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ABSTRACT 

THINKING OUTSIDE THE BOX: WHEN DO HUMAN PROBLEM SOLVERS 

OFFLOAD COGNITION? 

Patrick P. Weis, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Eva Wiese 

 

The common main objectives across the three studies presented in the present 

dissertation lie in improving the understanding of parameters that influence a human 

problem solver’s decision to use environment-based external instead of brain-based 

internal resources. In Study 1, it was shown that a human problem solver’s inclination to 

offload cognition depends on both monitoring the external resource’s actual performance 

as well as on pre-existing beliefs about the external resource’s performability, indicating 

comparable importance of both factors. In Study 2, it was shown that a human problem 

solver’s inclination to offload cognition also depends on the performability of the internal 

brain-based resources that are relevant for the task at hand. Good internal performability 

decreased cognitive offloading frequency even when the task at hand looked comparably 

difficult, thereby suggesting that internal performability can supersede task appearance in 

determining offloading propensity. Both Study 1 and Study 2 showed the human problem 
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solver’s sensitivity to performance parameters for determining cognitive offloading 

frequency. In Study 3, this sensitivity to performance parameters was investigated 

further. Specifically, it was investigated whether human problem solvers are able to 

choose between internal and external processing in a way that serves their current 

performance goals—in Study 3 accuracy or speed—or whether they prefer different 

heuristics like minimizing mental effort or maximizing certain performance metrics like 

speed irrespectively of the current goal. Results of Study 3 confirmed the former, 

indicating the human problem solver’s capability of choosing between internal and 

external resources to achieve current performance goals. 
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INTRODUCTION 

Why is Patrick always using the navigation app on his smartphone while Peter is 

relying on the navigational capabilities of his brain? In my dissertation, I employ 

experimental paradigms in laboratory settings to investigate people’s cognitive offloading 

behavior. Cognitive offloading describes the use of external resources beyond our skulls 

to support cognitive tasks like spatial navigation, arithmetic, or memory. My main 

objective is to help identifying key parameters that influence our decision to use external 

resources instead of brain-based internal resources. That way, I hope to increase the 

understanding of human-technology-interaction, ultimately contributing to a healthier and 

more humane use of technology. The prominence of Nicholas Carr’s essay Is Google 

making us stupid? (Carr, 2008) illustrates both societal importance and the unresolved 

nature of my dissertation’s topic. As for now, we are lacking guidelines for both humane 

design and healthy habits when including external resources into our cognitive 

operations. Exploring and understanding the reasons behind people’s decision to use 

external resources provides a first step towards better design principles and interventions 

to remediate technology use.  

Cognitive offloading – How we use the environment to help us think  

Undoubtedly, the brain plays a crucial role in our ability to cognize. It affords 

information storage and retrieval. For example, it enables us to store our neighbors’ 
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names and to retrieve them whenever we see them. It affords the creation of meaningful 

sentences, making plans for our future, internal simulations like mental rotation, and 

much more. Still: without technological support, many humans struggle to solve 

cognitive tasks involving arithmetic (Osiurak, Navarro, Reynaud, & Thomas, 2018; 

Matthew M. Walsh & Anderson, 2009), spatial navigation (Fenech, Drews, & Bakdash, 

2010), or prospective memory (Cherkaoui & Gilbert, 2017; Gilbert, 2015) efficiently. 

Thus, if one is aiming to understand how people cognize in their everyday environments, 

looking at their brains is not enough. It is imperative to look at their bodies, their 

environments, and their interactions with their environments as well (Clark, 2004; Clark 

& Chalmers, 1998; Risko & Gilbert, 2016; Scaife & Rogers, 1996; Wilson, 2002). The 

benefit of such a systemic perspective is captured by the concept of an epistemic action 

(Kirsh & Maglio, 1994). An epistemic action is an action undertaken to advance a 

cognitive process. An epistemic action is contrasted by an action that is undertaken to 

alter the structure of the physical environment. For example, reordering Scrabble tiles is 

thought to support the cognitive process of creating meaningful words out of the letters 

depicted on the tiles (Maglio, Matlock, Raphaely, Chernicky, & Kirsh, 1999), an action 

quite distinct from putting tiles onto a garden path to afford comfortable walking. 

Without a systemic perspective that expands beyond the skull, one would struggle to 

understand human cognizing in the Scrabble case as well as in much of everyday problem 

solving.  

Investigating human cognition from a holistic perspective that includes brain, 

body, and environment is nothing particularly novel. Far earlier than the current debates 
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about a holistic focus in cognitive science (Clark, 1999), in his Activity Theory, Leont’ev 

(1981) already took a holistic approach when trying to capture an activity with all of its 

relevant aspects, thus trying to unify thought, action, and environment. In particular, he 

was interested in the “integrated, goal-oriented configuration of internal and external 

resources” (p. 50), which he called a functional organ 
1
, when solving cognitive 

problems. Such configurations could for example encompass a blind man’s stick that 

helps him navigating to a friend’s house or a notebook that supports working memory 

when solving a math equation
2
. However, though conceptually promising, researching 

functional organs has been and still currently is challenging. Cognitive science research 

traditionally used to restrict the kind of human-environment interactions necessary for 

researching functional organs - partly because confounds are harder to control in such a 

setting - and favored simpler non-interactive paradigms instead (Risko & Gilbert, 2016).  

As of today, several research streams of cognitive science, i.e. Embodied 

Cognition (Wilson, 2002),  Situated Cognition (Kirsh, 2009),  Distributed Cognition 

(Hollan, Hutchins, & Kirsh, 2000), and Extended Cognition (Clark & Chalmers, 1998) 

                                                 
1
 Originally, the term was introduced by Hegel and Marx (Nardi, 1996). From Marx’ perspective, a 

fundamental goal of any individual is to create the functional organs needed for individual and societal 

growth. 
2
 As a side remark, it might be of interest to the reader that activity theory claims external resource use to 

have consequences far beyond immediate performance. It is claimed that external resources can have 

aesthetic and moral qualities as well, as can be seen in the following anecdote (Nardi, 1996, p. 295): a 

musician was upset about being painted without his Cello because he conceived him and the Cello as one 

entity, feeling incomplete without his Cello. The musician perceived the Cello, an external musical 

resource, as a “continuation of the human soul”, which could possibly be true for other cognition-related 

external resources as well. Activity Theory thus postulates that symbols like words but also tools like 

computers are a crucial part of an activity and that they not only influence what we do but also how we do 

it, and ultimately also who we are. Thus, to fully answer this dissertation’s main question about the reasons 

behind external resource use, one might need to consider identity-related consequences as well.  
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adopted this holistic perspective, each with a slightly different agenda. Traditionally, 

Activity Theory has been quite dissimilar to Cognitive Science. Activity Theory’s focus 

is on, as might be expected, activities, i.e. on doing things. In contrast, cognitive 

science’s focus has long been exclusively on sequential mental information processing 

and neural representations (Shapiro, 2010). When meeting a cognitive scientist, an 

activity theorist might well have called him or her a reductionist, accusing him of 

focusing too narrowly on sequential brain-based information processing when trying to 

explain and predict human behavior. With the current developments in Embodied, 

Situated, Distributed, and Extended Cognition, such accusations are becoming 

increasingly void. In the following section, these developments, specifically focusing on 

the determinants of cognitive offloading, are summarized.  

Determinants of cognitive offloading 

This section introduces theoretical considerations and empirical evidence 

concerning a cognizer’s decision to include the environment into a thought process rather 

than to exclusively rely on brain-based resources. The focus is on aspects currently 

debated in cognitive science outlets.  

Optimizing performance 

Being a well-known proponent of performance optimizing theories, the Soft 

Constraints Theory (Gray, Sims, Fu, & Schoelles, 2006) postulates that people always 

strive to maximize speed when having to decide between internal and external 

processing. Following that rationale, if presented with an arithmetic task, one is supposed 

to use a calculator only if it is faster than solving the task with mental arithmetic. The 
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Soft Constraints Theory focuses on speed as performance metric whereas other 

approaches could include metrics like accuracy. The common denominator of 

performance-based theories is that brain-based and environment-based resources are seen 

as interchangeable. There is no innate preference for either of them, a principle that has 

been termed cognitive impartiality (for a review, see Risko & Gilbert, 2016).  Preferences 

for an internal or external processing mode only emerge if there are performance 

differences, turning the favor towards the more efficient processing mode. There is 

profound evidence that, in tightly controlled settings, participants are indeed using 

external resources to optimize or at least improve performance (Dunn & Risko, 2016: 

Experiment 5; Gray et al., 2006; Risko, Medimorec, Chisholm, & Kingstone, 2014; 

Matthew M. Walsh & Anderson, 2009). It has also been shown that people with lower 

cognitive skills tend to use smartphone-based search engines more frequently than people 

with higher cognitive skills, which would support the adaptive use of external resources 

on a societal level (Barr, Pennycook, Stolz, & Fugelsang, 2015). However, it should be 

noted that performance optimization can be tricky if tasks are extensive in time or 

cognitive demand, in which case simple but imperfect heuristics might be used in lieu of 

performance optimization strategies (see e.g., local optima in Fu & Gray, 2006, and the 

concept bounds of rationality Simon, 1956). Also, as will be mentioned in more detail in 

the following, performance optimization might not always be the first choice in complex 

environments. Performance optimization is unlikely to be the sole reason to recruit 

external resources for support thought.  
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Unburden the brain 

A direct competitor to the principle of performance optimization would be if 

people strive to free as many neural resources as possible, thus offloading cognitive 

processing onto the environment whenever possible. Intuitively, such a preference for 

environment-based processing might sound plausible because mental resources might 

induce a substantial amount of metabolic costs and can interfere with other, possibly 

more relevant, brain-based cognitive processing (Storm & Stone, 2015). Originally, such 

a preference for external resources has been proposed in the memory domain by Ballard 

et al. (1997) and been termed Minimal Memory Theory since (e.g., in Gray et al., 2006). 

It should however be noted that in the original paper (Ballard et al., 1997), it was not 

proposed that people strive to unburden the brain at all costs: Ballard et al. (1997) already 

showed that after increasing the accessibility costs for the external resource, it was used 

less frequently. In other words, the more time-consuming it was to access an external 

resource, the more people preferred relying on their brain-based memory. Analogous 

observations have been made by Gray et al. (2006). More generally however, it has been 

observed that people, all else being equal, prefer less effortful cognitive strategies over 

more effortful alternative strategies in a wide range of behavioral decision tasks (Kool, 

McGuire, Rosen, & Botvinick, 2010). 

Whether in accordance with the original manuscript by Ballard et al. (1997) or 

not, the core of Minimal Memory Theory, as the concept is used today (e.g. in Gray et 

al., 2006), is a bias favoring environment-based processing over brain-based cognizing. 

Thus, Minimal Memory Theory is directly conflicting with the cognitive impartiality 
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assumption underlying the Soft Constraints Theory. However, empirical findings 

currently question the existence of a bias favoring external resources based on mental 

effort, favoring an alternative explanation for the bias: people might engage in 

metacognitive evaluations of internal and external strategies and oftentimes misjudge 

their internal abilities or the usefulness of the external resource, which mediates the 

biased use of external strategies (Gilbert et al., 2019). This influence of metacognitive 

influence on cognitive offloading is explored in the next section.  

Follow metacognitive evaluations 

Recently, researchers observed external resource use that was not consistent with 

performance optimization (Dunn & Risko, 2016; Gilbert et al., 2019; Risko & Dunn, 

2015). For example, participants frequently
3
 chose to exclusively rely on internal 

resources when asked to remember an array consisting of ten letters despite extremely 

bad internal performance (Risko & Dunn, 2015). Analogously, participants frequently 

chose to rely on an external resource – pen and paper – when asked to remember an array 

consisting of two letters despite extremely good internal performance. Both findings 

illustrate that participants frequently behaved inefficiently. In a follow-up experiment, the 

arrays of letters were presented once more and participants were to rate expected 

accuracy and effort when remembering the letters either internally or with support of pen 

and paper (Risko & Dunn, 2015: Experiment 2). It was found that participants deemed 

tasks with two letters to be harder to solve internally than was actually the case, which 

                                                 
3
 i.e., in more than 10% of all trials, despite an accuracy of close to 0 when exclusively relying on internal 

ressources 
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possibly was the reason for the higher offloading rate reported in the original experiment 

(Risko & Dunn, 2015: Experiment 1). Similarly, participants massively overestimated 

how well they can handle ten letters internally. While this follow-up experiment only 

provides correlational rather than causal evidence, it nevertheless lets is appear likely for 

metacognitive evaluations to influence offloading. Further correlational evidence was 

provided by Dunn & Risko (2016), which lead to the proposal of the Metacognitive 

Theory of cognitive offloading. Additionally, Gilbert (2015) showed that metacognitive 

confidence seems to influence offloading proportion independently from actual 

performance. However, it should be noted that a biased metacognitive evaluation (e.g., 

consciously evaluating that using a calculator is more efficient than relying on the brain) 

does not necessarily translate into behavior, as observed by Virgo et al. (Jérémy Virgo, 

Jonathan Pillon, Jordan Navarro, Emanuelle Reynaud, & François Osiurak, 2017).  

Experimental
4
 evidence for the Metacognitive Theory was provided by Wiese et 

al.  (Wiese, Wykowska, & Müller, 2014). In their study, participants had to identify 

target letters on the left or the right side of a computer screen. In the middle of the screen, 

a human face was either gazing towards the target or gazing away from the target. When 

the gaze of that face matched the side of the target letter, it is known that participants are 

quicker at identifying the target (gaze cueing effect, for a review see Frischen, 2007). The 

                                                 
4
 Most studies used correlational designs to investigate the impact of metacognitive evaluations on 

cognitive offloading as in the study described in the preceding paragraph (“It was found that participants 

deemed tasks with two letters to be harder to solve internally than was actually the case, possibly leading to 

a higher offloading rate”; Risko & Dunn, 2015).  



9 

 

rationale behind is that in everyday social interactions, we can offload attentional 

mechanisms onto other people. Instead of hyper-vigilantly screening an environment, we 

can rely on the attentive mechanisms of the people surrounding us by observing their 

gaze. Interestingly, Wiese et al. (2014) showed that this outsourcing is less pronounced 

(i.e., higher gaze cueing effect) when people believe that the gazer is unreliable. This 

decreasing reliance on an agent’s gaze thus represents a metacognitive bias that is 

independent of the performance benefit obtained by following the gaze.  

Follow cultural knowledge 

External resources are also used when indicated by our cultural embedding. The 

underlying assumption is that the rules governing external resource use can be cultivated 

(Hutchins, 2014). For example, language use is culturally transmitted, languages play an 

important part in a human’s cognitive toolkit (for a review, see Clark, 1998), and using 

written words wisely is a prime example of cognitive offloading. That way, cultural 

context not only influences who we are but also how we offload. It is likely that the 

influence of cultural knowledge on cognitive offloading is mediated by metacognitive 

evaluations (see section Determinants of cognitive offloading: Follow metacognitive 

evaluations). 

Augmenting cognition beyond internal ability 

External resources enable cognitive operations that are more complex than what 

humans can achieve internally (e.g., using pen and paper calculations and external 

representations to build a model of planetary movements based on gravitational forces), 

have different properties than internal resources (e.g., paper-based memory does not 
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change or is forgotten over time), and can be used for inter-individual cognitive efforts 

(e.g., using an external representation like a graph to solve a problem in joint effort; 

Kirsh, 1995, 2010, 2013). The idea that external resources can augment cognitive abilities 

rather than only shift the locus of cognitive processing has been termed the 

complementarity principle (Sutton, 2010) and considerably increases the difficulty of 

interpreting cognitive offloading behavior as it introduces additional possible reasons to 

use an external resource that might result in the same overt behavior as performance 

minimization or reliance on metacognitive evaluations would.  

However, it should be noted that using external resources does not necessarily 

raise abilities of people with poor internal skills to a level on par with people with strong 

internal skills. People with poor internal cognitive ability in a respective domain might 

fail to use an external resource efficiently or simply benefit less than people with high 

internal ability (Cherkaoui & Gilbert, 2017; Osiurak et al., 2018). 

Rationale of the dissertation project 

In the current PhD project, the main objective lies in improving the understanding 

of parameters that influence a human problem solver’s decision to use external resources 

instead of using brain-based internal resources. Several of these determinants are 

currently debated in the scientific literature (see section Determinants of cognitive 

offloading) but a coherent picture is yet to emerge. There is a broad agreement that the 

comprehension of how humans navigate cognitive environments is only at the beginning 

(compare to Outstanding Questions in Risko & Gilbert, 2016, p 685; Anderson, 1990; 

Marewski & Schooler, 2011; Scaife & Rogers, 1996; Kirsh, 2013) and that improving our 
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comprehension will be highly rewarding. The latter is exemplified in Kirsh’s (2013) 

prediction of a “magical future” of human-computer-interaction. 

Such a magical future is of course dependent on progress in research areas beyond 

the determinants of cognitive offloading. For example, long-term effects of cognitive 

offloading are largely unknown (Risko & Gilbert, 2016), individual differences in 

cognitive offloading poorly understood (Risko & Gilbert, 2016), it is unclear how closely 

external resources can be included into action repertoires and cognitive routines and how 

such incorporation differs from incorporating internal resources (Kirsh, 2013),  and the 

mechanisms by which external representations like graphs can support and scaffold 

internal thought are hardly understood (Scaife & Rogers, 1996)
5
, just to name a few.  

So why is the focus of the current project set on the determinants of cognitive offloading 

rather than on one of the other topics mentioned in the preceding paragraph? The answer 

is twofold. Firstly, I deem the question about the determinants of cognitive offloading to 

be of relevance for most other outstanding questions. For example, long-term 

consequences might be quite different for situations in which the human problem solver 

is actively engaged in monitoring the external resources as to maximize overall 

performance in comparison to situations in which the human problem solver is mentally 

unengaged, using the external resource simply to unburden the brain. In other words, 

long-term consequences might depend on the reasons the human problem solver engaged 

in cognitive offloading in the first place. Secondly, interventions to in- or decrease an 

individual’s propensity to engage in cognitive offloading are hardly available (Risko & 

                                                 
5
 Though some progress has been made since 1996 (see Kirsh, 2010).  
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Gilbert, 2016) even though such guidance has the potential to increase the individual’s 

performance (Gilbert et al., 2019). A better understanding of the determinants of 

cognitive offloading would allow designing interventions that leverage this knowledge. 

For example, Gilbert et al. (2019) presented metacognitive information (“According to 

your performance so far, we have calculated that you will probably score more points if 

you choose to perform with/without reminders”) to alter their participants propensity to 

offload prospective memory
6
. Similar interventions could be possible after cognitive 

offloading research has yielded more knowledge about determinants beyond 

metacognitive information.  

So far, it has been argued that cognitive offloading is an activity of societal 

importance, that it is still rather poorly understood, and that specifically furthering the 

understanding of the determinants of cognitive offloading has considerable potential for 

societal welfare. In the remainder of this section, two specifics of how the understanding 

of the determinants of cognitive offloading could be advanced will be carved out: 

(1) Creating new experimental and interactive paradigms. As noted by Risko 

and Gilbert (2016, p. 686), expanding the focus from brain-based to include 

environment-based cognitive processing requires novel methodological 

approaches: “[…] investigating cognitive offloading often requires allowing 

research participants to […] manipulate and interact with their environment. 

                                                 
6
 Interestingly, participants followed the advice in the overwhelming majority of trials. If the main 

determinant of cognitive offloading was to unburden the brain, participants should not have switched to an 

internal processing mode just because metacognitive information suggested improved performance.  
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Methods in cognitive science, however, have traditionally been designed to 

restrict this type of natural behavior. […] Thus, understanding cognitive 

offloading will require an expansion of the cognitive scientist's methodological 

toolbox.”. One such methodological approach is to increase the breadth of 

experimental paradigms available to research cognitive offloading. This 

approach comes along with two opportunities. First, it allows causal rather than 

correlational inferences, which is of importance given that the currently 

available evidence for some of the determinants is based on correlational 

evidence (e.g., the evidence for the influence of metacognitive information; see 

section Determinants of cognitive offloading: Follow metacognitive 

evaluations). Second, the approach allows investigating the external validity of 

already established determinants, i.e. it allows investigating whether existing 

cognitive offloading paradigms are representative. For example, it is unclear 

whether the same determinants hold in settings where the own body is used to 

offload cognition (e.g., turning the head to read a rotated paragraph rather than 

mentally rotating the paragraph; Risko et al., 2014) in comparison to settings 

where a computer is used to offload cognition. Likewise, it is unclear whether 

determinants are stable across different cognitive tasks, e.g. whether the same 

determinants hold for offloading arithmetic tasks as for offloading navigational 

tasks. Establishing new experimental and interactive paradigms thus expands 

the cognitive scientist’s toolbox while allowing for causal inference and 

investigating external validity of established determinants.  
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(2) Gauging how different determinants of cognitive offloading interact. 

Although there is substantial evidence for a wide range of determinants (see 

section Determinants of cognitive offloading), it is not clear how to judge the 

likely contributions of each determinant in a specific setting with specific 

internal and external resources available. For example, it is known that people 

can use external resources to improve performance beyond internal capabilities 

(see section Determinants of cognitive offloading: Optimizing performance). 

However, it is not known how relevant performance optimization is if such 

optimization simultaneously required considerable cognitive effort and is in 

conflict with cultural knowledge and other metacognitive information. To 

understand how humans offload cognition in certain scenarios, it is imperative 

to know the importance of different determinants and to know if some 

determinants supplant others. 

In the present manuscript, three studies that have been conducted are summarized 

(section Conducted research) and three other possible lines of research are suggested as 

future directions (section General discussion: Future directions). All conducted studies 

are catering to both aspects (1) and (2) that have been described in the above. For each 

study, before going into its specific details, the study’s relevance for the dissertation-

specific questions is explicated and its main results are embedded into the context of the 

dissertation as a whole (sections Rationale for Study 1, 2, and 3).   
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CONDUCTED STUDIES 

Three studies have been conducted to research the influence of 1) metacognitive 

information 2) performability of internal resources and 3) performance goals on cognitive 

offloading. The studies will be described in what follows and be embedded into the 

dissertation in the Rationale subsections.   
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Rationale 

In this study, we altered the mental rotation paradigm (Shepard & Metzler, 1971) 

in a way that allowed participants to offload cognitive processing (see Figure 1). In the 

altered paradigm, participants could rotate stimuli either internally—as in the original 

paradigm—or with a rotation knob that afforded rotating stimuli externally on a computer 

screen. Two parameters were manipulated: On the one hand the knob’s actual reliability 

(AR) and on the other hand an instruction altering participants’ beliefs about the knob’s 

reliability which supposedly manipulated the participants’ metacognitive evaluations 

concerning the external resource (believed reliability; BR). Cognitive offloading 

proportion and perceived knob utility were measured. The main focus of the study was to 

use the BR manipulation to experimentally validate correlational findings (e.g., Dunn & 

Risko, 2016; Risko & Dunn, 2015) concerning the influence of metacognitive judgments 

on cognitive offloading (compare (1) in the section Rationale of the dissertation project). 

A second focus was on exploring whether AR contributes to cognitive offloading 

independently of BR, thereby increasing the understanding of how different determinants 

synergize to influence cognitive offloading (compare (2) in the section Rationale of the 

dissertation project). 

In a nutshell, results showed that participants were able to quickly and 

dynamically adjust their cognitive offloading proportion in response to AR independently 

of BR, suggesting a high level of cognitive offloading proficiency. However, when BR 

instructions were presented that falsely described the knob’s reliability to be lower than it 

actually was, participants reduced cognitive offloading substantially. Thus, how 
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frequently human problem solvers offload their cognition is based on both AR-related 

performance monitoring as well as on possibly erroneous pre-existing beliefs. These 

results (a) confirm correlational findings regarding the importance of metacognitive 

evaluations when using external resources with an experimental paradigm and (b) suggest 

a comparable contribution of both performance monitoring and metacognitive 

information in determining cognitive offloading behavior.  

Abstract 

Objective: A distributed cognitive system is a system in which cognitive 

processes are distributed between brain-based internal and environment-based external 

resources. In the current experiment, we examined the influence of metacognitive 

processes on external resource use (i.e., cognitive offloading) in such systems. 

Background: High-tech working environments oftentimes represent distributed 

cognitive systems. Since cognitive offloading can both support and harm performance, 

depending on the specific circumstances, it is essential to understand when and why 

people offload their cognition. Methods: An extension of the mental rotation paradigm 

was used. It allowed participants to rotate stimuli either internally as in the original 

paradigm or with a rotation knob that afforded rotating stimuli externally on a computer 

screen. Two parameters were manipulated: the knob’s actual reliability (AR) and an 

instruction altering participants’ beliefs about the knob’s reliability (believed reliability; 

BR). Cognitive offloading proportion and perceived knob utility were measured. Results: 

Participants were able to quickly and dynamically adjust their cognitive offloading 

proportion and subjective utility assessments in response to AR, suggesting a high level 
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of offloading proficiency. However, when BR instructions were presented that falsely 

described the knob’s reliability to be lower than it actually was, participants reduced 

cognitive offloading substantially. Conclusion: How much people offload their cognition 

is not solely based on utility maximization but is additionally affected by possibly 

erroneous pre-existing beliefs. Application: To support users in efficiently operating in a 

distributed cognitive system, an external resource’s utility should be made transparent 

and pre-existing beliefs should be adjusted prior to interaction.  

