 

assumption). Anomalies can be detected within pockets of low density surrounded by the 

background of the data as seen in the left side of Figure 6-2.  

 

 (a) (b) 

Figure 6-2. Isocontours of anomalousness for (a) TAD and (b) RX (Basener and Messinger, 2007). 

 

TAD performed well when compared to RX, and was shown to be less sensitive to 

noise (Basener and Messinger, 2009). TAD can also be used to mask out anomalous pixels 

prior to covariance and subspace calculations for standard target detection algorithms akin 
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to RX filtering prior to covariance estimation. TAD prescreening resulted in a robust 

improvement in quadratic target detection algorithms (Basener, 2010). 

Messinger and Albano (2011) describe an anomaly detection algorithm based on 

nodal connectivity characteristics measured by the weighted vertex volume (WVV), a ratio 

of the number of edges to the node (node degree) to the sum of its edge weights (6.1). 

 
𝑊𝑉𝑉(𝑥𝑖) =  

deg(𝒗𝑖)

∑ 𝑤𝑖𝑗𝑣𝑗∈ (𝑣𝑖)

,    ∀ 𝑣𝑗 ∈ 𝑉 (6.1) 

 

Anomalies are characterized by poor connectivity (exhibit low node degree) and are far 

from their nearest neighbors (large weights to their neighboring pixels), producing a low 

WVV. The inverse of the WVV is used as the anomalousness metric so anomalies appear 

bright in the detection image.  Messinger and Albano note that the method is comparable 

if not better than RX, especially in high resolution scenes that display complex clutter not 

well modeled by statistical approaches. 

Albano and Messinger (2012) explore the use of Euclidean CTD to enhance the 

separability of anomalies from background. The CTD transform (a preprocessing step) 

pushes outliers away from the bulk distribution (background) when fewer paths and/or 

larger weights between nodes exists, making anomalies more anomalous; anomalies are 

therefore easier to detect using standard algorithms (Figure 6-3).  
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Figure 6-3. Anomaly detection in (a) spectral space, (b) CTD space, and (c) ROC analysis (Albano and Messinger, 

2012). 

 

Notice the lack of striping apparent in the RX algorithm. Statistical techniques are 

susceptible to structured noise such as striping (Mohan et al., 2006), a sensitivity not 

observed in the CTD method. We will see this same desirable characteristic present in 

Schroedinger Eigenmaps as well (Chapter 7). 

6.3 Target Detection 
The application of graph theory and manifolds to target detection is a relatively 

unexplored area (Ziemann et al., 2014a). This section reviews the few papers found 

investigating this topic. 

Dorado-Munoz, Messinger, and Ziemann (2013) examine the performance of 

traditional target detection algorithms using background pixels identified by TAD. 

Specifically, TAD-generated background connected-component means and/or 

endmembers extracted from each component are used in traditional geometric methods, 
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while and means and covariances estimated from the same components (or all component 

pixels combined) are used in traditional statistical methods. Investigators found that 

statistical approaches performed better using TAD-derived backgrounds, indicating the 

TAD background model has potential use in target detection. The ability to model 

nonlinear behavior using this nonparametric data-driven model is lost by resorting to 

methods that characterize their input data by parametric statistical models or subspaces, so 

the benefit is solely from identification of more representative background pixels from 

which to derive statistical and subspace models. 

Albano, Messinger, and Ientilucci (2013) explore the use of CTD and physics-based 

models for target detection, wherein a large number of radiative transfer calculations are 

performed to generate representative spectra under varying acquisition conditions, e.g., 

time of day, water vapor levels, and acquisition geometries, a process similar to invariant 

methods (Healy and Slater, 1999). These calculated spectra are appended (injected) into 

the image prior to spectral graph creation via a mutual k-NN with MST union (to ensure 

graph connectivity). The location of the injected target spectra are known prior to the CTD 

transform, so it’s easy to generate a mean target vector in CTD feature space. The 

background and target means and background covariance matrix (in CTD space) are 

employed in the standard spectral matched filter (SMF). The authors compare results with 

the subspace Adaptive Cosine Estimator (ACE) algorithm and show favorable results at all 

false alarm levels (Figure 6-4).  
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Figure 6-4. Detection statistic image for (a) the SMF in CTD space, (b) subspace ACE in spectral space, and (c) ROC 

analysis (Albano et al., 2013). 

