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Abstract
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Binary 2D images can be analyzed with an image operator algorithm based on the-

oretical shape proportions and encircled image-histograms (SPEIs). These images can be

classified with an algorithm that reduces complex classification problems into a series of sim-

pler ones using decision trees with automatic model generation (DAMG). DAMG provides

exceptional classification rates for small data problems when using the results of SPIEs as

variables alongside other shape metrics. SPEIs describe shapes using two metrics: shape

proportions (SPs) and encircled image histograms (EIs). SP and EI values are useful for

classifying and describing shapes. SPEI-based approaches outperform convolutional neural

networks in small data problems, where data is limited. DAMG converts any multino-

mial classification problem into a series of elegant binary classification problems. DAMG

is particularly e↵ective in small data scenarios as it is able to convert imbalanced problems

into balanced problems. The developed SPEIs and DAMG tools are applied to the global

issue of pill shape classification. The final models produced outperform current approaches

and are more easily interpreted than many statistical or machine learning algorithms. Fur-

ther, SPEI and DAMG are applied to a vareity of di↵erent data sets to show their wide

applicability.



Chapter 1: General Introduction

Many of the image analysis metrics and classification algorithms mentioned in Chapter 1

lack any combination of simplicity, interpretability, or competitiveness. These shortcomings

are amplified when the data analyzed is complex or nuanced.

1.1 Shape Metrics Shortcomings

The current shape metrics are unable to accurately discriminate di↵erent classes of

shapes in a meaningful manner. Each of the metrics provided failed in some manner,

as discussed in Chapter 1. Basic metrics like area and perimeter are simple, but they

are not powerful enough to provide discriminative measures. This issue is catalyzed for

analyzing shapes with di↵ering scales. Circularity provides no meaningful interpretation for

the resulting value, and eigenvalues could not discriminate regular polygons with varying

scales. Thus, the Image Analysis and Computer Vision communities need a universal shape

metric that is intuitive, competitive, and interpretable.

1.2 Classification Algorithms Shortcomings

Many algorithms in the Machine Learning (ML), or Statistical Learning (SL), commu-

nity have a theoretical basis based on binary outcomes, as discussed in Chapter 1 [28,34,35].

The implementation of these algorithms also require binary outcomes. For instance, the

SVM algorithm must convert multinomial outcomes into a series of binary ones [28].

Deep learning approaches are intrinsically complex and do not provide meaningful inter-

pretations [23]. Convolutional neural networks (CNNs) are extremely powerful, but require

a large amount of data [23]. Their popularity in the Computer Vision community has

consumed researchers’ attention and slowed the development of alternative techniques.
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Evaluating these algorithms in the case of a multinomial outcome increases the complex-

ity of their interpretations. Choosing a metric which meaningfully describes the model’s

performance and has a lucid interpretation is vital. This issue is compounded when dealing

with small data problems, especially imbalanced data. However, if we are able to con-

vert multinomial and imbalanced data problems into a series of binary and balanced data

problems, many of these issues can be circumvented.

1.3 Hypotheses

I am seeking to answer the following research question: is it possible to outperform

CNNs by using shape and classification algorithms when data is limited? Four hypotheses

expand the research question of this thesis. These hypotheses will use acronyms for the

following words: shape proportions and encircled image-histogram (SPEI), shape proportion

(SP), encircled image-histogram (EI), and decision tree with automatic model generation

(DAMG).

1. Through the use of SPEIs, 2D binary digital image shapes of circles and regular

polygons have unique SP values.

2. If classes of digital image shapes have unique and empirically distinct SP values, then

the classes’ EIs can outperform CNNs in small data scenarios.

3. Digital pill shapes have distinct class shapes which can be e↵ectively discriminated

using classification algorithms.

4. Multinomial classification small data problems are convertible into a series of simpler

balanced binary classification problems.

The results regarding hypotheses 1 and 2 will be discussed in Chapter 4. Chapter 4

provides a new algorithm we developed called SPEI. SPEI produces both SP and EI values.

I will show that SL algorithms using only EIs will outperform CNNs in small data scenarios.

The metric used for evaluation is overall accuracy.
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The models in Chapters 5 and 6 will provide evidence in favor of hypothesis 3. Chapter

5’s model will have human influences, while Chapter 6’s model will be completely machine-

driven. The metrics used for evaluation of the models are overall and interclass accuracy.

Chapter 6’s algorithm, DAMG, will be a general machine-driven solution to multinomial

classification problems in the form of a recursive tree algorithm. The DAMG algorithm also

converts imbalanced data problems into a series of balanced data problems. This alleviates

the issues associated with imbalanced data.
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Chapter 2: Review of the Literature

Humanity has been interested in describing shapes for a substantial amount of time. For

example, the ancient Greeks have described shapes in terms of the area and perimeter for

2D shapes and surface area for 3D shapes [12]. In modern times, researchers investigate how

shapes exist in a variety of ways such as as 2D digital binary images. Substantial work has

been done in the classification and analysis of shapes. However, there is little understanding

on how given shape metrics exist for a given 2D digital binary image. This prevents the

specification of useful and helpful metrics in a variety of areas such as classification of image

groups. Furthermore, the classification of shapes is exasperated when data is limited.

In the following sections, we will first discuss various shape metrics from the literature.

Then, we will mention various classification algorithms in the machine or statistical learning

and deep learning communities. We end with a discussion of classification problems where

there are a small number of observations or instances.

2.1 Shape Metrics

We desire to understand of how our abstractions exist in the world by using shape

metrics to describe them is desired. For example, area and perimeter are basic metrics

which describe shapes, but they are not discriminative metrics [38]. Some useful metrics

for the classification of shapes are circularity and eigenvalues.

2.1.1 Circularity

Circularity, �, is defined as follows:

� =
T

2

4⇡A
, (2.1)
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where T is the perimeter of the shape and A is the area [38]. Note that others have

defined � slightly di↵erently, but the definition presented here is essentially the same. For

example, some do not have the 4⇡ constant in the denominator [68]. Circularity appears

to have been first utilized by Rosenfeld [68]. However, it has been studied in mathematics

under the name of the ispoerimetric quotient [72]. Further, research into the ispoerimetric

inequality appears to be an active area of research [100]. The discussion herein will focus

on the application of the ispoerimetric quotient, which will be referred to as circularity, on

digital images.

Circularity has the important feature of having a unique value for circles and regular

polygons. For a circle, this value is 1. For a regular polygon with n sides, this value is

n tan(

⇡
n )

⇡

. This hypothetically allows for the easy classification of digital shapes for these

classes. Table 2.1 shows some of the first few circularity values for regular polygons with n

sides. While this fraction is established, the complete proof for the value for regular polygons

cannot be found in the literature. Thus, it is provided below where T is the perimeter of

the shape, A is the area, n is the number of sides composing the regular polygon, o is the

base of the 2n right triangles composing the shape, a is the height of the 2n right triangles,

s = 2o is the length of a side of the regular polygon, and r is the radius of the circle which

encompasses the regular polygon.
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Proof: � =
n tan(

⇡
n )

⇡

� =
T

2

4⇡A
(2.2)

A = 2n

✓
1

2
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◆
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n sin

�
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n

�

⇡ cos
�
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n

� (2.10)

=
n tan

�
⇡

n

�

⇡

⌅ (2.11)

The reader might need further clarification to understand the values of o and a. We will

use Figure 2.1 to aid in our explanation. For any regular polygon, it can be divided into n

triangles. Each triangle can be divided into 2 right triangles. Thus, the regular polygon can

be divided into 2n right triangles where the base is o and the height is a. The hypotenuse is

known to be r. The top angle is 2⇡

2n

= ⇡

n

. This is derived from the fact that these angles of

the right triangles all meet at the center of the triangle. Thus, the summation of all these

angles must be 2⇡. Since they are all partitioned equally and there are 2n partitions, each

angle will be ⇡

n

. Thus, using trigonometric identities, one can deduce the exact values for o
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Table 2.1: Table for the first 8 values of circularity for regular polygons where n = 3, ..., 10
are presented.

n �

3 1.65
4 1.27

5 1.15
6 1.10

7 1.07
8 1.05

9 1.04
10 1.03

o

a

r

⇡

n

Figure 2.1: Figure of one of the 2n right triangles that compose a regular n sided polygon.

and a.

The use of circularity on regular polygons allows for the classification of those polygons.

For a given unknown shape, the known circularity regular polygon value that it is closest to

is a reasonable guess for its class. However, the inference provided beyond this is limited.

For example, circularity does not provide guidance for what to classify a shape with a value

of 1.125. It may very well be the case that it is reasonable to observe pentagons with a

circularity value of 1.125, however, the metric of circularity is not equipped to answer this

question.

Here is an example to make the previous paragraph explicitly clear: suppose the shape
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to be analyzed for classification is Figure 2.2. The potential classes are determined to be

regular polygons with n 2 {3, 4, ..., 8}, the number of sides, and a circle. This example

shape can easily be determined to be a reasonable representation of a square despite having

somewhat jagged edges. The total number of pixels, or resolution, of the image is 200⇥200.

Before any metrics are collected, the theoretical value for this shape should be close to 1.27,

as seen in Table 2.1. Further, if the observed value does deviate from the theoretical

value, there is no basis for the reasonableness of that value. After calculating the area and

perimeter of the square in Figure 2.2, the circularity value was determined to be about 1.06.

While the di↵erence between the theoretical value and observed value is small, relative to

this problem this is a serious issue. If the deviation was disregarded and the shape was

classified as one of the potential shapes, it would be reasonable to classify the shape as

a circle as that is the closest theoretical circularity value the shape provided. Even at a

practical level, circularity is misleading as the theoretical values can provide inaccurate

results in applications.

Figure 2.2: Figure shows an example of a created square.

Lastly, circularity does not provide any suggestions on what the exact circularity value

is for shapes that does not have a mathematically derived unique value. For example,

circularity provides no guidance on what the value should be for a medical pill capsule.
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2.1.2 Eigenvalues for Shapes

Shapes can also be described using the eigenvalues of a shape [38]. This approach

is particularly useful when the shape has an ill defined perimeter or when the perimeter

cannot be accurately determined. Eigenvalues have been used in a variety of problems such

as classifying pole like structures like tra�c signs and tress from 3D street data [18].

The calculation of the eigenvalues is straightforward. In short, the covariance matrix of

a 2D digital shape is calculated. This translates to finding the shapes x and y coordinates

and saving them in a matrix. The covariance is calculated on this 2⇥ q matrix, where q is

the number of pairs. From the resulting covariance matrix, the eignevalues are obtained.

These two eigenvalues will describe the shape succinctly.

Eigenvalues have some benefits. They are invariant to orientation. This invariation to

orientation theoretically allows for the eigenvalues to be used for classification purposes.

Further, eigenvalues are used in many fields and are more familiar to technical audiences

unfamiliar with image analysis.

However, there are some downsides to using eigenvalues. As we will soon show, the

resulting eigenvalues are not always useful for classification. Additionally, the resulting

eigenvalues do not have a simple approach for interpretation.

We will collect the eigenvalues of created polygon data. I describe the process of the

polygon creation in Section 3.1.1. I will attempt to use these eigenvalues for classification

purposes on the six di↵erent classes. There are 125 observations per class.

Figure 2.3 summarizes the resulting first two eigenvalues of each of the created regular

polygons. As indicated by the plot, there is no clear separation between the classes. All

of the observations overlap one another. Thus, eigenvalues are not useful for classification

purposes on the created regular polygon data.
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Figure 2.3: Figure showcases the resulting eigenvalues of the regular polygon images. This
plot shows that there is no clear separation using the first two eigenvalues.

2.2 Classification Algorithms and Models

Classification problems have motivated the creation of various algorithms or methods

for analytically describing and discriminating classes from one another. The Computer

Vision community has been very active with developing and using deep learning methods

[23]. However, there are a plethora of classification modeling algorithms from the machine

or statistical learning communities [28, 35]. Both schools of thought provide valuable tools

for attempting to solve many problems encountered in the world today.

2.2.1 Machine or Statistical Learning

Machine or statistical learning, ML or SL for short, is a disciple shared by the fields of

Statistics and Computer Science. SL provides a variety of tools to model phenomena from

data. This data can take a variety of forms and perform a number of di↵erent tasks, but I
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will focus on those related to classification problems. Further, I will analyze those capable

of modeling 2D image shape data.

An intrinsic assumption of these approaches is that they all need metrics. In other

words, they cannot evaluate the image directly. Metrics or features must first be extracted

from the image and then fed into the algorithm for analysis.

ML di↵ers from the field of Statistics in that the analyst is not necessarily concerned

with statistical significance. In fact, he or she is more concerned with the performance of

the model in accurately predicting the phenomena of interest. In other words, the goal of

Statistics is to infer the influence of certain variables on an outcome. The goal of SL is to

find the variables which predict an outcome e↵ectively, regardless if they are statistically

significant or not.

Logistic Regression

Logistic regression, LR, is a type of generalized linear model [28,31,35,55]. The number

of tools available for evaluation is large [31]. I will focus on the fundamentals which help to

distinguish LR from other classification methods. Let X is a n⇥p matrix of n observations

and p variables, Y is a n ⇥ 1 vector whose contents are j 2 {1, 2, ..., k} where each j is a

label for each unique class, and f is the function which models Y and X where Y = f(X).

The model has the form

log
P (C = q|X = x)

P (C = K|X = x)
= �

T

q

X, (2.12)

where q 2 {1, 2, ...,K � 1}. This series of K � 1 equations can be solved via maximum

likelihood and the Newton-Raphson algorithm to estimate the parameters of the model

[28].
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Näıve Bayes

Bayes’ Thereom is the foundation for numerous algorithms and techniques [20]. How-

ever, I will limit ourselves to näıve Bayes due to its popularity in the literature [28]. Bor-

rowing and inspired by the notation from Laskey and Martignon [45], Bayes theorem is

P (D
j

|E) =
P (E|D

j

)P (D
j

)
P

K

i=1

P (D
k

)P (E|D
k

)
(2.13)

where k 2 {1, 2, ...,K} are the classes, P (D
j

) is the probability of belonging to the jth class

or the prior, E is the evidence, and P (E|D
j

) is the probability of certain evidence given

belonging to class j. To obtain näıve Bayes, assume that, all of the evidence is independent

conditional on the given class. Thus, Equation 2.13 is now

P (D
j

|E
1

, ..., E

p

) =
P (D

j

)
Q

p

a=1

P (E
k

|D
j

)
P

K

i=1

P (D
k

)
Q

p

k=1

P (E
k

|D
k

)
(2.14)

where a 2 {1, 2, ..., p} are the variables. Thus, a given observation belongs to class j if

argmax
k2{1,...,p}P (D

j

|E
1

, ..., E

p

). (2.15)

Linear and Quadratic Discriminant Analysis

Linear discriminant Analysis, LDA, and Quadratic Dscriminant Analysis, QDA, are

based on Bayes theorem. Using the notation and logic from Hastie et al., let g
k

(x) be the

class-conditional density of X in class C = j, and let ⇡
k

be the prior probability of class k,

with
P

K

k=1

⇡

k

= 1 [28]. Using Bayes theorem provides

P (C = k|X = x) =
g

k

(x)⇡
kP

K

l=1

g

l

(x)⇡
l

. (2.16)
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Assume that each class has a multivariate Gaussian density. LDA comes about when it is

assumed that all of the classes have a common covariance. Conversely, QDA occurs when

all of the classes are allowed to have individual covariances. For a given class, the estimated

LDA and QDA discriminant function is

�̂

k

(x) = �0.5 log |⌃̂
k

|� 0.5(x� µ̂

k

)T ⌃̂
k

�1

(x� µ̂

k

) + log ⇡
k

(2.17)

where µ̂

k

is the sample mean of the training data for the k

th class, ⌃̂
k

is the sample

covariance matrix for the k

th class [28]. Thus, an observation is assigned to a class that

satisfies

Ĉ(x) = arg max
k

�̂

k

(x). (2.18)

Support Vector Machines

Support vector machines, SVM, are a popular algorithm for classification problems.

SVM essentially creates the best fitting hypersurface that separates the classes from one

another. To define SVMs, we will use the notation from James et al. and Hastie et al.

and limit ourselves to the binary case [28, 35]. The case with more than 2 classes will be

discussed later.

An SVM can be represented by

f(x) = �

0

+
nX

i=1

↵

i

K(x, x
i

), (2.19)

where i 2 {1, 2, ..., n}, n is the total number of observations, ↵
i

and �

0

are the parameters

to be estimated, and K(x, x
i

) is the kernel or inner product defined by the analyst. There

are a number of di↵erent kernels that are commonly used. Some of the more popular kernels
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are the linear, polynomial, and radial kernels, which are, respectively,

K(x, x
i

) =
pX

j=1

x

ij

x

i

0
j

, (2.20)

K(x, x
i

) = (⌫ + �

pX

j=1

x

ij

x

i

0
j

)d, (2.21)

K(x, x
i

) = exp(��

pX

j=1

(x
ij

� x

i

0
j

)2), (2.22)

where p is the number of features or variables, d is the degree of the polynomial, � is a

positive constant, ⌫ is a constant, and exp is the exponential function [35].

For the case with more than 2 classes, the solutions are one-versus-all and one-versus-

one classifications [35]. The details are omitted from here since in Chapter 6 we provide a

method to circumvent the need for SVM with more than 2 classes by using meta-classes, or

groups of classes in Chapters 5 and 6.

Trees

James et al. describes tree based methods as methods which stratify or segment the

“predictor space into a number of simple regions” [35]. While I agree with this definition,

we could find no general mathematical definition which encompasses this idea. Instead, I

found a series of specific types of tree based algorithms for a variety of problems which I

need for Chapter 6. Since I will need this formulation in Chapters 5 and 6, I will create

this generalization. Thus, the generalized definition of a tree is

f(X) = MRIX2R, (2.23)

whereMR is the modeling operation performed on the subspaceR and I

X2R is the indicator
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variable for the data, X that belongs to R. For a regression tree, MR =
P

M

m=1

c

m

and

I

X2R = I

Xi2Rm where M is the number of regions and c

m

is a response constant m. For

a classification tree, MR =
P

x2Rm

1

Nm
and I

X2R = I

Yi=k

where k is the associated class

and N

m

is the number of observations in a given region or node, m. The notation for the

regression and classification trees are borrowed from Hastie et al.[28].

Note that Equation 2.23 generalizes any other modeling approach. For example, if R

was the entirety of the space X occupies and MR is an SVM model with a linear kernel, we

are then simply performing SVM on data X. Another trivial example is to use any of the

previous classifications methods without the use of meta-classes. This will result in a tree

with a singular node and the number of children equal to the number of classes. This will

become important and will be expanded in Chapter 6.

Random Forests

Random forests (RFs) are essentially many trees that are combined together to make a

prediction. Once the desired number of trees is built, each tree votes for what the observa-

tion’s predicted value. The value that receives the most votes is determined to be the RF’s

prediction for that given observation.

I will describe this algorithm using mathematical notation. Using the notation from

Hastie, Tibshirani, and Friedman [28], assume that we have v variables or features andN ob-

servations or instances. In other words, we have x
i

, y

i

for i = 1, 2, ..., N with x

i1

, x

i2

, ..., x

iv

.

