
REGRESSION MODELS FOR PREDICTING RAIL TRANSIT RIDERSHIP
AT THE STATION LEVEL

by

Daniel Hartig
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University

in Partial fulfillment of
The Requirements for the Degree

of
Master of Science

Statistics

Committee:

Dr. Martin Slawski, Thesis Director

Dr. Clifton Sutton, Committee Member

Dr. Larry Tang, Committee Member

Dr. William Rosenberger, Chairman, Department
of Statistics

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring 2019
George Mason University
Fairfax, VA



Regression Models for Predicting Rail Transit Ridership at the Station Level

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at
George Mason University

By

Daniel Hartig
Bachelor of Science

United States Naval Academy , 2008

Director: Martin Slawski, Assistant Professor
Department of Statistics

Spring 2019
George Mason University

Fairfax, VA



Copyright c© 2018 by Daniel Hartig
All Rights Reserved

ii



Contents

List of Tables v

List of Figures vi

Abstract vii

1 Introduction 1

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Data Sources and Feature Generation 4

2.1 Selection of Transit Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Data Sources for Predictor Variables . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Definition of ‘Walking Distance’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Rejection Sampling of Zip Code Shapefiles . . . . . . . . . . . . . . . . . . . . . 9

2.5 Variance of Monte Carlo estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Generation of network-dependent features . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Analysis of zip code characteristics by city . . . . . . . . . . . . . . . . . . . . . . 16

3 Model generation and Error Metrics 20

iii



3.1 Metrics for assessing accuracy of predictions . . . . . . . . . . . . . . . . . . . . 20

3.2 Data distribution and regression selection . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Feature selection by LASSO regularization . . . . . . . . . . . . . . . . . 25

3.3.2 Feature selection by stepwise forward selection . . . . . . . . . . . . . . . 26

3.4 Derivation of Regression methods . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Least squares regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Poisson regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Poisson regression with Identity Link . . . . . . . . . . . . . . . . . . . . 30

3.4.4 Least Absolute Deviations Regression . . . . . . . . . . . . . . . . . . . . 34

4 Results 36

4.1 Results table and baseline comparisons . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 LASSO regularization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Forward selection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Analysis of selected features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusion and Future Work 43

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendices 45

A Ridership data 45

B US Census feature data sources 46

iv



List of Tables

2.1 Examples of characteristics associated with zipcodes . . . . . . . . . . . . . . . . 6

2.2 Network wide characteristics for the six transit networks considered in this thesis . 18

3.1 Regression of Population and Employment against ridership . . . . . . . . . . . . 23

3.2 Error for single variable OLS for selected features . . . . . . . . . . . . . . . . . . 24

3.3 Regression types and packages used in analysis. . . . . . . . . . . . . . . . . . . . 28

4.1 Results of regression analysis, compared with some baseline measures . . . . . . . 36

4.2 Number of features selected by LASSO; by transit network and regression type . . 38

4.3 Number of features selected by LASSO; by transit network and regression type . . 39

4.4 Features that were frequently selected by regression methodologies . . . . . . . . . 42

v



List of Figures

2.1 Single covariates against the response variable with ordinary least squares (OLS)
line of best fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Illustration of nearest zip code estimation for zip code 02127. . . . . . . . . . . . . 11

2.3 Indications of variance for Monte Carlo estimates of the population feature. . . . . 13

2.4 Illustration of travel time calculation for Sullivan Square to South Station, in Boston. 15

3.1 Analysis of population regression . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Analysis of employment regression . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



Abstract

REGRESSION MODELS FOR PREDICTION RAIL TRANSIT RIDERSHIP AT THE STATION
LEVEL
Daniel Hartig, MS
George Mason University, 2019
Thesis Director: Dr. Martin Slawski

Methods for predicting ridership for future urban rail systems or extensions often have poor accu-

racy. One study shows that predicted ridership is overestimated by about 50%, on average, for a

broad sample of urban rail systems worldwide. The ridership estimates produced by most transit

agencies in the United States are not based on regression models. This thesis presents a framework

for feature generation and regression modeling for estimating urban rail ridership in the United

States. Features are generated using publicly available data from the US Census Bureau at the

zip code level. Monte Carlo geographic sampling from zip code shapefiles generates features for

each station on a rail network, representing characteristics within walking distance of that station.

Network connections and travel times are used to generate a second set of features representing

characteristics within commuting distance of each station. Several models are developed using

different regression types and are compared in terms of accuracy and selected features. Some of

the generated models provide system-level ridership predictions within 20% of the true value for a

sample set of six US urban rail systems.



Chapter 1: Introduction

1.1 Summary

The United States is undergoing a rail boom. Since 2010, new light rail lines have opened in Dallas,

Los Angeles, Salt Lake City, Denver, Minneapolis, Houston, Seattle and more. A new heavy rail

line opened in Washington DC, and a commuter rail system in Orlando. As transit expands in cities

in the United States, there is an opportunity to validate predictive rail ridership models.

A survey of transit agencies [1] conducted by the Transit Cooperative Research Program showed

that relatively few agencies are using quantitative models when forecasting ridership for new lines,

extensions or stations under consideration for funding. Of the 35 agencies that responded to the

survey, 29 use professional judgment and 28 use rules of thumb among one or more techniques

used to generate ridership forecasts. Another method used by 22 agencies is service elasticity; a

set of general transit demand response curves for changing transportation options, published by the

Transportation Research Board [2].

For quantitative methods, the most commonly used technique–by 18 of 35 surveyed agencies–is the

four-step travel demand model [3], introduced by Mannheim and Florian [4, 5]. The Mannheim-

Florian model’s four steps are trip generation, trip distribution, mode choice and route choice. In

the trip generation phase, trip endpoints are created with production and attraction ends. In the trip

distribution step, these endpoints are paired up to generate trips; for example a residence is paired

with a job location for one trip, or a hotel is paired with a tourist attraction. In the mode choice

step, trips are assigned to various transportation modes, such as personal vehicle, bus, or walking.

Finally, in the route choice step, a route using that mode of transportation is chosen.

An implementation of the Mannheim-Florian model can be seen in the Seattle’s Sound Transit

Ridership Forecasting Methodology Report [6, 7]. The Sound Transit 3 (ST3) was a ballot measure
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that passed in 2016 for a $54 billion expansion of the local light rail system involving 100 km

of new tracks and 37 new stations. The ridership forecasting methodology report explained how

the project’s official ridership projections were developed. The regional area is divided into 785

Alternatives Analysis Zones and for each of these zones transit surveys and recorded ridership on

local bus routes were used to complete the trip generation and trip distribution steps. The mode

choice and route choice is done using an incremental logit model to predict changes in transit mode

based on changes in transit mode availability.

A significant weakness of the four-step method is that it relies on already known transit ridership

[8]. For a proposed light rail system, for example, existing bus routes would be used to complete

the trip generation and trip distribution steps.

A regression based ridership model could provide an alternative estimate of ridership without de-

pending on previously known transit ridership counts. Only seven of the 35 surveyed agencies used

regression models to predict future transit ridership. This thesis proposes a regression-based model

using data from the United States Census Bureau at the zip code level. The model will be trained

on the zip code characteristics and ridership data from existing light and heavy rail transit systems.

The resulting model will be used to predict ridership on other rail transit systems.

1.2 Original Contributions

There are two main objectives of this thesis. The first objective is to investigate the utility of various

data from the US Census Bureau as predictor variables in a regression model for urban rail ridership.

The second objective is to determine what generalized linear regression methods–in terms of the

choice of loss function and link function–are best suited to modeling urban rail ridership given the

available data.

This thesis diverges from previous regression modeling by investigating an expanded set of potential

features. The US Census Bureau provides extensive data on a per-zip code bases as detailed in

Section 2.2: there are over a thousand possible features available. This data is provided as counts

per zip code. To translate this zip code data into features for a regression model, this thesis presents

a novel geographic sampling method in Section 2.4.

With features for regression analysis in hand, this thesis benchmarks several different regression



methods. Previous regression based analyses of urban rail ridership have exclusively used ordinary

least squares regression. This thesis expands the model base to include other loss functions and link

functions and reports accuracy metrics for each model.