Introduction 

Opportunities to outsource thought have become abundant. During the industrial 

revolution, the availability of machines that replaced or supported physical labor 

increased dramatically. Nowadays, we are in the middle of a similar revolution as we 

experience an extensive rise in machines that replace or support mental labor: computers. 

Computers can increasingly be used for unpopular tasks, freeing our mental resources for 

what is more relevant (Storm & Stone, 2015). This rise in computer’s abilities is partly 

due to a better understanding of how humans incorporate the environment into the 

cognitive loop, leading to better design choices during the creation of computer-based 

systems that afford the outsourcing of brain-based processing. A prominent everyday 

example where such understanding is implemented can be found in wayfinding support: 

modern GPS-based navigation systems are designed to match the external representation 

to the internal cognitive map, aiming for intuitive human-centric use (Huang, Tsai, & 

Huang, 2012). More generally, environments in which cognitive processes are distributed 

between brain-based (internal) and environment-based (external) resources have been 
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termed socio-technical or distributed cognitive systems (Hollan, Hutchins, & Kirsh, 

2000; Hutchins, 1995). 

However, despite the positive impact of cognitive engineering and increased 

computational capacities on creating external resources that afford outsourcing thought, 

there remain instances where outsourcing thought, also called cognitive offloading (Risko 

& Gilbert, 2016; for a recent review), is not advisable. In tasks focusing on efficiency, 

cognitive offloading is contraindicated when the external resource is simply slower or 

less accurate than the internal resource. Such an inefficient external resource could, for 

example, be an unreliable decision aid (on average, decision aids have been found to be 

inefficient if their reliability is below 70%; Wickens & Dixon, 2007) or a reliable 

externally stored information that is however inefficient to access (e.g., because the 

interface does not abide Fitt’s law and incorporates small buttons to access relevant 

information; Experiment 2 in Gray, Sims, Fu, & Schoelles, 2006). There is a multitude of 

other possible reasons not to offload cognition besides short-term efficiency: for example, 

in tasks focusing on flexibility, cognitive offloading can be contraindicated because it 

hinders the establishment of domain-specific knowledge that could be transferred to 

similar problems (O’Hara & Payne, 1998). In conclusion, outsourcing thought oftentimes 

comes at a cost that might be higher than the benefit.  

Unfortunately, people’s offloading behavior is not always well calibrated to these 

costs. Automation-induced complacency describes the phenomenon that people tend to 

over-rely on automation, thereby sometimes missing erroneous automation behavior and 

sometimes following erroneous advice from the automation (Parasuraman, Molloy, & 
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Singh, 1993; Parasuraman & Riley, 1997). One might argue that such errors could be 

warranted, given the benefit of being relieved from the cognitive-resource-draining 

system monitoring. However, in safety-critical environments, complacent offloading 

behavior can contribute to catastrophes that are hardly justifiable with decreased 

monitoring costs (e.g. airplane accidents; National Transportation Safety Board, 1994). 

Similarly, suboptimal offloading behavior has been reported when people were asked to 

remember letters while given the opportunity to write the letters down if necessary (Risko 

& Dunn, 2015): people used pen and paper in more than 40% of the cases when two 

letters had to be remembered, and in around 90% of the cases when ten letters had to be 

remembered. This pattern is surprising when compared to people’s task performance 

without the opportunity to offload memory: without pen and paper, recall performance 

for two letters was excellent (i.e. above 97%) whereas it was extremely poor (i.e., below 

1% accuracy) for ten letters. Participants offloaded cognitive resources unnecessarily 

often when internal processing was efficient (i.e., two letters), and did not fully make use 

of external resources when they were highly useful (i.e., ten letters), which makes it 

impossible to justify participant’s offloading behavior in terms of short-term performance 

optimization.  

Understanding the reasons behind inefficient and possibly harmful offloading 

choices is imperative to remediate such badly calibrated behavior. One possible reason 

relates to erroneous metacognitive judgments about the utility of one’s internal (i.e., 

brain-based) and currently available external (e.g., pen and paper) resources. Decisions 

regarding the use of external resources might be, in addition to lower-level cognitive 
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processes, based on higher-level metacognitive processes. For example, the use of a GPS-

based navigation system might be dependent on spatial navigation skills (i.e., a lower-

level cognitive process) but also be influenced by explicit beliefs about the navigation 

system’s efficacy (i.e., a higher-level metacognitive process). This idea has been put 

forward by the Metacognitive Model of Cognitive Offloading (Dunn & Risko, 2016, 

2016; Risko & Gilbert, 2016). The influence of higher-level metacognitive factors on 

cognitive offloading is also backed by correlational data from a follow-up experiment to 

the memory study reported above: when participants who preferred using pen and paper 

to remember two letters over using internal memory were asked why they chose this 

external strategy, they argued that the external strategy was associated with higher 

accuracy, which was a misjudgment (in reality, both strategies yielded similar accuracy; 

Risko & Dunn, 2015). Thus, the use of external resources is likely dependent on possibly 

erroneous higher-order metacognitive judgments regarding the resources’ utility. 

In the current study, we employed an experimental design to further examine the 

impact of metacognitive judgments about an external resource on the inclination to 

actually use that resource. Specifically, we measured how a rotation device’s actual and 

believed reliability affected cognitive offloading proportion (i.e., knob recruitment) 

during an object rotation task. We expected both factors to affect cognitive offloading 

proportion independently. The rationale is that actual reliability should influence 

cognitive offloading via lower-level cognitive processes like performance monitoring 

while believed reliability should influence cognitive offloading via higher-level 

metacognitive processes, i.e. beliefs about the external resource’s utility. Reliability 
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beliefs were manipulated via instruction, thus representing rather superficial beliefs that 

should act like expectations and be less integrated than intrinsically formed beliefs. 

Nevertheless, we would argue such superficial beliefs to influence cognitive offloading 

by the same mechanisms as intrinsically formed metacognitive beliefs (compare Risko & 

Gilbert, 2016; Figure 3). 

In particular, we predicted negative beliefs regarding the knob’s utility (i.e., 

incongruent condition) to reduce cognitive offloading proportion as well as usefulness 

ratings as compared to a congruent (i.e., belief consistent with actual reliability) or naïve 

condition (i.e., no belief instruction). Whereas previous studies have used post-hoc 

questionnaires to assess influences of pre-existing beliefs on decisions to offload 

cognition (e.g., Dunn & Risko, 2016; Risko & Dunn, 2015), pre-existing beliefs were 

manipulated experimentally via instruction in the current experiment, which allows 

causal rather than correlational inferences regarding the role of metacognitive processes 

in cognitive offloading. For exploratory purposes, we also measured knob utility 

assessments (i.e., usefulness ratings) to compare them between reliability and belief 

conditions.  

Methods and materials 

Participants 

In total, 126 undergraduate students participated in the experiment. Four 

participants were excluded due to extremely poor task performance (i.e. answering 

incorrectly in more than 30% of all trials), resulting in a final sample size of 122 (77 

females; mean age: 20.9; range: 18 – 47; 109 right handed). Participants were randomly 



24 

 

assigned to one of the three experimental conditions (41 naïve, 42 congruent, 39 

incongruent). All participants were recruited from the psychology undergraduate student 

pool at George Mason University and reimbursed via research participation credits. To 

motivate participants to perform well, the three participants with the best performance in 

the rotation task were rewarded with Amazon vouchers (1st place: 15$; 2nd place: 10$; 

3rd place: 5$). All participants were at least 18 years old and had normal or corrected to 

normal vision. This research complied with the APA’s code of ethics and was approved 

by the local Ethics Committee at George Mason University. Participants provided 

informed consent prior to participation. 

Apparatus 

Stimuli were presented at a distance of about 100 cm on an ASUS VB198T-P 19-

inch monitor set to a resolution of 1280 × 1024 pixels and a refresh rate of 60 Hz using 

MATLAB version R2015b (The Mathworks, Inc., Natick, MA, United States) and the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Button press responses were 

recorded using a USB-connected standard keyboard. The rotation knob consisted of a 

potentiometer (SpinTrak Rotary Control; Ultimarc, London, UK) sampled at 1000 Hz. 

One full rotation of the rotation knob corresponded to one full rotation of the working 

stimulus on the screen. 

Stimuli 

For the rotation task, twenty different 2D stimuli were created in MATLAB using 

a script provided by Collin & McMullen (2002) that followed the Attneave procedure 

(Attneave & Arnoult, 1956; for a detailed description). The stimuli used in the current 
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study differed from each other only with regard to the edge parameter, ranging from three 

to twenty-one edges (see Figure 1).  

 

 

Figure 1 Stimuli used for the extended rotation task. The twenty stimuli were created using the Attneave procedure 

(see Stimuli). 

 

Task 

An extension of the classic mental rotation paradigm (Shepard & Metzler, 1971; 

see Figure 2a) was used because it provides a moderately challenging cognitive task and 

allows implementation of a novel external resource that minimizes differences between 

participants due to prior experience and affords internal brain-based and external 

computer-based strategies.  

At the beginning of each trial, a base stimulus is presented on the right and a 

working stimulus on the left side of the screen (see Figure 2b). The working stimulus 

represents either the base stimulus rotated clockwise by 60 or 120 degrees (same 

handedness), or the mirror image of the base stimulus rotated clockwise by 60 or 120 

degrees (different handedness). Base and working stimulus appear on the screen at the 
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same time and participants have up to five seconds to indicate the working stimulus’ 

handedness via button press. Participants can either rotate one of the two stimuli 

internally or use the rotation knob to rotate the working stimulus externally on the screen 

to inform their answer. Importantly, rotating the knob would fail to rotate the stimulus in 

a systematic fashion (i.e., Reliability manipulation): knob reliability varied between 50% 

and 100% in increments of 10%, and was blocked throughout the experiment, with 40 

rotation trials per block and reliability (i.e., in the 50% block, the knob would not rotate 

the working stimulus in 20 out of 40 trials). At the beginning of each block, a message on 

the screen informed participants about the knob reliability in the upcoming block (i.e., 

belief manipulation): in the naive condition, participants were only told that the knob 

might not work all the time, without inducing an explicit bias. In the congruent condition, 

participants were informed about the rotation knob’s actual reliability, whereas in the 

incongruent condition, participants were wrongly informed about knob reliability (the 

provided reliability information was 30% lower than the actual reliability). Importantly, 

the actual reliability was comparable across all three conditions; only participants’ 

expectations regarding reliability were varied. 

It should be noted that the current design does not follow the typical “Choice/No 

Choice Paradigm” frequently employed in studies researching cognitive offloading 

(Risko & Gilbert, 2016, p. 678; Siegler & Lemaire, 1997). In such a design, participants 

are either forced to solve a task internally, forced to solve a task externally, or able to 

choose between internal and external strategies. Here, the main interest lies in 

participant’s choice behavior and forced conditions are therefore omitted.  
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Figure 2 Extended rotation paradigm. (a) The experimental set-up contained a computer screen, a standard keyboard, 

and a rotation knob. (b) Participant’s task was to determine whether the base stimulus has the same handedness as the 

working stimulus. Participants could solve the task by mentally rotating one of the stimuli or by using the knob to 

rotate the working stimulus on the screen (for details, see Task). Stimuli and devices are not drawn to scale.  

 

Procedure 

At the beginning of each experimental session, participants were welcomed and 

seated in front of a computer screen. After providing informed consent, participants 

performed a computer version of the rotary pursuit task (i.e. exploratory measure of 

visuo-motor coordination; Melton, 1947; Mueller & Piper, 2014), and then solved 240 

rotation problems as the main task of the experiment. The session concluded with a 

demographic survey. The study took 30 minutes to complete.  

The rotation task follows a 6 x 2 x 2 x 3 mixed design with the within-participants 

factors Reliability (50%, 60%, 70%, 80%, 90%, 100%), Handedness (same, different), 

and Angle (60°, 120°), and the between-participants factor Belief (naive, congruent, 

incongruent). Trials were presented in blocks of 40, and each reliability condition was 

assigned to a specific block. The distribution of the unreliable trials was randomized 

within a block, and all stimuli were presented as working stimuli twice, once rotated by 
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60° and once by 120°. The order in which the different reliability blocks were presented 

was partially counter-balanced using a Latin square approach (Cochran & Cox, 1950).  

Participants were allowed to take breaks every twenty trials. During the break, a 

message on the screen showed the amount of points gained during the last twenty trials to 

indicate their performance (100% of trials correct: 5 points; >= 90% of trials correct: 2 

points; >= 70% of trials correct: 1 point). The three participants with the overall highest 

scores were awarded Amazon vouchers. To measure participant’s metacognitive 

evaluations of the external resource’s utility, we prompted them twice during the 

experiment to evaluate the usefulness of the rotation knob on a 10-point scale (0: not at 

all; 9: very much). The first prompt was presented after finishing block one (i.e., after 

participants had encountered only one reliability condition), and the second prompt was 

presented at the end of the experiment (i.e., after all reliability conditions had been 

encountered).    

Analysis 

All trials with missing answers or RT values above or below 3 SD of the 

individual mean of the respective angle condition and trials with RT values below 150ms 

were excluded from analysis (0.8% of trials in total). To determine if participants used 

the external resource, we created a binary variable on a trial-by-trial basis that indicated if 

the participants turned the stimulus on the screen for more than 3° (i.e., external resource 

used) or less than 3° (i.e., external resource not used). The statistical approaches are 

described in the results section preceding the respective results. Effect sizes are reported 

as generalized eta squared (ηG
2
). Generalized eta-square enables comparison between 
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between-participants and within-participants designs (Bakeman, 2005; Olejnik & Algina, 

2003). P-values are reported Greenhouse-Geisser-corrected where applicable. 

Results 

Performance 

Neither reaction time (F(2, 119) = 1.49, p = .229, ηG
2 

= .016) nor accuracy (F(2, 

119) = .12, p = .883, ηG
2 

= .001) differed between belief conditions, suggesting 

comparable overall performance across groups. The ANOVA results are summarized in 

the Supplemental Material, Table 3 and 4.  

Cognitive offloading proportion 

To analyze the influence of actual and believed reliability on cognitive offloading 

proportion (i.e., proportion in which participants used the knob to turn the stimulus for 

more than 3°), we conducted a 6 x 2 x 2 x 3 mixed ANOVA with the within-participants 

factors Reliability (50%, 60%, 70%, 80%, 90%, 100%), Handedness (same, different), 

Angle (60°, 120°) and the between-participants factor Belief (naive, congruent, 

incongruent). The ANOVA was followed up with non-parametric post-hoc Wilcoxon 

rank sum tests to account for deviations from normality in the DV’s distributions.  

Both actual knob Reliability (F(5, 595) = 23.69, p < .001, ηG
2 

= .042), and Beliefs 

regarding the knob’s reliability (F(2, 119) = 3.49, p = .034, ηG
2 

= .035) had a significant 

impact on the extent to which participants used the rotation knob (i.e., cognitive 

offloading proportion). The Reliability x Belief interaction did not reach the level of 

significance (F(10, 595) = 1.64, p = .115, ηG
2 

= .005). As expected, but of minor interest 

for the purposes of this study, Angle (F(1, 119) = 71.62, p < .001, ηG
2 

= .004, M(60°) = 
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64.3%, M(120°) = 68.6%) and Handedness (F(1, 119) = 5.85, p = .017, ηG
2 

= .0002, 

M(congruent) = 66.9%, M(incongruent) = 66.0%)) also affected cognitive offloading 

proportion. The interaction between Reliability, Angle, and Handedness was close to 

significance but also of minor interest to the main purposes of this study (F(5, 595) = 

2.15, p = .058, ηG
2 

= .0003). No other effects reached statistical significance (all F < 2.2, 

all p > .1, all ηG
2
 < .006, Table 1). The effect of actual and believed reliability on 

participants’ external resource use is shown in Figure 3.   

Post-hoc two-sided Wilcoxon rank sum tests (Hollander & Wolfe, 1973) showed 

that it had no influence on overall cognitive offloading proportion whether participants 

were correctly informed about the actual reliabilities of the external resource or had to 

deduce the reliabilities during the block (congruent vs. naïve, W = 901, p = .719, 

M(congruent) = 72.56, M(naïve) = 70.54), which suggests that participants promptly 

picked up on the actual knob reliability in the naïve condition and adjusted their cognitive 

offloading proportion accordingly. However, if participants were given incongruent 

information stating lower knob reliability, two single-sided Wilcoxon rank sum tests 

confirmed that participants used the external resource significantly less often than when 

given no information (i.e., naïve vs. incongruent, W = 1005.5, p = .036, M(incongruent) = 

55.71) or when given congruent information (i.e. congruent vs. incongruent, W = 1051.5, 

p = .036) about the external resource’s reliability. Thus, correct utility beliefs, in contrast 

to incorrect utility beliefs, had no influence on cognitive offloading proportion. All p-

values for the post-hoc tests were corrected for multiple comparisons using the 

Bonferroni-Hochberg method (BH; Benjamini & Hochberg, 1995). 
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Figure 3 Cognitive offloading proportion as a function of actual and believed reliability. Participant’s cognitive 

offloading behavior depends on both actual (x-axis) and believed (line types) reliabilities. Error bars depict SEM. 

 

Table 1 ANOVA results for cognitive offloading proportion 

 

DF1 DF2 F p ηG
2
 

Belief * 2 119 3.49         0.0338     0.0422    

Reliability *** 5 595 23.69         < 0.0001     0.0355    

Angle *** 1 119 71.62         < 0.0001     0.0035    

Handedness * 1 119 5.85         0.0171     0.0002    

Reliability x Belief 10 595 1.64         0.1150     0.0051    

Belief x Angle 2 119 1.19         0.3090     0.0001    

Belief x Handedness 2 119 1.96         0.1460     0.0001    

Reliability x Angle 5 595 1.09         0.3630     0.0002    

Reliability x Handedness 5 595 1.84         0.1150     0.0003    

Angle x Handedness 1 119 0.09         0.7580     0.0000    

Belief x Reliability x Angle 10 595 0.84         0.5810     0.0002    

Belief x Reliability x Handedness 10 595 0.67         0.7290     0.0002    

Belief x Angle x Handedness 2 119 0.99         0.3760     0.0001    

Reliability x Angle x Handedness 5 595 2.15         0.0577     0.0003    
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Reliability x Belief x Angle x Hand.  10 595 1.27         0.2460     0.0004    

Notes. *** p < 0.001, * p < 0.05; Handedness describes the stimulus’, not the participant’s 

handedness. 

 

Stability of cognitive offloading proportion over time 

Even though the naïve condition indicates that participants are in principle able to 

quickly calibrate their external resource use according to the actual reliability, the 

incongruent condition indicates that false expectations about the knob’s reliability can 

significantly modulate cognitive offloading proportions. To assess the stability of this 

belief-induced offloading modulation, we conducted an exploratory follow-up analysis 

that investigated how participants adjusted their external resource use over time. We 

created a Time variable representing the within-block progression in steps of ten trials 

each (i.e., a value of 1 represents the average of trials 1-10, etc.) and conducted a mixed 

ANOVA with the within-participants factors Reliability and the between-participants 

factor Belief. We used orthogonal polynomial instead of treatment contrasts for the time 

factor to investigate the nature of changes over time. We did not include further factors in 

the analysis since those were not balanced within the 10-trial segments.  

If participants in the false belief condition indeed adjusted their cognitive 

offloading proportion over time, Belief and Time should interact in their influence on 

external resource use. Though this was the case, the interaction between Belief and Time 

was further moderated by Reliability (i.e. 3-way interaction Belief x Reliability x Time, 

F(30, 2142) = 1.56, p = 0.027, ηG
2 

= 0.003). The polynomial contrasts for Time revealed 

that the linear component (F(10, 2142) = 3.75, p < .0001), but not the quadratic (F(10, 
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2142) = .52, p = .879) or cubic (F(10, 2142) = .43, p = .934) component interacted with 

the relationship between Belief and Reliability. When further inspecting the offloading 

pattern, Wilcoxon-signed rank tests (Hollander & Wolfe, 1973; the V statistic resembles 

the sum of positive ranks) suggested that participants in the incongruent Belief condition 

adjusted their external resource use between the first ten and the last ten trials (i.e. 

between Time 1 and Time 4) only for low reliabilities (i.e.; 50%, V = 110.5, p = .099; 

60%, V = 74.5, p = .099; 70%, V = 76.5, p = .099), but not for high reliabilities (80%, V = 

107, p = .164; 90%, V = 135, p = .832; 100%, V = 107, p = . 832). All six p-values are 

corrected for multiple comparisons using the BH-procedure. Thus, participants with 

incongruent beliefs appear to partly readjust their offloading behavior over time in low 

but not in high reliability conditions, an interpretation that is backed by the highly 

significant linear term of the three-way interaction. The offloading pattern is illustrated in 

Figure 4. The ANOVA results are summarized in the supplementary material, Table 5.  

 

 
 

Figure 4 Exploration of the stability of false beliefs. As indicated by post-hoc pairwise comparisons (lines with 

arrows), for low reliabilities (50%, 60%, 70%), participants with incongruent beliefs seem to converge towards naïve 

behavior over time whereas for higher reliabilities (80%, 90%, 100%), no such convergence seems to happen. This 
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interpretation is backed by a significant linear component of the three-way interaction between Belief, Reliability, and 

Time (see text for details).☨ p < .1 after correction for multiple comparisons; n.s. p > .1 

 

Knob utility ratings 

Metacognitive beliefs regarding the knob’s usefulness were analyzed using a 6 x 3 

ANOVA with the between-participants factors Reliability and Belief, respectively. The 

ANOVA exclusively used the usefulness ratings obtained after the first block (i.e., after 

40 trials). This procedure enabled comparing usefulness ratings of different reliabilities 

and beliefs simultaneously, statistically rendering Reliability a between-participants 

factor. Since the order in which the different reliability conditions were presented was 

counter-balanced, the procedure yielded an equal amount of information for the six 

reliability levels.  

We expected the belief manipulation to alter evaluations of the external resource’s 

usefulness. In contrast, the main effect of Belief on usefulness evaluations was not 

significant (F(2,103) = .63, p = .550, ηG
2 

= .012). However, the effect of Reliability was 

significant (F(5,103) = 5.10, p <  .001, ηG
2 

= .199), with higher usefulness ratings when 

actual knob reliability was high compared to when it was low; see Figure 5. 

Interestingly, the knot (the kink in a bilinear function) seen in Figure 5 occurs at the 

same reliability that has been identified as ‘crossover point’ between beneficial and 

disadvantageous automation (Wickens & Dixon, 2007). Specifically, Wickens and Dixon 

(2007) found that automation with reliabilities below 70% was, on average, worse than 

no automation at all. Although we do not argue the 70% reliability knot to be a 

generalizable characteristic of external resources, such a knot is present in our data as 
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supported by two one-sided post-hoc t-tests (i.e., 60% Reliability vs. 70% Reliability, t = 

1.88, p = .034, M(50%) = 5.9, M(60%) = 7.3, and 70% vs. 80%, t = 0.87, p = .804, 

M(80%) = 6.8). ANOVA results are summarized in Table 2. One participant had to be 

excluded from usefulness rating analyses due to missing data.  

 

 
Figure 5 External resource usefulness evaluation. Only Reliablity, not Beliefs about reliability altered usefulness 

evaluations (see Figure 3 for offloading behavior; see Table 2 for ANOVA results). Usefulness was rated on a 10-

point scale ranging from 0 to 9. Error bars depict SEM. 

 

 

Table 2 ANOVA results for knob usefulness ratings 

 
DF1 DF2 F p ηG

2 

Belief 2 103 0.63 0.5304 0.0122 

Reliability *** 5 103 5.10 0.0003 0.1986 

Belief x Reliability 10 103 0.75 0.6727 0.0682 

Notes. *** p < 0.001 
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Discussion 

In the current experiment, an adaptation of the mental rotation paradigm (Shepard 

& Metzler, 1971) was employed to explore how human problem solvers decide when to 

use external and when to rely on internal resources. We manipulated actual and believed 

reliability of an external resource, a rotation knob, and measured how frequently 

participants tried to use the knob as well as how useful they perceived the knob to be. 

Results indicate that participants were less likely to recruit the external resource when its 

actual reliability was low (versus high) but also when they believed that the reliability 

was low (versus high). Whether participants were correctly informed about the reliability 

of the external resource (i.e., congruent condition) or told that it might sometimes not 

work properly (i.e., naïve condition) did not differentially affect cognitive offloading, 

suggesting that participants’ reliability assessments based on experience with the system 

have been well calibrated. Negative beliefs about the external resource’s reliability (i.e., 

incongruent condition), however, significantly reduced offloading as compared to the 

other two conditions, suggesting notable influences of false beliefs on cognitive 

offloading. The effect of false beliefs was declining over time for lower knob reliabilities 

but stable for higher knob reliabilities, suggesting at least partial readjustment over time. 