Further, suppose that we have M regions, R
1

, ..., R

M

, that divide our feature space. Our

model response is represented by p

mk

for each region. Then, we have that a given tree, b, is

f(x)
b

=
MX

m=1

p

mk

I(x 2 R

m

). (2.24)

Note that I represents the indicator variable and k 2 {1, 2, ...,K}, where K is the total
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number of classes. We estimate p

mk

by

p̂

mk

=
1

N

m

X

xi2Rm

I(y
i

= k). (2.25)

This is the proportion of class k instances in a given node or region m. A greedy algorithm

then considers splits using a given variable and split points. The Gini index is used to grow

the tree greedily. For 2 classes, the Gini index is

Q

m

(T ) = 2p(1� p), (2.26)

where p is the proportion in the second class. This is repeated until the minimum number

of nodes is reached. The RF algorithm repeats this tree building process B times (500 in

our case). However, these trees are built using bootstrapped data. However, only t of the

v variables are selected. This t is tuned during 10-fold cross-validation (CV). Once all of

the trees are built, the majority vote for a given observation determines the class of that

observation. The expanded details are provided in Hastie, Tibshirani, and Friedman and

Breiman’s two papers [4, 5, 28].

Dealing with imbalanced data problems is an area of ongoing research [60]. A common

solution is to undersample the majority class [6]. This is often paired with the random

forest algorithm [6]. This approach is call balanced random forests (BFR). It is an example

of a data level method [78]. These types of approaches fundamentally change the empirical

distributions of the data [78].

2.2.2 Deep Learning

Deep learning is used for a variety of image classification problems. While deep learning

covers a range of applications, the focus here will be on applying deep learning methods to

image problems.
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Data Augmentation

In small data problems in Computer Vision, a popular approach to increase the number

of observations in the dataset is to use data augmentation. Data augmentation is essentially

a series of transformations applied to the images. The types of transformations vary, but

include rotations, smoothing, flipping, and scaling [53, 54, 86]. I will use this definition of

data augmentation throughout this document. Figure 2.4 shows an example of a rotated

character. This figure was taken directly from Miller et al.[54]. Data augmentation is a

useful technique for increasing the total number of observations in our data set, but the

process of data augmentation can be expensive.

Figure 2.4: Figure shows an example of a rotated ‘4’ character. Instead of having a single
image of the character ‘4’, we can increase the data size by rotating the original image. This
figure was taken directly from Miller et al.[54].

Convolutional Neural Networks

Convolutional neural networks, CNNs, are one of the most popular methods for image

classification [19]. AlexNet is one such example of a popular CNN [40]. CNNs have been

used on a variety of image classification problems such as scene recognition [99], medical

pill similarity [86,95], and face recognition [62]. CNNs are popular due to there high perfor-

mance in prediction. However, they cannot be easily interpreted or explained. Furthermore,

CNNs can be costly to train [40,94].
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Low-Shot Learning

An example of a small data learning problem is low-shot learning. Low-shot learning

attempts to build a model that can predict well while being trained on a small number of

observations [26, 87]. Deep learning communities have a variety of di↵erent sub-scenarios

[26, 81, 87]. One example is a model that was built using lots of house cat images for the

cat class. However, it is then desired to correctly classify an image of a tiger. Figure 2.5

provides a visual description of this problem for the cat class.

Figure 2.5: Figure shows the class of cats for a imagined low-shot example. The model was
trained on the cats on the top half of the figure, with an arbitrarily large n. The challenge
is to then correctly classify the single white tiger image without any other training data.
This would be considered a zero-shot problem as the Tiger is considered a new and novel
class.

Figure 2.6 shows one possible general solution to low-shot learning problems from Har-

iharan and Girshick [26]. The general solution trains a CNN model on a large number of

similar images to the desired small sample data. An example would be to train a CNN

model on a large number of cat and dog images to then predict tiger and wolf images.

Deep learning communities have a variety of di↵erent sub-scenarios for low-shot learning
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Figure 2.6: Figure shows a basic low-shot overview. Figure is from Hariharan and Girshick
[26].

such as one-shot learning [97]. For instance, Buhnia et al. uses a one-shot learning CNN

model to identify logos [2]. However, this model was still trained on 139104 observations

or instances on the training set and 15456 observations or instances on the validation set

[2]. To the best of my knowledge, there is no work investigating CNN models built using a

much smaller number of instances, such as 5 or 10.

Another low-shot problem is that there exists only a small number of observations and

that is all the data. You are limited by doing data augmentation or obtaining additional

images due to various costs such as time, money, or human capital.

2.3 Small Data Problems

The definition of small data problems is the following: a phenomenon where data is

limited but inferences must be made using this limited data. This encompasses a large

number of possible scenarios. For example, the analysts may only have ten observations,

but must make infer the population mean from only those instances. Another is that there

may in fact have a large number of total observations, but specific cases or classes are

lacking. For instance, one class could have 1,000 observations while another only has 5.

This specific kind of situation is called an imbalanced data problem. Solutions to these

problems vary, and range from using stratification to varying loss functions.

The reason for the existence of small data problems vary but are often related to cost.
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The extraction of additional data may be too costly for practical purposes. These costs can

take the form of computation, time, money, or human capital. Thus, solutions to alleviate

these scenerios are necessary.

2.3.1 Small ‘n’ Problems

Small n problems are becoming an increasingly important area of research [26,44,66,77].

They lack enough data to make very precise predictions or statement about a given analysis.

Many techniques, such as convolutional neural networks, are known to overfit to the training

data, or the data used to build the model [19, 40, 76]. To counteract this issue, more data

is collected or data augmentation techniques are employed [26, 76, 87] such as rotations,

reflections, and noise [38]. Further, data augmentation can be helpful to create synthetic

images. For example, one can make an individual with a brown mole on rosy skin a red mole

with pale skin by using data augmentation via a neural network [53]. An image classification

problem that incorporates the issues of small data learning is pill shape classification.

2.3.2 Imbalanced Data

While data has become increasingly more abundant and plentiful in recent years with

the rise of ‘big data’, there is an increasing need to ensure that smaller classes are accurately

modeled. Imbalanced data problems have increased in the literature in recent years [29].

For example, Nature recently published an article on substance abuse using social media

data [27]. The authors of the article were able to accurately describe a majority of the

cases, but were unable to do so on tobacco and prescription/illegal drugs users, or the small

class [27]. They stated that they could not find an adequate method to deal with their

imbalanced data [27].

Stratification

A possible solution to the small data problem is stratification. Stratification decon-

structs the population into a series of distinct but internally homogeneous based on their
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corresponding proportions within the overall population. For example, if there are two sub-

populations which comprise 75% and 25% of the population, then the data used to build the

model should reflect those proportions. This idea is used in a variety of di↵erent manners.

For example, machine and statistical learning communities use stratification when utilizing

cross-validation [39]. Another use of stratification is to build public opinion multilevel mod-

els [61]. These two approaches employ post-stratification, where the strata are imposed on

the sampling of the data after the data has been collected. However, stratification can also

be applied before the data is collected [79]. For example, if a polling company was inter-

ested in estimating the national public opinion on a given topic, they could apply stratified

random sampling where each state is sampled in proportion to their respective population

sizes.

Accuracy and Loss Functions

The use of specific loss functions can help in imbalanced data problems [29]. However,

this causes major issues with imbalanced data. What often happens is that the classification

method with predict all of the observations to be a member of the larger class [29]. This

will provide a large overall accuracy, but completely misclassify the small class [29]. While

classification methods have di↵erent specific loss functions, they generally are e�cient for

computing overall accuracy [28,35].

A popular alternative metric to optimize over is the F measure, or the F1 score [29,93].

The F measure is the harmonic mean of precision and recall. Recall is calculated as

Recall =
True Positives

True Positives + False Negatives
. (2.27)

The user interprets recall as the overall classification rate of a given class. The definition of
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precision is defined in Equation 2.28.

Precision =
True Positives

True Positives + False Positives
. (2.28)

While the F-1 score is a popular metric, the final results does not have an easily interpretable

meaning. While higher values are indicative a a better value, with 1 indicating perfect

classification, and low values are worse, with 0 indicating no classification, a value in-

between does not have an interpretable meaning. It does not provide any insight into how

to algorithm behaves. Conversely, a value of 75% for overall accuracy means that 75% of

the observations were correctly classified.

One of the more popular unique losses in the Computer Vision literature is the triplet

loss [73]. Using the notation from Schro↵ et al., there is a function f where x

a

i

is the

anchor observation, xp
i

is the positive observation, and x

n

i

is a negative observation, where

i 2 {1, 2, ..., N} where N is the number of total observations [73]. The set of all possible

triplets in the training set is T with cardinality N and k being the total number of classes

[73]. Thus, the analyst wants

||f(xa
i

)� f(xp
i

)||2 + ↵ < ||f(xa
i

)� f(xn
i

)||2, (2.29)

f(xa
i

), f(xp
i

), f(xn
i

) 2 T , (2.30)

where ↵ is the margin required between positive and negative pairs [73].

This can be expressed as a loss as

NX

i=1

[||f(xa

i

)� f(xp

i

)||2 � ||f(xa

i

)� f(xn

i

)||2 + ↵]
+

. (2.31)

This loss essentially optimizes the function to have similar observations closer to one another

and those that are in di↵erent classes to be father apart. However, this is not an e�cient
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optimization function. This loss is fairly intensive to compute and the anchors must be

hand selected [73, 95]. Care must be given to the selection of the anchor observations, and

there is no obvious solution [73,95]. Thus, this loss does not provide a general and elegant

solution for imbalanced data problems.

2.4 Medical Pills

A system to identify pills would be useful to global and local communities. Prescription

drug use is on the rise in the United States [24, 37]. This increasing trend is not limited to

the United States, as the United Kingdom faced a similar increase [96]. In an exploratory

study performed in Norway, over half of the thirty patients were given the wrong medication

due to poor communication between health care o�cials [17]. Deaths regarding opioids have

also increased in the United States [36]. Developing a system to improve the appropriate

utilization and distribution of opioids is needed [36]. This system, a method to identify

pills automatically, is desirable by law enforcement agencies, the healthcare industry, and

consumers.

The ubiquity of smartphones and a↵ordable, high-quality cameras allows for users to

take pictures e↵ortlessly. This allows for pills to be potentially identified by both medical

professionals and consumers. Nurses and medical technicians would be able to verify the

administration of pills to patients [51]. Multiple research communities have renewed interest

in discriminating between fake and real prescription pills [65]. Furthermore, the Food and

Drug Administration has advocated for creating a system to monitor patient opioid intake

[36]. The National Institute of Health’s National Library of Medicine (NLM) hosted a

competition in response to some of these issues [58]. Researchers have yet to find a perfect

solution for pill identification.
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2.4.1 Medical Pill Identification

The goal of the NIH NML competition was to devise a ranking system which provides a

high rate of pill identification from a database of possible candidates [58]. In other words,

the NIH NML desired to obtain similar pills of an input pill image with the hope that the

actual pill in the database is returned from the search as one of the top results. The quick

and e↵ortless identification of medical pills could be used in a variety of practical settings.

Pill identification remains a challenging problem. Wong et al. created a convolutional

neural network (CNN) to identify pills that has a mean overall accuracy of 95.35% [91].

However, they continue to say “From the clinical practicality point of view, [the] accuracy

rate... [of our model] is still rather low to allow unsupervised, fully automated pill identifi-

cation” [91]. The inherent opaqueness of CNNs makes it di�cult to diagnose which aspects

of the mode work and which fail [23]. Thus, if we built separate models for pill shape

classification, pill color identification, and pill text identification that were all interpretable,

we could combine the three models into a single interpretable method for pill identification.

This approach would allow us to better understand why and how our approaches fail or

succeed. My goal for our manuscript is to provide a competitive and interpretable pill shape

classification model.

2.4.2 Medical Pill Shape Classification

A solution to classification problems is to create a unique system for the given appli-

cation. For instance, Maddala et al. [51] built a model for classifying medical pills using

adaptable rings and a human-machine hybrid (HMH) decision tree. Maddala et al. [51]

provide two additional models to compare against their proposed model. The first is a

neural net using the derived adaptable ring metrics [51]. The second is a logistic regression

model using seven Hu moments [51]. Both of these methods are machine driven approaches.

Hu moments are popular shape metrics that have desirable theoretical properties such as

invariation to orientation [14,22,32]. Unfortunately, Hu moments do not appear to provide
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Figure 2.7: Figure shows a general overview of the feature collection process from Maddala
et al.with the left being the initial input image. They start with the input image. Next,
they isolate the pill as presented in the second image. Then, they extract the shape and
find the rings in the third image. At this point, they can extract the needed metrics from
the third, fourth, and fifth images.

any meaningful insight for discriminating medical pill shapes [51].

While the neural network has a large overall classification rate, it misclassified rectan-

gle, round, oval, and capsule classes [51]. Maddala et al.’s approach using Hu moments

completely misclassified entire classes [51]. Thus, the medical pill classification problem

warranted an improved approach.

Maddala, et al.’s third model, the HMH tree, is based on a series of metrics derived from

adaptable rings [51]. They used 2,151 pill images with 14 shape classes. They retrieved the

data in December 2014. Their approach had very few observations of particular classes at

the time of their analysis. For instance, the December 2014 data only had 1 octagon.

This research was partially inspired by the work of Maddala, et al.[51]. They provide

a rule based system based on a series of metrics derived from adaptable rings. Table 6.1

shows the December 2014 counts and will be discussed in detail in Section 3.1. However,

at the time of their analysis, their approach had very few observations of particular classes.

For instance, the December 2014 data only had 1 octagon. Figure 2.7 shows a basic pipeline

of the image processing and metric collection.

Table 2.2 shows the features collected using adaptable rings by Maddala et al.[51].

The first metric is the number of ring overlays, which corresponds to the number of parts

of the pill shape that lie on the outer ring. The second metric is the ratio of the area of

the outer ring against the inner ring. This feature will have values close to 1 when it is

a shape like a circle, as the areas will have similar values. Shapes like capsules will have
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Table 2.2: Table provides the six features used in the Maddala et al.tree model for pill shape
classification.

Feature Number Description

1 Number of adaptable-ring overlays

2 Max adaptable ring overlay area

Min adaptable ring overlay area

3 Inner ring overlay area

Total inner ring area

4 Area of pill

Area of pill bounding box

5 Area of right half of inner ring overlay

Area of left half of inner ring overlay

6 Max adaptable ring overlay area

Area of Pill

larger values as the inner and outer rings have larger di↵erences. The third metric is the

inner ring overlap area over the total inner ring area. This provides the proportion of the

inner ring of the shape that is completely full. For example, a capsule should have values

less than 1 due to the small gaps between the two parts of the capsule. An oval pill should

have a value of 1. The fourth metric is the area of the pill divided by the pill’s bounding

box. This metric will be discussed at length later. The fifth metric is the area of the right

half of the inner ring overlay divided by the area of the left half. This value should be equal

to 1 for nearly symmetric pill shapes like capsules or ovals, and di↵er otherwise. The last

feature is the adaptable ring overlay area divided by the area of the pill. Thus, shapes like

circles or regular polygons with a large number of sides will have larger values, while regular

polygons with a smaller number of sides will not.

There are some issues with the metrics they utilized. For example, the fourth metric

they used was the proportion of the shape over a bounding box [51]. We interpret this as

a normalized geometric moment [32, 38]. While geometric moments are used in a variety
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of other metrics such as Hu moments [32], triangularity [69] and other invariant shape

measures [13, 14], this fourth measure can provide misleading results. For example, they

did not explicitly define the bounding box. If it is presumed that they found the minimum

bounding square for a given shape, the fourth feature’s value produced by Maddala et al.

[51] is not invariant to orientation. For instance, for a given square, the ratio they provide

will produce di↵erent values. If we start with Figure 4.1a, the value of their ratio would

be 0.50. However, if one were to rotate the white square by 45�, then their ratio would be

1.00. Thus, distinct shapes would overlap with one another. For instance, while a circle

would still be only ⇡

4

, the square would take on values between 0.50 and 1.00. Therefore,

the statistic they utilize does not guarantee that a particular value corresponds to a given

shape, even in the case that there are the finite kinds of shapes a priori. This warrants a

metric which has unique values for many, if not all, of the pill shapes.

Figure 2.8: Figure is an example image of a square.

Their image processing steps have some issues. Maddala et al. treat classes di↵erently

during the image processing steps. For example, they center the pill for the oval, capsule,

rectangle, and trapezoidal classes using the bounding box center [51]. They calculated a

di↵erent centroid as the center for the other classes [51]. Results from these two centering
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approaches can be seen in Figures 2.9 and 2.10, respectively. These figures are obtained

directly from Maddala et al.[51]. This is a problem as the classes’ features are treated and

measured di↵erently.

Figure 2.9: Figure shows an image with adaptable rings using the bounding box center
method. The starting image can be seen in Figure 2.10a.

Figure 2.10: Figure provides an example image using the centroid centering method.

Figure 2.11 shows a basic overview of the tree based model used in Maddala et al.[51].

For their tree based method, they were ambiguous about the splitting of the data into the

training and validation sets. We were able to deduce that all of the Round, Triangle, Square,

Pentagon, Hexagon, and Octagon observations were assigned to the validation set. However,

they merely stated that the training set was composed of less than 100 observations from

28



the remaining classes. They did not state if they were randomly chosen or the number used

in each class[51]. It is well known that tree based methods tend to overfit to the training

data [28,35,90]. Note that they did state that they split the data into training and testing

sets for the attempted neural network approach they presented [51]. However, the focus of

their paper appears to be on the tree based model, as they continually reference it as the

approach that performed best.

Figure 2.11: Figure shows a broad overview of the tree based model.
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Chapter 3: Methods and Materials

In this Chapter, the data, metrics and evaluation methods used in various parts of the

thesis are discussed.

3.1 Data

In this section, I will discuss the created polygon, National Library of Medicine (NIH)

National Institute of Health (NIH) pill, Hubble Space Telescope galaxy, and MPEG-7

datasets. Each data set is analyzed in Chapter 4, while the NLM NIH data is also an-

alyzed in Chapters 5 and 6.

3.1.1 Created Polygons

The theoretical foundations for shape proportions and encircled image-histograms (SPEIs)

are based on regular polygons and circled. Thus, I wanted to analyze created regular poly-

gons as a starting point for our metric and confirm our theories. Further, this data was

used to investigate the performance of CNNs.

Image Creation

For a given side length, l, number of sides, n, and image resolution, ⇣, the x and y

locations, respectively, of the corners of the given polygon was calculated using

~x[i] = l ⇥ cos

✓
2⇡

i

n

+
360

n

◆
+

⇣

2
(3.1)

~y[i] = l ⇥ sin

✓
2⇡

i

n

+
360

n

◆
+

⇣

2
(3.2)

30



where i 2 {1, 2, ..., n}. Then, lines were drawn from these corners and filled. The Python

code to create the image is provided at https://github.com/billyl320/SPEI-Paper/

tree/created_poly. Figure 3.1 shows examples of n = 6 and n = 8.

Figure 3.1: Figure examples of the created regular hexagons and octagons. Subplot 1 is
the image of the regular hexagon with a side length of 1. Subplot 2 is the image of the
regular hexagon with a side length of 125. Subplot 3 is the image of the regular octagon
with a side length of 1. Subplot 4 is the image of the regular octagon with a side length of
125. All subplots were edited for presentation purposes. These examples show the range in
di↵erence between the initial relative sizes of the polygons.

3.1.2 NLM NIH

I used a subset of images from the National Institute of Health’s, NIH’s, National Library

of Medicine, NLM, competition reference data [58]. There are a total of 1000 unique pills,

each with a front and back view taken from the NLM RxIMAGE database. FDA researchers
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have indicated pill identification as an important issue that needs a solution [36]. Classifying

pill shapes is an important part of achieving a model that can identify pills. I utilized a

subset of these pills’ classes for this experiment. The counts are provided in Table 6.1. An

example from the Triangle class is shown in Figure 3.2. Even though this is considered a

triangle, this shape greatly deviates from our conception of a what a triangle should be as

it has wavey sides.

Figure 3.2: Figure shows example from the regular triangle class. Note that while it is a
triangle, it does deviate from a regular triangle.

Table 6.1 shows the classes alongside their corresponding counts of each of the datasets.