Chapter 2: Data Sources and Feature Generation

2.1 Selection of Transit Systems

The response variable for the regression analysis is average weekday ridership over a period of at

least one year. Ridership data for agencies that publish annual ridership reports is used to validate the

model (for ridership data sources, see Appendix A). Six cities were selected for this study: Boston,

Chicago, Los Angeles, Atlanta, Dallas, and Denver. Several cities were eliminated from analysis

for various reasons. The author was unable to locate ridership information for several cities such as

Houston and Miami. A limitation of the Census dataset is that it does not include government em-

ployment. While state level employment is significant in all potential cities, state employment levels

are relatively constant from city to city. Federal employment varies greatly, however; Washington

DC and San Diego with its military installations had to be eliminated due to the large impact of un-

recorded federal employment. San Francisco and Philadelphia were eliminated because they have

multiple rail systems without integrated fares. New York City was eliminated because its subway

has higher ridership than all other intra-urban rail systems in the country combined.

Ridership data is captured by different methods in different cities, but the same underlying data is

counted by each case. In Chicago and Boston, the transit agency measures paid station entries.

Boston additionally reports transfers between lines at each transfer station. Therefore, daily rider-

ship is measured as the total number of entrances per station per day. This results in one count per

one trip; and two counts per one daily commute. Dallas, Denver and Los Angeles report boarding

and alighting by train car; so daily ridership is measured as the total number of boardings per sta-

tions per day. For transfer stations, boarding is ‘double counted’ since a boarding at station A and

a transfer at station B would result in two counts per one trip. Therefore, for these three networks,

the transfer stations and their unusually high ridership counts are excluded from the analysis. For

Atlanta, the ridership reporting definition is unknown, so we eliminate the one transfer station as a
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precaution. For Boston and Chicago, ridership is counted by extracting data from the fare system

for paid station entries. In Dallas and Denver, passenger counts are measured at the train car by

Automated Personnel Counters. In Los Angeles and Atlanta the counting methodology is unknown.

The data closest to 2015 is used when possible to get an accurate relation between ridership and

census data. The census data as well as Chicago, Dallas, and Denver’s ridership statistics are from

2015. Boston’s ridership is from 2014, Los Angeles’ is from 2013-2014, and Atlanta’s is from

2010-2013.

2.2 Data Sources for Predictor Variables

The zip code level data for feature generation comes from the US Census Bureau and is available at

factfinder.census.gov. There over one thousand potential data sets available. We refer to the

data available for each zip code as characteristics of the zip code. Selection of features is guided by

Kuby [9], Taylor [10], and Currie [11], who demonstrate the significance of characteristics such as

employment, population, universities, poverty, airports, park and ride stations, and rental housing

units. The characteristics can be divided into two categories: counting characteristics and dummy

variables.

This model emphasizes using only features that have ‘real’ units, as opposed to binary features.

The only binary dummy variable this model uses as a feature the presence of park-and-ride parking

spaces at a transit station. Instead of using measures of land use mix as proposed in other models

[12, 13], or binary dummy variables for universities and central business districts, the equivalent

information is provided naturally as counting data in the feature set. Counts of housing types (such

as large apartment buildings versus single family homes) replace land use mix; the number of jobs

at universities or in financial jobs provide more information than dummy variables for presence of

universities or central business districts.



Table 2.1: Examples of characteristics associated with zipcodes

Population related Employment related

Total population Total Employment pay
Population over age 65 Employment in finance industry
Population with bachelor’s degree Employment at hospitals
Number of residents employed full time
Number of housing units built after 2000

The selected characteristics are generally related either to the population of the zip code or the

number of jobs of the zip code. The captured characteristics of the built environment, such as

the quantity, age, and building type of the housing stock, are generally related to population. For

example, the total number of housing units is expected to be highly correlated with the population of

a zip code. Examples of characteristics are provided in Table 2.1. Some characteristics, such as total

population, are expected to have a positive relationship with ridership; others, such as population

under the age of 18, are expected to have a negative relationship. Examples of associations between

characteristics and ridership are provided in Figure 2.1. A summary of all the selected characteristics

is provided in Appendix B.



(a) An example of a positive association (b) An example of a negative association

Figure 2.1: Single covariates against the response variable with ordinary least squares (OLS) line of
best fit.

In Yao [14], a distinction is made between ‘Need Index’ features, a series of features that depend

on the characteristics around the station and are independent of the transit network; and ‘Transit

Network’ features, which do depend on the travel time between stations of the transit network. To

model network features for each station, the sum of each characteristic for every other station within

15 and 30 minutes transit time is included as a feature of the original station, as described in Section

2.6. This provides us a quantitative way to express the ’centrality’ dummy variable that is provided

as a flag in many models [9,12]. Centrality could be proportional to the count of population or jobs

within 30 minutes of a station, for example.

We translate zip code level data into transit station specific data by sampling each zip code’s geo-

graphic area to determine proximity to a transit station. For each zip code near the transit network,

a set of random points within that zip code is generated using rejection sampling. For each of the

those points, one or more closest stations are determined. Each point is assigned to one or more sta-

tion within walking distance, using the method defined in Section 2.3. Counts for the characteristics

of each zip code, such as population or employment, are then assigned to each station proportional

to the number of points assigned to each station.



2.3 Definition of ‘Walking Distance’

The area within walking distance of a station is called its ‘catchment’. To generate a feature for a

transit station, the total count of some characteristic within the catchment of that stations is con-

sidered. The standard transit catchment distance in literature for rail stations is one half mile (800

m). Guerra [15] suggests that one half mile is more appropriate for population as a feature while

one quarter mile (400 m) is better for employment as a feature. A case study [16] from a 2003

Montreal transit riders origin-destination survey concluded that approximately 50% of riders of the

city’s urban rail transit walk less than 500 meters to their stations, while 90% walk less than 1000

meters. The maximum walking distance is approximately 1500 meters. In another regression-based

study of catchment sizes, Gutierrez [13] found the optimal distance for for assigning population and

employment to a station was between 600 and 900 meters in straight line distance. A straight line

distance is measured as the crow flies as opposed to a distance following pedestrian walkways; this

distance measurement is consistent with the distances used in this analysis.

A significant concern when tabulating catchments is that in many of the densest regions of cities,

there are many stations within a few hundred meters of each other. For example, from the Mas-

sachusetts State House in downtown Boston, there are seven urban rail stations on four different

train lines within a 10 minute walk, according to Google Maps. Any of those stations could be the

‘best’ place to board and disembark the train for a commute to work at the State House, depending

on the direction and train line by which the commuter was arriving in downtown. It is important

that we allow some ‘overlap’ in catchment areas; people at one geographic location could use more

than one station for various transit needs.

Given this information, we choose cutoffs of 500 meters and 1000 meters for calculating station

distances. For any location that has residents, jobs, or other desired countable characteristics, all

stations within 500 meters will be considered equally likely to capture a share of that resident or

job’s transit demand. If there are no stations within 500 meters; then all stations within 1000 meters

will be considered.



2.4 Rejection Sampling of Zip Code Shapefiles

We translate zip code level data into transit station specific data by using a Monte Carlo method to

estimate feature counts near transit stations. Sample points are generated within each zip code near

the transit network. Those points are assigned to whichever stations are within walking distance of

the station, as defined in Section 2.3. If there are multiple stations within walking distance, then

equal fractions of that one point are assigned to each station. The ratio of points assigned to each

station to total points generated for each zip code is used to assign feature counts to each station,

such that

count(stationi) =
∑

j

wi j · count(zipcode j)

where wi j is the proportion of the points generated in zipcode j that are assigned, wholly or partially,

to station i. Not all areas within a zip code j will be within walking distance of any station i, so

∑
j

wi j ≤ 1

for all j. An algorithm for rejection sampling a single zipcode is provided in Algorithm 1.

The US Census Bureau provides TIGER/Line shapefiles of each zip code tabulation area (ZCTA)

in the United States at https://www.census.gov/geo/maps-data/data/tiger-line.html.