However, further evidence is needed to make conclusive statements about the effects of 

false beliefs over time. Lastly, and unexpectedly, explicit assessments of the external 

resource’s usefulness were only affected by actual but not believed reliability, suggesting 

that reliability and belief manipulations influence offloading through different 

mechanisms. 
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The results highlight the importance of higher-level metacognitive judgments in 

cognitive offloading and thereby confirm the general assumption behind the 

Metacognitive Model of Cognitive Offloading, which states that “selecting between 

offloading and relying on internal processes is influenced by metacognitive evaluations 

of our (internal) mental capacities and the capacities of our extended mental systems 

encompassing body and world” (Risko & Gilbert, 2016, p. 684). Importantly, the present 

study demonstrates that induced beliefs about the extended mental system can cause 

sustainable changes in cognitive offloading proportion, even when beliefs are in harsh 

contrast to reality (i.e., 30% discrepancy between actual and believed reliability), which 

adds to the correlational findings postulating the influence of metacognitive judgments on 

cognitive offloading  (e.g., Dunn & Risko, 2016; Risko & Dunn, 2015). The results are 

also well consistent with studies showing that offloading frequency is dependent on the 

external resource’s utility (Gray & Fu, 2004; Gray, Sims, Fu, & Schoelles, 2006; O’Hara 

& Payne, 1998; Risko et al., 2014; Walsh & Anderson, 2009), which was manipulated 

via reliability in the present study. 

Contrary to our expectations, belief-dependent changes in cognitive offloading 

proportion were not reflected in the ratings of the knob’s usefulness. Though we had no 

strong hypotheses, we expected the belief manipulation to influence people’s explicit 

theories about knob utility, which should then affect both cognitive offloading and 

eventually knob usefulness assessments. Such a causal chain would have been in line 

with what has been termed theory- or information-based judgments in memory research 

(Koriat, 1997; Koriat & Helstrup, 2007) and well compatible with in the Metacognitive 
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Model of Cognitive Offloading. Also, metacognitive judgments have already been 

associated with offloading behavior: judgments of internal utility were found to correlate 

with offloading independently from actual internal utility (Gilbert, 2015; Risko & Dunn, 

2015) and judgments of an external resource’s utility (i.e., a display from which 

information had to be retrieved) were correlated with offloading independently from the 

external resource’s actual utility (Dunn & Risko, 2016).  

So why would the belief manipulation only affect knob use, not perceived knob 

usefulness? We speculate that theory-based metacognitive judgments can influence 

offloading behavior independently from any ongoing experience-driven monitoring effort 

(the latter would drive what has been termed experience-based judgments in memory 

research; Koriat, 1997; Koriat & Helstrup, 2007). While experience might affect 

offloading via experience-based usefulness evaluations (which can happen without 

awareness; Cary & Reder, 2002), beliefs might affect offloading differently, without 

being ‘translated’ into the utility domain, for example via trust in the external resource 

and subsequent adjustments in attentional resource allocation. Concordantly, the 

Integrated Model of Complacency and Automation Bias (Parasuraman & Manzey, 2010, 

Figure 6) assumes different pathways for person-related parameters (e.g., beliefs) and 

system-related parameters (e.g., reliability) in influencing attentional resource allocation 

when interacting with automation, ultimately leading to possibly inefficient distributed 

processing. Though we deem the knob usefulness ratings interesting enough to report, we 

want to emphasize that our speculations are based on an exploratory null finding and that 
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further research is needed to disentangle the mechanisms by which theorizing and 

experiencing affect cognitive offloading.  

From an applied perspective, our findings help understand and improve user 

behavior in tech-infused environments that afford cognitive offloading. It should be kept 

in mind that cognitive offloading is desirable in some cases (e.g., when outsourcing 

memory onto a cockpit; Hutchins, 1995) but not in others (e.g., when overrelying on a 

vehicle’s autopilot; National Transportation Safety Board, 1994; Parasuraman & Riley, 

1997). It thus seems critical for users to learn and choose the most beneficial offloading 

behavior, depending on the system and the particular circumstances. Regarding objective 

system parameters, the presented data confirms previous findings (Gray & Fu, 2004; 

Gray, Sims, Fu, & Schoelles, 2006; O’Hara & Payne, 1998; Risko et al., 2014; Walsh & 

Anderson, 2009), demonstrating that users can automatically extract relevant information 

(e.g., an external resource’s reliability) and adapt cognitive offloading accordingly. In 

fact, naive participants were so proficient in extracting reliabilities in the present study 

that their offloading proportion was nearly identical to the one from participants that were 

correctly informed about the external resource’s reliability. Our results thereby confirm 

that by increasing a user’s ex  perience with a system, optimal behavior becomes more 

likely.  

However, merely increasing exposure time is oftentimes not enough to inform 

optimal behavior. It is crucial how that time is being used. In the domain of automated 

decision aids, it has proven helpful to increase the ‘quality’ of the time spent with a 

system by implicitly incentivizing participants to increase monitoring behavior rather 
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than being ‘blindly compliant’ with the system. This has been, for example, done by 

varying the external resource’s reliability (higher variance leads to increased monitoring; 

Parasuraman et al., 1993) or exposure to external resource failure during a training 

session (more failures lead to increased monitoring; Bahner, Hüper, & Manzey, 2008). 

The present results add another possible intervention to improve offloading behavior: 

helping participants to form correct beliefs concerning an external resource’s 

performance. Providing performance information and thus altering pre-existing beliefs 

can help novel users inform their initial offloading choices and experienced but 

inefficient users to remediate their offloading behavior. Such an approach could not only 

be useful to remediate erroneous beliefs about an external resource but also erroneous 

beliefs about internal resources like overconfidence in their own abilities (which 

correlates with cognitive offloading independently from actual ability; Gilbert, 2015). 

Whereas experience-based adjustments of cognitive offloading strategies take time, 

theory-based belief adjustments are fast and would thus be especially useful when 

exposure to the respective system is short or when the system is too complex to allow 

extracting its performance parameters via experience.  

Although our study provides insights into belief-based interventions that could aid 

users readjust their cognitive offloading proportion, there is substantial need to carve out 

the details of such interventions (see also Risko & Gilbert, 2016, p. 685). It would also be 

useful to increase the understanding of the mechanisms by which belief manipulation 

affects offloading. In particular, it would be relevant to examine if the effect is mediated 

by trust in the external resource or changes in attentional resource allocation or 
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monitoring behavior (compare to Parasuraman & Manzey, 2010, Figure 6). Future efforts 

also need to clarify if belief manipulations in domains not related to utility have equally 

strong effects on cognitive offloading, examine if belief manipulations are equally 

powerful when beliefs are induced outside a highly trustworthy surrounding like a 

university-based laboratory, and more closely investigate the time-course of induced 

beliefs’ effects on cognitive offloading. 
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Key Points 

 Many everyday environments increasingly allow us to offload our cognitive 

processing onto digital devices. However, offloading cognitive processing can be 

both beneficial and detrimental to our overall performance, emphasizing the 

relevance of an individual’s decision whether to solve a certain cognitive task 

internally or externally.  

 We manipulated the actual and believed reliability of a rotation device. 

Participants were able to calibrate their offloading frequency according to the 

device’s reliability. However, participants also calibrated their offloading 

frequency according to erroneous beliefs about its reliability.   
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 The influence of pre-existing beliefs demonstrates a substantial role of 

metacognitive processes on cognitive offloading decisions, implying opportunities 

to guide and remediate cognitive offloading behavior. 
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Figure 6 Performance data. Accuracy (a) and reaction time (b) data are displayed for exploratory purposes only. Error 

bars depict SEM. 

 

Table 3 ANOVA results for accuracy 

 
DF1 DF2 F p ηG

2 

Belief 2 119 0.12 0.8830 0.0005 

Reliability *** 5 595 9.42 < 0.0001 0.0157 

Angle * 1 119 4.69 0.0323 0.0016 

Handedness 1 119 0.05 0.8200 0.0000 

Belief x Reliability 10 595 1.16 0.3130 0.0039 

Belief x Angle 2 119 0.54 0.5840 0.0004 

Belief x Handedness 2 119 0.24 0.7830 0.0003 

Reliability x Angle 5 595 1.73 0.1260 0.0019 

Reliability x Handedness 5 595 2.73 0.0188 0.0033 

Angle x Handedness 1 119 22.84 < 0.0001 0.0059 

Belief x Reliability x Angle 10 595 1.27 0.2420 0.0028 

Belief x Reliability x Handedness 10 595 1.36 0.1960 0.0033 

Belief x Angle x Handedness 2 119 2.09 0.1280 0.0011 

Reliability x Angle x Handedness 5 595 0.57 0.7220 0.0007 

Belief x Reliability x Angle x Hand. 10 595 0.71 0.7110 0.0017 

Notes. *** p < 0.001, * p < 0.05 

 

Table 4 ANOVA results for reaction time 

 
DF1 DF2 F p ηG

2 

Belief 2 119 1.49 0.2290 0.0156 

Reliability *** 5 595 4.61 0.0004 0.0079 

Angle *** 1 119 285.24 < 0.0001 0.0260 
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Handedness *** 1 119 94.77 < 0.0001 0.0223 

Belief x Reliability 10 595 0.26 0.9890 0.0009 

Belief x Angle 2 119 2.12 0.1240 0.0004 

Belief x Handedness 2 119 2.27 0.1080 0.0011 

Reliability x Angle 5 595 0.96 0.4390 0.0003 

Reliability x Handedness 5 595 0.46 0.8070 0.0002 

Angle x Handedness *** 1 119 31.09 < 0.0001 0.0024 

Belief x Reliability x Angle 10 595 1.07 0.3860 0.0006 

Belief x Reliability x Handedness 10 595 1.44 0.1600 0.0011 

Belief x Angle x Handedness 2 119 1.31 0.2740 0.0002 

Reliability x Angle x Handedness 5 595 0.54 0.7490 0.0002 

Belief x Reliability x Angle x Hand. 10 595 0.93 0.5040 0.0006 

Notes. *** p < 0.001, * p < 0.05 

 

Table 5 ANOVA results for external resource use over time 

 
DF1 DF2 F p ηG

2 

Belief * 2 119 3.48 0.0339 0.0387 

Reliability *** 5 595 23.18 < 0.0001 0.0319 

Time * 3 2142 2.73 0.0428 0.0006 

Belief x Reliability 10 595 1.64 0.0918 0.0046 

Belief x Time 6 2142 1.62 0.1370 0.0007 

Reliability x Time 15 2142 0.61 0.8660 0.0006 

Belief x Reliability x Time * 30 2142 1.56 0.0267 0.0031 

Notes. *** p < 0.001, * p < 0.05 
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Rationale 

In this study, we altered the alphanumeric equation validation (also called 

alphabet arithmetic) task (e.g., Compton & Logan, 1991; Logan, 1988; Logan & Klapp, 

1991) to incorporate the possibility to offload cognitive processing (see Figure 7). In the 

original task, participants have to count upwards the alphabet starting from a first letter 

given in an alphanumeric equation for as many letters as given by a number in the 

equation and then check whether this yields the second letter given in the equation (e.g., 

B + 3 = E, which is correct). After prolonged exposure to specific equations, participants 

are also able to recall the correct solution from memory. In our altered paradigm, 

participants could not only use counting or internal retrieval—as in the original 

paradigm—, but could also externally retrieve the solution by hovering the mouse cursor 

over a black box depicted on a computer screen that would then vanish and reveal the 

correct solution.  

The study’s main focus was to confirm correlational findings (compare (1) in the 

section Rationale of the dissertation project) in that human problem solvers are adjusting 

cognitive offloading behavior based on internal brain-based task performance even when 

internal performance is at odds with the task’s apparent difficulty. The study also 

investigates whether internal performability can supplant apparent task difficulty in 

determining cognitive offloading frequency (compare (2) in the section Rationale of the 

dissertation project). 

To this end, two parameters were manipulated: The apparent difficulty of the 

addend (2, 3, or 4) and how frequently equations with the specific addend had been 
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learned before (Learning 2: many trials with Addend 2 and few with Addend 4; Learning 

4: few trials with Addend 2 and many with Addend 4). The Learning manipulation 

allowed us to alter the difficulty of specific alphanumeric problems independently of 

apparent difficulty. For example, the apparently difficult equation “H + 4 = M“ is easy to 

validate if one has already solved the equation frequently and is able to recall the correct 

solution (here: L) from memory.  

In a nutshell, results showed that participants were able to adaptively adjust their 

cognitive offloading proportion in response to the learning frequency even when apparent 

task difficulty would suggest otherwise. Thus, how frequently human problem solvers 

offload their cognition is not merely based on interpreting a task’s visual features but also 

on how well they can solve the task internally. These results (a) confirm correlational 

findings regarding the importance of internal performability when using external 

resources with an experimental paradigm and (b) suggest that high internal performability 

can supplant visual features in determining cognitive offloading behavior.  

Abstract 

Humans frequently use external (environment-based) strategies to supplement 

their internal (brain-based) thought. In the memory domain, whether to solve a problem 

using external or internal retrieval depends on the accessibility of external information, 

judgment of mnemonic ability, and on the problem’s visual features. It likely also 

depends on the accessibility of internal information. Here, we asked whether internal 

accessibility contributes to strategy choice even when visual features bear no information 

on internal accessibility. Specifically, 114 participants were to validate alphanumerical 
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equations (e.g., A + 2 = C) whose visual appearance (addends 2, 3, or 4) signified 

different difficulty levels. First, some equations were presented more frequently than 

others, allowing participants to establish efficient internal access to the correct solution 

via memory retrieval rather than counting up the alphabet. Second, participants viewed 

the equations again but could access the correct solution externally using a computer 

mouse. We hypothesized that external strategy use should selectively decrease for 

frequently learned equations and irrespectively of the task’s visual features. Results 

mostly confirm our hypothesis. Exploratory analyses further suggest that participants 

partially used a sequential “try-internal-retrieval-first” mechanism to establish the 

adaptive behavior. Implications for intervention methods aimed at improving interactive 

cognition are discussed. 

Introduction 

Imagine you are in your kitchen and about to prepare your new favorite meal that 

got a five-star rating on your go-to recipe website. You prepared it once and are known 

for your good memory. The next time you prepare the same dish, would you try to find 

the recipe online again or would you rely on your mnemonic abilities? Human problem 

solvers face similar problems, i.e. whether to retrieve information from internal (brain-

based) or external (environment-based; e.g., internet, paper) storage, on a daily basis. The 

present study is designed to illuminate the underlying decision process. Its focus is on 

investigating the impact of internal information accessibility (i.e., performance of 

memory retrieval) on the use frequency of external information storages.  
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The paradigm: Solving alphanumerical equations with external storage 

To facilitate the understanding of the remaining introduction, we now briefly 

describe the paradigm we designed for the present inquiry before continuing with 

theoretical considerations. Each trial, participants were faced with alphanumerical 

problems of the format “Letter + Number = Letter” and asked to indicate whether 

counting the indicated number up the alphabet from the former letter equals in the latter 

letter. In a mixed design, we altered the number (factor Addend: 2, 3, or 4) within 

participants and the frequency with which participants learned solving specific problems 

involving the different Addends (factor Learning: 2 or 4)
7
  between participants. After 

solving specific alphanumeric problems frequently (here, 128 times), human problem 

solvers are known to shift away from a slow counting to a fast memory retrieval strategy 

(Compton & Logan, 1991). This strategy shift prominently alters the information’s 

internal accessibility. After the accessibility of internal information had been altered, 

participants gained access to an external storage that could be used to replace internal 

cognitive strategies. Specifically, participants gained access to a black box that revealed 

the correct solution whenever the mouse cursor was being moved on top of it (e.g., it 

would reveal “D” if the verification task was “A + 2 = C”). This design allowed 

analyzing whether participants accessed the black box less frequently for equations with 

high internal accessibility. More generally, it afforded insight into how proficiently 

                                                 
7
 Learning 2: 128 trials with the “2” Addend, 64 trials with the “3” Addend, and 32 trials with the “4” 

Addend; Learning 4: 32 trials with the “2” Addend, 64 trials with the “3” Addend, and 128 trials with the 

“4” Addend 
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human problem solvers incorporate technology-infused environments into their memory 

processing.  

Interactive cognition: Distributed, embodied, and situated perspectives on Cognitive 

Science 

Researching human cognition using interactive paradigms like the one just 

described has been a focus in recent cognitive science research. The subfields of 

distributed (e.g., Hol-lan, Hutchins, & Kirsh, 2000), embodied (e.g., Clark, 1999; Wilson, 

2002), and situated (e.g., Robbins & Aydede, 2009) cognition are focused on researching 

the cross-play between sensory input, brain-based cognition, motor output, and 

manipulation of the environment unfolding over time. One upshot of such a holistic  

perspective on cognition is that it enables researching cognition-related behaviors in real-

world complex environments like today’s and tomorrow’s technologized homes and 

workplaces. Relating back to the cooking example, this means that a recipe does not need 

to be retrieved from brain-based memory (knowledge in the head; Norman, 1988) but 

could instead be retrieved from environment-based sources like paper notes or the 

internet (knowledge in the world; Norman, 1988; for a review comparing brain-based and 

internet-based information retrieval, see Clowes, 2013). Without knowledge in the world, 

the only option to access information would be to use brain-based memory. With 

knowledge in the world however, the cost structure of the human inferential landscape 

(Kirsh, 2010) changes. The world can then provide problem solvers with knowledge 

similar to the one available in the brain but associated with different retrieval costs. Thus, 

to understand cognitive operations like information retrieval in situations in which the 
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environment can be exploited, it is imperative to broaden the focus beyond the brain. To 

illustrate this issue, imagine the following scenario that is focused on understanding 

Peter’s cognitive operations: you observed Peter preparing meals throughout the whole 

last week. You noticed that he is hardly ever looking up recipes on his smartphone. Why 

would that be?  

Accessibility of external information influences external information retrieval 

Proficient problem solvers need to refrain from integrating external information 

when it is associated with higher costs than relying on internal strategies. Thus, possibly, 

Peter is experiencing poor network coverage and loading the recipe page would take too 

long to be beneficial. Current literature suggests that there is some truth to this option: 

human problem solvers proficiently adjust the frequency of external information retrieval 

based on the accessibility of the external information. 

In previous studies, accessibility of external information has been altered via a 

delay between the time when externally stored information was requested and when it 

eventually showed up (Gray, Sims, Fu, & Schoelles, 2006; Morgan, Patrick, Waldron, 

King, & Patrick, 2009; Walsh & Anderson, 2009), by altering the size of the interface 

elements needed to access the information (which manipulates time costs in a more 

natural manner via Fitts’ law; Gray et al., 2006), by altering the number of key strokes 

needed to change what external information is shown (O’Hara & Payne, 1998), or by 

altering the distance between the problem solver and a computer from which the relevant 

information could be accessed from (Storm, Stone, & Benjamin, 2017). In all cases, 

decreased accessibility led to less external information retrieval and, equivalently, to 
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more internal information retrieval. In one study, an ideal performer analysis suggested 

that problem solvers switched between using internal and external information retrieval 

in a way that maximizes speed (Gray et al., 2006); in another study, problem solvers were 

found to proficiently switch between internal and external strategies as to maximize a 

monetary performance-related reward (though there was a slight bias for internal 

strategies and, strictly speaking, participants were found to probability match rather than 

optimize; Walsh & Anderson, 2009).  

Taken together, the studies suggest that problem solvers adjust their use of 

external information based on properties of the external information source (i.e., 

accessibility). Changing the accessibility of externally stored information can alter the 

cost structure of the inferential landscape which causes agents equipped with a rational 

and adaptive cognitive system (which might be close to the human cognitive system; 

Anderson, 1990) to adjust how they incorporate the environment into their cognitive 

processing. 

Additional factors influencing external information retrieval 

If human problem solvers are indeed able to mix internal and external cognitive 

strategies to maximize performance, they should not only be sensitive to properties of 

external information sources. Instead, they should pay equal attention to features of the 

task (e.g., does the task look difficult?) and properties of internal brain-based information 

sources (e.g., how fast is it to access the solution internally?). For example, after using a 

written recipe for preparing a meal for more than ten times, a substantial brain-based 

memory trace of the recipe should have built up that might make it more efficient for a 
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culinary problem solver to omit using the written recipe and rely on internal information 

instead.  

And indeed, humans can be quite proficient in deciding between internal and 

external strategies even when the cost of external information access is kept constant 

(e.g.; Risko, Medimorec, Chisholm, & Kingstone, 2014; Siegler & Lemaire, 1997; Walsh 

& Anderson, 2009). When allowed to use internal (e.g., internal counting) and external 

(i.e., using a calculator) strategies for arithmetic problem solving, participants were 

repeatedly shown to mix the strategies in a way that led to better speed performance than 

when allowed to only use one of the strategies (e.g., Siegler & Lemaire, 1997; Walsh & 

Anderson, 2009). More specifically, participants quite adaptively preferred using mental 

arithmetic for equations in which one multiplicand was “10” (e.g., 17 x 10) and the 

calculator for tasks in which no multiplicand was “10” (e.g., 17 x 13; Siegler & Lemaire, 

1997).  

But how is such adaptive external strategy use being achieved and what is the 

driving force behind adaptive cognitive strategy selection? In the following, we are 

discussing four possible candidates: 1. feature-specific strategy selection (e.g., seeing a 

“10” as a factor in an arithmetic task affords the specific internal strategy of simply 

adding a 0 to the other factor to get the product), 2. feature-based apparent difficulty of 

the problem (e.g., seeing a “10” as a factor is associated with an easy problem through 

metacognitive reasoning), 3. evaluation of internal accessibility of the solution (e.g., 

perceiving oneself as being bad at math and thus preferring external over internal 
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strategies),  and 4. actual internal accessibility of the solution (e.g., the solution to “17 x 

10” is quick to calculate internally). 

1. Thoroughly analyzing the visual features of a problem is likely a highly relevant 

process for adaptive cognitive strategy selection. Feature-specific strategy selec-

tion has been frequently researched by observing arithmetic problem solvers. For 

example, simply seeing a “10” had profound consequences for problem solvers’ 

strategy selection: it accounted for a 14 percentage point increase in explained 

strategy choice variance on top of the variance explained by reaction time differ-

ences between internal and external strategies (Siegler & Lemaire, 1997; Experi-

ment 1). A similar effect of visual features on strategy choice has been triggered 

by a “5” as a factor in arithmetic-based problems (Lemaire & Reder, 1999; 

Experiment 3)
8
 or by a letter that enabled rule-based instead of retrieval-based 

processing in a string classification task (e.g., if the first letter of the string is a 

consonant, classify the string as “code” instead of “noncode”; Bourne, Raymond, 

& Healy, 2010). 

2. A second relevant process requiring analysis of a problem’s visual features 

constitutes metacognitive judgments related to the problem’s difficulty. For 

example, it has been suggested that some problem solvers assume that it is 

manageable to keep an array of ten letters in working memory, which is why they 

                                                 
8
 However, note that participants do not always use that rule but, adaptively, skip the rule in experimental 

sessions in which the last digit hardly violates the five rule (Lemaire & Reder, 1999; Experiment 3). 

Human problem solvers thus also exhibit feature-independent strategy adaptation.  
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skip writing the letters down and end up with attenuated task performance (Risko 

& Dunn, 2015). Similarly, it has been suggested that whether adopting an external 

or an internal strategy heavily depends on the familiarity of the respective 

problem rather than how well the solution can be accessed internally (Schunn, 

Reder, & Nhouyvanisvong, 1997). Note that familiarity-based judgments might 

not be made on a conscious level but depend on an implicit frequency tracker 

(Onyper, Hoyer, & Cerella, 2006).  

3. The third process relevant for cognitive strategy choice is the evaluation of own 

performance. Such evaluation can have components independent of actual skill 

(Gilbert, 2015) and might be a reason for memory avoidance in older adults 

(Hines, Hertzog, & Touron, 2012; Touron, 2015).  

4. A fourth relevant process might be the actual – in contrast to the estimated – in-

ternal accessibility of the solution: how fast can one produce a correct solution 

with mental processing? Although adaptive selection between an internal and an 

external strategy has been frequently shown, it is hard to say whether the problem 

solver’s sensitivity to brain-based task performance actually contributed to 

strategy selection. Instead, as pointed out in the above, problem solvers might rely 

on what can be directly seen. For example, differences in task difficulty are 

usually obvious (e.g., 17 x 13 looks harder than 7 x 10) and properties of external 

information sources are oftentimes equally observable (e.g., accessing information 

using a slow internet connection makes you stare at a mostly empty screen for a 

while). In comparison, perceiving the properties of internal information sources 
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might prove challenging. As mentioned in the preceding paragraph, judgments of 

task-related internal memory ability can be independent of actual ability (Gilbert, 

2015; Experiment 1). Given the difficulty of accurately judging own ability and 

the frequent reliance on visible task features for deciding between internal and 

external cognitive processing, it seems questionable how big the influence of 

internal memory accessibility on proficient external strategy use really is. 

Influence of accessibility of internal information on external information retrieval 

So far, we have argued the accessibility of external information, judgments of 

own skill, and visual features of the task influence how problem solvers mix internal and 

external strategies. We have also argued that, based on the current evidence, it is 

questionable whether the same holds for the accessibility of internal information. 

Consequently, with the current study, we aim to investigate whether problem solvers 

monitor their internal information access to inform the orchestration process between 

internal and external information retrieval or whether they prefer possibly misleading 

external cues and higher-level metacognitive evaluations (like evaluations of own skill) 

for the same end. However, drawing on the previous studies on cognitive strategy 

selection and cognitive offloading that are discussed in what follows, we hypothesize that 

human problem solvers can indeed adapt their interactive behavior based on internal 

information accessibility and independent of solely feature-based reasoning. 