Maddala et al. added an additional class that is not an o�cially recognized pill shape by

NIH [15]. They split from the “hexagon“ class another class called “ hexagon (shield)”

or “shield” [51]. However, the NIH documentation considers “shields” to be a part of the

“Freeform” class [15, 51]. Another convoluted aspect to the December 2014 dataset is that

Maddala et al. claims that classes such as “double circle” were a part of the “freeform” class.

Therefore, there is uncertainty as to what they considered to be a part of the “freeform”

class. However, both data sets have similar numbers of observations per overlapping class.

This allowed me to perform my analysis on similar footing.

3.1.3 Galaxy

The survey and analysis of galaxies is an important part of the astronomy research

community. Governments sponsor programs to collect images of galaxies for analysis [92].
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Table 3.1: Table shows the classes and counts of the classes of the NLM NIH reference data
and the NIH Pillbox data accessed by Maddala et al.in December 2014.

Class NLM NIH Competition Maddala, et al.Count
Capsule 332 243
Diamond 12 8

Freeform - 6

Hexagon 8 3
Octagon - 1

Oval 688 790
Pentagon 12 8

Rectangle 6 4
Round 904 1054

Semi-circle 4 -
Shield - 5

Square 8 7
Tear 10 9

Trapezoid 4 3
Triangle 12 10

In this experiment, 524 galaxy images selected by Shamir [75] from the Galaxy Zoo project

[49] were analyzed and classified. An example image for each class is provided in Figure 3.6.

He manually classified the color images into three classes as spiral, elliptical, and edge-on

galaxies. The counts for each class are 75, 223, and 225 for the edge, spiral, and ellipse

classes, respectively.

3.1.4 MPEG-7

The MPEG-7 data is a commonly used benchmark for experiments in the computer

vision and pattern recognition communities [1]. This data contains various orientations,

missing parts, and occlusions which test for various conditions shapes may exist [46, 74].
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Figure 3.3: Edge example Figure 3.4: Spiral example.
Figure 3.5: Ellipse exam-
ple.

Figure 3.6: Figure provides examples of an edge, spiral, and ellipse galaxy, from left to
right.

We used a subset of the classes from MPEG-7. The classes used were bird, bone, brick,

camel, and cup. Since there are 20 instances per class, the total size of the data I used was

100 observations.

3.2 Metrics

In this section, I describe the shape segmentation algorithms and metric collection ap-

plied to the data. The shape segmentation is needed to extract the shapes from the original

data, while the metric collection provides the operations performed to collect our features

for classification.

3.2.1 Shape Segmentation

I first need to obtain the binary shapes, or a white shape on a black background, of the

pills. I passed the entire data set through a single segmentation algorithm. This is better

than Maddala et al.’s since they required knowledge of the class before the segmentation

was performed. I will describe all of the segmentation algorithms using image operator

notation as described by Kinser [38].

The shape segmentation algorithm is

b
i

[~x] = I
(1)

B�
>0

GL
L

a
i

[~x], (3.3)
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where a
i

[~x] is the input image, i 2 {1, 2, ..., 2000}, L
L

converts the image to grayscale, G is

the gradient operator, � is the threshold operator where the intensities greater than 0 are

retained, B is the binary fill hole operator, and I
(1)

is the isolation operator where only the

largest object is retained. I first convert the image to grayscale to reduce the dimension of

the images. I then find the gradient so that the edges in the image are retained. I only retain

the positive gradient values to binarize the image. I then fill in all of the retained binarized

edges to create solid objects. Lastly, I extract the largest object in the image and assume

that to be the pill shape. The image segmentation Python code is at our GitHub link:

https://github.com/billyl320/SPEI-Paper. Examples of a
i

[~x] and b
i

[~x] are provided

in Figures 5.1 and 5.2, respectively.

3.2.2 Metric Collection

I collected various metrics. I provide the code to collect the metrics at our GitHub

link https://github.com/billyl320/SPEI-Paper. The first metrics were the shape pro-

portions (SPs) and encircled image-histograms (EIs). I collected these from the shape

proportion and encircled image-histogram (SPEI) algorithm from Chapter 4. The other

shape metrics were eccentricity [38], circularity [38, 64, 68], and the white and black pixel

counts from the minimum bounding box. This results in a total of 7 total metrics used

for the HMH decision tree model. Each metric has an intuitive meaning. This makes our

resulting model more interpretable.

I collected the encircled image-histograms (EIs) using the algorithm presented in Chap-

ter 4. This algorithm results in a vector ~c
EI

which contains the white and black pixel counts.

These counts are the first two metrics, ~m
1

and ~m

2

, respectively. The shape proportion (SP)

value for a given image, i, is merely

~m

3,i

=
~m

1,i

~m

1,i

+ ~m

2,i

. (3.4)

The SP value is essentially the proportion of white pixels after applying the SPEI algorithm.
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This SPEI algorithm puts a shape in its minimum encompassing circle. Then the circle is

placed in its minimum encompassing square. I showed SPs to have unique values for regular

polygons and circles in Chapter 4. The EIs are the white and black pixel counts after

applying SPEIs. The SPs and EIs are a natural fit for a pill shape classification model since

they were developed to analyze regular polygons and circles. This is discussed in greater

detail in Chapter 4.

Eccentricity, circularity, and the white and black pixel counts from the minimum bound-

ing box had additional image operators performed after b
i

[~x] was obtained. They were

c
i

[~x] = /

20

.

20

�
>0.99

S
1.5

b
i

[~x], (3.5)

where S is the Gaussian smoothing operator with a standard deviation of 1.5 and . and /

are the erosion and dilation operators, respectively, with a total of 20 iterations each. These

operators were performed to obtain more discriminative values.

I calculated eccentricity by finding the ratio of the first and second eigenvalues. To

obtain the eigenvalues, we performed

~e

i

= E
(1,2)

V c
i

[~x], (3.6)

where V collects the covariance matrix of the shape matrix and E
(1,2)

calculates the first

and second eigenvalues of the resulting covariance matrix. The j

th eigenvalue on image i is

~e

i,(j)

. Thus, to obtain ~m

4

, eccentricity, we perform on a given image, i,

~m

4,i

=
~e

i,(1)

~e

i,(2)

. (3.7)

It is well-known that the eigenvalues of a covariance matrix correspond to the linear com-

bination in the data which maximizes the variance for their respective dimension [34]. For

instance, the first eigenvalue is the linear combination of the data which maximizes the first
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eigenvalue [34]. We also know that the linear projections, or eigenvalues, are orthogonal to

one another [34]. Thus, the eigenvalues are measures of the major and minor axes of our

given shape. Using the ratio of the major and minor axes provide some insight to how a

given shape exists as a 2D digital image [38]. A value close to 1 corresponds to a shape with

the same major and minor axes’ lengths. A value greater than 1 corresponds to the case

where the major axis length is larger than the minor axis length. The limit of eccentricity

would correspond to the case where the major axis length is infinitely larger than the minor

axis length.

The next metrics were the black and white pixel counts from the minimum bounding

box. The metrics were collected on image i by

~

h

i

= H
2

Bc
i

[~x], (3.8)

where B finds the minimum bounding box of the input image, and H
2

calculates the binary

image histogram, or binary intensity histogram, of the bounding box image. The result is

a vector of the counts of the white and black pixels, which are represented by h

i,w

and h

i,b

,

respectively. Thus, the metrics m
5

and m

6

(the white and black pixel counts of the image

in a minimum bounding box) are:

~m

5,i

= h

i,w

, (3.9)

~m

6,i

= h

i,b

. (3.10)

These values describe how rectangular a given shape is. If a given pair has a very large

white count, but a very small black count, then this given shape is fairly rectangular.

The last metric, ~m
7

, is circularity. The metric was collected on image i by

~m

7,i

=

P
c
i

[~x]

4⇡ ⇥
�P

/c
i

[~x]�
P

c
i

[~x]
�
, (3.11)
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Table 3.2: Table provides the metrics used in this analysis on a given image, i. The first
column is the q

th metric, where q 2 {1, 2, 3, 4, 5, 6, 7}. These variables make our model
interpretable.

~m

q,i

Metric
1 White EI
2 Black EI

3 SP value
4 Eccentricity
5 White Bounding Box Count

6 Black Bounding Box Count
7 Circularity

where
P

sums the pixel intensity values. The
P

operator will compute the area of the

image since we are restricted to binary images. The denominator of this metric is the

perimeter of the binary image multiplied by 4⇡. Circularity provides a measure for how

circular a shape is as a 2D digital image [38, 64, 68]. A value of 1 corresponds to a perfect

circle [38, 64, 68].

All of the variables used in our analysis have interpretable meanings. This will aid in

the interpretation of our models. Table 6.3 provides a summary of the variables or metrics

collected for this analysis.
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Chapter 4: SPEI: A Tool to Improve the Analysis and

Classification for Shapes for Small Data

Shape proportions and encircled image-histograms (SPEIs) is an algorithm that pro-

duces simple, intuitive, and competitive measures for shape analysis and classification prob-

lems in small data scenarios. Small data problems are a significant challenge in Computer

Vision. There are only a few intuitive and mathematically derived shape measures and

models. In this chapter, the aim is to develop a measure called shape proportions (SPs).

The encircled image-histograms (EIs) from 2D digital binary images are the realizations of

SPs. My results show that SPEI-based models outperform CNNs by about 52% on a variety

of data sets. SPEI-based models are able to do this since they encode human knowledge

about shapes. CNNs are powerful since they can learn without human knowledge, but they

are not able to discover human concepts of shapes such as area.

4.1 Introduction

The analysis and classification of shape data has far-reaching influence in many research

communities. Researchers in Deep Learning have dedicated a significant amount of e↵ort

in shape analysis through some form of a convolutional neural network (CNN). However,

CNN models require large amounts of data [23]. There are cases where the amount of data

is limited due to a variety of reasons such as time, money, or human capital. An example is

in the NIH NLM pill data set, where some classes only have eight observations, or instances

[58].

Thus, the plan of this study is to understand how our abstractions of shapes exist as we

observe them in the environment. In other words, I hope to explain how the abstraction of

2D shapes in our imaginations exist as 2D digital images. I hypothesize that an approach
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which can mathematically describe shapes can aid models to achieve better performance

over CNNs in small data problems.

To this end, I developed a mathematical formulation based on mathematical proofs for

regular polygons and circles. This mathematical encoding of the abstraction of shapes allows

for the conceptualization of SPEI. The plan is to apply SPEI to created regular polygons to

confirm the mathematical theory. I then applied SPEI to medical capsule, or pill, data. The

complexity of the type of shapes was increased by analyzing non-polygonal shape data in the

form of galaxies. I performed an additional analysis on the standard MPEG-7 data which

includes shapes with various deformations, occlusions, and orientations. The SPEI-based

approach outperforms CNNs by 52% on average.

4.1.1 Outline of Proposed Method: SPEI

I discuss a new and novel approach to analyzing any set of shape classes for any 2D

binary shape image, called shape proportions and encircled image-histograms (SPEIs, which

is pronounced “spies”). The method is easy to explain mathematically, and the conclusions

of the final plot created are e↵ortlessly interpretable. Furthermore, the applications for

SPEIs are varied, as SPEIs can be built upon using other methods. For a given application,

a researcher can alter the approach to fit the specific problem a researcher is solving.

An analyst can apply SPEIs to any 2D binary shape. A SPEI is particularly powerful

when the shape has a unique value for the shape proportion (SP). The SP is the proportion of

white pixels resulting from SPEIs. A SP value corresponds to an encircled image-histogram

(EI). The EI is the resulting black and white pixel counts. Thus, the SPEI image operator

algorithm has two resulting metrics: the SP and EI values.

A newly defined small data problem is the following: the researchers have a small number

of observations and are limited in obtaining more data. This scenario is defined as data

starved. This means that users cannot perform data augmentation or obtain additional

images due to various costs such as time, money, or human capital. A simple example

would be that the entire data set consists of four cat pictures and four dog pictures. The
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goal would be to correctly classify the cat and dog images. Data starvation is similar to

low-shot learning where the analyst has a small amount of data and cannot collect more

data or perform data augmentation techniques.

First, the plan is to discuss binary shape images and some properties that regular

polygons and circles have when using SPEIs in the Methods and Materials section. Second,

I will apply the SPEI algorithm to four data sets and compare the approach to CNNs in

the Results section. The first data set is a regular polygon shape data set where the SPs

are known. The second is on medical pill data. The third is on a galaxy shape data set

where the SPs are not known. The fourth is on a subset of the MPEG-7 data set. This data

contains various orientations and occlusions for each of its classes. The Discussion section

mentions the major takeaways from all the experiments and future work. The chapter ends

with a summary in the Conclusion section.

4.1.2 Contributions

In this paper, I present SPEI, an image processing algorithm which can be applied to

any 2D binary image. The SPEI algorithm results in two metrics: the SP values and the

EIs. If the analyst can show that the SP values for each class of shapes are distinct, then

they can utilize the EIs for classification purposes. I also discuss cases where the analyst

cannot prove the SP values for a given shape. Further, SPEI is applied to a newly defined

small data problem where the analyst is data starved. The SPEI-based models results are

compared to CNNs due to its popularity in the literature. I will show that SPEI-based

approaches outperform CNNs by 52% in small data scenarios.

4.2 Methods and Materials

In this section, I will discuss the technical details of SPEIs. Then, I will mention the

CNN modeling aspects that will be used for comparison to SPEIs.
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4.2.1 SPEIs

In short, SPEIs puts the shape in the minimally encompassing circle. This is then

placed inside the minimal encompassing square. Visual representations of this are provided

in Figures 4.1a and 4.1b. The circle is placed in a square for convenience, as most digital

images are composed of square pixels. In general, the user could apply SPEIs by placing

the encompassing circle inside any desired shape, like a hexagon.

I will begin by analyzing how SPEIs behave for regular polygons and circles. I start with

this class of shapes as they are more intuitive to conceptualize and understand. I hope that

by analyzing this simpler class of shapes, we can begin to understand the more complex

nature of other classes of shapes. By applying SPEIs, circles and regular polygons will have

unique SP values of

p

c

=
⇡

4
, (4.1)

p

n

=
n sin(360�/n)

8
, (4.2)

where n = the number of sides of the regular polygon. The proofs are provided in Section

4.2.2. The SP values for a subset of regular polygons are provided in Table 4.1. The

implementation of the SPEI algorithm is provided in Section 4.2.3.

Table 4.1: Table shows a subset of the proportions of white pixels for a given n-sided regular
polygon.

n 3 4 5 6 7 8
p

n

0.3248 0.5000 0.5944 0.6495 0.6841 0.7071

4.2.2 SPEI Proofs

In the following section, a regular polygons and circles can be summarized as a singular

value, the SP value. These will be proven. SPEIs is generalizable to any binary shape.

If one was able to show that a given group of classes each had unique values for their
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(a) Figure is a representation of a regular square
whose apothem is the radius of the circle, r. Note
that there is no reference circle in this image, un-
like in Figure 4.1b. Thus, this is how an actual
image of a square is represented after SPEI is ap-
plied. In this case, p4 = 0.50.

(b) Figure is a representation of a regular pen-
tagon whose apothem is the radius of the circle, r.
Note that in this image, a circle is drawn only for
reference, but is not actually part of the image. In
this case, p5 = 0.5944.

Figure 4.1: Examples of results of SPEI on square and pentagon, from left to right.

corresponding SP values, then SPEI is still applicable.

Several proofs will utilize notation that will be defined as follows: A
n

= the area of a n

sided regular polygon, which is cyclic, A
c

= the area of a circle bounded by a square whose

radius equals half of the square’s side, A
r

= the minimum bounding square which envelopes

a circle whose diameter equals the square’s side, p
n

= An
Ar

, p
c

= Ac
Ar

, and r = the radius of

A

c

’s corresponding circle.

Proof: p

c

= ⇡

4

p

c

=
A

c

A

r

=
⇡r

2

(2r)2

=
⇡

4
⌅
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Figure 4.2 showcases an example of the scenario we just proved. The figure is represen-

tation of a perfect circle whose diameter is the same length of a side of the square. This

corresponds to the white pixels having ⇡

4

of the area of the image.

Figure 4.2: Figure is a representation of a perfect circle whose diameter is the same length
of a side of the square. This image corresponds to Proof 2.1.

Proof: p

n

= n sin(360

�
/n)

8

For any regular polygon,

A

n

=
1

2
nr

2 sin

✓
360�

n

◆
,

where n = the number of sides of the polygon [101]. This formula comes from measuring a

circle’s radius where that circle perfectly encompasses that given polygon. Thus:
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From these two proofs, we have the following theorem:

Theorem 1. Circles and regular polygons have unique SP values.

This provides evidence in support for Hypothesis 1 from Chapter 1. From here, we can

prove that 2D images that have representations of this shape can have this property as well.

For this we need some definitions. Any realization of a shape will have an SP value, p̂.

Assume that this realization of a shape has a known and unique SP value, p. Then we have

that

p̂ = p+ ✏, (4.3)

where ✏ is some error.

Proof: lim
✏!0

p̂ = p

lim
✏!0

p̂ = lim
✏!0

(p+ ✏)

= lim
✏!0

p+ lim
✏!0

✏

= p ⌅

Thus, we have that

Theorem 2. The limit of the realization of circles’ and regular polygons’ SPs is their

respective SPs.

Thus, for 2D images of an object that has an observed shape, if the shape has an adequately

small error in its representation, it should have a unique SP value. In other words,

Corollary 2.1. The limit of 2D binary digital image shapes of circles and regular polygons

have unique SP values.

Theorem 2 and Corollary 2.1 provide evidence in favor of Hypothesis 1 from Chapter 1.
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Figure 4.3: Figure shows the original input image, denoted a[~p], the grayscale image, and
the resulting image histogram, from left to right. The image histogram was produced using
ImageJ[82]. This provides a visual representation of Equation 4.4.

4.2.3 SPEI Implementation

Before I discuss the technical details of implementing SPEIs, understanding traditional

image histograms, or the pixel intensity counts, is needed to understand some terminology

and notation [38, 82]. This will allow us to have some deeper understanding and intuition

for the how algorithm behaves. An example of an image histogram on a grayscale image

is presented in Figure 4.3. In this case, the image histogram is the resulting 256 grayscale

intensities of the middle image. While traditional image analysis considers the plot to be

the image histogram, for convenience, we will also refer to the vector intensity counts as an

image histogram. In image operator notation [38], this would be

~c = H
256

L
L

a[~p], (4.4)

where a[~p] is the original input image from the British Online Library [48], L
L

is the

grayscale conversion operator, and H
256

is the image histogram operator with the subscript

256 to indicate that 256 intensities are utilized. The result, ~c, is a vector containing 256

numeric values, indicating the counts of each grayscale intensity. Figure 4.3 also showcases

a general pipeline of these image operators.

I utilized image operator notation from Kinser [38] to describe the algorithm for im-

plementing SPEIs. We provide the Python 3.6 code to perform these operators at https:
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//github.com/billyl320/SPEI-Paper. The traditional image histogram analysis for a

given binary image is as follows:

~c = H
2

a[~p] (4.5)

where a[~p] is the input binary image, H
n

represents the process of converting the images

to its corresponding histogram intensity with the number of bins represented by n, and ~c

is a vector with the white and black pixel counts. We assumed that the individual shape is

already in a bounding box.