Random points are generated in a rectangular box drawn around the extremities of each zipcode’s

shape; these random points are accepted if they are within the shapefile or rejected if they are outside

it. Those points that are inside the shapefile are tested against author-created exclusion zones. These

zones are shapes within the zip code’s shapefile area that are known to not have any population,

employment, or other countable characteristics. The exclusion zones are mostly drawn over water

areas and parks. Those points that are inside the exclusion zones are also rejected. This creates a

set of points randomly drawn from the zip code’s land area, not counting unoccupied regions like

parks.

The set of points is tested for their distance to any transit stations to determine which station catch-



Algorithm 1 Algorithm for estimating characeristic counts that are near transit stations
Given zipcode is a single zipcode near the transit network
Let zipcode.latrange and zipcode.lonrange be maximum and minimum latitude or longitude for zipcode

shapefile
n← max(zipcode.area in hectares, 1000)
randomPoints← {}

while len(randompoints) < n do . Generate n random points within zipcode
lon ← random number ∈ zipcode.lonrange; lat← random number ∈ zipcode.latrange
point ← (lat, lon)
if point is inside zipcode.shapefile and point is not inside exclusion areas then
randomPoints ← randomPoints

⋃
point

for point ∈ randomPoints do . Assignment of points to stations
n0.5 ← number of stations within 0.5 km of point
n1 ← number of stations within 1 km of point

if n0.5 > 0 then
for station within 0.5 km of point do
station.characteristicValue += zipcode.characteristicValue / n0.5

else if n1 > 0 then
for station within 1 km of point do
station.characteristicValue += zipcode.characteristicValue / n1

ments they fall in, as described in Section 2.3. The characteristic counts associated with each tested

point are divided between all stations within 500 meters. If there are no stations within 500 meters,

then the point is divided between all stations within 1000 meters. If no stations are within 1000 me-

ters, that point is not assigned to any station. The total sum of points and fractional points assigned

to each station is divided by the total points available to get the fraction of each of the zip code’s

characteristic data counts is assigned to that transit station.

An example using zip code 02127, the South Boston neighborhood of Boston, illustrates the sam-

pling method (Figure 2.2). 100 random points are selected within the area of the shapefile. Of

these, 21 points indicated in gray are rejected due to exclusion areas based on water area, parks and

abandoned port facilities. Of the remaining 79 points, 8 are within 500 meters of Andrew station,

while 6 are within 500 meters of Broadway station. Moving out to the 1000 meter radius, 11 are

within 1 km of Andrew station, for a total of 19 that are close to Andrew; 7 are within 1 km of

Broadway station for a total of 13 that are close to Broadway; and 6 are within 1 km of both. The

6 points within 1 km of both stations are divided evenly between the two. The total population of



Figure 2.2: Illustration of nearest zip code estimation for zip code 02127.

South Boston is 36494. Therefore,

Assigned to station =
# points for one station ·

∑ # points for multiple stations
# stations for each point

# points for zipcode
· characteristic counts

=
19 + 6

2

79
· 36494 people

= 10163 people

are assigned to Andrew station. Similarly, 7391 people are assigned to Broadway station. Summed

over all zip codes near Andrew and Broadway stations, this shows how the total population within

walking distance of the station is estimated. This calculation is performed for all countable features

and all zip codes and summed total counts for each characteristic are used as a feature for each

transit station.



2.5 Variance of Monte Carlo estimates

With any Monte Carlo method for estimation, there is variance in the estimates generated. In this

case, the variance comes primarily from the random locations of the points. It is possible that in

different Monte Carlo trials, a station may get significantly more or less points nearby it. This

is especially significant in areas of high population density; one extra or missing point could be

worth hundreds or thousands of jobs in the densest areas of downtown Chicago or Boston. To keep

variance to an acceptably low level, we must generate enough sample points that variation between

trials is minimal.

The number of points that will be accepted by rejection sampling is set beforehand. We generate

random points, and use rejection sampling to see if they are inside the shape of the zipcode and

outside of any exclusion zones. We continue generating points until we have reached the desired

number of accepted points.

The land area of the zip codes near the studied transit networks vary in size from as small as 30

hectare in downtown Chicago to as much as 18100 hectares at the suburban end of transit lines

in Dallas. To provide an appropriate balance between accuracy and processing speed, we use one

accepted point per hectare, but with a minimum limit of 1000 accepted points per zip code. This

effectively provides over 10 points per hectare in for the zip codes in the densest parts of the studied

networks: the downtown areas of Chicago and Boston. These areas also have the densest network

of transit stations, with many stations within a kilometer of each other. In these denser areas, it is

important to have enough points that the division of points between stations does not result in too

much variance.

We generate 100 sets of estimates for the a single feature (total population) for all stations in the

six transit networks. Figure 2.3(a) shows a graph of means of total population estimates against

standard deviation of the population estimates, while Figure 2.3(b) is means against coefficient of

variation. The standard deviation shows an increasing linear relationship with the population mean.

The coefficient of variation is never greater than 10.4% and generally decreases with increasing

estimated mean population. The mean coefficient of variance over all studied stations is 5.3%.

By this method, the relative accuracy of any single station estimate of population or employment

relative to the mean of 100 estimates of the same feature ±10% .



(a) Standard deviation versus mean by transit station. (b) Coefficient of variation versus mean by transit station.

Figure 2.3: Indications of variance for Monte Carlo estimates of the population feature.

2.6 Generation of network-dependent features

For each ‘Need Index’ type feature generated by rejection sampling, a set of corresponding network-

based features are generated to represent the sum total of a certain characteristic (such as population

or employment) within a given travel time of that station. An algorithm for calculating network

characteristics is shown in Algorithm 2.



Algorithm 2 Algorithm for calculating network characteristic counts
for station∈ transit network do

nearby15 ← all other stations within 15 minutes travel time of station

nearby30← all other stations within 30 minutes travel time of station

for every characteristic in the model do

for otherStation ∈ nearby15 do

station.characteristicValue15 + = otherStation.characteristicValue

for otherStation∈ nearby30 do

station.characteristicValue30 + = otherStation.characteristicValue

The transit network is laid out as a directed graph, where nodes represent the transit stations and

edges are weighted by the travel time between the stations. Travel times between stations are avail-

able in the transit schedules published by the appropriate transit agencies. Travel times can be

different in different directions, following the published schedules. At transfer points, there is a

separate node for a single station on each line. The multiple nodes for the same station have edges

between them weighted by the average wait time between trains. The wait time is estimated at half

the time between trains at the station being transferred to. For example, if one train arrives every

10 minutes, then a transfer to a node on that line at any station will have an estimated travel time

of 5 minutes. Many transit agencies align arrival times so that one line will depart a few minutes

after another train arrives. No attempt is made to capture this more complicated arrangement of

estimated transfer times.

An illustration of the calculation of travel time between Sullivan Square and South Station in Boston

is provided in Figure 2.4. Starting at Sullivan Square on the Orange Line southbound, there are four

edge traversals totaling seven minutes to get to Downtown Crossing. From there, there is a 2.5

minute wait until a Red Line (also Southbound) train arrives, and 2.5 more minutes of travel to

South Station. The total travel time is thus twelve minutes.

For any given station, we find a set of all stations within aX distance by selecting an ego graph out

of the entire transit network. An ego graph is a sub-graph containing all nodes that are within a

specified distance of the central node.



Figure 2.4: Illustration of travel time calculation for Sullivan Square to South Station, in Boston.



For each station A and for the set of all stations (S ) within 15 minutes of A; the counts of each ‘Need

Index’ type feature is summed over all stations of S . This is the count used for the corresponding

network type feature of A. The same procedure is repeated for all stations within 30 minutes of A.

Thus, for each ‘Need Index’ type feature associated with a station in the feature set, there are two

additional features: one summing the counts of that feature within 15 minutes and one within 30

minutes.

These features are important for providing a measure of centrality to the network. Stations near

the center of the network and at transfer points between lines will have higher counts of network

features than peripheral stations. The other important function of the network features is to provide

estimates of the total scale of system ridership. The more people, jobs, and other characteristics near

transit stations, the higher the overall system ridership is expected to be. This is a key component

of the model’s portability between different city’s transit networks.