In one study (Howes, Duggan, Kalidindi, Tseng, & Lewis, 2016), problem solvers 

were tested on their ability to copy name lists. Initially, in a no-choice condition, problem 

solvers had to copy lists consisting of between three and nine names. Then, in a choice 
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condition, people were able to select their preferred list length on their own. Results show 

that problem solvers tended to choose the list length they performed best with in the no-

choice condition. Promisingly, the study shows that problem solvers are able to adapt 

their interaction behavior depending on how well information can be stored in internal 

working memory. Importantly however, the study allowed participants only to alter the 

set size parameter of an internal process (i.e., storing words in working memory). Though 

while the results sound promising, the study did not investigate how participants chose 

between internal and external strategies, which is the focus of the current investigation .  

In another study (Touron & Hertzog, 2004), problem solvers had to decide 

whether one noun was “correctly” paired with another noun. To find out whether a noun 

was paired correctly, problem solvers could rely on two strategies. At the beginning, they 

only could use an external strategy: they could search through a list of noun pairs 

provided on screen and compare whether the nouns that were paired in the current 

problem were also paired in the list on screen. After a while, problem solvers could also 

use an internal strategy: if they already had had the opportunity to learn parts of the list in 

earlier trials, they could consult their memory. Results showed that problem solvers relied 

less on the external search strategy once they had established a good enough memory to 

use the internal strategy. The only limiting factor of this study is that internal strategies 

had become available through learning while external strategies were available from the 

very beginning. Thus, it was to be expected that problem solvers used external 

information for unlearned problems since no internal options were available. Other 

paradigms like arithmetic (Walsh & Anderson, 2009) or alphanumeric (Compton & 
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Logan, 1991; Zbrodoff, 1995) problem solving avoid this lack of an internal option by 

providing an internal strategy that is computation- instead of retrieval-based. In the 

current study, we decided to use an alphanumeric task to avoid the unavailability of an 

internal strategy. 

Some correlational evidence also suggests that problem solvers adjust how 

frequently they accessed external information based on internal information accessibility. 

For example, the older elderly people get, the more they use external information, which 

is likely an adjustment made due to declining internal information accessibility (Dixon & 

de Frias, 2004; Touron, 2015) 
9
. Similar adjustments are compatible with the results of a 

study examining prospective memory: the better participants performed without the 

opportunity to use external information, the less they made use of external information 

when gaining the opportunity to do so (Gilbert, 2015). Further support for the importance 

of the accessibility of internal information comes from a study comparing two different 

internal computational strategies (which, in the terminology of this paper, would be equal 

to two different internal information sources with differential accessibilities) to convert 

currencies: after briefly practicing the two competing strategies, participants were more 

likely to use the faster one (Lemaire & Lecacheur, 2001). Thus, problem solvers can 

adapt to the accessibility of internal information when selecting between internal 

strategies. However, note that selecting between internal and external strategies involves 

additional mechanisms like metacognitive evaluation of the external resource (reviewed 

                                                 
9
 Please note, however, that elderly adults likely over-use external information due to low confidence in 

their internal memory (reviewed in Touron, 2015). 
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by Risko & Gilbert, 2016) and evaluation of observable performance cues (e.g., size of a 

button or delay after pressing a button; Gray et al., 2006). 

Current study 

Humans are known to be proficient problem solvers who make use of a variety of 

in-ternal cognitive strategies to meet their goals (Compton & Logan, 1991; Lemaire & 

Lecacheur, 2001; Lemaire & Reder, 1999). Evidence is accumulating that humans are 

also proficient in incorporating external strategies when solving problems (e.g., using a 

calculator instead of internal strategies; Siegler & Lemaire, 1997; Walsh & Anderson, 

2009). However, the importance of feature-based considerations for the selection between 

internal and external strategies makes it hard to gauge how important sensitivity to the 

performance of internal strategies for this selection process is (see section: What else 

Influences External Information Retrieval?).  

In the present study, we manipulated the performance of internal problem solving 

strategies and observed whether participants adjust their use of an external problem 

solving strategy accordingly. Importantly, we were controlling for the visual features of 

the task. In other words, we used a paradigm in which an identical problem will be easy 

to solve internally for one group of participants but hard to solve internally for another 

group of participants. Based on the studies presented in the preceding section (see 

section: Does Accessibility of Internal Information Influence External Information 

Retrieval as well?), we assume changes in the efficiency of the internal strategies to drive 

changes in how frequently the external strategy is being employed. We expect such 

adaptive changes in external strategy use despite the fact that participants cannot rely on 
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feature-based reasoning to make adaptive strategy choices. Such a finding would confirm 

the human problem solver’s proficiency in using the environment for cognitive 

processing.  

The present paradigm combines three features that are of particular importance 

for the interpretability of the study’s outcome: (1) The cognitive process investigated here 

is information retrieval. Thus, external validity is likely highest in the memory domain. 

(2) In many paradigms, internal accessibility can be derived from appearance. Here, 

internal information accessibility is manipulated independently from apparent task 

difficulty. (3) The external strategy used in the current paradigm constitutes using the 

mouse to access task-relevant information. Thus, external validity is likely highest in the 

human-computer-interaction domain. 

Methods 

Participants 

In total, 114 undergraduate students participated in the experiment. Two 

participants were excluded because they reported that they did not understand the task, 

one because of technical problems, and twelve due to poor task performance (i.e. 

answering incorrectly in more than 15% of the problems), resulting in a final sample size 

of 99 participants (62 fe-males; mean age: 20.3; range: 18 – 50; 79 right handed). 51 

participants (31 females; mean age: 21.2; range: 18 – 50; 37 right handed) were assigned 

to the Learning 2 and 48 partici-pants (31 females; mean age: 19.3; range: 18 – 27; 42 

right handed) to the Learning 4 condi-tion (see Design and Procedure for details on the 

Learning factor).  Our targeted sample size (N of 100) was based on an a-priori power 
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analysis for a within-between interaction at medium effect size conducted in G*Power 

(Faul, Erdfelder, Lang, & Buchner, 2007). All participants were recruited from the 

psychology undergraduate student pool at George Mason University and reimbursed via 

research participation credits. All participants were at least 18 years old and reported 

normal or corrected to normal vision. The Ethics Committee at George Mason University 

approved the experiment and participants provided informed consent prior to 

participation. 

Apparatus 

The experiment was presented at a distance of about 57 cm on an ASUS VB198T-

P 19-inch monitor set to a resolution of 1280 × 1024 pixels and a refresh rate of 60 Hz 

using MATLAB version R2015b (The Mathworks, Inc., Natick, MA, United States) and 

the Psy-chophysics Toolbox (Brainard, 1997; Pelli, 1997). Responses were recorded 

using a USB-connected standard keyboard and a USB-connected optical mouse with a 

resolution of 800 dpi. The mouse cursor speed was set in a way that moving the mouse 

for 1 cm would move the cursor on screen for 1.4 cm.  

Stimuli 

Stimuli consisted of equations that started with one of six letters (A to F) and had 

one of three addends (2 to 4), e.g. “A + 2 = C”. Each equation was presented with a 

correct or an incorrect solution. The incorrect solution was always one letter further up 

the alphabet than the correct solution. Thus, in total, 36 different equations were used (18 

correct, 18 incorrect). For each participant, each starting letter was uniquely associated 

with one addend. Associations between starting letters and addends were balanced 
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between participants within each condition in a way that each addend was associated with 

each target letter with equal probability. Equations were presented on the left side of the 

screen with an eccentricity of 7° visual angle. Equations had a width of 5° and a height of 

0.6°. During the second block, a square target box was presented at the right side of the 

screen with an eccentricity of 7° and a width of 0.8°. 

Task 

During the main experiment, participants had to examine the correctness of 

alphanu-merical equations (e.g., A + 2 = C; see Stimuli) as used by Compton and Logan 

(1991) to study the transition from solving a task algorithmically to solving it through 

memory retrieval. Participants had to press the downward arrow key labeled with a 

checkmark to indicate a correct equation and the upward arrow key labeled with a cross 

to indicate an incorrect equation. During different parts of the experiment, participants 

had different options to arrive at their answer.  

During the first part of the experiment, the learning block, participants had the 

two options investigated by Compton and Logan (1991). First, participants could count 

upwards the alphabet starting from the first letter given in the equation (internal counting 

strategy; e.g., when given the equation “C + 3 = G”, counting C + 1 = D, D + 1 = E, and 

E + 1 = F, would lead to the conclusion that C + 3 != G). Second, with increasing 

exposure to a specific equation, the counting strategy could be replaced by a more 

efficient memory-based strategy, i.e. participants could recall the solution from memory 

(internal retrieval strategy). The likely reason for the strategy switch over time is that 

with increased exposure, the memory trace linking cue (here, the left side of the equation, 
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e.g. C + 3) and the correct solution (i.e.., F) grows stronger, leading to both increased 

frequency and increased speed of internal memory recall (as argued by Compton & 

Logan, 1991). During the second part of the experiment, the choice block, participants 

additionally were able to access the solution by hovering the mouse cursor over a black 

box that then would disappear and reveal the correct solution (external strategy). If an 

incorrect answer was given or an unassigned key pressed, a feedback message was 

displayed for 500 ms immediately after their response. To keep timing constant, the inter-

trial interval was shortened to 1500 ms after incorrect answers. The task is illustrated in 

Figure 7. 

For a more detailed treatise on how problem solvers could automate cue-specific 

in-formation retrieval, the interested reader can consult Logan’s (1988) Instance Theory 

of Automatization. For a more general overview of how humans create internal problem 

solving routines, interested readers should consult Anderson’s (1987) review article about 

skill acquisition. For the purpose of the current study, it should be sufficient to know that 

our problem solvers can choose between an automatic internal retrieval strategy (as in 

Logan, 1988) and two algorithmic strategies (one internal, one external) to solve a 

problem and that increased exposure with a specific alphanumeric equation increases the 

likelihood that its solution can be automatically retrieved from internal memory (Logan 

& Klapp, 1991). 
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Figure 7 Trial Sequence. Participants have to check alphanumerical equations for correctness via button press (see 

Task for details). At the beginning of a trial, participants fixate on a fixation cross for 2000 ms (inter-trial interval). 

Afterward, to guide the participant’s spatial attention, the location of the upcoming equation is indicated for 500 ms. In 

the learning block, participants have to rely on brain-based internal strategies to solve the equation. In the choice block, 

participants can additionally rely on an external strategy: hovering with the cursor over the black box will reveal the 

correct answer hidden under the box (here: “C”). At the beginning of each choice trial, the cursor will appear randomly 

at one of the four locations indicated by the gray cursors. 

 

Design and procedure 

The main task followed a 3 x 2 mixed design with the within-participants factor 

Addend (2, 3, or 4) and the between-participants factor Learning (2 or 4). The Addend 

manipulation refers to the addend used in the respective equation (e.g., “2” in the 

equation A + 2 = C). The Learning manipulation refers to the addend-specific learning 

process that took place during the learning block: participants either solved 128 equations 

with the “2” Addend, 64 equations with the “3” Addend, and 32 equations with the “4” 

Addend (Learning 2) or 32 equations with the “2” Addend, 64 equations with the “3” 

Addend, and 128 equations with the “4” Addend (Learning 4). This differential learning 

is known to alter internal information accessibility because problem solvers transition 

from the time-consuming internal counting strategy to the more efficient but learning-

dependent internal retrieval strategy (compare Figure 3 in Compton & Logan, 1991). It is 
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important to note that this design affords researching the influence of internal information 

accessibility on external information retrieval independently of appearance-related effects 

(e.g., “A + 4” looks inefficient to solve by using internal strategies but is actually very 

efficient to solve internally for problem solvers in the Learning 4 condition). Also note 

that we have not altered the internal accessibility of solutions to trials with the “3” 

Addend. Equations with the “3” Addend were presented at medium frequency (i.e., 64 

trials) for all participants to serve as a baseline or control condition and to make results 

more comparable to Compton and Logan (1991).  

In total, participants engaged in 224 learning trials (128 trials with the well-

learned Addend, 64 control trials with the Addend “3”, and 32 trials with the remaining 

Addend) in block one and 96 choice trials (32 with each Addend) in block two. Trial 

order was random-ized. At the beginning of each block, participants additionally engaged 

in four practice trials (two with addend 1, two with addend 5) with letters different from 

the ones used in the main task.  

Upon entering the lab, participants were welcomed, seated in front of a computer 

screen, and provided informed consent. During each session, up to three participants were 

tested simultaneously. Participants then engaged in solving alphanumerical equations 

during the learning and the choice block, took a brief demographic survey, and finally 

took a brief metacognitive survey. Overall, the experiment took about 30 minutes to 

complete. Partici-pants were instructed to respond as quickly and accurately as possible. 

We refrained from asking participants to exclusively rely on either accuracy or speed 

because focusing on speed bares the risk of fast but random answers (i.e., participants 
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make use of neither internal nor external strategies) while focusing on accuracy bares the 

risk of time-intensive double-checking (i.e., participants make use of both internal and 

external strategies for the same problem). Also, since the Learning manipulation likely 

increases both speed and accuracy for internally solving well-learned problems (compare 

Compton & Logan, 1991), asking participants to consider speed and accuracy likely 

maximizes our effect size.  

To keep body posture constant between blocks, participants were asked to 

respond with their left hand only during the learning block. During the choice block, 

participants were asked to respond with their left hand and use their right hand to move 

the mouse when needed.  

Analysis 

All trials with extreme reaction times above 15s (0.1% of all trials) were excluded 

from analysis. After removing these trials, all trials that deviated more than three standard 

deviations from the individual reaction time means of the respective problem size 

condition in the respective block (1.7 % of all trials) were excluded as well because they 

likely presented either motor slips (low RTs) or inattentiveness (high RTs). To increase 

readability, statistical analyses are described directly preceding the respective result. All 

p-values are reported Greenhouse-Geisser-corrected where indicated.  

Results 

Does learning alter how efficiently a solution can be accessed internally? 

This analysis served as a manipulation check. The main experiment was divided 

into two blocks, the learning and the choice block. The purpose of the learning block was 
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to ma-nipulate the ease of internal access to the solutions of the alphanumerical problems 

(Learning manipulation). Participants in the Learning 2 condition are thus expected to get 

more efficient in solving equations with the Addend 2 whereas participants in the 

Learning 4 condition are expected to get more efficient in solving equations with the 

Addend 4 throughout the learning block. Efficiency in solving equations with the Addend 

3 should be comparable across both Learning conditions since learning was kept 

constant. Meeting these expectations is a crucial prerequisite for the validity of our main 

analysis (see next section).  

To check whether the expectations are met, a 2 x 3 x 2 mixed ANOVA with the 

be-tween-participants factor Learning and the within-participants factors Addend and 

Block was deployed. Block was included as a factor to explore efficiency patterns 

between learning and choice block. Our focus was on internal efficiency as dependent 

variable since, in line with Compton and Logan (1991), we expected learning to increase 

both speed and accuracy. Inverse efficiency is defined as the reaction time of correct 

responses divided by the accuracy of all responses (Townsend & Ashby, 1978) and thus 

captures both measures of interest simultaneously. To enable exploration of possible 

speed-accuracy-tradeoffs, we also report speed and accuracy data.   

Learning, Addend, and Block interacted in their influence on inverse efficiency 

(F(2, 194) = 43.0, pGG =  8.04 x 10
-13

, ηG
2
 = .046). All other effects were also significant 

at the .05 significance level and are reported in more detail in Table 6 in the 

supplemental materials. The three-way interaction reflects the nontrivial consequences of 

introducing the external resource in the choice block. More specifically, dependent post-
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hoc t-tests revealed that participants in the Learning 2 condition were, as expected, more 

efficient in solving equations with Addend 2 in comparison to the control equations with 

Addend 3 (t(50) = 10.50, p = 3.04 x 10
-14

, MDelta = 1120 ms) and less efficient in solving 

equations with Addend 4 in comparison to the control equations with Addend 3  (t(50) = 

6.96, p = 6.85 x 10
-9

, MDelta = 1132 ms); Figure 8a, left. The reverse was true for 

participants in the Learning 4 condition: they were more efficient in solving equations 

with Addend 4 in comparison to the control equations with Addend 3 (t(47) = 3.96, p = 

2.55 x 10
-4

, MDelta = 493 ms). However, they were also more efficient in solving 

equations with Addend 2 in comparison to the control equations with Addend 3 (t(47) = 

4.53, p = 4.05 x 10
-5

, MDelta = 429 ms), which might be due to the high efficiency of the 

counting strategy for equations with Addend 2 and despite the low efficiency of the 

retrieval strategy. There was no evidence for inverse efficiency differences for equations 

with the control Addend 3 but differential Learning conditions (independent t-test: t(97) = 

.94, p = .351, M+2 = 3112 ms,  M+4 = 2944 ms).  

In sum, these results confirm that learning specific equations indeed established 

efficient internal information access for these equations. The learning-driven rise in 

efficiency originated from both increased speed and increased accuracy simultaneously; 

Figure 8b and c, left. Detailed ANOVA results for inverse efficiency are summarized in 

the supplemental material, Figure 14. ANOVA results for accuracy and speed are also 

reported in the supplemental materials (Figure 15 and 16) so the reader can further 

investigate the data for a possible speed-accuracy-tradeoff; there are no signs of a speed-

accuracy tradeoff. Note that these results strongly suggest an increase in the retrieval 
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strategy even for the difficult Learning 4 condition, thereby excluding the possibility that 

the difficult Learning 4 condition draws too many processing resources to allow for 

memory consolidation (as shown for a similar task by Hoyer, Cerella, & Onyper, 2003). 

 

 
Figure 8 Performance during learning and choice blocks for whole sample. The Learning manipulation successfully 

altered how efficiently participants could solve a problem internally (a, left). Participants were more effi-cient in 

solving the equations they have been learning frequently (Learned 2 and Addend 2; Learned 4 and Addend 4) than in 

solving control equations (Addend 3). To allow the curious reader to inspect the full data, choice performance (a, right) 

as well as reaction time (b) and accuracy (c) data is presented as well. Error bars depict SEM. *** p < 0.001, ns p = .35 

 

Does external retrieval depend on how efficiently solutions can be accessed internally? 

External information retrieval is defined as the proportion in which a participant 

ac-cessed the black box with the mouse cursor during the choice block (Figure 7, right, 

bottom). As indicated by inverse efficiency during the learning block (Figure 8a, left), 

participants established efficient internal access to the solutions of frequently but not 

infrequently practiced alphanumerical problems. Here, we expect the learning effect 

indicated by the inverse efficiency analysis to be reflected by the frequencies of external 

information retrieval during the choice block.  
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To test this hypothesis, a 3 x 2 mixed ANOVA with external information retrieval 

(in % of trials) as DV, Addend as within-participants factor, and Learning as between-

participants factor was used. Only data from the choice block was included in the 

analysis. The ANOVA was followed up with dependent and independent t-tests where 

appropriate.  

Results of an initial analysis with all participants showed the hypothesized 

interaction between Learning and Addend ((F(2, 194) = 12.7, p = 6.85 x 10
-6

, ηG
2
 = .005). 

However, data exploration revealed that a significant proportion of participants hardly 

showed any variance in their external information retrieval; Figure 9a. Seventeen 

participants used the external information in less than 5% of trials (internal group) of the 

choice block and thirty-two participants in more than 95% (external group). Since these 

two groups exhibit little variance to be explained by the experimental manipulations and 

introduce normality assumption violations for our analyses, we decided to limit the 

current analysis to participants that used external information in at least 5% and at most 

95% of trials in the choice block (mixed group). For the curious reader, performance data 

for all groups and both blocks is depicted in Figure 9b. Post-hoc t-tests for the mixed 

group inverse efficiency scores mirror the results obtained from the whole sample. Also 

note that, at least on a descriptive level, a participant’s choice to avoid internal or external 

strategies was likely at least somewhat adaptive: participants who decided to avoid the 

internal strategies (i.e., External Group in Figure 9a) performed especially poor in the 

internal learning block (External Group: learning in Figure 9b).  
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Results for the mixed group confirm the initial whole sample analysis in showing 

that Learning and Addend interacted in their influence on external information retrieval 

(F(2, 96) = 12.26, p = 1.81 x 10
-5

, ηG
2
 = .025). There also was a main effect of Addend 

(F(2, 96) = 8.96, p = 4.76 x 10
-4

, ηG
2
 = .017)) but no main effect of Learning (F(1, 48) = 

0.07, p = .790, ηG
2
 = .001)). Cell means are illustrated in Figure 10a. A post-hoc 

dependent t-test confirmed that participants in the Learning 2 condition used external 

information less when solving equations with the well-learned Addend 2 than with 

control Addend 3 (t(27) = 5.07, p = 2.54 x 10
-5

, MDelta = 18.4 %). Participants in the 

Learning 4 condition analogously used external information less when solving equations 

with well-learned Addend 4 than when solving control equations with control Addend 3 

(t(21) = 2.82, p = 0.0103, MDelta = 10.5 %). Thus, participants that established highly 

efficient internal access to the solution of the respective alphanumerical problem relied 

less on external information. Surprisingly, there was no difference in external information 

retrieval between problems with medium and problems with low internal accessibility 

(Learning 4 and Addend 2 vs Learning 4 and Addend 3: t(21) = 0.80, p = .430, MDelta = 

2.7 %; Learning 2 and Addend 4 vs Learning 2 and Addend 3: t(27) = .19, p = .849, 

MDelta < 0.1 %). However, when considering that using the counting strategy is faster for 

Addend 3 than Addend 2 (as reflected by Figure 9c), the missing external retrieval 

differences for Learning 4 are not that surprising anymore. For Learning 2 however, this 

explanation does not hold: quite in contrast, the counting strategy is slower for Addend 4 

and equations with Addend 4 additionally had been learned less. This will be discussed in 

more detail in the next section. External information retrieval for the control condition, 
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i.e. trials with the Addend 3, did not differ between Learning conditions (t(48) = 0.48, p = 

0.641, M+2 = 55.4 %,  M+4 = 51.0 %). Thus, there is no evidence for differences in 

baseline performance between the Learning groups. To account for aberrations from 

normality, robust non-parametric Wilcoxon signed rank tests and a Wilcoxon rank sum 

test were used to confirm the results of the significant t-tests.  

In sum, these results confirm our hypothesis in that problem solvers adjusted 

external information retrieval based on how efficiently they can access solutions using 

internal strategies. However, our data shows one aberration from this pattern. Participants 

in the Learning 2 condition were significantly less efficient in solving equations with 

Addend 4 than equations with Addend 3 and nevertheless exhibited no differential 

external information retrieval. This aberration will be addressed in the next section. 
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Figure 9 Performance during learning and choice blocks split by groups based on frequency of external infor-mation 

retrieval. Many participants showed hardly any or permanent external information retrieval (a). Performance data was 

therefore split into three different groups to allow eyeballing of possible performance differences between groups and 

to allow for a more powerful analysis of external information retrieval data (b, c, d). The figure depends on the same 

data as Figure 8. Error bars depict SEM. 
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Figure 10 Comparison of external information retrieval and predicted efficiency of internal strategies for the mixed 

group. Learning and Addend interacted in their influence on external information retrieval (a). The pre-dicted 

efficiencies for the internal strategies mostly mirror the pattern of external information retrieval (b). It thus appears 

likely that internal information accessibility informed the decision to retrieve information externally. However, note 

that participants in the Learning 2 condition exhibit great performance differences between Addend 3 and 4 that are 

unexpectedly not mirrored in external information retrieval. For the definition of the mixed group, see Figure 9. Error 

bars depict SEM. Note that the error bars only provide information about effects between, not within, participants. *** 

p < 0.001, ** p <= .01, ns p > .1 

 

Why does external retrieval not exclusively depend on internal information 

accessibility? 

The following analysis was conducted to explain an unexpected finding: 

participants in the Learning 2 condition exhibit comparable external information retrieval 

for Addend 3 and for Addend 4 (Figure 9a) despite prominent differences in inverse 

efficiencies during the learning block (Figure 8a: learning). However, average inverse 

efficiencies during the learning block as reported in Figure 8a: learning do not factor 

possible practice effects throughout the block in. Thus, the poor average internal 

performance in the “Learning 2, Addend 4” condition reported in Figure 8a: learning 

might be an artifact stemming from poor initial internal performance that had been 
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compensated for by the end of the learning block. To account for this possibility, we 

fitted the power law function  

 

Equation 1 Fitting the power law function 

𝑅𝑇 𝑜𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑎 ∗  𝑡−𝑘 

 

to individual accuracy and reaction time data as it developed over time during the 

learning block. Based on the two fitted functions for each participant, we computed the 

participant’s predicted inverse efficiency for the first trial in the choice block.  

Qualitatively, results of a two-factorial mixed ANOVA (Addend x Learning) 

were comparable with the results obtained by the ANOVA on the inverse efficiency 

averages, i.e. Addend and Learning interacted in their influence on predicted inverse 

efficiency (F(2, 96) = 51.91, pGG = 1.67 x 10
-13

, ηG
2
 = .270; see Figure 10b). There also 

were main effects of Learning (F(1, 48) = 4.68, p = .0356, ηG
2
 = .060) and Addend (F(2, 

96) = 35.34, pGG = 2.10 x 10
-10

, ηG
2
 = .201). Participants in the “Learning 2, Addend 4” 

condition were still predicted to perform worse than participants in the “Learning 2, 

Addend 3” condition (t(27) = 4.55, p = 1.01 x 10
-4

, MDelta = 903 ms), despite the 

differences found for external information retrieval. Thus, we currently have no data-

backed explanation for this unexpected finding but will refer to possible other theoretical 

considerations in the Discussion.  

