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ABSTRACT

ESSAYS ON BANKING AND CAPITAL: AN AGENT-BASED INVESTIGATION

Pedro P. Romero, PhD.

George Mason University, 2009

Dissertation Director:  Dr. Richard E. Wagner

How do institutional arrangements in banking affect the occurrence of crises? 

The first two chapters present an endeavor in using new modeling techniques to 

answer this question. Even if the results are not widely accepted, the way in 

which the problem is tackled here is offered for consideration and debate. Is 

capital the result of an evolving process that takes advantages of entrepreneurial 

networks? The last chapter put forth a model wherein firms develop economic 

ties with one another. By doing so, a market network unfolds along time as an 

spontaneous process.  

In the first chapter, I explore the occurrence of bank runs by developing a 

sensitivity analysis to the model in Diamond and Dybvig (1983). I implement an 

agent-based economic model to analyze different modifications and extensions 

to the original. In 36 experiments based on three different versions of the one-



bank model the frequency of bank runs dropped from 42% to 17%. This was due 

to changes in the payoffs structure and social network effects whereby depositors 

go to the bank if at least three of their proximate neighbors went previously. 

What is the role of interbank markets and central banks in coping with banking 

crises? In experiments using an agent-based framework with multiple banks and 

an interbank market. I found that when banks cannot interact, then runs in 

isolated banks occur with a higher frequency than when banks have equal 

market shares. That is, there are no runs escalating to systemic panics. In 

contrast, if one bank has a market share twice as big as the rest, runs spread. 

The presence of a central bank may unexpectedly increase the occurrence of 

bank runs. Institutional complexity helps to reduce the frequency of bank runs. 

Hence, decentralized institutional structures perform better than centralized ones.

The objective in this chapter is to implement a parsimonious agent-based 

computational model of economic networks whereby agents make strategic 

decisions based upon profits and information generated through their immediate 

social network. In this model firms are represented by nodes and the links 

between each pair of them are the result of a mutually advantageous economic 

decision. Therefore, links are two-sided or undirected. The economic decision is 

based on two elements, namely: a myopic profit motive and local information 

channeled through collaborating firms. Here I endogenize the formation and 



deletion of links. Furthermore the number of firms (nodes) in the network at each 

time by allowing firms (nodes) to enter and exit the market. Centrality measures 

are reported together with firms’ profits. The evolution of the network yields 

higher connectivity and profits when the (positive) externality is high and the rule 

to exit the market more strict. The higher the network connectivity, the higher the 

overall profits of firms.



1. Bank Runs, Banking Contracts, and Social Networks

1. Introduction

 The model of Diamond and Dybvig (1983) is perhaps the modern 

canonical statement of the claim that money won’t manage itself because a 

regime of free banking is subject to contagious bank runs and failures, wherein 

insolvency in one bank can spread to other banks that initially were solvent. 

Deposit insurance and various forms of regulation might serve as means of 

restraining such runs. Diamond-Dybvig (hereafter) is austerely simple, involving, 

among other things, a single bank that neither makes loans nor allows checking 

accounts. The point of this paper is not to challenge Diamond-Dybvig, but rather 

is to explore how computational modeling might be brought to bear on the 

relationship between agents’ environment and bank runs. 

In this paper, I implement an agent-based computational model to analyze 

different modifications and extensions to the original model. By doing so, I can 

use discrete agents that have individual properties and follow decision rules 

according to the economic environment in which they are interacting. 

Macroeconomic as well as microeconomic causes of banking crises have been 
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discussed in the literature. Gorton and Winton (2002) present a thorough survey 

in this regard. My focus in this paper will be on the microeconomic causes of 

banking crises.  

 The relationship between business cycles and banking panics1 in 

comparing the National Banking Era and the Great Depression points out a small 

difference regarding when panics are leading or lagging the cycle. During the 

former most of the six2  panic occurrences identified in Calomiris and Gorton 

(1991) happened during the downturn and near to the peak3. In contrast, the first 

wave of bank panics during the Great Depression occurred after thirteen months 

of the turning point in the cycle (Duckenfield et. al. 2006 Vols. 2-3; Friedman and 

Schwartz 1963). Also, Mishkin and White (2003) study the major stock market 

crashes in the twentieth century in the U.S. and report 15 episodes in which 

stock market crashes precede financial instability or distress; including banking 

panics (although without a clear pattern as a leading, coincident or lagged 

indicator of the business cycle in the U.S.). During the post Second World War 

period up to 2008; there had been 11 recessions of smaller magnitude (in terms 

of lost GDP) compared to the previous period according to the National Bureau 

2

1 Here I follow standard definitions to distinguish a ‘bank run’ as a localized liquidity crisis in one 
bank when the withdrawal rate is so large that it cannot be served; a ‘banking panic’ whereby 
several banks face generalized withdrawals that compromise their liquidity; and a ‘bank failure’ in 
which case a bank or more suspend payments and/or exit the market. See Selgin (1988), 
Calomiris and Gorton (1991), and Leijonhufvud (1998) for a broader taxonomy of economic 
crises.
2 Wicker (2000:xii) reports five by excluding the panic in 1896 due to its localized nature to 
Chicago and Minneapolis-St. Paul without propagating to the whole country.
3 The panic in 1873 anticipated the peak of the business cycle for one month.



of Economic Research (NBER); but only until the 1973 recession did bank 

failures occur. Also later in the 1980s during the savings and loan crisis and now 

in the U.S.-led financial crisis in the developed world.       

 Calomiris and Gorton (1991) test the operational hypotheses stemming 

from the two competing models that in the early 1980s tried to answer the 

following question, namely: “How can bank debt contracts be optimal if such 

contracts lead to banking panics?” 1991:1074. The models were: a) random 

deposit withdrawals, and b) the asymmetric information. The seminal paper for 

the first strand of models is Diamond-Dybvig. While for the second one its origin 

is more diverse: Chari and Jagannathan (1988), Gorton and Mullineaux (1987), 

Diamond (1984), and Jacklin and Bhattacharya (1988) are the most relevant 

papers. 

Random deposit withdrawals models focus on the liability side of the 

balance sheet of banks, i.e. deposits. There banks’ main role is to provide 

‘liquidity’ that contributes to the smoothing pattern of individual consumption. On 

a pure theoretical basis this model requires two mechanisms to assure the 

occurrence of a bank run. These are a sequential-service constraint (Wallace 

3

4 Another way in which this question can be posed that is closer to the current research on 
‘emergent’ or bottom-up organizational and institutional processes is: How do banks 
spontaneously evolve in markets to provide liquidity and related financial services?



1988) and a lack of a secondary market for trading assets and bank liabilities 

(Jacklin 1987). 

In the asymmetric information case the asset side of the balance sheet of 

banks is analyzed, but without any effect from the liability side. Here bank runs 

happen as a rational response by depositors that neither have full information 

about the quality of the loans of the banks nor lower transaction costs to monitor 

that aspect for every loan. Thus, a bank exists to monitor the quality of the loans 

of a pool of savers to borrowers. Bank runs occur when those savers or 

depositors are not sure about which banks are solvent. 

In both of those cases ‘outside’ equity is omitted (Dewatripont and Tirole 

1993). Dowd (1993) includes ‘inside’ equity provided by a bank owner, allowing 

him to conclude that with this modification bank runs are less likely. On the other 

hand, in this literature banks’ liabilities do not play any role as a medium of 

exchange, whether as inside money or outside money. Gorton and Pennacchi 

(1990) elaborate a model that can be deemed as an approximation of the ‘credit 

theory of money’ spelled out by Schumpeter (1939). Under a setting similar to 

that of Diamond-Dybvig, they derive how banks overcome the asymmetry of 

information between informed and uninformed traders by creating or offering a 

riskless security that can be used as a medium of exchange5.  It remains an open 

4

5 Marimon, Nicolini and Teles (2003) present a model where inside money providers’ competition 
creates incentives that promote efficiency for the government’s supply of outside money. 



avenue for research the modeling of both sides of the balance sheet of banks 

and the effect for asset and liability management6. 

Calomiris and Gorton (1991) implement their empirical test with data from 

the National Banking Era in the U.S.. They proceed by distinguishing three 

opposing predictions yielded by the two models. First off, the random withdrawals 

model differs from the asymmetric information model over the source of shocks 

triggering the panic. In the former case an idiosyncratic shift in the money-

demand is the cause of the panic, so unusual increases in withdrawals in the pre-

panic periods should be observed. On the contrary, in the latter case the shocks 

might be falling stock prices, real-state prices, or those occurred in whatever 

assets mostly held in banks’ portfolio. 

Secondly, bank failures or liquidations will come from regionally 

concentrated demand shocks channeled through the banking network, according 

to the random withdrawals model. For the second type of models high incidences 

of bank failures will more likely happen in regions that suffer from negative asset 

shocks. Lastly, both types of models differ in their predictions regarding the 

management of the crises. The random withdrawals model predicts that a 

discount window like the one provided by the Fed during the Great Depression 

should be a sufficient deterrent for banking panics. While the asymmetric 

5

6 For a fruitful reading in this line, see Diamond and Rajan (2001).



information model predicts that interbank transfers or some similar sort of 

collective action by banks will help to internalize and quickly solve bank runs to 

avoid turning into systemic panics. 

All in all, Calomiris and Gorton (1991) develop an exhaustive statistical 

test for the three stages just described without implementing an explicit 

econometric test in either case (Gorton 1988, develops an econometric model to 

test the implications of the first set of predictions supporting the asymmetric 

information model). Their findings reject the predictions of the random withdrawal 

model during the National Banking Era and the Great Depression in favor of the 

predictions of the asymmetric information model. The historical work by Wicker 

(2000: 139-147) also supports these results but he remarks that some of the data 

used by Calomiris and Gorton may be incomplete and more work needs to be 

done to fill that gap.  

Despite this, in this paper, I will not get rid of Diamond-Dybvig altogether. 

Rather I will relax some of their assumptions. By doing so, I will show how even 

in this tradition of models bank runs are less likely. 

The rest of the paper is organized as follows. Section 2 presents a more 

specific review of the related literature. Section 3 presents the model I purport to 
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tackle these issues. Section 4 presents the results. Last section contains the 

summary and possible extensions to the model.