2.7 Analysis of zip code characteristics by city

The purpose of including multiple transit networks with varying levels of ridership is to ensure

that the model captures a broad range of relationships between employment, population and other

zip code characteristics on the one hand, and transit ridership on the other. Figure 2.5 shows the

employment and ridership counts within walking distance assigned to each station on the transit

networks. The ridership of each stations is proportional to the area of the marker for each station.

We can see that there is a wide range of population and employment figures near transit stations.

In our selection of six transit networks, some networks have much higher peaks of certain zip code

characteristics than others, so the graphic is divided into two subfigures, one for the higher ridership

networks and one for the lower.

Station remoteness has a significant impact on the characteristics of stations. For example, the five

highest population transit stations are all in Los Angeles. It is not true that the densest areas of

Los Angeles have a higher population density than Boston or Chicago. Rather, the Los Angeles

transit network has lower station density than Boston or Chicago in the areas of highest population

density. Therefore, some stations in high population density areas of Los Angeles will have a transit

catchment of up to two square kilometers. For Boston or Chicago, with closer station spacing and

multiple lines, any point in the areas of highest population density will have four or more stations

within walking distance.



(a) Boston - Blue; Chicago - Red; Los Angeles - Green

(b) Atlanta - Blue; Dallas - Red; Denver - Green

Figure 2.5: Employment against population with a 15 minute transit ride for sets of three transit networks.
Area of marker represents ridership of the station



Table 2.2: Network wide characteristics for the six transit networks considered in this thesis

Network City Total Population Total Employment Network length (km) Avg Weekday Ridership

Chicago 1189454 872206 157 608472

Boston 622484 656375 98 591823

Los Angeles 935041 436846 169 254183

Atlanta 150171 207601 77 150237

Dallas 255092 261813 150 96069

Denver 161542 170631 149 75128

The overall characteristics of each transit network are found in Table 2.2. There is a positive lin-

ear relationship between both population and employment and ridership at the network-wide level.

However, the effect of network length is also significant. For example, Atlanta’s population and em-

ployment near its transit stations are both lower than that of Dallas, but Atlanta’s ridership is fifty

percent larger. Atlanta’s network length is about half that of Dallas, suggesting that Atlanta’s tran-

sit accessible population and employment are compressed into a much smaller area. This density

appears to be a significant factor in Atlanta’s higher ridership. However, looking at Figure 2.5(b),

where Atlanta’s stations are in the blue and Dallas’ in red, it is not clear that Atlanta’s stations have

any individual advantage in population and employment.

This shows the necessity of the network-dependent features. In Figure 2.6, we see the sum of pop-

ulation and employment within a 15 minute transit rider of each station, instead of within walking

distance of each station. In Figure 2.6(b) we see that Atlanta’s smaller network and more tightly

spaced stations means that stations generally have more other stations within a given travel distance.

Therefore, many of Atlanta’s stations have higher network population and employment counts than

their corresponding stations in Dallas. The inclusion of the network features will allow the regres-

sion model to more accurately predict the higher ridership for stations in Atlanta.



(a) Boston - Blue; Chicago - Red; Los Angeles - Green

(b) Atlanta - Blue; Dallas - Red; Denver - Green

Figure 2.6: Employment against population with walking distance for sets of three transit networks.
Area of marker represents ridership of the station.



Chapter 3: Model generation and Error Metrics

3.1 Metrics for assessing accuracy of predictions

In general, the projected ridership forecasts of new transit infrastructure investments significantly

overestimates transit ridership. The pioneering study in this field by Pickrell in 1989 [17] found

that for ten rail projects completed between 1977 and 1985, and assessed between 1986 and 1989,

the actual ridership was between 28% and 85% lower than projected. A 2006 study [18] of 25

major passenger rail projects in 14 nations found that 21 of the projects had actual ridership below

projections, with the average true system ridership 48% below the projection. Accurate assessment

of projection accuracy is imperative for creating ridership estimates that serve the public interest.

To assess the predictions from regression analysis, there should be two metrics used: one for the

total system ridership, and another for station level ridership. The economic justification for new

construction of a transit system is based on projections of total system ridership. The projected cost

of operating the system must be proportional to the projected revenue from ridership. The placement

of stations should be guided by an evaluation of station level ridership. Decisions on whether to fund

infill stations along existing transit lines, or line extensions to previously unserved areas depend on

analysis of ridership at the station level. Therefore, it is important to create a ridership model that

optimizes both system and station level ridership.

Following Pickrell, the metric for system-wide projection accuracy is standard percentage error in

total system ridership, which we will refer to as system error. This error is

Esystem =

∣∣∣∣∣∣ ∑
i ∈ stations

yi,pro j −
∑

i ∈ stations
yi,true

∣∣∣∣∣∣∑
i ∈ stations

yi,true
,
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where ypro j is the projected ridership and ytrue the true ridership for each station, and each is summed

over all stations in a transit network.

Hardy [19] extends Pickrell’s analysis by including absolute station error for stations on newly

added sections of an existing transit network. Following Hardy, a measure of station level error on a

network is the summed absolute error of all station projections. The rail networks in this study vary

widely in total ridership; therefore, to allow network-to-network comparison, this summed absolute

station error can divided by total system ridership. The resulting metric for station error given a

projected (ypro j) and actual ridership (ytrue) is

Estation =

∑
i ∈ stations

∣∣∣ yi,pro j − yi,true
∣∣∣∑

i ∈ stations
yi,true

.

We refer to this metric as station error.

3.2 Data distribution and regression selection

Regression models for station level ridership have used ordinary least squares regression [9–13]

to generate predictions. We investigate the applicability of more complex regression models, and

whether or not these other regression types can provide better modeling accuracy.

The dependent variable, average weekday ridership at a station, has range [0,∞). The exponential

function has this range and so it is reasonable to assume that there may be a logarithmic relationship

between characteristics and ridership. We can compare a linear least squares line of best fit with a

line of best fit using the logarithm of the ridership as the response variable.

There are generally two types of feature included in this survey: those that are related to population

and those that are related to employment. A plot of all stations’ population versus ridership appears

in Figure 3.1 with linear and logarithmic regression lines and residuals. A similar treatment for

employment versus ridership appears in Figure 3.2. In Figures 3.1(a) and 3.2(a), a linear and loga-

rithmic best fit line are fitted to the data. The residuals from the linear regression line are plotted in

(b) and from the logarithmic regression in (c) of each figure.

The coefficient of determination for the two regression types for both population and employment



(a) Ridership against population. Linear regression in
red, log regression in blue.

(b) Residual from linear regression against population

(c) Residual from log regression against population

Figure 3.1: Analysis of population regres-
sion

(a) Ridership against employment. Linear regression
in red, log regression in blue.

(b) Residual from linear regression against employ-
ment

(c) Residual from log regression against employment

Figure 3.2: Analysis of employment regres-
sion



are shown in Table 3.1. Judging from the coefficients of determinations and the distributions of the

residuals, there does not appear to be any clear modeling advantage from using either a linear or log

transformed response variable.

Table 3.1: Regression of Population and Employment against ridership

Variable Linear R2 Log R2

Population 0.0267 0.0034

Employment 0.1948 0.1878

The metrics for projection accuracy introduced in Section 3.1 depend on the absolute difference

between actual and predicted ridership. This suggests that regression using the Least Absolute De-

viation (LAD) (3.4.4) loss function is appropriate for this problem. Since the response variable

(ridership) has a value of integer counts, and the variance of ridership increases with increasing

employment, we will also investigate the use of a Poisson model. Finally, we will use ordinary least

squares (OLS) regression as a baseline comparison, to see if the other methods have any perfor-

mance advantage compared to the currently used regression type. To test a variety of transformed

relationships between the features and response variable, we will test the Poisson regression with

both the log and identity link functions, and least squares regression with both a linear response

variable and a log-transformed response variable.

Upon performing any regression analysis, it becomes immediately apparent that one set of features

is different from the others. Estimating station ridership using only the number of post-secondary

(college-level) students within a 15 or 30 minute transit trip of each station provides a very ac-

curate measurement of system level ridership. These variables are represented in the model as

15net students and 30net students, respectively. We show the results of a single variable

OLS regression of the one variable against ridership. The scores are the average of the six way

cross-validation across the six transit networks in the study; each of the six networks is used as the

test set in one case, while the other five transit networks are used as the training set. The ‘best’



scoring other feature (15net hunits old; the number of housing units built before 1940 within a

15 minute transit ride) is shown for comparison.

