
REGULARIZED LEARNING IN MULTIPLE TASKS WITH RELATIONSHIPS

by

Anveshi Charuvaka
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Huzefa Rangwala, Dissertation Director

Dr. Daniel Barbara, Committee Member

Dr. Carlotta Domeniconi, Committee Member

Dr. Igor Griva, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Fall Semester 2015
George Mason University
Fairfax, VA

Regularized Learning in Multiple Tasks with Relationships

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Anveshi Charuvaka
Master of Science

George Mason University, USA, 2012
Bachelor of Science

Acharya Nagarjuna University, India, 2006

Director: Dr. Huzefa Rangwala, Professor
Department of Computer Science

Fall Semester 2015
George Mason University

Fairfax, VA

Copyright c© 2015 by Anveshi Charuvaka
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my parents who have always supported me in all my efforts.

iii

Acknowledgments

These past six years in graduate schools have been a roller coaster ride with many ups and
downs. Along the way, several people have helped me stay motivated and keep my sanity
through the arduous times. First of all I am indebted to my advisor Dr. Huzefa Rangwala for
guiding me all these years and pushing me hard to achieve my best. I would also like to thank
my dissertation committee members Prof. Daniel Brabara, Prof. Carlotta Domeniconi, and
Prof. Igor Griva for being helpful, encouraging and accommodating throughout the process.
Their invaluable feedback has helped me improve my thesis. Without friends, the journey
to the finish line would not have been as much fun as it had been, so I would also like
to thank my current and past collegues at the Data Mining Lab, new friends that I have
made in grad school, and old friends who have stuck around, with whom I have had several
intellectually stimulating conversations and some good times. But most importantly, I am
eternally indebted to my family who have always been supportive of my every endeavor.

iv

Table of Contents

Page

List of Tables . viii
List of Figures . ix

Abstract . xi
1 Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions . 3

2 Background . 6

2.1 Terminology and Notations . 6

2.2 Multi-task Learning . 9

2.2.1 Regularized Multi-task learning . 11

2.2.2 Group Regularization . 12

2.2.3 Feature Learning and Feature Selection 12

2.2.4 Relevant Tasks and Subgroups Learning 13

2.3 Hierarchical Classification . 15
2.3.1 Definition and Characteristics . 16
2.3.2 Flat Classification . 19
2.3.3 Top-down Local Classification . 20

2.3.4 Problem Transformation . 22
2.3.5 Global Classification . 23

2.4 Classifier Performance Evaluation . 27
3 Distributed Regularized Learning for Large Scale Hierarchical Classification 30

3.1 Introduction . 30
3.2 Large Scale Hierarchical Classification . 31

3.3 Methods . 33
3.3.1 Hierarchical SVM Classification . 33
3.3.2 Optimization . 33

3.3.3 Dual Coordinate Descent SVM . 34
3.3.4 Parallelization . 37

v

3.3.5 MapReduce Implementation . 40

3.4 Experimental Setup . 41

3.4.1 Datasets . 41
3.4.2 Validation Protocols . 42

3.5 Results . 43
3.5.1 Effectiveness . 43
3.5.2 Efficiency . 44

3.5.3 Detailed analysis on DMOZ-2010 . 45

3.6 Summary . 47

4 Large Scale Hierarchical Classification using Cost Sensitive Learning 49

4.1 Introduction . 49
4.2 Motivation and Related Work . 50
4.3 Methods . 53

4.3.1 Cost Calculations . 55
4.3.2 Optimization . 57

4.3.3 Dealing with Hierarchical Multi-label Classification 58

4.4 Experimental Setup . 60

4.4.1 Datasets . 60
4.4.2 Validation Protocols . 61

4.5 Results . 62
4.6 Summary . 66

5 Regularized Multi-task Learning for Classification with Dual Hierarchies 68

5.1 Introduction . 68
5.2 Structural Classification of Proteins . 69
5.3 Methods . 71

5.3.1 MTL Methods . 73
5.3.2 Protein Structure Classification using MTL 76

5.3.3 Dataset Pre-processing . 76

5.3.4 Extracting Task Relationships . 78

5.4 Experimental Setup . 81

5.4.1 Models Evaluated . 81
5.4.2 Validation Protocols . 81

5.5 Results . 84
5.5.1 Performance of MHMTL . 84
5.5.2 L3-only versus L3+L4 . 87

5.5.3 Graph Regularized MTL using Inner Node Mappings 88

5.5.4 Graph-based Link Analysis . 89

vi

5.5.5 Run Time Analysis . 92

5.6 Summary . 92

6 Convex Multi-task Relationship Learning using Hinge Loss 94

6.1 Introduction . 94
6.2 Related Work . 95
6.3 Methods . 96

6.3.1 Multi-task Relationship Learning . 96

6.3.2 Optimization . 97

6.4 Experimental Setup . 105

6.4.1 Validation Protocols . 105
6.5 Results . 107

6.5.1 Simulated Toy Dataset . 107

6.5.2 Landmine Detection . 108
6.5.3 Amazon Sentiment Classification . 109

6.6 Summary . 111

7 Future Work . 115
7.1 Large Scale Multi-task Learning . 115

7.2 Hierarchical Classification Targeting Application Specific Losses 116

7.3 Top-down Classification with Feature Selection 116

7.4 Imbalance Classification Methods for Large Scale Hierarchical Classification . 118

Bibliography . 121

vii

List of Tables

Table Page

2.1 Notations. 7
2.2 Categorization of hierarchical classification problems. 18

3.1 Dataset statistics. 41
3.2 Performance comparison on set based evaluation measures. 42

3.3 Performance comparison using hierarchical evaluation measures. 44

3.4 Training times (in min.). 44

3.5 Performance on varying training set size for DMOZ-2010 (mean ± std). The

cells marked with † are statistically significant at p-value of 5%, rest are

significant at p-value of 1%, with paired t-test on results for 5 independent

splits. 47

4.1 Dataset statistics. 60
4.2 Performance comparison with hierarchical costs. 63

4.3 Performance comparison with hierarchical and imbalance cost. 64

4.4 Performance comparison of HierCost with other baseline methods. 65

4.5 Total training times (mins). 66

5.1 Dataset statistics. 79
5.2 Counts of each type of relationship used in Graph MTL 80

5.3 AUC scores using L3 along with auxiliary L4 tasks in training 83

5.4 AUC scores using only L3 tasks . 84

5.5 Training times (in sec.) . 92

6.1 Simulated dataset accuracy . 108

6.2 Landmine AUC scores . 110
6.3 Per task accuracy - Amazon Sentiment Classification 112

6.4 Task correlation - Amazon Sentiment Classification 113

viii

List of Figures

Figure Page

3.1 Iterative MapReduce processing. 36

3.2 Average improvement in precision, recall, and F1-score for HRSVM over SVM

for categories of different sizes for DM-25 dataset. 45

5.1 Partial hierarchy illustrating training and test partitions for SCOP superfam-

ily b.1.1 . 79

5.2 AUC SHMTL vs STL for L3 tasks . 86
5.3 AUC MHMTL vs SHMTL for L3 tasks . 86
5.4 AUC improvement for Graph vs Trace . 87

5.5 AUC improvement (MHMTL - SHMTL) for different set of nodes in training

L3 vs L3+L4 . 88

5.6 AUC improvement (MHMTL - STL) with number of Cross Links 90

5.7 AUC improvement (SHMTL - STL) with number of siblings 91

5.8 Average AUC for SCOP and CATH with different links in training set for

Graph MTL . 91

6.1 Illustration of convex function lower bounded by cutting planes. Cutting

planes are tangents to the curve. The black dots represent the points at

which the cutting planes are defined. The piecewise linear approximation is

defined by the collective maxima of the cutting planes. The red dot represents

the current minima of JCPk . 99

6.2 Learned task correlations for simulated data using 10 training examples. Each

square represents the correlation between a pair of tasks. The size of the

squares represents the magnitude of the value with positive values shown in

green and negative values in red. 108

ix

6.3 Task correlations of best models for Landmine dataset. Sub-figures corre-

spond to different percentages of data used for training. Each square repre-

sents the correlation between a pair of tasks. The size of the squares represents

the magnitude of the value with positive values shown in green and negative

values in red. 110
7.1 Power law distribution of class sizes for Yahoo! documents dataset [1] 119

x

Abstract

REGULARIZED LEARNING IN MULTIPLE TASKS WITH RELATIONSHIPS

Anveshi Charuvaka, PhD

George Mason University, 2015

Dissertation Director: Dr. Huzefa Rangwala

We often encounter classification problems in real world as groups of tasks with complex

interactions. In order to fully take advantage of the underlying information and deal with the

unique aspects of these problems, we need methods than can utilize the available information

in the learning process. In this thesis I present several methods to deal with the learning

problems in domains with multiple tasks, with primary focus on large scale hierarchical

classification and multi-task learning.

Hierarchies form an integral part in information organization in several application areas

ranging from protein function classification to document classification. Automated methods

for classification into hierarchies can lessen the burden of manual curation or completely

obviate the need for it. Research in hierarchical classification is quite mature and several

methods have been developed for small scale classification tasks, however, scalability of

these methods to large scale problems is one aspect that is being actively researched. In large

scale classification, the number of classes, number of training examples as well and number of

features can be so large that learning on commodity hardware can be prohibitively expensive.

With growing popularity of cluster computing paradigms, it is becoming possible to scale-

out computation using intelligent distributed methods. In many large scale classification

problems, a significant number of classes are also plagued by problems such as insufficient

training data or huge skew in class distributions. Large scale classification techniques should

also try to mitigate these problem by leveraging data from related classes, for example, by

using techniques inspired by the research in multi-task and transfer learning.

In this regard, we have developed a distributed implementation of hierarchical regular-

ization formulation which is scalable to very large scale hierarchical classification problems.

Even though the hierarchical regularization is able to effectively tackle some of the challenges

associated with large scale classification, it can be computationally expensive to train, com-

pared to its binary alternatives in one-vs-rest settings. To address this shortcoming of recur-

sive regularization, we also propose an alternative formulation using cost sensitive learning

where the cost of misclassification are defined with respect to the hierarchy. This formula-

tion allows us to tackle the class imbalance in training as well. Cost sensitive hierarchical

learning scheme is able to improve the learning efficiency while at the same time improving

the classification performance.

In several domains we encounter multiple classification schemes over the same or similar

data elements. These classification schema may provide different views and it is logical to ex-

ploit these different view in order to improve classification performance. One such prominent

domain is protein structure classification, where multiple hierarchical classification schemes

exist for protein structure classification. In this thesis, we also present techniques to exploit

multi-task learning for learning across disparate classification hierarchies and show that the

combined scheme is able to outperform learning on a single hierarchy.

Several multi-task learning formulations make the assumption that all tasks under con-

sideration are symmetrically related. However, this assumption may not hold true for a

large number of cases. Even the information about task relatedness is often not known.

When symmetric task relationship assumptions are naively used in learning, the classifi-

cation performance can be negatively affected, a phenomenon known as negative transfer.

Therefore, effective methods should only selectively transfer information between tasks that

can improve performance. Several methods have been developed to infer task relationship

structure to deal with this issue. In this thesis, we also present a method that extends task

relationship inference techniques to max margin formulation of support vector machines.

Chapter 1: Introduction

1.1 Motivation

Traditionally machine learning research has primarily focused on binary classification, but

in the real world, we often encounter classification problems that are more complex. The

straighforward generalization of classification to more than two classes, known as multi-

class classification, involves a finite number of class labels where each training instance

can be assigned exclusively to one of the labels. When instances can be assigned multiple

labels from the set of possible labels, the classification problems are known as multi-label

problems. In addition to these scenarios, several variations of classification problems are

encountered in practice where the different classification tasks may have implicit or explicit

relationships defined between them. Hierarchical classification, for example, can be seen as

type of multi-class or multi-label classification problem where the labels have an explicit

structure in the form of a hierarchy. In multi-task learning several tasks are jointly learned

to improve generalization performance, and in the related area of transfer learning the goal

is to improve the learning on target task, which typically has insufficient data, with the aid

of data from other source tasks with sufficient training examples.

One of the easiest way to deal with the more complex scenarios is to use a reductionist

approach where the decisions in multi-class, multi-label, hierarchical and multi-task clas-

sification settings are reduced to a sequence of binary decisions [2–5]. Although in many

cases the performance of such reductions can be competitive, recent years have witnessed a

tremendous progress in complex learning domains — which is far too diverse and numerous

to enumerate — in order to use the available data and class relationships in much more

intelligent manners to improve learning performance.

As mentioned earlier, the vital aspect of hierarchical classification is the hierarchical

1

relationship between the class labels. Hierarchical classification algorithm that can exploit

this class structure effectively are able to improve the learning performance [2]. In multi-

task learning, several related tasks are presented to the learning algorithm and the goal is to

leverage the inductive bias from related tasks to improve the generalization performance of

learned classifiers through joint learning. The underlying assumption is that the inductive

bias that is helpful to many tasks is unlikely to be accidental. Several empirical and theoret-

ical works support this notion [6–10]. Although these two research domains are often seen

as disparate areas with little overlap, their unifying aspect is the existence of multiple tasks.

In fact, a detailed analysis of the learning principles used in hierarchical classification and

multi-task learning brings out some underlying commonalities. For example, hierarchical

methods that use regularization schemes or priors to model neighboring nodes [11, 12] and

multi-task learning methods that use task networks [13] to impose the bias that related tasks

should have similar model vectors use similar technical approaches to model regularization.

One aspect of this thesis is to bring the insights from multi-task learning to model problems

in multiple hierarchical classification settings.

The availability of computational resources at low cost has catapulted us into the era of

big data. Today, clusters of commodity computers using distributed computing frameworks

[14,15] are able to achieve what was inconceivable a few years ago even with supercomputers.

This trend has led to a growth in interest in web-scale problems, which in turn has precipi-

tated the need for learning algorithm that are scalable to thousands and millions of classes,

and often, very large feature spaces. However, most of the early developments in machine

learning deal with small scale problems which can not be trivially scaled to tackle web-scale

problems. In addition to high computational demands, large scale classification must also

deal with issues such insufficient training data, which can often be more challenging. One of

the main contribution of this thesis is towards the development scalable methods for large

scale hierarchical problems.

2

1.2 Problem Statement

Binary classification is a well researched problem in machine learning. As we delve into

classification problems in more complex domains new insights are being gained. The cur-

rent thesis is an effort towards furthering these insights. The primary focus of this thesis is

classification involving multiple tasks having complex interrelationships. The two main focal

points are problems in large scale hierarchical classification and multi-task learning. Within

the domain of large scale hierarchical classification, the goal is to come up with learning

schemes that are scalable and improve the generalization performance by understanding the

unique aspects of the problem with respect to utilizing hierarchical relationships, address-

ing high computational demands, and dealing with categories with insufficient examples.

When multiple hierarchical schemes exist on the similar data elements, conceivably, addi-

tional knowledge should provide a better understanding of the class structure, which can

be exploited by classifiers. The research problem here is — what learning paradigms are

best suited to exploit this common knowledge when an explicit mapping between the two

hierarchical schemes is not available? Finally, when no relationships are known, we would

like to understand how to uncover the task relationships in order to mitigate the adverse

effects of joint learning.

1.3 Contributions

In this thesis, I have tried to address some important challenges encountered in large scale hi-

erarchical and multi-task learning domains. As mentioned earlier, large scale classification in

hierarchies poses some interesting and challenging problems. One of the main issues is that a

majority of classes have insufficient training examples. Regularization strategies that impose

similarity between neighboring nodes have proven very successful [11,16]. However, efficient

training of these models with large number of tasks is a significant challenge. Chapter 3

presents our work related to distributed regularized training for hierarchical classification

and its implementation using map-reduce distributed computation framework.

3

Even though distributed optimization methods are able to scale well to extremely large

scale scenarios, the global optimization of all the model variables in an integrated fashion

incurs communication overhead, which can sometimes be a considerable. Additionally, due

its recursive nature of regularization the learning algorithm performs several basic itera-

tions of the model training for terminal classes. To address this problem, we re-examined

the regularization formulation and reformulated hierarchical classification problem as a cost

sensitive classification problem, which is presented in Chapter 4. The cost sensitive classi-

fication method provides additional flexibility in modeling the costs and enables us to deal

with the problem of imbalance in the training data as well.

Hierarchies are popular schemas for organizing information in many application areas,

and often, several hierarchical schema may be available for similar information with some

minor differences. Biological ontologies are a prominent example of such phenomena where

multiple classification schemes for protein structure classification and protein function clas-

sification exist [17–19]. Multiple views provided by different classification schemes might

provide diverse sources of information that should in principle help us build better classi-

fiers. In the work presented in Chapter 5, we demonstrate the effectiveness of combining

multiple hierarchies through the use of multi-task learning.

In certain cases, the relationships between tasks might be unknown, which poses a chal-

lenge in effective transfer of information between tasks. Uncovering relationships between

tasks allows us to selectively learn only from the tasks which can assist in improving gen-

eralization performance. In Chapter 6, we present a max-margin method that is able to

uncover task relationship while simultaneously learning the model weights.

To summarize, the contributions of this thesis are as follows:

• The development of a distributed hierarchical regularization scheme for large scale

hierarchical classification.

• Reformulation of hierarchical regularization using cost sensitive loss and application

to large scale hierarchical classification.

4

• Multi-task learning methods for classification involving multiple hierarchical classifi-

cation systems and application to protein structure classification.

• Large margin method for learning task relationships and efficient optimization proce-

dure using bundle methods.

Several peer reviewed publications were outcome of the work presented in this thesis [20–24].

The work presented in this thesis can be extended in several interesting directions. In

Chapter 7 some problems for future work are presented. Chapter 2 summarizes the basic

terminology and notations commonly used in this thesis and also provides an overview of

foundational research related to our work.

5

Chapter 2: Background

This chapter introduces the background work related to the problems addressed by this the-

sis. A basic knowledge of machine learning and classification methods is assumed. Specifi-

cally, this chapter gives a broad overview of hierarchical classification and multi-task learn-

ing. A considerable research has been performed in these areas, and a comprehensive review

of all the methods published in literature would be a massive undertaking, therefore, the

discussion is restricted to most representative methods which illuminate upon the common

techniques used.