The generalized process we have developed is as follows:

~c

EI

= H
2

⇤
~v1, ~v2d[~p], (4.6)

where

d[~p] = D

~v

�
<128

b[~p], (4.7)

b[~p] = U

~w

L
L

a[~p], (4.8)

~w = (2⇥
_

Za[~p], 2⇥
_

Za[~p]), (4.9)

~c = ⇥b[~p], (4.10)

~v = ~c� ~w/2, (4.11)

and ~c

EI

is the encircled image-histogram white and black pixel counts. U
~w

places an image at

the center of a larger frame where ~w is the size of the larger frame,
W

is the max operator,

Z is the dimension operator where the dimensions of an input image are retrieved, ⇥ is

the center of mass operator, L
L

converts the color model to grayscale, �
<128

applies a

threshold operator of less than 128 for every pixel in the image, and D

~v

shifts the image

by ~v [38]. ⇤
~v1, ~v2 represents the window operator which isolates a subimage with opposing

corner locations of ~v

1

= (f � r, f � r) and ~v

2

= (f + r, f + r) where
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r ="
_

((D
E

o[~p])⇥ d[~p]), (4.12)

f =#
✓W

Za[~p]

2

◆
, (4.13)

" is the ceiling or rounding up math operator, # is the floor or rounding down math operator,

D
E

returns the distance transformation image using Euclidean distance, and o[~p] is a matrix

of 1s except where the center is 0 and the shape is the same as b[~p].

Applying the Theory

Given that each regular polygon can be described by a single number, the SP value,

how this translates into a 2D digital image will be calculated by simply multiplying the

resolution, or total number of pixels, of the images by p, the SP value. In other words,

X = ⇣ ⇥ p (4.14)

where X = the number of white pixels, p = the SP value, and ⇣ = the resolution of an

image. Note that here we assumed ⇣ = (2r)2. For example, if p = 0.50 and r = 50, then

⇣ = 1002 = 10000. Thus, X = 10000 ⇥ 0.50 = 5000. In turn, the number of black pixels

will be ⇣ �X = 5000. The combination of X and ⇣ �X gives us the theoretical EI.

This formulation provides not only a deeper understanding of the properties of regular

polygons, but also an expectation for their behavior as digital images. We can exploit this

relationship for classification purposes. I will discuss some simple examples first. While I

emphasized regular polygons and circles as the type of shape analyzed so far, this formu-

lation can easily be generalized to any binary shape. I will provide evidence that SPEIs is

generalizable to other classes of shapes in Section 4.3.
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SPEIs is Invariant to Orientation

One of the clear properties of this method of describing shape is that after applying

SPEIs, the shape is invariant to the orientation. For instance, if the pentagon in Figure

4.1b was rotated by 30�, we would obtain the same minimizing encompassing circle. Thus,

the value of p
5

, and in general, p
n

, remains constant.

Others have used somewhat similar methods. For example, Maddala et al. [51] utilized

the proportion of the shape over the bounding box as their fourth feature in a rule based

system to classify shapes. However, their method is very di↵erent than what I am describing.

The first di↵erence is that the method we have described is explicit in its execution. Here,

I defined the theoretical bounding box explicitly.

Secondly, if one presumed that they found the minimum bounding square for a given

shape, the value that the fourth feature produced by Maddala et al. [51] is not invariant to

orientation. For instance, for a given square, the ratio they provide will produce di↵erent

values. If we start with Figure 4.1a, the value of their ratio would in fact still be 0.50.

However, if one were to rotate the white square by 45�, then their ratio would be 1.00.

Thus, distinct shapes would overlap with one another. For instance, while the circle would

still be only ⇡

4

, the square would take on values between 0.50 and 1.00. Thus, the statistic

they utilize does not guarantee that a particular value corresponds to a given shape, even

in the case that we know the finite kinds of shapes a priori.

4.2.4 SPEIs Adjust Black Pixel Counts

For binary shape images, a traditional image histogram is essentially the first geometric

moment [32,38] alongside the resolution of the image, or the total number of pixels, minus

the first geometric moment as shown in Figure 4.4a. After applying SPEI, the resulting

image and EI can be seen in Figure 4.4b. After comparing the results of the corresponding

pixel intensity counts in Figure 4.4, SPEI is essentially adjusting the black pixel counts

for the shape being analyzed as the white pixel counts remain unchanged. Thus, what is

occurring during the SPEI process is a readjustment of the shape’s black pixel count.
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(a) Figure shows the corresponding image his-
togram on the right of a created regular 9-gon pro-
vided on the left. Notice that the shape, the white
pixels, composes less pixels than the background,
the black pixels.

(b) Figure shows the corresponding encircled-
image histogram on the right of the created regular
9-gon provided on the left. Notice that the shape,
the white pixels, composes more pixels than the
background, the black pixels.

Figure 4.4: Examples of image histogram and EI, from left to right. Notice that the resulting
EI is essentially an adjustment of the number of black pixels, while the white pixel counts
remain the same.

How to Use SPEIs

The analyst may use SPEIs for di↵erent goals. For instance, if the goal is to understand

how the shapes exist within reality, the estimation of SPs may be important. However, if

the goal of the analysis is classification, then one may only desire to discriminate all of the

observations based on the observations’ EIs.

One of the benefits of SPEIs is that researchers can use the resulting EI values by

a variety of di↵erent classification algorithms. For our analysis, quadratic discriminant

analysis (QDA), support vector machines (SVM), logistic regression (LR), and trees are

examples of classification algorithms used to discriminate the observations based on the

EIs. Thus, analysts can use SPEIs in a variety of classification techniques.

4.2.5 CNNs

I built CNNs to compare the models utilizing SPEIs in Python. We provide the code for

the experiments here: https://github.com/billyl320/SPEI-Paper. Due to the unique

aspects of being data starved, I carefully constructed the CNN architecture and obtained

guidance from Gu et al.[23]. Despite this resource, there appears to be little work done on the
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creation of a new CNN architecture for small data. While there was some work on “small”

data sets [84], these were significantly larger than ours. Therefore, I attempted di↵erent

architectures, many of which are not included in this manuscript. For example, I produced

a very simple CNN with one convolution layer. However, this produced abysmal results.

Thus, I increased the complexity of the architecture by adding more layers. Unfortunately,

this did result in some overfitting on the training data, but the validation data did improve

despite this issue. Some of the recommendations provided by Gu et al.[23] was to use early

stopping [63], SpatialDropout [84], and a l

2

-norm regularization [30].

Architecture Description and Implementation

The final CNN architecture has a total of nine layers, not including the output layer.

There are essentially three triads. Each triad has a convolution, pooling, and dropout layer,

in that order. The first convolution layer has 64 nodes, while the remaining convolution

layers have 32 nodes. All of the convolution layers have a kernel size of 3 using a ReLU

activation [56] and an l

2

-norm regularization with � = 0.001. The pooling layers all have

a batch size of 2 ⇥ 2 and uses the max pooling operation [3]. The dropout layers have a

drop rate of 0.20. The output layer used a softmax activation [70]. This architecture is

summarized in Figure 4.5.

Figure 4.5: Figure shows the general architecture of the CNN used in the data starved
setting. It has a total of nine layers excluding the output layer, where each triad has a
convolutional, pooling, and dropout layer. They are represented by the colors blue, green,
and purple, respectively.

For the early stopping implementation, I permitted a max of 100 epochs. While I

measured entropy loss, the minimum change permitted between epochs was 0.001, but I

required the stability of this value to remain constant for 10 epochs. I took additional data
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preprocessing steps for each experiment performed. The one universal similarity is that the

CNN’s input images were all binary after the preprocessing was complete.

4.3 Results

To be goal of the experiments was to observe if our SPEI-based approach outperforms

CNNs due to their popularity in the literature. I describe four experimental results. The

first is on created regular polygon data. The second is on medical pill data. The third is

on a galaxy shape data set. The fourth is on the MPEG-7 shape data set. I performed

the image processing for SPEIs in Python [38] and the model building for SPEI-based

approaches in R [80]. The figures showing the results were also done in R while also utilizing

some graphics packages, such as ggplot2 [88] and scales [89]. Implementation guidance for

the R models was obtained from James et al.[35]. We used various packages for modeling

such as e1071 [52] and MASS [85]. We provide the code for all of the experiments at

https://github.com/billyl320/SPEI-Paper.

4.3.1 Created Regular Polygons

We desire to see how a set of classes with known SP values behave by creating a large

number of regular polygons with varying circumradius lengths. I created regular n-polygons

where n 2 {3, 4, ..., 8} with sides ranging from pixel lengths of 1 to 125. This is described

in detail in Section 3.1.1.

Models

I first compare image histograms and EIs using the created regular polygon data. Since

bounding box algorithms appear the literature in various places such as a part for object

detection [98] or as a means to collect metrics [51]. Here, I am focusing on metric collection,

as the results of the bounding box are highly dependent on them being properly specified

and described.
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In our subsequent experiment, I compared CNNs and SPEIs. I contrasted SPEI-based

approaches only to a CNN due to the popularity of CNN based approaches [23]. I analyzed

the data in six small data learning settings where we were data starved. I randomly split

the data into two sets: one to build the model, and another to check model accuracy, which

I will call the training and validation sets, respectively. The testing sizes investigated were

3, 4, 5, 6, 7, and 8 per class, where I assigned the remaining observations to the validation

set. For example, when the testing size per class was 3, the total number of observations in

the testing data set was 18. This corresponds to a validation set size of 109 per class. In

the described setting, I ran the experiment 100 times. I collected the overall classification

on the training and validation data each time. I report the mean classification rate for the

set.

For the collection of the EIs, each input image was processed using Equation 4.6. Then,

I built three separate models using the training data. Using a given built model, I utilized

the validation data to compute the accuracy of the model. The four possible SPEI-based

models used QDA, support vector machines, SVM, using a linear kernel, a tree, and logistic

regression, LR. The only variables used for the SPEI-based models was the resulting EIs. I

computed all SPEI-based approaches in R.

For the CNN approach, the input images were simply the resulting shapes as described

in Section 4.3.1. The CNN models are not dependent on SPEIs in any matter whatsoever.

The CNN model architecture remained the same from Section 4.2.5.

I added some details of the resulting CNN models and their corresponding layers for

the regular polygon data. This provides greater insight into the nature of CNNs in small

data problems. This included an experiment by increasing the number of observations for

training by means of data augmentation. I performed data augmentation using various

rotations to increasingly train the CNN model in five di↵erent testing sizes. They were 10,

50, 100, 250, 1000, and 5000, instances per class. I rotated each image by 1� 359 times for

a total of 359 images per each original image. This resulted in 44875 images per class to be

used for this experiment.
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I also confirmed that SPEI-based models are consistent with the theory that they are

invariant to orientation. I had the original data rotated by 120� and 240�. This resulted in

a new data set of 250 observations per class. None of these observations were ever used to

train the model. I had the best SPEI-based model predict the classes on these observations

and reported the results.

Comparing Bounding Box and EIs Experiment

(a) Figure shows the counts for the image his-
tograms, or a bounding box, of the shape images.
We created a model in an attempt to discriminate
the classes, but we were unable to find meaningful
results.

(b) Figure shows the counts for the EIs of the
shape images. In the Legend, the value of n indi-
cates the number of sides on the regular polygon
class. Note that the EIs both follow linear lines.
The final resolution ranged from 62 to 2562. Note
that clear separation is evident.

Figure 4.6: Examples of image histogram, a bounding box, and EI, from left to right. Notice
that the bounding box is not useful for classification, while there is a clear discriminative
pattern provided by the EIs.

Figure 4.6a shows the resulting traditional image histogram, or in this case, a bound-

ing box algorithm approach. The white pixels, or the first geometric moment, cannot pro-

vide meaningful results for classification even alongside the black pixel counts. Even a

normalized version, or the fourth feature from Maddala et al.[51], does not provide helpful

results. There is no clear visual discrimination available as the points overlap one another

substantially in Figure 4.6a. Thus, the realization of the fourth feature, alongside the black

pixel counts, will not be useful for discrimination purposes.
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Conversely, the results from the EIs on the regular polygons have a clear relationship as

seen in Figure 4.6b. Note that each class follows a linear class regardless of the scale and

total number of pixels in the image for the shape. Thus, just visually alone, the resulting

EIs from the SPEI algorithm is clearly superior to the traditional image histogram.

Comparing CNN and SPEIs Experiment

The results from the formal models are summarized in Table 4.2 and Figure 4.7. The

QDA model performs best in terms of achieving a higher predictive accuracy and also

providing the most similar predictive performance on the training data. When using the

best SPEI model for a given training size per class, this corresponds to an increase of

outperforming CNNs by about 128% on the validation data. This provides evidence in

favor of Hypothesis 1 from Chapter 1.

SP Value Analysis

If researchers desire to better understand the nature of the shapes as a 2D digital image,

they could calculate the empirical SP values. Table 4.3 shows the empirical SP mean and

standard deviation, SD, of each polynomial class. Note that these mean SP values are

similar to the theoretical SP values presented in Table 4.1. The standard deviations, SDs,

do not appear to have any pattern such as monotonicity. However, the SD values do appear

fairly stable for the odd n values, while the even n values appear to be steadily increasing.

CNN Investigations

Using the setup described in Section 4.2.5, I investigated a CNN model by observing the

layers when various images are computed by it. The CNN model essentially struggles to

distinguish shapes that have a large number of sides and small scale. For example, the CNN

model had di�culty discriminating heptagons and octagons with a circumradius length of

25. Conversely, it could discriminate those same shapes with a circumradius length of 120.

At small scales, a CNN model cannot find the features needed to discriminate similar, but
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Figure 4.7: Figure shows the overall classification rate over the various settings. For exam-
ple, the training size of value 3 means that there were 3 observations per class in the training
data. The CNN, QDA, SVM, and Tree results are provided in red, blue, green, and yellow,
respectively. The training data set results are provided in solid lines with circular points
while the validation sets are presented in dashed lines with triangular points. Generally, the
training data is on the top half of the figure, while the validation data results are near the
middle. Note that the in all training size settings, the SPEI-based QDA model outperforms
the CNN model on the validation data.

di↵erent, shapes.

We desire to know specifically where the CNN is failing to discriminate the regular

polygon shapes. Figure 4.8 shows various shapes that were run through a built CNN model

with a training set size of 3. The two circumradius lengths were 25 and 120, and the shapes

were triangles, heptagons, and octagons. Notice that at all scales, the shapes are discernible

to the human eye. This investigation will shows how the layers are understanding shapes

of di↵erent scales alongside pairs of shapes that are di↵erent from one another, such as

triangles and octagons, and shapes that are similar to one another, such as heptagons and

octagons.

56



Table 4.2: Table shows overall mean accuracy results for each of the models on each of the
data sets for the regular polygon images. The standard deviation is provided below the
mean in parentheses. The number of observations is provided in the column header for the
data starved setting. The SPEI QDA model outperforms the CNN model on the validation
data.

Model 3 4 5 6 7 8 Data Set
CNN 0.95 0.91 0.86 0.92 0.94 0.92 Training

(0.054) (0.062) (0.072) (0.046) (0.036) (0.035)
QDA 0.94 0.92 0.90 0.88 0.88 0.87 Training

(0.059) (0.058) (0.063) (0.052) (0.046) (0.048)

SVM 0.96 0.96 0.94 0.93 0.92 0.92 Training
(0.081) (0.057) (0.048) (0.047) (0.059) (0.043)

Tree 0.40 0.44 0.46 0.48 0.51 0.51 Training
(0.081) (0.073) (0.074) (0.058) (0.060) (0.052)

CNN 0.27 0.30 0.32 0.37 0.42 0.46 Validation
(0.24) (0.029) (0.029) (0.032) (0.040) (0.047)

QDA 0.69 0.77 0.80 0.82 0.83 0.83 Validation
(0.077) (0.059) (0.036) (0.029) (0.034) (0.019)

SVM 0.66 0.73 0.76 0.77 0.77 0.79 Validation
(0.081) (0.049) (0.056) (0.059) (0.071) (0.059)

Tree 0.19 0.20 0.22 0.23 0.24 0.24 Validation
(0.019) (0.020) (0.023) (0.022) (0.024) (0.020)

Table 4.3: Table presenting empirical SP mean and standard deviation, SD, values for each
class using all of the observations. Note that these mean values are similar to the theoretical
SP values presented in Table 4.1, despite some deviations.

n Mean SD
3 0.32 0.01
4 0.51 0.03

5 0.56 0.04
6 0.63 0.03

7 0.64 0.07
8 0.69 0.03
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For the shapes with a larger scale, the CNN model had little issues distinguishing the

shapes from one another. By the third dropout layer, the CNN was able to adequately

capture the three shapes without any issue. These are shown in Figure 4.9.

However, the triad of layers change when we analyze shapes at a small scale. Figure

4.10 shows the third dropout layer for the shapes with a circumradius length of 25. Notice

that the CNN is still able to distinguish the triangle from the other shapes. The CNN is

unable to capture an adequate number of sides for the heptagon and octagon shapes. Thus,

more scale is needed for shapes that are more similar.
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(a) Figure is the input triangle
with a circumradius length of
25.

(b) Figure is an example of the
input heptagon with a circum-
radius length of 25.

(c) Figure is an example of the
input octagon with a circum-
radius length of 25.

(d) Figure is an example of the
input triangle with a circum-
radius length of 120.

(e) Figure is an example of the
input heptagon with a circum-
radius length of 120.

(f) Figure is an example of the
input octagon with a circum-
radius length of 120.

Figure 4.8: Figure presents the example input images to investigate the CNN layers. All of
these shapes obvious to the human eye that they belong to their respective classes.
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(a) Figure shows the third dropout layer of the triangle with a circumradius length of 120.

(b) Figure shows the third dropout layer of the heptagon with a circumradius length of 120.

(c) Figure shows the third dropout layer of the octagon with a circumradius length of 120.

Figure 4.9: Figure shows the third dropout layer for the triangle, heptagon, and octagon
with a circumradius length of 120. Notice that with a large scale, the CNN model easily
captures all of the sides of each regular polygon.
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(a) Figure shows the third dropout layer of the triangle with a circumradius length of 25.

(b) Figure shows the third dropout layer of the heptagon with a circumradius length of 25.

(c) Figure shows the third dropout layer of the octagon with a circumradius length of 25.

Figure 4.10: Figure shows the third dropout layer for the triangle, heptagon, and octagon
with a circumradius length of 25. Notice that with a small scale, the CNN model is not able
to distinguish heptagons and octagons. Thus, for similar shapes, a large scale is required.
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I thought that the problem might be that the CNN model did not have enough obser-

vations or instances at a low scale to classify the classes. However, this is not the case. The

main point is that the inclusion of additional instances at low and high scale worsened the

overall accuracy. Thus, CNN models are ill-equipped to handle cases where some of the

classes are similar and instances within classes have a large variation in scale.

Table 4.4 provide a summary of the CNN models built with increasing training set

sizes. By increasing the data for training and validation with a large range in scale, the

performance of the CNN model decreases. Thus, having adequate scale for classes that are

similar must be part of the data collection for CNN models to be viable in training and

validation.

Table 4.4: Table provides the overall mean accuracy of CNN size experiment for the training
and validation data. These results are lower than the value provided in Table 4.2. Thus,
providing additional images at a lower scale for very similar shapes, such as heptagons
and octagons, worsened the overall accuracy of the CNN model on both the training and
validation data.

Training Set Size n = 10 n = 50 n = 100 n = 250 n = 1000 n = 5000
Training Accuracy 0.25 0.24 0.17 0.17 0.17 0.17
Validation Accuracy 0.17 0.18 0.17 0.17 0.17 0.17

SPEI Invariation Experiment

A scatterplot of the EIs of the resulting rotated images are provided in Figure 4.11. The

results of the model are provided in Table 4.5. The QDA model was still able to perform

well and outperform the CNN results provided in Table 4.2. This experiment shows that

SPEI models are fairly robust to orientation and still outperform CNNs.

Figure 4.11: Figure shows the counts for the EIs of the shape images that were rotated. In
the Legend, the value of n indicates the number of sides on the regular polygon class. Note
that the EIs both follow linear lines. The final resolution ranged from 62 to 2562. Note that
clear separation is evident, but the lines are closer together than compared in Figure 4.6b.
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Table 4.5: Table compares the overall accuracy of the original QDA model validation data
against the rotated polygon data. The standard deviation is provided below the means.
The models used to predict the classes for the rotated data were the same models presented
in Section 4.3.1. In other words, the models never used the rotated images to train the
model.