 

Manifold coordinates derived via LLE are applied to target detection in Ziemann, 

Messinger, and Albano (2013), where a user provides the intended dimensionality (𝑝) of 

the embedding subspace to limit the number of recover manifold coordinates. The image 

is then sectioned into tiles of about 25-40 pixels on a side due to LLE’s high computational 

burden and the target spectrum is appended (injected). A k-NN graph is created with NNN 

to produce a spectral-density weighted graph for each tile. The 𝑝 dimensional manifold is 

recovered using LLE with a constrained least squares solution, and target detection is 

performed with ACE using the manifold coordinates of the injected target spectrum. Some 

additional target detections over those of ACE are noted, providing compelling results with 

few assumptions on the data. However, Ziemann mentions the algorithm does have a high 

false alarm rate if the target is not present in the scene and suggests a backbone approach 

such as that as used in Bachman et al. (2005) as a potential solution to globally align the 

target manifolds.  
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Ziemann and Messinger (2015) extend the LLE target detection methodology by 

adding a “cloud’ of target vectors to each subimages similar to that of Albano et al. (2013). 

The uniformly-distributed cloud is 10% the size of the image with a diameter equal to the 

average distances to the first five scene-based NN to the target, and overconnected to their 

scene-based neighbors to ensure better separation of background and target pixels. All 

target-cloud points are removed prior to detection processing, but served to better formulate 

the LLE by mitigating the possibility of a single target spectrum collapsing into the 

background distribution. Ziemann notes that image tiling addresses computational 

complexity and does not impact target detection because performance should be 

independent from one region of the image to another, i.e., the presence of grass in one part 

of the scene should not impact detection over soil regions in another. A spectral angle based 

detection scheme in manifold space produced better performance than ACE for some 

targets. 

Dorado-Munoz and Messinger (2016) extend the approaches of Albano et al. 

(2013) and Ziemann and Messinger (2015) to target detection using Schroedinger 

Eigenmaps. Target spectra are appended to each image and both fixed k-NN (Chapter 2.2) 

and DW k-NN (Chapter 2.3) graphs are created. Additional edges are constructed between 

these target material and its neighbors (standard graph construction), and also neighbors or 

their neighbors, i.e., neighbors that are within two edges of the target material. These 

additional connections improve the connectivity of the target with pixels that share some 

similarity, but not enough to comprise the target material’s NN list. These target NN 

relationships are encoded into a barrier potential matrix used in the Schroedinger Eigenmap 
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algorithm (see Chapter 7) to drive target (and similar) pixels towards the origin. A simple 

distance measure from the origin is used as the detections statistic. The SS-based method 

is compared to ACE on in-scene and field measured signatures. ACE outperformed the 

method using in-scene signatures; however, the SE-based algorithm was able to outperform 

ACE using field-measured signatures in some permutations, demonstrating the method’s 

potential as a new technique not requiring hypothesis testing. 

Ziemann and Messinger (2015) and Dorado-Munoz and Messinger (2016) methods 

have proven the efficacy of spectral embedding for target detection for a single target 

material via injection into the data prior to graph construction. However, the target injection 

method does not scale well as a generalized target detection scheme looking for many 

materials at once. If each material requires a target cloud of size 0.1|𝑉|, the data size 

doubles at only ten materials. Conversely, pulling target materials towards the origin would 

entail a reduction in contrast between the target materials themselves. Even if enough 

contrast exists, a new anisotropic target detector is required compared to the isotropic 

variant used in the proof of concept. These challenges need to be further developed to 

extend these concepts into characterization tasks instead of simply targeted search. 