2.1 Terminology and Notations

This section will explain some of the commonly used notations and terminology in this

thesis. To cope up with the multitude of use cases, notations are commonly reused, but the

context should leave little room for ambiguity. For convenience, Table 2.1 summarizes some

of the most frequently used notations.

Typically, lower case letters are used to represent both vectors and scalar values, and

upper case letters to denote matrices. jth component of vector a is represented as a(j). Rm

denotes the Eucledian space of dimensionality m. [a : b] denotes the set of positive integers

z such that a ≤ z ≤ b.

For general classification problems, the instances are represented using (xi, yi), where

xi ∈ X represents the set of input features, and yi ∈ Y represents the label for the examples.

Feature space X is generally a subset of Rd, where d denote dimensionality of the feature

space. For binary classification Y = {+1,−1}. For multi-class and hierarchical classification

the label space is represented as set of positive integers Y = [1 : T], where T is the number

of possible labels. For simplify notation multi-class and hierarchical classification , we use

6

Table 2.1: Notations.

Notation Meaning

R set of real numbers
[a : b] set of integers i, such that a ≤ i ≤ b

n Number of input instances
d dimensionality of the feature space
T Number of class labels/tasks
wt linear weight vector associated with classifier for class/task t
xi input feature vector associated with ith examples
xit input feature vector associated with ith example of task t
yi binary label of example i
yit binary label of example i with respect to class/tasks t

ŷi (ŷit) predicted label of example i (w.r.t. task t)
L generic loss function
R generic regularizer

γ (a, b) length of the undirected path between nodes a and b
‖a‖p lp norm of vector a

‖M‖p,q Lp,q norm of matrix M

7

two different representations of class labels li ∈ [1 : T] represents the class index of example

i, where T is the set of finite labels. This labels can also be represented using a vector of

binary labels yi = [yi1, yi2, . . . , yiT], where yit = +1 iff li = t and yit = −1 otherwise. A

collection of training instances is called a dataset, which is denoted by D ≡ {(xi, yi)}ni=1,

where n is the number of examples. In the case of general multi-task learning, where training

examples are specific to each individual task, we denote the set of examples for task t using

{(xit, yit)}nt
i=1 , where nt denotes the number of examples of task t. In multi-task learning,

the number of tasks is denoted by T . ft is used to denote the learned classifier for class

t ∈ [1 : T]. For the most part, the classifiers learned in this thesis are linear functions of

the form ft = sign
(
wTt x

)
, where the weight vector wt sufficiently describes the classifier for

class t. We use W to represent the weight matrix whose vth column is are denoted by wv ,

therefore, W ≡ [w1, w2, . . . , wT].

The set difference of sets A and B is denoted by A/B. To denote the positive component

of a scalar value, a we use |a|+ ≡ max(0, a). The absolute value of a scalar value v is

denoted by |v|; for a set or vector M , |M | returns its length. For a vector v, for any

p ≥ 0, the lp norm is defined as ‖v‖p =
(∑d

i=1

∣∣v(i)
∣∣p)1/p

. The special case of p = 2 is

commonly known as the euclidean norm. Other Special cases which are commonly used

are p = 1 and p = ∞. Similarly for a matrix M , and for any p, q > 0, we define the Lp,q

norm,‖M‖p,q as the lq norm of the lp norms of the columns of M , therefore, ‖M‖p,q ={∑
j (
∑

i |Mij |p)q/p
}1/q

. The special cases L2,2, known as Frobenius-norm, and L2,1 are

frequently used in regularized learning literature. M � 0 and M � 0 denote that M is a

positive semi-definite matrix or positive definite matrix respectively. Normal(µ,Σ) denotes

a multivariate normal distribution with mean µ and co-variance Σ. M−1 denote the inverse

of matrix M . tr (M) denotes the trace of M , which is defined as the sum of diagonal

elements.

In the context of hierarchical classification problems, we use the class label, class, and

8

node interchangeably to denote the classes. Since the hierarchy is defined over the classes,

there should be no ambiguity. The root node is represented with the label 0. We use N

to denote the set of all nodes in the hierarchy and T to denote the set of terminal nodes,

which can be assigned as labels to instances, there for hierarchical classification Y = T . The

function π : N/ {0} → N/T maps a node to its parent. χ (v) denotes the set of children of

node v. Ā (v) denotes the set of ancestors of node v, not including the root node. D+ (v)

denotes the union of the set of descendants and the node v itself. S (v) denotes the set of

siblings of node v.

Additional notations not mentioned here will be described, as required, in specific chap-

ters.

2.2 Multi-task Learning

In the standard settings of supervised machine learning, the objective is to learn a predictive

function using example data. However, in real world settings, we often encounter situations

with several related learning tasks. For example, in personalized email spam classification,

the classification of spam for each user can be considered a separate task; in automated

driving, steering and acceleration can be considered related tasks. Intuitively, it would

seem that learning these related classification or regression tasks jointly should help us

uncover common knowledge and improve generalization performance. In fact, this intuition

is supported by empirical evidence provided by recent developments in transfer learning [25]

and multi-task learning [9] [6] [7].

Multi-task learning (MTL) is a paradigm for learning several related tasks jointly. The

generalization performance of the learned tasks is improved by utilizing inductive transfer

across tasks. MTL achieves this by leveraging the training signal in related tasks [6, 9],

and it has been empirically and theoretically [7] [26] shown to improve the generalization

performance, especially when the training data is scarce. Some of the earliest models of

multi-task learning were developed using multi-layer back-propagation neural networks [9].

9

Neural networks can be extended from single task to multiple tasks trivially with additional

outputs for each task. Several tasks share the same input layer and one or more intermediate

layers in this setting. By training multiple tasks simultaneously the back-propagation net

prefers the inductive bias that helps multiple tasks [9].

Recently, there has been a significant progress in research in multi-task learning using

Bayesian and regularized risk minimization framework (see [7–10, 13, 26–33] and the refer-

ences therein). Various MTL models differ in the kinds of assumptions they make about the

relatedness of the tasks and how these assumptions are incorporated into the learning algo-

rithm. For example, in email spam classification it would be reasonable to assume that spam

for multiple users contain words promoting certain products or sales gimmicks. However,

there might also be user specific variations, for example, if a certain user has deliberately

subscribed to receive information related to a specific product. Therefore, designing a com-

mon spam filter for all users might be effective, but tuning the spam filter specific to an

individual might perform better. In this case we could make the assumption that all the

spam classification tasks share a similar set of parameters with some task specific variations

[10]. Different from this, some MTL formulations try to extract a good representation of the

input features or a subset of features that are informative for all the tasks [8, 34]. Consider

the task of automated driving which involves controlling steering, acceleration and braking,

and the input is a continuous stream of images from a camera or some other sensory inputs.

Here although the tasks are inherently different, but depend on the same inputs. Therefore,

a good representation of the feature space should be able to aid all the tasks[9]. Finally,

in some learning algorithms such as k-nearest neighbors which primarily use a measure of

similarity or distance from the neighboring instances for classification, we might leverage

the inductive bias from several tasks in order to learn a good distance metric for all the

predictive tasks [7].

Although, the general multi-task learning concepts have been incorporated into various

kinds of learning algorithms, this thesis will primarily focus on the formulations based on

10

regularized risk minimization. The MTL methods using regularized risk minimization pre-

dominantly incorporate regularizers that acts on several tasks simultaneously, as I discuss

below.

2.2.1 Regularized Multi-task learning

Given a training set with n input-output example pairs, {(x1, y1), . . . , (xn, yn)}, the objective

of standard machine learning models is to learn a mapping function f : X → Y between the

input domain X and the output domain Y which minimizes the loss on data not encountered

in training. The training examples (xi, yi) ∈ X×Y are drawn from an unknown distribution.

The regularized risk minimization framework achieves this goal by modeling an objective

function as a trade-off between loss function, which minimizes the error, and regularization

penalty, which controls the model complexity to discourage over-fitting.

min
w

n∑
i=1

L (w, xi, yi)︸ ︷︷ ︸
loss

+λ R (w)︸ ︷︷ ︸
regularization

(2.1)

This can be generically represented as (2.1) where w is the set of model parameters to be

learned. This principle can be extended to MTL, where we have T tasks with training data

for each of the t = 1 . . . T tasks given by {(xit, yit)}nt
i=1. The combined learning objective

can be written as,

min
W

T∑
t=1

nt∑
i=1

L (wt, xit, yit)︸ ︷︷ ︸
loss

+λ R (W)︸ ︷︷ ︸
regularization

(2.2)

Various multi-task learning methods take this general approach to build combined models

for many related tasks, typically, by enforcing MTL assumptions through regularization

term.

11

2.2.2 Group Regularization

One of the first MTL methods based on regularized risk minimization framework was pro-

posed by Evegeniou and Pontil [10]. The key assumption of their model is that all the tasks

are closely related and their model weights are similar. This assumption is incorporated into

the method by a regularization term that penalizes the deviation of the model weights for

each task from the mean of all tasks as shown in (2.3).

min
W

T∑
t=1

nt∑
i=1

∣∣yitwTt xit − 1
∣∣
+

+ ρ1

T∑
t=1

‖wt‖22 + ρ2

T∑
t=1

∥∥∥∥∥wt − 1

T

T∑
s=1

ws

∥∥∥∥∥
2

2

(2.3)

However, this formulation assumes that all the tasks are equally related to each other.

In some case, we might have the knowledge of task relationships as a task network graph.

Whenever such relationships between tasks are available, it is beneficial to take them into ac-

count and enforce similarity only between task pairs that are related. The MTL formulations

proposed in [13,35] incorporate externally provided task relationship into the regularization

term and penalize the deviations of only related tasks. Specifically, the Graph Regularization

formulation proposed by Evegeniou et al. [13] considers the regularizer of the form given in

(2.4)

R (W) =
1

2

∑
(l,q)∈[1:T]×[1:T]

‖wl − wq‖2Alq (2.4)

where Alq denotes the weight of the edge joining task indexed by l and q.

2.2.3 Feature Learning and Feature Selection

Sparse learning schemes, such as lasso and elastic net [36] [37], which are based on l1 regu-

larization of the model weights have been common components of feature learning methods

in machine learning literature. It has been noted in literature that l1 norm penalty promotes

12

sparsity by forcing several components to zeros [38]. Several MTL methods inspired by such

schemes have tried to incorporate this characteristic into matrix norms such as L2,1 norms.

Argyriou et al. [27] proposed a sparse feature learning scheme represented in (2.5).

min
U,A

T∑
t=1

nt∑
i=1

L
(
yit, a

T
t U

Txit
)

+ ρ ‖A‖22,1 (2.5)

In this formulation, U acts as a linear projection matrix which projects the input fea-

tures into the space defined by U , and A is the matrix of learned weights in the projected

dimensions, whose columns are represented by at for t ∈ [1 : T]. The L2,1 norm regularizer

promotes sparsity by selecting the same features across all the tasks. A similar approach

using L2,1 regularization was also used by Obozinski et al. [39], without the projection

onto a linear sub-space. An efficient optimization scheme to solve the L2,1 regularization

formulation using accelerated gradient descent method was proposed by Liu et al. [28].

In the previous methods, one underlying assumption is that all tasks share a common sub-

set of informative features. This may be a limitation in certain settings. This was addressed

by the tree guided group lasso method proposed by Kim et al. [40] where external task

relationships guide the feature selection by enforcing a group-wise sparsity constraints.

In contrast to the previous regularization formulations, the method proposed by Jebara

[34] uses a maximum entropy discrimination based formulation by defining binary feature

switches as part of the trained model.

2.2.4 Relevant Tasks and Subgroups Learning

Several MTL methods make the assumptions that the tasks are symmetrically related to

each other. However, the assumption of symmetric relationships between all tasks made by

this formulation is not suitable for many real world problems where the degree of relatedness

between different tasks can vary. When the task relationships are externally provided, the

graph regularization method [13] is able to leverage them, but in certain cases even the task

13

relationships might be unknown and might have to be inferred from the data. A major

challenge in MTL is to avoid the sharing of information between tasks which are unrelated.

If unrelated tasks are allowed to influence each other then using MTL for learning can

deteriorate performance instead of improving it, a phenomenon which is termed as negative

transfer.

One way to avoid negative transfer is by clustering related tasks. Clustered MTL for-

mulations [41,42] make the assumption that tasks are grouped into clusters such that tasks

within each cluster share greater similarity with other tasks in the same cluster. The clus-

tering of the tasks is not known a priori and needs to be inferred by the learning algorithm.

Therefore, these formulations simultaneously learn the task clustering and infer the model

parameter. One of the drawbacks of this approach is that in case of hard clustering the tasks

are limited to a particular group and might not be able to contribute towards the learning

of tasks from the other group. Task clustering tries to avoid negative transfer by avoiding

learning dissimilar tasks together, but it might also sometimes limit the positive inductive

transfer by imposing hard grouping. Although clustered multi-task learning can extract

related groups of tasks to some extent, one of their shortcomings is that the number of task

clusters is not known beforehand and hence, needs to be determined through parameter

tuning.

In contrast to task clustering formulations, a low-dimensional sub-space assumption can

be imposed on the task weight matrix such that the regularizer tries to minimize the rank

of the weight matrix W . Although directly minimizing the rank of a matrix is a difficult

problem to solve, the trace norm minimization has been shown to achieve low rank solution

[43, 44]. An interesting approach taken by Kumar et al. assumes that the task weight

parameters are sparse combinations of some underlying weight vectors as shown in the

objective function (2.6).

T∑
t=1

nt∑
i=1

L
(
yit, s

T
t L

Txit
)

+ ρ1 ‖S‖1 + ρ2 ‖L‖22 (2.6)

14

here L is matrix of size d× k where k < T which contains the weights of the latent basis

tasks. The weight vector wt = Lst (st is vector of size k) is a sparse combination of the

latent task weights, L and a sparse vector st (S = [s1, . . . , sT]). In this formulation, tasks

from different groups are allowed to share the basis task parameters. However, as with the

task clustering formulations where the number of clusters must be tuned, here we must tune

the number of latent tasks.

Another set of approaches, mostly based on Gaussian Process models, learn the task

co-variance structure [30, 31] and are able to take advantage of both positive and negative

correlations between the tasks.

2.3 Hierarchical Classification

Categorizing entities according to a hierarchy of general to specific classes is a common

practice in many disciplines. It can be seen as an important aspect of various fields such as

bioinformatics, music genre classification, image classification and more importantly docu-

ment classification [2]. A large number of databases organize information in a hierarchical

format. For e.g., popular protein function database, Gene Ontology (GO) [18], catalogs pro-

teins in a functional hierarchy. Web document classification databases, such as Wikipedia 1,

DMOZ Open Directory Project 2, International Patent Classification system 3, and Yahoo!

web directory 4, define hierarchical structure over the topics which are used to label the web

pages. In most cases, curation in these databases remains a manual process. However, with

accelerated growth in the size of these databases, automated methods for organizing and

labeling new instances in hierarchical classification systems have become essential.

Even though some progress has been made in the recent years on the task of hierarchical

classification [2], a large amount of research deals with either flat classification, where the
1http://www.wikipedia.org
2http://www.dmoz.org
3http://www.wipo.int/classifications/ipc/en/
4https://business.yahoo.com

15

hierarchical structure is disregarded entirely, or performs top-down classification using ex-

isting binary or multi-class classifiers. Performance of these straightforward methods tends

to be unsatisfactory [1] compared to methods that utilize the hierarchy in a more principled

manner. In recent years, many methods have been proposed to tackle the global hierarchi-

cal classification problem as a whole. We provide a discussion of the different strategies in

hierarchical classification and a review of some global classification methods in section 2.3.2.

2.3.1 Definition and Characteristics

In this section, we provide a brief background and a formal description of the machine

learning problem addressed by hierarchical classification.

In standard supervised machine learning problems, we are given a dataset D of n input

instances D ≡ {(xi, yi)}ni=1, where x ∈ X and y ∈ Y and the goal is to learn a predictive

function f : X → Y that accurately maps the inputs x to the outputs y and generalizes well

to data not seen during training.

Different classes of supervised machine learning problems can be distinguished by dif-

ferent choices output spaces. In regression problems the continuous output space Y ⊆ R.

Whereas in classification problems the output labels are defined by a finite set of distinct

labels ; in binary classification problems Y = {0, 1}; multi-class classification extends the

binary classification from two to m, a fine number, of discrete labels, which are conveniently

represented by set of integers [1 : m]; in multi-label classification problems, although the

labels come from a finite set of classes represented by [1 : m], each instance can be asso-

ciated with multiple classes, therefore the instance labels can be considered as elements of

the power set of classes, 2[1:m]. Hierarchical classification problems, can be seen as a special

case of multi-label classification where we additionally define a hierarchical structure H over

the set of output labels, and the label assignment must be consistent with the hierarchical

structure.

Since hierarchy is central to the hierarchical classification problem, we define the concept

of a hierarchy as well as its generalization, graph, as follows.

16

Graph G A graph is defined as a tuple G ≡ (V,E) where V is a set of objects (referred to

as vertices or nodes of the graph) and E ⊆ V × V is a set of ordered or unordered

pairs of objects referred to as edges or links. If the ordering is unimportant for e ∈ E,

then the graph is an undirected graph otherwise, it is referred to as a directed graph.

A graph defines the concept of adjacency such that, two vertices u, v which are joined

by an edge are called adjacent, i.e. (u, v) ∈ E ∨ (v, u) ∈ E.

Hierarchical Structure or Hierarchy H In its most general form, a hierarchyH consists

of a set of objects V and a partial order � over the pairs of elements of V. The partial

order arises from the parent-child relationship between the elements of V. A hierarchy

can also be considered a special case of a directed acyclic graph where the directed

edges define the parent-child relationships between vertices/nodes. A hierarchy where

each node has a single parent is known as a Tree.

Several variants of the basic hierarchical classification problem exists, which pose different

challenges from machine learning perspective. Different aspects of hierarchical classification

are described below and summarized in Table 2.2.

Hierarchy Structure The hierarchy over the class labels can be either a Tree or a directed

acyclic graph (DAG). It is significantly more challenging to deal with the problems

where the hierarchies have a DAG structure. In some rare cases, the structure defined

over the labels can be also a general graph, although, the label structure can no longer

be described as a hierarchy in such cases.