Data Set n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
Original Validation 0.69 0.77 0.80 0.82 0.83 0.83

(0.077) (0.059) (0.036) (0.029) (0.034) (0.019)
Rotated 0.55 0.62 0.64 0.65 0.66 0.68

(0.096) (0.062) (0.045) (0.023) (0.022) (0.021)

4.3.2 Pill Shapes

In this section, I compare SPEI-based approaches to CNNs in a small data setting. I

only used a subset of the classes as these classes were labeled with polygonal names such

as “Triangle”. This allowed us to increase the complexity of the data classified, analyze

shapes that deviated from regular polygons that has an apparent practical use.

Models

A similar approach as described in Section 4.3.1 was employed here. I built and com-

pared the CNN and SPEI approaches. I treated this as a data starved learning setting. The

training set size per class ranged from 4 to 6 observations, while I assigned the remaining

in each setting to the validation set.

For the collection of the EIs, each input image was processed using Equations 4.6 along-

side 4.15. Then, I built three separate models using the training data. Then using the built

model, I used the validation data to compute the accuracy of the model. The two models

computed in R used SVM using a radial kernel and a tree. Note that I was unable to build

a QDA model in this scenario as the algorithm in R failed to compute the boundaries.

For the CNN approach, the input images were computed from Equation 4.16. The CNN

architecture and implementation remained unaltered.
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Image Operators

As the images are not binary, they must first be converted to grayscale. Next, a Sobel

edge detector is applied. Lastly, thresholding is applied to convert the images to binary.

After, the SPEIs are computed. This is summarized in image operator notation as

a[~p] = �
>10

SL
L

r[~p], (4.15)

where r[~p] is the color input image, S is the Sobel edge detector, and � is the threshold

operator, where those pixel values greater than 10 are retained. a[~p] is then put into

Equations 4.9 and 4.10.

For the CNN model, we changed the image operators slightly. From Equation 4.15 we

apply

o[~p] =+
10

a[~p], (4.16)

where +
10

is the downsample operator. Our input image for the CNN model is the result

o[~p].

NLM NIH Pill Results

The classification results are summarized in Table 4.6 and Figure 4.12. The CNN and

SVM models initially perform similarly. Note the in the data starved setting of 3, the CNN

model did outperform the other approaches on the validation data. However, as the training

size increase, the performance of the SVM model outpaces the CNN model. However, the

SVM model still has a larger gap between the training and validation data as the training

size increases. When using the best SPEI model for a given training size per class, this

corresponds to a mean increase of outperforming CNNs by about 5.76%. Recall that the

SVM model only used the EI values. We opted for a simpler approach to showcase the

utility of SPEIs as a simple yet e↵ective method to analyze shapes. This provides evidence

in favor of Hypothesis 2 from Chapter 1.
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Figure 4.12: Figure shows the overall classification rate over the various settings. For
example, the training size of value 3 means that there were 3 observations per class in the
training data. The CNN, SVM, and Tree results are provided in red, green, and yellow,
respectively. The training data set results are provided in solid lines with circular points
while the validation sets are presented in dashed lines with triangular points. Note that
the in all training size settings except 3, the SPEI-based SVM model outperforms the CNN
model on the validation data.

SP Value Analysis

I also analyzed the SP values for the four classes empirically. The mean and SDs are

provided in Table 4.7. Note that these classes are unique shapes from the regular polygons

as provided in Tables 4.1 and 4.3.

4.3.3 Galaxy Shapes

In this section, I analyzed the galaxy shape data described in Chapter 3. This data

provides a classification problem with irregular classes, unknown SP values, and has a

practical application.

Models

I investigated the same data deprived setup we have described in Sections 4.3.1 and

4.3.2. The SVM model used a linear kernel. The training set sizes per class were 3, 4, 5, 7,
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Table 4.6: Table shows overall mean accuracy results for each of the models on each of the
data sets for the pill data. The number of observations in each of the training data set
classes is provided in the column header for each of the data starved settings. Note that
the in all training size settings except 3, the SPEI-based SVM model outperforms the CNN
model on the validation data.

Model 3 4 5 6 Data Set
CNN 0.98 0.92 0.90 0.84 Training

(0.045) (0.066) (0.076) (0.010)
SVM 1.00 1.00 1.00 1.00 Training

(0.000) (0.000) (0.000) (0.000)
Tree 0.49 0.53 0.60 0.62 Training

(0.070) (0.104) (0.065) (0.068)

CNN 0.73 0.72 0.74 0.74 Validation
(0.105) (0.118) (0.112) (0.126)

SVM 0.70 0.75 0.80 0.85 Validation
(0.078) (0.080) (0.105) (0.112)

Tree 0.42 0.45 0.54 0.59 Validation
(0.082) (0.090) (0.093) (0.095)

10, and 20. In each setting, we assigned the remaining observations to the validation set.

Here I investigated CNN and SPEI approaches. The CNN architecture and implementation

was unaltered from previous experiments. An empirical analysis of the SP values is also

provided.

Image Operators

For the models using SPEIs, I performed the following image operators as described in

Section 4.2.3 except that d[~p] was created by

d[~p] = I
(1)

�OLL

a[~p] (4.17)

where L
L

converts the image to grayscale, �O applies the Otsu threshold [59], and I
(1)

isolates each object in the image and returns the largest one. The CNN model simply used

the results from Equation 4.17 as the input image for the model building process.
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Table 4.7: Table shows the empirical mean and SDs of the SP values for each class of the
NLM NIH pill data.

Class Mean SD
Triangle 0.54 0.03
Square 0.66 0.02

Pentagon 0.64 0.11
Hexagon 0.68 0.02

Galaxy Results

Figure 4.13 and Table 4.8 provide summaries of the results. In the data starved setup,

the CNN model performed worse in terms of accuracy on the validation data while the

QDA model performed best on the validation data for higher training sizes. In contrast,

for lower training sizes, the SVM model performed best on the validation data. When

using the best results from the SPEI-based models, this corresponds to a mean increase in

performance over CNNs of about 14.9% on the validation data. This provides evidence in

favor of Hypothesis 2 from Chapter 1.

Figure 4.14 provides the EI plot for the galaxy shapes. Notice that the edge class is

somewhat linear and is fairly separated from the two remaining classes. While there is

substantial separation between the spiral and ellipse classes, there is some overlap. This is

reasonable, as some spiral galaxies will ahve shorted arms and look fairly similar an ellipse

galaxy.

SP Values Analysis

An analysis regarding the SP values is also presented in Table 4.9. The Edge class is

the most unique with a mean SP value of 0.15, while the Spiral and Ellipse classes are more

similar. This is reflected in Figure 4.14 as the Spiral and Ellipse classes are closer to one

another.
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Figure 4.13: Figure shows the overall classification rate over the various settings. For
example, the training size of value 3 means that there were 3 observations per class in
the training data. The CNN, QDA, SVM, and Tree results are provided in red, blue,
green, and yellow, respectively. The training data set results are provided in solid lines
with circular points while the validation sets are presented in dashed lines with triangular
points. Generally, the training data is on the top half of the figure, while the validation
data results are near the middle. This plot shows that the SPEI-based models of SVM and
QDA have less overfitting and better predictive capacities than CNN.

Figure 4.14: Figure shows calculated EIs from the Galaxy data set. The Edge and Ellipse
classes tend to follow a linear cloud like pattern that are super and sub linear respectively.
The Spiral class is a sub-linear cloud that somewhat overlaps with the Ellipse class. Note
that despite being non-polygonal shapes, each class follows a somewhat linear cloud-like
pattern. This is what we expect as indicated by Figure 4.6b.
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Table 4.8: Table shows overall mean accuracy results for each of the models on each of the
data sets for the galaxy images. The number of observations is provided in the column
header for each of the data starved settings. Note that the in all training size settings, that
either the SPEI-based SVM or QDA model outperforms the CNN model on the validation
data.

Model 3 4 5 7 10 20 Data Set
CNN 1.00 1.00 0.99 0.95 0.89 0.94 Training

(0.000) (0.008) (0.022) (0.050) (0.060) (0.037)
QDA 0.94 0.92 0.88 0.85 0.83 0.79 Training

(0.077) (0.084) (0.077) (0.079) (0.067) (0.045)

SVM 0.92 0.88 0.83 0.83 0.81 0.78 Training
(0.108) (0.110) (0.109) (0.093) (0.082) (0.084)

Tree 0.31 0.67 0.76 0.83 0.82 0.85 Training
(0.137) (0.008) (0.096) (0.069) (0.064) (0.041)

CNN 0.53 0.54 0.55 0.56 0.57 0.60 Validation
(0.036) (0.034) (0.043) (0.034) (0.039) (0.031)

QDA 0.56 0.60 0.62 0.65 0.67 0.68 Validation
(0.091) (0.063) (0.060) (0.044) (0.035) (0.017)

SVM 0.61 0.62 0.62 0.64 0.64 0.65 Validation
(0.074) (0.068) (0.074) (0.063) (0.062) (0.080)

Tree 0.33 0.48 0.53 0.57 0.59 0.63 Validation
(0.022) (0.053) (0.065) (0.068) (0.052) (0.039)

Table 4.9: Table shows the empirical SP means and SDs for each of the classes.

Class Mean SDs
Edge 0.15 0.04
Spiral 0.41 0.10
Ellipse 0.50 0.07

4.3.4 MPEG-7 Shapes

In this section, I analyzed the MPEG-7 data. This allowed us to analyze shapes with

unknown SP values with various imperfections using well known data to the Computer

Vision community.
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Models

A similar experimental setup is utilized here as was described in Sections 4.3.1, 4.3.2,

and 4.3.3. The SVM model used a linear kernel. The training set size per class was only

4. In the setting, I assigned the remaining instances to the validation set. Here I used only

CNN and SPEI approaches. The CNN setup remains the same. The SPEI-based models

were LDA, SVM, and LR.

MPEG-7 Results

Table 4.10 summaries the results. In the data starved setup where each class had 4

observations for the training data, the CNN outperformed the SPEI-based approach on the

validation data by about 2.4%. However, the di↵erence between these results is less than 2

observations. Thus, both approaches preformed similarly on the validation data. Further,

the CNN model provided a much larger drop between the training and validation data

than the SPEI-based approaches. Thus, the SPEI-based approaches provide a much more

realistic model than the CNN model does. This experiment shows that SPEI can perform

similarly to CNNs for obscure shapes that have varying deformations such as occlusions

and orientations in small data scenarios.

Table 4.10: Table shows overall mean accuracy results for each of the models where each
class has 4 observations for the training data for the MPEG-7 shape data. The standard
deviations are provided in parentheses. The overall accuracy is provided in each cell. The
columns correspond to the overall accuracy for the training or validation data. While the
CNN model outperformed the LR model by about 2.4%, this corresponds to a di↵erence of
less than 2 observations. Thus, the results are fairly similar for this experiment.

Model Train Validation
CNN 1.00 (N/A) 0.83 (0.044)
LDA 0.87 (0.084) 0.79 (0.048)
SVM 0.97 (0.067) 0.76 (0.073)
LR 0.96 (0.061) 0.81 (0.068)

70



4.4 Discussion

The first major conclusion is the performance of SPEI-based models over CNN models.

Next are some important factors to consider while using SPEIs in an analysis. Third, I

will discuss when it is appropriate to use CNNs in small data problems. Lastly, there are

broader impacts of SPEIs for the scientific community.

4.4.1 SPEIs Outperform CNNs

Overall, SPEI-based approaches were able to outperform the CNN models fairly con-

sistently. Whether the data was simulated images or non-polygonal galaxy images, the

SPEI-based approaches are e↵ective at describing shapes in an intuitive and simple man-

ner. For instance, when the images within each class are fairly similar to one another,

interpreting the EIs will be fairly straightforward as seen in Figures 4.6b and 4.14. When

using the best results from the SPEI-based models, the created polygon, NLM NIH pill data,

and galaxy shape images had an improvement over the CNN models of about 128%, 5.75%,

14.9%, respectively. For the MPEG-7 data, the CNN model outperformed the SPEI-based

approach by 2.4%. The overall mean performance improves 52% when using SPEI-based

models over CNNs. Thus, SPEI-based approaches are a more e↵ective means for models to

classify images than CNNs in data starved settings, particularly when the relative scale of

some classes is small. These results provide evidence in favor of Hypotheses 1 and 2 from

Chapter 1.

Furthermore, SPEI-based models are much more computationally e�cient than CNNs.

While we did not perform a formal analysis, computing the SPEI-based models on the NLM

NIH pill data for training setting of 3 and 6 took about 5.3 and 18.89 minutes, respectively.

The CNN models took longer. For the training settings of 3 and 6, the CNN models took

about 551 and 1,167 minutes, respectively. We ran the analyses on a 2011 iMac with a 3.4

Ghz Intel Core i7 processor, 16 GB 1333 MHz DDR3 memory, and a AMD Radeon HD

6970M 1024 MB graphics chip. These results are fairly representative of the other instances

and experiments. In short, the CNN models take much longer to compute than all of the
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SPEI-based models combined.

4.4.2 Considerations for using SPEIs in an Analysis

There are two separate ways to use SPEIs. The first is for the classification of shapes.

The second is for the description of shapes.

One of the benefits of SPEIs is that a modeler can use a variety of di↵erent classification

methods with it. For example, the QDA and SVM models using the EIs as variables

provided substantially better and consistent predictive results than the CNN approach in

small data problems. We plan on attempting other classification models in future work.

Nevertheless, a researcher can use SPEI-based metrics in a variety of di↵erent classification

algorithms.

Scientists can use SPEIs to understand how classes of shapes exist as 2D digital images.

For instance, I analyzed the SP values in the created polygons, pill shape, and galaxy

experiments. Further, we can interpret the EI plots, as seen in Figures 4.6b and 4.14,

to visualize the black and white pixel counts for each of the classes. This allows us to

understand and observe how classes of shapes behave as 2D digital binary images.

It is important to recognize that if two shapes have similar SP values, then SPEI-based

models will struggle to discriminate the classes. We can circumvent this by increasing the

resolution or total number of pixels captured for analysis.

Lastly, SPEIs can be used in conjunction with other shape metrics for the classification

or description of shapes. While this was not explored in this chapter, this is explored in

Chapters 5 and 6.

4.4.3 CNN Suitable for Problems with Large Scale and No Human Knowl-

edge

CNNs are powerful tools. It is best utilized when data is plentiful and similar classes

have enough scale to discriminate the shapes. A CNN model can be viable in small data

scenarios, but the shapes must be substantially di↵erent from one another. If not, using
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techniques to increase the amount of data to train the model where the scale within a class

greatly di↵ers and any given two classes are similar may actually worsen overall accuracy.

CNNs are more suited to analyzing and classifying shapes when solely machine driven.

However, SPEI-based models are able to outperform CNNs if we are permitted to use human

constructed features. SPEI encodes human knowledge about shapes, but CNNs are not able

to learn human concepts such as area. Thus, SPEI-based models outperform CNNs due to

the human knowledge encoded into the algorithm itself.

4.4.4 Broader Impact of SPEIs

Researchers can use SPEIs in conjunction with other shape metrics to solve a specific

problem. For example, a biologist could use SPEIs alongside other metrics to understand

how non-malignant and malignant cells exist and behave.

Further, SPEIs provides a clear and interpretable encoding of shapes as they exist as

2D images. We were first able to mathematically describe classes from our imaginations.

Next, we were able to encode this mathematical formulation in an e�cient manner for

computational models to interpret. Thus, SPEI’s resulting metrics, SP and EI values, are

able to provide a practical interpretation of shapes which are realized as 2D digital images.

4.4.5 Future Work

Future work would extend CNNs to incorporate human knowledge of shapes such as area

or SP values. This could greatly extend the performance of CNNs in small data scenarios.

Further, a new modeling approach which would capture the slight variations in orienta-

tion would allow for a robust SPEI-based model. I suspect that a model that could exploit

the linear relationship of EIs would be very e↵ective.

Lastly, I would like to investigate the case where two di↵erent classes have the same

SP values. I suspect that comparing the statistical distributions of overlapping orientations

may provide further insight to discriminate classes.
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4.5 Conclusions

SPEIs are a more e↵ective metric for classifying and analyzing shapes than CNNs in

small data scenarios. The SP values directly correspond to the EIs and are helpful for

classification purposes. The models built using these metrics are competitive in a variety of

data starved settings for learning from image shape data. Every example presented provided

some benefit over CNNs, whether it was outperforming the accuracy on the validation data,

the predictive consistency, or the simplicity of the model, while also providing meaningful

insight to how shapes exist as 2D digital images.
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Chapter 5: Pill Shape Classification for Small Data with

Human-Machine Hybrid Explainable Model

This chapter presents a highly accurate interpretable solution for pill shape classification.

I arrived at a human-machine hybrid approach that achieved an overall classification rate

of 97.83% and a mean precision of 98.4%. The only misclassifications occurred between

ovals and capsules. This corresponds to an average outperformance of 94% compared to

the results of other approaches when using mean precision. MY final model used a decision

tree where each node classified meta-classes, or groups of classes. Each node used support

vector machines with a polynomial kernel. The tree was able to overcome imbalanced data

between the classes by using meta-classes. Each node of the decision tree was limited to

using only two variables. This made each node interpretable as the final decision boundaries

can be plotted on a 2D scatterplot. This chapter provides evidence in favor of Hypotheses

3 and 4 from Chapter 1.

5.1 Introduction

A system to identify pills would be useful to global and local communities. Prescription

drug use is on the rise in the United States [24, 37]. This increasing trend is not limited to

the United States, as the United Kingdom faced a similar increase [96]. In an exploratory

study performed in Norway, over half of the thirty patients were given the wrong medication

due to poor communication between health care o�cials [17]. Deaths regarding opioids have

also increased in the United States [36]. Developing a system to improve the appropriate

utilization and distribution of opioids is needed [36]. This system, a method to identify

pills automatically, is desirable by law enforcement agencies, the health care industry, and

consumers.
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The ubiquity of smartphones and a↵ordable, high-quality cameras allows for users to

take pictures e↵ortlessly. This allows for pills to be potentially identified by both medical

professionals and consumers. Nurses and medical technicians would be able to verify the

administration of pills to patients [51]. Multiple research communities have renewed interest

in discriminating between fake and real prescription pills [65]. Furthermore, the Food and

Drug Administration has advocated for creating a system to monitor patient opioid intake

[36]. The National Institute of Health’s National Library of Medicine (NLM) hosted a

competition in response to some of these issues [58]. Researchers have yet to find a perfect

solution for pill identification. This paper provides an interpretable and e↵ective model to

classify pill shapes - a key part of the pill identification problem.

5.1.1 Outline of Proposed Method

In this chapter, I present a HMH decision tree with a total of 7 interpretable metrics.

This model outperforms other approaches. I trained the node using a max of 113 obser-

vations for each node in the decision tree. Of these observations, 75 came from the three

largest classes: round, capsule and oval. Each of these contributed 25 observations. The

remaining classes used half of the total number of observations for the training data. This

ranged from 2 to 6 observations for a given class. Each decision node utilized 2 variables

with a SVM using a polynomial kernel. This allows users to interpret the results with ease.

First, I will discuss pill shape identification and a general description of our HMH

decision tree in the Methods and Materials section. This will show how my approach

and metrics are interpretable. Second, I will build the HMH decision tree and report the

performance in the Results section. This will show that my model is the best model at

present for pill shape classification. Third, I mention the major takeaways from the model

in the Discussion section. Last, I end with a summary of the paper in the Conclusion section.

These last two sections will explain that our model is competitive and interpretable, the

importance of some of the variables used, how our approach improves shape metric collection

over previous solutions, and how our approach is a combination of machine and human
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learning.