6.4 Change Detection 
Albano, Messinger, Schlamm, and Basener (2011) describe a tile-based change 

detection method based on normalized edge volume (NEV) and the standard deviation of 

edge lengths (SDEL) to cue analysts to regions requiring further change investigation. NEV 

is a ratio of graph “spread” to graph “connectedness” (6.2) as  
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𝑁𝐸𝑉(𝐺) =  

∑ 𝑤𝑖𝑗(𝑣𝑖,𝑣𝑗)∈ 𝐸

∑ deg (𝑣𝑖)𝑣𝑖∈ 𝑉

, 
(6.2) 

 

while, the numerator is the sum of all the edge weights in the graph; the higher this number, 

the more spread in the graph. The denominator is the vertex volume of the graph, i.e., 2x 

the number of edges because of the undirected (bidirectional) nature of the graph built on 

the spectral data. High NEV indicates dispersed graphs with few connections, while low 

NEV indicates compact graphs with a high number of connections (denseness). Albano 

demonstrates NEV is directly proportional to the spectral diversity in the image, i.e., higher 

NEV indicates higher spectral diversity, so it can be used as a macro scale measure. 

Conversely, SDEL is a measure of fine scale change. Both can be used together to indicate 

change within a graph. For display (cueing) purposes, NEV and SDEL differences between 

the change detection image pairs is scaled and color coded to represent the degree of change 

(Figure 6-5). 
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Figure 6-5. Graph-theoretic processing for tile-based HSI change detection (Albano et al., 2011). 

 

Tile-based analysis provides resiliency to image misregistration always present in 

change detection pairs.  

6.5 Physical Unit Determination 
Manifold descriptions can also be used for physical unit retrieval. While different 

than the techniques previously discussed, a few studies are mentioned here for 

completeness.  

Gilles et al. (2005) describe a methodology to retrieve water characteristics, bottom 

type, and bathymetry from physics-based approaches.  

Bachmann et al. (2009) describe a method to perform bathymetric retrieval from 

manifold coordinates. 
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SCHROEDINGER EIGENMAPS 

Additional variants of current state-of-the-art HSI graph processing algorithms can 

be constructed by leveraging the new similarity measures introduced in Chapter 3 to 

explore performance improvement. These state-of-the-art techniques are built upon the 

Laplacian and Schroedinger operators on a graph, which are reviewed below. 

Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸 = {𝑒1, 𝑒2, … 𝑒𝑚} represent numbered vertex and 

directed edge sets respectively. Relationships between 𝑉 and 𝐸 can be explicitly 

represented by an n x m incidence matrix B, defined by (7.1).  

 

𝑏𝑖𝑗 = {

+1, 𝑖𝑓 𝑣𝑖 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑓 𝑒𝑗
−1, 𝑖𝑓 𝑣𝑖 = 𝑠𝑖𝑛𝑘 𝑜𝑓 𝑒𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(7.1) 

 

B is a simple matrix composed of three values {-1,1,0} fully describing the source 

and sink vertices for each edge in the graph. Naturally undirected graphs are binary 

matrices {1,0}.  

The graph Laplacian (𝑳) is defined by (7.2), where we can explicitly see its 

dependence on graph structure due to its construction from B.  The matrix product 𝑩𝑩𝑻 

produces the sum of absolute node degrees on the diagonal (D) and the signed weighted 

combinations on the off diagonals (𝑾). 
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 𝑳 = 𝑩𝑩𝑇 = 𝑫 −𝑾 (7.2) 

 

The Laplacian matrix in (7.2) is called the unnormalized graph Laplacian, where 

each row sums to zero and 1 is in the nullspace of 𝑳. In general, the incidence matrix has 

rank n-c, where c denotes the number of connected components, the dimension of the 

nullspace, and the multiplicity of the zero eigenvalue (Gallier, 2016). As such, the 

incidence matrix of a connected graph has rank n-1, and consequently so does 𝑳. 

Normalized variants of the Laplacian are needed for some applications and two 

options are common: the normalized graph Laplacian (7.3) and the random walk Laplacian 

(7.4). 

 
𝑳𝒔𝒚𝒎 = 𝑫

−
𝟏
𝟐𝑳𝑫−

1
2 = 𝑰 − 𝑫−

𝟏
𝟐𝑾𝑫−

1
2 

(7.3) 

 

 
𝑳𝒓𝒘 = 𝑫

−1𝑳 = 𝑰 − 𝑫−1𝑾 = 𝑫−
1
2𝑳𝒔𝒚𝒎𝑫

1
2 

(7.4) 

 

Note that the normalized variants require that D has full rank, i.e., the graph G has 

no isolated vertices and every row of W contains a positive entry. If this is true, then 𝑫 is 

invertible and its square root decomposition exists. Should 𝑫 not possess full rank, the 

normalized variants can be applied to each connected component separately. 