Exploration: how did participants establish adaptive external information retrieval? 

Except for the single unexpected finding reported above, participants reduced 

their external information retrieval selectively for equations for which high internal 
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information accessibility had been established. To explore possible underlying 

mechanisms, four exploratory analyses were conducted. 

(1)  Do participants evaluate addend-specific learning frequencies and adjusted external 

information retrieval accordingly? In a post-experimental survey, we asked 

participants whether they preferred internal or external information retrieval and to 

briefly explain why they preferred the one over the other in an open answer format. 

Interestingly, no single participant mentioned differential learning frequencies for 

equations with different addends. Participants frequently mentioned that one strategy 

was “quicker“ or “faster“ (35 times) or needed less “effort“ or was “easier“ (26 

times). They however did not report any addend-specific strategies. Although we did 

not explicitly ask participants whether they noticed the Learning manipulation, the 

fact that no single participant mentioned it during the survey lets it appear unlikely 

that a strategy based on conscious reflection about the learning process is the prime 

reason for the adaptive external resource use.  

We aimed to confirm this interpretation in a follow-up study. Specifically, we 

hypothesized that participants did not consciously notice the “learning” 

manipulation, which would make strategy selection based on a conscious 

metacognitive evaluation of stimulus frequencies highly unlikely. In the follow-up 

study, participants followed the identical experimental procedure as in Experiment 1 

with one exception: after the learning block, participants now were to judge how 

frequently they saw equations with different Addends. Specifically, participants had 

to answer the question “How often have you been solving problems involving ‘+ X’” 
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three times, where X would be 2, 3, or 4, respectively. Answers were to be given via 

a cross on a paper-based visual analogue scale labelled “not at all” on the left-hand 

and “very often” on the right-hand side.  

The sample consisted of eighteen participants that were drawn from the same 

student population as the main study, were at least 18 years old, reported normal or 

corrected normal vision, and did not participate in the main experiment. The Ethics 

Committee at George Mason University approved the experiment and participants 

provided informed consent prior to participation. Two participants had to be 

excluded from analysis due to low accuracy in the learning block (< 85% correct), 

leading to a final sample size of sixteen (nine Learning 2, seven Learning 4; 10 

females, mean age: 19.9, age range: 18 – 26, 15 right handed). Only perceived 

performance will be reported because performance in the learning and choice blocks 

is not of primary interest for question at hand. 

Results of a mixed ANOVA showed that Addend and Learning interacted in their 

influence on perceived frequency (F(2, 28) = 12.58, p = 1.27 x 10
-4

, ηG
2
 = .22; see 

Figure 11). The main effects did not reach significance at the .05 alpha level (both p 

> .59). These results imply that participants were sensitive to changes in learning 

frequency, which falsifies our initial hypothesis.  

Thus, possibly, our participants relied on perceived frequency to decide for a 

specific cognitive strategy.  We now wanted to explore whether perceived frequency 

can explain the aberration in Experiment 1, i.e. that participants in in the Learning 2 

condition did not access the external information more frequently for Addend 4 than 
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for Addend 3. A post-hoc dependent t-test revealed that the perceived frequency data 

cannot explain the aberration: while participants in the Learning 2 condition of 

Experiment 1 showed no difference in external information retrieval for Addend 3 

and 4, participants in the follow-up study were sensitive to the different learning 

frequencies (Learning 2 and Addend 3 vs Learning 2 and Addend 4: t(8) = 2.72, p = 

.0262, MDelta = 15.4 %). 

 

Figure 11 Perceived frequency of alphanumerical equations during the learning block. Note that this graph is based on 

data from a follow-up study (see text).  VAS: visual analogue scale 

 

In sum, this exploration shows that participants did not consciously report an 

Ad-dend-specific metacognitive strategy to select between internal and external 

information retrieval. However, data from the follow-up analysis shows that 

participants are sensitive to the Learning manipulation, which is a prerequisite for 

any Addend-specific selection strategy. We conclude that the sensitivity to the 

Learning manipulation might have contributed to strategy selection, though likely 
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not on a conscious level. Instead, strategy selection might have been influenced 

implicitly by the familiarity of the specific items (Onyper et al., 2006; Schunn et al., 

1997).  

(2)  Do participants rely on performance monitoring to establish adaptive external infor-

mation retrieval? If participants relied on performance monitoring, adaptive use of 

external information should emerge only after participants got the chance to compare 

their performance when using internal with their performance when using external 

information retrieval. To address this exploratory hypothesis, we looked at the time 

course of external information retrieval in the choice block. First, to reduce noise in 

the visual representation, we averaged across four adjacent trials for each Addend 

separately. Second, we ran two ANOVAs with the within-participants factor Addend 

on the averages of the first four trials separately for both Learning conditions. For 

this analysis, only participants in the mixed group were used. We did not run one 

combined ANOVA instead since we were not interested in a possible main effect of 

Learning or the interaction between Learning and Addend.  

Results indicate that Addend significantly influenced external information 

retrieval during the first four choice trials for both Learning 2 (F(2, 54) = 10.13, p = 

1.84 x 10
-4

, ηG
2
 = .108) and Learning 4 (F(2, 42) = 6.74, p = .00290, ηG

2
 = .104). 

Post-hoc dependent t-tests confirmed that participants in the Learning 2 condition 

used the external information less with respect to the control condition (i.e., Addend 

3) when solving equations for whose solutions high internal accessibility had been 

established (t(27) = 3.34, p = 0.00248, M+3 - M+2 = 21.4 %); Figure 12a.  The same 
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difference was trending for participants in the Learning 4 condition (t(21) = 2.02, p = 

0.0563, M+3 - M+4 = 12.1 %)) group; Figure 12b. Given that decreased external 

information retrieval for well-learned solutions was exhibited already at the very 

beginning of the choice block, these results let it appear unlikely that the adaptive 

behavior was based on performance monitoring during the choice block. 
10

 

 

 

Figure 12 Time course of external information retrieval during choice block for the Learning 2 (a) and the Learning 4 

(b) condition. Error bars depict SEM. ** p < .01, † p = .06 

 

(3) Do participants rely on parallel strategy use to establish the adaptive external infor-

mation retrieval? Participants might have executed internal and external strategies at 

the same time and have used the solution of whichever strategy was finished first  

(i.e., a race between strategies Compton & Logan, 1991; Logan, 1988). If so, our 

                                                 
10

 Also note that the negative slope exhibited in Figure 12 suggests an ongoing increase in efficiency of 

internal information retrieval. To allow the interested reader to inspect the time course of performance 

during the choice block, we also provide graphs illustrating inverse efficiency, reaction time, as well as 

accuracy in the supplemental materials (Figures 14, 15, and 16, respectively; note the roughly constant 

internal performance over time despite the decreasing use of external information retrieval). 
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finding of de-creased external information retrieval for equations with high internal 

accessibility might be due to the fact that internal solution retrieval was faster than 

accessing the solution externally (i.e., faster than moving the cursor from the starting 

position to the black box). To investigate this post-hoc hypothesis, we compared (a) 

the count of trials in which participants did not move the cursor for even a single 

pixel to (b) the count of trials in which participants started to move the cursor but did 

not reach the black box and to (c) the count of trials in which the cursor was moved 

inside the black box.  

Out of all trials across all participants, a substantial proportion acquired the 

solution internally without even initiating the external strategy (a: 3168 trials or 33.7 

%). Thus, in a third of trials, participants did unambiguously not rely on parallel 

processing. This upfront preference for internal strategies might be due to an initial 

strategy selection phase that is informed by higher-level metacognitive evaluations 

(e.g., being convinced of one’s own abilities, Gilbert, 2015; or being suspicious 

about the usefulness of the external strategy, Weis & Wiese, 2019) or lower-level 

item-specific or strategy-specific learning (as claimed by the CMPL, Rickard, 1997; 

and the ASCM, Siegler & Lemaire, 1997 models). If we are willing to assume that 

participants have not started moving the mouse without cognitive intent (e.g., due to 

muscle jitter), results however also show that participants did sometimes use both 

strategies in parallel (b: 615 trials or 6.5 %). This result is in line with a study by 

Walsh and Anderson (2009): arithmetic problem solvers sometimes started moving 

the mouse towards a screen-based calculator but changed their trajectory towards the 
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answer box before reaching the calculator. Lastly, as already indicated by the main 

analysis, the external strategy was fully executed for most trials (c: 5619 trials or 

59.8%). However, with the current data, it is impossible to tell whether participants 

followed a purely external or a parallel strategy during these trials. Nevertheless, the 

existence of parallel strategy execution (b; Walsh & Anderson, 2009) and the fact 

that some participants mentioned that they used the external strategy specifically to 

save effort (see Exploration: Do participants evaluate individual learning frequencies 

metacognitively and adjusted external information retrieval accordingly) makes it 

likely that participants made use of both purely external and parallel options, though 

the exact proportions cannot be determined with the current data. The present 

analysis thus suggests the existence of all possible, i.e. purely internal, purely 

external, and parallel, processing strategies.  

(4) Did participants mostly rely on a sequential strategy to establish the adaptive 

external information retrieval? Participants might have tried to recall the solution 

first internally and only in a second step consider other options. Such a sequential 

strategy has been suggested to be the “best of both worlds”: it does improve retrieval 

from internal memory even when the recall fails and still makes use of the external 

strategy to omit costly internal strategies like counting (Pyke & LeFevre, 2011). 

Here, we investigate this exploratory hypothesis using mouse movement onset data. 

The general idea is that if participants showed different mouse movement onsets 

depending on their internal information accessibility (compare Figure 10b) it would 

speak for some sequential mechanism. Else, there would be no reason for onsets to 
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be different. We now present one possible underlying mechanism for differential 

mouse movement onsets:  

The higher the internal information accessibility, the faster and more accurate 

internal retrieval becomes (e.g., Logan, 1988; Ratcliff, 1978). However, analogously, 

the higher internal information accessibility is, the earlier a problem solver might 

stop the retrieval process and continue with another (in the present case, internal 

counting or external mouse movement) strategy. In other words, if one “knows” that 

internal accessibility should be high for a specific solution, one would predict an 

earlier retrieval success and might be willing to declare the retrieval as unsuccessful 

earlier. Such a prediction would also be made by a 2-choice diffusion model with the 

choices ‘retrieval’ and ‘retrieval error’: error RT with a high drift parameter (as for 

frequently learned alphanumeric equations) would be predicted to be lower than 

error RT with a low drift parameter (as for infrequently learned alphanumeric 

equations; Ratcliff & McKoon, 2008). Note that this sort of decision process would 

imply that participants learned to associate specific features (e.g. “+4”) with specific 

drift rates.  Such an assumption is not implausible as problem solvers are known to 

be sensitive to “featural data” (Siegler & Lemaire, 1997, p. 72) and to use such data 

to inform their cognitive strategy selection for novel problems (as claimed by the 

ASCM, e.g. Siegler & Lemaire, 1997). Following that rationale, we hypothesize that 

if participants relied on a sequential strategy, they should have started moving the 

mouse earlier for well-trained equations than for less trained equations. 
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A mixed ANOVA (Addend x Learning) and one-sided post-hoc dependent t-tests 

were used to test this explorative hypothesis. Trials with mouse movement onsets 

deviating more than three standard deviations from the individual mean were filtered. 

Only participants in the mixed group were used for this analysis. Six participants 

were excluded because they moved the mouse less than three times in at least one of 

the three Addend conditions. We chose a threshold of three trials as a liberal criterion 

to avoid noisy individual estimates. 

In accordance with the hypothesis, Addend and Learning interacted in their 

influence on mouse movement start (F(2, 84) = 3.37, p = .0390, ηG
2
 = .018); Figure 

13a. Post-hoc tests confirmed that participants in the Learning 2 condition started 

moving the mouse earlier for equations with Addend 2 than with Addend 4 (t(25) = 

2.37, p = 0.0128, M+4 - M+2 = 89 ms)). The reverse comparison was trending for 

participants in the Learning 4 condition (t(17) = 1.47, p = 0.0805, M+2 - M+4 = 55 

ms)). These results suggest that our problem solvers, at least in some trials, used a 

sequential approach in which they first tried to recall the solution from internal 

memory and only then started considering other options. Given the exploratory 

nature of this analysis, this result should not be over-interpreted. 

To explore possible differences between groups (see Figure 9) we also include an 

analogous ANOVA for the external group. Results showed no interaction effect (F(2, 

60) = .41, pGG = .596, ηG
2
 < .001); Figure 13b. The main effect of Learning was 

trending (F(1, 30) = 3.69, p = .0642, ηG
2
 = .11) and there was no main effect of 

Addend (F(2, 60) = .29, pGG = .672, ηG
2
 < .001). The results for the external group 
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suggest that these participants did not rely on a sequential strategy when deciding 

which strategy to use. Results rather suggest that participants decided for the external 

strategy early on and further on did not try to rely on internal retrieval at all. 

 

Figure 13 Mouse movement onset in the choice block. Data is shown separately for the mixed (a) and the external (b) 

group. Error bars depict SEM. * p = .01, † p = .08 

 

Discussion 

In the present study, a novel human-computer-interaction paradigm was used to 

investigate whether problem solvers choose between internal and external information 

retrieval based on the accessibility of internal information. By and large, we found this to 

be the case: increasing the internal accessibility of a problem’s solution decreased how 

frequently participants retrieved information externally. Crucially, this relationship was 

present even when visual features of a task would suggest the opposite (e.g., “A + 4” 

looks harder to solve internally than “A + 2” but is nevertheless solved more frequently 

internally when the solution’s internal accessibility is high). Participants thus were 

sensitive to their internal information access and used that sensitivity to choose between 
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internal and external cognitive strategies rather than using sensitivity-independent 

strategies based on the task’s visual features. Four exploratory analyses were conducted 

that (1) suggest adaptive choice between internal and external information retrieval to be, 

at least in some instances, realized using a sequential “try internal retrieval first and then 

consider other options” heuristic; (2) are inconclusive about whether the decision 

between internal and external retrieval was additionally dependent on an implicit 

metacognitive process that evaluates differential learning frequencies or familiarity in the 

learning block, (3) let it appear unlikely that the choice was dependent on performance 

monitoring during the choice block, and (4) suggest that internal and external retrieval are 

not executed in parallel in some but might be in other instances.  

Results are consistent with previous studies suggesting humans to be impartial 

about whether to use internal or external strategies for cognitive processing (Gray & Fu, 

2004; Gray et al., 2006; Morgan et al., 2009), ultimately preferring the strategy with the 

lower costs. Results extend their findings by providing possible underlying mechanisms 

of strategy choice. Results also support theories that proclaim the cognitive system to be 

rational and adaptive (e.g., Anderson, 1990) and question theories that proclaim a strong 

bias against mental effort (e.g. Ballard, Hayhoe, Pook, & Rao, 1997; Kool, McGuire, 

Rosen, & Botvinick, 2010). 

How do problem solvers decide between internal and external cognitive 

strategies? Previous studies suggest that problem solvers might rely on knowledge about 

the efficiencies of differential internal strategies that might be partially based on the 

analysis of the problem’s visual features (Bourne et al., 2010; Lemaire & Reder, 1999; 
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Siegler & Lemaire, 1997), on the familiarity of the specific problem (Schunn et al., 

1997), or subjective judgments of own ability (Gilbert, 2015; Touron, 2015). Problem 

solvers might also rely on performance monitoring using error feedback and/or response 

time (for a review, see Ullsperger, Fischer, Nigbur, & Endrass, 2014) or follow less 

monitoring-sensitive strategies like trying to access the solution via internal and external 

strategies in parallel. Conversely, problem solvers might first try to recall the information 

from memory and, if that fails, access the solution via the external resource in a second 

step (for competing internal strategies, the parallel option seems more plausible; Logan, 

1988). The current study allows us to compare the strategy choice process for the 

alphanumeric task at hand with what has been proposed in these previous studies: 

(1) Given that no addend-specific strategies were reported in the questionnaire at 

the end of the study, we find it to be unlikely that our participants made their 

adaptive decision to use an external strategy based on a conscious 

metacognitive strategy. However, additional data showed that participants were 

sensitive to the addend-specific Learning manipulation (i.e., knew which types 

of equations they learned more and which ones they learned less frequently), 

which would enable them to base their strategy choice on the familiarity of the 

problem (i.e., use the external strategy for unfamiliar problems; Schunn et al., 

1997). Thus, at this point, it is unclear whether our participants have implicitly 

used that sensitivity to inform strategy selection. 

(2) We deem it unlikely that performance monitoring during the choice block was 

the prime cause for adaptive external strategy use given that the frequency of 
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external information retrieval was adjusted to the Learning condition right 

from the beginning of the choice block.  

(3) It appears equally unlikely that participants consistently executed internal and 

external retrieval in parallel since in about a third of all trials the mouse was 

not moved at all. This clear preference for the internal strategy in about a third 

of the trials is consistent with findings of a study that used mouse trajectories 

to examine problem solvers’ uncertainty about whether to use an internal or an 

external strategy: participants had to solve math equations and could either 

move their mouse towards a calculator first (i.e., external strategy) or 

immediately towards the answer box (i.e., internal strategy). Though 

participants sometimes adjusted their mouse movement throughout the trial, 

they also frequently and unambiguously preferred not to use the external 

resource at all, as indicated by a mouse trajectory directly leading towards the 

answer box without any curvature towards the calculator (Walsh & Anderson, 

2009). 

(4) We investigated whether our problem solvers might have used a sequential 

mechanism where participants retrieve the solution externally only if internal 

retrieval had failed beforehand. This sequential mechanism was supported by 

our data: in accordance with theoretical predictions based on a diffusion model 

with the outcomes “retrieval” or “retrieval error” (see Results: Exploration (4) 

Did participants mostly rely on a sequential strategy to establish the adaptive 

external information retrieval?), our problem solvers started external retrieval 
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(i.e., mouse movements) earlier for frequently than for infrequently trained 

equations. A similar sequential mechanism has been reported for strategy 

choice in mental arithmetic: people likely first tried to verify equations using 

the “five rule” before engaging in standard arithmetic operations (Lemaire & 

Reder, 1999). Interestingly, this effect vanished for participants that almost 

exclusively relied on external retrieval, thus suggesting a different mechanism 

for those participants. 

Taken together, the exploratory findings suggest a divergence of how internal 

(e.g., memory retrieval and mental arithmetic) and competing mixed (e.g., memory 

retrieval and external retrieval) strategies are employed. Internal strategies might be more 

prone to be employed in parallel (Logan, 1988; but also see Lemaire & Reder, 1999, for 

sequential pro-cessing) while the existence of even comparably easy external strategies 

like the one used in the current paradigm might encourage solitarily strategy use (current 

study). Future studies are needed to consolidate this finding and should also address the 

underlying reasons, for example the possibility that external strategies are oftentimes too 

resource-draining to allow simultaneous execution of internal strategies.   

Though we deem it likely that a sequential mechanism was frequently used for 

strategy selection in the current study, we want to stress that we do by no mean deny the 

existence of other mechanisms, for example: 

(1) Monitoring accuracy and time feedback during the learning block. However, 

note that speed- and accuracy-related performance does not exhaustingly 

predict strat-egy selection (Gray et al., 2006; Risko et al., 2014; Walsh & 



94 

 

Anderson, 2009; Weis & Wiese, 2019), which was also true in the present 

study: even though par-ticipants in the Learning 2 condition relied less on the 

external strategy when in-ternal accessibility of the solution was high (i.e., 

Addend 2) rather than medium (i.e., Addend 3), this behavior was not mirrored 

when comparing medium with low (i.e., Addend 4) accessibilities; Figure 10a.  

(2) Metacognitive misconceptions about their performance. The behavior might 

not have been mirrored because of people’s metacognitive misconceptions 

about their performance (Dunn & Risko, 2016; Pauszek & Gibson, 2018; Risko 

& Dunn, 2015; Weis & Wiese, 2019): our participants might have 

underestimated how slow they are at solving equations which they had little 

experience with.  

Further research is needed to clarify the interplay of different parameters like 

moni-toring-based efficiency optimization and metacognitive misjudgments on external 

strategy use. Equally importantly, it is yet to be examined whether findings in the domain 

of declara-tive long-term memory, like in the current study, transfer to other areas of 

cognition like working memory or spatial navigation (see also Risko & Gilbert, 2016, p. 

685) and if similar efficiency-dependent mechanisms of external strategy use hold when 

outsourcing memory to humans (i.e., transactive memory; Wegner, 1987) rather than 

computers. Lastly, we want to direct the reader’s attention towards the fact that about half 

of our participants (i.e., the internal and external group) exhibited hardly any variance in 

strategy choice, which would be compatible with the view that many participants make a 

strategy choice once rather than at the beginning of each trial (similar to some 
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participants in Bourne et al., 2010). Understanding the individual differences in cognitive 

strategy choice will be key to an improved understanding of how humans solve problems 

in cognitive environments (as discussed by Risko & Gilbert, 2016).   

From an applied perspective, the present results inform possible intervention 

methods aimed at remediating external information retrieval in particular and, possibly, 

external strategy use in general. Currently, such intervention methods are hardly available 

(Risko & Gilbert, 2016, p. 685). From the current data, we can extrapolate that improving 

the efficiency of internal strategies should by itself suffice to remediate externalization 

behavior. A similar approach but altering the efficiency of external rather than internal 

strategies has been suggested by O’Hara and Payne (1998): increasing the time costs 

associated with using (an interface that was needed for) an external strategy encouraged 

more frequent internal strategy use. This mechanism of decreasing efficiency of an 

external or increasing efficiency of an internal strategy could be used to guide 

externalization behavior whenever internal have more favorable attributes than external 

strategies. For example, bolstering internal strategy use can be important and beneficial 

when external strategies are regularly unavailable or when insightful knowledge transfer 

is needed, the latter of which can oftentimes only be achieved internally. A proof of 

concept for this mechanism, but targeting the efficiency of external rather than internal 

strategies, was provided by O’Hara and Payne (1998). Analogously, internal strategies 

should intentionally not be relied upon when they have unfavorable properties. For 

example, in internal memory, similar stimuli are often grouped together to reduce 

representational complexity (Nosofsky, 1992), leading to a decreased ability to 
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discriminate attributes associated with these similar stimuli and decreased performance in 

discrimination-based tasks (i.e., similar stimuli are basically underrepresented since they 

are conceived as one rather than two separate entities). One possibility to restore 

performance is to rely on external strategies without biased representations (Fu, 2011). 

Providing easy access to the external strategy (Fu, 2011) and avoiding learning-induced 

increases in the efficiency of the internal strategy (current study) would guide the user 

towards the beneficial reliance on external strategies. We thus argue that the efficiency of 

both internal and external strategies can be intentionally manipulated as to maximize 

specific performance outcomes in cognitive tasks.   

The present findings also have implications for problem solvers in static cognitive 

environments where properties like task difficulty or external information accessibility 

cannot be changed. For example, the speed of accessing information online depends 

heavily on the quality of the internet connection and cannot be directly controlled by the 

problem solver. In contrast, changing internal information accessibility oftentimes 

depends on deploying appropriate mental strategies that can be taught or discovered 

(Lemaire & Lecacheur, 2001) as well as on learning (e.g., Logan, 1988; or the present 

study). Both options leave the initiative with the problem solver rather than some 

extrinsic force like network coverage. The present finding that human problem solvers 

adjust their use of externally stored information based on the internal accessibility of that 

information speaks for the human ability to proficiently exploit a technologized 

environment for their own benefit. Establishing high internal information accessibility is 
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thus a viable option to become less dependent on that environment whenever desired. 
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Conclusion 

In an increasingly computerized future, being an efficient problem solver in 

interac-tive environments will gain importance. Former studies have shown that 

increasing the time needed to access externally stored information increases reliance on 

brain-based information. Here, we strengthen the prevalent notion that increasing the 

efficiency of brain-based information retrieval increases reliance on brain-based 

information in an analogous manner and supply possible underlying mechanisms. Our 

study thereby increases the understanding of human behavior in interactive settings that 

afford external information storage. 
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Supplementary material 

ANOVA statistics for inverse efficiency 

 

Table 6 ANOVA results for inverse efficiency 

Factor DFn DFd F p ηG
2
 

Inverse Efficiency      

Learning * 1 97 4.41 0.0221 0.027 

Addend *** 2 194 54.59 2.11 x 10
-17

GG
  

0.091 

Block *** 1 97 197.05 4.28 x 10
-25

 0.300 

Learning  x  Addend *** 2 194 68.11 1.48 x 10
-20

 GG 0.111 

Learning  x  Block * 1 97 6.10 0.0152 0.013 

Addend  x  Block *** 2 194 53.52 3.78 x 10
-15

 GG 0.056 

Learning  x  Addend  x  Block *** 2 194 42.97 8.04 x 10
-13

 GG 0.046 

Notes. *** p < 0.001, * p < 0.05, GG Greenhouse-Geisser-corrected value 

 

Influence of Learning on reaction time and accuracy 

Learning, Addend, and Block interacted in their influence on reaction time (F(2, 

194) = 55.25, pGG = 2.45 x 10
-16

; see Table 7 in the supplemental materials). The three-

way interaction reflects the nontrivial consequences of introducing the external resource 

in the choice block. More specifically, dependent post-hoc t-tests revealed that 

participants in the Learning 2 condition were, as expected, quicker in solving equations 

with Addend 2 in comparison to the control equations with Addend 3 (t(50) = 11.34, p = 

1.95 x 10
-15

, MDelta = 1018 ms) and slower in solving equations with Addend 4 in 

comparison to the control equations with Addend 3  (t(50) = 8.37, p = 4.44 x 10
-11

, MDelta 
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= 872 ms); Figure 8b. The reverse was true for participants in the Learning 4 condition: 

they were quicker in solving equations with Addend 4 in comparison to the control 

equations with Addend 3 (t(47) = 3.85, p = 3.53 x 10
-4

, MDelta = 377 ms). However, they 

were also quicker in solving equations with Addend 2 in comparison to the control 

equations with Addend 3 (t(47) = 4.92, p = 1.12 x 10
-5

, MDelta = 371 ms), which might be 

due to the high efficiency of the counting strategy for equations with Addend 2 despite 

the lower efficiency of the retrieval strategy. There was no evidence for reaction time 

differences in equations with the control Addend 3 between Learning conditions 

(independent t-test: t(97) = 1.62, p = 0.108, M+2 = 2952 ms,  M+4 = 2692 ms).  