Mandatory Leaf Node Prediction Generally, in most problems the most specific labels

assigned to instances belong to the set of leaf nodes. In these cases, the internal

nodes define a virtual hierarchy with no concrete instance assignment other than those

assigned to their descendants. In some problems, the internal nodes can also be the

terminal labels of instances. Therefore, in the latter case the algorithm has to decide

whether an internal node is the terminal label or to proceed to its descendant, making

it more difficult than the former case.

17

Table 2.2: Categorization of hierarchical classification problems.

Criterion Description

Hierarchy Structure Is the hierarchical structure over the labels a Tree, Directed Acyclic
Graph (DAG) or a general Graph?

Mandatory Leaf Node Is the most specific labels of an example necessarily a leaf node?
Multi-label Can instances have multiple labels with no ancestor-descendant

relationships between the labels?

Multi-label Hierarchical classification problems are inherently multi-label prediction prob-

lems because an example assigned to a particular category inherits the labels of all its

parents. But we call a hierarchical classification problem multi-label if an example can

be assigned two labels u, v such that u is neither an ancestor nor a descendant of v.

Various methods for Hierarchical classification have been proposed in the literature .

They can be broadly categorized according to aspects of the problems they can address and

how they utilize the hierarchical structure. Typically, most methods only address hierarchies

involving trees with mandatory leaf node prediction, hierarchical single label prediction

problems.

Since, hierarchical structure over labels is the principal aspect of these methods, the most

important categorization deals with utilization of the hierarchical structure by the methods.

The simplest approach, known as flat classification, disregards the hierarchical relationships

between categories and trains independent binary or multi-class classifiers to distinguish the

leaf categories from other leaf categories in the hierarchy. The local classifier approaches

deals with the hierarchy by splitting the overall problem into smaller problems, whereas the

global classifiers incorporate the hierarchy from a global perspective. We provide a detailed

overview of these categories below. There has been extensive research in the past few

decades in hierarchical classification and numerous methods have been proposed to address

this problem. The research in this area is based on several fundamental machine learning

techniques such as rule mining [45], decision trees [46], neural networks [47], probabilistic

methods [48,49], regularized risk minimization [1,50] and so on. A comprehensive discussion

18

of all the research in this area would be a massive undertaking. Therefore, we limit our

discussion primarily to the methods set in regularized risk minimization framework and to

a limited extent we also discuss methods using probabilistic framework. In our discussion,

depending on the context we use the terms class, label and node interchangeably and refer to

both the nodes in the hierarchy as well as the class labels. Since the nodes in the hierarchy

are indeed the class labels it is obvious that we are referring to the same entities.

2.3.2 Flat Classification

Flat classification disregards the hierarchical structure of the problem and treats it as a

multi-class or multi-label problem. Therefore, classifiers are trained to distinguish each of

the terminal nodes in the hierarchy with the others nodes. Traditional binary classifiers,

such as SVMs [51] can be used to in one-vs-rest (also known as one-vs-all) setting, where a

classifier ft is associated with each terminal labels t ∈ T , which returns a score indicating

the confidence that an instance belongs to class t. The class labels l̂ ∈ T for test instance x

is predicted according to (2.7).

l̂ = argmaxt∈T ft(x) (2.7)

Methods which perform direct multi-class classification instead of utilizing binary methods

in one-vs-rest settings such as Crammer-Singer [52] formulation of multi-class SVM (CS-

SVM) can also be utilized. The CS-SVM, formulation learns a max-margin linear function

by minimizing the convex objective function given in (2.8). The margin maximization re-

quirement is enforced by the first constraint which tries to enforce a margin between the

19

hyperplane for the correct class and the incorrect classes.

minimize :
{wt}t∈T ,{ξi}

n
i=1

1

2

∑
t∈T
‖wt‖2 +

C

n

n∑
i=1

ξi

subject to : wTlixi − w
T
t xi ≥ 1− ξi ∀t ∈ T − {li} ,∀i ∈ [1 : n]

ξi ≥ 0, ∀i ∈ [1 : n]

(2.8)

As we will see later, this formulation is the basis for other methods, such as Structured

output SVMs [53] which are applicable to complex output spaces but have also been used

for the special case of hierarchical classification.

2.3.3 Top-down Local Classification

Flat classifiers train one-vs-rest classifiers to distinguish each class from the rest. Con-

sequently, each classifier is trained on the entire training dataset. In contrast, the local

classification methods decompose the global hierarchical problem into several local binary

or multi-class problems based on the hierarchy [2,54]. These can be further subdivided into

three types of approaches.

Local classifier per Node (LCN) approaches train binary classifiers fv for every non- root

node v ∈ N/ {0} to predict the membership of a test example to that node. For training fv,

we choose the examples belonging to all the descendants of the node’s parent parent π(v).

The examples belonging to all of v’s descendants D+(v) are labeled as positive and the

remaining examples as negative. Hence, essentially the LCN classifiers learn to distinguish

a node from all its siblings. In the prediction phase, the collection of classifiers {fv}v∈N/{0}

is used in a top-down classification approach given by (2.9).

20

l̂ =

initialize p := 0

while χ(p) is not empty

p := argmaxq∈χ(p) fq(x)

return p

(2.9)

The Local Classifier per Parent Node (LCPN) approach trains a multi-class classifier for

each non-leaf node v ∈ N for predicting the appropriate child node. Similar to the LCN

approach, the purpose of the classifiers is also to differentiate between the children of a

node. However, instead of a binary classifier at the non-root nodes, a multi-class classifier

is trained at each non-leaf nodes. If a binary classifier is utilized in one-vs-rest multi-class

classifier settings in LCPN, then it would be equivalent to LCN. The training examples for

multi-class classifier fv are those belonging to D+(v), and each of its children c ∈ χ(v) are

the different classes. The prediction algorithm is similar to that illustrated in (2.9).

Finally, the Local classifier per level (LCL), which is the least popular among the local

classification approaches, trains a single multi-class classifier for each level of the hierarchy,

to distinguish between all the nodes at that level.

Since the local classifiers decompose the problem, existing methods for binary and multi-

class classification can be used. Also, due to the local nature of decomposition, each classifier

can be independently trained. Therefore, these methods are trivially parallelizable. Since

each classifier is trained on a smaller dataset, the training is more efficient than flat classifiers.

However, there are several drawbacks of this top-down approach. In the prediction phase,

the classification is performed top-down, therefore any prediction errors performed in the top

levels can not be corrected. Hence, for the local methods to perform well, all the classifiers

should be very accurate, especially at the higher levels, otherwise the prediction errors get

compounded. In LCL approach, the classifiers at different levels can output inconsistent

21

predictions i.e. the labels predicted by classifiers at different might be unrelated according

to the hierarchy. As we traverse down the hierarchy, the most specific classes at the bottom

have fewer examples. Since the LCP and LCPN strategies partition data into progressively

smaller sets down the hierarchy, some nodes might not have sufficient data to train accurate

classifiers.

2.3.4 Problem Transformation

As we saw in the previous sections, local methods transform the original problem by de-

composing it into smaller problems. The methods in Problem Transformation category,

instead of partitioning the instance space according to the hierarchy, transform the output

space into independent problems or perform consistency correction on the independently

predicted outputs. Therefore, these methods retain the modularity of flat and local clas-

sification approaches. They can also take advantage any existing binary classification or

regression methods. We describe two methods below which illustrate these approaches.

The method proposed by Bi and Kwok [55], which inspired by the label space transforma-

tion methods in multi-label literature [56], [57], applicable to both Tree and DAG hierarchies.

The central idea of this method consists of transforming the labels yi ∈ {0, 1}|N | from the

original output space to a lower dimensional space zi ⊂ Rp, creating new set of instances

{(xi, zi)}ni=1, where p < m. In the modified output space, the assumption is that the com-

ponents z(j)
i are de-correlated. Therefore, p independent regression model can be trained

for each of the p datasets {(z(j)
i , xi)}ni=1, where j ∈ [1 : p]. Any regression method can be

used in the learning step. In prediction step, for a test example x, each model predicts{
ẑ(j)
}p
j=1

which are projected back onto the original output space to get the label ŷ. This

is the basic idea as used in KDE for multi-label classification. However, the labels predicted

by this procedure can be inconsistent with the label hierarchy. Therefore, Bi and Kwok [55]

propose a consistency correction procedure to enforce hierarchical consistency of the labels

according to both Tree and DAG hierarchies.

22

Barutcuoglu et al. [58] proposed a method to address the problem of protein function

classification on Gene Ontology (GO) [18]. GO organizes the functional classes into a DAG

structured hierarchical ontology. The model consists of two steps. In the first step, a binary

classifier is trained for each functional class. The outputs of these models can be either

binary prediction or confidence scores. In the second step these inconsistent predictions are

processed by a second level Bayesian network model to produce the final output labels.

2.3.5 Global Classification

The methods categorized as Global Classification methods treat the global hierarchical clas-

sification problem as a whole. Typically, a specialized solutions for the hierarchical problem

is proposed which lacks the modularity of the approaches discussed previously. These meth-

ods train a single global model taking into account the interrelated classes in the hierarchy.

However, the prediction algorithm in many cases can be similar to flat or local methods.

In the following section we look at some models proposed for the purpose of hierarchical

classification and discuss the various ways in which the hierarchical assumptions are imposed

by the classifiers.

Typically in most classification problems, any incorrect prediction is treated as a mis-

classification, irrespective of severity of the error. In real world hierarchical classification,

we might be interested in how far-off the predicted label is from the true label according to

the hierarchy, because an error in the most specific category might be considered less severe.

The model proposed by Dekel et al. [59] is similar to the max-margin formulation for

multi-class problem. This method tries to maximize the margin between the correct class

and the remaining classes. However, the margin is scaled by a factor of
√
γ (li, r), as shown

in (2.10). Here li is the true class and r ∈ N/{li}. Therefore, the classes which are closer

to the true class will be required to have a smaller unscaled margin.

{
wTlixi − w

T
r xi√

γ (li, r)
≥ 1

}
,∀ (xi, li) ∈ D, ∀r 6= li (2.10)

23

Orthogonal Transfer model proposed by Zhou et al. [50] is similar in sprit to the top-down

local classifier, but encourages orthogonality between the model vectors learned at a node

to its ancestors at higher levels. It is motivated by the fact that classification at different

levels of the hierarchy may rely on different features or feature combinations. Therefore,

the classification hyperplanes learned at each level should be as different as possible from

their ancestors. In other words, the learned hyperplanes should be orthogonal or nearly

orthogonal to those of the ancestors. The model tries to minimize the objective function in

(2.11) to incorporate this assumption.

minimize :
{wt}t∈N

1

2

∑
(p,q)∈N×N

Kpq

∣∣wTp wq∣∣+
C

n

n∑
i=1

ξi

subject to :

wTp xi − wTq xi ≥ 1− ξi, ∀p ∈ A+ (li) ,∀q ∈ S (p) , ∀i ∈ [1 : n]

ξi ≥ 0, ∀i ∈ [1 : n]

(2.11)

Contingent up certain conditions on the matrix K, the problem can be shown to be convex

[50]. Kpq = 0 wherever p and q are not related according to the hierarchy, andKpq > 0, when

they p, q are related. Hence,
∣∣wTp wq∣∣ term disappears when p, q are unrelated; when p = q,

it reduces to ‖wp‖22, which regularizes the weights towards 0; when p, q have an ancestor-

descendant relationship, the term
∣∣wTp wq∣∣ enforces orthogonality between the vectors wp and

wq.

Hierarchical classification can also be viewed a special case of structured output predic-

tion [53,60] because the collection of interrelated hierarchical labels is complex output. Cai

and Hoffman [61] applied a structured output model similar to Structured Output SVMs

24

[53], for hierarchical classification. This model is presented in (2.12).

minimize :
{ut}t∈N

1

2

∑
t∈N
‖ut‖22︸ ︷︷ ︸

regularization

+
C

n

n∑
i=1

ξi︸ ︷︷ ︸
loss

subject to :

∑
t∈A+(li)

uTt xi −
∑

q∈A+(r)

uTq xi︸ ︷︷ ︸
margin

≥ 1− ξi
∆ (li, r)

, ∀r ∈ N − {li}

ξi ≥ 0, ∀i ∈ [1 : n]

(2.12)

Comparing this model with that of the standard SVM [51] formulation, the regularization

term is the sum of l2 norm of the weight vectors of all the classes and the loss is the sum of

the slack variables. The hierarchical knowledge is incorporated through the first constraint

equation where a) the margin of xi , with respect to the true class label li and some other

label r 6= li , considers the ancestors of these classes, and b) the slack is scaled by ∆ (li, r)

where ∆ : N ×N → R encodes the loss of predicting r when true label is li. Therefore, this

model can incorporate complex losses ∆. However, the model size becomes exponentially

large with respect to the number of categories and is infeasible for large scale problems.

The motivation for the top-down (LCPN) based hierarchical feature selection scheme

proposed by Koller and Shahami [48] is that the discriminant function at higher levels

of the hierarchy are considerably different from the discriminant functions at lower levels

and the relevant features at each classifier node might vary considerably. This assumption

is incorporated by performing feature selection at each local node using an information

theoretic criterion. The features which are most correlated with the class under consideration

are selected.

25

For each feature Xi, the algorithm determines E[δi], the expected value of δi, where

δi ≡ P (Xi)DKL (P (Y | X) ‖P (Y | X−i)) (2.13)

where DKL (p‖q) ≡
∫
z p (z) log p (z) /q (z) dz is generally known as the Kullback Leibler

divergence, but in this paper it is called cross-entropy; X is the set of all features, Xi is the

ith feature and X−i = X − {Xi}. E[δi] specifies the importance of the feature i w.r.t. the

class. Therefore, eliminating the feature that minimizes this value disrupts the conditional

distribution P (Y | X) least. To compute P (Y | X) the algorithm uses Naive Bayes model.

This procedure is iteratively applied to reduce the feature space until the required number

of features are selected.

McCallum et al. [16] proposed a hierarchical shrinkage model which is based on the

observation that most specific classes (terminal nodes), often suffer from insufficient number

of training examples while the more general classes (top levels of the hierarchy) contain more

examples and hence the classifiers learned for them tend to be more robust. Therefore, this

method exploits the hierarchy by shrinking the parameter estimates in data sparse children

towards the data rich ancestors. Their model was proposed for the problem of hierarchical

document classification using Naive Bayes as base classifiers. Initially, considering a flat

classification model, the problem is formulated a probabilistic mixture model where the

classes correspond to mixture components.

The Bayesian model proposed by Gopal et al. [12] is also based on the assumption that

the classes related according to the hierarchy have similar model parameters. The generative

form of the of the probabilistic model proposed in this papers is given in (2.14).

wt | mt,Σt ∼ Normal (mt,Σt) , ∀t

pl (x) = exp
(
wTl x

)
/
∑
q∈T

exp
(
wTq x

)

l | x ∼ Categorical
(
p1 (x) , . . . , p|T | (x)

)
, ∀ (x, l) ∈ D

(2.14)

26

The weight parameters wt for class t are generated by Gaussian distribution whose mean

mt is set to that of the parent node, in other words mt := wπ(t). Therefore, the model

weights of the children are effectively shrunk towards the parents. Since the root node has

no parent, the mean is user defined, usually set to 0.

However, there is now considerable freedom in defining additional assumptions on the

models through the co-variance matrix Σt. In this work, three different ways of modeling

the co-variances of related models were evaluated. In two models, siblings share the same

co-variance matrix through parameters generated from common parent. In the third model,

the co-variance matrix is allowed to be independent for the siblings. The major contribution

here, however, is developing a scalable inference procedure.

2.4 Classifier Performance Evaluation

Accuracy, which is defined as the fraction of correct predictions, is the most commonly

used evaluation measures in classification. If the number of positive and negative examples

are highly unbalanced, then a classifier can achieve high accuracy by predicting all the

examples into the majority class. Alternate performance measures, such as Area Under

Receiver Operating Characteristics (AUC-ROC) curve [62], sometimes abbreviated as Area

Under Curve (AUC), that take class imbalance into consideration are better suited for such

cases. The curve is created by plotting the true positive rate against the false positive rate

at various thresholds. Since end users can choose a threshold value to balance the tradeoff

between true positive and false positive, AUC metric provides the aggregate tradeoff at

various thresholds.

Other classification metrics such as Precision (P), Recall (R), and their harmonic mean,

F1-score, have their origins in information retrieval. Their definitions are provided below.

27

P =
true positive

predicted positive
(2.15)

R =
true positive

actual positives
(2.16)

F1 =
2PR

P +R
(2.17)

Set based measures such as Micro-F1 and Macro-F1 are commonly used to evaluate

multi-class and multi-label classifiers. Many authors have also employed these measures for

evaluating performances on hierarchical classification problems.

Micro-F1 =
2PR

P +R
(2.18a)

Macro-F1 =
1

m

m∑
t=1

2PtRt
Pt +Rt

(2.18b)

where m is the number of classes, Pt and Rt are the precision and recall values for class

t ∈ [1 : m]. P and R are the overall precision and recall values for the all the classes taken

together. Micro-F1 gives equal weight to all the examples therefore it favors the classes with

more number of examples. In the case of single label classification, Micro-F1 is equivalent

to accuracy. Macro-F1 gives equal weight to all the classes. Hence, the performance on the

smaller categories is give equal importance.

In the context of hierarchical classification, set based measures do not consider the

distance of misclassification with respect to the true label of the example, but in general, it is

reasonable to assume in most cases that predictions that are closer to the actual class are less

severe than predictions which are far apart in the hierarchy. Hierarchical measures, defined

in (2.19) , take the distances between the actual and predicted class into consideration.

28

Hierarchy based measures include Hierarchical Precision (hP), Hierarchical Recall (hR),

and their harmonic mean, Hierarchical F1 (hF1) and Tree-induced Error (TE) [59, 62].

TE =
1

n

n∑
i=1

γ
(
l̂i, li

)
(2.19a)

hP =

∑n
i=1

∣∣∣Ā(l̂i) ∩ Ā (li)
∣∣∣∑n

i=1

∣∣∣Ā(l̂i)∣∣∣ (2.19b)

hR =

∑n
i=1

∣∣∣Ā(l̂i) ∩ Ā (li)
∣∣∣∑n

i=1

∣∣Ā (li)
∣∣ (2.19c)

hF1 =
2 ∗ hP ∗ hR
(hP + hR)

(2.19d)

where, l̂i is the predicted label and li is the true label of example i. γ(a, b) gives the

length of the undirected graphical path between categories a and b. Ā (v) is the sets of

ancestors of label v which includes the label itself, but does not include the root node.