We eventually focus on the Schroedinger Eigenmaps of Czaja and Ehler (2012), 

but first start with the Laplacian Eigenmaps of Belkin and Niyogi (2003) as a stepping 

stone. Given n data points in ℝ𝑑, specified by 𝒗 = {𝑣1, 𝑣2, … , 𝑣𝑛}, we wish to find a lower 
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dimensional representation of the data 𝒚 = {𝑦1, … , 𝑦𝑝}, where 𝒚 ∈ ℝ𝑝 and 𝑝 ≪ 𝑑, i.e., the 

data are assumed to lie on a manifold ℳ ∈ ℝ𝑝. The manifold embedding 𝒚 is determined 

by the following three steps: 

 

1. Construct a graph on the HSI data using any of the methods described in Chapters 

2 or 3. We are free to include spatial information in this construction if so desired 

(Chapters 2.7.1 and 2.7.2). 

2. Calculate the graph Laplacian, 𝑳 using (7.2), where [𝑫]𝑖𝑖 = ∑ 𝑤𝑖𝑗 = 𝑑(𝑣𝑖)𝑗  and 

[𝑾]𝑖𝑗 = 𝑤𝑖𝑗. 

3. Solve for the mapping 𝑦 = {𝑦1, … , 𝑦𝑝} by minimizing 

 
arg min
𝑡𝑇𝐷𝑦=𝐼

1

2
∑‖𝑦𝑖 − 𝑦𝑗‖

2

𝑖𝑗

𝑤𝑖𝑗. (7.5) 

 

Minimizing (7.5) is the same as minimizing  

 arg min
𝒚𝑇𝑫𝒚=𝐼

𝑡𝑟(𝒚𝑇𝑳𝒚) (7.6) 

  

(Belkin and Niyogi, 2003), and the solution is obtained by solving the generalized 

eigenvalue problem 𝑳𝒚 = 𝜆𝑫𝒚. This particular solution incurs a penalty when proximal 

points in ℝ𝑑 are not proximal in ℝ𝑝, ensuring the d-dimensional structure is maintained in 

the (lower) p-dimensional manifold representation. 
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Practically speaking, eigenvalues are ordered such that 0 = 𝜆 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑛−1 

and the corresponding n eigenvectors create an orthonormal basis for 𝑳. We use the first 𝑝 

nonzero eigenvectors of 𝑳 as a mapping from ℝ𝑑→ℝ𝑝. Note that the multiplicity of the 

zero eigenvalue indicates the number of connected components in the graph (also the 

nullspace dimension), where the corresponding eigenvector of L is 1. Standard statistical 

or geometrical processing algorithms may be applied to the data embedded into this lower 

dimensional space (2 ≤ 𝑝 ≤  0 is common), so this embedding can be interpreted as a 

preprocessing or data conditioning step. 

Czaja and Ehler (2012) build upon the success of Laplacian Eigenmaps and create 

a generalized variant wherein additional information influencing the Eigenmap solution is 

incorporated. Their variant, called Schroedinger Eigenmaps, utilizes a potential matrix (V) 

that is added to the graph Laplacian prior to manifold embedding (7.7). 

 (𝑳 + 𝛼𝑽)𝑓 = 𝜆𝑫𝑓 (7.7) 

The user-defined parameter, 𝛼, controls the relative significance, or more generally 

the fusion between the Laplacian and the potential matrix. Solving for the Eigenmap is 

performed by substituting the Schroedinger operator 𝑺 = (𝑳 + 𝛼𝑽) for 𝑳 in (7.6). Two 

types of potential matrices are described: barrier potentials and cluster potentials. 

Barrier potentials result when 𝑽 is constructed as a nonnegative diagonal matrix. 

Positive entries in 𝑽 induce a penalty in the mapping, pulling points towards the manifold 

origin (Benedetto et al., 2012a), while zero entries drive points farther apart. This 

characteristic is exploited by Dorado-Munoz and Messinger (2016) in developing a target 
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detection algorithm wherein all target pixels are pulled towards the origin. The manifold-

space vector magnitude is used as a detector, where smaller values are more indicative of 

the target material. 

