A RECENT ADVANCE IN DATA
ANALYSIS: CLUSTERING OBJECTS
INTO CLASSES CHARACTERISED
BY CONJUNCTIVE CONCEPTS

by

- Ryszard §. Michalsk:
Robert E. Stepp
Edwin Diday

Invited chapter in the book Progress in Pattern Recognition, Vol. 1, L. Kanal and
A. Rosenfield (Editors), 1981.



REPRINTED FROM:

PROGRESS IN
PATTERN RECOGNITION

Volume1

edited by

Laveen N. KANAL

and

Azriel ROSENFELD

Department of Computer Science
University of Maryland, College Park, Md.

1931 H 1981
(Px=C

NORTH-HOLLAND PUBLISHING COMPANY — AMSTERDAM ® NEW YORK o OXFORD



PROGRESS IN PATTERN RECOGNITION
L.N. Kanal and A. Rosenfeld (editors)
North-Holland Publishing Company, 1981

A RECENT ADVANCE IN DATA ANALYSIS:
Clustering Objects into Classes
Characterized by Conjunctive Concepts

Ryszard S. Michalski Edwin Diday
Robert E. Stepp
Department of Computer Science Institut National de Recherche
University of Illinois en Informatique et en Automatique
Urbana, Illinois Domaine de Voluceau, Rocquencourt
U.S.A. France

Clustering is described as a multistep process in which some of the
steps are performed by a data analyst and some by a computer program.
At present, those performed by a computer program do not produce any
description of the generated clusters. The recently introduced method
of conjunctive conceptual clustering overcomes this problem by
requiring that each cluster has a conjunctive description built from
relations on object attributes and closely "fitting"” the cluster. The
paper explains the above clustering method in terms of dynamic
clustering and shows by an example its advantages over methods of
numerical taxonomy from the viewpoint of cluster interpretation.

I. Introduction

Clustering is usually viewed as a process of partitioning data into groups of
"similar” objects. Accepting this view, the thrust of research in the area of
cluster analysis has been toward determining various object similarity or
proximity measures, and developing clustering techniques utilizing them. A large
number of such measures and corresponding clustering methods have been developed
to date. Comprehensive surveys can be found in Sokal and Sneath [35], Dorofeyuk
[13], Cormark [7], Zagoruiko [39], Anderberg [1], and Diday and Simon [9]. 1In all
these methods, the task is to determine clusters, such that objects in the same
cluster exhibit a high degree of similarity (high intra-cluster similarity), while
objects from different clusters exhibit a low degree of similarity (low inter-
cluster similarity).

The above approach to clustering has some ma jor drawbacks. A researcher analyzing
data typically wants not only to determine clusters but, even more, wants to know
the underlying conceptual meaning behind them. The conventional methods, however,
leave the subject of interpreting the clusters to the researcher. Moreover,
clusters obtained merely on the basis of object similarity may not have any simple
conceptual interpretation. This is so because the clusters are obtained without
taking into consideration any linguistic constructs or concepts which people use
in characterizing groups of objects. To overcome this problem, the method of
conceptual clustering has recently been introduced and implemented (Michalski
[25], Michalski and Stepp [26,27}).

In conceptual clustering, clusters are assumed to be not just collections of
similar objects, but groups of objects that have a simple conceptual
interpretation. Such an interpretation may be just a name characterizing a
collection of objects in a certain configuration (e.g., ring-shaped, U-shaped, T-
formation) or a description characterizing properties of the configuration. In
the method presented by Michalski and Stepp [25,26], the descriptions are
conjunctive statements built from relations on selected object attributes. In
this paper, after examining various components of the clustering process, we
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34 R.S. Michalski et al.

explain conjunctive conceptual clustering in the context of the so-called dynamic
clustering method (Diday et al, [8,12]). 4n experiment then is described which
contrasts conjunctive conceptual clustering with several methods of numerical
taxonony .

II. An Overview of Clustering Problems

A. Problem Classes

From the viewpoint of applications, it is useful to distinguish three classes of
clustering problems on the basis of the dimensionality of objects to be
clustered:

1. One-dimensional clustering (quantization of variables)

Suppose that data describing objects involve continuous variables or discrete
variables with ranges of values that are significantly larger than necessary for a
given problem. In such cases one wants to reduce the number of distinct values of
the variables. This can be done by identifying equivalence classes of the values
(i.e., clusters of values) which should be treated as single units. For example,
in image processing, the scanners usually distinguish between a large number of
gray levels but only a few levels may be needed for solving a particular image
recognition problem. Rosenfeld [34] and Pratt [31] have shown that clustering
methods can be used for making such a reduction. Nubuyaki [30] proposed a
clustering algorithm for this purpose in which the clustering optimality criterion
was the sum of the squares of intra-cluster distances. Several one~dimensional
clustering techiques have been used in the LANDSAT system to reduce the range of
intensity values in spectral components of earth satellite images. One of then,
described by Swain [36], applies ISODATA methods [3], and another, described by
Roche [32], uses dynamic clustering. One-dimensional clustering techniques have
also been proposed for general data reduction problems (Lowitz 9.