5.1.2 Contributions

In this chapter, I provide a HMH decision tree trained in a small data setting with a total

of seven variables. This approach outperforms other modeling approaches [51]. Further-

more, this approach is interpretable and intuitive. This allows the modeler to understand

the decisions boundaries with ease as each decision node is restricted to two variables.

This chapter will show that digital pill shapes have distinct shapes which can be e↵ectively

discriminated using a HMH decision tree model.

5.2 Methods and Materials

I will discuss the technical details of our data, metrics used for our model, and our

HMH decision tree. This will show that the metrics and model built make our approach

interpretable.

5.2.1 Data

I used the NLM reference data from the recent Pill Image Competition. This data is

described in detail in Chapter 3. All of the classes were used.

5.3 Results

I made the figures showing the results in R while also utilizing some graphics packages,

such as ggplot2 [11, 35, 57, 85, 88, 89]. I provide the code for the experiments and binary

shapes at the provided GitHub link: https://github.com/billyl320/human_decision_

tree_pills.
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5.3.1 Shape Segmentation

I inspected the pills’ shapes manually after applying the image operators from Equation

3.3. None of the binary shapes have any distortion or abnormalities. An example of an

initial capsule image and its corresponding segmented shape image are provided in Figures

5.1 and 5.2, respectively. Thus, the shapes of the pills are accurate.

Figure 5.1: Figure shows an example of the capsule image before the image segmentation
was performed. The resulting shape is shown in Figure 5.2.

Figure 5.2: Figure shows an example of the capsule image shape of Figure 5.1 after the
image segmentation was performed.
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5.3.2 Metric Collection

The metrics used in the model were SP values, circularity, EIs, eccentricity, and the

minimum bounding box counts. Figures 5.3, 5.4, and 5.5 provide scatterplots of the obser-

vations alongside some of the metrics. Upon inspection of the scatterplots, groups of classes

are clearly separable. For example, in Figure 5.3, the oval, rectangle, round, and capsule

classes are clearly separable from the other remaining classes. Thus, by subdividing the

classification task into a series of easier classification tasks, we built an e↵ective pill shape

classification model.

Figure 5.3: Figure shows the SP and Eccentricity values. Note that the capsule, oval, round
and rectangle classes are separable from the remaining classes.
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Figure 5.4: Figure shows the EI values of the pill shapes. Some of the classes follow a clear
linear pattern, while others do not. Unfortunately, many of the classes overlap with one
another. We were able to use these variables once the overlapping classes were separated
by using meta-classes.
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Figure 5.5: Figure shows the minimum bounding box black and white pixel counts for the
shape data. This provides a similar perspective to the EI plot in Figure 5.4. However, some
of the classes become easier to discriminate using this boxing algorithm instead. This is
similar to the case of the EIs in Figure 5.4. Once the overlapping classes were separated
through the use of meta-classes, these variables helped to discriminate some of the classes.
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Figure 5.6: Figure shows an example of the regular hexagon image before the image seg-
mentation was performed. This stratum of the hexagon class had a total of six observations.

5.3.3 Model

The final model was an HMH decision tree where each decision node used only two

variables and an SVM classification algorithm using a polynomial kernel. The parameter

values for each node are provided in Table 6.5. This approach provides an interpretable

and accurate model.

I utilized stratified random sampling for partitioning the data to the training and vali-

dation data [16, 28, 35]. The advantage os using stratified random sampling as opposed to

simple random sampling is a reduciton in error for parameter estimation [16]. For our case,

I treated each of the classes as individual stratum except for the hexagon strata. I split

the hexagon class into two strata. There were two non-regular hexagons and six regular

hexagons. Examples of the regular and non-regular hexagon observations are provided in

Figures 5.6 and 5.7, respectively. I included one non-regular hexagon and three regular

hexagons in the training data set. The final counts of the training and validation sets are

provided in Table 5.1.

Figure 6.2 provides an example of the results of the first decision node in the decision

tree. I was able to classify the first two meta-classes perfectly using SP and eccentricity. The

first meta-class was oval, capsule, rectangle, and round. The second meta-class included

the remaining classes. While Figure 6.2 presents only the training data, the node was also

able to perfectly classify the validation data as well.

Interpreting the decision boundary in Figure 6.2 is straightforward. The round, capsule,

oval, and rectangle classes range from having large SP values with small eccentricity to
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Figure 5.7: Figure shows an example of the non-regular hexagon image before the image
segmentation was performed. This stratum of the hexagon class had a total of two obser-
vations.

Table 5.1: Table shows counts for the training and validation data sets. There were two
non-regular hexagons and six regular hexagons. Thus, one non-regular hexagon and three
regular hexagons were randomly sampled. The other classes were treated as individual
stratum. Those observations in the stratum were randomly assigned to the training data.

Class Training Count Validation Count
Capsule 25 307
Diamond 6 6

Hexagon 4 4
Oval 25 661

Pentagon 6 6
Rectangle 3 3

Round 25 881
Semi-circle 2 2

Square 4 4
Tear 5 5

Trapezoid 2 2
Triangle 6 6
Total 113 2000

small SP values with large eccentricity. The second meta-class tends to have smaller SP

and eccentricity values. This process of interpreting each node of the tree is repeatable.

I did not provide the plots and interpretations of the decision boundaries for every

node in this manuscript for the sake of brevity. However, the code provided in the GitHub
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Figure 5.8: Figure shows the decision boundary made using the training data on the first
decision node. This model used the SVM algorithm with a polynomial kernel with the
associated parameter values of SVM1 which is found in Table 6.5. The red points are
associated with the oval, round, rectangle, and capsule observations. The black points
correspond to the other classes. The Xs indicate if the model used the observation as a
support vector, while the open circles are not support vectors. The pink area indicates
the space where an observation would be classified as a round, capsule, oval, or rectangle.
The cyan area indicates the space where an observation would be classified as a diamond,
hexagon, pentagon, rectangle, semi-circle, square, tear, trapezoid, or triangle. Each node in
the decision tree can have this kind of 2D plot made. Modelers and users can utilize these
plots to better understand the decision-making process of the HMH decision tree. Thus,
my model is highly interpretable.
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Figure 5.9: Figure shows the resulting decision tree. Each node uses SVM with a polynomial
kernel with various parameter values. Table 6.5 summarizes those kernel values. The
decision nodes are the rectangles. The leaves are found in the ovals. A leaf’s color is
determined by the final decision node which classifies the class. The HMH tree correctly
classified all of the classes with the exception of discriminating between the capsules and
ovals. Thus, my model is interpretable and an e↵ective classifier.
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Table 5.2: Table shows five SVM algorithms with there associated polynomial kernel pa-
rameter values.

SVMi Cost coef0 Degree
1 1 2 5
2 1 1 2

3 1 1 3

4 1 1 1
5 1 50 2

6 1 1 10
7 1 2 10

link for the experiment produces one of these plots for each node: https://github.com/

billyl320/human_decision_tree_pills. These plots provide a very interpretable method

of understanding the decision tree. The final resulting decision tree is provided in Figure

5.9.

The HMH tree correctly classified all of the classes with the exception of discriminating

between the capsules and ovals. It misclassified 1 observation per class on the training

data. The HMH tree misclassified 70 oval observations as capsules on the validation data.

These misclassifications for the training and validation data are summarized in the confusion

matrices provided in Tables 5.3 and 5.4, respectively. These misclassifications only occurred

in the node which classified ovals and capsules against one another. This corresponds to

an overall misclassification rate on the complete data of 3.6% and a misclassification rate

on the validation data of about 3.71%. Our mean precision on the complete data was

approximately 98.5%. The MP for our HMH model was 98.4% when constrained to those

classes that overlap with Maddala et al.’s model. Thus, our model is extremely accurate

across all of the classes. These results provide evidence in favor of Hypotheses 3 and 4 from

Chapter 1.

Several other machine-driven models were built for comparison. I built three SVM

models utilizing a grid search for their parameters. The code for these models is provided
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Table 5.3: Table shows the confusion matrix for the training data’s capsule and oval classes.
The columns correspond to the actual class, while the rows correspond to the predicted class.
Note that only two observations were misclassified as ovals. Thus, my model is very accurate
on the training data.

Predicted/Truth Capsule Oval
Capsule 24 1
Oval 1 24

Table 5.4: Table shows the confusion matrix for the validation data’s capsule and oval
classes. The columns correspond to the actual class, while the rows correspond to the
predicted class. Note that only 70 observations were misclassified as capsules. Thus, my
model is very accurate on the validation data.

Predicted/Truth Capsule Oval
Capsule 307 70
Oval 0 593

in the GitHub link: https://github.com/billyl320/human_decision_tree_pills. The

three models each used a di↵erent kernel. The kernels were polynomial, raidal, and sigmoid.

I also built näıve Bayes and linear discriminant analysis (LDA) models. The mean precision

(MP) values for all the models are provided in Table 5.5. This table also includes the MP

values for two of Maddala et al.’s models and my HMH model. I only considered classes

which overlapped with my classes when we calculated the MPs for Maddala et al.’s models.

My HMH model provided the largest MP value, which indicates that my model performs

best across all of the classes. These results provide evidence in favor of Hypotheses 3 and

4 from Chapter 1. The confusion matrices for these comparison models are provided in

Tables 5.6 to 5.12.
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Table 5.5: Table with the mean precision (MP) values for various models. The first and
third rows correspond to the model name. The second and fourth rows correspond to the
MP values. The first model is an SVM with a polynomial kernel (SVM - P). The second
model is an SVM with a radial kernel (SVM - R). The third model is an SVM with a sigmoid
kernel (SVM - S). The fourth model is an NB. The fifth model is an LDA. The sixth model
is the HMH adaptable tree built by Maddala et al.(Maddala - Tree). The seventh model is
the logistic regression (LR) built by Maddala et al. using Hu moments (Maddala - LR). The
eighth model is my HMH tree described in this manuscript (Lamberti - Tree). Maddala -
LR does not have a MP value since it does not predict some classes. Thus, the MP cannot
be calculated for this model. Since my approach has the largest MP, my approach performs
best across all of the classes. This corresponds to an average outperformance of 101.6%.

Method SVM - P SVM - R SVM - S NB LDA
MP 0.355 0.757 0.269 0.623 0.801

Method Maddala - Tree Maddala - LR Lamberti - Tree
MP 0.897 - 0.984
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Table 5.6: Table shows the confusion matrix for the Hu moments method from Maddala et
al.. (Maddala - LR).
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Table 5.8: Table shows the confusion matrix for the polynomial SVM (SVM - P) using the
same features as the HMH model.
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Table 5.9: Table shows the confusion matrix for the radial SVM (SVM - R) using the same
features as the HMH model.
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Table 5.10: Table shows the confusion matrix for the sigmoid SVM (SVM - S) using the
same features as the HMH model.
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Table 5.11: Table shows the confusion matrix for NB using the same features as the HMH
model.
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Table 5.12: Table shows the confusion matrix for LDA using the same features as the HMH
model.
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5.4 Discussion

My HMH decision tree’s outperformance of other approaches is the first major remark.

Second, the importance of the SP and eccentricity values for the decision tree was a note-

worthy discovery. Third, I will discuss how our image segmentation treated the data better.

Lastly, the approach built in this chapter is a hybrid of a human guided model and a

machine learning model.

5.4.1 SPEI-Based Decision Tree More Interpretable and Accurate Across

All Classes

The CNN models created we created in Chapter 41 were only able to achieve a max

overall classification rate of 74% on their validation data [43]. I was able to obtain perfect

classification. While Maddala et al. were able to achieve 98.7% overall classification on

their data, my HMH model is able to obtain 96.4%. Furthermore, the di↵erence between

achieving these respective rates is 46 observations out of 2,000. Thus, the error rate is

fairly comparable. Maddala et al. misclassified some of the oval and capsule observations as

triangles, trapezoids, and/or diamonds [51]. Our model only misclassified ovals as capsules

and vice versa. My approach is more accurate across all of the classes. Its mean precision

was 98.4%, while Maddala et al.’s was 89.7% on the complete data. This corresponds to a

9.7% outperformance across all of the classes. Additionally, the HMH approach built in this

chapter outperforms all other attempted approaches provided in Table 5.5. This corresponds

to a mean outperformance rate of 94%. Ultimately, my approach was substantially more

interpretable and accurate across all of the classes. This provides evidence in favor of

Hypotheses 3 and 4 from Chapter 1.

5.4.2 SP Values and Eccentricity were Essential

The first node in the decision tree used only the SP values [43] and eccentricity [38]. The

addition of the SP value proved invaluable. No other pair of metrics was able to provide

1
on the same data with less classes
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the first step to make classification possible. Thus, the SP value and the well-established

metric of eccentricity were of paramount importance for making the classification of these

observations possible. If these metrics were not used, converting this problem to a large

data solution would likely be inevitable. Examples include performing data augmentation

or collecting more data [7–9, 40, 53, 54, 76, 86]. These two metrics allowed us to provide a

small data solution.

5.4.3 Improved Metric Collection

A major issue with Maddala et al.’s solution using adaptable rings is that the image

segmentation required the prior knowledge of the classes [51]. Thus, they were essentially

measuring two groups of classes in two di↵erent manners [51]. The solution presented in

this chapter required only one image segmentation algorithm and was able to accurately

capture each pill’s shape. Thus, I was able to capture the shape of all of the pill shape

observations in a uniform and unbiased manner.

5.4.4 Decision Tree is a Hybrid of Human and Machine Learning

This approach requires a large amount of human intervention for determining the meta-

classes and variables used. It left the creation of decision boundaries to machine learning

(ML) algorithms. Scatterplots were manually inspected to find candidate pairs of variables

and potential meta-classes. The training and validation data was used to check if the

variables and meta-classes were viable. Thus, this is not a purely ML solution. However,

now that we know near perfect classification is obtainable, the ML and Computer Vision

communities must be able to meet or exceed this benchmark. A potential solution is to

automate the human aspects by the computer. I hope to have the computer determine

which two variables to use for a given pair of meta-classes and to build the tree recursively.

96



5.5 Future Work

Future work would have a model specifically built to discriminate capsule and oval pill

shapes perfectly. This may mean extending the number of metrics to more than two. While

this may decrease the interpretability of out model, this would potentially allow for a perfect

pill shape classification model. Once this was implemented, we would build separate models

for pill color and text. Then these three models should be combined into a single method

for pill identification.

Outside of pill identification, we would like to use SPEI in other biomedical informatics

applications. Investigating the SP values for various types of cells is a clear extension. This

is motivated by the SP values’ crucial importance for the HMH model we built.

5.6 Conclusions

The HMH decision tree developed in this study provides improved classification and

interpretability of pill shapes. Highly accurate classification is achievable using understand-

able and intuitive metrics. This technique outclasses previously developed approaches. The

first node’s use of SP values and eccentricity was vitally important for this task. These met-

rics simplified the complex task of discriminating numerous classes into a series of elegant

classification tasks. This approach circumvented issues with optimizing loss functions for

overall classification accuracy. This is historically a challenging task for imbalanced data

problems. The HMH decision tree developed in this study provides a strong foundation for

an interpretable pill identification model.
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Chapter 6: DAMG: A Classification Algorithm for Problems

with Limited Data

The decision tree with automatic model generation (DAMG) algorithm simplifies multi-

nomial classification problems into a series of binary tasks. Classification problems are an

intrinsic part of a variety of fields. Further, deep learning is seemingly capable of achieving

high rates of classification. However, deep learning solutions are di�cult to interpret and

are prone to overfit to the training data. They also fail in small data settings, as shown

in Chapter 4. The recursive DAMG uses variable selection and meta-classes to disentangle

multinomial classification problems with many variables. While the example shown uses 2D

pill shape image data and the standard MPEG-7 shape data, the algorithm is applicable to

non-image classification problems as well. The DAMG algorithm was able to outperform

other approaches by about 177% for pill shape classification and CNNs by about 156% and

148% on the training and validation data, respectively, for a subset of the MEPG-7 data.

This chapter provides evidence in favor of Hypotheses 3 and 4 from Chapter 1.

6.1 Introduction

The level of complexity is high while the general interpretation of a given model is low

for many deep and machine learning classification models [23, 35]. These complex models

with low interpretation are utilized in a variety of di↵erent fields such as image classification

[19, 23, 23, 47, 67]. Many of these models are complex due to the large number of features

present [28]. Additionally, these models are di�cult to explain due to the number of features

used to build the model, whether learned or provided [28]. This problem is exacerbated

when the number of classes to categorize is large [35].
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Thus, I desire to provide an algorithm which can break down complex classification

problems into a series of simpler ones. Based on variable selection and the binarization of

many classes, classification models can be made substantially simpler and easier to under-

stand. This series of simpler problems can be represented by a decision tree, which eases

interpretation. Each node represents a binary classification problem using only two vari-

ables. This is done to increase the explainability of the model. The algorithm is dubbed

a decision tree with automatic model generation (which is abbreviated as DAMG and pro-

nounced “damage”). The DAMG algorithm was able to outperform other approaches by

about 177% for pill shape classification and CNNs by about 156% and 148% on the training

and validation data, respectively, for a subset of the MEPG-7 data.

6.1.1 Outline of Proposed Method

I discuss a novel classification algorithm called DAMG. DAMG is a recursive algorithm

which first relabels the classes into binary meta-classes, or groups of classes. Then DAMG

uses variable selection to select the two or three variables that are most important. I used

only two variables per parent node throughout our pill shape experiments. The MPEG-7

data experiments used three variables per node. The binary classification setup then uses

the two most important variables to discriminate between the two meta-classes. This is

repeated until all of the classes are leaf nodes in the decision tree.

First, I will discuss the DAMG algorithm in the Methods and Materials section. This will

show that DAMG simplifies classification problems. Second, we will perform an experiment

on 2D pill shape data and a subset of the famous MPEG-7 data in the Results section.

This will show that DAMG is applicable to real world problems and benchmark data,

respectively. The Discussion and Conclusion sections will explain that DAMG improves the

analysis and interpretation of classification problems with many classes.
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6.1.2 Contributions

In this chapter, I provide a novel classification algorithm called DAMG. The results from

DAMG are interpretable and perform well. Furthermore, this approach is simple and intu-

itive, which allows the modeler to gain better insight into the model. For my experiments,

each parent node in the tree is restricted to two or three variables depending on the data

analyzed. This paper shows that multinomial classification problems are convertible into a

series of simpler binary classification problems. These results provide evidence in favor of

Hypotheses 3 and 4 from Chapter 1.

6.2 Methods and Materials

In this section, we will discuss the technical details of our algorithm, data, metrics used,

and the HMH decision tree used for comparison.

6.2.1 Impetus for DAMG

The DAMG algorithm is attempting to break down a single complex classification prob-

lem into a series of simpler ones. A single classification problem can have both numerous

variables and classes to consider. In computer vision, the need of metrics is lessened as the

features are learned from the image itself when a CNN is utilized [19,23,47]. However, both

CNNs and data sets with many variables su↵er from interpretability issues [23].

A potential solution for a large number of classes is to binarize the classification problem.

This involves searching from combinations of the classes to form meta-classes, or groups of

classes. In theory, these meta-classes group together similar classes into larger ones. This

again reduces the classification problem to a simpler task and increases interpretability by

only having a binary outcome.

A potential remedy for a large number of features is variable selection [28, 35]. In

general, the goal of variable selection is to reduce the number of features used for modeling

[28,35]. This reduces the complexity of the model while also increasing the interpretability
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[28,35]. A popular variable selection technique is the least absolute shrinkage and selection

operator (LASSO) [71, 83]. The LASSO is the foundation of many other approaches that

deal with sparse data [50]. However, the LASSO failed to find meaningful results with

limited observations in our experiments.