Cluster potentials are generated by the summation of nondiagonal submatrices 

defined for all points (i,j) deemed to belong to the same class. Let Q be a cluster node set, 

and 𝑖, 𝑗 ∈ 𝑄 (or generalized grouping). For all points (i,j) taken in order, define the 

submatrices 𝑉𝑘,𝑙
(𝑖,𝑗)

 associated with Q as 

 

𝑉𝑘,𝑙
(𝑖,𝑗)

= {

1, (𝑘, 𝑙) ∈ {(𝑖, 𝑖), (𝑗, 𝑗)} 
−1, (𝑘, 𝑙) ∈ {(𝑖, 𝑗), (𝑗, 𝑖)}
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 
(7.8) 

 

where k and l are generic variables that take on the pairwise values of i and j respectively 

(Cahill et al., 2014). An example 𝑉𝑘,𝑙
(𝑖,𝑗)
 primitive for a cluster pair in a three vertex image 

is shown in (7.9). 

 
𝑉𝑘,𝑙
(𝑖,𝑗) ∶= [

1 −1 0
−1 1 0
0 0 0

] (7.9) 

 

Summing each of these submatrices over a cluster results in the structure shown 

in (7.10). The ones in the corners are from boundary conditions and do not represent any 

real structure as the pixel order could be permuted to place the diagonal entry of 1 on any 

pixel. 
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𝑉𝑘,𝑙
(𝑖,𝑗) ∶=

[
 
 
 
 
 
    1 −1    
−1    2 −1

−1    2  ⋱    
     ⋱ −1

−1    2 −1
   −1    1]

 
 
 
 
 

 
(7.10) 

 

We note that pixels belonging to each cluster are in different places with respect 

to the full scene order, so 𝑽 is a scattered combination matrix of all subcluster matrices. 

The net effect of this construct is to provide a forcing function, promoting similar pixels 

in spectral space being proximal in manifold space (Czaja and Ehler, 2012; Cahill et al., 

2014).  

Several forms of cluster potentials are seen in the literature, and most focus on 

incorporating (fusing) spatial information to the data-dimensionality reduction step 

(manifold learning,  spectral embedding) in clustering and segmentation (7.11) or injecting 

expert-user information in classification analyses (Cahill et al., 2015).  

 
𝑽 = ∑ ∑ 𝑽(𝑖𝑗) ∙

𝑥𝑗∈  (𝑖)

𝑘

𝑖=1

exp (−
‖𝑣𝑖 − 𝑣𝑗‖

2

2𝜎𝑑
2 ) 

(7.11) 

 

The spatial heat-diffusion weighting to the right of (7.11) encodes stronger 

component attraction between proximal pixels, while 𝑉𝑘,𝑙
(𝑖,𝑗)

 encodes (identifies) the 

locations between spatial neighbors. Cahill et al. (2014) describe a cluster potential 

modification to promote even stronger attraction for pixels with higher similarity measures 

from possibly multiple metrics, given by 
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𝑽 = ∑ ∑ 𝑽(𝑖𝑗) ∙

𝑥𝑗∈  (𝑖)

𝑘

𝑖=1

𝛾𝑖𝑗 ∙ exp(−
‖𝑣𝑖 − 𝑣𝑗‖

2

2𝜎𝑑
2 ), 

(7.12) 

 

where 𝛾𝑖𝑗 is chosen to provide more weight to those neighbors that exhibit additional 

similarities. For example, Cahill et al. (2014) offer use of the (2.4) or (2.6) spectral 

weighting equations, both providing greater attraction for spatial neighbors also displaying 

spectral similarities. The resultant family of methods is called Spatial-Spectral 

Schroedinger Eigenmaps (SSSE). 

7.1 Modified SNN Cluster-Potentials for HSI Classification 
Cahill et al.’s (2014) elegant generalization of SSSE provides a means to extend 

the family of methods with any similarity information in the Schroedinger Eigenmap 

construction. As such we offer extensions using SNN and MP measures (Chapter 3) in the 

generation of 𝛾𝑖𝑗 (𝟕. 𝟏𝟑).  