2. Two-dimensional clustering (segmentation)

This type of clustering occurs most often in image processing, where one searches
for segments of an 1image 1n which all picture elements share some common
properties, e.g., have similar gray level or similar texture. Coleman [6] defined
region segmentation as a problem of non-supervised learning (clustering), and
applied to it the k-means algorithm (MacQueen [20]). Do-Tu and Installe [14] used
the ISODATA method to segment LANDSAT data. Other clustering algorithms for image
segmentation have been proposed by Fukada [15], Kasvand [17], and Backer [271.
Yokoya et al. [38] constructed a partition of an image depending on two parameters
and showed that by varying those parameters, a hierarchy of clusters can be
obtained. Clustering can also been used to extract contours. For example,
Haralick and Shapiro [16] used clustering for decomposing images into polygonal
contours, and Charles and Lechevallier [4] used it for polynomial approximation of
contours in cartography.

3. Multi-dimensional clustering

In multi-dimensional clustering, objects are partitioned into clusters in a
description space spanned by many attributes characterizing the objects. The
basis for clustering is typically a “similarity” measure between objects, which is
defined as a function of the object attributes. Clusters are determined as
collections of objects with high intra-cluster similarity and 1low inter-cluster
similarity.

In this paper we are concerned with multi~dimensional clustering.
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B. Components of a Clustering Problem Specification

To formulate a clustering problem the data analyst must specify the following
basic method-independent components:

(1) the set of objects to be clustered,
(2) the set of attributes (variables) to be used in describing objects,

(3) the method of encoding variables, including the specification for
each variable of its domain and its measurement scale,

(4) a principle for grouping objects into clusters (traditionally, a
measure of object similarity; in this paper, the membership of an
object in a class characterized by a conjunctive concept),

(5) the inter-cluster structure, which defines the desired relationship
among clusters, e.g., whether the clusters should be disjoint,
overlapping, or hierarchically organized sets.

Each of these components is described in detail below. An illustration of these
components is given in an example in section VI.

Typically, objects to be clustered come from an experimental study of some
phenomenon. One basic property they all possess is that they are describeable by
the same set of attributes (variables). These attributes, however, are not always
all relevant to the clustering problem. The task of detecting the relevant
attributes can be considered as either a separate problem or as an integral part
of clustering. In conventional approaches, the selection of relevant attributes
is treated as a separate preliminary step. In conjunctive conceptual clustering
(sections IV and V of this paper), the selection of relevant attributes is an
integral part of the whole method and is performed simultaneously with the
formation of clusters.

(3) The encoding of attributes

Attributes represent distinct measurements or observable properties. In the case
of physical objects attributes may be, for example, size, weight, temperature,
color, shape, chemical structure, etc. The initial encoding of the attributes 1is
dictated by the measurement devices used, or by an established convention. The
attributes may be measured on different scales, such as nominal, ordinal,
interval, ratio, and absolute. In a simple case, one can only distinguish between
qualitative attributes (the nominal scale) and quantitative attributes (the
remaining scales). These initial measurements are subject to a problem~dependent
transformation, which may reduce the precision of the quantitative attributes or
replace subranges of their values by qualitative properties (e.g., a numerical
size may be replaced by characterizations such as "small,” "medium,” or "large").

The subject of optimal reduction of variable precision was recently considered by
Taleng [37], who describes an adaptive technique of variable encoding. Other
methods of transforming the quantitative attributes into qualitative ones are
described by, for example, Anderberg [1] and Lechevallier [18]. Zagoruiko [40]
discusses a method of optimal quantization by using the concept of mutual
information.
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(4) A principle for grouping objects into clusters

a. The measure of similarity

The traditional principle for grouping objects into clusters utilizes some measure
of object similarity, usually a reciprocal of a distance measure. Among the many
distance measures propused for clustering (Diday and Simon [9]) one can
distinguish between quantitative measures (Figure 1) and qualitative (binary)
measures (Figure 2). The task of selecting a measure of similarity for a given
clustering problem has been studied by Rohlf [33], Chernoff [5], and Diday and
Govaert {8].

b. Membership in a class characterized by a single concept

In conceptual clustering in general [25], objects are assembled into clusters that
represent single human concepts (linguistic terms or simple logical functions
defined on such terms). 1In the conjunctive conceptual clustering the concepts are

logical products of relations on selected object attributes.