 

2. An Overview of Diamond and Dybvig and Related Models

In the Diamond-Dybvig model they assume a continuum of depositors with 

two types of them: impatient and patient ones. The model has three periods and 

the agents’ types are ‘discovered’ –actually, randomly selected from a uniform 

distribution—in the second period. The agents interact in a coordination game 

with no mixed strategies. In the first period each depositor makes a deposit in the 

bank that has a linear production function with constant returns to scale. Also, the 

bank neither lends money nor owns equity. On the third period the bank’s 

investment matures providing positive returns. There is no uncertainty either.

The sequence of actions proceeds as follows: if only impatient agents 

withdraw during the second period then a bank run does not occur and the 

population coordinates on the Pareto superior equilibrium. Conversely, if patient 

agents imitate the behavior of impatient agents on the second period instead of 

waiting to withdraw in the third and last period, a bank run will occur and the 

population will coordinate on the second Nash equilibrium that is not Pareto 

optimal.

7



The following are some relevant extensions to this model to analyze the 

robustness of its conclusions. Making agents heterogeneous regarding their 

preferences and discounting rates instead of having only two types of agents’ 

populations that is tantamount to having only two agents. Increasing the number 

of banks (see below Temzelides 1997, for such an extension). Adding owner’s 

capital or equity to the bank’s balance sheet (Dowd 1993). Also including the 

lending activity of the banks (see Diamond 1984).  

In the Temzelides (1997) model the original setup of Diamond-Dybvig is 

extended to a repeated game environment. Thus, the author is able to analyze 

the evolution of agents’ learning during the game and it is claimed that this 

reinforces the reduction in the likelihood of bank runs. This model also 

incorporates a case of multiple isolated banks, randomizes strategies of patient 

agents, bank size becomes a control variable, random matching between 

depositors and banks, banks are subject to demand shocks, there is uncertainty 

in payoffs due to the random matching process, and furthermore, introduces a 

small world network for agent(s)-bank(s) interaction for an alternative matching 

process.

 

Agents’ learning in the simple repeated game version allows them to 

coordinate longer on the Pareto superior equilibrium than when the game is 

played only for one-shot. Moreover, if the bank’s size increases, then the 

8



population of agents coordinates mostly on the inferior Pareto equilibrium. On the 

other hand, under the local interaction rule, i.e. small world network, financial 

contagion is more feasible among banks.

 

 In my first approximation to model bank runs within an agent-based 

computational model, I add heterogeneity across depositors regarding their 

preferences and discount rates.  Initially, there is only one bank that is investing 

part of its idle funds in bonds that can be turned into cash by selling them in the 

secondary market. I also analyze how network topology can affect the feasibility 

of bank runs incorporating neighborhoods. 

3. Implementation in an Agent-Based Computational Framework

This version of the model only includes a bank à la Diamond-Dybvig. A 

model with several banks will be introduced in Romero (2009). A key feature of 

this computational model involves the specification of the operating rules for any 

individual bank. The monetary base is all the wealth deposited by agents in the 

banks that can be withdrawn at any time. 

A bank has a multiplicity of discrete depositors, most of whom at any 

moment will have positive balances on deposit.  While a bank will want to keep 

reserves to maintain liquidity against claims for redemption by depositors, it will 

9



be able to lend out some of its reserves. By doing this, however, also comes a 

risk of illiquidity that is not present when the bank provides only bailment.  

 

To avoid complexities regarding financial firms and labor markets, I 

assume all firms are sole proprietorships.  Up to now only individuals and a 

single bank populate the model. There is an initial (uniform) distribution of money 

among the individuals who in turn entrust their money to a bank.  This model is 

spatial in character and I will specify the details of this below.  

 

For each individual, receipts and expenditures are both subject to some 

random variation.  Any bank will lend based on some myopic forecast on current 

experience regarding the behavior of its reserves.  From this point of departure 

there are several experiments that can be performed.  The first would be to 

assume that all depositors are subject to the same random variation.  This would 

be a world of homogeneity and would map relatively directly into closed forms of 

modeling based on averages and representative agents.  The challenge and 

opportunity for computational modeling would involve the presence of 

heterogeneity, and along several dimensions7.  At any rate, here I seek to 

answer: under what circumstances a local bank run may or may not happen?

10

7 See Axtell (2000) where he points out three different reasons to use agent-based instead of 
equation-based models. My claim is that this model falls in his third category wherein writing 
down the equations does not shed light on the problem.  



Next, I describe the details of the computational replication (implemented 

in Netlogo 4.0.2) and introductory modifications to the Diamond-Dybvig model

(see Appendix A for pseudo-code, and Appendix B for a screenshot). In this initial 

version there is only one bank located in the center of the grid and 441 

depositors8. There are two types of depositors: impatient and patient ones. 

During the initialization of the model the depositors make their unitary 

deposits in the bank, then their types are randomly assigned out of an uniform 

probability of being an impatient agent. The parameterization of the 

computational model is summarized in Table 1, which is a base scenario that I 

will explore.

Table 1. Model Set-up
Model Attribute Value
Depositors, D 441
Banks, B 1
Initial Deposit per agent 1
Agent Type p (impatient/deposited) = 0.5

p (patient/deposited) = 0.5
Withdrawals Impatient-type = 0

Patient-type = 0
r1 
R

1.2
2

Initial Bank’s Deposits Sum initial deposits by all agents
# Agents Withdrawing n-served 0

11

8 Technically, the grid is a torus with 21 by 21 patches that does wrap either vertical or 
horizontally. Every patch is an agent (depositor), so that this is where the number 441 comes 
from. Because I am not incorporating any rule for agents’ movement or mutation this is enough 
for my analysis.   



In the running stage (go procedure) impatient agents will start to withdraw 

a random proportion of the sum of their initial deposit plus a return. But this will 

be carried out sequentially in order, agent after agent9. This allows me to 

introduce the 'sequential service constraint' of the original model. 

Let the payoff for impatient agents withdrawing before those who are 

patient be: 

and the return for patient agents be:

where fj is the number of bank’s depositors being served at time t as a fraction of 

the total number of initial depositors and r1 is the gross return for those 

withdrawing before the bank’s investment has matured otherwise their return is 

R. The following relationship is established: 1 ≤ r1 < R. Finally, f is the fraction of 

impatient agents in relation to the total number of agents.  Equations (1) and (2) 

are slightly different from equations (2) and (3) in Diamond-Dybvig model.

12

9 Since Netlogo 4.0 exists the possibility of asking agents in an orderly fashion throughout the grid 
one by one.



There are also two regimes for the rates of return, which are: 'fixed' and 

'random'. The first follows the Diamond-Dybvig assumptions regarding 

homogeneity across agents. The latter allows me to analyze heterogeneity 

across agents. In Table 1, the case for r1 fixed (1.2) and equal across agents is 

presented. Also, R here is set equal to 2. For the second case the rates of 

returns are randomly drawn from a uniform distribution: r1 (1, 1.2) and R (1.2, 2). 

Patient agents have a higher fitness or payoff from which they can 

consume (withdraw). That is V2 > V1, given the sequential service constraint, the 

availability of funds in the bank, and the rate of withdrawals. Below I describe the 

model’s agents and their features.

Depositors: each depositor has information about its deposits, amount 

withdrew, payoff or fitness, returns for withdrawing at an early or later date, and 

an account to register how much is left in the bank.

Bank(s): register their initial deposits, the amounts withdrew by depositors 

at every time-step during the simulation, how many agents have been served, 

and their final balance. The bank invests according to the following condition:

13



where It is the bank’s investment per period; that takes its previous positive 

balance bt-1 to be invested at the rate of return R—which is the same gross rate 

of return that agents will receive for being patients. This will happen so long as 

the number of agents withdrawing before the investment matures fj is less than or 

equal to the total number of impatient agents fimp. Finally, if the bank goes 

bankrupt the simulation stops. 

Main interaction rule: There are two rates of return to determine 

depositors’ payoffs and accounts. Two different regimes for agents’ consumption 

can also be chosen. Firstly, agents consume altogether their respective payoffs, 

V1 and V2, every time they withdraw. In the second case each agent withdraws a 

(random) proportion wj (0, 1) from their payoffs.  

Once all the agents are initialized the depositors or bank’s customers have 

to decide whether to withdraw at every period in the simulation. Impatient agents 

withdraw first, and then patient agents have to decide whether to withdraw. The 

decision of withdrawing now or later also depends upon the following relationship 

taken from Diamond-Dybvig, that is, that the proportion of customers being 

served with respect to the total number of customers may or not be less than the 

inverse of the return for withdrawing earlier, as explained in equation (1).

14



The bank balances its account and keeps serving its customers until it has 

run out of money. Every customer can withdraw from the bank only after it has 

served the previous customer. This is not a concurrent procedure.

4. Results

In Figure 1, I present a computational model based on the conditions 

exposed above. In this figure there are four panels.  The blue line tracks the 

change in final balances or net deposits in the bank. The black line records total 

withdrawals from both types of agents. The green line depicts only the total 

withdrawals from agents (impatient or patient) withdrawing in earlier periods. 

Finally the brown line depicts those withdrawals from those agents (only patient 

ones) who wait. In panel a) after two time-steps the bank ran out of savings or 

liquidity to serve its clients. There were only 336 agents who could be served 

during this experiment. The remaining 105 could not even get their initial deposits 

back. This first result obtained with homogenous consumption and rates of return 

and with r1 > 1, is the same as in Diamond-Dybvig.

15
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d) Random heterogeneous rates of returns; 
variable consumption wj =(0, 1); 221 patient and 
220 impatient agents.

Figure 1. Experiments with Original Diamond-Dybvig. 

  
In panel b) the bank does not run out of funds. The variables achieve a 

stationary equilibrium whereby total withdrawals hover over 300 value units. It is 

important to observe that the only modification in this experiment from the 

previous one is that the consumption schedule per agent is variable or 

heterogeneous across population. In panel c) again with constant consumption 

schedule per agent but with heterogeneous rates of returns after five time-steps 

the bank ran out of assets and only could serve to 347 agent depositors. This is 

127 more than the total number of impatient agents, i.e. 58% greater. Thus, 

patient agents withdrawing earlier than they were supposed to do it bring about 
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the bank run. There were 94 depositors who were unable to withdraw after the 

bank went bankrupt. Lastly, in panel d) with variable consumption schedule and 

heterogeneous rates of returns across agents a bank run does not occur. The 

bank’s balance and total withdrawals hover over 200. Another stationary 

equilibrium is again achieved.
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a) Fixed rates of return to r1= 1.2 and R= 2; 
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d) Random heterogeneous rates of returns; 
variable consumption wj =(0, 1); 221 patient and 
220 impatient agents.