Learning interacted with Addend in its influence on accuracy (F(2, 194) = 18.23, 

pGG = 1.82 x 10
-7

; see Table 8 in the supplemental materials). Participants in the Learning 

2 condition answered equations with Addend 2 more accurately than the control 

equations with Addend 3 (t(50) = 3.88, p = 3.05 x 10
-4

, MDelta = 2.3 %). The reverse was 

true for participants in the Learning 4 condition (t(47) = 3.45, p = 0.00120, MDelta = 3.0 

%). Unexpectedly, accuracy also differed between Learning conditions for the control 

condition (i.e. Addend 3: t(97) = 2.31, p = 0.0228, M+2 = 95.0 %,  M+4 = 92.2 %). Robust 

non-parametric Wilcoxon signed rank tests for the paired t-testes and a Wilcoxon rank 

sum test for the independent t-test were used to confirm the results of the t-tests. All p-

values were significant at an alpha of 0.05 and of comparable magnitude.  

In sum, these results disprove the existence of a within-participants speed-

accuracy-tradeoff since higher speed is associated with higher accuracy rather than the 

reverse.  
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Table 7 ANOVA results for reaction time 

Factor DFn DFd F p ηG
2
 

Reaction Time      

Learning ** 1 97 7.25 0.00837 0.041 

Addend *** 2 194 73.61 1.63 x 10
-24

  0.093 

Block *** 1 97 235.94 1.01 x 10
-27

  0.347 

Learning x  Addend *** 2 194 83.12 8.48 x 10
-27

 0.104 

Learning x  Block * 1 97 6.35 0.0134 0.014 

Addend  x  Block *** 2 194 82.68 5.78 x 10
-22

 GG 0.065 

Learning  x  Addend  x  Block *** 2 194 55.25 2.45 x 10
-16

 GG 0.044 

Notes. *** p < 0.001, ** p < 0.01, * p < 0.05, GG Greenhouse-Geisser-corrected value 

 

Table 8 ANOVA results for accuracy 

Factor DFn DFd F p ηG
2
 

Accuracy      

Learning 1 97 3.92 0.0504 0.018 

Addend * 2 194 4.87 0.0108 GG 0.012 

Block 1 97 0.03 0.856 < 0.001 

Learning  x  Addend *** 2 194 18.23 1.82 x 10
-7

 GG 0.0426 

Learning  x  Block 1 97 1.12 0.2926 0.002 

Addend  x  Block 2 194 0.32 0.7281 0.001 

Learning  x Addend  x  Block 2 194 2.23 0.1052 .004 

Notes. *** p < 0.001, * p < 0.05, GG Greenhouse-Geisser-corrected value 
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Time course of inverse efficiency, accuracy, and reaction time in the choice block 

 

 

 
Figure 14 Time course of reaction times of correct trials during choice block for the Learning 2 (a) and the Learning 4 

(b) condition. Answers given via internal retrieval are depicted in the top row, answers given via external retrieval are 

depicted in the bottom row. Error bars depict SEM 
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Figure 15 Time course of reaction times during choice block for the Learning 2 (a) and the Learning 4 (b) condition. 

Answers given via internal retrieval are depicted in the top row, answers given via external retrieval are depicted in the 

bottom row. Error bars depict SEM. 

 

 
Figure 16 Time course of accuracies during choice block for the Learning 2 (a) and the Learning 4 (b) condition. 

Answers given via internal retrieval are depicted in the top row, answers given via external retrieval are depicted in the 

bottom row. Error bars depict SEM. 
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Problem solvers adjust cognitive offloading based on performance goals 
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Rationale 

In this study, the same extension of the mental rotation paradigm (Shepard & 

Metzler, 1971) as used in Study 1 had been employed (see Figure 17). It was 

investigated whether human problem solvers exhibit different (Experiment 1) and 

adaptively goal-directed (Experiment 2) cognitive offloading behavior when confronted 

with different performance goals.  

To this end, two parameters had been manipulated: The participants’ performance 

goals (maximize speed or maximize accuracy) and the way our problem solvers were 

allowed to use the external resource (forced internal – they were instructed to solve the 

task internally; forced external – they were instructed to never rely on mental resources 

for the rotation process and always use the knob instead; free choice – they were free to 

choose between internal and external processing). The manipulations afforded 

investigating whether participants in the free choice condition strategically employed 

cognitive offloading to specifically boost goal-related behavior while possibly sacrificing 

goal-unrelated behavior. The forced conditions allowed us to gauge whether offloading 

could be beneficial for maximizing the respective performance goal in the free choice 

condition.  

In a nutshell, results suggest that our participants did indeed employ cognitive 

offloading to boost goal-related behavior while sacrificing goal-unrelated behavior. Thus, 

at least in rather simple environments that provide direct performance feedback—as in 

the current study—, human problem solvers seem to be able to exploit their environments 

to pursue their cognitive goals. Complementing theories suggesting the importance of 
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maximizing speed (Gray, Sims, Fu, & Schoelles, 2006) or minimizing mental effort 

(Kool, McGuire, Rosen, & Botvinick, 2010), the present results show that human 

problem solvers both sacrifice speed and invest mental resources in situations where it 

helps achieve their current cognitive performance goals. We thus argue that clear 

cognitive performance goals can supersede more generic heuristics like maximizing 

speed or minimizing effort (compare (2) in the section Rationale of the dissertation 

project). 

Abstract 

When incorporating the environment into mental processing (cf., cognitive 

offloading), one creates novel cognitive strategies that have the potential to improve task 

performance.  Improved performance can, for example, mean faster problem solving, 

more accurate solutions, or even higher grades at university
11

. Although cognitive 

offloading has frequently been associated with improved performance, it is yet unclear 

how flexible problem solvers are at matching their offloading habits with their current 

performance goals (can people improve goal-related instead of generic performance, e.g., 

when being in a hurry and aiming for a “quick and dirty” solution?). Here, we asked 

participants to solve a cognitive task, provided them with different goals – maximizing 

speed (SPD) or accuracy (ACC), respectively – and measured how frequently 

(Experiment 1) and how proficiently (Experiment 2) they made use of a novel external 

resource to support their cognitive processing. Experiment 1 showed that offloading 

behavior varied with goals: participants offloaded less in the SPD than in the ACC 

                                                 
11

 Bocanegra, Poletiek, Ftitache, & Clark, 2019 
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condition. Experiment 2 showed that this differential offloading behavior was associated 

with high goal-related performance: fast answers in the SPD, accurate answers in the 

ACC condition. Simultaneously, goal-unrelated performance was sacrificed: inaccurate 

answers in the SPD, slow answers in the ACC condition. The findings support the notion 

of humans as canny offloaders who are able to successfully incorporate their environment 

in pursuit of their current cognitive goals. Future efforts should be focused on the 

finding’s generalizability, e.g. to settings without feedback or with high mental workload. 

Introduction 

Saving a door code on the smartphone, outsourcing arithmetic to a calculator, or 

relying on cloud-based rather than brain-based knowledge: the contemporary ubiquity of 

computerized equipment has con-siderably increased the availability of external 

strategies to support human cognizing (e.g., Clark, 2004; Clowes, 2013; Dror & Harnad, 

2008). Such incorporation of external resources into the cognitive repertoire can be quite 

rewarding as it can change a cognitive task’s cost structure (Kirsh, 2010) and, if used 

wisely, improve task-related performance. In other words, internal and external strategies 

are associated with distinct performance profiles
12

 (e.g.; Lemaire & Lecacheur, 2001; 

Risko, Medimorec, Chisholm, & Kingstone, 2014; Siegler & Lemaire, 1997; Touron & 

Hertzog, 2014; Walsh & Anderson, 2009), which makes it important to choose the right 

                                                 
12

 Please note that those performance profiles are not static. Performance profiles can change with 

increasing expertise and in many settings. For example, with increasing expertise, novel strategies that 

interleave internal and external processing can be discovered and used (Maglio & Kirsh, 1996). For a 

model that incorporates the effectiveness of different strategies over time in a problem-specific way, see 

Siegler and Lemaire (1997).  
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strategy at the right time. For example, outsourcing arithmetic to a calculator can be 

superior to mental processing because the former might afford increased speed and accu-

racy with respect to the latter (Siegler & Lemaire, 1997).  In general, it was found that 

humans frequently (e.g., Gray, Sims, Fu, & Schoelles, 2006; Lemaire & Lecacheur, 2001; 

Walsh & Anderson, 2009) - though not always (Gilbert et al., 2019; e.g., Risko & Dunn, 

2015; Touron, 2015; Weis & Wiese, 2019) - show high proficiency in mixing internal 

and external cognitive strategies. However, there is currently no con-sensus in the 

literature as to how humans achieve this proficiency (Risko & Gilbert, 2016, p 685; 

Anderson, 1990; Marewski & Schooler, 2011; Scaife & Rogers, 1996; Kirsh, 2013).  

In the current paper, we focus on a hitherto neglected antecedent of a problem 

solver’s decision to use an external strategy: performance goals. Affording the pursuit of 

a user’s goal is a hallmark of humane technology; without it, a device would not 

empower but rather distract its users from what is important to them (Bosker, 2016). To 

shed light onto this topic of societal relevance, we used the current study to ask whether 

human problem solvers possess the skills to pursue their goals in technologically 

enhanced environments.  

Cognitive offloading: Using the environment to (help us) think 

The general idea of using cognitive strategies that incorporate a problem solver’s 

environment to decrease brain-based processing costs is subsumed under the term 

cognitive offloading (Risko & Gilbert, 2016; for a review). Cognitive offloading overlaps 

with other approaches that also expand cognitive science’s classic focus of what’s 

happening inside the brain and include body (Embodied Cognition; e.g. Wilson, 2002) 
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and environment (Situated Cognition; e.g. Kirsh, 2009; Extended Cognition; e.g. Clark & 

Chalmers, 1998; and Distributed Cognition; e.g. Hollan, Hutchins, & Kirsh, 2000)
13

. A 

related concept has been termed epistemic action, which is defined as an action 

undertaken to advance in a cognitive task rather than to alter the physical environment for 

non-cognitive purposes (Kirsh & Maglio, 1994)
14

. It should be noted that cognitive 

offloading can constitute very simple operations like replacing brain-based with paper-

based retrieval or complex and dynamic operations like the ones that take place when a 

pilot is interacting with an airplane’s cockpit (Hutchins, 1995). To reduce complexity, the 

current paper focuses on the former rather than the latter. 

Are the problem solver’s goals considered in the decision to offload cognition? 

Goal-efficiency set aside, many studies suggest that human problem solvers are 

quite proficient in deciding when to offload cognition. For example, human problem 

solvers were shown to stop using exter-nal resources with high access costs (Gray et al., 

2006; Walsh & Anderson, 2009), increase offloading with increased difficulty of the 

cognitive task (Experiment 5: Risko & Gilbert, 2016; Risko et al., 2014; Walsh & 

Anderson, 2009), decrease offloading if the external resource is unreliable (Weis & 

                                                 
13

 From a more philosophical perspective, it is currently debated whether epistemic actions directly replace 

internal cognitive processes (see parity argument and extended mind hypothesis in Clark & Chalmers, 

1998; and first wave extended mind in Sutton, 2010) or complement and augment internal cognitive 

processing (second wave extended mind; Sutton, 2010). 

14
 For example, reordering Scrabble tiles is an epistemic action as it unburdens working memory and 

thereby supports the cognitive task of finding words, possibly by providing a scaffold to start the word 

search from (Maglio, Matlock, Raphaely, Chernicky, & Kirsh, 1999). 
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Wiese, 2019), and are able to adjust a computer program based on their own memory 

capabilities (Howes, Duggan, Kalidindi, Tseng, & Lewis, 2016). 

What is unclear at this point is whether humans are adaptive enough to adjust 

offloading based on their current goals. In most studies, only task difficulty (e.g., Risko 

& Dunn, 2015; Risko et al., 2014; Walsh & Anderson, 2009; Weis & Wiese, 2019) or 

accessibility of the external resource (e..g, Gray et al., 2006; Walsh & Anderson, 2009) 

was manipulated. Consequentially, they have not been sufficient to silence concern in the 

public (e.g., Bowles, 2018; Lewis, 2017) and the academic community (e.g., Turkle, 

2012; Risko & Dunn, 2015; Weis & Wiese, 2019) about whether people are able to 

recruit external re-sources ‘for their own good’. This concern seems reasonable because it 

can be hard to gauge whether seemingly proficient behavior is related to the problem 

solver’s current needs and goals. That is, even though the way people use external 

resources might maximize speed (Gray et al., 2006) or monetary reward (Walsh & 

Anderson, 2009), it is hard to gauge whether that person’s priority was to optimize for the 

respective metric in a goal-oriented manner (i.e., time or money, respectively) or used a 

generic cognitive processing approach instead (e.g., maximizing speed irrespective of 

current goals; Gray et al., 2006). People also do aim for optimizing different metrics in 

the same task (e.g., effort and accuracy; Risko & Dunn, 2015) and retroactively 

determining that metric is difficult. Lastly, problem solvers frequently prioritize local 

over global performance (Fu & Gray, 2006), making it difficult to infer whether poorly 

performing participants were unable to pursue their performance goals, pursued local 

rather than global goals, or had performance-independent goals like minimizing effort.  
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To make informed conclusions about the importance of problem solvers’ goals for 

their decision to offload cognition, it is thus imperative to clearly communicate and 

manipulate these goals. Such informed conclusions are currently not available but would 

be highly valuable as they provided insight in how adaptively a human problem solver 

can navigate the cognitively enhanced environments of today and tomorrow. 

Current investigation 

In the present study, we controlled for well-established contributors to cognitive 

strategy selection (i.e., task difficulty and properties of the external resource) to 

investigate whether problem solvers are adaptive enough to adjust cognitive offloading 

based on their current goals. For this purpose, a novel human-computer-interaction 

paradigm has been developed (see 2.1.1: Extended Rotation Task). Specifically, we 

provided participants with different performance goals and tracked whether they differed 

in how fre-quently they recruited an external resource (Experiment 1) and whether they 

were able to mix internal and external resources in a way compatible with their current 

goals (Experiment 2). If internal and external strategies differed in their goal-related 

performance profiles, we would expect participants to employ differential offloading 

behaviors when confronted with differential performance goals (H1, Experiment 1). This 

differential offloading behavior should be exhibited despite the availability of identical 

internal and external resources. Furthermore, if differential offloading behavior is 

exhibited, we expect it to be associ-ated with performance benefits specifically related to 

the current performance goal (H2-1) while possibly being associated with performance 

detriments related to performance metrics not relevant for the current goal (H2-2; 



118 

 

Experiments 2A and B). The hypotheses are described in more detail in the first 

paragraphs of sections 2 and 3. 

Experiment 1: Free choice 

Experiment 1 was conducted to investigate whether problem solvers employ 

differential offloading behaviors when confronted with differential performance goals 

(H1): in the accuracy goal condition, participants were incentivized for answering 

correctly; in the speed goal condition, participants were incentivized for answering fast. 

Methods and materials 

In total, 100 participants were recruited and assigned equally to an accuracy 

performance goal and a speed performance goal group. The final sample that entered data 

analysis consisted of 88 students (47 accuracy, 41 speed performance goal). More 

information on participants, apparatus, stimuli, procedure, and data filtering can be 

accessed in the Supplemental Material. Data and R analysis script are available through 

the Open Science Framework at https://osf.io/sh6qa/. 

Extended Rotation Task 

During each trial, participants had to engage in an expansion of the mental 

rotation paradigm (Shepard & Cooper, 1986; see also Shepard & Metzler, 1971), a task 

we termed Extended Rotation Task (see Figure 17; see Weis & Wiese, 2018a, 2019). In 

the original paradigm by Shepard and Metzler, the cognitive processes necessary to solve 

the task rely on mental resources only. In our expanded paradigm, computer-based 

external resources can be used to outsource the mental rotation part of these cognitive 

processes (see Figure 17A). Designing the external resource in a way that it affords 
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offloading one specific cog-nitive process minimizes variance in usage behavior and sets 

the stage for researching physiological correlates in future studies.  

Study design 

The study follows a three-factorial design with the within-participants factors 

handedness of the working stimulus with respect to the base stimulus (same, opposite; 

Figure 17B) and angle (0°, 60°, 120°, 180°; Figure 17B), and the between-participants 

factor performance goal (speed, accuracy). In the opposite handedness condition, the 

working stimulus was first mirrored with respect to a vertical axis before the angle 

transformation took place (Figure 17B). Note that the 0° condition is used as baseline 

condition since the external resource only affords rotation, a cognitive process not 

necessary to solve problems in the 0° condition. The performance goal condition 

indicated whether participants were motivated to focus on speed or accuracy, 

respectively. In the accuracy goal condition, trial-based feedback was given with respect 

to accuracy only (correct/incorrect). In the speed goal condition, feedback was given with 

respect to speed for correct answers and with respect to accuracy for incorrect answers 

(speedy/slow/incorrect; compare Figure 17B). Accuracy feedback for incorrect answers 

had to be given in the speed condition as well to avoid complete negligence of accuracy 

and thus omitting performing the cognitive task at hand and instead only responding as 

quickly as possible. Speed feedback was based on a sliding window consisting of the 

reaction times of the preceding 32 trials. For responses given faster than the 85th 

percentile of those 32 trials participants received ‘Speedy’, for responses given slower 

than the 85th percentile participants received ‘Slow’ as feedback. Participants were also 
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able to collect goal-specific points throughout the experiment. The best scoring 

participants were eligible for a monetary reward (for details, see Supplemental Material).  

Each participant had to complete 576 trials: three repetitions for each of the 

twenty-four stimuli in each of the four angle and two handedness conditions. Trials were 

presented in three blocks, each consisting of 192 non-identical trials. Within blocks, trials 

were randomized. Every sixteen trials, participants were allowed to take a self-paced 

break. At the end of each block, participants were reminded that “it is not the best way to 

always rely on the mind’s eye or to always rely on the rotation knob. Try to use each way 

when it works best.”. Participants practiced the task for 32 trials with stimuli that ware 

not used in the main experiment. To get a crude idea of how tiring the extended rotation 

task is, participants were to fill out the Stanford Sleepiness Scale (Hoddes, Zarcone, & 

Dement, 1972) before and after the task. The Extended Rotation Task took between 40 

and 60 minutes to complete. 
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Figure 17 Extended Rotation Task. Participants have to compare the handedness of two stimuli that differ in their 

angular orientation and decide whether the left is the “same” (only rotated in 2D plane) or a “different” (first mirrored, 

then rotated in 2D plane) stimulus. For each shape, the base stimulus stays identical whereas the working stimulus is 

altered using a handedness and angle transformation. To help their decision, participants can offload their mental 

rotation process onto a physical knob as depicted in (a) that affords rotating the working stimulus on screen. During 

each trial, the base stimulus is presented in the right half and the working stimulus in the left half of the screen for five 

seconds or until a response was given (b). The figure is adapted from Weis & Wiese (2019) and depicts one out of 

twenty-four base stimuli used in this study. 

 

Analysis 

To determine whether participants offloaded the mental rotation process onto the 

knob, a binary variable was created on a trial-by-trial basis that indicated whether the 

stimulus on the screen was rotated for more than 5° (i.e., offloading) or less than 5° (i.e., 

no offloading). The threshold of 5° was chosen be-cause it allows simultaneous 

minimizing of (1) false alarms due to motor jitter and (2) false positives be-cause a 

rotation of less than 5° is unlikely to help cognitive processing even in the lowest 60° 

angle condi-tion. To analyze the offloading data, a random coefficient modeling approach 

that allowed to fit generalized linear models with a logit link function and two random 
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effects, participants and stimuli, was used (for more details on this approach, see 

Supplemental Material). Models were implemented using R (Team, 2013) and the lme4 

package’s function glmer (Bates, Mächler, Bolker, & Walker, 2015). Marginal means 

were computed using the emmeans
15

 package.
16

 

Results and discussion 

Unsurprisingly, both angle and handedness affected offloading (|Z| = 13.1 and |Z| 

= 12.4, respectively; for estimated marginal means, see Figure 18). More interestingly, 

changing the performance goal from accuracy to speed, when holding all other predictors 

constant, was associated with a 83% decrease in offloading odds (oddsaccuracy = 22.6, 

oddsspeed = 4.0; |Z| = 4.9) or, equivalently, a drop of 16 percentage points in offloading 

probability (paccuracy = .96, pspeed = .80, see Figure 18). Similarly, but of less importance 

for the current purposes, changing the performance goal also changed the relationship 

between angle and offloading (|Z| = 6.3) as well as between handedness and offloading 

(|Z| = 6.1); for details concerning these interactions and other model results, see Table 10. 

To avoid redundancy, accuracy and RT data is reported with Experiment 2A and 2B (see 

Figures 19 - 22; data from Experiment 1 is labelled “free choice” since participants were 

able to freely choose between internal and external processing in Experiment 1). 

Increases in reported sleepiness from before to after the rotation task were comparable for 

                                                 
15

 https://CRAN.R-project.org/package=emmeans 

16
 Note that the angle 0 condition is omitted in the main analyses as it is not relevant for offloading the 

mental rotation process. Analyses for the angle 0 condition can be found in the Supplemental Material, 

Tables 9, 11, 13, 16, 20 and Figures 24 - 28, 30. 

https://cran.r-project.org/package=emmeans
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both accuracy and speed goal conditions (independent t-test: Δ(after-before)speed = 1.00, 

Δ(after-before)accuracy = 0.91, t(84) = 0.31, p = 0.76). Reported difficulty of the extended 

rotation task was also comparable across goal conditions (independent t-test: Mspd = 2.78, 

Macc = 2.55, t(84) = 0.31, p = 0.76; scale ranged from 1 to 5).
17

  

 

 

 

Figure 18 Model-based offloading proportions for different (a) and same (b) handedness. Error bars depict asymmetric 

95% CIs that have been back-transformed from the logit scale. 

 

In line with H1, problem solvers altered their cognitive offloading behavior based 

on their performance goals  while the available internal and external resources were kept 

constant. Participants almost exclusively rotated externally when aiming for accuracy and 

                                                 
17

 Two participants had to be excluded from the sleepiness and one participant from the difficulty analysis 

due to missing data. 
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relied more on mental rotation when aiming for speed. Note that participants had a 

pronounced preference for external rotation for both conditions. Possible reasons include 

minimization of mental effort (Ballard, Hayhoe, Pook, & Rao, 1997), a generally more 

favorable performance profile of the external strategy, or a large proportion of 

participants who use internal and external strategies in parallel. Also note that we do not 

suggest accuracy goals to be always specifically associated with increased offloading. 

Instead, we conclude performance goals to have substantial impact on the way problem 

solvers mix internal and external strategies in general. 

Experiment 2: Forced choice 

The confirmation of H1 laid the foundation for Experiment 2 in which we 

investigated whether the differences in offloading behavior exhibited in Experiment 1 

were associated with goal-related performance gains. We asked one group of participants 

to solve the extended rotation task while exclusively relying on their internal resources 

without availability of an external resource (forced internal cognition locus condition) 

and another group of participants to exclusively rely on the external resource (forced 

external cognition locus)
18

. We then compared performances in these forced conditions to 

performance in the setting of Experiment 1 (free choice cognition locus). This way of 

comparing forced and free strategy choices has been termed the Choice/No-Choice 

Method (Siegler & Lemaire, 1997).  

                                                 
18

 Note that the forced external condition might include internal processing as well because participants 

might not always adhere to the instructions. 
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Specifically, we expect the offloading behavior exhibited in Experiment 1 to be 

associated with high goal-related performance. We expect that participants in the free 

choice condition (Experiment 1) should be at least as accurate as the more accurate of the 

two forced groups in the accuracy goal condition (Experiment 2A) and at least as fast as 

the faster of the two forced groups in the speed goal condition (Experiment 2B); H2-1. 

Additionally, we explore the possibility that participants in the free choice condition 

(Experiment 1) sacrificed performance in the metric not relevant for the current goal (i.e., 

sacrificed accuracy in the speed goal and speed in the accuracy goal condition); H2-2. 