Table 3.2: Error for single variable OLS for selected features

Variable System Error Station Error

30net students 0.1016 0.5961

15net students 0.0946 0.6197

15net hunits old 0.2854 0.6700

The system error scores for 30net students and 15net students are much lower than for any

other variable, while the station error for these features are also lower than any other features. As we

will see, the single-feature OLS of either of these features produces a model that is approximately

as good as any other model we will develop. This raises questions about the relationship between

this feature and the response variable. It is possible that the population of students within walking

distance of a transit station is driven by the availability of local transit, and not the other way around;

that is, students may choose their housing locations based on availability of transit. In that case, the

number of students is not a valid explanatory variable. Since the relationship is unclear and these

features are outliers, we will remove all features derived from number of post-secondary students

from the model.

There are 94 remaining features, while some transit networks have as few as 38 stations. Feature

selection is necessary to prevent the model from being over-specified. We use two methods of

feature selection for each of the five regression types: LASSO regression described in Section 3.3.1

and a stepwise forward selection method described in Section 3.3.2.



3.3 Feature Selection

3.3.1 Feature selection by LASSO regularization

Least Absolute Shrinkage and Selection Operator (LASSO) regression can be used to perform fea-

ture selection for regression analysis. The LASSO method adds a regularization term to an objective

function to penalize regression coefficients. By forcing the sum of the absolute values of all regres-

sion coefficients to be less than a fixed value, some regression coefficients are set to zero, thereby

eliminating them from the model.

Because LASSO constrains the magnitude of the coefficients, it is important that all coefficients are

on the same scale. Therefore, for all LASSO feature selection methods, the features are normalized

by z-score standardization. Each entry xi, j in the covariate matrix is scaled by

xi, j,scaled =
xi, j − µi

σi

where µi and σi are the mean and standard deviation of the i-th column of the covariate matrix.

An important part of the LASSO solution is selection of λ, the penalty coefficient. The derivation of

the LASSO optimization equations are described in each subsecetion of Section 3.4. The penalty in

a LASSO regression is divided into two parts: a loss function on the error of the predicted values and

a penalty on the regression coefficients. For a sufficiently large value of λ, the optimum solution is

for all regression coefficients to be zero, thus eliminating the regression coefficient penalty. Solving

for the optimum λ thus requires identifying the minimum λ value for which the solution is all zero

coefficients, a solution with zero degrees of freedom. This is typically done by a grid search; this is

the method used by the glmnet package [20]. From glmnet, we use the cross-validation methods

that will automatically optimize λ. The minimum value of λ where the solution has zero degrees of

freedom is identified by grid search, and then cyclical coordinate descent is used to find the optimum

λ value.

LAD LASSO is performed using the flare package in R; this package does not have a built in

cross-validation algorithm to optimize λ. Instead, the author created a λ grid search algorithm

comparable to that performed by glmnet. The Poisson LASSO with identity link is performed

by author supplied code, where λ is solved concurrently with the regression parameters (θ) by an

interior point solver, as detailed in section 3.4.2.



LASSO regression is performed six times for each LASSO regression type. A trial is made with

each city as the test set and all other cities as the training set. Therefore, we identify six sets of

selected features for each LASSO regression type. To choose a single set of features from these six

sets, we choose all features that are selected by four or more of the six cross-validation trials. This

is the feature set that will be reported in the results section.

3.3.2 Feature selection by stepwise forward selection

Since the data set for this problem is small–with only 466 total stations–we can validate the LASSO

results using a stepwise forward selection approach. This method is a greedy search of all possible

features to find the best combination of features that minimizes our error metrics, performed in a

multi-step process. This process is performed for each of the five regression types defined in Table

3.3.

In the first step, for all features, we perform a single-covariate regression against the response vari-

able: ridership. Each feature is evaluated in six-way cross validation, where each of the six transit

networks is used as the test set once, while the other five are used for the training. Since there are

two types of error defined in Section 3.1, station and system error, we use the arithmetic mean of

the two error metrics to score each feature. We then take the arithmetic mean of the score from all

six trial runs, and select the single feature with the lowest error score. If k represents one of the six

systems that is evaluated as the test set, then the error score for each feature is

E f eature =

∑
k∈6 systems

Ek,system + Ek,station

2

6
.

After choosing a feature in the first step, in the second step we perform a two covariate regression

against ridership. The feature selected in the first round is used, and we test all other features as

the second covariate. The second feature that yields the lowest error score is then selected. The

subsequent steps continue with multiple regression using all of the already chosen features.



Algorithm 3 Algorithm for choosing variables by stepwise forward selection
Let F be set of all features
R = ∅

for i← 1 to 25 do
for f ∈ F do

Predict test set using regression with features f
⋃

R of the training set
Calculate error score for f

r = min( f ); r is feature f ⊂ F with lowest error score
R = R

⋃
r

F = F − r

For each regression type, we perform 25 steps of forward selection, identifying 25 features, in order,

according to Algorithm 3. We then plot the error scores against number of features to find number

of features that yields the lowest error score; and example of these graphs is Figure 4.1. The set of

features that produces the lowest error scores for this regression type is included in the results in

Table 4.1.

3.4 Derivation of Regression methods

For the five regression types described, the methodology and packages used are described below. A

chart of packages used for implementation is presented in Table 3.3.



Table 3.3: Regression types and packages used in analysis.

Regression Method Type package

Least Squares Linear LASSO: glmnet in Python

Forward Selection: statsmodels in Python

Log Transform LASSO: glmnet in Python

Forward Selection: statsmodels in Python

LAD Linear LASSO: flare in R

Forward Selection: statsmodels in Python

Poisson Log Link LASSO: glmnet in Python

Forward Selection: statsmodels in Python

Identity Link LASSO: Author-created in Python

Forward Selection: statsmodels in Python

3.4.1 Least squares regression

Ordinary Least Squares (OLS) regression is a model where the ith of m response variables yi is a

linear function of the regressors,

yi = x>i θ + εi

where θ is a parameterization. The error component εi is assumed to be normally distributed. The

expected value of any element of Y is the corresponding element of Xθ:

E(yi | xi; θ) = x>i θ

Here, yi is one of m response variables, θ ∈ Rp is a length p vector of parameters and xi is one

of m length p vectors of covariates. An intercept is implemented by pre-pending a feature with

constant value 1 to each vector xi. For this model, the p = 95 parameters correspond to the 94

implemented features and one intercept column. The response variables are the ridership of each

individual station, so m is the number of stations included in any model fitting.



For each response variable yi, the residual is yi − x>i θ. For OLS, the measure of best fit is the sum of

squared residuals, so we optimize the parameters by

θ̂ = arg min
θ∈Rp

m∑
i=1

(
yi − x>i θ

)2

to obtain a least squares best fit solution θ̂.

For LASSO regularization [21], an additional constraint on the parameters is introduced to limit the

absolute magnitude of the sum of the parameters:

p∑
j=1

|θ j| ≤ t.

This has the practical effect of selecting only a subset of the provided features. We apply this

constraint to OLS to solve for parameters such that

θ̂ = arg min
θ∈Rp

1
m

m∑
i=1

(
yi − x>i θ

)2
+

p∑
j=1

λ
∣∣∣θ j

∣∣∣ .

The tuning parameter λ is proportional to the strength of the regularization penalty. The larger the λ,

the fewer features will be selected. The LASSO solver used for both Least Squares and Poisson in

this study is the glmnet package. This package identifies the optimal λ by dividing the data set for

cross-validation, then using a grid search and cyclical coordinate descent to identify the λ associated

with minimum error.

For the least squares regression using the log transform, we transform the dependent variable Y to

log Y and perform the same OLS or LASSO regression.

3.4.2 Poisson regression

Poisson regression is case of the generalized linear model (GLM) [22]. GLM generalizes linear

regression by relating the expected value of the response variable to the linear predictor through a

link function.