Figure 2. Experiments with Modified Diamond-Dybvig. 

In Figure 2, I present a modified version of the previous computational 

model whereby the depositor-bank contract is modified to have a different payoff 

structure. In this case, the payoffs for each period are given by:
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where fj is the number of bank’s customers being served at time t and c1 is the 

optimal consumption for those agents withdrawing at period one, otherwise they 

consume c2 in period two. The latter is equal to the second expression in the 

payoff function for V2. The following relationships hold: c1 < c2, c1≥ 1, and R>1. 

Finally, f is the total number of impatient agents. Besides these changes the 

other characteristics of the agents and the rest of the simulation environment 

remains the same as before. These payoffs are simpler than those in equations 

(1) and (2) and yield different results as I will report on Table 2.

 

The plots in Figure 2 show the results of the same four experiments I 

implemented previously. In panel a) after three time-steps the bank did run out of 

funds.  The bank served 365 clients, that is 76 of them were unable to get any 

funds back. In panel b) there is not a bank run, after fifty time-steps. In this case 

the consumption schedule per agent was heterogeneous across agents. In panel 

c) with heterogeneous rates of return and the same consumption pattern for all 

agents a bank run does not occur after fifty time-steps. The bank’s balance 
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declined to 5 value units after three time-steps, but then recovered to fluctuate 

around 45 value units. Note that in this case earlier withdrawals are always 

higher than later ones. Finally, in panel d) with rates of return and consumption 

patterns heterogeneous across agents a bank run does not occur after fifty time-

steps.  The bank remains liquid with about 200 units in available funds. 
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d) Random heterogeneous rates of returns; 
variable consumption wj =(0, 1); 221 patient and 
220 impatient agents.

Figure 3. Experiments with Diamond-Dybvig and Neighborhoods.

 In Figure 3 another modification was added to the previous setting. This 

time I inserted a social network10 component to the model. Impatient agents 
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make their decision to withdraw first and then patient agents ask to three of their 

eight neighbors–whether patient or impatient—if they have already withdrawn 

any funds from the bank in order for them to start to withdraw. Again, I 

experimented with these four variations as in both previous cases. In this model 

only two bank runs occur. The one depicted in Figure 3 is the first case with fixed 

interest rates and constant consumption across agents (see panel a). Also, total 

withdrawals are higher than the bank’s final balance in panel c), in which 

consumption patterns are constant for the agents. The reverse is true when this 

is changed to a heterogeneous regime across agents, panels b) and d). The 

second bank run is described next.

Table 2: Experimental results.  [Referential runs]
p(impatient/
deposited)

Scenario a Scenario b Scenario c Scenario d

0.2 Run no run Run no run
Model 1 0.5 Run no run Run no run

0.75 Run no run no run no run

0.2 Run no run no run no run
Model 2 0.5 Run no run no run no run

0.75 no run no run Run no run

0.2 Run no run no run no run
Model 3 0.5 Run no run no run no run

0.75 no run no run no run no run

In Table 2, I show the overall results not just for the four cases or 

scenarios that I already described for each of the three different models, but also 

for two additional variations when the probability of being an impatient agent is 
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0.2 and 0.75. Thus, I ran 12 experiments per each model or 36 experiments 

overall. In model 1 there were five occurrences of bank runs (42%); in model 2 

only three occurrences (25%); and in model 3 only two of these occurrences 

(17%). Hence, the simple modifications that I have added to the first model 

reduced the frequency of bank runs. Especially when I modified the topology of 

the ‘artificial’ world by adding Moore neighborhoods this frequency dropped by 

60% compared with the first model. 

5. Conclusions

I have implemented in these simulations changes that allow me to explore 

the dynamics of the Diamond-Dybvig model within not just a repeated version but 

also within a population of heterogeneous agents. The aggregate dynamics that I 

analyzed was the result of the individual or agent-based interacting behavior 

subject to the rules of the simulated environment. Firstly, I developed a discrete 

framework for agents and time rather than keeping the unrealistic continuity 

assumption. Secondly, I introduced the important effects of social networks and 

provided a better rationale for social interaction.

To the underlying question, what are the causes of localized bank runs? 

The model presented hitherto does not provide anything that can be considered 

as a definite answer. Its contribution lies in taking the negative equilibrium 
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reported in Diamond-Dybvig and showing how by relaxing and modifying their 

original model bank runs are less probable. Summarizing, in this paper bank runs 

don’t happen at all when there is heterogeneity in the agents’ consumption 

schedules. Even if the interest rates where fixed across agents in any of the 

three models presented here. On the other hand, when consumption is 

homogenous across population the results are more mixed. By looking the 

scenarios a) and c) in Table 2, runs are still present in the first two models even if 

interest rates are heterogeneous. But its frequency is decreasing, of course. 

Although in the third model this is not true anymore, since the frequency drops to 

zero when there is heterogeneity in interest rates. Between this and the second 

model there is no difference in the frequency of bank runs in scenario a). The 

same happens if we compare the results between figures 2 and 3. As I 

mentioned before, the most relevant difference in all these models is that 

introducing social networks among depositors as a variable to make withdrawal 

decisions seriously reduced the frequency of bank runs overall.

I explore a multibank setting that builds on the one-bank developed here 

in Romero (2009). In that context I will study the presence of interbank markets, 

the effects of size on a particular bank, and the policies of a central bank. Within 

this framework, nonetheless, a further endogeneization of agent types, more 

relevance to the asset side of the bank, among others are part of my own 

research agenda. 
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2. Banking Crises and Institutional Arrangements

1. Introduction

When do banks emerge? Whenever credit and monetary transactions 

within firms dominate transactions within markets (Coase 1937). In other words, 

whenever it is cheaper to develop contracts within an organization that engages 

in credit and exchange, instead of contracting individually on a very short-time 

basis. Banks bring advantages of specialization and economies of scale to credit, 

exchange, and transfer activities (de Roover 1974, Crouzet 2001). These 

characteristics are what distinguish them from other firms. The activities of credit 

and exchange have evolved a great deal since the twelfth century when 

Genoese and Venetian bankers were inventing the financial instruments and 

techniques that are still in use today. Monetary and insurance services are 

byproducts of this evolution. 

Diamond and Rajan (2001) make the case that banks are special because 

they provide liquidity--not just to other entrepreneurs by financing their projects, 

but to the bank’s own creditors or depositors. Banks create liquidity on both sides 

of the balance sheet at the cost of a run prone financial structure. This banking 
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contract would serve to solve the commitment problem between the depositors 

and the banker; that is, providing to the latter with funds at a lower cost subject to 

the feasibility of a run. However, in a thorough review of the theoretical and 

empirical literature on financial intermediation, Gorton and Winton (2002) claim 

that the industrial organization of banking usually includes elements of instability, 

but that banks per se do not11. The goal of this paper is to understand whether 

certain institutional arrangements are more prone to generate banking crises. 

Specifically, it focuses on the role of interbank markets and central banks in 

coping with banking crises.

In a study of historical experience with bank regulation in the United 

States and international comparisons, Calomiris (1993) observed, “The central 

lesson of these studies is that instability is associated with some historical 

examples of banking that had common characteristics; it is not an intrinsic 

problem of banking per se.” p. 3 He concludes that instability arises from the 

organization of the banking industry, not the nature of the banking contract itself. 

Probably, the difference between Calomiris’s empirical results and the results 

Diamond finds in several theoretical papers, (Diamond and Dybvig 1983, 

Diamond 1984, Diamond and Rajan 2001) is that Diamond reduces the actors in 

his models to a ‘representative’ bank or a ‘continuum’ of agents that behave as 

banks. 
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Here I present a model of a multibank system where  banks and 

depositors are represented by discrete agents within an object-oriented 

computational framework (see Epstein and Axtell 1996, Weiss 2000), instead of 

by a representative agent or by a continuum of agents. The objective is explore 

the effects due to the presence or lack thereof cooperative arrangements among 

banks on banking panics. In the first extension of the model, competitive banks 

are not isolated; rather, they operate within webs of associations and cooperative 

relationships, as well as creating multi-branch structures. Since branch banking 

and cooperative associations such as clearinghouses accomplish much the 

same task regarding the maintenance of liquidity, my model work with an 

association from within an environment of otherwise independent banks.  The 

rules of association generally map into risk-sharing insurance arrangements. This 

computational model should generate less insolvency in the presence of such 

clearinghouse arrangements12.  

 A next extension is to include central banking in the model’s environment. 

How do things differ when a central bank exists?  The central bank must be 

described by a different rule of operation than what pertained to 
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would have otherwise resulted.



clearinghouses13. It is also necessary to pay attention to the central bank’s 

budget constraint.

Laeven and Valencia (2008: 24-5) found that there were 124 systemic 

banking crises between 1970 and 2007 among 101 developed and developing 

countries. The fiscal costs of these crises were as high as 55.1% of GDP, but 

averaged 13.3%, while output losses ranged from nil to 98% of GDP.  If the US 

savings and loans is excluded together with the 2007 onset of the recent crisis in 

UK and US, then there were 121 systemic banking crises in 99 countries. 

Low volatility of inflation and output in most developed countries save 

Japan between 1984 and 2006 led economists to term the period as ‘the Great 

Moderation’ (Bernanke 2004). It seemed as if banking crises and deep 

recessions in advanced economies were things of the past. But financial 

instability has occurred even in times of low price volatility and booming output, 

not just in the US during the Great Depression but also in other countries and 

times—e.g. Korea and Japan in the late 1980s and 1990s. Borio (2006) presents 

a compelling case for prudential policies even during these tranquil times14. 
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13 Gorton and Mullineaux (1987) describe how private commercial-bank clearinghouses worked 
originally in New York. 
14 It is not the first time that this has happened, though. Bronfenbrenner (1969) collects a series of 
papers from renowned economists where the title of the book reflects what was their view at that 
time after almost two decades of stability: Is the Business Cycle Obsolete? Although their answer 
was not an absolute negative, Bronfenbrenner (1969: vii) reported “that greater reliance by 
“politicians” on economic “technocrats,” particularly on econometric macroeconomists, might soon 
render the cycle obsolete.” A similar optimism was around in 1997 according to Fuhrer and Schuh 
(1998) just before the East Asian crisis.      



In Romero (2009) I presented a one-bank model with multiple discrete 

agents as depositors. That model had three different versions but all of them 

were based on the canonical model of Diamond and Dybvig (1983). The most 

important of the three versions was the last one, which included social networks 

were included in the decision-making processes of depositors. Moving from the 

original banking contract à la Diamond and Dybvig to the version with depositor 

networks, the frequency of bank runs dropped from 42 percent to 17 percent, that 

is by 60 percent. 