Methods and materials 

More information on methods and materials, including information about 

participants, apparatus, stimuli, procedure, and data filtering can be accessed in the 

Supplemental Material. The final sample consisted of 77 students (41 forced external, 36 

forced internal) in Experiment 2A and of 75 students (40 forced external, 35 forced 

internal) in Experiment 2B. Data and R analysis script are available through the Open 

Science Framework at https://osf.io/sh6qa/. 

Design changes 

Task and design were identical to Experiment 1 except that participants were not 

able to freely choose whether or not to recruit the external resource (factor cognition 

locus). Two experiments were conducted: participants were asked to be as accurate (i.e., 

the accuracy performance goal of Experiment 1) in Experiment 2A and to be as fast (i..e, 

the speed performance goal of Experiment 1) as possible in Experiment 2B. 

https://osf.io/sh6qa/
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Analysis 

Accuracy performance goal data from Experiment 1 was added to the analysis of 

Experiment 2A and speed performance goal data from Experiment 1 to the analysis of 

Experiment 2B and labelled “free choice”. The same data-analytic approach as in 

Experiment 1 has been employed. Note that Experiment 2 was conducted after 

Experiment 1 and participants were thus not randomly assigned to one of the three 

performance goal conditions, thereby introducing a possible confound (i.e., time point of 

data collection). 

Experiment 2A: results and discussion (forced choice, accuracy goal) 

Accuracy 

In comparison to participants in the forced internal cognitive locus condition, 

when holding all other predictors constant, the odds of solving a problem correctly was 

increased by 116% for participants in the forced external and free choice conditions 

combined (|Z| = 5.2; oddschoice = 14.2, oddsforced external = 17.8, oddsforced internal = 7.3). 

Equivalently, when transforming the odds back to probability values, participants in the 

forced internal condition were about five percentage points less accurate than participants 

in the forced external and choice conditions (pchoice = .95, pforced external = .96, pforced internal = 

.91; p refers to the probability of answering accurately; Figure 19). Accuracies between 

forced external and choice conditions did not differ (|Z| = 1.39). The remaining model 

results are reported in Table 12. Increases in reported sleepiness (Δ(after-before)ext = 

1.35, Δ(after-before)int = 1.03, t(74) = 1.14, p = 0.26) and reported difficulty of the 
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extended rotation task (Mext = 2.50, Mint = 2.53, t(74) = -0.12, p = 0.90; scale ranged from 

1 to 5) were comparable for both forced cognition locus conditions.
19

  

 

 

Figure 19 Model-based correct answer probabilities for different (a) and same (b) handedness in Experiment 2A. Error 

bars depict asymmetric 95% CIs that have been back-transformed from the logit scale. ext: forced external, int: forced 

internal, ch: free choice 

 

In sum, accuracies in the free choice and forced external conditions were 

comparable while accuracy in the forced internal condition was considerably lower. 

Thus, participants in the choice condition employed a combination of internal and 

external resources that afforded high goal-related performance, suggesting an adaptive 

use of the external resource (confirming H2-1).  

Speed 

Analyzing RT in addition to accuracy data allows the exploration of whether 

participants in the choice condition sacrificed speed to achieve high accuracy. Such 

                                                 
19

 One participant had to be excluded from both sleepiness and difficulty analyses due to missing data. 
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behavior would speak for our participants’ ability to choose cognitive strategies in a way 

that specifically maximizes goal-related rather than generic performance.   

Results show that participants did indeed sacrifice speed to maximize accuracy: 

RTs in the forced external and free choice conditions were similar (ΔRT = 51 ms, |t| = 

0.8)
20

 whereas participants in the forced internal condition answered considerably faster 

than participants in the external and choice conditions combined (ΔRT = 193 ms, |t| = 

3.4). Results are also in accordance with the classical finding by Shepard and Metzler 

(1971) that reaction time increases linearly with angle (|t| = 27.5)
21

, which can be seen as 

a manipulation validation. The remaining model results are reported in Table 14 and 

illustrated in Figure 20. To further illuminate the choice process, we analyzed the onset 

of external processing: in the free choice condition, participants started using the knob 

more than 200ms later than in the forced external condition (Table 15, Figure 27); this 

suggests either a sequential processing approach or a costly choice process and is 

discussed in section 7.6 of the Supplemental Material. It also suggests that participants in 

                                                 
20

 |t| refers to the absolute value of the Wald statistic as reported by R’s lme4 package (Bates, Mächler, 

Bolker, & Walker, 2015). Here, the t-value can be used to gauge whether RTs between conditions are 

similar or different. Where binary interpretation is necessary, we use a |t| > 2 criterion to infer difference 

rather than similarity.   

21
 More precisely, a one standard deviation increase in angle was associated with a 73 ms increase in 

reaction time. Since one standard deviation equals 49 degrees in our experiment, a one degree increase in 

angle is associated with a 1.5 ms increase in reaction time. Please note that this value refers to the main 

effect, holding the interaction effects constant. 
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the forced external condition followed instructions as they did not exhibit the internal, 

roughly 200ms-lasting, processing participants in the choice condition engaged in. 

 

 
Figure 20 Model-based reaction time estimates for different (a) and same (b) handedness in Experiment 2A. Error bars 

depict 95% CIs. ext: forced external, int: forced internal, ch: free choice 

 

In sum, RTs in the free choice and forced external conditions were comparable 

whereas RT in the forced internal condition was considerably lower. Thus, problem 

solvers in the choice condition have employed a combination of internal and external 

resources that sacrificed goal-irrelevant performance (confirming H2-2). The result also 

shows that a problem solver’s inclination to optimize for speed (Gray et al., 2006; see 

also Weis & Wiese, 2018) can be superseded by conflicting goals. 

Experiment 2B: results and discussion (forced choice, speed goal) 

One might argue that the extensive offloading of 96% in the free choice accuracy 

goal condition (Figure 18) was only accidentally related to benefits in goal-related 

performance while the true underlying motivation was different (e.g., minimizing mental 

effort; Ballard et al., 1997; Kool, McGuire, Rosen, & Botvinick, 2010; or because 

incremental feedback on the display when offloading is preferred over no feed-back when 
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not offloading; Fu & Gray, 2004). The purpose of Experiment 2B is to confirm the results 

of Experiment 2A by investigating whether participants that could freely choose in the 

speed performance goal condition of Experiment 1 exhibited high goal-related 

performance despite considerably less offloading (i.e., 80% instead of 96%). 

Speed 

Participants were equally fast in the forced internal and the free choice conditions 

(ΔRT = 19 ms, |t| = 0.3) whereas participants in the forced external condition were 

responding considerably slower than participants in the other two conditions combined 

(ΔRT = 146 ms, |t| = 2.4); Figure 21. The remaining model results are reported in Table 

17. Participants in forced internal condition reported higher increases in sleepiness 

(Δ(after-before)int = 1.35, Δ(after-before)ext = 0.78, t(72) = -2.14, p = 0.04)
22

 and higher 

difficulty of the extended rotation task (Mext = 2.37, Mint = 3.18, t(73) = 3.00, p = 0.004; 

scale ranged from 1 to 5) than participants in the forced external cognition locus 

condition. As in Experiment 2A, we also analyzed the onset of external processing: in 

contrast to Experiment 2A, participants in the free choice condition started using the knob 

equally fast as in the forced external condition (Table 22, Figure 31); this suggests a 

non-sequential processing approach and is discussed in in section 8.6 of the Supplemental 

Material. 

 

                                                 
22

 One participant had to be excluded from the sleepiness analysis due to missing data. 
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Figure 21 Model-based reaction time estimates for different (a) and same (b) handedness in Experiment 2B. Error bars 

depict 95% CIs. ext: forced external, int: forced internal, ch: free choice 

 

In sum, RTs in the free choice and forced internal conditions clustered together 

and were considerably lower than RT in the forced external condition (which further 

confirms H2-1). Interestingly, the exploratory analyses of sleepiness and difficulty of the 

extended rotation task both suggest internal resource use to be more taxing than external 

resource use. Note that such a difference could only be shown for the speed goal, not for 

the accuracy goal condition and that participants were, when given the choice, less likely 

to offload when speed instead of accuracy was incentivized. This suggests that 

participants did not offload cognition merely to minimize effort but instead offloaded 

cognition to meet their performance goals. Lastly, also note that participants were nearly 

150ms slower when solving the task externally 100% of the time (forced external) in 

comparison to solving it externally 0% of the time (forced internal) but also in 

comparison to solving it externally 80% of the time (free choice). This pattern suggests 

that adaptively switching strategies in the minority of only 20% of trials made up for the 

majority of the RT difference, which could have possibly been realized by monitoring 

strategy performance in a stimulus- (i.e., feature-specific) way (as proposed in the 
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ASCM; e.g. Siegler & Lemaire, 1997). This possibility is backed by a supplemental 

analysis that shows that participants were about 265ms faster when solving problems 

internally in the free choice in comparison to the forced internal condition (Tables 18, 

19; Figure 29). 

Accuracy 

In comparison to participants in the forced external condition, when holding all 

other predictors constant, the odds of solving a problem correctly was decreased by 31% 

for participants in the forced internal and free choice conditions combined (|Z| = 3.8; 

oddschoice = 4.3, oddsforced external = 5.5, oddsforced internal = 7.3;). Equivalently
23

, participants 

in the forced external condition were about five percentage points more accurate than 

participants in the forced external and free choice conditions combined (pchoice = .81, 

pforced external = .85, pforced internal = .78). Accuracy for the forced internal and the free choice 

condition did not differ (|Z| = 1.9). Remaining model results are reported in Table 21 in 

the Supplemental Material and illustrated in Figure 22.  

 

 

                                                 
23

 when transforming the odds back to probability values 
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Figure 22 Model-based accuracy estimates for different (a) and same (b) handedness in Experiment 2B.Error bars 

depict asymmetric 95% CIs that have been back-transformed from the logit scale. ext: forced external, int: forced 

internal, ch: free choice 

 

These results again suggest that problem solvers in the free choice condition 

employed a combination of internal and external resources that sacrificed goal-irrelevant 

performance (further conforming H2-2). Cognition locus main effects of all experiments 

combined are summarized in Figure 23. 

 

 

Figure 23 Performance summary of Experiments 1, 2A, and 2B. Data represents estimated marginal means for the 

accuracy (a) and speed (b) goal conditions. ext: forced external, int: forced internal, ch: free choice, *: |t| or |Z| >= 2; 

n.s.: |t| or |Z| < 2 

 

General discussion 

We asked participants to solve a cognitive task, provided them with different 

performance goals – maximizing speed or accuracy, respectively – and measured how 

frequently (Experiment 1) and how proficiently (Experiment 2) they made use of a novel 
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external resource to support their cognitive processing. Results showed that participants 

with different performance goals indeed exhibited differential offloading frequencies 

(H1), which reflected the participants’ proficiency in distributing cognition between 

internal and external resources in a goal-directed manner. In particular, the way 

participants mixed internal and external resources led to high goal-related performance 

(H2-1) whereas goal-unrelated performance was sacrificed (H2-2). In other words, 

participants were specifically concerned with goal-related rather than generic 

performance. 

How much guidance do problem solvers need to choose between internal and external 

resources to meet their cognitive goals? 

The study’s main purpose was to find out whether humans possess the ability to 

autonomously exploit their technologized environments in pursuit of their cognitive 

goals. The promising main takeaway is that participants were performing very well 

without any external guidance in the current extended rotation paradigm. This suggests 

the human to be capable of proficiently navigating a world with a steadily in-creasing 

number of possibilities to offload cognition. Humans can thus not only reach high levels 

of ge-neric performance when mixing internal and external strategies (Gilbert, 2015; 

Gray et al., 2006; Risko & Dunn, 2015; Walsh & Anderson, 2009) but they can also 

reach high levels of goal-related performance (current study). Clear performance goals 

and a steady feedback might be all that is needed for deciding on how to mix internal and 

external resources. The present results are in line with the notion of the human as an 

independent and rational problem solver (cf. Anderson, 1990).  
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However, one should be aware that the present finding of good goal-related 

performance without guidance might not generalize to all possible external resources and 

environments. For some situations, it is already known that guidance is beneficial, for 

instance when a problem solver once read faulty information about an external resource’s 

performance. In such a situation, the problem solver would likely include that faulty 

information in his or her decision whether to use that resource (Weis & Wiese, 2019), 

leading to poor performance. To alleviate the consequences of false beliefs, verbal advice 

concerning the preferable strategy, given immediately before solving a problem, was 

shown to improve offloading performance (Gilbert et al., 2019). In addition to faulty 

beliefs, one should also consider the impact of the complexity of an environment on the 

problem solver’s ability to proficiently recruit external resources. In complex 

environments, it can be hard to gauge the utility of a strategy because the associated 

reward might not be immediate or obvious, or because a wide variety of strategies could 

be employed and too much effort would be needed to obtain solid estimates of each 

strategy’s utility (cf. Lieder & Griffiths, 2017). In a similar vein, it should be noted the 

cognitive environment available in the present study afforded only one obvious external 

strategy (i.e., knob-based rotation) and that challenges in other cognitive environments 

might include discovery of unknown or creation of novel external strategies (as, for 

example, in the cognitive environment of the computer game TETRISⓇ; Kirsh & Maglio, 

1994). Lastly, it is uncertain whether performance feedback played an important role for 

establishing the adaptive offloading behavior. Thus, so far, one can conclude that in the 

absence of faulty beliefs and complex environments, a condition that was likely met in 
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the current study, and the presence of performance feedback, humans are able to employ 

a well-performing and goal-directed mix of internal and external cognitive strategies 

without further guidance. 

How do problem solvers establish a goal-driven recruitment of external resources? 

To the authors, it is intriguing how the participants realized the goal-driven 

incorporation of the external strategy into their cognitive processing. Two possible 

underlying mechanisms exist. First, participants might have focused on the goal-related 

feedback, i.e. used the feedback as an error signal to improve subsequent behavior (i.e. 

performance monitoring; for a review, see Ullsperger, Fischer, Nigbur, & En-drass, 

2014). For example, other research suggests that older adults can use accuracy feedback 

to overcome a bias against using their internal memory (Touron & Hertzog, 2014). 

Similarly, participants might have monitored their errors and timing independently from 

the displayed feedback. Second, participants might have made correct metacognitive 

judgments about the capabilities of the available cognitive resources (for a review, see 

Risko & Gilbert, 2016). In other words, participants might have metacognitively 

evaluated the different strategies a priori and opted for the more promising one. Such 

metacognitive judgments are likely employed (Dunn & Risko, 2016; Weis & Wiese, 

2019) but not without fault (Gilbert et al., 2019; Risko & Dunn, 2015)
24

. A third 

possibility would be that participants chose the path of least effort (Kool et al., 2010) and 

                                                 
24

 Note that such evaluations can be made independently from the actual performance of the respective 

resource (Gilbert, 2015) but that combined strategies in which participants factor performance feedback 

into their metacognitive evaluations are also plausible. 
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ended up with good choice performance more or less by chance, which is however a 

highly unlikely possibility in the current study (for more details, see 3.3.1).  

From the present data, we cannot distinguish the contributions of performance 

monitoring and met-acognitive evaluations. However, we deem it likely that both 

mechanisms contributed simultaneously, which has already been proposed for situations 

in which problem solvers can select between internal and external strategies (Gilbert, 

2015; Risko & Gilbert, 2016) and in which they can select between different internal 

strategies (for a review, see Lieder & Griffiths, 2017). Further studies that capture 

participants’ a priori metacognitive evaluations of different strategies and that track 

strategy selection and associated performance over time could illuminate the importance 

of both performance monitoring and metacognitive evaluation for goal-oriented strategy 

selection. Lastly, it is important to realize that a proficient problem solver is not only able 

to adaptively choose between given external strategies but is also able to create and use 

novel strategies in a highly adaptive way (Kirsh, 2013), a topic that is out of the scope of 

the current article. 

Conclusion and outlook 

The current findings support the notion of humans as canny offloaders who are 

able to employ environment-based strategies to pursue their cognitive goals. Such 

proficiency seems important in an increasingly computerized world that affords an 

abundance of environment-based strategies. Future efforts should be focused on the 

mechanisms that underlie the choice to offload and on further illuminating the 

circumstances under which problem solvers need guidance to fulfill their goals. 
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Supplementary material 

Apparatus 

Participants were seated at a distance of about 80 cm in front of an ASUS 

VB198T-P 19-inch monitor set to a resolution of 1,280 × 1,024 pixels and a refresh rate 

of 60 Hz using MATLAB version R2015b (The Mathworks, Inc., Natick, MA, United 

States) and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Key presses were 

recorded using a USB-connected standard keyboard. The rotation knob consisted of a 

potentiometer (SpinTrak Rotary Control; Ultimarc, London, UK) sampled at 1000 Hz. 
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One full rota-tion of the rotation knob corresponded to one full rotation of the working 

stimulus on the screen. Based on a frame-wise video analysis, we could estimate the lag 

between knob rotation and stimulus rotation to be less than 20ms.  

Stimuli 

Creation of the twenty-four stimuli used for the Extended Rotation Task was 

based on a procedure described by Attneave and Amoult (1956) that was implemented in 

a Matlab script provided by Collin & McMullen (2002).  We used Matlab version 

R2015b (The Mathworks, Inc., Natick, MA) to create the stimuli. All stimuli used for the 

current experiment differed only in the edge parameter which ranged from three to 

twenty-one (see Figure 17 in the main manuscript for an example stimulus with eight 

edges). 

Procedure 

After arrival, participants were welcomed and seated in front of computer screens. 

Participants then pro-vided informed consent before engaging in computer-based tasks. 

Up to two participants were tested simultaneously. First, each participant completed the 

shortened versions of three complex working memory span tasks (reading span, operation 

span, and symmetry span; Oswald, McAbee, Redick, & Hambrick, 2015) and a brief task 

testing visuo-motor coordination (computer-ported version of the rotary pursuit task; 

Mueller & Piper, 2014). Participants then engaged in the extended rotation task and were 

instructed to answer both as accurately and as quickly as possible. To get a crude idea of 

how tiring the extended rotation task is, participants were to fill out the Stanford 

Sleepiness Scale (Hoddes, Zarcone, & Dement, 1972) before and after the task. 
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Additionally, after completion of the Extended Rotation Task, participants were to judge 

whether they found that “The task involving object rotation was easy” on a five-point 

Likert scale (strongly agree to strongly disagree). The experimental session ended with a 

brief demographic sur-vey. The Extended Rotation Task took between 40 and 60 minutes 

to complete. In total, the study took around 90 minutes to complete. Working memory 

span and visuo-motor-coordination data are of minor relevance for the current manuscript 

and will be explored elsewhere. 

Data filtering and analysis 

Trials in which participants answered slower or faster than their individual mean 

for all stimuli in the same angle condition plus/minus two standard deviations were 

excluded from all analyses (4.7% of trials in Experiment 1 and 2B, 4.5% in Experiment 

2A). No other trials were filtered. For RT analyses, including offloading onset analyses, 

only correct trials
25

 were used.  

We used a random coefficient modeling approach that allowed us to fit 

generalized linear models with a logit link function and two random effects, participants 

and stimuli, to the offloading and accuracy data. The same approach was used to fit 

general linear models (without the logit link function) to reaction time data. We preferred 

a random coefficient modelling approach over the more standard ANOVA approach 

since the former affords increased power for the current experiment with two random 

variables (Judd, Westfall, & Kenny, 2017) and since one easily runs into assumption 

                                                 
25

 All RT-dependent analyses were also conducted without excluding incorrectly answered trials. Results 

were highly similar and would have led to the same conclusions as with the present analyses.  
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violations with the latter when using binary outcome data (Dixon, 2008). Models were 

implemented using R (R Core Team, 2013) and the lme4 package’s function glmer 

(Bates, Mächler, Bolker, & Walker, 2015). Marginal means were computed using the 

emmeans
26

 package. All models include two random effects incorporating random 

intercepts for participants and stimuli, respectively.  

More specifically, three independent variables were entered in each analysis: 

handedness, angle, and performance goal. For each analysis, we were fitting three 

models, one with no, one with the two-way, and one with the two-way and the three-way 

interaction terms. Out of three models, the one with the lowest Bayesian Information 

Criterion (BIC) is reported. Note that the angle 0 condition is omitted in this analysis as it 

is not relevant for offloading the mental rotation process (see below for analyses of the 

angle 0 conditions). The factors handedness and performance goal have been contrast-

coded. The factor angle was entered as continuous and z-standardized. 

Points 

Participants were able to gather goal-specific points throughout the experiment. 

Participants were instructed about how they could gather points in the respective 

performance goal condition before the start of the experimental trials.  Points for the last 

block were shown during each of the self-paced breaks between blocks. The shown point 

value reflected the participant’s performance during the preceding sixteen trials (accuracy 

goal: 100% of trials correct: 5 points; < 100 and ≥ 90% of trials correct: 2 points; < 90 

and  ≥ 70% of trials correct: 1 point; else: 0 points; speed goal: ≥ 95% of trials speedy: 5 

                                                 
26

 https://CRAN.R-project.org/package=emmeans 

https://cran.r-project.org/package=emmeans
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points; < 95 and ≥ 80% of trials speedy: 2 points; < 80 and  ≥ 60% of trials speedy: 1 

point; else: 0 points). Trials were classified as speedy even if answered incorrectly. 

However, if accuracy was below 67% for the sixteen trials, participants received no 

points and were prompted to increase their accuracy. This was necessary to avoid that 

participants skip the rotation process altogether (i.e., neither do it internally nor 

externally) in favor of random answers. The three participants with the overall highest 

scores were awarded Amazon vouchers (of values USD 15, 10, and 5 respectively). 

Experiment 1 

Participants 

In total, 100 participants were recruited and assigned equally to an accuracy 

performance goal and a speed performance goal group. Nine participants (two accuracy 

goal, seven speed goal) were excluded due to extremely poor task performance (less than 

80% correct answers when working and base stimulus, see Figure 17A in the main 

manuscript, were identical). Additionally, three participants were excluded because their 

mean RT deviated more than 2.5 SDs from the grand mean of participants with the same 

performance goal, resulting in a final sample of 47 (Mage = 19.8, rangeage = 18 to 27, 30 

females, 2 left-handed) and 41 participants (Mage = 19.4, rangeage = 18 to 25, 22 females, 5 

left-handed), respectively. Participants were recruited from the undergraduate psychology 

student pool at a large American University and received course credit for their 

participation. Participants were at least 18 years old and had normal or corrected to 

normal vision. The experiment was approved by the local ethics committee and 

participants provided informed consent prior to participation. 
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Offloading at angle 0 

To assess possible baseline offloading differences, two generalized linear models 

with a logit link function, one with and one without the interaction term, were used to 

model binary offloading choices based on handedness and performance goal at angle 0. 

IVs have been contrast coded. Based on the Bayesian Information Criterion, the model 

with the interaction term is reported.  

 Same-handed stimuli were, given that the stimuli looked identical unsurprisingly, 

solved less frequently with help of the external resource than stimuli with different 

handedness (|Z| = 25.5). Although there was no main effect of performance goal (|Z| = 

1.27), handedness and performance goal interacted with a difference between speed and 

accuracy goal only emerging for same handedness (|Z| = 6.7). For model details, see 

Table 9. The model’s estimates are illustrated in Figure 24. 

 

Table 9 Generalized linear model results for cognitive offloading in Experiment 1 at angle 0 

Offloading (log odds) 

Random Effects Variance SD   

Participants 1.65    1.29   

Items 0.18 0.43   

Fixed Effects Estimate[log odds] Exp(Estimate) SE |Z| 

Intercept -1.73 0.18 0.17 10.38 

Handedness -1.34 0.26 0.05 25.52 

Goal 0.36 1.43 0.28 1.27 

Handedness x Goal 0.70 2.02 0.10 6.71 
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Figure 24 Model-based offloading estimates as predicted by handedness and performance goal at angle 0. Error bars 

depict asymmetric 95% Cis that are back-transformed from the logit scale. Goal: Performance Goal Factor; acc: 

accuracy, spd: speed 

 

Offloading at angles 60 to 180 

 

Table 10 Generalized linear model results for cognitive offloading in Experiment 1 

Proportion Offloaded (log odds) 

Random Effects Variance SD   

Participants 2.73 1.65   

Items 0.07 0.26   

Fixed Effects Estimate[log odds] Exp(Estimate) SE |Z| 

Intercept 2.25 9.47 0.19 12.06 

Angle 0.24 1.27 0.02 13.11 

Handedness 0.45 1.57 0.04 12.40 

Goal -1.74 0.18 0.36 4.86 

Angle x Handedness -0.22 0.80 0.04 6.23 

Angle x Goal -0.23 0.80 0.04 6.25 

Handedness x Goal -0.44 0.64 0.07 6.13 

Angle x Handedness x 

Goal 
-0.12 0.89 0.07 1.69 

Notes. To interpret significance of a fixed effect, a |Z| > 2 criterion has been used. 
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Experiment 2A 

Participants 

The same sample size (50 forced internal, 50 forced external), exclusion criteria, 

recruitment, and ethical guidelines as in Experiment 1 were used. Two participants were 

excluded due to technical problems, twenty participants due to poor task performance, 

and one because RT mean deviated more than 2.5 SDs from the grand mean, resulting in 

a final sample of 41 participants in the forced external (Mage = 20.9, rangeage = 18 to 35, 

25 females, 4 left-handed) and 36 in the forced internal (Mage = 20.9, rangeage = 18 to 50, 

20 females, 3 left-handed) condition. 