E(yi|xi; θ) = g−1(x>i θ)

The distribution of the response variable follows a probability distribution from the exponential

family. For Poisson regression, the variance follows a Poisson distribution. We perform Poisson

regression with both its canonical log link and identity link. For the log link, the mean of the

predicted Poisson distribution is given by

E(yi | xi; θ) = ex>i θ,

where x, y, and θ are as defined in the last section. Using this mean as the parameter of a Poisson

probability mass function, the joint distribution is

p(y1, ..., ym|x1, ..., xm; θ) =

m∏
i=1

eyi x>i θe−ex>i θ

yi!
.

This represents the probability of any set of ridership numbers given a feature set and parameteriza-

tion. The optimal parameterization is obtained using the negative log-likelihood expression

−L(θ|X,Y) =

m∑
i=1

ex>i θ − yix>i θ.

In this expression, we ignore the constant factorial term which falls out in differentiation. This

convex function is the objective function for our optimization problem and is minimized over θ ∈

Rp.

For LASSO regression, we minimize the parameters [23] over

θ̂(λ) = arg min
θ∈Rp

1
m

m∑
i=1

ex>i θ − yix>i θ +

p∑
j=1

λ
∣∣∣θ j

∣∣∣ .

3.4.3 Poisson regression with Identity Link

For the identity link, the mean of the predicted Poisson distribution is given by

E(yi | xi; θ) = x>i θ



which yields a joint distribution

p(y1, ..., ym|x1, ..., xm; θ) =

m∏
i=1

(
x>i θ

)yi e−x>i θ

yi!
.

The negative log likelihood of this distribution is the objective function

−L (θ | X,Y) =

m∑
i=1

−yi log
(
x>i θ

)
+ x>i θ. (3.1)

This function is convex and so the minimum can be obtained using convex optimization methods.

With no suitable package available to perform LASSO regression using Poisson regression and the

identity link, we implement a solution using Python. We use the primal-dual interior point method

as outlined in Boyd and Vandenberghe [24]. We will set up a problem of the form

minimize f0(x)

subject to fl(x) ≤ 0, l = 1, ..., r.

There are no equality constraints of the form Ax = b in this problem setup; there are only inequality

constraints related to LASSO. Both f0 and the constraint functions { fl}rl=1 must be convex and twice

continuously differentiable. In our case, the function to be minimized, f0, is the negative log like-

lihood in Equation 3.1 plus the lasso penalty λ
∑p

j=1 |θ j|. However, the latter is not differentiable.

Therefore we split each coefficient into into two parts

θ j = θ+
j − θ

−
j (3.2)

where

θ+
j =

 θ j, θ j > 0

0, θ j ≤ 0
θ−j =

 θ j, θ j < 0

0, θ j ≥ 0
(3.3)

so that

|θ j| = θ+
j + θ−j , j = 1, . . . , p.

There are p entries in θ; and, for each entry, both θ+
j and θ−j in Equation (3.2) must be non-negative.

Accordingly, we introduce constraint functions f1 j and f2 j, respectively.



Defining zi = [x>i − x>i ]> ∈ R2p and likewise θ± = [(θ+)> (θ−)>]> ∈ R2p, the selected functions,

plus their derivatives and gradients are:

f0(θ±) =

m∑
i=1

{
−yi log

(
z>i θ
±
)

+ z>i θ
±
}

+ λ1>(θ+ + θ−)

∇ f0(θ±) =

m∑
i=1

zi
(
−yi + z>i θ

±
)

z>i θ
±

+ λ1 ∇2 f0(θ±) =

m∑
i=1

yiziz>i(
z>i θ
±
)2 (3.4)

f1 j(θ±) = − θ+
j ,

[
∇ f1 j(θ±)

]
k

=


−1 j = k, j ≤ p

0 else
∇2 f1 j(θ±) = 0, (3.5)

f2 j(θ±) = − θ−j
[
∇ f2 j(θ±)

]
k

=


−1 j = k, j > p

0 else
∇2 f2 j(θ±) = 0, j = 1, . . . , p,

(3.6)

We establish the modified Karush-Kuhn-Tucker (KKT) equations for solving this problem using a

Newton method. There is no equality constraint, which takes the form Ax = b in the usual KKT

conditions.

The Newton steps for solving the modified KKT equations are given by

rγ(θ±, µ) =



∇ f0(θ±) +
∑2

k=1
∑p

j=1 µk j∇ fk j(θ±)

−diag(µ)



f11(θ±)
...

f1p(θ±)

f21(θ±)
...

f2p(θ±)


− 1

γ1,


=

 ∇ f0(θ±) − µ

diag(µ) θ± − 1
γ1

 = 0

where µ = (µ11, . . . , µ1p, µ21, . . . , µ2p)> ∈ R2p
+ is a vector of non-negative Lagrangian multipliers

associated with the constraint functions fk j, k = 1, 2, and j = 1, . . . , p.

For a current point u =
(
(θ±)> µ>

)>, the next Newton step will be ∆u =
(
(∆θ±)> ∆µ>

)>. The

Newton step is characterized by the linear equation

rγ(u + ∆u) ≈ rγ(u) + ∇rγ(u)∆u = 0



More specifically, one obtains
∇2 f0(θ±) +

∑2
k=1

∑p
j=1 ∇

2 fk j(θ±)
[
∇ f11(θ±) . . . ∇ f2p(θ±)

]
−diag(µ)


∇ f11(θ±)>

...

∇ f2p(θ±)>

 −diag
(
{ fk j(θ±)}

)

∆θ

±

∆µ

 = −


∇ f0(θ±) − µ︸        ︷︷        ︸

rdual

diag(µ) θ± −
1
γ

1︸              ︷︷              ︸
rcent


.

We retain the objective function f0 and its gradient and Hessian as defined in (3.4) an substitute

the relations for the constraint functions established in (3.5) and (3.6) to get a set of two linear

equations:

∇2 f0(θ±)∆θ± − ∆µ = −rdual (3.7)

diag(µ)∆θ± + diag(θ±)∆µ = −rcent (3.8)

We solve (3.8) for ∆µ in terms of ∆θ±,

∆µ = diag(θ±)−1 (
−rcent − diag(µ)∆θ±

)
, (3.9)

and plug into (3.7) to get

∇2 f0(θ±)∆θ± + diag(θ±)−1 (
rcent + diag(µ)∆θ±

)
= −rdual

⇔
(
∇2 f0(θ±) + diag(θ±)−1diag(µ)

)
∆θ± = −rdual − diag(θ±)−1rcent . (3.10)

The update direction ∆θ± is computed from the linear equation in (3.10) with rdual and rcent as

defined in (3.7) and (3.8), respectively.

Algorithm 4 Algorithm for solving interior point primal-dual problem
Given ε > 0 and ν > 1

while ||rdual||2 < ε and η ≤ ε do
γ ← pν/η
Compute ∆θ± and ∆µ using (3.9) and (3.10).
Determine step length s > 0
θ± ← θ± + s∆θ±
µ← µ + s∆µ

Minimization over θ± and µ is obtained by by iteration, as shown in Algorithm 4. The duality gap,

the difference between the primal and dual solutions, is not necessarily feasible during each iteration



of the interior point method. Therefore, a surrogate duality gap is

η(θ±, µ) = −

2∑
k=1

p∑
j=1

µk j fk j(θ±) = µ>θ±.

A scaling constant for γ is ν. During each iteration, we obtain an update direction ∆θ± in accordance

with (3.10) and ∆µ in accordance with (3.9). The iterations repeat until both the surrogate duality

gap and the dual residual are below a certain threshold ε.

3.4.4 Least Absolute Deviations Regression

Least absolute deviations regression is similar to OLS (defined in Section 3.4.1), except that instead

of minimizing the sum of squared residuals loss function, it minimizes the sum of the absolute value

of the residuals

θ̂ = arg min
θ∈Rp

m∑
i=1

∣∣∣ yi − x>i θ
∣∣∣ .

We could add a weight factor to LAD regression so that the optimization takes the form

θ̂ = arg min
θ∈Rp

m∑
i=1

wi
∣∣∣ yi − x>i θ

∣∣∣ .
if we choose wi = 1/yi, then the LAD loss function is the same as the station error (Estation) defined

in Section 3.1:

θ̂ = arg min
θ∈Rp

m∑
i=1

∣∣∣ yi − x>i θ
∣∣∣

m∑
i=1

yi

.