Here I will build on the modified banking contract used in the second and 

third versions in Romero (2009). In addition, I will introduce a multiple-bank 

setting, each bank having a distinctive clientele and constraints. Table 3 displays 

other models in the literature that deal with the specifics of an interbank market, a 

central bank, or financial contagion. Except for Temzelides (1997), all of those 

models make use of a continuum of agents. The model presented here adds to 

this literature a model wherein both banks and depositors are discrete and can 

have heterogeneous attributes and decision rules.  

30



Table 3: Selected multi-bank models
paper Interbank 

Market 
Central 
Bank

Continuum (c)/ 
Discrete (d)

Contagion

Allen and Gale (2000) X X C X

Bhattacharya and 
Gale (1987)

X C

Champ et. al. (1996) C
Rochet and Tirole 
(1996)

X X C X

Smith (1984) X C
Smith (1991) X C
Temzelides (1997) X D X
This paper X X D X

 The paper is organized as follows. The next section presents a multibank 

model wherein banks can be isolated or participate within an interbank market. 

Section 3 adds a central bank as another agent to the environment and studies 

the interaction of the interbank market with some aspects of monetary policy by a 

central authority. Section 4 discusses some issues related to the implications of 

the results presented here and the methodology of the paper. The last section 

concludes.

2. Multibank Model 

There are n depositors and m banks. Each depositor keeps track of her 

initial deposits, amount withdrawn, payoffs or fitness, returns for withdrawing at 
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an early or later date, and amount left in her bank account. The payoffs for a 

depositor are given below and they are the same as the ones presented in the 

second version of the model in Romero (2009). Let the payoff for impatient 

agents be:

and for patient ones be:

where fj is the number of depositors being served at time t, and c1 is the efficient 

consumption allocation for those withdrawing at the early period. Otherwise they 

will consume c2 in the next period, which is equal to second expression in the 

payoff for V2. The total number of impatient depositors is f. Finally, the following 

relationships hold: c1 < c2, c1 ≥ 1, and R > 1.

The payoffs are the same as those in Diamond and Dybvig (1983: 415). 

They argued that a proportional tax levy on the wealth held at the beginning of 

period 1 can be used to finance a deposit insurance scheme (stated in their 

second Proposition). Deposit insurance generates incentives for patient 

depositors to wait until their bank’s investment matures no matter what other 
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depositors do. This result should hold even if the fraction of impatient depositors 

is stochastic. Nonetheless, I showed in Romero (2009) that even with these 

payoffs bank runs occurred in three of the 12 experiments run with the model. 

After explaining the attributes for each bank agent, I will describe a slight 

modification to this banking contract (see Appendices A and B for pseudo-code 

and a model screenshot). 

    

In the model, banks register their initial deposits, the amounts withdrawn 

by their depositors at every period during the simulation, how many depositors 

have been served, depositors’ final balances, and bank’s outstanding balance. A 

bank again will invest so long as it has a positive balance after serving the 

depositors who decided to withdraw at that period, and so long as the queue size 

(fj) is less than or the same as the number of impatient depositors (fimp) in the 

total population. Thus, this process is given by:

where It is the bank’s investment per period and bt-1 is the bank’s previous 

positive balance, which earns a return of R—which is the same as the gross rate 

of return that patient depositors will receive when the investment matures. If the 

bank goes bankrupt and depositors cannot be served the simulation stops.
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The model has four banks. Each bank has no more than ten customers. 

Thus, there is a banking market with four banks and forty depositors. These 

numbers are large enough to illustrate what happens with multiple agents, yet 

small enough that one can readily examine each agent’s behavior. Again, 

impatient agents withdraw first, and then patient depositors have to decide 

whether to withdraw, since they are the ‘strategic’ agents. In this version of the 

model, the payoff structure was modified according to equations (1) and (2). The 

decisions whether to withdraw depend simply on the size of the queue, and the 

payoff for consuming earlier is always lower than the payoff from waiting. The 

extension is merely a modification of the rule under which patient agents make 

their decisions whether to withdraw based not just on the size of the queue, but 

also on whether the interest rate the bank pays on deposits exceeds the 

depositor’s ‘subjective’ interest rate.

My aim here is to answer the following questions: Under what conditions 

can a liquidity crisis in a given bank spread or be contagious to others? How fast 

does this occur? To make this operational the model contains an interbank 

market that allows banks that lack sufficient funds to pay all customers in the 

withdrawal queue to borrow money from any other bank that has a positive 

balance. After serving its customers the bank will be required to repay the loan 

with interest. If the bank is unable to repay its debt and/or to serve its customers, 
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it goes bankrupt. Customers stop withdrawing from the bank if they have 

consumed all of their savings from it. 

 Table 4: Multibank Model
Model 1 No Interbank

Market
Interbank
Market

One Big Bank

#Patient 16 16 14
#Impatient 24 24 11

Run Yes None Only big one
Time-step/

period
6 25 4

Note: Constant consumption and heterogeneous interest rates 
across customers and banks and with p(impatient/deposited) = 0.5. 
[Referential runs]
 

Table 4 shows results for three different experiments run within this 

version of the model. In the baseline scenario of no interbank market, each bank 

is isolated from the other banks and, in turn, their customers. In the second 

period, two of the four banks cannot keep serving their clients. In the third period, 

another bank ‘fails,’ and by the sixth period, the last bank also stop serving its 

clients. Thus, there is an overall bankruptcy of; i.e. a banking panic; the system 

that takes place gradually. This banking panic, though, is due neither to a 

contagion effect brought about by customers sharing information, nor from a 

localized bank run spreading to the whole system.

 

The second case (the second column in Table 4) contains a basic 

‘interbank market’ to explore how such an institutional environment can facilitate 

or discourage financial contagion. The interest rate in the interbank lending 
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market is arbitrarily set at 0.01%, and each bank cannot borrow more than 10 

percent of the funds owned by the lending bank. In the simulation, bank runs did 

not occur in any of the banks. This result was surprising, since I expected that 

ending the isolation of banks and their customers would result in contagion due 

to a bank’s financial fragility spreading to other banks. Each bank determines its 

own interest rate policy and decides whether to borrow from a more liquid bank. 

The decision whether to borrow depends on how many impatient versus patient 

agents each bank has in its queue and what are the depositors’ particular 

‘subjective’ interest rates expected from trading with the bank.

 

In the third and last case I present an extension of the second case. Like 

the second case, it contains an interbank market, but it reduces the number of 

customers from the initial 40 to 25. Then, I allocate the customers arbitrarily to 

make sure that only one of them will get 10 customers and the rest only 5 per 

bank. By doing so, I get an interbank market with one of them twice as big in 

customers and liabilities (deposits) than the rest. This resulted in another 

unexpected result, which is a bank run at period 4 only for the bigger bank while 

the smaller banks were able to serve all of their customers. One interesting 

aspect of the extension is that before running out of liquidity the bigger bank lent 

money to another smaller bank that could serve its customers. 
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3. A New Agent as a Central Bank

Now let us add a central bank to the previous multibank model and its 

interbank market. The characteristics of the central bank are the following: (a) it 

controls the monetary base of the economy; (b) it collects the reserves from the 

commercial banks; (c) it establishes the legal reserve ratio; (d) it determines its 

policy for a discount rate; and (e) it can lend money to any of the commercial 

banks. Its balance is the sum of the monetary base plus the total reserves 

deposited by the commercial banks.

 

 This extension of the model allow us to analyze the interaction between 

two important institutional features of financial systems in many countries today; 

a central bank and an interbank lending market. The central bank has three 

instruments for implementing its policies: altering the quantity of the monetary 

base; changing the minimum legal reserve ratio for commercial banks; or 

changing its discount rate below or above the fixed interbank market rate of 

0.01% assumed in the previous version of the model. I develop experiments 

based on the different policy alternatives for the central bank and the probability 

of depositors being impatient. The results for the frequency of bank runs are 

reported in Table 5.
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Table 5: Effects of adding a  Central Bank

 

Panel (a): Reserve ratio 2%

0.5 0.2 0.75
MB

CB-rate % 5 8 CB-rate % 5 8 CB-rate % 5 8
0.008 25% 0 0.008 50% 0 0.008 25% 0
0.012 25% 0 0.012 50% 0 0.012 25% 0

Pabel (b): Reserve ratio 30%

0.5 0.2 0.75

CB-rate % 5 8 CB-rate % 5 8 CB-rate % 5 8
0.008 25% 0 0.008 0 0 0.008 0 0
0.012 25% 0 0.012 0 0 0.012 0 0

MBMBMB

Model 2: Central Bank

p(impatient)

p(impatient)

MB MB

Notes: Percentages are proportions of bank runs. Runs have up to 2800 periods. The payoff 
structure is the same as in the multi-bank model. MB = monetary base. CB = central bank. 
[Referential runs]

 The monetary base can be either 5 units or 8 units in a period; the central 

bank’s interest rate can be either 0.008% (below the interbank market rate) or 

0.012% (above the interbank market rate); the probability of a depositor being 

impatient can be 0.5, 0.2, or 0.75; and the reserve ratio is fixed across banks at 

2%. The results is 2 x 2 x 3 = 12 experiments, shown as the gray boxes in panel 

(a) in Table 5. The monetary supply with a central bank present in the model is 

given by adding the monetary base (5 or 8 units), and the total deposits of the 

banking system at any period (initially set at 40 units).  
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 Note that with a similar reserve ratio of 2% for all the commercial banks 

and independently of what is the probability of a depositor being impatient, or 

what is the central bank’s interest rate; whenever the monetary base increases 

from 5 to 8 units there are no bank runs at all. Thus, the central bank fulfills its 

role of lender of last resort.

 When the monetary base is only 5 units there are bank runs but in no 

more than 50% of the banks. If the probability of a depositor being impatient is 

0.5 or 0.75 the proportion of bank runs is the same; i.e. 25%. Why is that the 

proportion of bank runs does not increase when there are probably more 

impatient depositors in the population? Because the payoffs per depositor 

actually goes down, since each depositor may be withdrawing earlier and more 

frequently but the average withdrawal per depositor is lower. In contrast, when 

that probability goes down to 0.2 unexpectedly the proportion of bank runs 

increases up to 50% of the banking system. Precisely because of an increase in 

the average withdrawal per depositor now that there are probably more patient 

depositors in the population. It is also important to notice that the central bank’s 

interest rate does not play any role in affecting these results. 