For multi-label classification, where li as well as l̂i are sets of micro-labels, we redefine

graph distance and ancestors as: γml(li, l̂i) =
∣∣∣l̂i∣∣∣−1∑

a∈l̂i minb∈li γ (a, b) and Aml (l) =

∪a∈lA (l).

29

Chapter 3: Distributed Regularized Learning for Large Scale

Hierarchical Classification

3.1 Introduction

Much progress has been made in recent years on the task of hierarchical classification [2,

46, 58, 59, 61, 63–65]. Yet, majority of the work has dealt with only small scale datasets.

In recent years, with the upsurge in interest in big data, large scale classification problem

have attracted considerable attention. Although some hierarchical classification methods

which train only local classifiers or trivially use binary or multi-class classification can scale

to large classification problems, the performance of these straightforward methods tends

to be unsatisfactory [1], because they are unable to utilize the hierarchical information.

Furthermore, large scale settings present additional challenges such as huge skew in the

number of examples of positive and negative classes and the presence of extremely rare

categories. Rare categories have very few training examples, and therefore, the trained

models tend to not perform well on these classes. Under these circumstances the overall

performance of the classifier tends to favor larger classes.

Owing to only a recent interest in the topic of large scale classification, few methods have

been proposed in literature that are scalable. In this work, we build upon a hierarchical

classification method [11] which biases the classification decision boundary of a category

towards the aggregate decision boundary of neighboring categories. This method extends

the flat classification scheme, where each of the terminal classes are modeled with a linear

binary classifier, since the top-down local classification method tends to perform poorly due

to error propagation from mis-classifications at higher level nodes. The hope in biasing the

linear classifier towards that on the neighbors is to mitigate the effect of high variance due to

the small number of examples in rare categories. In this work, we propose an approximate

30

block coordinate descent scheme, which improves the efficiency while achieving the same

level of classification effectiveness as the exact scheme. Further, we provide a distributed

implementation of the method using map-reduce distributed computation framework on

Hadoop and compare the approximate and exact schemes for training efficiency. We further

perform a detailed analysis on large hierarchical text datasets to understand different aspects

of the method which contribute towards its success.

Notations N is used to denote the set of all hierarchical nodes. T denotes the set of

terminal nodes which can be assigned as class labels to instances. The class membership of

instances is represented using binary labels yit ∈ {−1,+1} where yit = +1 iff the instance

belongs to class t and yit = −1 otherwise. χ (t) denotes the set of children of node t, and

π (t) denotes the parent node of t. Where the class label is implicitly understood to be t, we

drop the subscript denoting the class and denote the class labels as yi (instead of yit) and

the model weight vector as w (instead of wt).

3.2 Large Scale Hierarchical Classification

With the emergence of large scale hierarchical databases, the problem of hierarchical classifi-

cation especially in the text domain has exploded in size. There has been a growing interest

in large scale hierarchical classification, which is also emphasized by data mining challenges

such as Large Scale Hierarchical Text Classification (LSHTC) challenge [66] 1.

In addition to thousands of categories, typically for hierarchical text classification, num-

ber of features range in the order of several hundred thousands to millions. This poses a

major challenge for the storage and retrieval of the learned models. For e.g. Large Wikipedia

dataset, the largest dataset in LSHTC competition, has 478,021 categories with a feature

space of size 1,617,899. A global vector space model for a problem of this size, using all the

features, would require a memory of roughly 3TB. This huge space requirement makes it

infeasible to solve a problem of this magnitude on a typical computer of moderate capacity.
1http://lshtc.iit.demokritos.gr/

31

Furthermore, one of the primary problems of large scale hierarchical classification is data

sparsity because majority of the classes do not contain sufficient number of examples to

train classifiers with good generalization performance.

Early methods in Large Scale Hierarchical Classification focused on top down local clas-

sification methods [1,48,63,67]. Since the classifiers are trained to distinguish only between

the children of a node in the hierarchy, the larger classification problem is decomposed into

smaller local problems which are considerably easier to handle. In addition, due to the

problem transformation nature of this method, any base classifier can be used in learning.

The major disadvantage of this approach is the propagation of errors committed in higher

levels to the lower levels. To mitigate this problem to some extent, Bennett and Nguyen

[68] used a strategy called refined experts. In their method, different from the basic top

down approach, the data used for training a node is selected to be similar to what would

be expected during the testing phase by using the union of the data predicted at the parent

node as well as the actual positive examples. In addition, a bottom up strategy is used to

augment the feature set used at a parent node which includes the predictions of the previous

lower levels. However, due to the nature of the method, it restricts the parallelism of the

algorithm to level by level training of the nodes.

Typically, one tractability issue with large scale classification problems is that the number

of categories is huge and classifiers have a hard time trying to deal with the large number

of categories. To avoid this problem, Xue et al. [69] proposed a two stage classification

approach consisting of a category search stage and a classification stage. In the search stage,

a relevant set of documents is retrieved from the training corpus and in the classification

stage a classifier is trained on the relevant documents to predict the category of the test

example. The major bottleneck of this approach is having to train a classifier for every test

example. Recently, Gopal et al. have proposed two distributed methods [11,12] to deal with

large scale hierarchies. Like many other hierarchical classification methods, the primary

assumption in this model as well, is that the weight parameters learned for the parent are

similar to those of the children.

32

3.3 Methods

In the following section we describe a recursive hierarchical regularization method which

overcomes the limitations of these methods and is scalable to large scale hierarchical classi-

fication problems.

3.3.1 Hierarchical SVM Classification

The objective function of Hierarchical SVM classification proposed by Gopal et al. [11], is

presented in (3.1).

min
{wt}t∈N

∑
t∈N

1

2
‖wt − wπ(t)‖22︸ ︷︷ ︸

regularization

+C
∑
t∈T

n∑
i=1

∣∣1− yitwTt xi∣∣+︸ ︷︷ ︸
loss

(3.1)

Here, C denotes the regularization trade-off parameter. The objective function tries

to learn a decision boundary similar to one-vs-rest SVM classification for each class with

the additional constraint that the model vector learned for a category is constrained to be

similar to the model vector for the parent. The similarity is defined as the euclidean norm of

the difference of two vectors. Gopal et al. [11] proposed a block coordinate descent method

for optimizing (3.1) in the context of large scale classification problems in a distributed

environment.

3.3.2 Optimization

In serial block coordinate descent method [70] the optimization variables are partitioned

into groups or blocks of variables and the optimization proceeds by optimizing the objective

function with respect to a single block of variables keeping the variables corresponding to

other blocks fixed.

In order to apply block coordinate descent to (3.1), we update each block of variables,

wt for each node t ∈ N one at a time, in a sequential manner. For non leaf nodes t ∈ N\T ,

33

when the optimization problem (3.1) is restricted to wt, reduces to (3.2)

min
wt

1

2

 ∑
c∈χ(t)

‖wc − wt‖22 +
∥∥wt − wπ(t)

∥∥2

2

 (3.2)

where χ(t) represents the set of children of category t in the category tree. The minimizer

of (3.2) can be determined analytically which is given by (3.3)

wt =
1

|χ(t)|+ 1

wπ(t) +
∑
c∈χ(t)

wc

 (3.3)

When t ∈ T is a leaf node, (3.1) w.r.t. the block wt can be written as

min
wt

1

2
‖wt − wπ(t)‖22 + C

n∑
i=1

∣∣1− yitwTt xi∣∣+ (3.4)

which reduces to an optimization problem similar to standard SVM with the difference

that wt is regularized towards wπ(t) instead of 0 as in the case of standard SVM. To solve

(3.4), again co-ordinate descent strategy proposed by Hsieh et at. [71] can be utilized;

described below.

3.3.3 Dual Coordinate Descent SVM

In this section, we discuss an efficient optimization procedure for solving the SVM problem

for each leaf node given by (3.4). First, we rewrite the primal problem with the introduction

of additional slack variables ξi as (3.5). We have dropped the subscripts denoting the node

in the following discussion to simplify notation; wt and wπ(t) are represented by w and wπ

respectively.

34

min
w

1

2
‖w − wπ‖2 + C

n∑
i=1

ξi

s.t. ∀i ∈ 1 . . . n

ξi ≥ 0

ξi − 1− yiwTxi ≥ 0

(3.5)

Using the standard Lagrangian transformations [72] similar to the case of standard SVM

problem we arrive at the dual problem given in (3.6)

min
{αi}ni=1

1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj −

n∑
i=1

αi
(
1− yiwπTxi

)

s.t. 0 ≤ αi ≤ C ∀i ∈ 1 . . . n

(3.6)

The relationship between primal and dual variables is given by (3.7)

w = wπ +
n∑
j=1

αjyjxj (3.7)

We apply co-ordinate descent strategy to solve (3.6). In each step of the coordinate

descent algorithm, we minimize (3.6) w.r.t a single dual variable to update αi to αnewi :=

αi + δ while keeping all the other dual variables {αj | j ∈ [n] \ {i}} fixed. The minimization

of (3.6), w.r.t. δ reduces to (3.8),

35

TrainMapper

Reads WeightVectors and
distributes to the reducers
of neighbors and itself.

Input {node_id, Node} Reads the information for ONE
node from the previous iteration.

Output {node_id, Node} Distributes this node’s information
to all the nodes that need it.

children

parent

itself

Map

TrainReducer

Performs Update Step for
Internal Nodes and Leaf
Nodes

Input {node_id, [Node,
Node] ...}

Aggregates the information and
performs training for Leaf Nodes.

Output {node_id, Node} Writes this node’s updated
parameters.

children

parent

itself

Reduce

Next Iteration

Tuesday, June 10, 14

Figure 3.1: Iterative MapReduce processing.

min
δ

1

2
δ2Q+ dG

s.t. 0 ≤ αi + δ ≤ C
(3.8)

where Q = xTi xi and G =
[
yix

T
i

(∑n
j=1 αjyjxj + wπ

)
− 1
]
. The analytical solution for

the scalar problem (3.8) is given by (3.9).

αnewi = αi + δ = min (max (αi −G/Q, 0) , C) (3.9)

Therefore, each macro step of the sequential coordinate descent method iterates over all

the dual variables αi and performs the update given by (3.9). The optimization procedure is

summarized in Algorithm 2. A few practical tricks can be used for efficient implementation.

Firstly, we can cache a =
∑n

j=1 αjyjxj+wπ and update it to anew ← aold+
(
αnewi − αoldi

)
yixi,

whenever an update to the dual variables is performed. Secondly, it has been observed in

practice that selecting the coordinates/blocks to be updated at random instead of sequen-

tially iterating through the coordinates/blocks improves convergence [73].

36

Algorithm 1 HRS2
Initialize wt ← 0 ∀t ∈ N
while Not Converged do

Update in Parallel
if t ∈ Leaf Nodes then

wt ← BinarySVM (wπ, C)

else

wt ←
1

|χ(t)|+ 1

(
wπ(t) +

∑
c∈χ(t)wc

)
end

end

Algorithm 2 Binary SVM with parent bias using Dual Co-ordinate Descent
Initialize w ← wπ, α← 0

while α not optimal do
for i = 1, . . . n do

G← wT yixi − 1

α∗i ← min
(
max

(
G/xTi xi, 0

)
, C
)

w ← w + (α∗i − αi) yixi
αi ← α∗i

end
end

3.3.4 Parallelization

In large scale hierarchical classification problems, such as those typically encountered in text

classification, solving the optimization problem on a single computer becomes impractical.

For large scale problems the storage requirements for the model itself far exceed the memory

capacity of a typical moderate sized computer. Secondly, due to the size of the problem,

the computational processing required is immense and it would take an inordinate amount

of time to solve a large scale optimization problem. Consequently, parallelization of model

training becomes necessary. In HRSVM block coordinate descent, the objective function is

partially separable w.r.t. the blocks of optimization variables wt. Specifically, if t represents

a leaf node then, wt is independent of all other nodes except its parent, wπ(t). Similarly, if

t represents an internal node then, t is independent of all other nodes except its children

37

Algorithm 3 Map
Key: t // node identifier

Value: V t // node value object

for m ∈ V t.neighbors do
/* send node object to reducers */

/* of all the neighbors */

output (m,V t)
end
/* send node object to own reducer */

output (t,V t)

c ∈ χ(t) and its parent π(t). Therefore, nodes of a tree can be partitioned into two groups

by even and odd levels such that the nodes in each group can be independently updated.

Instead of sequentially updating the blocks of variables one at a time, in each step, groups of

blocks can be updated simultaneously. This update scheme can be extended to hierarchies

that are not trees, by partitioning the nodes of the hierarchies such that the nodes within

each partition are not connected through an edge. In graph theory terms, this partitioning

problem is equivalent to graph coloring problem. However, it is well known that the graph

coloring problem is NP-complete. We call this optimization strategy asHRS1. The training

strategy of partitioning the nodes limits the number of nodes that can be parallely trained.

In this work, we propose the training of all the nodes simultaneously without partitioning

the nodes into sets of independent blocks. We call this update strategy HRS2. Unlike

HRS1, HRS2 strategy does not yield an exact block coordinate descent algorithm because

it does not restrict the parallel updates to independent sets of variables. Hence, it parallely

updates even the dependent blocks, which in some cases might result in inexact updates.

This pseudo-code for HRS2 is presented in Algorithm 1. The BinarySVM(·) method is

implemented using coordinate descent strategy discussed in section 3.3.3.

38

Algorithm 4 Reduce
Key: t // node identifier

Value: W := {V m | m ∈ neighbors(t)} ∪ {V t} // List of node objects

Data: trainingData
// training data on DistributedCache

/* Compute average model vector of neighbors */
w̄ ← 0
for m ∈ V t.neighbors do

w̄ = w̄ + V m.w
end

w̄ ← 1

|V t.neighbors|
w̄

/* For leaf node, update model vector through Binary SVM training using w̄ as bias. For

non-leaf nodes set the new weight to the w̄ */

if V t.isleaf then
V t.w ← BinarySVM(trainingData, w̄, C)

else
V t.w ← w̄

end
output (t, V t)

39

3.3.5 MapReduce Implementation

Map-Reduce [14] is a distributed computing paradigm designed to facilitate implementation

of distributed code by taking care of common communication overheads involved in dis-

tributed computing. Map-Reduce programs are composed of user defined map and reduce

constructs which encode the behavior of the parallel program. Map-Reduce framework

communicates the information between mappers, reducers, and persistent store as key-value

pairs.

In our implementation the mappers and reducers use the node identifiers (t) of the

hierarchy nodes as keys and the corresponding value is an object (V t) containing the model

vector for the node (V t.w), a list of its neighbors’ node identifiers (V t.neighbors), a boolean

flag indicating whether the node is a leaf node or not (V t.isLeaf), and block partition of the

node (V t.set), which is used in HRS1 exact block coordinate descent for training groups by

odd/even levels. Each iteration of Algorithm 1 is performed as a separate map-reduce job.

The iterative process is depicted in Fig. 3.1. In the map phase, summarized in Algorithm 3,

each mapper reads the node information of a single node and scatters it to all the reducers

of its neighbors and its own reducer using key-value pairs. The reducer, summarized in

Algorithm 4, gets a list of nodes’ information of its neighbors, itself and its children. It

then decides the update rule depending on whether the node is a leaf node or not and either

computes an average of the model vectors for internal nodes or trains a binary SVM for

leaf nodes using the parent’s model vectors as the prior bias. Finally, it writes the updated

model to a persistent file system, which is then read by the next iteration’s map job. The

training data which is utilized by all the reducers for the leaf nodes made available to them

using the DistributedCache mechanism of Hadoop, which can be used to distribute read-only

copies of data to the slave nodes. The source code for our implementation has been made

available at http://www.cs.gmu.edu/~mlbio/supplements/lshc.

40

Table 3.1: Dataset statistics.

Dataset Nodes Leaves Edges Height Training Testing Features

CLEF 97 63 96 4 10,000 1,006 80
IPC 553 451 552 4 46,324 28,926 1,123,497
DMOZ-SMALL 2,388 1,139 2,387 6 4,463 1,858 51,033
DMOZ-2010 17,222 12,294 17,221 6 93,805 34,880 347,256
DMOZ-2012 13,963 11,947 13,962 6 383,408 103,435 575,555

3.4 Experimental Setup

In the following sections we discuss the empirical evaluations and compare different update

strategies for HRSVM and flat SVM. On one of the datasets, dmoz-2010, we have performed

more detailed analysis of the results.

3.4.1 Datasets

We used the following datasets for evaluating the hierarchical classifiers. CLEF [74] is a

dataset comprising of medical images annotated with Image Retrieval in Medical Applica-

tions (IRMA) codes. Images are described with 80 features extracted using a technique

called local distribution of edges. IRMA codes are hierarchically organized. IPC is a col-

lection of patent documents classified according to the International Patent Classification

(IPC) 2. DMOZ-small, DMOZ-2010, DMOZ-2012 are hierarchical text classification

datasets released as part of PASCAL Large Scale Hierarchical Text Classification Challenge

(LSHTC) 3. Since the competition involves blind evaluation, the labels for the test set are

not publicly available. However, the competition website provides access to an on-line evalu-

ation system which can compute certain performance metrics for the submitted predictions.

Statistics for the datasets are summarized in Table 3.1. For all the datasets used here,

the hierarchy has a tree structure and the internal nodes define a virtual category tree, i.e.

the examples are assigned to only leaf nodes directly. For text datasets, we applied tf-idf

transformation with l2− norm normalization to the word frequency features.
2http://www.wipo.int/classifications/ipc/en/
3http://lshtc.iit.demokritos.gr/

41

3.4.2 Validation Protocols

For the coordinate descent SVM optimization procedure described in section 3.3.3, we have

set the optimization tolerance to 10−2 and maximum number of iterations to 103. We fixed

the number of iteration over outer block coordinate descent to 10, for HRS1 and HRS2, which

showed reasonable convergence. Regularization parameter C is tuned using a validation set.

The model is trained for a range of values for parameter C ∈ {10−3, . . . , 103} and the best

model is selected using the validation set. We retrained the models using the best parameters

on the entire training set and measured the performance on a held out test set.