(5) The inter-cluster structure

Let E be a set of objects to be clustered and E1, Egyens, Ex clusters into which E
is partitioned. Let a(E4) = @j denote a description of cluster Ey (a conjunctive
statement covering E;, see section IV). In general, a description @y 1s satisfied
not only by all the observed objects in Ey, but also by some unobserved objects.
Based on the relationships among the clusters Ey, 1=1,2,...,k, or among the
cluster descriptions aj, four different types of inter—cluster structures are
commonly distinguished in the literature:

[ The partition structure: a set of clusters whose union is the set
E, and whose descriptions are all disjointl (this implies that the
clusters themselves are disjoint),

. The overlapping structure: a set of clusters that includes at
least one intersecting pair. When some descriptions intersect but
corresponding clusters do not (i.e., the intersection of these
descriptions contains only the unobserved events), the structure is
called weakly overlapping, otherwise it is called strongly
overlapping.

[ The hierarchical structure: the first level clusters represent a
partition structure of the whole set E; clusters at a lower level
are elements of partition structures of the corresponding clusters
one level higher,

L] The bipolar structure: a partition .structure that consists of
pairs of clusters with maximally contrasting representations.

These structures are illustrated in Figure 3.

III. The Dynamic Clustering Method

The dynamic clustering method (Diday et al, {[8-12]) is a class of clustering
techniques that find clusters iteratively by alternately applying a representation
function and an allocation function (explained below) until a local optimum of the
assumed criterion of clustering optimality is achieved. The earlier algorithms
such as "k-means” (MacQueen [20]) and the "center adjustment ‘algorithm” (Meisel
[28]) are speclal cases of dynamic clustering, in which the description space is
Euclidean and the cluster representation is the cluster mean.
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Figure 1. Some Quantitative Distance Measures
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Figure 3. Examples of Inter—cluster Structures

The dynamic clustering method can be viewed as a general framework that 1is
particularized to a specific technique by specifying appropriate problem-dependent
components (in addition to the five basic components described earlier in section
IIB). These additional method-dependent components include:

(6) the cluster representation scheme, which defines the means for
formally representing clusters,
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(7) the representation function, which, given the objects in a cluster,
determines their representation,

(8) the allocation function, which, given a cluster representation,
determines observed objects belonging to the cluster,

(9) the clustering optimality criterion, which defines the optimal
clustering of objects (ideally, such a measure should take into
consideration both the measure of fit of clusters to cluster
representations and the utlility of the clusters).

Each of these items will now be discussed in detail.

(6) Cluster representation schemes

A cluster representation is a mathematical or geometrical comstruction that simply
and generally characterizes objects in the cluster. An elementary cluster
representation scheme is to select one or a few sample objects from the cluster.
Variations on this theme include selecting the object that corresponds to an event
at the center of mass of the cluster, or the object closest to it (when no
observed event is at the center of mass). An alternative scheme is to select the
set of "most outstanding representatives” of the cluster, defined as a set of the
r most different objects found in the cluster (where r 1s a constant). Such a set
can be determined by the event selection program ESEL (described by Michalski and
Larson [24]). Figures 4a and 4b illustrate the above two schemes of cluster
representation. Other schemes include representing a cluster by the line of least
inertia (Figure 4c), a normal distribution (Figure 4d), a node in a classification
tree (Figure 4e), and by a conjunctive statement (Figure 4f), which is the
representation used in this paper.

(7) The representation function

Given a representation scheme and a set of clusters of objects, the representation
function determines the "best” representation for the clusters under the assumed
scheme. Algorithms for computing the representation function depend strongly on
the choice of the scheme for cluster representation. Formally, the representation
function is a mapping

g : {ck} -> {1k} 1

where {Ck} is a set of clusterings (each clustering 1is a collection of k
clusters),
{LK} is a set of clustering representations (each clustering representation
is a collection of representations of individual clusters).