 

 Panel (b) in Table 5 shows the results for the same 12 experiments 

presented in panel (a). The difference is that the reserve ratio now is fixed at 30% 

for all the banks. Also, in this case whenever the monetary base is increased 
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from 5 to 8 units, bank runs do not occur. This result holds across the three 

different probabilities for being an impatient depositor (0.2, 0.5, and 0.75), and for 

the two different levels of the central bank’s interest rate (either below 0.01% or 

above it).

 A main difference in panel (b) with respect to panel (a) is that no bank runs  

occur when the probability of being impatient is 0.2 or 0.75 for any amount of 

monetary base; i.e. 5 or 8 units. Thus, when the reserve ratio increases from 2% 

to 30% the proportion of bank runs decreases to nil for those values of the 

probability of being impatient, or any value of the monetary base or the central 

bank’s interest rate.

  The results do not change, though, when the probability of being an 

impatient depositor is 0.5 in either panel. That is to say there is still a 25% of 

bank runs in the banking system when the monetary base is only 5 units.  

 

Last but not least, why do bank runs still occur when I have a central bank 

and an interbank market working together? First, each commercial bank 

balances its accounts by deducting reserves deposited in the central bank. 

Secondly, each can borrow no more than 10 percent of the outstanding balance 

of the central bank at every period. Loans from the central bank and the 

interbank market are scheduled to pay in the next period plus any interest out of 
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any remainder in banks’ balances. The main difference with the previous model, 

which has only an interbank market and where no runs occurred, is that in this 

version the reserves are centralized in the central bank and are no longer at the 

disposal of each of the banks competing in the interbank market for funds. Banks  

incur debt first by borrowing in the interbank market, then they proceed to ask to 

the central bank for any further loans. However, if any bank still has no required 

funds from any other bank and does not have money to keep serving its 

depositors it can get the funds from the central bank anyway. Since liquidity 

problems also arise in a sequential fashion in the banks, the central bank who 

now centralizes the reserves of the system can provide funds to one bank at a 

time. Hence, the central bank is also subject to a sequential service constraint.

4. General Implications

I have implemented agents within a microeconomic environment and 

studied their statistical aggregate patterns. To some extent these patterns are 

‘emergent’ in the sense of Epstein and Axtell (1996) because they were not 

imposed upon the agents’ behavior. The patterns ‘grow up’ from the 

microeconomic structure in which the agents are embedded. Because the 

models also include interaction between depositors and banks (and in the third 
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model in Romero (2009) among the depositors, too) they can be examples of 

self-organized complex systems.  

In each of my models agents’ interaction occur within a set of rules based 

on economic behavior. The rules were part of the design of the environments for 

each model. Can the rules themselves also be the result of an emergent 

process? On one hand, this can be a question answered by evolutionary 

computation or a more stylized agent-based model such as Axtell (1999). There 

Axtell shows how firms are ‘emergent’ organizations after individual workers join 

or leave a firm. On the other hand, one can provide a rationale for that process 

from an evolutionary economic point of view. I take the latter approach here.

In the model of multiple banks I experimented with a version in which 

there was neither an interbank market nor a central bank. The isolated banks did 

not pool reserves when liquidity was scarce. Their behavior was like that of a 

primitive unit-banking system. A clearinghouse association is an organization that 

purports to overcome the lack of pooled reserves for a banking system. The 

clearinghouse and the appearance of an interbank market for loans explains the 

evolution towards a more integrated system that allocates reserves throughout all 

banks by portfolio adjustments.  
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How could these institutional solutions emerge? In the version of the 

model where banks were isolated, every time that there was a big increase in 

demand for withdrawals individual banks suffered important reserve losses that 

led to banking runs. Some banks failed while others did not until later. Banks with 

excess reserves could not increase profits by lending to other banks with lack of 

liquidity. It was as if an opportunity for increasing business was not being 

exploited. Here lies the economic origin of the interbank market. The 

development of more institutionalized forms to cope with liquidity risks is rather 

the result of a trial and error process. After the banking industry suffers massive 

losses or panics, a group of bankers may decide to establish clearinghouse 

associations to reduce the transaction costs of check clearing and transfer of net 

balances, and, more importantly to pool reserves to improve liquidity across the 

banking industry. 

This gives place to the distinction between members and non-members of 

these types of associations or private clubs that provide public goods to 

members. This is important for naturally test under what scheme banks may 

reduce the overall risk of panics. Due to a unitary banking industry all the network 

externalities that a branch-banking industry may offer under clearinghouses will 

be absent. At a localized level member banks will be covered even in a unitary 

system by the pooling of reserves with all the other local banks also participating 

of this type of associations. 

43



In the models, I have not yet incorporated relevant industry characteristics 

such as branch banking. Calomiris (1992) and Ramírez (2003) present evidence 

for the pre-Great Depression period comparing branching regulations across the 

U.S. and in Virginia (which allowed branching) versus West Virginia (which did 

not). Their results show that banks in states that allowed branching were more 

resilient to agricultural or seasonal crises than banks in states that did not allow 

branching. An evolutionary account of banking institutions should make room for 

an explanation of the different industrial architectures that may flourish within 

different rules, and other set of institutions belonging to property rights and 

monetary arrangements. I leave such extensions for future work.

But even more resilient industrial architectures may not eliminate the risk 

of failure. Tussing (1967) presents a compelling case that fewer resources will be 

wasted if banks were treated like any other commercial firms when they fail. His 

claim is another way to argue that if bankers know that they will be bailed out 

during economic crises, they will have incentives for them to mis-allocate their 

resources.

Central banks have been established for varied reasons. The Bank of 

England was explicitly founded for purely fiscal reasons (White 1999: 81-3), while 

the Federal Reserve System was the result of a prolonged public discussion in 
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which fiscal concerns were minor15. The main argument for establishing the 

Federal Reserve was not the frequent banking panics of the preceding system, 

but what was considered its ultimate cause namely the inelastic money supply 

(Wicker 2005: 22-41). 

Some economists consider a fiat-money monetary system headed by a 

central bank a suboptimal solution compared to a classical gold standard or a 

competitive private provision of money (Hayek 1978, Mundell 1999, Klein 1974). 

In this vein, it is interesting how recent historical research on the origins of the 

Fed (Wicker op. cit.) notes that the original proposals for monetary and banking 

reform in the U.S did not include at all the existence of a central bank. It was 

during the travels of the members of the Monetary Commission, organized by 

Senator Nelson Aldrich between 1908 and 1910, that the idea of establishing a 

central bank was adopted. Since the other leading economic countries of the 

time, such as England and France, had central banks, it seems that imitative 

behavior can also lock us into a standard not necessarily Pareto optimal.
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5. Concluding Remarks

 

I have increased the number of banks and gradually added institutional 

complexity to the baseline model of Romero (2009). The agents are very simple 

in that they do not have sophisticated cognitive capabilities or full information, but 

they interact dynamically within a microeconomic environment, yielding 

‘emergent’ aggregate results à la Epstein and Axtell.

In most of the cases introduced here, except in the interbank market case 

or when the monetary base was always 8 units when a central bank was present, 

bank runs persisted. The models as they stand here are still very stylized, 

yielding mostly qualitative results. An important step forward is to empirically 

validate their main implications.
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3. The Evolution of Economic Networks

“A town or city lies at the centre of a number of interlocking catchment areas: 
there is the circle from which it obtains supplies; the circle in which its currency, 
weights and measures are used; the circle from which its craftsmen and new 
bourgeois come; the circle of credit (the widest one); the circle of its sales and 
the circle of its purchases; and the successive circles through which news 
reaching or leaving the town travels. Like the merchant’s shop or warehouse, the 
town occupies an economic area assigned by its situation, its wealth and long-
term context.” [emphasis added] Fernand Braudel 1979:188. 

1. Introduction

If we replace the word ‘network’ by the word ‘circle’ in the quote above we 

would realize that those networks evolved out of the initiative of a small group of 

entrepreneurs. Then, others followed those leaders. By this fashion the reach of 

the networks was gradually expanding out during the early industrialization 

period.  The picture that is captured by Braudel's words shows probably more the 

result; or a snapshot at a moment of time; of that process. 

The way in which these networks overlapped at each moment of time was 

not the object of choice of those entrepreneurs. As a matter of fact, each network 

configuration that could have contributed to the development of societies was not 

necessarily taken into account in the original plans that motivated those 

forerunners. Yet, it was due to the particularities of each network that a city 
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during the first wave of modern industrialization got access to innovations and 

discoveries. If we think of networks and their relationship to economic 

development, we would probably have a clearer way of understading how the 

`invisible hand' metaphorically used by Adam Smith was actually working. 

Networks seen from this perspective can represent how the coordination 

of economic activities was carried out through different geographical locations 

(Orsborn and Klein 2007). Here I would propose that these entrepreneurial 

networks may be seen as `coordination structures' that added value to different 

economic activities. The particular configuration of these networks at a moment 

of time can be considered as an unintended consequence of the competitive 

production process. The general objective of this paper is to understand the 

evolution of these networks. 

I propose an agent-based economic model of formation and evolution of 

networks whereby agents make strategic decisions based on economic variables  

and information generated through their immediate social network. It is important 

to bear in mind that the particularities of a network in a static snapshot may not 

be an equilibrium situation but rather one of disequilibrium. Then, a simulated 

environment will help to appreciate this better than other conventional tools. 
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In the next section, I review the literature that motivated this study. Section 

3 presents the research questions. Section 4 introduces concepts that will be 

used in the rest of the paper. Section 5 presents my strategy in modeling this 

evolving network. Section 6 shows the reference simulations of the model. 

Section 7 reports the results of experiments after manipulating key parameters in 

the model. The last section summarizes the main findings so far.

2. Literature Review

Two strands of literature one theoretical and the other empirical dealing 

with social networks yield different conclusions concerning the evolution of 

cooperation within a society of individuals that interact based upon strategic and 

self-interested behavior. The more abstract and game-theoretical models of 

social networks sustain that in coordination games in social networks multiple 

equilibria do emerge as stochastically stable states. This is in contrast to previous 

results, such as Young (1998), as I will explain in the subsequent section. In line 

with this, also the study of multiplayer prisoners’ dilemma games leads to the 

results that cooperation emerges on a sparse matrix rather than on close-knit 

networks. The second more empirical strand is based upon studies of actual 

economic sectors yielding as results that particularly in high dense networks (not 
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sparse) underlies the productivity and economic growth of certain localized 

industries.