 

𝛾𝑖𝑗 =

{
 
 

 
 

𝑆𝑁𝑁𝑖𝑗, 𝑆𝑆𝑆𝐸 𝑤𝑖𝑡ℎ 𝑆𝑁𝑁 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠

𝑀𝑃𝑖𝑗, 𝑆𝑆𝑆𝐸 𝑤𝑖𝑡ℎ 𝑀𝑃 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠

𝑆𝑁𝑁𝑖𝑗 ∙ exp (
𝑑(𝑣𝑖 , 𝑣𝑗)

2

2𝜎2
) , 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑙𝑦 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑤𝑖𝑡ℎ 𝑠ℎ𝑎𝑟𝑒𝑑 𝑁𝑁

 
(7.13) 

 

In (7.13), 𝑆𝑁𝑁𝑖𝑗 is the number of shared neighbors in spectral space and promotes 

the concept of community structure through common neighbors; 𝑆𝑁𝑁𝑖𝑗  and 𝑀𝑃𝑖𝑗 are given 

by (3.1)-(3.4) and (3.7) respectively. The third option provides protection against situations 

like those shown to the left of Figure 2-7, where distances between neighbors may be 

similar, but cluster structure indicates otherwise, and is akin to the use of common 
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neighbors in Fan and Messinger (2014). Cahill et al. (2014) set the width of the spatial 

neighborhood to one pixel and 𝛼 = �̂� ∙ 𝑡𝑟(𝑳)/𝑡𝑟(𝑽) so that the manifold construction can 

be more spatially or spectrally weighted through �̂�. We adopt the same practice here. 

Inclusion of these new measures may improve performance based on results 

reviewed in Chapter 4, so it is beneficial to explore how these new measures impact the 

derivation of manifold coordinates for HSI classification, comparing these new algorithms 

to Cahill’s state-of-the-art performance.  As such, we replicate the classification 

experiment described in Cahill et al. (2014), wherein 10% of the ground truth pixels for 

each class are used to determine class boundaries via linear discriminant analysis 

(MATLAB). We also ramp �̂� from 0 through 100 to skew the embedding from one based 

solely on spectral neighbors (�̂� = 0) to one primarily based on spatial information (�̂� =

100).  

We call the bottom option in (7.13) the shared nearest neighbor SSSE (SNN-SSSE) 

algorithm for Salinas, Indian Pines, and SalinasA are shown in Figure 7-1. Notice the 

exceptional utility afforded by inclusion of spatially-based cluster potentials that exploit 

spatial coherency present in imagery. Notice that results on the left-hand side are based 

solely on edges built from spectral features (no spatial influence through 𝑽). The influence 

of spatial neighbors (through cluster potentials) increases from left to right, enforcing 

spatial coherency and tightening up the results. 
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Figure 7-1. SNN–SSSE with spectral through spatial weightings for the Indian Pines, Salinas, and Pavia University 

scenes. 
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We compared SNN-SSSE confusion matrices with those of Cahill et al. (2014) 

using McNemar’s test and found statistically significant improvements for the Microscene, 

Pavia, and Pavia University scenes (Table 7-1). Cahill’s implementation demonstrated 

better performance on the Salinas scene. The only difference in this test is the inclusion of 

shared neighbors, which produce an increase in overall accuracy for more cluttered scenes.  

 

Table 7-1. SNN-SSSE Classification Accuracy 

 

Misclassified pixels were moderately different between the methods for all scenes, 

indicating there is something to be gained by fusing both approaches. The state-of-the-art 

algorithm described in Cahill et al. (2014) was consistently higher across all 𝛼 values in 

the SalinasA and Indian Pines scenes even though the results were statistically equivalent. 

7.2 Hubness-Based Barrier Potentials for Anomaly Detection 
Barrier potentials are reviewed at the start of this chapter wherein we stated any 

identified barrier pixel would be drawn towards the manifold origin because of the potential 

well created at the node. Dorado-Munoz et al. (2016a) leveraged this fact to design a 

Schroedinger Eigenmap-based target detection scheme where all target-like pixels are 

Dataset Sensor 
Data 

Type 

GSD 

[m] 

Scene 

Type 

Cahill et al. 