(8) The allocation function

The allocation function is the inverse of the representation function: given a
cluster representation, it determines the objects that belong to each cluster.
Formally, it is a mapping

£ 2 {Lk} -> (ck} 2)

(9) The clustering optimality criterion

One way of measuring the optimality of clustering is to measure the "fit" between
clusters and cluster representations. Such a measure of fit is usually defined as
the sum of the degrees of fit between each object in a cluster and the cluster
representation, and thus is additive (this 1s not the case in conceptual
clustering, since it tries to capture "Gestalt properties” of clusters). The
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Figure 4. Examples of Cluster Representation Schemes

measure of fit can be stated formally as a mapping
DF : {ck} x {1k} -> [0,1] 3)

where x denotes the cartesian product and [0,1] is the interval of possible values
of the degree of fit.

In evaluating the clustering optimality one may also consider the utility of the
clusters.
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In such cases, the clustering optimality criterion would be a combined measure,
€.g., a linear function with weights representing the relative importance of the
degree of fit and the utility:

W(C,L) = wy+ DF(C,L) + wye U(C,L) (%)

where U(C,L) € [0,1] is a function that measures the utility of representing
cluster C by representation L. An alternative way of combining the above measures
of clustering optimality is to use the "lexicographical functional with
tolerances” described in section 1IV. Section IV also describes some other
measures for characterizing clustering optimality.

The Control Structure of the Dynamic Clustering Algorithm

Given a set of objects E, and integer k, the dynamic clustering method partitions
E into k clusters that are locally optimal according to the assumed criterion of
clustering optimality, W(C,L). Beginning with some initial representation of the
k clusters, chosen randomly, a sequence of iterations is performed, each
consisting of (a) finding the clusters that best fit the given cluster
representations obtained so far, and (b) choosing the representations that best
fit the obtained clusters. During this process, the clustering optimality
criterion is monitored and when improvement ceases, the process terminates.

Let Cp,C1,C2, ++. and Lg,Ly,Ly, ... be sequences of clusterings and representations,
respectively, obtained in iteratioms 0,1,2,... . If the sequence of values of the
clustering optimality criterion W(Co,Lg), W(Cy,Ly), W(Cy,Ly), ... 1is guaranteed
not to decrease, then it must converge to some (local) maximum value. The
convergence properties of W and the type of similarity function that guarantees
the convergence are discussed in Diday et al [11].

IV. Conjunctive Conceptual Clustering

The conjunctive conceptual clustering method, as described by Michalski and Stepp
[26,27], can be viewed in the framework of dynamic clustering if one assumes that
the cluster representation has a special form: a conjunctive concept closely
"fitting” a collection of objects. This way of presenting conceptual clustering
seems to be useful for the simplicity of theoretical presentation, especially for
those acquainted with conventional clustering methods. It should be noted,
however, that the actual computational techniques in conceptual clustering are
quite different from anything previously applied under the dynamic clustering
framework. These techniques employ the formulation and methodology developed for
the optimization of variable-valued logic expressions (Michalski [21,22]).

Representation scheme

Conjunctive conceptual clustering uses two cluster representation schemes: (1) a
preliminary scheme: a single object selected from a cluster (central or extreme),
called the seed of the cluster, and (2) a final scheme: a conjunctive statement
that describes objects in the cluster (Figure 4f). This conjunctive statement
(called a VLj conjunctive predicate or a VL complex) 1is an expression in the
variable valued logic system VL; (Michalski [21,23]).

Suppose that x;, X2, ..., X, are variables selected to represent objects to be
clustered. We will assume that each variable, x4, 1e {1,2,...,n}, has an
assigned domain, D(xj), that specifies all possible values the variable can take
for any object 1in the collection to be clustered. The number of such values is
glven by dj. The domains (after final transformation) are assumed to be finite,
and represented generally as D(xy) = {0,1,2,...,d1-1}. We distinguish between
nominal variables (or qualitative measurements), whose domains are unordered sets,
linear variables (or quantitative measurements) whose domains are linearly ordered
sets, and structured variables, whose domains are tree-ordered sets. An example
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of a nominal variable is "color” or "blood type;" examples of linear variables are
rank, size, or quantity of something; an example of a structured variable is
shape, whose values may be triangle, rectangle, pentagon, ..., or polygon which
represents a more general concept (a parent node in the tree-structured domain).
For simplicity, we assume that variables are either nominal or interval.

The description space spanned over variables x1,X3,...,X; 1s called the event
space. Each point in this space (event) 1is a vector of specific values of
variables x3,x3,...,Xp. An event that is a description of some object in the
collection to be clustered is called an observed event. Other events are called
unobserved events. A VL; conjunctive predicate or VL; complex (briefly,
f~complex) 1is a logical product of relational predicates or selectors, defined as
forms:

[Xi # Ri] (5)
where R; (the reference) is a list of values from the domain of variable xj, i.e.,
D(xi) 3
# (the relation) stands for the relational operator = (equal) or # (not
equal).