Before I describe the details of these two strands of literature a few 

definitions are in order. I will follow more closely a graph theoretical approach in 

doing this (see Beineke and R. J. Wilson 1997). A network is a set of nodes 

wherein any pair of nodes is connected, at least, by a link. A fixed network is a 

set with a given and finite number of nodes, and a fixed configuration of links 

among the nodes. A dynamic (endogenous) network is a set with a given and 

finite number of nodes, but a variable configuration of links among the nodes. 

This variable configuration is usually the result of an endogenous formation 

process for links. An evolving network refers to a variable (even stochastic) 

number of nodes and link configurations among them (Romero 2006, Cowan et. 

al. 2006).  

2.1 Game-theoretical Approach to Social Networks

Jackson and Watts (2002) study fixed and endogenously formed networks 

whereby players are playing coordination games with their neighbors. Each 

player only interacts with those other players whom are directly linked to it, and 

each link is formed after mutual consent. Also, there are costs of forming links. 

This results in games with only two pure Nash equilibria where the payoffs matrix 
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is specified in such a way to model the Pareto equilibrium also as the risk-

dominant strategy. 

In the fixed network case they analyze three variations: a lattice or 

complete graph, a circle graph, and a star shaped graph. Stochasticity is added 

when agents choose their strategies. Here their main contribution is their result 

for a star shaped network that is in stark contrast to the conventional result; e.g. 

Young (1998). The latter claims that for any fixed network players always 

converge to the risk-dominant strategy. On the contrary, Jackson and Watts claim 

that the two equilibria may be chosen, thus all players may be playing the risk-

dominant equilibrium or playing the efficient but not risk-dominant equilibrium in 

other periods. 

In the case in which agents choose not just their strategies, but also whom 

to play with, their main result is that there is multiple equilibria and players may 

coordinate even in those equilibria that are neither risk-dominant nor efficient. By 

manipulating the cost structure of the game, they even go farther to claim that 

even for fixed networks they may exist multiple stochastically stable states. Thus 

concluding that the conventional results; e.g. the risk-dominant solution as the 

unique stochastically stable state; are sensitive to the particularities of agents’ 

behaviors and interaction technologies.    
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Hanaki et. al. (2007) address the emergence of cooperation where 

individuals’ behavior and interaction structures are evolving. In this setting there 

is a dynamics on the network generated by the rules that govern individual 

behavior, moreover a dynamics of the network that is generated by the rules 

governing social behavior. The rules of individual behavior are based on each 

agent playing a prisoners’ dilemma game with each of its surrounding or local 

neighbors. However, each agent can choose either to cooperate or defect with its 

whole neighborhood; i.e. it cannot play a different strategy against any other 

agent within its neighborhood. Because this is a simulated environment the 

population of players are actually playing a multiplayer prisoners’ dilemma with a 

changing subset of other agents that at each period may be part of its 

neighborhood. Moreover, each player can imitate the most successful strategy--

measured by its payoff-- of the last period by one of its neighbors. Also they can 

break or create a link with another agent to modify their neighborhood. There is 

not an exogenous upper limit for the number of neighbors that a given agent can 

have during the simulation. 

Concerning the interaction dynamics this is determined by the marginal 

increase or decrease in benefits per player from either breaking or creating a link 

with other player. One important element in this model is the incorporation of 

triadic relationships through which an agent can find a new partner. Nonetheless, 

an agent can decide to create a link with an agent randomly drawn from the 
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population at large. There are costs in both cases; that is, for breaking and 

creating a link. Moreover, there is an additional procedure to decide whether to 

trust a new partner. Here two different settings are implemented, namely a full 

and a zero information case about the history of plays by the new partner in 

previous periods.

Their main result is the following: “cooperation can persist in sparse, 

dynamic networks of effectively unlimited size, and in fact tends to fare better in 

large networks than in small ones.” pp.1049. They emphasize how assortative 

matching of partners reinforces cooperation (as in Tullock 1980). But also how 

allowing defectors to be selected by highly trusting cooperators expands this 

cooperation. During the report of their results they also acknowledged that a 

“higher average proportion of cooperating players does not necessarily mean 

that the population average payoff is higher.” pp. 1004. This point is relegated to 

a footnote where they mention that despite this result there still exist a positive 

correlation (0.48) between the average proportion of cooperating players and the 

population average payoff. Yet from the main text one of their main results is that 

a high-cost regime for agents' interaction is what determines both the sparseness 

of the network and its greater level of cooperation achieved in relation to when 

there is a lower cost of interaction.       
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2.2 Empirical Social Network Analysis 

The main particularity of economic networks at the producer level is that 

they change from period to period. The firms representing the nodes may have 

changed. The networks of raw material providers/retailers and clients may 

change from period to period, too. Nonetheless, there is a core or nucleus of 

clients to whom the seller frequently sells and a core of providers from whom 

usually it buys. These are their permanent clients and providers. Furthermore 

those not so permanent clients and providers can be called casual ones. This is 

network complementarity between embedded and `arm's length ties'.

Castilla (2003) and Castilla et. al. (2000) focus on a static network where 

only embeddedness is studied and thus highlighted as the main driving force of 

the creation of capital in Sillicon Valley. Next, I explain two examples that were 

elaborated by Castilla et. al. (2000) and Uzzi (1999). The first work is about 

Silicon Valley and how the development of that region is generated through the 

networks of venture capitalists, educators, engineers, lawyers, trade groups, and 

so on. Regarding the conformation of technological firms a special focus is given 

to employees and referees, managerial, and information networks that are 

generated and transmitted through different links or channels among firms. The 

second one is about bank-borrowers networks in the Chicago area. 
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Castilla et. al. call attention to the fact that: “Extensive labor mobility 

creates rapidly shifting and permeable firm and institutional boundaries and 

dense personal networks across the technical and professional population. The 

ability of Silicon Valley to restructure itself when conditions change through rapid 

and frequent reshuffling of organizational and institutional boundaries and 

members (…“recombinant” process) is one of the factors that underlie the 

dominance of Silicon Valley…” pp. 220. Their analysis show how the creation of 

capital in Silicon Valley is benefited and fostered by the positive externalities 

created due to the high degree of density and the openly competitive 

environment among different networks related to a given firm. An intense 

competition and high mobility of resources allows for a fast rate of learning of 

adaptation to the new conditions of the market. One important characteristic that 

they pointed out is the fact that much of the know-how or informal knowledge 

produced by this interaction among technological firms remains local. 

Using techniques of social network analysis with data collected by 

journalists they are able to trace--since 1947 up to 1986-- the evolution of the 

network of firms, managers, educators and others. This was what contributed to 

the beginnings of projects such as Intel and the like. Those individuals or firms 

with a high degree of centrality (connected to a lot of others) and those that play 

the role of `crucial linkage’ to reach others are discovered. Hence, 

entrepreneurial spirit, willingness to support innovative ideas, but specially 
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networks externalities are the key elements identified by them lying at the great 

development of Silicon Valley. 

A visual representation is in the network from which initial public offers 

(IPOs) (data from 1999) are originated in Silicon Valley. Figure 4 shows three 

different kinds of organizations that interact and collaborate to give birth to a new 

enterprise. These are: investments banks, law firms, and accounting firms. 

Furthermore, the issuing firm is not portrayed. There is a link between any two 

firms (from the same or different industry) whenever both are involved in the 

same IPO. The length of the line also conveys relevant information, namely it is 

inversely proportional to the number of co-participations. Thus is a proxy for the 

strength of the link. The more co-participations, the stronger the relationship (i.e. 

the shorter the link).

The main result is that a particular kind of network; defined by centrality 

and degree of connectivity; determines particular outcomes. That is, different 

types of relationships that may exist among the actors of any network. In a 

posterior work by Castilla (2003), he compares the degree of connectivity or 

density of the network of venture capital firms in Sillicon Valley to the one in 

Route 128 (Massachusetts). He found that the higher number of projects and 

amounts of money invested in California are a consequence of the higher 
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connectivity among firms through different industrial sectors and within each of 

them.     

Figure 4. Silicon Valley IPO Networks. Taken from Castilla et. al.(2000).

On the other hand, Uzzi (1999) carried out an analysis of the effects of 

social embeddedness of networks in corporate financial dealings. An important 

contribution of this paper is the triangulation between social network analysis, 

statistics, and original data collected through field research. The sample included 

2400 small or medium size companies and eleven medium size (less than 500 

employees) banks in the Chicago area. His focus is upon the credit networks or 
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the bank-borrower links and their effects on the amount and cost of loans 

obtained. The first pair of hypotheses is: a) if bonds or social attachments 

created (and the longer this relation exists) among managers and bankers 

increase the probability of getting a loan; and b) if given this, the cost will be 

lower. Data from the fieldwork pointed out that bankers and managers do care 

about how to establish a social relationship with one another beyond the cold 

numbers. Because to get to know each other gives them information that is not 

easily found in figures and increases the degree of trust in their relationships.

 

The other pair of subsidiary hypotheses tested by Uzzi is: the likelihood to 

get financing increases if a firm has access to a mix of embedded and arm’s 

length ties. In other words, if a mix of bonding and bridging social relationships in 

different networks is important to arbitrage opportunities and reduce search 

costs. The other hypothesis, then, is if costs of financing are lower when a firm 

has access to these two kinds of social networks. Another way to put this is that if 

a firm only has been focused on cultivating only one kind of these networks' links 

(bonding or bridging) it will be less successful getting loans and reducing the 

costs per loan. 

An important concept explored by Uzzi is related to this mix of bonding 

and bridging networks what he referred as to `network complementarity.' In his 

own words: “Networks high in complementarity produce premium outcomes 

61



because the features of different ties reinforce one another’s advantages while 

mitigating their disadvantages.” pp. 491.  

The econometric tests yielded these results: the social network bonding 

links did not affect the probability of a given firm to get loans, but it does affect 

the price or interest rate of the loan. The latter is in agreement with field data. In 

regards to the tests about network complementarity these pointed out that these 

kinds of combined network links do produce optimal benefits relative to networks 

only of one type or another for a firm.

3. Where All This Lead Us? Research Questions

To what extent the game-theoretical results of network games (Goyal et. 

al. 2007) explain the empirical evidence of actual social networks in the market? 