We implemented the HRSVM classifier using both HRS1 and HRS2 training strategies

with Apache Hadoop map-reduce framework. The experiments were performed on a MapRe-

duce cluster using Hadoop version 1.2.1 on 15 Dell C8220 nodes with dual Intel Xeon E5-2670

8 core CPUs. Each node has a physical memory of 64 GB RAM. Due to resource sharing

with other cluster processes only 2 map and 2 reduces slots per machine were available for

Hadoop. We allocated a maximum of 4GB memory for each of the worker processes.

Table 3.2: Performance comparison on set based evaluation measures.

Our results Results from [11]

Dataset SVM HRS1 HRS2 HRLR TD HRSVM

CLEF
Macro-F1 50.75 51.56 51.25 55.83 32.32 53.92
Micro-F1 78.33 79.03 78.93 80.12 70.11 80.02

IPC
Macro-F1 45.19 44.56 44.87 49.60 42.62 47.89
Micro-F1 51.12 50.53 50.81 55.37 50.34 54.26

DMOZ-SMALL
Macro-F1 35.09 35.15 35.37 28.48 20.01 28.94
Micro-F1 48.01 48.33 48.55 45.11 38.48 45.31

DMOZ-2010
Macro-F1 32.42 33.24 33.21 32.42 22.30 33.12
Micro-F1 43.69 44.04 44.02 45.84 38.64 46.02

DMOZ-2012
Macro-F1 35.41 36.05 36.10 20.04 30.01 33.05
Micro-F1 53.41 53.79 53.76 53.18 55.14 57.17

42

3.5 Results

3.5.1 Effectiveness

Table 3.2 compares the micro and macro F1 scores for the different methods discussed in

this chapter. From the evaluations performed by Gopal et al. [11], we extracted the results

of two baselines which scaled to the datasets. These baselines are Top Down (TD), top

down Pachinko style support vector machine classifier and Hierarchical Logistic regression

(HRLR), which is modeled in a similar fashion to HRSVM with the only difference that it

uses Logistic loss instead of SVM’s hinge loss in the objective. We also include the HRSVM

results reported there, for comparison with the results we obtained.

As can be seen from the results, the performances of both implementations of HRSVM

are equivalent and better that of the flat SVM, on most datasets. However HRSVM did not

consistently outperform SVM as was also concluded in [11]. We found that the difference

between the hierarchical and non-hierarchical methods is a little less pronounced in our

evaluations. Compared to HRSVM results reported earlier, we found improvement in macro-

F1 scores in our experiments at a compromise of micro-F1 scores.

Table 3.3 reports the performance using the hierarchical evaluation measures for the

different methods, for the datasets where these scores could be obtained. For DMOZ-2010

and DMOZ-2012 the labels of held out sets are not available, and the scores are obtained

from an on-line evaluation system. Therefore, some of the scores could not be reported. The

results for the hierarchical evaluation also shows the superiority of HRSVM, which beats

SVM in all cases except the IPC dataset on all evaluation measures. One point to note is

that for hierarchical datasets where all the leaf nodes are at the same depth, as is the case

for CLEF and IPC datasets, the hP , hR and consequently hF1 will have exactly the same

values.

43

Table 3.3: Performance comparison using hierarchical evaluation measures.

Dataset hP hR hF1 TE

CLEF
SVM 81.15 81.15 81.15 1.131
HRSVM(HRS2) 82.70 82.70 82.70 1.038

IPC
SVM 63.10 63.10 63.10 2.196
HRSVM(HRS2) 62.62 62.62 62.62 2.225

DMOZ-SMALL
SVM 61.83 62.21 62.02 3.635
HRSVM(HRS2) 62.36 62.72 62.54 3.584

DMOZ-2010
SVM - - - 3.655
HRSVM(HRS2) - - - 3.617

DMOZ-2012
SVM 72.81 72.93 72.87 -
HRSVM(HRS2) 73.14 73.27 73.19 -

Table 3.4: Training times (in min.).

Dataset SVM HRS1 HRS2

CLEF 0.2 1.2 1.0
IPC 26.1 56.4 44.8
DMOZ-SMALL 6.7 14.9 12.7
DMOZ-2010 27.1 327.4 227.4
DMOZ-2012 69.6 641.3 488.0

3.5.2 Efficiency

In Table 3.4, we report the measured wall-clock time for the training of various models.

These results show the main advantage of using our proposed update strategy of HRS2 over

HRS1. The training times for large datasets were reduced by approximately 20-30% using

HRS2, whereas for the smaller datasets the training times were reduced by approximately

15%. However, we note that the training times of both HRSVM methods were significantly

higher than those for flat SVM, especially for larger datasets.

44

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Pr
ec

is
io

n

1.5

1.0

0.5

0.0

0.5

1.0

1.5

R
ec

al
l

<=2 3-5 6-10 11-20 20-50 >50
Category size

1.5

1.0

0.5

0.0

0.5

1.0

1.5
F 1

-s
co

re

Figure 3.2: Average improvement in precision, recall, and F1-score for HRSVM over SVM
for categories of different sizes for DM-25 dataset.

3.5.3 Detailed analysis on DMOZ-2010

In the following sections, we present a detailed comparison of HRSVM and SVM methods

for different aspects of the training data and number of examples in a category. For these

experiments, the complete dmoz-2010 dataset could not be used due to two reasons. First,

the labels for the test set are not available. Only the evaluation scores from predictions

can be computed by submitting the results to an on-line evaluation system 4. Secondly,

for measuring the performance of variable training size, we do not have sufficient training

examples in the all the categories. In order to address these issues, we removed the categories

with few positive examples and created partitions of the original completed training dataset

for testing.
4http://lshtc.iit.demokritos.gr/node/81

45

Effect of training set size

For these experiments, we created 5 equal sized partitions. To ensure that each fold has at

least one example from each class, we filtered out the classes with less than 5 examples. For

the training set, only 7087/12294 (57%) of the classes have more than 5 examples. The total

number of examples in classes with ≥ 5 examples is 105894/115839 (88%). With the removal

of the leaf categories with fewer than 5 examples, some of the corresponding internal nodes

were also removed. The final number of nodes retained (internal as well as leaf nodes) is

10931/17222 (64%), out of which 3844/4928 (78%) of the internal nodes were retained. We

fixed one split of the data as test set and used the remaining four sets for creating training

sets containing 25%, 50%, 75% and 100% of the training data. Hereafter, we refer to these

datasets as DM-25, DM-50, DM-75 and DM-100 respectively.

The results of training with variable training data proportions is reported in Table 3.5.

As is expected, both the micro-F1 and macro-F1 scores for SVM as well as HRSVM increase

with more training data, however it seems that the difference between SVM and HRSVM

is more pronounced for smaller training sizes. For the larger dataset the improvement of

HRSVM over SVM is minimal. Since, for each training set proportions (25%, 50%, 75%,

and 100%) we could replicate the datasets for 5 different splits, we performed paired t-test

for the scores and found the differences in performance between SVM and HRSVM to be

statistically significant.

Performance by class size

One of the major challenges in large scale hierarchical classification is the lack of sufficient

labeled examples for smaller categories. In fact majority of the categories have very few

positive examples to learn from. In order to assess performance of HRSVM in comparison

to SVM with respect to the number of positive examples in a category, we analyzed the

performance per category of the two methods on DM-25 dataset. We chose this dataset

because we created it such that at least some categories have less than two examples to

highlight the data sparsity issue.

46

Table 3.5: Performance on varying training set size for DMOZ-2010 (mean ± std). The cells
marked with † are statistically significant at p-value of 5%, rest are significant at p-value
of 1%, with paired t-test on results for 5 independent splits.

Size Method Micro-F1 Macro-F1 hP hR hF1 TE

25% HRSVM (HRS2) 38.55
± 0.29

21.14
± 0.19

55.51
± 0.25

55.75
± 0.24

55.63
± 0.24

4.17 ±
0.02

SVM 38.08
± 0.27

20.73
± 0.14

54.91
± 0.21

55.34
± 0.22

55.13
± 0.22

4.22 ±
0.02

50% HRSVM (HRS2) 43.53
± 0.28

27.41
± 0.25

59.88
± 0.24

60.08
± 0.18

59.98
± 0.19

3.76 ±
0.02

SVM 43.19
± 0.32

26.82
± 0.18

59.39
± 0.23

59.79
± 0.26

59.59
± 0.24

3.80 ±
0.02

75% HRSVM (HRS2) 45.95
± 0.33†

30.64
± 0.31

61.84
± 0.19

62.13
± 0.23†

61.98
± 0.21

3.57 ±
0.02

SVM 45.76
± 0.30

30.09
± 0.26

61.54
± 0.20

61.98
± 0.25

61.76
± 0.22

3.60 ±
0.02

100% HRSVM (HRS2) 47.74
± 0.40

33.14
± 0.34

63.23
± 0.19

63.52
± 0.23†

63.37
± 0.21

3.44 ±
0.02

SVM 47.50
± 0.39

32.49
± 0.37

62.95
± 0.18

63.38
± 0.24

63.17
± 0.21

3.46 ±
0.02

Fig. 3.2 shows the difference in average scores of HRSVM and SVM for different size

classes. It can be seen that in general the recall of HRSMV tends to be higher. The possible

explanation for this observation is that by biasing the classification hyperplane of a category

towards the parent category, we make its decision boundary more inclusive. However, the

interesting observation with respect to precision of the classifier is that for smaller class

sizes, HRSVM tends to perform better up to a point where the class size is in the range

of 10-20 and then the performance starts to deteriorate. Consequently the overall F1-score

also takes a hit for larger categories. Hence, for classes with sufficient number of examples

biasing the hyperplane towards the parent negatively affects the performance.

3.6 Summary

In this work we study the problem of large scale hierarchical text classification. We have

proposed an inexact distributed block coordinate descent update method for training the

Hierarchical SVM (HRSVM) formulation proposed by Gopal et al. [11], which offers 15-30%

47

of saving in training time in our MapReduce implementation without any decrease in the

effectiveness of the trained classifier. Our detailed analysis of the performance of the two

HRSVM training schemes demonstrates their effectiveness for solving large scale hierarchi-

cal classification problems compared to binary classification and top-down classification. In

order to understand the various properties of hierarchical datasets on performance, we per-

formed detailed analyses on large scale datasets by varying training size; studying the effect

of training size per category on the precision and recall of the classifier; and finally analyzing

the similarity of the learned models for related categories.

48

Chapter 4: Large Scale Hierarchical Classification using Cost

Sensitive Learning

4.1 Introduction

We discussed a recursive regularization based method for large scale classification in the

previous chapter. Although regularization methods which constrain the learned models

to be close to its neighboring classes according to the hierarchy have been effective, they

induce large scale optimization problems which require specialized solutions [21]. Even

though distributed optimization methods are able to scale well to extremely large scale

scenarios, the global optimization of all the model variables in an integrated fashion incurs

communication overhead, which can sometimes be a considerable. Additionally, due to the

recursive nature of regularization the learning algorithm performs several basic iterations of

the model training for the terminal classes.

The work presented in this chapter, addresses some of these shortcomings by a different

approach to hierarchical regularization. Instead of encoding problem information through

regularizaton, we shift the burden on to the loss function, by noting that the regulariza-

tion that biases towards neighbors, in effect, achieves the same objective through indirect

means. This observation, obviates the need for hierarchical regularizaton and presents a

simple cost sensitive learning alternative to hierarchical classification. By decoupling the

training in such manner, we are essentially able to leverage the benefits of hierarchical clas-

sification at practically the same training cost as flat classification. These models can be

trained in parallel without incuring any communication cost. Additionally, by up-weighting

the importance of smaller categories, we are also able to achieve a better performance on

these categories. Therefore, the method proposed here address two main issues of large

scale hierarchical classification, class imbalance and training efficiency, by extending the flat

49

classification approach using cost sensitive training examples. We study various methods to

incorporate cost-sensitive information into hierarchical classification and empirically evalu-

ate their performance on several datasets. Finally, one additional advantage of this methods

is that we can use any cost sensitive base classifier, and therefore the HC problem is able to

benefit from advancement in this area.

Notations N is used to denote the set of all hierarchical nodes. T denotes the set of

terminal nodes which can be assigned as class labels to instances. The class labels of instances

have dual representation for convenience. We use li ∈ N to denote the class identifier and

yit ∈ {−1,+1} as binary labels denoting class membership. For hierarchical single-label

problems yit = +1 if li = t and yit = −1 otherwise, and for hierarchical multi-label problems

li denotes a set of labels and equality can be replaced by set membership, i.e. yit = +1

iff t ∈ li and yit = −1 iff t /∈ li. We use cit to denote the cost of example i in training

of the model for class t. Where the class is implicitly understood to be t, we drop the

sub-script explicitly indicating the class to simplify notation, and use yi , ci and w in place

of yit, cit and wt. In the current work, logistic loss function is used, which is defined as

L (y, f (x)) = log (1 + exp (−yf (x))).

4.2 Motivation and Related Work

In this section, we discuss the motivation for the approach taken in the current work and

examine various related methods proposed in the literature for addressing the hierarchical

classification problem.

Several large margin methods have been proposed as cost sensitive extensions to the

multi-class classification problem. Dekel et al. [59] proposed a large margin method where

the margin is defined with respect to the tree distance. Although their method shows

improvement on tree-error, the performance degrades with respect to misclassification error.

The methods proposed by Cai et al. [61] and more recently by Chen et al. [75], also make

an argument in favor of modifying the misclassification error by making it dependent on the

50

hierarchy. Both these methods can be seen as special cases of a more general large margin

structured output prediction method proposed by Tsochantaridis et al. [76]. Although all

these methods try to incorporate cost sensitive losses based on the hierarchy, they formulate

a global optimization problem where the models for all the classes are learned jointly and

are not scalable to large scale classification problems.

Several methods try to incorporate the bias that categories which are semantically re-

lated according to the hierarchy should also be similar with respect to the learned models.

McCallum et al. [16] show that for Naive Bayes classifier, smoothing the parameter esti-

mates of the data-sparse children nodes with the parameter estimates of parent nodes, using

a technique known as shrinkage, produces more robust models. Other models in this class

of methods typically incorporate this assumption using parent child regularization or hier-

archy based priors [11,16,77]. In one of the prototypical models in this class of works, which

extends Support Vector Machines (SVM) and Logistic Regression (LR) [11], the objective

function takes the form given in (4.1),

min
w1,...,w|N|

∑
t∈N

1

2

∥∥wt − wπ(t)

∥∥2

2
+ C

∑
t∈T

n∑
i=1

L
(
yit, w

T
t xi
)

(4.1)

where, π (t) represents the parent of the class t according to the provided hierarchy, and C

denotes the loss/regularization trade-off parameter. The loss function L has been modeled

as logistic loss or hinge loss. Note that the loss is defined only on the terminal nodes T , and

the non-terminal node N − T , are introduced only as a means to facilitate regularization.

Since the weights associated with different classes are coupled in the optimization problem,

Gopal et al. [11] used a distributed implementation of block coordinate descent where each

block of variables corresponds to wt for a particular class t. The model weights are learned

similarly to standard LR or SVM for the leaf nodes t ∈ T , with the exception that the

weights are shrunk towards parents instead of towards the zero vector by the regularizer.

For the internal non-leaf nodes, the weights updates are averages of the other nodes which

are connected to it according to the hierarchy, i.e., the parents and children in the hierarchy.

51

The kind of regularization used here can be compared to the formulations proposed in

transfer and multi-task learning literature [13], where externally provided task relationships

can be utilized to constrain the jointly learned model weights to be similar to each other.

In the case of HC, the task relationship are explicitly provided as hierarchical relationships.

However, one significant difference between the application of this regularization between HC

and MTL is that the sets of examples in MTL for different tasks are, in general, disjoint.

Whereas, in the case of HC, the examples which are classified as positive for one class

are negative for all other classes except those which belong to the ancestors of that class.

Therefore, even though these models impose similarity between siblings indirectly through

the parent, when their respective models are trained, the negative and positive examples are

flipped. Hence, the opposing forces for examples and regularization are acting simultaneously

during the learning of these models. However, due to the regularization strength being

imposed by the hierarchy, the net effect is that the importance of misclassifying the examples

coming for nearby classes is down-weighted. This insight can be directly incorporated into

the learning by defining the loss of nearby negative examples for a class, where "near" is

defined with respect to the hierarchy, to be less severe than the examples which are farther.

This leads to a simple cost sensitive classification where the misclassification cost is directly

proportional to the distance between the nodes of the classes, which is the key contribution

of our work. With respect to prediction there are only two classes for each trained model,

but the misclassification costs of negative examples are defined according to which node they

originate from, with respect to the class for which the binary classifier is being learned.

In this framework for HC, we essentially, decouple the learning of multiple models of

the hierarchy and train each one independently. Thus, rendering scalability to this method.

Instead of jointly formulating the learning of the model parameters for all the classes, we

turn the argument around from that of regularizing the model weights towards those of the

neighboring models, to the rescaling the loss of example depending on the class relationships.

A similar argument was made in the case of multi-task transfer learning by Saha et al. [78],

where, in place of joint regularization of model weights, as is typically done in multi-task

52

learning [10], they augment the target tasks with examples from source tasks. However, the

losses for the two sets of examples are scaled differently.

4.3 Methods

As shown in some previous works [11, 79], the performance of flat classification has been

found to be very competitive, especially for large scale problems. Although, the top-down

classification method is efficient in training, it fares poorly with respect to classification

performance due to error propagation. Hence, in this work, we extend the flat classification

methodology to deal with HC. We use the one-vs-all approach for training, where for each

class t, to which examples are assigned, we learn a classification model with weight wt.