A selector [xj = Rj] (or [xj # Ry]) is satisfied if the value of xj is (is not) in
relation = (#) with any (all) values in the set R;. 1In the set-theoretic sense,

[x; = Ry] is equivalent to "value of x; € {Rj}" and
[x; # R;] is equivalent to "value of xy 4 Ry}

For example, the selector [length=small,medium] (value of length & {small,medium})
is satisfied whenever length has the value small or the value medium. The
selector [length#medium] is satisfied by any value of length except medium. The
notation of a selector may be simplified by using the "or" operator for linking
values of nominal variables on the list R; and using operators < > < > and the
range operator ".." in selectors with linear variables, as illustrated below. A
set of objects that satisfy each selector in a complex 1is called an s-complex
(set-complex). Thus, an f—complex can be viewed as a description of an s—complex.
The f-complex:

[height=tall] [color=blue or red][length>2][size¥medium] [weight=2..5] 6)

(the operation AND is implied by the concatenatlion of selectors) describes those
objects that are tall, blue or red, with length > 2, not medium size, and of
weight 2 through 5. The set of all such objects constitutes the corresponding s-—
complex. The distinction between £- and s- complexes is used to permit the
application of logical or set-theoretic operators, respectively, whichever is
more convenient. When this distinction is unimportant, the term complex will be
used (without a prefix).

Not every collection of objects constitutes an s—complex, i.e., mnot every
collection can be precisely described by an f2-complex. It 1is, however, possible
to describe every collection of objects by a complex, if the complex is allowed to
describe some additional objects (i.e., if it is permitted to be a generalized
description of the collection). For example, events:

er: (blue, large, round)
ey: (red, medium, round)

can be described by the complex: [color=blue or red]([size>medium]{shape=round].
This complex also covers the events:

e3: (red, large, round)
e4: (blue, medium, round)
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which are distinct from e; and ey. The number of such unobserved events contained
in a complex is called the (absolute) sparseness of the complex.

Representation function (g)

In conceptual clustering, the representation function g is implemented as a
procedure which, given a clustering CK (a set of k clusters), selects k seeds
€1, €2,++.,e8r, one from each cluster, and then determines a set of k disjoint
complexes, aj, @p,...,xy, such that

(1) complex ay covers (contains) seed eyq,
(2) the union of complexes covers the set to be clustered E, and
(3) all k complexes together maximize the clustering optimality criterion.

This procedure is computationally very complex. The selection of seeds is
initially done randomly, and then follows certain rules. These rules and the
underlying algorithm are briefly described in section V.

Allocation function (f)

In contrast to function g, function f in conjunctive conceptual clustering 1is very
simple. It is implemented as a procedure which, given a representation consisting
of k complexes a], ap,...,ay, forms a clustering CK = {E1,E2, «+«,Ex}, where the
cluster E; contains observed events in complex aj.

Clustering optimality criterion

The clustering optimality criterion specifies the desired properties of
clusterings. The implemented method permits the user to maximize simultaneously
one or more measures (elementary criteria) such as:

o the fit between the clusters and the data,
[ the inter-cluster differences,

[ the essential dimensionality,

[ the simplicity of cluster representations,

The fit between the clusters and the data is computed as the negative of the total
sparseness of the complexes defining clusters (i.e., the negative of the total
number of unobserved events contained in the complexes). As the number of
unobserved events in a complex decreases, the degree of overgeneralization of the
complex decreases, and therefore the complex "fits" the observed events better.

Inter—cluster difference is measured by the sum of the degrees of disjointness
between every pair of complexes representing clusters. The degree of disjointness
of a pair of complexes is the number of selectors in both complexes after removing
pairs of selectors that involve the same variable and intersect. For example, the
pair of complexes

L] [color=red] [size=small or medium] [shape=circle]
L [color=blue] [size=medium or large]

has the degree of disjointness 3, because 2 of the 5 selectors intersect, namely
[size=small or medium] intersects [size=medium or large]. Maximizing this
criterion promotes clusters whose descriptions involve long sequences of different
attribute values.
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Essential (discriminative) dimensionality is defined as the number of variables
that singly discriminate between all the clusters, i.e., which have different
values in every cluster description (f-complex). Single relations involving such
variables are sufficient for distinguishing one cluster from the other clusters.