Therefore, this regression should minimize one of the two error metrics we have defined for this

model.

For LASSO regularization, the the constraint on parameter absolute magnitude is included to get

θ̂ = arg min
θ∈Rp

m∑
i=1

wi
∣∣∣ yi − x>i θ

∣∣∣ +

p∑
j=1

λ
∣∣∣θ j

∣∣∣ ,



where the weight factor is the same as above.



Chapter 4: Results

4.1 Results table and baseline comparisons

Table 4.1: Results of regression analysis, compared with some baseline measures

Regression Type Feat Select Type Min System Err Min Station Err # Feat Avg System Err Avg Station Err

LstSq - Linear Pop and Emp only 0.0451 0.5324 2 0.5172 0.8307
LstSq - Linear Best Single Feat 0.0465 0.4731 1 0.2852 0.6700
LstSq - Linear Random Forest 0.1181 0.4161 5 0.3214 0.6439
LstSq - Linear Random Forest 0.2146 0.4545 10 0.3900 0.7205

LstSq - Linear LASSO 0.0152 0.4717 9 0.3455 0.7057
LstSq - Log Trans LASSO 0.0404 0.4501 19 0.4041 0.6773
Poisson - Log Link LASSO 0.0892 0.4753 10 0.4857 0.7731
Poisson - Identity LASSO 0.0721 0.4516 10 0.4214 0.7142
LAD LASSO 0.0241 0.6417 12 0.4443 0.7061

LstSq - Linear Stepwise 0.0216 0.4461 12 0.1919 0.6197
LstSq - Log Trans Stepwise 0.0450 0.4997 16 0.1741 0.5789
Poisson - Log Link Stepwise 0.0426 0.4861 15 0.2184 0.6218
Poisson - Identity Stepwise 0.0009 0.4113 8 0.1936 0.6071
LAD Stepwise 0.0005 0.3986 4 0.1792 0.5610

Table 4.1 shows the results of all the tested regression models. For each model, there are five result

columns. Each model selects a set of features; feature selection by the LASSO method is described

in section 3.3.1 while feature selection by forward selection is described in 3.3.2. For each of the

six transit systems, a model of the appropriate regression type is made from the other five transit
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systems. The model uses the selected feature set and we calculate the system and station errors.

Reported in the first two columns are the minimum system and station error for any of the six

models. The last two columns are the average of the system and station errors across all six models.

In the top block of Table 4.1, we include a series of baseline comparison measures. The first is

a simple, two-variable OLS regression taking the two variables that are most obviously relevant

to transit ridership: population within walking distance, and employment within walking distance.

The second baseline comparison is the ‘best’ single feature that we selected from our pool of 94

available features. The single best feature is the number of housing units built before 1940 within a

15 minute transit ride of the station of interest.

The third and fourth baseline comparisons use features selected by random forest regression [25].

A random forest model is implemented using the python programming language’s scikit-learn

package. The feature matrix is sampled randomly and distributed independently into a forest of 10

trees. Using least squares error, the random forest model predicts the response variables. However,

we are interested in feature selection. The ’Gini importance’ metric, which is the decreases in Gini

impunity criterion for each feature summed over the entire forest [26], is used to score each feature

by its relative importance.

We run 100 iterations of the random forest model, and sum the feature scores for each run. The

top five and ten selected features are analyzed in the results table. The random forest feature sets

outperform the population and employment based model, but does not outperform the best single

feature.

An analysis of the accuracy of the methods shown in Table 4.1 is included in Section 5.

4.2 LASSO regularization results

The various LASSO regression types have a large variance in number of features chosen, both

between transit networks and between regression types, shown in Table 4.2. Since the six way cross

validation produces a different set of selected features for each transit network, we must develop a

means for determining a ‘best’ feature set for a common comparison. To represent the results of the

LASSO regression, all features that are selected by four or more of the six cross-validation trials are

used.



Table 4.2: Number of features selected by LASSO; by transit network and regression type

Regression Type Atlanta Boston Chicago Dallas Denver Los Angeles Average Selected

LstSq - Linear 10 2 8 9 10 17 9.3 9

LstSq - Log Transform 26 12 17 22 28 46 25.2 19

Poisson - Log Link 11 5 12 26 27 29 18.3 10

Poisson - Identity Link 12 15 13 12 11 12 12.5 10

LAD 0 26 15 27 49 49 27.7 12

The LAD LASSO is unusual in its high variability between different trial runs. On average, the six

trials selected 28 features, compared to only 12 features that were selected by four different trials.

On the opposite side of the spectrum, linear least squares LASSO selected an average of 9 features

per trial, and 9 features were selected by four or more trials. For linear least squares, the different

trials substantially agreed when selecting variables.

Another way to compare the results of the different trials and methods is to measure the sparsity of

the coefficients. Sparsity is a measure of the ‘empty space’ in the paramaterization of the model.

We choose a non-normalized variant of the Hoyer measure for sparseness [27] as our metric:

sparseness(β) =

(
|| β ||1
|| β ||2

)2

.

The Hoyer measure is proven to meet the intuitive attributes of a sparsity measure [28], but is

normalized on the range [0, 1]. We desire our variant to have a range related to the number of

features selected, to provide additional information about the quality of LASSO feature selection.

For a vector with minimum sparseness, βmin = [a 0 0 ...],

sparseness(βmin) =

(
| a |
√

a2

)2

= 1.



For a vector with maximum sparseness, βmax = [a a a ...],

sparseness(βmax) =

(
k| a |
√

ka2

)2

= k

where k is the length of vector β. The maximum possible sparseness score, for a parameter vector

with equal coefficients for all features, would be the number of features. For our application, there

are 94 features, so the range of the sparseness metric is [1, 94].

Table 4.3: Number of features selected by LASSO; by transit network and regression type

Regression Type Atlanta Boston Chicago Dallas Denver Los Angeles

LstSq - Linear 3.5 1.7 2.8 3.4 4.2 6.0

LstSq - Log Transform 1.6 1.3 1.4 1.6 2.1 7.2

Poisson - Log Link 1.2 1.1 1.2 1.6 1.7 2.3

Poisson - Identity Link 4.1 3.6 4.2 3.8 4.0 4.3

LAD NaN 12.9 8.5 9.6 15.9 15.7

The LAD regression is notable both for the high sparseness of its parameterizations and for the case

of Atlanta where no variables are selected. Also notable is that Los Angeles has a higher sparseness

than any other city for four of the five regression methods; and has the second highest sparseness

for the fifth.

For all regression types, the LASSO method of feature selection performs significantly worse than

the forward selection method. The results in Table 4.1 allow a comparison of the LASSO regression

against some baseline measures. None of the LASSO methods outperform the five variable random

forest model or the best single variable, in either error metric.



(a) Station Error against number of variables selected (b) System Error against number of variables seleted

Figure 4.1: Error against number of features used for stepwise forward selection
Blue - Least Squares Linear; Green - Least Squares Log; Red - Poisson Log; Magenta - Poisson Identity; Black - LAD

4.3 Forward selection results

Using the method for feature selection described in Section 3.3.2, we select the fist 25 features and

graph the resulting system and station error scores in Figure 4.1. The graphed data point for both

system and station error is the average error from using each of the six transit systems as the test

set.

In general, each of the error scores decreases with the addition of new features up to a certain

number of covariates, and then increases again. The minima for the system and station errors do not

coincide with each other for any of the five regression methods, so there is a range of features which

produce very similar error scores. By using the arithmetic average of the system and station errors,

we pick an optimum number of features for each regression type; this is reported in Table 4.1.

The station error is identical to the Least Absolute Deviation loss function. Therefore, it is not

surprising that this regression type performs the best on the Station Error metric, having the lowest

station error for up to 15 features. An interesting result of LAD regression is that the station error

curve has its minimum much earlier than the other regression types, which show constant decreasing

station error for at least the first six features. In the system error metric, the LAD regression loses

its advantage. Instead, both the Least Squares regression methods produce low system error scores



with increasing numbers of variables.