Note, that it is unnecessary to train the models for non-terminal classes, as they only serve

as virtual labels in the hierarchy. Once the models for each terminal class are trained, we

perform prediction for input example x as per (4.2)

ŷ = argmaxt w
T
t x (4.2)

The essential idea is formulate the learning algorithm, such that the mis-predictions on neg-

ative examples coming from nearby classes are treated as being less severe. We encode this

assumption through cost sensitive classification. Standard regularized binary classification

models, such as SVMs and Logistic Regression, minimize an objective function consisting of

loss and regularization terms as shown in (4.3).

min
w

n∑
i=1

L (yi, f (xi | w))︸ ︷︷ ︸
loss

+ρ R (w)︸ ︷︷ ︸
regularizer

(4.3)

where ρ controls the trade-off between regularization and loss. Here, the loss function L,

which is generally a convex approximation of zero-one loss, measures how well the model

fits the training examples. Here, each example is treated as equally important. As per

53

the arguments made previously, we modify the importance of correctly classifying examples

according to the hierarchy using example based costs. For models such as logistic regression,

incorporating example based costs into the learning algorithm is simply a matter of scaling

the loss by a constant positive value. Assuming that the classifier is being learned for class

n, we can write the cost sensitive objective function as shown in (4.4).

min
w

n∑
i=1

ciL
(
yi, w

Txi
)

+ ρR (w) (4.4)

Here, ci denotes the cost associated with misclassification of the ith example. Although, this

scaling works for the smooth loss function of Logistic Regression, it is not as straightfor-

ward in the case of non-smooth loss functions such as hinge loss [80]. Therefore, using the

formulation given in (4.4), for each of the models, we can formulate the objective function

for class t as a cost sensitive logistic regression problem where the cost of the example xi for

the binary classifier of class t depends on how far the actual label li ∈ T is from t, according

to the hierarchy. Additionally, to deal with the issue of rare categories, we can also increase

the cost of the positive examples for data-sparse classes thus mitigating the effects of highly

skewed datasets. Since our primary motivation is to argue in favor of using hierarchical

cost sensitive learning instead of more expensive regularization models, we only concentrate

on logistic loss, which is easier to handle, from optimization perspective, than non-smooth

losses such as SVM’s hinge loss. The central issue, now, is that of defining the appropriate

costs for the positive and negative examples based on the distance of the examples from the

true class according to the hierarchy and the number of examples available for training the

classifiers. In the following section we discuss the selection of costs for negative and positive

examples.

54

4.3.1 Cost Calculations

Hierarchical Cost.

Hierarchical costs impose the requirement that the misclassification of negative examples

that are farther away from the training class according to the hierarchy should be penalized

more severely. Encoding this assumption, we define the following instantiations of hierar-

chical costs. We assume the class under consideration is denoted by t.

Tree Distance (TrD): In (4.5), we define the cost of negative examples as the undirected

graphical distance, γ (t, li), between the class t and li, the class label of example xi. We

call this cost Tree Distance (TrD). We define γi ≡ γ (t, li) and γmax = maxj∈T γj . Since

dissimilarity increases with increasing γi, the cost is a monotonically increasing function of

γi.

ci =

γmax li = t

γi li 6= t

(4.5)

Number of Common Ancestors (NCA): In some applications, where the depth (dis-

tance of a node from the root node) of all terminal labels is not uniform, a better definition

of similarity might be the number of common ancestor between two nodes. This is encoded

in NCA costs, represented in (4.6). In the definition, αi is used to denote the number of

common ancestors between the pair of nodes li and t. Unlike γi which is a monotonically

increasing function of dissimilarity, αi is a monotonically increasing function of similarity.

αmax = maxj∈T αj .

ci =

αmax + 1 li = t

αmax − αj + 1 li 6= t

(4.6)

55

Exponentiated Tree Distance (ExTrD): Finally, in some cases especially for deep

hierarchies, the tree distances can be large, and therefore, in order to shrink the values of cost

into a smaller range, we define ExTrD in (4.7), where k > 1, can be tuned according to the

hierarchy. Through tuning we found that on our dataset, the range of values 1.1 ≤ k ≤ 1.25

of works well.

ci =

kγmax li 6= t

kγi li 6= t

(4.7)

In all these cases, we set the cost of the positive class to the maximum cost of any example.

Imbalance Cost.

In certain cases, especially for large scale hierarchical text classification, some classes are

extremely small with respect to the number of examples available for training. In these

cases, the learned decision boundary might favor the larger classes. Therefore, to deal

with this imbalance in the class distributions, we increase the cost of misclassifying rare

classes. This has the effect of mitigating the influence of skew in the data distributions of

abundant and rare classes. We call the cost function incorporating this as Imbalance Cost

(IMB), which is given in (4.8). We noticed that using cost such as inverse of class size

diminishes the performance. Therefore, we use a squashing function inspired by logistic

function f (u) = L/ [1 + exp−k (u− u0)], which would not severely disadvantage very large

classes.

ci = 1 + L/
[
1 + exp

(
|ni − n0|+

)]
(4.8)

where |a|+ = max (a, 0) and ni is the number of examples belonging to class denoted by li.

The value of ci lies in the range (1, L/2 + 1). We can use a tunable parameter n0, which

can be intuitively interpreted as the number of examples required to build a “good” model,

above which increasing the cost does not have a significant effect or might adversely affect

56

the classification performance. In our experiments, we used n0 = 10 and L = 20.

In order to combine the Hierarchical Cost as well as the Imbalance Costs, we simply

multiply the contributions of both the costs. We also experimented with several other

hierarchical cost variants, which are not discussed here due to space constraints.

4.3.2 Optimization

Since we are dealing with large scale classification problems, we need an efficient optimization

method which relies only on the first order information to solve the learning problem given

in (4.9).

min
w

[
f (w) =

n∑
i=1

ci log
(
1 + exp

(
−yiwTxi

))
+ ρ ‖w‖22

]
(4.9)

Since the cost values ci are predefined positive scalars, we can adapt any method used to

solve the standard regularized Logistic Regression (LR). However, we make use of accelerated

gradient descent due to its efficiency and simplicity. The ordinary gradient descent method

has a convergence rate of O (1/k), where k is the number of iterations. The gradient method

can be accelerated by using the gradient information from the previous iteration [81] to

improve the rate of convergence to O
(
1/k2

)
. The complete algorithm to solve the cost-

sensitive binary logistic regression is provided in Algorithm 5. We describe the notations

and expressions used to describe the algorithm below.

n is the number of examples; X ∈ Rn×d denotes the data matrix; y ∈{±1}n is the binary

label vector for all examples; ρ ∈ R+ is the regularization parameter; c = (c1, c2, . . . , cn) ∈

Rn+ denotes the cost vector, where ci is the cost for example i ; w ∈ Rd denotes the weight

vector learned by the classifier; f (w) denotes the objective function value, given in (4.10)

f (w) = cT (log [1 + exp (Xw)]) + ρ ‖w‖22 (4.10)

∇f is the gradient of f w.r.t. w, which is defined in (4.11), where (y ◦ c) denotes the vector

57

Algorithm 5 Accelerated Gradient Method for Cost Sensitive LR
Data: X,y, c, ρ, β ∈ (0, 1),max_iter
Result: w
Let λ0 := 1;w−1 = w0 = 0 for k = 1 . . .max_iter do

θk = k−1
k+2

λ = λk−1

while TRUE do
w = uk − λ∇f (uk−1)

if f(w) ≤ f̂λ (u,w) then
λk = λ
wk = w
break

else
λ = βλ

end
end
if converged then

break
end

end
return wk

obtained from the element-wise product of y and c.

∇f (w) = 2w +XT

(
−y ◦ c

1 + exp {(Xw) ◦ y}

)
(4.11)

f̂λ (u,w), described in (4.12), is the quadratic approximation of f (u) at w using approxi-

mation constant or step size λ. The appropriate step size in each iteration is found using

line search.

f̂λ (u,w) = f (w) + (u− w)T ∇f (w) + 1/2λ ‖u− w‖22 (4.12)

4.3.3 Dealing with Hierarchical Multi-label Classification

HC problems are trivially multi-label problems because every example belonging to terminal

class also inherits the labels of the ancestor classes. But in the current context, we call a

problem as hierarchical multi-label problem if an example can be assigned multiple labels

58

such that neither is an ancestor or descendant of the other.

In the case of single label classification, we perform prediction as per (4.2), which selects

only a single label per example. A trivial extension to multi-label classification can be done

by choosing a threshold of 0 such that we assign label t to example x if wTt x > 0 as in

the case of binary classification. However, a better strategy is to optimize the threshold st

for each class using a validation set, such that the label t is assigned to the test example if

wTt x > st . This strategy is called SCut method [82]. Other strategies such as learning a

thresholding function s
(
wT1 x,w

T
2 x, . . . , w

T
|T |x

)
using the margin scores [11] might improve

the results, but they are somewhat more expensive to tune for large scale problems. The

SCut method can tune the threshold independently of all other classes. In cases where we

do not have sufficient examples to tune the threshold, i.e. the class has a single training

example, we set the threshold to st = 0.

The second issue that we must deal with is the definition of cost based on hierarchical

distances and class sizes. With respect to the training of a class t, an example xi might be

associated with multiple labels l1, l2 . . . , lK . In this case the tree distance γi is not uniquely

defined. Hence, we must aggregate the values of γ (t, l1) , . . . , γ (t, lK). One strategy is to use

an average of the values, but we found that the taking the minimum works a little better.

Similarly we can use a minimum of of the number of common ancestors to all target labels

for NCA costs.

Finally, since an example is associated with multiple class labels, the class size ni of the

examples is also not uniquely defined, in this case as well, we use the the effective size as

the minimum size out of all the labels associated with xi for our IMB cost. It also makes

intuitive sense, because we are trying to up-weight the rare classes, and the rarest class

should take a precedence in terms of the cost definition.

59

Table 4.1: Dataset statistics.

Dataset Nodes Labels Depth #Train #Test #Feat LCard

CLEF 97 63 4 10000 1006 80 1.00
DMOZ-SMALL 2388 1139 6 4463 1858 51033 1.00
IPC 553 451 4 46324 28926 345479 1.00
RCV1 117 101 6 23149 781265 48728 3.18
DMOZ-2010 17222 12294 6 128710 34880 381580 1.00
DMOZ-2012 13963 11947 6 383408 103435 348548 1.00

4.4 Experimental Setup

4.4.1 Datasets

The details of the datasets used for our experimental evaluations are provided in Table 4.1,

which provides summary information such as number of training (#Train) and test examples

(#Test), number of features (#Feat), and label cardinality (LCard), which is equal to the

average number of labels per example. Nodes refers to the total number of nodes in the

hierarchy and Labels are the number of nodes to which examples can be assigned. Depth is

the maximum number of edges in the path from any leaf node to the root node. CLEF [74]

is a dataset comprising of medical images annotated with hierarchically organized Image

Retrieval in Medical Applications (IRMA) codes. The task is to predict the IRMA codes

from image features. Images are described with 80 features extracted using a technique called

local distribution of edges. IPC is a collection of patent documents classified according to

the International Patent Classification (IPC) 1.DMOZ-small, DMOZ-2010 and DMOZ-

2012 are hierarchical text classification datasets released as part of PASCAL Large Scale

Hierarchical Text Classification Challenge (LSHTC) 2. For LSHTC datasets, labels of the

test datasets are not available, but certain classification metrics can be obtained through

their online evaluation system. RCV1-v2 [83] is a multi-label text classification dataset
1http://www.wipo.int/classifications/ipc/en/
2http://lshtc.iit.demokritos.gr/

60

extracted from Reuters corpus of manually categorized newswire stories. RCV1 is the only

multi-label dataset, rest of the datasets are single label hierarchical datasets. For all the

text datasets, raw term frequencies were converted to term weights using Cornell ltc term

weighting [83].

4.4.2 Validation Protocols

In our experimental evaluations, we compare our cost sensitive hierarchical classification

methods with the following hierarchical and flat classification methods proposed in the

literature.

Logistic Regression (LR) One-vs-rest binary logistic regression is used in the conven-

tional flat classification setting. For single label classification, we assign test examples

to the class which achieves best classification score.

Hierarchical Regularization for LR (HRLR) This method proposed by Gopal et al.

[11], extends flat classification using recursive regularization based on hierarchical re-

lationships. This was the only scalable method in literatures with state of art perfor-

mance on the datasets used. Since we used exactly the same setup as the authors, in

terms of training and test datasets, we are reporting their classification scores directly

from [11].

Top-Down Logistic Regression (TD) This denotes Top-down logistic regression model,

where we train a one-vs-rest multi-class classifier at each internal node. At testing

time, the predictions are made starting from the root node. At each internal node,

the highest scoring child node is selected, until we reach a leaf node.

For all the experiments, the regularization parameter is tuned using a validation set. The

model is trained for a range of values 10k with appropriate values for k selected depending

on the dataset. Using the best parameter selected on validation set, we retrained the models

on the entire training set and measured the performance on a held out test set. The source

61

code implementing the methods discussed in the current work is available on our website 3.

The experiments were performed on computers with Dell C8220 processors with dual Intel

Xeon E5-2670 8 core CPUs and 64 GB memory.

4.5 Results

In this section, we present experimental comparisons of various cost sensitive learning strate-

gies with other baseline methods. We provide separate comparisons of different cost based

improvements on smaller datasets, and finally compare our best method with the competing

methods. In the tables, statistically significant results for Micro-F1 and Macro-F1 [84] are

marked with either † or ‡ which correspond to p-values < 0.05 and < 0.001 respectively.

In Table 4.2, we compare LR with various hierarchical costs defined in section 4.3.1. The

results show a uniform improvement in all the metrics reported. There was a statistically

significant improvement in Micro-F1, especially for DMOZ Small, IPC and RCV1 datasets.

Macro-F1 scores were also improved, but due to the presence of only a small number of

categories in CLEF and RCV1 datasets, statistical significance could not be established,

except for ExTrD.

In Table 4.3 we compare the effect of introducing imbalance costs, discussed in sec-

tion 4.3.1, on standard LR and hierarchical costs. In IMB+LR only the imbalance cost

is used, in others, we use the product of costs derived from IMB strategy and the corre-

sponding hierarchical costs. We also measured the significance of the improvement over the

corresponding results from Table 4.2. Only for DMOZ Small, which has a large number

of classes with few examples, imbalance costs further improve the results significantly for

all the methods. On CLEF, IPC and RCV1, where majority of the classes have sufficient

number of examples for training, the results did not improve significantly in most cases.

Overall, the IMB+ExTrD method provides more robust improvements.

The final comparison of our best method (IMB+ExTrD, which we call HierCost in the

following) against various baseline methods is presented in Table 4.4. The evaluations on
3http://cs.gmu.edu/~mlbio/HierCost/

62

Table 4.2: Performance comparison with hierarchical costs.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF LR 79.82 53.45 85.24 0.994
TrD 80.02 55.51 85.39 0.984
NCA 80.02 57.48 85.34 0.986
ExTrD 80.22 57.55† 85.34 0.982

DMOZ SMALL LR 46.39 30.20 67.00 3.569
TrD 47.52‡ 31.37‡ 68.26 3.449
NCA 47.36‡ 31.20‡ 68.12 3.460
ExTrD 47.36‡ 31.19‡ 68.20 3.456

IPC LR 55.04 48.99 72.82 1.974
TrD 55.24‡ 50.20‡ 73.21 1.954
NCA 55.33‡ 50.29‡ 73.28 1.949
ExTrD 55.31‡ 50.29‡ 73.26 1.951

RCV1 LR 78.43 60.37 80.16 0.534
TrD 79.46‡ 60.61 82.83 0.451
NCA 79.74‡ 60.76 83.11 0.442
ExTrD 79.33‡ 61.74† 82.91 0.466

63

Table 4.3: Performance comparison with hierarchical and imbalance cost.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

CLEF IMB + LR 79.52 53.11 85.19 1.002
IMB + TrD 79.92 52.84 85.59 0.978
IMB + NCA 79.62 51.89 85.34 0.994
IMB + ExTrD 80.32 58.45 85.69 0.966

DMOZ SMALL IMB + LR 48.55‡ 32.72‡ 68.62 3.406
IMB + TrD 49.03‡ 33.21‡ 69.41 3.334
IMB + NCA 48.87‡ 33.27‡ 69.37 3.335
IMB + ExTrD 49.03‡ 33.34‡ 69.54 3.322

IPC IMB + LR 55.04 49.00 72.82 1.974
IMB + TrD 55.60‡ 50.45† 73.56 1.933
IMB + NCA 55.33 50.29 73.28 1.949
IMB + ExTrD 55.67‡ 50.42 73.58 1.931

RCV1 IMB + LR 78.59‡ 60.77 81.27 0.511
IMB + TrD 79.63‡ 61.04 83.13 0.435
IMB + NCA 79.61 61.04 82.65 0.458
IMB + ExTrD 79.22 61.33 82.89 0.469

Dmoz 2010 and Dmoz 2012 datasets are blind and the predictions have to be uploaded to

LSHTC website in order to obtain the scores. For Dmoz 2012, Tree Errors are not available

and for Dmoz 2010, the hF1 are not available. For HRLR, we do not have access to the

predictions, hence, we could only report the values for Micro-F1 and Macro-F1 scores from

[11]. Statistical significance tests compare the results of HierCost with LR. These tests could

not be performed on LSHTC datasets due to non-availability of the true labels on test sets.

As seen in Table 4.4, HierCost improves upon the baseline LR results as well as the results

reported in [11], in most cases, especially the Macro-F1 scores. The results of HierCost are

better on most measures. TD performs worst on average on set-based measures. In fact,

only on Dmoz 2012 dataset, TD is competitive, on the rest, the results are much worse than

the flat LR classifier and its hierarchical extensions. On hierarchical measure, however, TD

outperformed flat classifiers on some datasets.

In Table 4.5, we report the run-times comparisons of TD, LR and HierCost. We trained

64

Table 4.4: Performance comparison of HierCost with other baseline methods.

Micro-F1 (↑) Macro-F1 (↑) hF1 (↑) TE (↓)

TD 73.06 34.47 79.32 1.366
CLEF LR 79.82 53.45 85.24 0.994

HRLR 80.12 55.83 - -
HierCost 80.32 58.45† 85.69 0.966

TD 40.90 24.15 69.99 3.147
DMOZ SMALL LR 46.39 30.20 67.00 3.569

HRLR 45.11 28.48 - -
HierCost 49.03‡ 33.34‡ 69.54 3.322

TD 50.22 43.87 69.33 2.210
IPC LR 55.04 48.99 72.82 1.974

HRLR 55.37 49.60 - -
HierCost 55.67‡ 50.42† 73.58 1.931

TD 77.85 57.80 88.78 0.524
RCV1 LR 78.43 60.37 80.16 0.534

HRLR 81.23 55.81 - -
HierCost 79.22‡ 61.33 82.89 0.469

TD 38.86 26.29 - 3.867
DMOZ 2010 LR 45.17 30.98 - 3.400

HRLR 45.84 32.42 - -
HierCost 45.87 32.41 - 3.321

TD 51.65 30.48 73.33 -
DMOZ 2012 LR 51.72 27.19 72.53 -

HRLR 53.18 20.04 - -
HierCost 53.36 28.47 73.79 -

65

Table 4.5: Total training times (mins).