Simplicity of cluster representations is measured by the negative of the total
number of selectors in all descriptions.

The above elementary criteria can be combined together into one general measure of
clustering optimality through the use of the "lexicographical functional with
tolerances” (LEF) [25]. The LEF is defined by a sequence of "criterion—tolerance”
pairs (e1,41), (ec2,42), ..., where cj is a criterion (from the above list) and A
is a "tolerance threshold” (A ¢ [0..100%]). In the first step, all clusterings
are evaluated on the first criterion, c¢;, and those that score best or within the
range defined by the threshold A; from the best are retained. Next, the retained
clusterings are evaluated on criterion cp and trimmed similarly as above using Ap.
This process continues until either the subset of retained clusterings is reduced
to a singleton (the "best” clustering), or the sequence of criterion-tolerance
pairs is exhausted. In the latter case, the retained set contains clusterings
that are considered to be equivalent with respect to the assumed criterion of
optimality.

V. The Algorithm PAF

The preceding sections have described the conjunctive conceptual clustering
method in the general framework of dynamic clustering. This section will present
briefly the actual clustering algorithm PAF implemented as the inner part of the
conceptual clustering program CLUSTER/PAF [26,27]. The outer program invokes the
inner portion in a sequence of iterative steps to determine the "best” number of
clusters and then recursively repeats the whole process to construct the next
level of the cluster hierarchy [27].

The implemented algorithm, which reflects the dynamic clustering framework
described in section III, proceeds as follows:

1. k events ("seeds") are selected from E. The seeds may be chosen randomly or
according to some criterion,

2. For each seed, a set (star) of all maximally general complexes (i.e., with
maximum sparseness) that cover this seed and do not cover other seeds is
determined,

3. Complexes in stars are reduced by removing from selector references all
unnecessary values, 1.e., the values without which the complex still covers
the same observed events,

4. From each (so modified) star, one complex is selected in such a manner that
the obtained complexes are mutually disjoint, together cover all the data
points, and optimize the given criterion of clustering optimality. The
search strategy used to find such a collection of complexes is based on the
A* search algorithm, developed in artificial intelligence (Nilsson [29]).

5. From each complex in the collection a new seed is selected and a new
iteration of the algorithm begins. Two seed selection techniques are used.
Seeds may be either central events, having the maximum number of properties
in common with other observed events in the complex, or they may be
borderline events, having the minimum number of properties shared. Central
events are chosen as seeds as long as the clusterings improve with each
iteration. When the improvement ceases, borderline events are selected.

6. The obtained clustering is evaluated using measures defined in the criterion
of optimality (selected from: fit, inter-cluster differences, essential
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dimensionality, or simplicity). If this is the first iteration, the
clustering is stored, otherwise it is stored only if it is better than the
previously stored one. This way, the optimality criterion is guaranteed not
to decrease. The algorithm terminates when a specified number of iterations
does not produce a better clustering.

Figure 5 shows the flow diagram summarizing these steps.

( Begin )

Given: ® a collection of events
® the number of clusters desired, k
® the optimality criterion

RF: Representation Function

Select k seed events and determine
the "best” mutually disjoint complexes
each covering one seed and together
covering the given collection of events.

AF: Allocation Function

Determine clusters (of observed events)
corresponding to complexes.

Is
clustering optimality
still improving?

yes

no

Result: a set of k optimal or
suboptimal complexes

Figure 5. Simplified Flow of the Conjunctive Conceptual Clustering Algorithm

In the actual implementation, the program stores not only the best (locally
optimal) k-clustering, but also a user-specified number of alternative k-
clusterings closest to the best one from the viewpoint of the assumed clustering
optimality criterion. Along with the k-clusterings (sets of k clusters) the
program provides descriptions of individual clusters (%-complexes) and their
scores on the measures used in the optimality criterion (section IV). A detailed
explanation of the algorithm is given in Michalski and Stepp [26,27]. A proof
that every object collection can be partitioned into an arbitrary number of
conjunctive concepts is in Michalski [25]. 1In Diday et al. [12] a clustering
algorithm is described which uses an adaptive distance measure for creating
clusters represented by a collection of complexes.
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VI. An Example Problem

The simple example problem described below is wused to illustrate some of the
differences between conjunctive conceptual clustering and methods of numerical
taxonomy .

v o fF a2
# e R

Figure 6. Microorganisms

The method-independent components of the problem (see section IIB) are:
1. The set of objects to be clustered: ’"microorganisms” shown in Figure 6.