What it is reported in field research on social networks may be just one type of 

equilibrium explained by the models. But here my purpose is toward building a 

rationale of: how social networks contribute to the development of commercial 

ties? In a more general vein: How do firms coordinate to produce technology 

through networks; i.e. economic networks?

An economic or entrepreneurial network is formed by a profit motive and 

social links. In this model nodes represent firms and the link between each pair of 
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them is the result of a mutually advantageous economic decision. The 

environment is an industrial sector where firms interact locally but contribute to a 

global evolving network of technological innovation (Cowan et. al. 2006). Links in 

this case are not one-sided or directed but two-sided or undirected. 

Moreover, the temporal dimension of the process will be studied by how 

long it takes to the network of firms to evolve a network structure (topology). This 

will serve us to answer the following questions: how do the model’s parameters 

and rules of interaction affect the network evolution? Under what networks profits 

may be greater? Are certain network topologies more prone to generate 

coordination among firms? and, in general: Can this be a part of that intangible 

capital that accounts for endogenous economic growth through knowledge? 

4. The Environment

The agents are firms that will interact within an industry. A firm may 

cooperate or not with another firm. There will be direct relationships that will be 

established pairwise, and indirect ones that are a consequence of the former kind 

of relationships. That is to say, each firm only focus on the relationships that 

establishes directly with other firms. This pairing of firms can be understood as a 

contract to collaborate whether in the funding of a new enterprise with innovative 
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ideas or contributing with knowledge to a particular investment project. This 

keeps some similarity to what happens in places such as the Silicon Valley, but I 

keep the model rather general. There is neither a market demand nor a 

production technology. I have relied on Wasserman and Faust (1994), Scott 

(1991), and Goyal (2007) to write the next two subsections.

4.1 Definitions

Firms are represented by a set of nodes N = {1,…, n} where n ≥ 2 and a 

finite number. Their pairwise relationships are links or edges denoted by gij ∈ {0, 

1} for nodes i and j. Where gij takes value 0 when the two nodes are not 

connected and 1 otherwise. Here I will consider only undirected links, which in 

this context means that both nodes mutually accept to establish and maintain the 

link. Let Gt be the network formed by a set nodes and its links at a time t. There 

is a set of networks  representing each of the G networks along time. 

A neighborhood of agent i is the set of all its neighbors with whom is 

directly connected represented by Ni(g) = {j | gij =1}. The degree of node i is the 

number of direct neighbors di(g) = | Ni(g) | in a given network G. The first order 

neighborhood of node i is Ni. The second order is Ni ∪ { Nz | z  ∈ Ni }. Other 

higher order neighborhoods can be defined in a similar manner. Let d be the 
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maximum degree for a given network. The degree distribution of the network is 

denoted by P, and the frequency of nodes with degree d is P(d).

The following are relevant type of networks. The complete network, gc, is 

the one where every node has the same degree and this is equal to n -1. The 

empty network, ge, which is not connected or is of degree zero. A connected 

network is where there is a path between any two nodes even though is not a 

complete network. 

Other important concept is a walk, which is a sequence of nodes whereby 

two nodes are linked. Here a node or a link may be included more than once in 

the walk. The length of the walk is the number of links it crosses or the number of 

nodes involved minus one. A trail is a walk in which all crossed links are distinct. 

In turn, a trail in which every node is distinct is a path. The length of the path is 

the number of links that involves. There is a shortest path between nodes i and j; 

called its geodesic distance in network G which is measured by its length and 

denoted by tij. For every node i in network G there may exist a set of shortest 

paths to every other node j. Whenever there is no path between any two nodes in 

G then their geodesic distance is tij = ∞. 
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4.2 Measuring a Network 

When a network G is connected its average distance between nodes or 

path length is

                    

This is useful to know how close is an agent (firm) to another one and how easy 

or fast information or knowledge can be transferred in a network.

The centrality of an agent in a network refers to its prominence; i.e. how 

relevant or critical is the presence or absence of this agent in the network. This is 

measured by

                      

A related measure is the degree centralization of a network G. If there is a node i* 

with the highest degree centrality Cd* then 

                

The density of a network G measures the proportion of potential links present in 

it. It is expressed as a ratio of actual links to the maximum possible ones. This is
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Another measure that will be introduced is the clustering coefficient. This 

captures the overlapped links that exist among the neighbors of agent i or what 

proportions of its neighbors are also neighbors. This is defined for any node i as

    

Finally, the total clustering coefficient is the sum of all individual clustering 

coefficients. That is, . I will use these concepts and measures in different 

sections along the paper. 

5. The Evolving Network

At the beginning, independently of any value of the parameters and exit 

treatments, there will be only one firm in the market. Then, firms make their 

appearance in the environment one by one per period. ‘New’ firms arrive and 

propose to form a link or economic relationship with ‘old’ firms. The latter should 

decide whether to accept such a proposal. Those firms that are unsuccessful; i.e. 

the ones that held negative profits for several periods of time; leave the industry. 

Therefore, a dynamic process is recreated in which firms enter and leave the 
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market affecting the economic relationships that have also been formed 

dynamically (see Appendices A and B for pseudo-code and a model screenshot).

Every firm contributes to the technological innovations throughout the 

network. But every firm arrives in the deterministic fashion I explained previously. 

Thus at this stage the model does not include elements of stochasticity. The 

particular topology of the overall network changes every time period. Because 

some firms are entering while others are leaving the market. Firms are also risk 

neutral. 

The flow of innovations in this industry is the result of not just each firm 

contribution, but more importantly of the connectivity of the network that all firms 

form. I will draw on Jackson and Wolinsky (1996) formalization of the 

‘connections model’ from now on. Let wj be the market valuation of firm j’s 

potential contribution to firm i’s innovative endeavors 16. Then, the accumulated 

value after a period t for firm i (which value wi is of itself) interacting with every 

other firm j in the network Gt is
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link is formed whenever this ‘knowledge’ is purposefully shared or diffused throughout the 
network; e.g. Cowan and Jonard (2006). I am avoiding this usage since I consider knowledge a 
more abstract category of thought than information, for instance. See Polanyi (1974: 69 -260) and 
Hayek (1937, and 1945) for further distinctions about knowledge and the relevance of its 
tacitness. So in my case innovation is the same as ‘new’ information.



where δ ∈ (0, 1) is a parameter that represents the transferability factor or how 

firm i gets access to the innovations of firm j via intermediate links and other firms  

in the network. This is expressed by di(gt) that is the degree of node i for a 

network g at t. Thus, the connection with node j is indirect via the local 

neighborhood of node i. The positive externality deteriorates the farther is firm j 

from i. There are costs; denoted by cij; of forming links between any two firms. 

Therefore, profits for firm i per unit of time are given by

The dynamics of the network is given here at two levels. Firstly, as I 

mentioned before there is not a fixed number of firms during the simulated time. 

As a consequence links between firms cannot be fixed either. Both, the number 

of firms and their links are permitted to evolve during the simulation. By doing 

this, the state variables of the firms are also altered every period during the 

experiments.

When a new firm arrives to this industry it proposes to form a link with an 

incumbent firm. When there are more than two firms the incumbent firm is 

randomly chosen from the new firm’s neighborhood. Next, I define a myopic 

pairwise dynamics in which: 
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i) A new link is created as long as both firms do not get worse off by 

establishing this relationship, and at least one of them is strictly 

better off (Jackson and Watts, 2002). 

ii) An old link is severed if at least one of the firms who formed it 

exits the market due to accumulated negative profits for m 

successive periods. Otherwise, it is maintained.

The first point is standard in the study of endogenous network formation 

when there is a finite set of nodes during a simulation. While the links appear and 

disappear from the network at each period yielding certain network topologies. 

However, I should emphasize that in this model; in contrast to previous 

approaches; nodes also appear and disappear from the environment (or rather 

interface). The number of nodes and links are endogenous at each period. This is 

the main contribution of this paper. 

Before to proceed I should, also, point out that in this model I incorporate 

the notion of ex ante and ex post gains for the firms forming or removing links. 

Thus, I assumed that at the beginning of each period firms get to know the 

market valuation of others, which are represented by the wis. But the realized 

profits are given by (7) at the end of each period. This is also a different approach 

from the one implemented in Carayol and Roux (2005) and König(2008) in which 

case ‘knowledge’ is represented by ‘innovations’ that arrive every period 
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according to a known probabilistic distribution. Leaving unspecified the distinction 

I introduce here regarding ex-ante versus ex-post profits.   

The second point, on the other hand, it is the result of merging two 

processes. The first one is a firm exiting the market due to consecutive negative 

profits (e.g. four quarters), and the second one is the deletion of the link(s) or 

economic relationship(s) between that firm and their directly connected firm 

partners (i.e. neighboring nodes). Here lies another innovation of the paper 

whereby the evaporation of nodes is paired with the deletion of their direct links. 

  

6. Simulation Results

Figure 5 depicts how firms and their linkages evolve through time for a 

typical run. Periods should be assumed larger than a day. It could be months and 

even quarters. The particular length of the period will only make sense when an 

empirical validation against actual data is carried out. The externality parameter 

(δ) is set at 0.95. I, also, here only present an exit rule (treatment) for firms 

leaving the market. This rule states that a given firm with negative profits or 

unconnected from any other firm for more than 4 consecutive periods will exit the 

market. 
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Below, I show snapshots of the evolution of the network at different time 

periods.

a) t= 40
Ave degree = 1.18

b) t = 200
Ave degree = 2.89

c) t = 500
Ave degree = 3.18

d) t= 1000
Ave degree = 3.2

Figure 5. Evolution of Firms Network. Degree mean values across firms.

At the bottom of each panel in Figure 5 the average degree is reported. 

Note how this measure increases between panel a) and b) and from then to c). 

Between c) and d) is more or less the same. I won’t make strong statistical 

claims at this moment (see more in section below). I just wanted to point out the 

monotonic increase of the average degree of the network. 

In figures from 6 through 9 the evolution of some key aggregate variables 

is presented. Figure 6 depicts two variables namely the number of ‘surviving’ 

firms and the ‘surviving’ links. It should be reminded that in this model firms enter 

the market at a constant rate of 1 per unit of time. In addition the exit rule 

previously mentioned implies that several firms may exit the market by the end of 

each period. Note that the number of firms and links increase approximately pari 

passu up to 200 periods. After that firms grow at a decreasing rate whereas links 
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grow increasingly faster until they start to fluctuate after 700 periods around a 

value of 140.