SSSE 
SNN-SSSE 

SalinasA AVIRIS rad. 3.7 rural 99.94 99.92 

Salinas AVIRIS rad. 3.7 rural 99.91 99.84 

Indian Pines AVIRIS rad. 20 rural 98.03 97.93 

Pavia ROSIS ref. 1.3 urban 97.1 97.49 

Pavia Univ. ROSIS ref. 1.3 urban 92.62 93.59 

Microscene SOC710 ref. 1.3E-4 ~rural 98.44 98.56 

Statistically significant differences indicated in bold. 
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drawn towards the origin. We propose leveraging the same origin migration characteristic, 

but for the purposes of anomaly detection.  

Assume a given set of pixels can be identified that describe the typical scene 

background. A logical thought is to define barrier potentials so that all those (background) 

pixels are drawn to the origin. Should this be possible, anomalousness could simply be 

defined in terms of Euclidean distance from the origin. This construct possesses two useful 

characteristics: 1) the anomaly detection algorithm is extremely simple, and 2) common 

(background) pixels are mapped to zero and display as a dark background.  

Alas, Dorado-Munoz (2017b) describes how the inclusion of too many pixels in the 

barrier potential can reduce contrast between pixels as all points connected to barrier pixels 

are also drawn towards zero. So it is desirable to identify a few pixels that would draw a 

significant fraction of the background towards the origin, but not reduce the contrast to the 

point the embedded data is no longer useful. Recall from Chapter 5 that hubs are nodes 

with a much larger fraction of edges to other pixels than those on average, and exist in the 

center of the most spectrally dense spaces such as background clusters. We therefore posit 

that identifying a small number of barrier pixels that have higher connectivity may pull 

much of the background towards the origin, increasing the contrast of anomalous pixels. 

We call this approach hubness assisted anomaly detection (HAAD). 

HAAD builds barrier potentials based on a fractional number of pixels possessing 

the highest hubness values (5.3) and then applies RX in the manifold space to detect 

anomalies on the background-suppressed manifold. HAAD is tested against the standard 
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RX method on imagery from the RIT SHARE 2012 collection (Giannandrea et al., 2013) 

using the Avon, New York scene collection from September of 2012 (Figure 7-2).  

  

Figure 7-2. SHARE image of Avon, NY (left), RX (center) and HAAD (right) anomaly detection images. 

 

Notice the HAAD implementation is not as susceptible to detector nonuniformities 

such as streaks—a sensitivity of linear methods like RX (Mohan et al., 2006). We studied 

the receiver operator characteristic (ROC) curves for detection of the red and blue painted 

panels to explore the utility of seeding barrier potentials with pixels displaying the highest 

hubness values (centralized tendency). The hub fraction in the barrier potential was varied 

from 1 to 25%. ROC analysis revealed HAAD is outperformed by the standard RX 

algorithm at all false alarm rates. Deeper investigation revealed that HAAD performance 

is limited by lack of shadow pixels in the barrier potential matrix. As such, the method 

should be further developed to include some number of shadow pixels to increase 

performance, creating a shadow-enhanced HAAD algorithm. 
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7.3 Summary and Contributions 
New spectral similarity measures developed in this research were used to extend 

the current state-of-the-art in SSSE classification algorithms. While the new SNN-SSSE 

methods demonstrated equivalent performance to those provided by SSSE for most scenes, 

the SNN-SSSE algorithm was statistically better than SSSE in urban environments. We 

note that both SSSE and SNN-SSSE produce very different sets of misclassified pixels. 

This is very interesting and suggests the methods may be combined to achieve even greater 

classification accuracy. This should be explored in future research. 

Hubness was used as a means to suppress the background contribution through 

barrier potentials in SSSE, exploring the further exposing anomalous pixels. Hubs are used 

based on their centralized tendency and higher connectivity, so fewer pixels can be used as 

barriers to suppress the background without overly squashing scene contrast. Use of barrier 

potentials in this manner has not been reported to our knowledge. Visually, this new 

method produces more visually appealing anomaly images not susceptible to structured 

noise. However, ROC analysis suggest this new method is not quite ready for prime time 

yet as the standard RX algorithm produced better results at all false alarm rates. 
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8  

 

 

 

CONCLUSIONS AND DISCUSSION 

This research explores the science (and art) of generating spectral graphs for the 

exploitation of hyperspectral imagery. Contributions resulting from this research can 

improve the performance of graph- and manifold-based analysis techniques through 

promoting the construction of better spectral graphs—a necessary first step that has not 

been rigorously studied in the past on HSI data. Recommendations for graph-construction 

parameter and algorithm selection are provided based on rigorous study of graph 

characteristics and classification performance. Specific recommendations (contributions) 

are summarized below. 