Thus, DAMG uses meta-classes and variable selection techniques to break down a single

classification problem into a series of simpler ones. The result is a recursively built decision

tree where each parent node is a simpler classification problem.

6.2.2 Mathematical Representation

Before I discuss the details of the pseducode, it is important to establish the mathemat-

ical representation of DAMG. Recall the the generalized definition of a tree from Chapter

1 in Equation 2.23. That is,

f(X) = MRIX2R, (6.1)

where MR is the modeling operation performed on the space R and I

X2R is the indicator

variable for the data, X, that belongs to R. For a regression tree, MR =
P

G

m=1

c

g

and

I

X2R = I

Xi2Rg where N is the number of regions and c

g

is a response constant for a given

g. For a classification tree, MR =
P

x2Rg

1

Ng
and I

X2R = I

Yi=k

where k is the associated

class and N

g

is the number of observations in a given region or node, g.

The DAMG algorithm can be represented mathematically using Equation 2.23 by

f(x) = MRgIXg2Rg , 8g 2 {1, ..., G} (6.2)

where g is a given node or binarization of the given subspace, G is the total number of

subspaces, X

g

are the observations or instances that belong to R
g

after the meta-class

creation, and MRg is the modeling operation performed on the subspace R
g

.

Note that Equation 2.23 generalizes any other modeling approach. For example, if R

was the entirety of the space X occupies and MR is an SVM model with a linear kernel,
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we are then simply performing SVM on data X. Another trivial example is to use any

classification method without the use of meta-classes. This will result in a tree with a

singular node and the number of children equal to the number of classes. These provides

evidence in favor of Hypothesis 4 from Chapter 1.

6.2.3 Pseudocode

In this section, I will describe the general DAMG algorithm pseudocode. I will discuss

the specific implementation for the analyzed pill shape data set in Section 6.2.6. In gen-

eral, the DAMG algorithm first finds appropriate candidate meta-classes. Then, for each

meta-class, variable selection is performed to determine the selected variables. Then, a clas-

sification model is built using the selected variables. If multiple candidate models obtain

perfect classification between the meta-classes, then the one which maximizes the absolute

di↵erence between the number of instances per meta-class is selected. This encourages the

tree to separate imbalanced classes. For instance, if two classes have 100 observations each

and another two only have 10 observations, then the preferred meta-classes would have the

100 observation count classes in one meta-class for a total of 200 observations. The other

meta-class would have two classes with the 10 observation counts for a total of 20 obser-

vations. The pseudocode for the node creation is provided in Algorithm 1 and for the tree

creation in Algorithm 2.

Algorithm 1 DAMG Node Creation

1: procedure DAMG Node

2: Determine m combinations of meta-classes
3: for i 2 1 : m do
4: Perform variable selection to find selected variables
5: Create classification model using i

th meta-classes and selected

6: if 9 multiple models with perfect classification on the testing data then
7: Find the absolute di↵erence between the meta-classes’ counts
8: Select the one model and selected variables which maximizes this di↵erence
9: else

10: Select the one model and selected variables which minimizes the error rate on
the testing data
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Algorithm 2 DAMG Tree Creation

1: procedure DAMG Tree Creation

2: Initialize starting node
3: if Node is Almost Pure then
4: Create 2 child nodes
5: else Create 2 child nodes
6: if Child node 1 is Pure then
7: Child node 1 becomes a leaf
8: else Split child node 1

9: if Child node 2 is Pure then
10: Child node 2 becomes a leaf
11: else Split child node 2

I will need to define the terms ‘pure’ and ‘almost pure’. ‘Pure’ means that the obser-

vations in a node contain only one class. ‘Almost pure’ means that the node has no more

than two classes. Almost pure nodes will be parent nodes. Pure nodes will always be child

nodes.

At each parent node, the classes were grouped by the authors into larger groups or

meta-classes. This was done for a number of reasons. The first is a practical one: this helps

to counteract imbalanced datasets. Models built using all of the metrics and distinct classes

would carry the risk of classifying the smaller classes as observations belonging to one of

the larger classes. This is caused by using standard loss functions [29].

The second reason was due to the restriction of using variable selection at each decision

node. I typically used only two variables during our experiments. This was motivated by

the following example. A common approach to building a model by hand is to plot the

data. A common introductory approach is the use of a scatterplot matrix. Using only two

variables per node is similar to this visualization technique. Having only two variables and

two classes greatly eases interpretation of each parent node and, by extension, the entire

model.

The third reason is that this solution is elegant in design. While it may be possible to

define a complicated loss function or modeling algorithm, this solution produced by DAMG

can be easily explained to a wide technical audience. Further, I argue that this approach

can be more easily explained by a wider audience base who would eventually utilize this
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Table 6.1: Table shows the classes names, encoding, and counts of the classes of the NML
NIH reference data. It also shows counts for the training and validation data sets.

Pill Shape Encoding Class Count Training Count Validation Count
Capsule 1 332 25 307
Diamond 2 12 6 6

Hexagon 3 8 4 4
Oval 4 686 25 661

Pentagon 5 12 6 6
Rectangle 6 6 3 3

Round 7 906 25 881
Semi-circle 8 4 2 2

Square 9 8 4 4
Tear 10 10 5 5

Trapezoid 11 4 2 2
Triangle 12 12 6 6
Total - 2000 113 1887

model in their respective fields.

6.2.4 Data

I will use the NLM NIH reference data from the recent Pill Image Competition. Table

6.1 shows the classes alongside their corresponding counts of each of the dataset. The shape

segmentation and metric collection are detailed in Chapters 3 and 4. The metrics included

are the SP values, EIs, eccentricity[38], circularity[25,38,68], and the white and black pixel

counts from the minimal bounding box.

The MPEG-7 data is the second data set used in this manuscript. It is a commonly used

benchmark for experiments in the computer vision and pattern recognition communities [46].

This data contains various orientations, missing parts, and occlusions which test for various

conditions shapes may exist [46, 74]. We used a subset of the classes from MPEG-7. The

classes used were bird, bone, brick, camel, and cup. Since there are 20 instances per class,
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Table 6.2: Table shows the classes names, encoding, and counts of the classes of the MPEG-7
data. It also shows counts for the training and validation data sets.

Pill Shape Encoding Class Count Training Count Validation Count
Bird 1 80 56 24
Bone 2 80 56 24

Brick 3 80 56 24

Camels 4 80 56 24
Cups 5 80 56 24
Total - 400 280 120

the total size of the original data we used was 100 observations. Additional observations

were obtained by performing 3 rotations of 90�, 180�, and 270�. This resulted in a final data

set of 400 observations with each class having 80 instances. The counts are summarized in

Table 6.2. Figure 6.1 presents two examples of the shape images from the bird class.

(a) Figure shows an example a bird shape from
MPEG-7. In this image, the bird shape is fairly
accurate.

(b) Figure shows a bird shape from MPEG-7. In
this shape, the bird is at an odd orientation and
has large holes inside of the shape. Further, some
of the feet are missing. We deem this shape to
not entirely capture the shape of a bird.

Figure 6.1: Figure shows examples of bird shapes from MPEG-7. Notice that some of this
shapes are accurately captured while others are not.
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I utilized stratified random sampling for splitting the data to the training and validation

data [16]. The basic idea behind stratified random sampling is to reduce the error in our

estimation, parameter, or modeling accuracy by partitioning a class into appropriate strata

[16]. For the MEPG-7 data, each class was its own strata. Recall that for the pill shape

data, I treated each of the classes as individual stratum except for the hexagon class. I split

the hexagon class into two strata. There were two non-regular hexagons and six regular

hexagons. Examples of the regular and non-regular hexagon observations are provided in

Figures 5.6 and 5.7, respectively. I included one non-regular hexagon and three regular

hexagons in the training data set. The final counts of the training and validation sets are

provided in Table 6.1.

6.2.5 Shape Segmentation and Metric Collection

The details for the shape segmentation and metric collection are provided in Chapters 4

and 5. The image segmentation was mainly obtained by converting the image to grayscale,

then finding the edges, performing thresholding, filling in the holes of the binary image, and

then isolating the largest resulting shape.

The same segmentation algorithm from Equation 3.3 was applied to the MPEG-7 data

for convenience. What di↵ers is that i 2 {1, ..., 80}. To obtain the data augmented shapes

for the MPEG-7 experiment, I applied the following image operators:

c
i+(r�1)⇥80

[~p] = �
>0.50

R
✓rbi

[~p], 8i 2 {1, ...80}, r 2 {1, 2, 3, 4}, (6.3)

~

✓ = [0� 90� 180� 270�]
0
. (6.4)

The rotation operator, R, rotates the input image by ✓

r

for each r. The threshold operator,

�, ensures that the final rotated image contains values of only 0’s and 1’s. This results in

a total of 400 images.

There were seven metrics included for analysis. The code to collect the metrics is
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provided here: https://github.com/billyl320/DAMG. They were SPs, EIs, eccentricity,

circularity, and the white and black pixel counts from the minimum bounding box. The EIs

are the black and white pixel counts after placing the shape in the minimal encompassing

circle and then the minimal encompassing square. The SP value measures the number of

white pixels divided by the sum of the EIs. This means that SP measure the proportion

of white pixels after applying the shape proportion and encircled image-histogram (SPEI)

algorithm. Eccentricity measures the relative relationship between the major and minor

axes. Circularity measures how circular a given shape is. The white and black pixel counts

from the minimal bounding box jointly measure the rectangularity of a shape. The used

metrics are summarized in Table 6.3.

Table 6.3: Table provides the metrics used in this analysis on a given image, i. The
first column is the q

th metric, where q 2 {1, 2, ..., 10}. These variables make our model
interpretable.

~m

q,i

Metric
1 White EI
2 Black EI

3 SP value
4 Eccentricity
5 White Bounding Box Count

6 Black Bounding Box Count
7 Circularity

6.2.6 Model and Pseudocode Implementation

The DAMG algorithm was used as the model to discriminate the classes. Di↵erent

approaches were used for each experiment. At each decision node, only two variables were

used alongside a support vector machines (SVM) with a polynomial kernel for the pill shape

data. The variables were chosen by attempting all possible combinations of pairs. If multiple

pairs of variables provide perfect classification, the pair which produces an altered averaged
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similarity score within the created meta-classes is utilized. This is explained in more detail

in Equation 6.9. Algorithm 1 was implemented using the pseudocode provided in Algorithm

3. Algorithm 2 remained unaltered. The mathematical representation is expressed starting

from Equation 6.2 by

f(x) = [�
0

+
nmX

i=1

↵

i

(⌫
m

2X

j=1

x

ij

x

i

0
j

)dm ]I
Xm2Rm , 8m{1, ..., l} (6.5)

where, for a given m, d
m

is the degree of the polynomial, �
m

is a positive constant, and ⌫

m

is a constant. The value of l is the maximum number of subspaces.

The MPEG-7 data still used DAMG. However, it used a random forest (RF) at each node

with three variables. I utilized a di↵erent machine learning (ML) algorithm and number of

variables to showcase the flexibility of DAMG. The variables were chosen by attempting all

possible combinations of triads. If multiple triads of variables provide perfect classification,

the triad which produces an altered averaged similarity score within the created meta-

classes is utilized. This is explained in more detail in Equation 6.9. Using the notation

from Hastie et al. [28], assume that we have v variables or features and N observations or

instances. In other words, we have x

i

, y

i

for i = 1, 2, ..., N with x

i1

, x

i2

, ..., x

iv

. Further,

suppose that we have M regions, R
1

, ..., R

M

, that divide our feature space. Our model

response is represented by p

ek

for each region. This response corresponds to one of two

meta-classes. For the MPEG-7 data, for a given tree, b, Equation 6.2 is,

f(x)
b

= [
MX

e=1

p

ek

I(x 2 R

e

)]I
Xm2Rm , 8m{1, ..., l}. (6.6)

Note that I represents the indicator variable and k 2 {1, 2, ...,K}, where K is the total
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number of classes. We estimate p

ek

by

p̂

ek

=
1

N

e

X

xi2Re

I(y
i

= k). (6.7)

This is the proportion of class k instances in a given node or region e. A greedy algorithm

then considers splits using a given variable and split points. The Gini index is used to grow

the tree greedily. For 2 classes, the Gini index is

Q

m

(T ) = 2p(1� p), (6.8)

where p is the proportion in the second class. This is repeated until the minimum number

of nodes is reached. The RF algorithm repeats this tree building process B times (500 in

our case). However, these trees are built using bootstrapped data. Once all of the trees are

built, the majority vote for a given observation determines the class of that observation.

The expanded details are provided in Hastie et al. and Breiman’s two papers [4, 5, 28].

Algorithm 3 DAMG SVM Node Creation

1: procedure DAMG Node

2: Determine all m possible combinations of meta-classes
3: for i 2 1 : m do
4: Determine k combinations of 2 variables
5: for j 2 1 : k do
6: Create the j

th SVM model
7: Find mean Euclidean distance for 1st class using j

th variable pair
8: Find mean Euclidean distance for 2nd class using j

th variable pair

9: Find the candidate model(s), c, that perform best on the training data from all
k pairs

10: Save results for the i

th model from c which minimizes the absolute di↵erence
between the Euclidean distances of the classes

11:

12: if 9 a Model with perfect classification on testing data then
13: Calculate ⌦ for the best models
14: Select the one model and variables X

1

and X

2

which minimizes this di↵erence
15: else
16: Select the one model and variables X

1

and X

2

which minimizes the misclassifi-
cation error
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Since in Chapter 5 I showed that a HMH decision tree can be built with near perfect

classification, I imposed additional constraints on the algorithm. For example, the HMH

decision tree has perfect classification at every parent node, but not every leaf. Thus, I

included that constraint in Algorithm 3 on line 3. We also imposed this for the MPEG-7

data.

We chose to use a custom approach for variable selection. While various other approaches

were attempted or developed, none were able to provide satisfactory results. The variable

selection process selects the pair or triad of variables which minimizes the absolute distance

between the Euclidean distance for a given meta-class. Then, if there are multiple models

that provide the same best classification rate on the training data, an additional criterion

is used. The value which is then minimized is

⌦ =
D

E,1

+D

E,2

+ d⇥ �

2
(6.9)

where D

E,i

is the Euclidean distance for the i

th meta-class with the given pair or triad of

variables, d is the absolute di↵erence in the number of counts between the meta-classes, and

� is a positive constant. For our case, � = 0.41.

In small data scenarios, many candidate models will provide perfect classification. Thus,

additional constraints are needed to select the model from many possible candidates. The

constraint, ⌦, provides a penalized mean of the average similarity between the two meta-

classes. This constraint is useful in small data problems in particular due to d ⇥ �. This

value encourages splits which will balance the meta-class counts. The parameter, �, is used

to ensure that d does not overrepresent ⌦. Thus, meta-classes which consist of classes with

many observations will be encouraged to remain as a meta-class while meta-classes with a

smaller number of observations will be encouraged to stay together.

It is important to indicate that the first node’s meta-classes for the pill shape data were

predetermined. I determined the first meta-classes to be the Capsule, Oval, Rectangle,

and Round classes and the remaining classes as the other. The first meta-class includes all
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classes that are ovular in nature. The remaining classes are those which are not ovular.

Other than this node, none of the other meta-classes were predetermined. The MPEG-7

experiment was completely machine-driven.

I then used an SVM algorithm with a polynomial kernel since we used this algorithm

for the HMH decision tree. I then performed a grid search on the parameters they found

to be useful for each node of the decision tree. This helped to improve search time as we

could search the parameter space where we know a solution exists.

6.2.7 HMH Model Comparison for the Pill Shape Data

While mentioned previously in this manuscript, the DAMG model will be compared

to an HMH model used to classify pill shapes. The HMH model was able to provide

near perfect classification with a MAR of about 98% [43]. This model achieved perfect

classification for all the classes except between ovals and capsules [43]. This HMH model

was essentially building a series of models by hand to discriminate potential meta-classes

using only two variables per meta-class. Thus, the DAMG algorithm automates this model

creation process of the HMH model.

6.2.8 Other Machine or Statistical Learning Approaches for the Pill Shape

Data

Other completely automated approaches were attempted throughout the literature, but

none were able to achieve a high rate of classification [51]. I provided a CNN for some pill

shape classes in Chapter 4, but was only able to achieve 74% on their validation data. HMH

models are summarized in Tables 5.5 and 6.4. We included a balanced random forest (BRF)

model to compare against other imbalanced data approaches. None of the machine driven

models were able to acheive a high level of accuracy when compared to the HMH models.

Since Lamberti et al. provided the best HMH model, our paper attempts to automate the

human influenced parts of their approach and obtain similar rates of accuracy.
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Table 6.4: Table with the mean average recall (MAR) values for various models. The first
and third rows correspond to the model name. The second and fourth rows correspond to
the MAR values. The first model is an NB. The second model is an LDA. The third model
is the HMH adaptable tree built by Maddala et al. (Maddala - Tree). The forth model is the
HMH tree model from the previous chapter (Lamberti - Tree). Many of the other models
from Table 5.5 are not presented here since MAR could not be calculated for those models.
Maddala - Tree approach has the largest MAR, that approach performs best across all of
the classes. This corresponds to an outperformance over Lamberti - Tree of > 1%.

Method NB LDA Maddala - Tree
MAR 0.705 0.766 0.510

Method Maddala - Tree Lamberti - Tree
MAR 0.994 0.990

6.2.9 CNN Comparison for the MPEG-7 Data

In Chapter 4, I built CNNs to classify the MPEG-7 data in Python. I continued to

use this architecture as it seems to provide the most reasonable architecture for small data

problems [43]. However, this CNN was also trained using some of the data augmented

images.

6.3 Results

The R code uses the data.tree [21], e1071 [52], randomForest [10], and DiagrammeR

[33] packages. Implementation guidance for the models was obtained from James et al.

[35]. The R code which implemented this is provided at the following GitHub link: https:

//github.com/billyl320/DAMG.

6.3.1 Pill Shapes

Using the resulting shape metrics from the shape segmentation operators, I created a

DAMG models for the five random splits. These splits were fairly consistent and provided

competitive results by outperforming other approaches by about 177%.
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Shape Segmentation and Metric Collection

We used the resulting metrics collected from the binary shapes segmented in previous

Chapters. An example of an initial capsule image and its corresponding segmented shape

image are provided in Figures 5.1 and 5.2. I found the shapes of the pills were obtained

fairly accurately.

Figures of the scatterplots of the observations alongside some of the metrics used by

DAMG are provided in Chapter 5. Upon inspection, it is evident that groups of classes

are separable. Thus, I am confident that DAMG will also be able to find these classes via

meta-classes.

DAMG Model

The resulting model was a DAMG where each decision node used only two variables and

an SVM classification algorithm using a polynomial kernel. I created five DAMG models

with di↵erent training and validation data using random splits to observe the consistency

of the structure and performance of the DAMG algorithm. The parameter values for each

node’s grid search are provided in Table 6.5.

Table 6.5: Table the grid search values for the SVM classification algorithm using a poly-
nomial kernel. Note that only integer values were used. For example, degree used search
the grid values of 1, 2, 3, and 5.

SVM
i

Values
�

m

1
⌫

m

1:3, 50
d

m

1:3, 5

A universal similarity between the random splits is that the first node of the DAMG

models use the same two variables. Those variables are SP and eccentricity. Using these

variables, the DAMG model obtained perfect classification on the training and validation

data at this first node. I plotted the decision boundary for this node in Figure 6.2. The
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Figure 6.2: Figure shows the decision boundary made using the training data on the first
decision node. This DAMG used an SVM with a polynomial kernel. The red points are
associated with the oval, round, rectangle, and capsule observations. The black points
correspond to the other classes. The Xs indicate if the model used the observation as a
support vector, while the open circles are not support vectors. The pink area indicates
the space where an observation would be classified as a round, capsule, oval, or rectangle.
The cyan area indicates the space where an observation would be classified as a diamond,
hexagon, pentagon, rectangle, semi-circle, square, tear, trapezoid, or triangle. Each parent
node in DAMG can have this kind of 2D plot made. Modelers and users can utilize these
plots to better understand the decision-making process of DAMG. Thus, my model is highly
interpretable.
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capsule, round, oval, and rectangle meta-class tends to follow a linear pattern between SP

and eccentricity. As eccentricity increases, SP decreases at a faster rate. Thus, as the major

axis di↵ers more from the minor axis, the proportion of white pixels relative the sum of

the EIs decreases. This result is similar to the first node presented in the previous chapter.