The minimum scores from each regression type are recorded in Table 4.1 along with the average

score over the range of good features. The stepwise regression significantly outperforms the LASSO

regression in creating feature combinations that can accurately predict ridership in unknown transit

networks. All the stepwise regression methods outperform all of the baseline methods showing the

first block of the results table, in both error metrics.

4.4 Analysis of selected features

A summary of selected features is given in Table 4.4. There are ten total regression methods used

for feature selection; five LASSO methods and five forward selection methods. The count columns

in Table 4.4 shows the number of times each feature was selected by each regression method. For

example, the near hospitality feature was selected by all ten methods, five LASSO and five

forward selection.

The highly rated features display a mixture of potential correlation and causation with respect to

transit ridership. For example, a major university is likely to drive transit ridership both in the

immediately adjacent stations, and in nearby areas where students especially will live. On the other

hand, the number of hospital jobs (30net medical) within 30 minutes of transit is more likely to

be a reflection of population density rather than a driver of transit ridership. Some features, like the

ubiquitously selected near hospitality are a mixture of both. Restaurants and hotels are likely

to be located in areas of good transit accessibility, while they themselves will drive transit ridership

to take advantage of their services.

Because the forward selection models significantly outperformed the LASSO models, the variables

chosen by the forward selection models are more likely to useful to a transit model. Conversely,

there are several variables that were chosen by nearly all of the LASSO models, such as the num-

ber townhouses and duplexes within 15 minutes of a transit station (represented by feature name

15net hunits attached) and the number of small apartment buildings within 15 minutes of a

transit station (15net hunits medium). Since the LASSO methods performed worse than the

baseline measures, it is likely that some of these variables actually decrease the performance of

a model.



Of the 94 features, 48 were not selected by any of the feature selection methods. Twenty-nine

features were selected more than once, and fifteen were selected more than once by the forward

selection models.

Table 4.4: Features that were frequently selected by regression methodologies

Feature Name LASSO Forward Selection Total Count

near hospitality 5 5 10

parking 4 3 7

near university 4 2 6

15net hunits old 2 3 5

30net medical 3 2 5

15net university 1 3 4

30net hunits large 2 2 4

near entertainment 2 2 4

15net hunits attached 4 0 4

15net hunits medium 4 0 4

30net entertainment 1 2 2

near hunits detached 1 2 3

near hunits old 1 2 3

near medical 1 2 3

near emp pay 2 1 3

near employment 2 1 3

near pop old 2 1 3



Chapter 5: Conclusion and Future Work

Ultimately, the error scores for the forward selection models for all five regression variants in Table

4.1 are very similar. There is little evidence that one regression type is significantly more effective

than any other. All five regression types are able to give system-wide ridership estimates within

20% of the true value for identified sets of features. This error compares favorably with the 48%

average ridership prediction error reported for 25 transportation networks in Flyvbjerg [18], where

Flyvjerg uses the same system error model identified in Section 3.1.

In addition, this model produces ridership estimates based on information publicly available to

citizens. A ridership model can be trained on public data from cities with transit systems in the

United States. A city with no existing intra-urban rail transit system would only need to obtain

zip-code level information available from the US Census Bureau’s website to apply such a model to

generate ridership estimates for a new construction rail system.

The Mannheim-Florian four step model fundamentally depends on existing transit ridership infor-

mation. For example, the starting point of a four step analysis for a new light rail line would be

an existing bus line that runs a similar, hopefully identical, path. The advantage of this regression

model is that it creates a new estimate from different sources, independent of any knowledge of the

current system.

A model trained on the transit system of the six US cities included in this work, and using any of

the five regression methods tested would be sufficiently accurate to justify use for validating new

construction, system-wide cost estimates for urban rail transit in the United States.
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5.1 Future Work

Future work in on this model could proceed in two directions. The first direction is to continue im-

provement of the source data. This project used only zip code shapes to estimate counting features,

since job and housing data was available only for the zip code, but the population features exist in

more granular detail at the Census Tract level. The author generated exclusion zones which were

designed to prevent job and people from being located in parks and water could be improved by in-

corporating detailed city land use maps. Finally, there is a major deficiency in source data because

neither federal, state nor local government workers are included in the employment data sources

used by the model. Of particular concern are university employment; university jobs within walk-

ing distance was a selected feature in five of the six models. Several large universities are located

on the transit networks of this study and were not accounted for, such as University of Illinois at

Chicago, University of Colorado–Denver, and University of Massachusetts–Boston. There are other

cities not included in this study that have very large public universities, like Minneapolis, Austin,

or Columbus. Under-representation of university jobs in these cities would negatively affect the

validity of any estimates, especially given the importance of university related features in Table 4.4.

The second direction for future work is improvement of the model itself. The feature summary for

this paper only analyzed whether or not a feature was selected by any of the LASSO or forward

selection regression methods. There remains to be done an analysis of the magnitude and direction

of each feature’s coefficient, to ensure that frequently selected features are significant. A feature

selected four times, but with coefficient magnitudes both positive and negative is not as significant

as a selected feature that only has positive or negative coefficients.

In this work, only `1, LASSO regularization was used. However, the R package glmnet is capable

of performing ElasticNet regression as well. ElasticNet [29] is a linear mixture of the `1 and `2

penalties from the LASSO and ridge regression methods. For OLS and Poisson, a mixed regular-

ization may be able to improve the performance of the feature selection.



Chapter A: Ridership data

Los Angeles: http://libraryarchives.metro.net/DPGTL/Ridership/RailActivityByStationFY2014.xls

Chicago: http://www.transitchicago.com/assets/1/ridership_reports/2015_Annual.pdf

Atlanta: http://documents.atlantaregional.com/transportation/TFB_2014_v17.pdf

Boston: http://archives.lib.state.ma.us/bitstream/handle/2452/266319/ocm18709282-2014.pdf

Denver: http://www.rtd-denver.com/documents/serviced/lrt-activity-08-2015.pdf and

http://www.rtd-denver.com/documents/serviced/lrt-activity-Jan-April-2016.pdf

Dallas: https://www.dart.org/about/dartreferencebookmar16.pdf
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Chapter B: US Census feature data sources

All feature data is accessed through the American Factfinder website at factfinder.census.gov.

Population Table DP05, Item HC01 VC03

Population, 18 and under Table DP05, Item HC01 VC03 - Item HC01 VC32

Population, 65 and over Table DP05, Item HC01 VC37

Housholds Table S1101, Item HC01 EST VC02

Households with Children Table S1101, Item HC01 EST VC06

Families Table S1101, Item HC01 EST VC010

Population with at least Bachelors degree Table S1701, Item HC01 EST VC34

Population in labor force Table S1701, Item HC01 EST VC37

Employed population Table S1701, Item HC01 EST VC38

Full-time employed population Table S1701, Item HC01 EST VC47

Population living at greater than 500% of poverty level Table S1701, Item HC01 EST VC56

Population living at less than 200% of poverty level Table S1701, Item HC01 EST VC01 - HC01 EST VC59

Housing units Table DP04, Item HC01 VC03

Single-family detached housing units Table DP04, Item HC01 VC14

Housing units in duplexes or townhouses Table DP04, Items HC01 VC15 + HC01 VC16

Housing units in structures of 3-9 Table DP04, Item HC01 VC17 + HC01 VC18

Housing units in structures of 10+ Table DP04, Item HC01 VC19 + HC01 VC20

Housing units built before 1940 Table DP04, Item HC01 VC36

Housing units built after 2000 Table DP04, Item HC01 VC27 + HC01 VC28 + HC01 VC29

Housing units occupied by owner Table DP04, Item HC01 VC65

Housing units occupied by renter Table DP66

Number of Jobs Table CB1500CZ11, Item EMP

Total pay of all jobs Table CB1500CZ11, Item PAYANN

Number of jobs at hospitals Table CB1500CZ21, NAICS code 622, Estimated

Number of jobs at universities Table CB1500CZ21, NAICS code 6113, Estimated

Number of jobs in hospitalitiy field Table CB1500CZ21, NAICS code 72, Estimated

Number of jobs in finance field Table CB1500CZ21, NAICS code 52, Estimated

Number of jobs in professional fields Table CB1500CZ21, NAICS code 54, Estimated

Number of jobs in entertainment fields Table CB1500CZ21, NAICS code 71, Estimated
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