 

1. Adaptive edge allocation via methods like ANN or density-weighted k-NN are 

better than fixed k techniques for representing community structure. 

2. Mutuality is proven to be superior to superset symmetry for adjacency matrix 

symmetrification, especially for urban data. Superset symmetry performs on par or 

slightly better for rural data. 

3. A density-weighted technique utilizing the cumulative density function instead of 

z-score is demonstrated to provide the intended edge-count mapping in diverse 

datasets, especially when the codensity distribution is not normal (e.g., MSI). 
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4. A neighborhood-size bias is introduced that enables mutual k-NN to be the highest 

performing method of adjacency symmetrification across a very broad range of k 

values and algorithms. 

5. Two new similarity measures from the data mining and machine learning 

communities are introduced and modified to provide a data-dependent means of 

weighting graphs without reliance on codensity measures, a benefit that provides 

resiliency to the concentration of measure and hubness phenomena as data intrinsic 

dimensionality increases. These methods performed slightly higher than current 

techniques as a whole. 

 

Despite the success of adaptive density-weighting for edge allocation, its use for 

adaptive density-based edge-reweighting did not provide any benefit. Investigation 

revealed this effect is due to the fact density is not a discriminating factor between clusters 

and intracluster density structure is variable, but somewhat similar for many clusters tested. 

Future research into HSI cluster-density structure should provide more insight into exactly 

why adaptive density-based reweighting methods do not provide the originally anticipated 

benefits. Density-based prescaling of primary measures did increase classification 

accuracy for some graphs despite increasing the number of 𝜙-edges, so there is more to be 

learned about reweighting distance measures prior to edge selection instead of applying 

reweighting techniques to weights after edge selection. 

In a deeper probe on codensity characteristics, we revisited aspects of distance 

measures in high-dimensional spaces and demonstrate concentration of measure and 
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hubness—two aspects of the curse of dimensionality—appear in HSI data. We demonstrate 

these two phenomena are present to varying degrees, dependent on data (scene) 

characteristics, and are possible items of concern for analysis methods utilizing edge 

weights like Schroedinger Eigenmaps or normalized cuts. In contrast, observed low hub 

counts in fixed k-NN means they are not a concern for counting algorithms like k-NN. 

Graphs built from adaptive edge-allocation methods result in a larger number of hubs, but 

are still not an issue for k-NN. 

As HSI sensor capabilities continue to increase, higher spatial and spectral 

resolution data can induce higher intrinsic dimensionality, resulting in a higher probability 

of impact from concentration of measure and hubness. Appearance of the hubness 

phenomenon is data dependent, and further study is required to identify data characteristics 

correlated with hub formation—specifically bad hubs—so they can be mitigated should 

they occur. Conversely, different construction methods can also be selected if characteristic 

measures indicate a propensity for the phenomena. While classification algorithms based 

on counting are not impacted from hubs crowding neighborhood lists, the question of how 

hubs (especially bad hubs) impact manifold learning or other algorithms dependent on edge 

weights requires further investigation and is the next logical step in this research. 

SNN was incorporated into current spatial-spectral classification methods based on 

Schroedinger Eigenmaps, yielding better performance than the current state-of-the-art 

SSSE methods on urban data. The SNN algorithm produced equivalent performance on 

rural data, except in a single dataset where SSSE was slightly better. A very intriguing 

aspects of these classification results is that the misclassified pixels are moderately 
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different, suggesting a combination of both methods may be able to outperform either one 

individually. Additional research into this area is warranted to explore this exciting 

possibility. 
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APPENDIX A: HSI DATA SETS WITH GROUND TRUTH 
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APPENDIX B: HSI DATA SETS  
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