2,3. The variables selected for describing microorganisms and their domains are:

Body parts Texture

e 1 part e blank

® 2 parts e striped

® many parts ® crosshatched
Body spots . Tail type

® one spot e none

® many spots e single

e multiple
Figure 7 shows the descriptions of the microorganisms in terms of these variables.

4. The principle for grouping objects into clusters:

For numerical taxonomy: 18 different techniques are used, being combinations
of three different similarity measures (product—moment correlation, simple
matching coefficients, reciprocal Euclidean distance), three data
transformations (none, normalizing variables into unit intervals, z-scores),
and two clustering schemes (average linkage, and weighted average linkage).

For conjunctive conceptual clustering: the technique described in sections IV
and V.

5. The inter-class structure: the partition structure.
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Two programs were applied to solve this problem:

1. NUMTAX, developed by Professor Selander at the University of Illinois,
which implements the 18 techniques of numerical taxonomy mentioned above
(described in Sokal and Sneath [35]),

2. PAF, which implements conjunctive conceptual clustering (Michalski and
Stepp [26,27]).

Micro- Body Body Tail
organism parts spots Texture type
a 1 one blank single
b 1 one blank none
c 1 many striped multiple
d 2 one blank multiple
e 2 many striped single
f many many striped none
g many one blank multiple
h many many striped multiple
i many one blank none
3 many many crosshatched multiple

Figure 7. Descriptions of microorganisms

Results from NUMTAX

The numerical taxonomy program NUMTAX organizes the events into a hierarchy (a
dendrogram) of clusters reflecting the numerical distances between consecutively
larger clusters. The top 1level of the hierarchy represents the complete
collection of events.

Because dendrograms are constructed bottomup, the entire dendrogram must always
be generated. After this is done, the dendrogram may be cut apart at some level
to produce clusters. In our experiment, 18 different dendrograms were obtained,
one from each technique applied (as described above). Figures 8 and 9 show two-
and three-cluster solutions obtained from - two typical dendrograms. The first
dendrogram (Figure 8) was generated using the reciprocal of Euclidean distance,
non-transformed data, and average linkage; the second dendrogram (Figure 9) was
generated using using simple matching scores, transformed (z-score) data, and
average linkage.

The clusters obtained from the dendrogram are not accompanied by any description.
In order to determine descriptions of these clusters, they were presented to an
inductive learning program, AQll (Michalski and Larson [24]), which formulated
discriminant descriptions of each cluster (i.e., the shortest descriptions
sufficient to discriminate between the clusters) in the form of a logical
disjunction of VL complexes. Descriptions listed in Figures 8 and 9 are results
from the above program.

Results from conceptual clustering

Program PAF was run using the clustering optimality criterion: "maximize the
essential dimensionality, then maximize the simplicity of cluster representations”
(both with zero tolerance). The clusters and their descriptions obtained by PAF
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O {

a b f i

[Texture=blank][Tail type=none,single] v [Texture=striped][Tail type=none]

B SR S

[Tail type=multiple] v [Texture=striped][Tail type=single or multiple]

®»

a b

[Body parts=1][Tail type=none or single]}

X A

1

[Body parts>l][Tail type=none]

B A N

[Tail type=multiple] v [Body parts>l][Tail type=single or multiple]

b.
(Cluster descriptions were produced by inductive program AQll)

Figure 8. Clusters obtained by NUMTAX using average linkage, Euclidean
distance and raw (non-transformed) data, for k=2 and k=3
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[Body parts=1] v [Tail type=single] v [Texture=crosshatched]

5 ¢

T oK K% R Y

[Body parts>l][Texture=blank or striped][Tail type=none or multiple]

a.

& :

[Body parts>l][Texture=blank or striped][Tail type=none]

d g 3% h

[Body parts>l][Texture=blank or striped][Tail type=multiple]

[Body parts=l] v [Tail type=single] v [Texture=crosshatched]

b.
(Cluster descriptions were produced by inductive program AQll)
Figure 9. Clusters obtained by NUMTAX using average linkage, simple matching

coefficients and transformed (z-score) data, for k=2 and k=3




A recent advance in data analysis 51

with k=2 are shown in Figure 10a, and with k=3 in Figure 10b.