TD-LR LR HierCost

CLEF <1 <1 <1
DMOZ SMALL 4 41 40
IPC 27 643 453
RCV1 20 29 48
DMOZ 2010 196 15191 20174
DMOZ 2012 384 46044 50253

the models in parallel for different classes and computed the sum of run-times for each

training instance. In theory, the run-times of LR and HierCost should be equivalent, because

they solve similar optimization problems. However, minor variations in the run-times were

observed because of the variations in optimal regularization penalties, which influences the

convergence of the optimization algorithm. The run-times of flat methods were significantly

worse than TD, which is efficient in terms of training, but at considerable loss in classification

performance. Although, we do not measure the training times of HRLR, based on the

experience from a similar problem [21], the recursive model take between 3-10 iterations for

convergence. In each iteration, the models for all the terminal labels need to be trained

hence each iteration is about as expensive as a single run of LR. In addition, the distributed

recursive models require communication between the training machines which incurs an

additional overhead.

4.6 Summary

In this chapter, we have argued that the methods that extend flat classification using hier-

archical regularization, can be viewed in a complementary way as weighting the losses on

the negative examples depending on dissimilarity between the positive and negative classes.

The approach proposed in the current work incorporates this insight directly into the loss

function by scaling the loss function according to the dissimilarity between the classes with

66

respect to the hierarchy, thus obviating the need for recursive regularization and iterative

model training. At the same time, this approach also makes parallelization trivial. Our

method also mitigates the adverse effects of imbalance in the training data by up-weighting

the loss for examples from smaller classes, thus, significantly improving their classification

results. Our experimental results show that the proposed method is able to efficiently in-

corporate hierarchical information by transforming the hierarchical classification problem

into an example based cost sensitive classification problem. In future work, we would like

to evaluate the benefits of cost sensitive classification using large margin classifiers such as

support vector machines.

67

Chapter 5: Regularized Multi-task Learning for Classification

with Dual Hierarchies

5.1 Introduction

Owing to the popularity of hierarchies for categorizing and labeling information in many

databases, often more than one representations of the hierarchies can be encountered in

many applications. Although these hierarchies differ in certain aspects such as the structure

of the hierarchy, the number of entities classified and the meaning of the structural elements

classified, the unifying aspect of these hierarchies is that they represent the same or similar

entities. Several methods have tried to leverage the hierarchical information to improve

classification from a single hierarchy, but one of the novel problems that the work presented

in this chapter addresses is combining different hierarchies in learning process in order to

take advantage of the additional perspectives presented by multiple schemas.

In this work, we have used multi-task learning (MTL) to combine the knowledge present

across the two hierarchical protein classification databases. The motivation for our approach

stems from the fact that different annotation databases strive to achieve the same objec-

tive (i.e., classify protein structures), but differ in terms of curation process, coverage and

annotation errors. Further, the use of MTL approach allows us to capture the hierarchical

structure that is prevalent across these databases. Within the hierarchies we may have sev-

eral classes that have few training examples. As such, using MTL for training prediction

models for related task assists in improving the generalization performance of individual

tasks when the data is scarce [6].

The key contribution in this work is to combine the problem of hierarchical classifica-

tion in two separate but related class hierarchies. Specifically, we explored different MTL

formulations to leverage the combined knowledge present in SCOP and CATH hierarchical

68

databases to improve the classification performance. Each labeled class in SCOP and CATH

defines a classification task. The hierarchical structure of the labeled classes explicitly defines

the relationships between the classes within each hierarchy. These class relationships can be

utilized in the MTL formulations which take task relationships into account. However, the

relationships between one class from SCOP and the other from CATH are non-trivial, as

there is no direct correspondence between the labeled classes defined by SCOP and CATH.

We performed a comprehensive set of experiments to assess the accuracy of classification

when using the MTL approaches in comparison to single task learning (STL). We observed

an improvement in the classification performance from the combined use of SCOP and

CATH in protein structure classification. We found that using the graph-based structured

MTL that explicitly defines the relationships between different tasks and the trace-based

MTL formulation that seeks to find a low-dimensional common subspace across the tasks

are suitable for our purpose. Specifically, we observed approximately 4 − 5% improvement

for the multiple hierarchical based MTL learning in comparison to the STL approach. Our

current study suggests that on the consistent set of protein domains defined by both SCOP

and CATH, MTL methods which combined both the hierarchical schemes had a significant

advantage over MTL methods which were trained using only one hierarchy.

Notations We use T for the number of tasks and d for the number of input dimensions.

nt denotes the number of examples in task t. W ∈ Rd×T denotes the matrix of task weights,

where each column wt ∈ Rd is the weight vector for tasks t ∈ [1 : T], the rows of W are

denoted by w̃j ∈ RT for j ∈ [1 : d]. The training examples for task t are denoted by

{(xit, yit)}nt
i=1.

5.2 Structural Classification of Proteins

Proteins are large biological macromolecules which perform a vast array of biological func-

tions in all living organisms. Structurally they consist of one or more linear chains of

69

building blocks known as amino acids. Although only about 20 amino acids form the pro-

tein alphabet, proteins assume a vast range of three dimensional conformations which in

turn determines their various biological roles. Since understanding their structure and the

resultant functional roles is a crucial aspect for understanding biological organisms, several

structural and functional databases have been created to organize proteins.

Two such early efforts towards hierarchical classification of protein structures are Struc-

tural Classification of Proteins (SCOP) [17] and Class, Architecture, Topology, and Homol-

ogous Superfamily (CATH) [85]. SCOP follows a predominantly manual process, relying on

the expertise of its curators. CATH relies on automated approaches to a greater degree than

SCOP and revises its database more frequently. SCOP as well as CATH classify entities

known as protein domains, which can be considered as functional units of proteins, into four

major levels. Protein domains may be viewed as subsequences (not necessarily contiguous)

of proteins. A protein may be composed of one or more domains. Thus, each classification

system assigns four labels to each of the domains it classifies. The levels defined by SCOP,

listed in top to bottom order are Class, Fold, Superfamily and Family. The corresponding

levels defined by CATH are Class, Architecture, Topology and Homologous Superfamily.

These gold-standard structural classifications are performed through a laborious and expen-

sive process of first determining the three-dimensional structure of proteins, and curation

into a hierarchical database using manual /semi-automated schemes. The rapid growth in

the number of sequenced proteins in recent years has created a need for automated methods

to accurately classify protein sequences into structural classes. Several computational meth-

ods have been proposed to predict the structural classes from sequence information using a

range of statistical methods [86–90].

SCOP and CATH have been extensively compared in several previous studies [91–93].

Despite their similar purpose, several discrepancies between these two databases have been

reported [91, 93]. Inconsistencies primarily arise due to the differences in domain definition

and disagreement in the classification of some domains.

70

Predictive methods developed in recent years have primarily focused on classifying se-

quences with respect to SCOP. Consequently, remote homology detection and fold recogni-

tion, where the objectives are to detect superfamily and fold given the protein sequence, have

received considerable attention in the research community. Early predictive methods used

sequence similarity as a surrogate for structural similarity and utilized sequence comparison

methods such as SW-alignment, BLAST and PSI-BLAST [94, 95]. The later methods took

a generative approach to model related sequences. The discriminative methods, primarily

Support Vector Machines, which followed generative methods further improved classification

performance. Much attention was then given to engineering better kernels [86,89,90,96–98]

to capture biologically meaningful similarities between sequences.

Protein structure classification is inherently a multi-class problem where the label of a

protein domain is defined for classifying a particular level in the hierarchy (fold, superfamily

etc.). Most early methods approached this problem by dividing the multi-class problem into

several one-vs-rest or one-vs-one problems. If all the levels in the hierarchy are considered

then the problem becomes a structured-output classification task [99] with interdependencies

between the output labels [100, 101]. These methods are able to utilize the correlations

between different labels within the hierarchy.

Our current work takes a slightly different approach. Here the focus is on leveraging

combined knowledge across different hierarchical classification systems which enables us to

learn better classifiers for all the tasks. To our knowledge this approach toward integrated

learning and cross hierarchy transfer for protein structure classification has never been ex-

plored before.

5.3 Methods

Given two hierarchical sources of annotated protein domains (e.g., SCOP and CATH), our

primary objective is to train a supervised learning model that can accurately classify new

instance into classes within these hierarchies. In this study, we use MTL approaches to take

advantage of the fact that the classes within the hierarchy have explicit relationships between

71

them and the two hierarchical source databases have implicit relationships across them due

to similar objectives. We assume that each of the classes (nodes) within the hierarchies

is associated with a binary classification problem, referred to as a task. Combining these

tasks during learning should help improve the prediction performance. We assume that

there are T tasks across the two hierarchies with independent training instances given by

{(xit, yit) : i = 1 . . . nt}. For a task t, we seek to learn a linear discriminant function per task

given by sign(wTt xit).

We use the logistic loss function given by,

L
(
y, wTx

)
= log

[
1 + exp−y(w

T x)
]

(5.1)

The regularized objective is minimized with respect to the classification constraints given

by (5.2).

yit
(
wTt xit

)
≥ 0 ∀t ∈ {1, . . . , T} ,∀i ∈ nt (5.2)

The best loss function for binary classification problems is the natural 0-1 loss function. It is,

however, non-convex and non-smooth which makes it intractable for optimization problems.

Logistic loss is a smooth, convex loss function which is suited for classification. Other loss

functions, such as hinge-loss might be better in practice [102] but may require specialized

solutions. Regularization acts upon the weight parameters W only, and the bias parameters

c are typically not regularized and hence not included in the joint regularization. In the

following section we provide an overview of the MTL methods used in this work.

72

5.3.1 MTL Methods

Sparse learning through joint feature selection

It is well known that the l1-norm regularization [38] encourages sparsity in STL models. This

idea has been extended to multi-task learning [8, 28, 103] to select sparse features across all

the tasks. In these models, it is assumed that across all the tasks only a subset of the feature

space is critical for classification. The objective function for sparse learning in MTL can be

written as,

min
W

T∑
t=1

nt∑
i=1

L
(
yit, w

T
t xit

)
+ λ ‖W‖2,1 (5.3)

where ‖W‖2,1 ≡
∑T

t=1 ‖w̃l‖2 and w̃l ∈ RD denotes the lth row of W associated with the

input feature l. The l2,1-norm here is essentially the l1-norm of the vector of l2-norm over

the weights associated with a particular input dimension. However, the above optimization

problem is difficult to solve due to the non-smoothness of l2,1-norm. Obozinski and Taskar

[103] proposed a solution based on block-wise boosting scheme, and Liu et al. [28] proposed

two equivalent formulations for the problem that can be efficiently solved. Argyriou et al. [8]

formulated the problem of learning sparse linear features as a convex optimization problem.

In our current work we have used the sparse feature selection method described by Argyriou

et al. [8]. However, the presence of sparse feature space assumed by this model is too strong

for the application studied in the current work and consequently does not perform well. We

refer to this method as Sparse MTL.

Graph Regularization

As discussed above, many MTL formulations assume uniform correlations between all the

tasks. Evgeniou and Pontil [10] extended SVM to MTL by augmenting the SVM objective

with an additional term to control the inter-task regularization. In a more general setting,

73

the objective function can be written as,

min
W

T∑
t=1

nt∑
i=1

L
(
yit, w

T
t xit

)
+ λ1

T∑
t=1

‖wt‖22 + λ2

T∑
t=1

∥∥∥∥∥wt − 1

T

T∑
s=1

ws

∥∥∥∥∥
2

2

(5.4)

The first regularization term controls the magnitude of the parameters for each task and

the second regularization term imposes the constraint that the parameters for each task

should be close to the average parameters of all the tasks. This assumption is too strong in

many cases where some tasks may be more closely related than others.

When relationships between tasks are known a-priori, inter-task regularization can be

controlled such that only the related tasks influence each other. Graph-based MTL formula-

tions [13, 35,104] are able to exploit such relationships. The relationships between different

tasks can be encoded as a set of edges E = (e1, e2, . . . , em), where each edge ei ≡ (p, q)

connects a pair of tasks indexed by p and q. The graph regularized MTL utilizes the edge

relationships in the following manner,

min
W

T∑
t=1

nt∑
i=1

L
(
yit, w

T
t xit

)
+ λ1

T∑
t=1

‖wt‖22 + λ2

∑
(p,q)∈E

‖wp − wq‖22 (5.5)

Unlike the previous formulation in (5.4), the regularization term in (5.5) minimizes the

difference between all pairs of related tasks only and does not bias the learned parameters

towards the average of all tasks. Therefore, only the parameter vectors of tasks connected

by an edge are forced to be similar to each other.

Rank minimization using Trace norm

The problem of rank minimization arises in many optimization problems in machine learning,

image compression and automatic control. In the context of multi-task learning minimizing

the rank of W forces it to share a low-dimensional subspace, therefore inducing correlations

74

between the tasks. The objective function with rank minimization as regularization can be

written as,

min
W

T∑
t=1

nt∑
i=1

L
(
yit, w

T
t xit

)
+ λ rank(W) (5.6)

However, the rank minimization problem is known to be NP-hard [72]. Rank minimiza-

tion objective can be approximated by using the trace norm (nuclear norm) which gives a

convex solution [105]. The regularized objective function with trace norm can therefore be

written as,

min
W

T∑
t=1

nt∑
i=1

L
(
yit, w

T
t xit

)
+ λ ‖W‖∗ (5.7)

This formulation has been extensively studied in the context of multi-task learning [43,

106,107]. In the current work we have used the solution described by Ji et al. [43].

Graph and Trace joint norm minimization

In addition to the previous formulations, we implemented a novel multi-task learning formu-

lation combining the Graph and Trace norm minimization which uses the following objective

function

min
W

T∑
t=1

nt∑
i=1

L
(
yit, w

T
t xit

)
+ λ1

∑
(p,q)∈E

‖wp − wq‖22 + λ2 ‖W‖∗ (5.8)

In all the models described above, an l2-norm is added to the regularization objective

however it is only explicitly represented for Graph formulation. The l2-norm essentially

75

controls the magnitude of the weight vectors.

We used the publicly available MALSAR toolkit [108] to implement all methods dis-

cussed above. The optimization algorithms within MALSAR are implemented using the

accelerated gradient methods [109]. This optimization technique is shown to be faster than

traditional gradient descent methods, and involves finding a proximal operator for a non-

smooth regularization term [108].

5.3.2 Protein Structure Classification using MTL

Both SCOP and CATH classify protein domains hierarchically. As noted previously, the

levels of SCOP from top to bottom are Class, Fold, Superfamily, and Family, the levels of

CATH are Class, Architecture, Topology and Homologous Superfamily. The learning prob-

lem is to build classifiers for each level of the hierarchy, which in turn has multiple classes.

Therefore this problem is hierarchical multi-class classification problem. We transform this

into one-vs-rest type binary problems for each node in the hierarchy. In this work, we only

focus on the results of classification of Superfamily and Topology levels which we call L3

levels from SCOP and CATH respectively. In our main experiments, we also include the L4

level tasks, which correspond to Family (SCOP) and Homologous Superfamily (CATH), as

auxiliary tasks. In an additional set of experiments, we also included the Fold (SCOP) level

nodes.

5.3.3 Dataset Pre-processing

For this study, we used SCOP 1.75 and CATH 3.4 databases, both of which provide the

domain definition, domain classification at each taxonomic level and the taxonomy as a

hierarchical structure for the protein domains classified in their databases.

To apply MTL across tasks from different hierarchies we extracted a set of domains which

are defined consistently in both the hierarchies. Determination of domains in a protein is

a non-trivial process, and SCOP and CATH differ significantly in defining domains for

multi-domain proteins. The inconsistencies in these two schemes may lead to errors in the

76

models learned from these classification systems [91]. To reduce the inconsistencies, we

extracted domains which are defined similarly in both the schemes, which we call consistent

domains. As very few domain definitions agree exactly in both SCOP and CATH, we used

an approximate similarity threshold of 0.8 to define similar domains. The domains derived

from the same protein sequence are considered to be similar if ≥ 80% of the amino-acids

in their sequences overlap. Out of 96,885 domains classified by SCOP and 149,306 domains

classified by CATH, we could extract 61,931 domains where the domain definitions agreed

according to our similarity criterion.

Many pairs of the sequences classified in SCOP are identical or nearly identical. This

is also the case with CATH. Before applying classification methods, it is a good practice

to eliminate redundant sequences by clustering sequences and retaining only the cluster

representatives. Instead of performing the clustering on the extracted domains, we have used

the sequence subsets at different similarity thresholds, determined by sequence alignment,

already provided by both SCOP and CATH databases. We used the 95% sequences similarity

clusters to reduce the redundancies and mapped the 61,931 domains to their respective

cluster representatives in both SCOP and CATH, which produced 16,712 SCOP domains

and 21,325 CATH domains.

All the nodes in the hierarchy can not be used for training and evaluating classifiers

because only a few nodes have sufficient number of examples for a meaningful generation

of testing and training sets as described later in section 5.4.2. To create the dataset, we

first eliminate all the L4 nodes with < 5 instances. Then we eliminate the L3 nodes with

≤ 2 children because we partition the training and test instances by L4 nodes. This final

filtering process resulted in 5,587 SCOP domains and 9,642 CATH domains. The statistics

of the pruned dataset are provided in Table 5.1.

Once the tasks for each relevant node are defined, the application of MTL to the set of

tasks is straightforward. As described in previous section, our main goal is to model the tasks

corresponding to superfamilies and topologies and families and homologous superfamilies are

included as auxiliary tasks. Therefore, the number of main tasks in the MTL formulations

77

correspond to the number of superfamilies and topologies in Table 5.1. To repeat each

experiment multiple times, we created multiple random splits of our data using the strategy

described in section 5.4.2. The number of auxiliary sub-tasks corresponding to the lowest

levels i.e. families and homologous superfamilies vary according to the split.

We also extracted the task relationships for Graph-regularized MTL. These relationships

are extracted from explicit hierarchical structure of each taxonomy as well as the knowledge

of common domains across different hierarchies. The process of relationship extraction is

detailed in the following section.