Further, this plot can be made for any parent node of DAMG.

For the ovular meta-class side of the DAMG trees, the DAMG algorithm generally had

the next meta-classes as the Capsule and Oval classes and the Round and Rectangle classes.

This structure only deviates once. The non-ovular meta-class remained fairly consistent by

reproducing the same meta-class structure in three out of the five models. An example

of this structure is provided in Figure 6.3b. While the last two random splits resulted

in two unique structures, their initial resulting meta-classes were the same between the

two. The mean recall rates for each of the classes are provided in Table 6.6. Recall was

calculated in Equation 2.27. We also used precision to measure the accuracy of the model.

The traditional definition of precision is defined in Equation 2.28. However, since DAMG

sometimes misclassifies a child node with a meta-class which contains more than 1 class,

this definition does not work computationally. Thus, we used an pseudo-precision metric

which we define as

Pseudo-Precision =
True Positives

True Positives + Adjusted False Positives
. (6.10)

The adjusted false positives simply divides any false positives for a meta-class equally

through the classes it contains. For example, assume that the first meta-class was Triangle

and the second meta-class was Hexagon and Pentagon. If one of the Triangle observations

were misclassified as belonging to the second meta-class, then the single observations would

contribute 1

2

to each of the Hexagon and Pentagon classes’ false positive counts.

When compared to the HMH model from the previous chapter, the DAMG models un-

derperform for the Capsule, Hexagon, Pentagon, Tear, and Trapezoid classes as the HMH

model perfectly classified those classes [43]. However, the DAMG model outperformed for
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Capsule, Round, Oval, and Rectangle

1,4 6,7

1 4 6 7

(a) Figure shows the DAMG for the first permu-
tation for the capsule, round, oval, and rectangle
pill shape classes. The encodings are provided in
Table 6.1.

Else

2,8,10,11 3,5,9,12

8,10 2,11

8 10 2 11

3,5,9 12

3,5 9

3 5

(b) Figure shows the DAMG for the first per-
mutation for the other pill shape classes. The
encodings are provided in Table 6.1.

Figure 6.3: Figure shows the DAMG model for all of the pill shape classes for the first
permutation. The first meta-class was manually determined. After, DAMG determined
the meta-classes automatically. Each child node results in a pill shape class. The encoding
reference for each class is provided in Table 6.1.

the oval class as the HMH model only obtained a classification rate of about 0.938. When

using precision to compare the models, the DAMG model had an average outperformance

rate of 177%. The adjusted MP value for the DAMG model was 0.985 since I only consid-

ered those classes which overlapped all of the models. This provides evidence in favor of

Hypotheses 3 and 4 from Chapter 1.

6.3.2 MPEG-7

Using the resulting shape metrics from the shape segmentation operators, we created a

DAMG models for the five random splits. These splits were almost identical and provided

competitive results by outperforming the CNNs by about 156% and 148% on the training

and validation data, respectively.
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Table 6.6: Table shows the classes’ name, encoding, and mean recall across the five DAMG
models. The second and third columns report the mean of their respective statistic across
the 5 run. The final row shows the mean of the second and third column values. This shows
that the DAMG model provides fairly accurate and consistent results. Note precision was
calculated using an adjustment due to the nature of DAMG.

Pill Shape Encoding Recall Adjusted Precision
Capsule 1 0.9892 0.971
Diamond 2 1.000 0.989

Hexagon 3 0.90 0.960
Oval 4 0.9854 0.995

Pentagon 5 0.933 0.971
Rectangle 6 1.000 1.000

Round 7 1.000 1.000
Semi-circle 8 1.000 0.874

Square 9 1.000 1.000
Tear 10 0.840 0.954

Trapezoid 11 0.600 1.000
Triangle 12 1.000 0.989

Mean - 0.989 0.975

Shape Segmentation and Metric Collection

The MPEG-7 data was run through Equation 3.3 to properly capture the shapes. I found

that the shapes were fairly similar. However, some of the original shapes had imperfections

on them such as missing holes. The resulting shapes looked fairly better than their initial

inputs. Figure 6.4 provides an example of one of the data augmented shapes begotten from

Figure 6.1b.

DAMG Model

The resulting DAMG model for the MPEG-7 data used a RF model at each decision

node with three variables. Five random splits were performed to check the variability of the

results of DAMG. At each node, the number of variables to check for a split for the trees

117



Figure 6.4: Figure shows an example of one of the data augmented shapes from the bird
class. This is an improver version of Figure 6.1b. This is an improvement as many of
the holes in the shape have now disappeared while retaining the outline of the bird fairly
accurately.

of the RF was tuned via a grid search. The values searched were from 1 to 5. Stratified

random sampling was utilized to preserve the proportion of observations per class during

the random splits. The split proportions were 70% for training and 30% for validation.

All of the random splits for the MPEG-7 data produced the same structure in terms of

separation of meta-classes. Further, the same triad of variables was used at every node for

every random partition. Those variables were SP, eccentricity, and circularity. This means

that these three variables were key to discriminating these classes. Tables 6.7 and 6.8

provide summary statistics of the bird and bone and brick meta-classes, respectively. Some

insight can be gained from these statistics. For instance, the brick and bone meta-class

takes on very large values for eccentricity. However, due to the complex nature of these

meta-classes, a 3D scatterplot provides more insight. A 3D scatterplot of each of these

classes are provided in Figure 6.5. This plot confirms that the bone and brick meta-class

does take on very large values for eccentricity, but it is specifically the bone class that does

this. The brick class actually takes on smaller values of eccentricity. This plot shows that

the bird meta-class is relatively circular in shape, large in context of the nearby area, and
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usually has similar major and minor axes’ length. The brick and bone meta class can be

nicely described using their two classes. The bone class is relatively non-circular in shape,

small in context of the nearby area, and usually has a very large major and axis. The brick

class is relatively circular in shape, large in context of the nearby area, and usually has

a very similar major and minor axes’ length. Further, the brick class is fairly consistent,

most of the observations are closer to one another. Thus, the DAMG model can be easily

interpreted and explained at each child node for a given parent node.

Table 6.7: Table shows the summary of used variables for the bird meta-class.

SP Circularity Eccentricity
Min 0.1627 1.125 2.687

1st Qu. 0.1993 1.985 4.376
Median 0.2243 2.129 5.303
Mean 0.2206 2.376 5.665
3rd Qu. 0.2416 2.472 6.994
Max 0.2754 4.721 9.760

Table 6.8: Table shows the summary of used variables for the brick and bone meta-class.

SP Circularity Eccentricity
Min 0.07634 1.469 7.100

1st Qu. 0.10338 1.602 9.775
Median 0.19837 2.009 21.562
Mean 0.19100 2.957 33.851
3rd Qu. 0.27342 4.680 44.701
Max 0.31814 5.264 156.018

Another similarity is that it correctly classified every class with 100% accuracy except

for the camel class. In some of the random partitions, the model misclassified the camel

observations in the validation data incorrectly. This is summarized in Table 6.9. The

random partitions only di↵ered in the number of variables used to build the trees. Most of

the time it was 1 variable, but sometimes it used 3. The accuracy of the DAMG model is

provided in Table 6.9.
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Figure 6.5: Figure shows the 3D scatterplot of the Bird, Bone, and Brick classes. The bird,
bone, and brick observations are in gray, orange, and blue, respectively. DAMG classified
the bird meta-class from the bone and brick meta-class at one of the parent nodes. At this
node, it was able to recognize that the bird observations reside between the other meta-class.
The bird meta-class tends to have SP values around 0.22 and small values of eccentricity.
However, the bone and brick meta-class had a complex relationship. It either had very
large values for eccentricity with a small SP value, or it had larger SP values with smaller
eccentricity and circularity.
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Figure 6.6: Figure shows the resulting DAMG tree for the MPEG-7 data. The structure
was uniform throughout the 5 partitions. The encodings for the classes are provided in
Table 6.2.

CNN Model

The CNN model was trained under similar conditions to the DAMG model. For in-

stance, both models used data augmentation and the same random partitions. The results

for the CNN model are provided in Table 6.9. However, the CNN underperformed the

DAMG model. Part of the issue is that CNN models cannot find features that are invariant

to orientation. They require a much larger amount of data to train. Thus, the DAMG

model outperform the CNN by about 156% and 148% on the training and validation data,

respectively. This results provide evidence in favor of Hypothesis 4 from Chapter 1.
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Table 6.9: Table shows the classes’ name, encoding, and mean recall across the five DAMG
and CNN models on the training (Train) and validation (Valid) data. The first column
is the numeric encoding for the class, while the remaining columns are the mean recall
across the 5 random partitions. This shows that the DAMG model provides fairly accurate
and consistent results while the CNN model is unable to distinguish the classes e↵ectively.
This corresponds to an outperformance rating of DAMG of about 156% and 148% on the
training and validation data, respectively, when using the overall mean recall across all of
the random splits.

Class Encoding RF Train RF Valid CNN Train CNN Valid
Bird 1 1.00 1.00 0.38 0.34
Bone 2 1.00 1.00 0.56 0.53

Brick 3 1.00 1.00 0.55 0.54

Camels 4 1.00 0.95 0.21 0.30
Cups 5 1.00 1.00 0.24 0.26
Overall - 1.00 0.99 0.39 0.40

6.4 Discussion

The first conclusion is the outperformance of the DAMG model compared to other

results. DAMG’s broader implications for modeling are mentioned second. I then discuss

DAMG’s unique ability to classify imbalanced data sets. I end by discussing the flexibility

of the DAMG algorithm.

6.4.1 DAMG Competitively Performs

For the MPEG-7 data, the DAMG model was able to outperform the CNN based ap-

proach by 156% and 148% on the training and validation data, respectively, when using the

overall mean recall across all of the random splits. This shows that by using interpretable

metrics, DAMG is able to classify the shapes better than CNNs. CNNs are not able to

capture features of shapes that are invarient to orientation. When this is coupled with very

limited data, CNNs are unable to learn the features necessary to discriminate the classes.

For the pill shape data, DAMG was able to outperform other approaches by about

177% on average. The DAMG model outperformed all of the machine driven approaches
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and Maddala et al.’s HMH tree. Further, the DAMG algorithm performs nearly as well as

the HMH decision tree from the previous chapter. This showcases the power of breaking

down a complicated problem into a series of simpler ones. This provides competitive results

when compared to more complex or costly approaches. This result provide evidence in favor

of Hypotheses 3 and 4 from Chapter 1.

6.4.2 DAMG Provides Interpretable and Explainable Solutions

Figures 6.2 and 6.5 and Tables 6.7 and 6.8 provide interpretable and explainable in-

sights for DAMG’s results. Given this study’s constraints, we were able to provide valuable

insights using a variety of methods. Many times, simple statistics will provide an adequate

understanding of the meta-classes produced. However, creating 2D or 3D plots may provide

further insight to understand how the meta-classes reside in the space they occupy. This

allows users to explain the results to a wide range of non-users since we are using features

that have very concrete and interpretable meanings.

However, DAMG does heavily depend on the implementation. For example, imple-

menting a DAMG that has a very large number of variables to discriminate meta-classes

will drastically reduce the interpretability. Another example is to use a technique that the

modeler cannot interpret or explain. This also assumes that the variables used have an

interpretable meaning.

6.4.3 DAMG Implies Problems are a Series of Simpler Ones

It is often beneficial to view a given classification task as a series of smaller problems.

This process of classifying and finding the important features for a given pair of meta-

classes provides two benefits. The first is drastically improving the interpretability of the

model. The second benefit is the reduction of the model complexity. This allows users to

circumvent the need for intricate models or deep learning. This provides evidence in favor

of Hypothesis 4 from Chapter 1.
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6.4.4 DAMG Works Well on Imbalanced Data

The DAMG model works well for imbalanced data. This allows modelers to avoid the

use of weights on smaller classes through data level methods. DAMG circumvents the

need for more complicated approaches. This improves the interpretability of the modeling

process.

6.4.5 DAMG is Flexible

The DAMG algorithm can be used with any desired feature selection and classification

techniques. We showed this by doing two separate implementations of DAMG. The first

was an SVM with a polynomial kernel that used two variables per node. The second

implementation was a RF that used three variables per node. This allows the modeler

to choose a given set of techniques for any respective problem. For instance, for a given

meta-class, they can choose to build a SVM model and a separate Näıve Bayes model. They

would then pick the model that performed the best for a given node. Thus, the DAMG

algorithm can be designed for a particular problem in a variety of ways, which gives it great

power and utility.

6.5 Future Work

Future work would extend implementations to improve the DAMG’s selection of models,

meta-classes, and variables. For example, allowing DAMG to choose the best model from

a series of candidate models allows for greater flexibility. Improving DAMG’s selection of

candidate meta-classes and variables would make the algorithm faster.

DAMG provides promising results on the presented data. Applying the DAMG to

algorithm to a variety of classification tasks in a many practical fields is an exciting prospect

for us.

Lastly, I would like to incorporate CNNs into a DAMG implementation. While we

recognize that this would greatly reduce the interpretation of the model, we do believe that
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this could help CNNs by simplifying the classification task. This could in turn reduce the

number of needed features to learn as there would only be a binary classification task. This

in turn could allow for a simpler CNN architecture. Visualizing the layers of these CNNs

could help with interpreting the results. Further, each child CNN could use transfer learning

from the parent CNN to learn the needed features more quickly.

6.6 Conclusions

A new classification algorithm called DAMG is presented. The DAMG algorithm breaks

down complicated classification problems into a series of simpler tasks. This then provides

nearly identical performance to HMH models for the case of pill shape classification and

outperforms CNNs on a subset of the MPEG-7 data. The DAMG model is highly inter-

pretable as each node only requires few variables for classifying two meta-classes. The tree

ends with individual leaves for each class. This structure aids as a visual representation.
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Chapter 7: General Discussion

In this chapter, I will discuss SPEI’s utility, the importance of SPEI for classification

models, and the contributions of the human-machine hybrid (HMH) and DAMG models.

These will show that the work throughout this thesis provides an elegant and impactful

solution to the hypotheses presented in Chapter 1. I will also mention some unexpected

results during this research process.

7.1 SPEI-Based Models Outperform CNNs

In Chapter 4, my experiments showed that SPEI-based models outperform CNNs in

small data scenarios by 52%. This provides strong evidence that SPEI’s resulting EIs are

competitive metrics for classification purposes. This provides evidence in favor of Hypothesis

2 from Chapter 1.

7.2 SPEI is Foundational for HMH and DAMG Models

In Chapters 5 and 6, we saw the resulting SP values from SPEI were essential for the

initial nodes in the resulting trees. The trees could not have been created without the

combination of SP values and eccentricity.

7.3 HMH Model Provides a Standard

The HMH model in Chapter 5 provides a standard for other models to compete against.

This model was able to perfectly classify all classes except for capsule and oval pill shapes.

Thus, future machine driven models will need to at least obtain the same level of accuracy.

This provides evidence in favor of Hypotheses 3 and 4 from Chapter 1.
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7.4 DAMG Model Nearly Matches HMH Model

The DAMG model presented in Chapter 6 nearly matches the HMH model in Chapter 5.

The DAMG algorithm provided fairly consistent results. It obtained perfect classification

up to but excluding the child nodes. The DAMG models were competitive to other pill

classification models from the literature. This provides evidence in favor of Hypotheses 3

and 4 from Chapter 1.

7.5 DAMG Simplifies Complex Classification Problems

The DAMG algorithm converts complex multinomial classification problems into a series

of simpler ones. This conversion provides interpretable and competitive solutions that work

especially well for unbalanced data. This provides evidence in favor of Hypotheses 3 and 4

from Chapter 1.

7.6 Unexpected Changes and Results

During the research process, there were changes and results that were not anticipated

at the time of the proposal. There were two changes and two additional results.

7.6.1 Segmentation on Pillbox Data

I underestimated the complexity of segmenting the initially proposed data set, the Pill-

box data. This data could not be segmented using a universal algorithm and required

the use of the NLM competition data instead. In future, I will try to anticipate the com-

plexity of the data before over-promising results that are unobtainable. Additionally, my

appreciation for those individuals who collect data well has increased.

7.6.2 SP Values Important for HMH and DAMG Models

After performing the experiments in Chapter 4, I believed that SP values were not

helpful for classification purposes. However, the models presented in Chapters 5 and 6
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proved otherwise. Thus, SP values are useful for describing and discriminating shapes.

However, for SP values to be useful for classification purposes, the scale of the shape must

be adequately large. Future work will explore what this exact scale should be.

7.6.3 DAMG is an Unexpected Discovery

The DAMG algorithm was an unexpected discovery. The process of creating the model

in Chapter 5 implied that the human-influenced parts of the model could be automated.

This implication resulted in a statistical or machine learning algorithm that greatly improves

classification tasks where there are many classes.

7.7 Impacts and Contributions

In the following section, we will discuss the impacts and contributions of this thesis.

The contributions are SPEIs, the pill shape classification models, and DAMG.

7.7.1 SPEI

SPEI is an image operator algorithm where a shape is enclosed first by the minimizing

encompassing circle and then the minimizing encompassing square. SPEI results in the SP

and EI values. These metrics are useful for describing and classifying shapes. SPEI-based

models outperform CNNs in small data scenarios by 52%. The SP values are also essential

for pill shape classification models.

7.7.2 Pill Shape Classification

I was able to provide an improved pill shape classification model. The HMH model was

able to obtain near perfect classification as it only misclassified oval and capsule pill shapes.

DAMG was able to obtain results that were nearly the same as those provided by HMH.
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7.7.3 DAMG Algorithm

The DAMG algorithm is a new classification technique which simplifies all multinomial

classification problems into a series of binary tasks. This approach provides a solution that

is elegant and interpretable, greatly increasing the utility of ML or SL techniques. DAMG

is particularly e↵ective in small data problems where the data is unbalanced.

7.7.4 Publications

The work of this thesis has already been used to problems outside of the examples

presented. I used SP and EI, among other shape metrics, to classify blood cells [42]. The

resulting SVM model was able to outperform CNN-based approaches by an average of 5%.

Another application used SP and EI, among other metrics, in a RF to classify synthetic

aperture radar (SAR) images of icebergs and ships [41]. The RF outperformed CNN-based

approaches by about about 7% and 11% on the testing and validation data, respectively.

Further, GMU’s O�ce of Technology Transfer has submitted a patent for the HMH pill

shape classification model. Thus, various outside authoritative entities have validated the

utility and contribution originally presented in this thesis.
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Chapter 8: Summary

This thesis advances science in three areas: shape metrics, pill shape classification, and

classification algorithms. The developments presented in this thesis show that shape and

classification algorithms are able to outperform. The solutions for these areas are elegant

and e↵ective. The SPEI algorithm provides analysts with a new tool that is applicable in

a variety of fields. I showed this tool’s impact on medical shape analysis, astronomy, and

object recognition. The SP and EI values are particularly useful in small data problems.

SPEI-based models outperform CNNs in these scenarios by about 52%. The HMH and

DAMG models provide a notable improvement to pill shape classification. These models

bring the research closer to providing a perfect pill identification system. The DAMG

classification algorithm converts complex classification problems into a series of smaller

and simpler tasks. This improves solutions to classification problems with many classes by

increasing their interpretability and performance, especially for imbalanced data.
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