Discussion of results

An experiment with human subjects solving this problem indicated that people
catagorized objects using the objects' most noticeable properties. Most common
two—cluster solutions were:

(1) [Texture=blank] vs. [Texturefblank], and
(2) [Body spots=one] vs. [Body spots=many]

and the most common three-cluster solution was:
(3) [Tail type=none] vs. [Tail type=single] vs. [Tail type=multiple]

When compared with the above solutions, the clusterings produced by NUMTAX seem
rather arbitrary: the descriptions of single clusters (determined by program AQll)
involve disjunction in several cases, and are relatively complex. The
descriptions produced by PAF, however, correspond well to human solutions. The
program found that clusterings (1) and (2) are in fact identical. These human
descriptions can be obtained directly from the descriptions generated by PAF by
removing from PAF descriptions the conditions wunnecessary for discriminating
between the clusters. (In non-trivial problems this reduction is performed by
applying inductive program AQll). For k=3, PAF found, in addition to the solution
shown in Figure 10b, the alternative solution:

[Body parts=l1][Texture=blank or striped]
[Body parts=2][Texture=blank or striped][Tail type=single or multiple]
[Body parts=many]|[Tail type=none or multiple]

0f the 18 dendrograms generated, only 4 (those involving either normalization or
z-score data transformation, Euclidean distance, and either average or weighted
average linkage) yielded a partitioning of data that matched the human solution
(and PAF”s solution, Figure 10a). Thus, in our experiments, numerical taxonomy
methods produced clusters that in the majority of cases seemed to be rather
inadequate from the viewpoint of human interpretation. This can be explained by
noting that program NUMTAX is not equipped with any knowledge of human "concepts”
(i.e., it does not know what types of solutions are preferred by humans), and
therefore cannot knowingly produce clusters corresponding to such concepts.

PAF has been tried on several practical clustering problems. One application was
to cluster data describing 47 diseased soybean plants (each characterized by 34
many-valued variables). PAF accurately partitioned the diseased plants into four
disease categories which were present in the sample, and described the clusters in
terms of disease symptoms that agreed with the symptoms indicated by plant
pathologists for these diseases.

viI. Conclusion

A method of conceptual clustering was discussed that produces clusters together
with their descriptions in the form of conjunctive statements closely "fitting"
the clusters. The important difference between this method and traditional
clustering methods 1s that it does not wuse a similarity measure for forming
clusters. Clusters are defined as groups of objects whose descriptions are
disjoint 1logical products of relations on object attributes, optimizing a
predefined criterion. Experiments performed so far have shown that the method
produces clusters that tend to match solutions most satisfactory for people.
Similar experiments with numerical taxonomy methods resulted in clusters that were
less satisfactory in this regard.
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Lo L ome

[Texture=blank] [Body spots=one]

B P SN P

[Texture#blank] [Body spots=many]

a.

® #

b £ i

[Tail type=none] [Texture=blank or striped]

-

a e

[Tail type=single] [Texture=blank or striped][Body parts=l or 2]

g .3 = R,

[Tail type=multiple]

b.

Figure 10. Clusters and cluster descriptions obtained by PAF for k=2

and k=3, using as the optimality criterion: ‘“"maximize the
essential dimensionality, then maximize the simplicity of
cluster representations'
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From the viewpoint of traditional clustering methods conceptual clustering can be
interpreted as an approach that also uses a measure of object "similarity,” but of
a quite differend kind. This new kind of “"similarity measure” takes into
consideration not only the distance between objects (as in conventional clustering
methods), but also their relationship to other objects and, most importantly,
their relationship to some predetermined "concepts” (e.g., conjunctive concepts
used in this paper).

The price of using such a more complex similarity measure is the significantly
greater computational complexity of the method. For example, each dendrogram
produced by NUMTAX required about 60 milliseconds of processor time on a CYBER
175, while clusterings produced by PAF required 1.5 to 4 seconds of processor
time. (The above comparison is not totally appropriate because NUMTAX produces
only clusters, while PAF produces both clusters and their descriptions.) The
greater cowputational complexity is not necessarily a significant disadvantage of
the method. If the results are indeed useful and practical, then the
computational cost is of little relevance (especially now when the prices of
computer technology are declining). Experience shows that researchers using
presently available clustering techniques are most concerned not with the amount
of computational time expended but with the difficulty of interpreting the results
of the analysis. Another important characteristic and Ilimitation of the
implemented method is that it is oriented toward problems in which objects are
described on nominal or ordinal scales (although it also handles variables
measured on other scales after an appropriate quantization).

Concluding, the presented method of conjunctive conceptual clustering seems to add
a new dimension to research in cluster analysis, and to have the potential to be a
useful tool for researchers analyzing data.
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1Descriptions are disjoint if there are no events (observed or unobserved) that
satisfy more than one description.
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