                 Figure 6. Temporal Dynamics

Figure 7 shows the evolution of average profits and average degree of the 

network of firms at each time step. It is not surprise that the correlation between 

both variables is 0.86. This stems from the profit equation per firm as specified in 

(7). This, of course, does not mean that any firm with the highest degree due to 

its higher number of related firms will always have the highest profit. Because in 

the profit equation (7) every firm also faces costs per each related firm that it 

keeps. In addition these costs vary from period to period; and there are no fixed 

costs, since all costs are variable.  
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              Figure 7. Average Profits and Network Degree

Figure 8 presents the average fraction of firms in the giant component 

along the simulation. Note that after 200 periods this fraction reaches 80% of the 

whole population of ‘surviving’ firms. This population at any time step may include 

the firms belonging to the giant component, firms that are part of other 

component(s), and temporarily unconnected firms. This fraction fluctuates 

between 80% and 90% after 300 periods.
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                   Figure 8. Average Giant Component Size

Figure 9 presents the degree distribution of the firms network after 50 

simulations each one measured at t =1000. This result shows a power law 

relationship when the distribution is measured in logs. The power coefficient is 

close to 1 and statistically significant at 95% level of confidence. I will point out 

that here this power law relationship is found in spite of the absence of a 

‘preferential attachment’ mechanism during the network formation. Next section 

presents a more formal analysis of robustness of the results.
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Degree Distribution

y = -1.0093x + 
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Figure 9. Degree Distribution. Fifty simulations each one at t=1000.

7. Experiments

What is the effect of the externality parameter (δ) on the network degree 

and firms’ profits? Since average degree and profits are positively correlated the 

effect of increasing (decreasing) the externality parameter should be the same 

for both. Recall that the externality parameter is measuring how fast the rate of 

knowledge is spread over the network. The higher it is the faster knowledge is 

being transferred throughout. I run experiments for δ = {0.05, 0.5, 0.95} and two 

exit rules. A firm will leave the market if for more than 4 or 12 consecutive periods 

has been having negative profits or has been unconnected from others; i.e. its 

degree is zero. This adds up to six experiments.
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Figure 10. Network Degree vs Externality Parameter. δ = {0.05, 0.5, 0.95}. 50 
runs per experiment each one for t = 1000.   

Figure 10 reports the average degree of firms after 50 runs. The results of 

the six experiments (3 δ values times 2 exit rules) are showed from left to right. 

The externality parameter takes the values of {0.05, 0.5, 0.95} per each exit 

treatment. Exit treatments are also read from left to right. The first exit treatment 

(I) refers to the same rule applied to the results showed in section 6. While the 

second exit treatment (II) just increases that value to 12 consecutive periods but 

it works in the same fashion as mentioned in the previous paragraph. Thus, in 

the figure I report the ordered pair values of {δ, exit rule} = {(0.05, I); (0.5, I); 

(0.95, I); (0.05, II); (0.5, II); (0.95, II)}. Note that within each exit treatment the 
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average network degree monotonically increases with the value of the externality 

parameter as expected. Then, I proceed to test if the means across exit 

treatments per each value of δ are statistically equal or not with an unpaired 

difference means test with unequal variances. That is, I compare the means 

difference between the pairs (0.05, I) and (0.05, II); and so on (I implement two-

sided and one-sided tests). So that there will be three means difference tests. 

The results reject the null hypothesis of equal means (i.e. a zero value for the 

difference of means) at the 5% level of significance. For instance, it can be 

claimed that the average network degree when δ = 0.95 and the firms are 

interacting under exit rule (I) is statistically different (and higher) than the average 

network degree when δ = 0.95 but firms are interacting under exit rule (II). 

Next, Figure 11 reports the values of average profits after 50 runs again. 

The number of total experiments is the same as for the average network degree 

case. Also, the ordered pair values {δ, exit rule} are the same as before. It is also 

observed that within each exit treatment average profits monotonically increase 

with the value of the externality parameter. A means difference test was also 

applied to determine whether these values are statistically different across exit 

treatments exactly as I did for the average network degree case. The results of 

the three means difference test ordered as before yielded also a rejection of the 

null hypothesis in each case. Again, I can claim that the average profits when δ = 

0.95 and the firms are interacting under exit rule (I) is statistically different (and 
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higher) than the average profits when δ = 0.95 but firms are interacting under exit 

rule (II). The higher the network degree or connectivity, and the most competitive 

the market, the higher the overall profits of firms.
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Figure 11. Average Profits vs Externality Parameter. δ = {0.05, 0.5, 0.95}. 50 runs 
per experiment each with t = 1000.

8. Concluding Remarks 

Castilla (2003: 125) found that the average degree of the overall network 

of venture capitalists in Silicon Valley is 2.8 while the same network statistic for 

Route 128 (Massachusetts) is 1.5. This is one of the findings on which he based 
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his conclusion that the greater frequency of cooperation in Silicon Valley is what 

explains its greater economic success. The empirical average degree reported 

there is pretty much the same as the one reported here in Figure 10, i.e. 2.78 for 

the first exit treatment and δ = 0.95. Whereas the second exit treatment and the 

same externality value yield an average degree of 2.01.

 

My goal here is not to make a precise quantitative calibration of the model. 

Rather at this stage a qualitative calibration is what I have in mind (Axtell and 

Epstein 1994). But, even as it stands the model may shed light on the empirical 

differences between Silicon Valley and Route 128 venture capitalists’ networks, 

for instance. As a matter of fact, here was also found that the higher the network 

connectivity the greater the profits; or the economic efficiency loosely defined 

(Romero 2006). The model, of course, cannot yet portrait the trade-off or 

complementarity between bonding and bridging links reported by Uzzi (1999). 

Nonetheless, the model at this stage is more able to explain a type of regional 

development due to factors within a hub like the one in Silicon Valley.  

    

Goyal (2007: 20-4) summarizes the features of empirical networks across 

several domains. Including corporate web site, coauthors, sexual contacts and 

R&D networks. He concludes: “[social and economic networks] have low average 

degree relative to the total number of nodes, the distribution of degrees is 

unequal, clustering is high, and the average distance between nodes is 
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small.” (pp. 23-4) The model presented here, also yields a low average degree 

relative to nodes, see Figure 3. An unequal distribution of degrees was reported 

in Figure 6. I have reported here neither the clustering coefficient nor the average 

path length but I would not be surprised if, in fact, it mimics the general pattern 

reported by Goyal.  

These results were yielded by the model and closely match the ones from 

empirical networks. Yet I did not follow in building the model more traditional 

approaches: such as preferential attachment mechanisms, random networks, or 

small world networks. I based my model more on simple economic grounds and 

local information. Thus, providing a more credible microeconomic behavior of the 

agents. 

Thomas and Griffin (1996) and Lin and Shaw (1998) present 

complementary works on supply chain networks and how coordination through 

top management techniques have become less and less of practical use in multi-

national process of production.  Knowledge and practices are so much 

distributed throughout the supply chain network that no one can manage it only 

relying on global information. In general, these supply chain networks are 

comprised by: raw material providers, manufacturers, assemblers, warehouses, 

and retailers. In turn, these networks can be subdivided into three types of 

categories, namely: buyer-vendor networks, production-distribution networks, 
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and inventory-distribution networks. The model presented here falls into a 

production network category but it can be extended to include distribution and the 

demand aspects of an artificial industrial environment.

Industries ranging from auto, computer hardware, airlines’ services, is 

where most of the case studies are found. The general point in all of them is that 

coordination in these industries that show vast ‘economies of scope’ have 

recently tended to spread their production processes as moving from vertically 

integrated towards more flatter networks. This has resulted from the search for 

coping with uncertainty and adaptation to a more competitive environment.  By 

doing so, leaders in these industries have been able to discover opportunities not 

known or existent before. This kind of coordinative processes that go beyond a 

particular firm or even region can account for an important part of economic 

growth not included in more traditional models.
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Appendix A. Pseudo-code

OBJECT bank; 
 initial-deposits;
 agents-served;
 final-balance;
 FUNCTION initialize;
 FUNCTION rates-of-return;

FUNCTION investment;
 FUNCTION balance-sheet;
 FUNCTION liquidation.

Pseudo-code block 1: Bank object

OBJECT agent;
 deposits;
 bank-accounts;
 withdrawals-per-period;
 payoffs;
 FUNCTION initialize;
 FUNCTION get-type;
 FUNCTION rates-of-return;
 FUNCTION make-decision-to-withdraw;
 FUNCTION update-accounts;
 FUNCTION compute-payoffs;
 FUNCTION stop.

Pseudo-code block 2: Agent (Depositor) object
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OBJECT central bank; 
 
 set-monetary-base;
 set-reserve-ratio;
 set-central-bank-rate;
 banks-served;
 FUNCTION initialize;
 FUNCTION make-loans;
 FUNCTION central-bank-balance;
 FUNCTION recover-loans;
 FUNCTION revise-policies.

Pseudo-code block 3: Central Bank object

PROGRAM bank-model;
 initialize depositors;
 initialize banks;
 initialize central bank;
 repeat:
  select 1 depositor at random;
  for each depositor selected:
   discover type;
   impatient agents withdraw first;
   patient agents withdraw after a period and
   depending on queue size and subjective discount rates:
    withdraw lower or higher return;
   compute payoffs;
  for each bank;
   determine queue;
   determine whether to invest idle funds if any;
   pay any loans if previously requested;
   compute bank balance;
   determine if loans will be necessary next period;
   declare bankruptcy if unable to serve depositors;
 until user terminates.

Pseudo-code block 4: Overall banking model
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OBJECT firm;
 market value (if unconnected);
 linking costs;
 profits;
 degree;
 lifetime;
 FUNCTION initialize;
 FUNCTION propose an economic venture(link);
 FUNCTION find path lengths to all linked firms;
 FUNCTION compute payoffs;
 FUNCTION exit if unconnected and negative payoffs for t periods.

Pseudo-code block 5: Firm object.
   

PROGRAM market_network;
 initialize firms;
 repeat:
  a new firm arrives;
  for each new firm:
   select at random an incumbent firm;
   propose a link if:
    mutually advantageous 
    and at least one firm is strictly better off;
              otherwise stay unconnected;
   determine local network;
   compute payoffs;
  for network;
   select unconnected and unprofitable firms to exit market;
   do layout;
   clustering-coefficient;
   any components;
   do plotting;
 until user terminates.

Pseudo-code block 6: Overall network model.
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Appendix B. Screen Shots of the Models

B1: One-bank model 
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B2: Free-banks model

B3: Central bank model
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B4: Economic network model
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