Accuracy at angle 0 

To assess possible baseline accuracy differences, two generalized linear models 

with a logit link function, one with and one without the interaction term, were used to 

model binary accuracies based on handedness and cognition locus at angle 0. IVs have 

been contrast coded. Based on the Bayesian Information Criterion, the model with main 

effects only is reported.  

 Problems with same-handed stimuli were, given that the stimuli looked identical 

unsurprisingly, solved more accurately than problems with stimuli of opposite 

handedness (|Z| = 8.0). Cognition locus did not alter accuracy (|Z| of both contrasts < 2). 

For model details, see Table 11. The model’s estimates are illustrated in Figure 25. 

 

Table 11 Generalized linear mixed model results for accuracy in Experiment 2A at angle 0 

Accuracy (log odds) 
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Random Effects Variance SD   

Participants 0.64   0.80   

Items 0.13    0.36    

Fixed Effects Estimate Exp(Estimate) SE |Z| 

Intercept 3.81 45.27 0.12 31.73 

Handedness 0.72 2.05 0.09 7.96 

Cognition Locus (ext + ch > int) 0.28 1.32 0.19 1.48 

Cognition Locus ( ch > ext) 0.30 1.35 0.21 1.42 

Notes. ext: forced external, int: forced internal, ch: free choice. 

 

 

Figure 25 Model-based accuracy estimates as predicted by handedness and cognition locus at angle 0. Error bars depict 

asymmetric 95% CIs that are back-transformed from the logit scale. f. external: forced external, f. internal: forced 

internal 

 

Accuracy at angles 60 to 180 

 

Table 12 Generalized linear mixed model results for accuracy in Experiment 2A 

Accuracy (log odds) 

Random Effects Variance SD   

Participants 0.53    0.72   
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Items 0.19    0.43   

Fixed Effects Estimate Exp(Estimate) SE |Z| 

Intercept 2.51 12.28 0.11 22.50 

Angle -0.02 0.98 0.02 1.37 

Handedness -0.13 0.88 0.03 4.24 

Cognition Locus (ext + ch > int) 0.77 2.16 0.15 5.20 

Cognition Locus ( ch > ext) -0.22 0.80 0.16 1.39 

Angle x Handedness -0.05 0.95 0.03 1.63 

Handedness x Cognition Locus  

(ext + ch > int) 
-0.21 0.81 0.06 3.36 

Handedness x Cognition Locus  

( ch > ext) 
-0.26 0.77 0.08 3.18 

Angle x Cognition Locus  

(ext + ch > int) 
0.36 1.43 0.03 11.25 

Angle x Cognition Locus ( ch > ext) 0.01 1.01 0.04 0.23 

Notes. ext: forced external, int: forced internal, ch: free choice. Free choice refers to the 

participants’ free choice between using internal or external processing as available in 

Experiment 1.  

 

RT at angle 0 

To assess possible baseline RT differences, two general  linear models, one with 

and one without the interaction term, were used to model binary accuracies based on 

handedness and cognition locus at angle 0. IVs have been contrast coded. Based on the 

Bayesian Information Criterion, the model with main effects only is reported. 

Participants that had to use the external resource answered considerable slower in 

the angle 0 condition than participants who could freely choose between internal and 

external processing (169 ms, |t| = 3.0). We interpret that as evidence suggesting that 
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participants in the forced external condition did closely follow the instructions, i.e. relied 

on the external resource to come to a conclusion. The time cost incurred by recruiting the 

external resource at angle 0 might be what is reflected by the RT difference. For the 

remaining effects and model details, see Table 13. The model’s estimates are illustrated 

in Figure 26. 

 

 

Table 13 General linear mixed model results for reaction time in Experiment 2A at angle 0 

RT [s] 

Random Effects Variance SD  

Participants 0.07  0.26  

Items 0.02 0.12  

Residual 0.21  0.45   

Fixed Effects Estimate SE |t| 

Intercept 1.54 0.03 44.65 

Handedness -0.33 0.01 46.67 

Cognition Locus (ext + ch > int) 0.14 0.05 2.69 

Cognition Locus (ch > ext) -0.17 0.06 3.03 

Notes. ext: forced external, int: forced internal, ch: free choice. 

 

 

 

 
Figure 26 Model-based RT estimates as predicted by handedness and cognition locus at angle 0. Error bars depict 

asymmetric 95% CIs. f. external: forced external, f. internal: forced internal 
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RT at angles 60 to 180 

 

Table 14 General linear mixed model results for reaction time in Experiment 2A 

RT [s] 

Random Effects Variance SD  

Participants 0.08   0.29  

Items 0.03 0.18  

Residual 0.32 0.56  

Fixed Effects Estimate SE |t| 

Intercept 2.32 0.04 52.55 

Angle 0.07 < 0.01 27.46 

Handedness -0.10 0.01 19.14 

Cognition Locus (ext + ch > int) 0.19 0.06 3.37 

Cognition Locus ( ch > ext) 0.05 0.06 0.82 

Angle x Handedness 0.06 0.01 12.00 

Handedness x Cognition Locus (ext + ch > int) -0.03 0.01 2.63 

Handedness x Cognition Locus ( ch > ext) 0.04 0.01 3.59 

Angle x Cognition Locus (ext + ch > int) -0.07 0.01 11.81 

Angle x Cognition Locus ( ch > ext) 0.01 0.01 2.34 

Notes. ext: forced external, int: forced internal, ch: free choice. Free choice refers to the 

participants’ free choice between using internal or external processing as available in 

Experiment 1. To interpret significance of a fixed effect, a |t| > 2 criterion has been used. 

 

Offloading onset at angles 60 to 180 

To explore the nature of the choice process, we also analyzed the delay until 

participants started using the external strategy. To do so, we employed the same type of 

general linear model as in the previous analysis but instead of RT, we used the time 
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between stimulus onset and when the knob was turned for more than 5 degrees as 

dependent variable. Results show that in the free choice condition, participants started 

using the knob 216ms later than in the forced external condition (Table 15, Figure 27), 

which suggests a sequential process: participants might have tried some sort of internal 

strategy first and if that failed switched over to the external strategy or initiated parallel 

processing. Alternatively, the 216ms time cost might be attributable to a costly choice 

process that preceded the employment of the external strategy. 

 

Table 15 General linear mixed model results for offloading onset in Experiment 2A 

Offloading Onset [s] 

Random Effects Variance SD  

Participants 0.03 0.18  

Items 0.01 0.08  

Residual 0.09 0.30  

Fixed Effects Estimate SE |t| 

Intercept 0.78 0.03 29.15 

Angle -0.01 < 0.01 3.71 

Handedness -0.03 < 0.01 9.47 

Cognition Locus (ext > ch) -0.22 0.04 5.31 

Notes. ext: forced external, ch: free choice. Free choice refers to the participants’ free 

choice between using internal or external processing as available in Experiment 1. To 

interpret significance of a fixed effect, a |t| > 2 criterion has been used. 
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Figure 27 Model-based offloading onset estimates for different (a) and same (b) handedness in Experiment 2A. Error 

bars depict 95% CIs. ext: forced external, ch: free choice 

 

Experiment 2B 

Participants 

The same sample size, exclusion criteria, recruitment, and ethical guidelines as in 

Experiment 2A were used. Two participants were excluded due to technical problems, 

twenty due to poor task performance and three because their RT means deviated more 

than 2.5 SD from the grand mean, resulting in a final sample of 40 participants in the 

forced external (Mage = 19.3, rangeage = 18 to 22, 23 females, 5 left-handed) and 35 

participants in the forced internal (Mage = 19.5, rangeage = 18 to 25, 25 females, none left-

handed) condition. 

RT at angle 0 

To assess possible baseline RT differences, two general  linear models, one with 

and one without the interaction term, were used to model binary accuracies based on 

handedness and cognition locus at angle 0. IVs have been contrast coded. Based on the 

Bayesian Information Criterion, the model with the main effects only is reported. 
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Participants that had to use the external resource answered considerable slower in 

the angle 0 condition than participants who could freely choose between internal and 

external processing or had no external processing option available (70 ms, |t| = 2.0). The 

t-statistic falls right at the border of our binary decision criterion but, given the analogous 

data in Experiment 2A, we interpret it as evidence suggesting that participants did closely 

follow the instructions. In other words we suggest that the 70 ms difference reflects the 

time cost incurred by recruiting the external resource even at angle 0. For the remaining 

effects and model details, see Table 16. The model’s estimates are illustrated in Figure 

28. 

 

Table 16 General Linear mixed model results for RT in Experiment 2B at angle 0 

RT [s] 

Random Effects Variance SD  

Participants 0.03  0.18   

Items 0.01 0.07  

Residual 0.08 0.29  

Fixed Effects Estimate SE |t| 

Intercept 1.17 0.02 52.44 

Handedness -0.21 < 0.01 44.00 

Cognition Locus (int + ch > ext) -0.07 0.04 1.96 

Cognition Locus (ch > int) -0.05 0.04 1.28 

Notes. ext: forced external, int: forced internal, ch: free choice. 
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Figure 28 Model-based RT estimates as predicted by handedness and cognition locus at angle 0. Error bars depict 95% 

CIs. f. external: forced external, f. internal: forced internal 

 

RT at angles 60 to 180 

 

Table 17 General linear mixed model results for reaction time in Experiment 2B 

RT [s] 

Random Effects Variance SD  

Participants 0.10  0.32  

Items 0.01 0.10  

Residual 0.19 0.44  

Fixed Effects Estimate SE |t| 

Intercept 1.71 0.04 48.4 

Angle 0.07 < 0.01 30.18 

Handedness -0.05 < 0.01 10.50 

Cognition Locus (int + ch > ext) -0.15 0.06 2.35 

Cognition Locus ( ch > int) -0.019 0.07 0.27 

Angle x Handedness 0.05 < 0.01 11.18 

Handedness x Cognition Locus  

(int + ch > ext) 
0.03 0.01 3.24 

Handedness x Cognition Locus  -0.02 0.01 2.11 
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(ch > int) 

Angle x Cognition Locus (int + ch > ext) 0.01 0.01 2.14 

Angle x Cognition Locus ( ch > int) -0.01 0.01 1.19 

Angle x Cognition Locus (int + ch > ext) 

x Handedness 
-0.03 0.01 2.70 

Angle x Cognition Locus ( ch > int) x 

Handedness 
0.05 0.01 4.09 

Notes. ext: forced external, int: forced internal, ch: free choice. Free choice refers to the 

participants’ free choice between using internal or external processing as available in 

Experiment 1. To interpret significance of a fixed effect, a |t| > 2 criterion has been used. 

 

Problem solvers achieved the fast RTs in the free choice condition despite the still 

rather high offloading rate of 80%. This was surprising as it was shown that RT is rather 

high in the forced external condition (compare Figure 21 in the main manuscript). We 

ran two general linear mixed models, analogous to the one used above, to elucidate how 

participants achieved this high speed performance in offloading trials. Specifically, we 

compared the free choice and the forced external condition for offloaded trials (Table 18) 

and the free choice and the forced internal condition for trials that had not been offloaded 

(Table 19). Results (compare Figure 29) show that participants in the choice condition 

needed less time when employing the internal strategy in comparison to participants in 

the forced internal condition. This suggests the ability to offload costly trials was a major 

contributor to adaptive strategy use.  

 

Table 18 General linear mixed model results for reaction time in Experiment 2B: offloading trials only 

RT [s] 
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Random Effects Variance SD  

Participants 0.11 0.33  

Items 0.02 0.13  

Residual 0.18 0.42  

Fixed Effects Estimate SE |t| 

Intercept 1.80 0.05 39.99 

Angle 0.06 < 0.01 20.74 

Handedness -0.09 0.01 15.81 

Cognition Locus ( ch > ext) 0.08 0.07 1.05 

Angle x Handedness 0.08 0.01 14.84 

Handedness x Cognition Locus ( ch > ext) -0.01 0.01 0.44 

Angle x Cognition Locus ( ch > ext) -0.01 0.01 1.83 

Notes. ext: forced external, int, ch: free choice. Free choice refers to the participants’ free 

choice between using internal or external processing as available in Experiment 1. To 

interpret significance of a fixed effect, a |t| > 2 criterion has been used. 

 

Table 19 General linear mixed model results for reaction time in Experiment 2B: internal trials only 

RT [s] 

Random Effects Variance SD  

Participants 0.09 0.29  

Items 0.01 0.07  

Residual 0.19 0.43  

Fixed Effects Estimate SE |t| 

Intercept 1.52 0.04 39.86 

Angle 0.07 < 0.01 18.11 

Handedness -0.03 0.01 3.88 

Cognition Locus ( ch > int) 0.26 0.07 3.80 

Notes. int: forced internal, ch: free choice. Free choice refers to the participants’ free 

choice between using internal or external processing as available in Experiment 1. To 

interpret significance of a fixed effect, a |t| > 2 criterion has been used. 
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Figure 29 Model-based reaction time estimates split by offloading. Data represents estimated marginal means for the 

speed goal conditions split by whether participants did or did not offload during the respective trials. Error bars depict 

95% CIs. Note that CIs are asymmetric for accuracy estimates. ext: forced external, int: forced internal, ch: free choice. 

Error bars depict 95% CIs. ext: forced external, int: forced internal, ch: free choice 

 

Accuracy at angle 0 

To assess possible baseline accuracy differences, two generalized linear models 

with a logit link function, one with and one without the interaction term, were used to 

model binary accuracies based on handedness and cognition locus at angle 0. IVs have 

been contrast coded. Based on the Bayesian Information Criterion, the model with main 

effects only is reported.  

Problems with same-handed stimuli were, analogously to Experiment 2A, solved 

more accurately than problems with stimuli of opposite handedness (|Z| = 8.8). Cognition 

locus did not alter accuracy (|Z| of both contrasts < 1.8). For model details, see Table 20. 

The model’s estimates are illustrated in Figure 30. 
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Table 20 Generalized linear mixed model results for accuracy in Experiment 2B at angle 0 

Accuracy (log odds) 

Random Effects Variance SD SD  

Participants 0.25    0.50   0.50  

Items 0.13   0.36   0.36  

Fixed Effects Estimate Exp(Estimate) SE |Z| 

Intercept 2.87 17.72 0.09 30.35 

Handedness 0.58 1.79 0.07 8.83 

Cognition Locus (ext + ch > int) 0.21 1.23 0.12 1.73 

Cognition Locus (ch > ext) -0.17 0.84 0.14 1.20 

Notes. ext: forced external, int: forced internal, ch: free choice. 

 

 
Figure 30 Model-based accuracy estimates as predicted by handedness and cognition locus at angle 0. Error bars depict 

asymmetric 95% CIs that are back-transformed from the logit scale. f. external: forced external, f. internal: forced 

internal 

 

Accuracy at angle 60 to 180 

 

Table 21 Generalized linear mixed model results for accuracy in Experiment 2B 

Accuracy (log odds) 

Random Effects Variance SD   
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Participants 0.23  0.48   

Items 0.13    0.36    

Fixed Effects Estimate Exp(Estimate) SE |Z| 

Intercept 1.46 4.32 0.09 17.05 

Angle -0.17 0.84 0.01 14.52 

Handedness -0.02 0.98 0.02 1.04 

Cognition Locus (int + ch > ext) -0.36 0.69 0.10 3.76 

Cognition Locus ( ch > int) 0.21 1.23 0.11 1.86 

Angle x Handedness -0.16 0.85 0.02 6.85 

Handedness x Cognition Locus  

(int + ch > ext) 
0.21 1.24 0.05 4.18 

Handedness x Cognition Locus  

( ch > int) 
-0.14 0.87 0.06 2.54 

Angle x Cognition Locus (int + ch > 

ext) 
-0.22 0.80 0.036 8.62 

Angle x Cognition Locus ( ch > int) 0.19 1.21 0.03 6.59 

Notes. ext: forced external, int: forced internal, ch: free choice. Free choice refers to the 

participants’ free choice between using internal or external processing as available in 

Experiment 1.  

 

Offloading onset at angles 60 to 180 

The same analysis as describe above in section Offloading onset at angles 60 to 

180 of Experiment 2A was conducted for Experiment 2B. Results show that in the free 

choice condition, participants showed no pronounced differences in offloading onset 

(44ms, not significant) between the free choice and the forced external condition (Table 

22, Figure 31), which speaks for a non-sequential process. When under time pressure, 
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participants might have shifted from sequential processing to either an external 

processing or a parallel processing strategy.  

 

Table 22 General linear mixed model results for offloading onset in Experiment 2B 

Offloading Onset [s] 

Random Effects Variance SD  

Participants 0.03 0.17  

Items < 0.01 0.05  

Residual 0.07 0.26  

Fixed Effects Estimate SE |t| 

Intercept 0.64 0.02 30.01 

Angle < 0.01 < 0.01 1.24 

Handedness < 0.01 < 0.01 0.29 

Cognition Locus ( ext > ch) -0.04 0.04 1.18 

Notes. ext: forced external, ch: free choice. Free choice refers to the participants’ free 

choice between using internal or external processing as available in Experiment 1. To 

interpret significance of a fixed effect, a |t| > 2 criterion has been used. 

 

 
Figure 31 Model-based offloading onset estimates for different (a) and same (b) handedness in Experiment 2B. Error 

bars depict 95% CIs. ext: forced external, ch: free choice 
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GENERAL DISCUSSION 

Synopsis of results 

The common main objectives across Study 1 to 3 lie in improving the 

understanding of parameters that influence a human problem solver’s decision to use 

environment-based external instead of brain-based internal resources. In Study 1, it was 

shown that a human problem solver’s inclination to offload his or her cognitive 

processing depends to similar degrees on monitoring the external resource’s actual 

performance as well as on pre-existing beliefs about the external resource’s 

performability. In Study 2, it was shown that a human problem solver’s inclination to 

offload his or her cognition also depends on the performability of task-relevant internal 

resources. Good internal performability decreased cognitive offloading frequency even 

when the task at hand looked comparably difficult, thereby suggesting that performability 

can supplant task appearance in determining cognitive offloading propensity. Both Study 

1 and Study 2 confirmed former studies in that human problem solvers are sensitive to 

performance parameters when deciding whether to offload cognitive processing. In Study 

3, this sensitivity was investigated further. Specifically, it was investigated whether 

human problem solvers are able to mix internal and external processing in a way that 

matches their current performance goals or whether they are biased toward speed or 

accuracy maximization, or mental effort minimization, without considering whether those 

heuristics meet their current goals. Results of Study 3 showed that participants were 
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indeed mixing internal and external processing in a way congruent with their cognitive 

performance goals, indicating that human problem solvers obtain a high proficiency in 

incorporating external resources into their cognitive processing.  

The present findings picture the human problem solver as proficiently navigating 

cognitive environments, offloading cognition mostly when internal processing is 

inefficient (Study 2) or when it helps to achieve current cognitive performance goals 

(Study 3). The findings however also show that this proficiency can be profoundly altered 

once false beliefs about the external resource are introduced (Study 1).  Taken together, 

the findings emphasize importance of balancing first-hand experience with an external 

resource, e.g. in the shape of performance feedback, with more abstract information, e.g. 

in the shape of communicated beliefs about an external resource.  

Future directions 

How do people keep track of an external resource’s usefulness? 

It has been shown that human problem solvers are more inclined to incorporate an 

external resource into their cognitive processing if that external resource improves 

performance (see introductory section Determinants of cognitive offloading: Optimizing 

performance). However, the mechanisms that keep track of the external resource’s—or , 

similarly, of an internal resource’s—performance  remain largely in the dark as Dunn and 

Risko (2016, p. 1083) noted: 

„The idea that performance/effort is driving the decision to try to offload cognition via 

adopting an external strategy implies the existence of some mechanism dedicated to 

performing online monitoring of an individual’s performance. For example, Gray et 
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al. (2006) suggest that individuals possess implicit knowledge of performance costs (in 

terms of time) associated with the retrieval of items in memory, and strategy selection 

is sensitive to such knowledge. In most cases, however, the nature of this mechanism is 

left open. Nevertheless, there exist a number of candidate mechanisms that could 

perform the requisite work. For example, research investigating conflict monitoring, 

error monitoring (e.g., Blais, Robidoux, Risko, & Besner, 2007; Botvinick, Braver, 

Barch, Carter, & Cohen, 2001), and introspective response time (Marti, Sackur, 

Sigman, & Dehaene, 2010)” 

Analogously, it is not clear how experience-based information like performance 

feedback is incorporated with metacognitive information like verbally communicated 

information about an external resource’s performability. In Study 1, it has been shown 

that experience-based information on the one hand and faulty prior information about an 

external resource’s performability on the other hand can alter people’s inclination to 

recruit an external resource simultaneously and independently (also compare to Dunn & 

Risko, 2016). In other words, both performance monitoring as well as communicated 

information contribute to the decision to offload cognition, though it is not yet clear how 

both factors are integrated.  

A first hint however was given in a study in which participants had to decide for 

one of two stimuli at a time that were each associated with a different reward probability 

(M. M. Walsh & Anderson, 2011). In one condition, participants received prior 

information about the reward rates associated with each stimulus. In another condition, 

participants received no prior information. Results showed that behavior, i.e. which 
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stimulus is selected, is heavily depending on whether prior information was given. That 

influence on behavior was present from the very beginning of the experiment. However, 

the FRN—an ERP that is thought to signal feedback-related prediction error (reviewed in 

M. M. Walsh & Anderson, 2011)—does not seem to incorporate the prior information 

and thus varies in a feedback- or experience-dependent manner just as in the condition in 

which no prior information was given. In sum, these results suggest that metacognitive 

evaluation based on prior information and feedback-related performance monitoring are 

realized by different neural mechanisms and are likely integrated at a hierarchically 

higher level than the FRN is based at.  

 As a next step, it would be (1) promising to validate the importance of the FRN in 

monitoring the performance benefit associated with an external cognitive resource rather 

than with a stimulus-related reward as done by Walsh & Anderson (2011). Subsequently, 

it would be promising to (2) find a neural correlate that signifies the prior information 

about an external resource’s usefulness and to (3) use these correlates to advance the 

understanding of how
27

 both factors affect behavior.  

Impact of the appearance of an external resource 

When solving a social task, people are more inclined to follow advice from a 

fellow human than from a computer while the reverse is true for analytic tasks (Hertz & 

                                                 
27

 Walsh and Anderson (2011) showed that the FRN can signify reward monitoring independently from 

exhibited behavior. In Study 1 of the current manuscript, it was shown that both first-hand experience as 

well as prior information can simultaneously contribute to behavior. Thus, there is some knowledge about 

how both factors affect behavior. What is meant here with “how” is a more thorough understanding of the 

underlying mechanism incorporating both factors both neutrally and behaviorally. 
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Wiese, 2019; Smith, Allaham, & Wiese, 2016). In other words, the appearance of an 

agent and the type of the task interact in influencing the degree to which external task-

related information is used for solving the task. Reliance on information given by other 

agents to solve cognitive tasks follows the same fundamental mechanism as cognitive 

offloading does: the incorporation of external information into cognitive processing. In 

the study by Smith, Allaham, and Wiese (2016), participants were always confronted 

with the advice of different agents and could choose whether to follow that advice or not.  

As a next step, one could investigate whether people (1) prefer actively accessing an 

external resource rather than more passively following its advice based on its appearance 

as done in the study reported above. If so, one could (2) explore the mechanism behind, 

potentially encompassing agent-related trust (compare Parasuraman & Manzey, 2010; 

Smith et al., 2016) and/or mind ascription (Epley & Waytz, 2010; Waytz, Gray, Epley, & 

Wegner, 2010). Potential studies could draw on the transactive memory literature that 

captures how people access information that is distributed in their the social surrounding 

(e.g.; Sutton, Harris, Keil, & Barnier, 2010; Wegner, 1987). Lastly, it could be 

worthwhile to (3) explore the consequences of appearance for external resources that do 

not resemble an agent. For example, it was shown that the size of a button determines 

how frequently it is used to access information (Gray et al., 2006). However, following 

Fitts’ law, it is harder to navigate a finger or mouse cursor towards a small than towards a 

large button. Thus, in this setting, appearance (i.e., size) is confounded with performance. 

Future studies could investigate appearance parameters in settings in which appearance is 

not confounded with other parameters.  
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Simultaneously assessing the impact of multiple determinants of cognitive offloading 

across different scenarios 

In the current project, it was shown that prior performance information about an 

external resource influences cognitive offloading in addition to performance information 

gathered via direct interaction experience (Study 1). It was also shown that the 

performability of internal resources influences cognitive offloading in addition to the 

apparent difficulty of a cognitive task (Study 2). What is missing, however, is the big 

picture: given a specific scenario, which parameters are most likely to influence 

offloading behavior? Which determinants are able to uniquely predict and which 

determinants share variance in explaining cognitive offloading? Are different 

determinants equally important across different scenarios? To find the answers, a 

multiple regression approach incorporating the key determinants as independent variables 

(see Introduction: Determinants of cognitive offloading) across multiple scenarios and 

comparing them for stability between scenarios could be employed. The challenge of 

such an approach is twofold. First, the simultaneous modeling of at least five 

determinants requires a massive sample size as well as detailed attention to the model’s 

peculiarities like assumption violations. Second, it would be necessary to determine 

representative scenarios that would—ideally—afford   generalizing the findings to 

everyday problem solving.  
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