Finally, the raw protein sequences must be represented as feature vectors of fixed length,

so that we can use standard machine learning methods working in vector-space model.

Various methods have been proposed in literature for extracting meaningful features from

biological sequences [86, 87, 97, 110]. For majority of our analysis we use spectrum kernel

features [88], which uses contiguous subsequences of some fixed length k, also known as k-

mers. We performed most of our analysis using k = 3, which results in 8000 features, but we

also experimented with larger values of k (4, 5, and 6), which resulted in poorer performance.

We performed additional experiments using more expressive set of features known as Sparse

Spatial Samples Kernel (SSSK)[111], which have been experimentally shown to perform

well. The features in SSSK are t contiguous words each of length k separated by up to d− 1

intervening characters. Specifically, we used two sets of SSSK features SSSK(t = 2, k =

1, d = 5) also known as (1,5)-double in the original reference and SSSK(t = 3, k = 1, d = 3)

also known as (1,3)-triple. We applied Kernel Principal Component analysis (KPCA) [112],

to (1,3)-triple features to reduce dimensionality from 72000 features to 8000 features. 8000

features were chosen to capture > 95% of the variance of the centered kernel matrix.

5.3.4 Extracting Task Relationships

In order to utilize the relationships between different tasks in graph regularized formulation,

we define edges between different nodes in SCOP and CATH. Edges can be categorized

based on whether they span only one hierarchy or both the hierarchies. We refer to the

78

Table 5.1: Dataset statistics.

SCOP CATH

instances 5587 instances 9642
families 318 homologous superfamilies 259
superfamilies 102 topologies 51
folds 82 architectures 17
classes 4 classes 3

b.1

b.1.2 b.2.1b.1.1

b.1.2.1b.1.1.1 b.2.1.1

b.2

b

b.1.2.2 b.2.1.2b.1.1.3

root

a

a.2

a.2.1 a.2.2

a.2.2.3 a.2.2.3a.2.2.1

Training Node

Positive
Test

Positive
Train

Negative
Train

Negative
Test

Figure 5.1: Partial hierarchy illustrating training and test partitions for SCOP superfamily
b.1.1

79

Table 5.2: Counts of each type of relationship used in Graph MTL

SCOP CATH

Parent Links 318 259
Sibling Links 1112 3808
Cross Links 274 274

edges that connect nodes in SCOP and CATH as cross links. The links connecting SCOP

nodes to SCOP nodes or CATH nodes to CATH nodes, are referred to as within links. The

within links can be further categorized based on the type of nodes they connect. Below, we

list the three types of links use in the current work.

Parent Links These edges join a child node to its parent node i.e., superfamily-family

(SCOP), topology-homologous superfamily (CATH). These are explicitly defined by the

hierarchical structure of SCOP and CATH.

Sibling Links These edges join siblings i.e., links between a node and other children of its

parent. An edge between a node and itself is not defined. These edges are defined between

superfamily-superfamily (SCOP), topology-topology (CATH), family-family (SCOP), and

homologous superfamily-homologous superfamily (CATH).

Cross Links These edges span both the hierarchies and connect nodes at the same level

for both the hierarchies i.e., superfamily (SCOP) - topology (CATH) and family (SCOP)

- homologous superfamily (CATH). Edges are not defined between superfamily (SCOP -

homologous superfamily (CATH) and family (SCOP) - topology (CATH). These edges are

derived using consistent domains. If a domain is classified by two nodes we add an edge

between them. Specifically, we add an edge between a SCOP node Ns and CATH node

Nc , if there are are protein domains p ∈ Ns and q ∈ Nc such that p and q are similar as

described previously.

In Table 5.2, we summarize the number of links of each type extracted from the dataset.

80

5.4 Experimental Setup

5.4.1 Models Evaluated

To test the benefit of combining various tasks, we evaluated different MTL formulations

using the following partitions of the datasets.

Single Task Learning (STL)

Each task is trained separately. We performed STL experiments using the elastic net penalty

which uses both l1 and l2 norms in regularization.

Single Hierarchy MTL (SHMTL)

Only the tasks belonging to the same hierarchy are learned together. These experiments are

conducted for Sparse, Graph and Trace regularization. Graph regularization for SHMTL

uses the parent links and sibling links.

Multiple Hierarchy MTL (MHMTL)

We grouped the tasks belonging to both the hierarchies and trained them together. These

experiments were conducted for Sparse, Graph and Trace regularization. Graph regulariza-

tion for MHMTL uses the cross links between the two hierarchies in addition to the sibling

and parent links.

5.4.2 Validation Protocols

Partitioning the data into training and test sets is one of the important issues in the applica-

tion of prediction methods to protein structure classification problem. Random partitioning

of the training examples without taking the class labels into accounts may lead to over

estimation of the accuracy or equivalently, under estimation of the test error. A common

strategy employed to overcome this problem divides the training and test examples by L4

81

nodes (Family in SCOP and Homologous Superfamily in CATH). This ensures that suf-

ficiently similar examples do not appear in both training and test examples, giving the

classifiers unfair advantage.

This method of partitioning the examples by L4 nodes is illustrated in Fig. 5.1, using the

partial hierarchy, for the partitioning of training and test examples for the task corresponding

to SCOP node b.1.1. Considering the task of training classifier for the node b.1.1, we assign

the examples belonging to some of its children, b.1.1.1 in the figure, to positive train and

the remaining, b.1.1.3 in the figure, to positive test. Remaining L4 nodes are randomly

assigned to negative train and negative test. By assigning a node to a particular set, we

mean allocating the instances classified under that node, to the aforementioned set.

Similarly, the test and train datasets are constructed for the all L3 nodes in both SCOP

and CATH.

To determine the best parameters, we performed grid search on a single random training

and test partition with the parameters approximately in the range
{

10−1, 10−2, 10−3, 0
}
.

With the best parameters selected for each method, we repeated the experiments with 30

random training and test partitions.

Further, to test whether there was any benefit of adding the family (SCOP) and homol-

ogous superfamily (CATH) levels, we removed the tasks belonging to these levels in one of

our datasets (Spectrum k = 3) and tested them using the same setup. We will call this

partition L3-only, which stands for level 3 in the hierarchies as opposed to L3+L4 which

includes both level 3 and level 4 in the hierarchies.

Accuracy of classification is not a good measure of performance when the class distribu-

tion is highly unbalanced. In these cases Area Under Curve (AUC) of Receiver Operating

Characteristics curve (ROC) [113] gives a better indication of classification performance. As

stated above we repeated the training and testing with 30 randomly derived partitions. For

each task we collected the AUC scores from each run and calculated their mean and standard

error. The AUC scores averaged across all the tasks, separated by the two hierarchies, are

reported in Table 5.3. The standard error value for each score is reported inside parenthesis,

82

Table 5.3: AUC scores using L3 along with auxiliary L4 tasks in training

SCOP CATH
Dataset Method score stderr score stderr

Spectrum(k = 3)
features = 8000

Sparse-MHMTL 0.790 0.001 0.723 0.002
Sparse-SHMTL 0.792 0.001 0.724 0.003
Sparse-STL 0.791 0.001 0.725 0.003
Graph-MHMTL 0.839 0.002 0.782 0.002
Graph-SHMTL 0.795 0.001 0.746 0.004
Trace-MHMTL 0.851 0.004 0.764 0.003
Trace-SHMTL 0.801 0.002 0.747 0.003
Graph-Trace-MHMTL 0.853 0.002 0.782 0.003

SSSK-double(k = 1, d = 5)
features = 2000

Sparse-MHMTL 0.831 0.001 0.775 0.002
Sparse-SHMTL 0.824 0.002 0.752 0.003
Sparse-STL 0.832 0.001 0.769 0.002
Graph-MHMTL 0.853 0.001 0.787 0.003
Graph-SHMTL 0.833 0.001 0.783 0.003
Trace-MHMTL 0.841 0.005 0.779 0.004
Trace-SHMTL 0.831 0.001 0.773 0.002
Graph-Trace-MHMTL 0.841 0.005 0.781 0.005

SSSK-triple(k = 1, d = 3)
with KPCA
features = 8000

Sparse-MHMTL 0.840 0.001 0.766 0.003
Sparse-SHMTL 0.838 0.002 0.762 0.003
Sparse-STL 0.840 0.001 0.764 0.002
Graph-MHMTL 0.871 0.004 0.810 0.003
Graph-SHMTL 0.842 0.001 0.781 0.003
Trace-MHMTL 0.883 0.002 0.785 0.003
Trace-SHMTL 0.839 0.001 0.761 0.003
Graph-Trace-MHMTL 0.871 0.004 0.810 0.003

83

Table 5.4: AUC scores using only L3 tasks

SCOP CATH
Dataset Method score stderr score stderr

Spectrum(k = 3)
features = 8000

Sparse-MHMTL 0.789 0.001 0.723 0.002
Sparse-SHMTL 0.792 0.002 0.722 0.002
Sparse-STL 0.792 0.002 0.725 0.003
Graph-MHMTL 0.844 0.001 0.777 0.004
Graph-SHMTL 0.797 0.002 0.743 0.005
Trace-MHMTL 0.840 0.004 0.766 0.001
Trace-SHMTL 0.792 0.003 0.746 0.003
Graph-Trace-MHMTL 0.845 0.002 0.776 0.003

next to the AUC score.

5.5 Results

5.5.1 Performance of MHMTL

We performed a comprehensive set of experiments evaluating the performance of different

MTL approaches under various settings. Table 5.3 shows the average AUC scores for the

different MTL models evaluated across the SCOP and CATH nodes for the datasets where

both the L3 tasks as well as the auxiliary L4 tasks are used. Similiar results for the dataset

which uses only L3 tasks are reported in Table 5.4 for the dataset using Spectrum(k = 3)

features. Detailed results with AUC scores for each task have been made available on the

supplementary website 1. The following observations can be made from the results.

Sparse MTL based on l2,1-norm regularization does not improve the results in SHMTL

and MHMTL compared to STL. The sparse formulation used here, attempts to extract

sparse features across all the tasks. It assumes a uniform relationship between all the

tasks. However, it is unlikely that any subset for the features derived from the amino-acid

sequences are more important for the classification. During the parameter optimization with
1http://www.cs.gmu.edu/~mlbio/supplements/mhmtl/

84

l2,1 regularization we found that better results were produced when we lowered the value of

the parameter which controls sparsity. Therefore, the best performing models are not sparse.

However, these experiments act as a control set to verify that no bias is being introduced

by the selection of tasks within the datasets.

Fig. 5.2 compares the AUC scores of SHMTL and STL methods. As can be seen from

Fig. 5.2 and Table 5.3, SHMTL with the Trace and Graph based regularization performs

better than the STL. We notice that improvement for CATH nodes is significantly greater

(≈ 2− 3%) than that for SCOP nodes (≤ 1%) which can also be noticed in Fig. 5.2. We

also see that the Trace regularization performs slightly better in comparison to the Graph

regularization for SHMTL with the L3+L4 dataset. This difference is also evident from

Fig. 5.4(a) which compares the improvement in AUC scores in SHMTL over STL for Graph

and Trace regularization. We also notice that for some CATH nodes the improvement is

significantly greater for Trace than for Graph.

We see an improvement of approximately 5% in the AUC scores for SCOP using both

the Trace and Graph regularizations for the MHMTL in comparison to SHMTL. For the

CATH dataset we see an improvement of 2 − 3% (refer to L3+L4 dataset results in Table

5.3). The percentage improvement observed for MHMTL in comparison to STL is 5 − 6%

and 4− 5% for the SCOP and CATH data, respectively. Fig. 5.3 compares the AUC scores

for MHMTL and SHMTL for both Trace and Graph formulations. This suggests that there

is an advantage in combined MTL over both the hierarchies.

Fig. 5.4(b) compares the AUC improvement from MHMTL over SHMTL for the Graph

and Trace formulations. There is a linear correlation in the improvements in AUC scores

from Graph and Trace formulations in MHMTL when compared to SHMTL, i.e., the same

L3 nodes are improving and by roughly the same amount using two independent methods.

Therefore, it is very unlikely that the improvement is random. Interestingly, as can be seen

in Fig. 5.4(b) CATH nodes benefit more from Graph than from Trace. Whereas in the

AUC improvement of SHMTL over STL case shown in Fig. 5.4(a), Trace formulation helps

CATH nodes more than Graph formulation.

85

Graph Trace

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
SHMTL

S
T

L

partition

● CATH

SCOP

Figure 5.2: AUC SHMTL vs STL for L3 tasks

Graph Trace

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
MHMTL

S
H

M
T

L

partition

● CATH

SCOP

Figure 5.3: AUC MHMTL vs SHMTL for L3 tasks

86

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.10

−0.05

0.00

0.05

0.10

−0.05 0.00 0.05
Graph

Tr
ac

e

partition

● CATH

SCOP

(a) SHMTL - STL

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

● ●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

0.0

0.1

0.2

0.0 0.1 0.2 0.3
Graph

Tr
ac

e

partition

● CATH

SCOP

(b) MHMTL - SHMTL

Figure 5.4: AUC improvement for Graph vs Trace

For our datasets, we observed that combining the Graph and Trace norm in the objective

function did not improve the classification performance over the individual norms used

separately. From the parameter tuning, we noticed that one of the norms

Although, on an average, we see a performance improvement in most cases, on certain

tasks the combined SCOP-CATH setting under-performs. We conjecture that MTL could

be introducing negative transfer in these cases whereby the generalization performance is

negatively affected by incorporating MTL bias.

5.5.2 L3-only versus L3+L4

When we remove the L4 nodes from training the results are not significantly affected. Fig.

5.5 compares the improvement in AUC scores across the L3-only and L3+L4 datasets (dif-

ference of MHMTL over SHMTL given by “MHMTL - SHMTL”) for the Graph and Trace

formulations. The performance of Graph is very similar in both the cases, but Trace per-

formed slightly better, especially for SCOP nodes with L4 nodes included in training. Re-

moving L4 nodes significantly reduces the training times, therefore the cost to benefit ratio

for including L4 nodes is very high.

87

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

−0.1

0.0

0.1

0.2

0.3

−0.1 0.0 0.1 0.2 0.3
L3+L4

L3

partition

● CATH

SCOP

(a) Graph

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

−0.1

0.0

0.1

0.2

0.3

−0.1 0.0 0.1 0.2 0.3
L3+L4

L3

partition

● CATH

SCOP

(b) Trace

Figure 5.5: AUC improvement (MHMTL - SHMTL) for different set of nodes in training L3
vs L3+L4

5.5.3 Graph Regularized MTL using Inner Node Mappings

In the previous set of experiments using Graph MHMTL, we created the cross links between

the same level of the hierarchy. However, the nodes at different levels between SCOP and

CATH are not necessarily equivalent to each other . In their comparison of SCOP and

CATH, Casaba et al. [91] consider the following levels to be mappable to each other - SCOP

superfamily/family map to CATH homologous superfamily and SCOP fold map to CATH

topology and SCOP class to CATH class. Their evaluation reveals that this mapping of

levels is not strict. To evaluate the performance of Graph MHMTL with respect to Graph

SHMTL when the cross links between SCOP and CATH are defined by node mappings

based on shared protein domains we created another dataset with tasks corresponding to

fold, superfamily and family nodes from SCOP and topology and homologous superfamily

nodes from CATH.

To map the nodes, we computed an F1-score metric between pair of nodes similar to

the mapping described by Casaba et al. [91]. This mapping is not symmetric, hence, we

consider two maps, one from SCOP→ CATH and similarly from CATH → SCOP. To map

the nodes we use the set of similar domains. Let S1 represent the set of domains belonging

88

a SCOP node N1 and S2 be the set of domains belonging to a CATH node N2. To compute

the F1-score of mapping from N1 → N2, we first determine the set of SCOP domains similar

to the CATH domains in S2, and denote this set by S̄2.

The F1-score of mapping is calculated as

F1− score =
2 ∗ sensitivity ∗ specificity
sensitivity + specificity

(5.9)

Where sensitivity =
∣∣S1 ∩ S̄2

∣∣ / |S1| and specificity =
∣∣S1 ∩ S̄2

∣∣ / ∣∣S1 ∪ S̄2

∣∣. The map-

ping of nodes from CATH to SCOP is similarly calculated. Finally, we created an edge

between the nodes where the F1-score of a pair of nodes in the mappings in both the direc-

tions is ≥ 0.5. We extracted a total of 154 such cross links.

The experiments with this dataset did not show any statistically significant improvement

compared to the previous dataset where the edges were defined between a pair of nodes if

they shared even a single domain. The detailed results are available on the supplementary

website.

5.5.4 Graph-based Link Analysis

In the context of Graph based MTL, we also studied the effect of sibling relationships on

AUC improvement of SHMTL over STL (SHMTL - STL) and the effect of number of cross

links on AUC improvement of MHMTL over STL (MHMTL - STL). Fig. 5.6 and Fig. 5.7

depict the improvements with respect to the number of links. In Fig. 5.6-Graph, which

shows the improvements for Graph formulation, we see a uniform improvement in all the

nodes with non-zero cross links. CATH seems to benefit more from the presence of cross

edge and Graph formulation which can also be seen from Fig. 5.4(b). This suggests that

Graph formulation is able to leverage the relatedness between tasks across the hierarchies.

The Trace formulation does not take into account these relationship, Fig. 5.6-Trace does

not seem to suggest this pattern.

89

Graph Trace

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

−0.2

−0.1

0.0

0.1

0.2

0.3

0 5 10 15 20 25 0 5 10 15 20 25
Number of Cross Links

Im
pr

ov
em

en
t (

M
H

M
T

L−
S

T
L)

● CATH

SCOP

Figure 5.6: AUC improvement (MHMTL - STL) with number of Cross Links

Fig. 5.7 shows the improvement in AUC for SHMTL over STL (SHMTL - STL) with

respect to the number of siblings. Both Fig. 5.6 and Fig. 5.7 suggest a positive inductive

bias being introduced by related tasks and Graph based formulation is doing slightly better

when the relationships between tasks are known.

To study the effect of different relationships within the Graph-based formulation for

SHMTL and MHMTL during the training phase, we repeated the experiments with various

combinations of link types. The bar chart of average AUC scores are show in Fig. 5.8. P,

S, and C denote the parent, sibling, and cross links respectively. For example MHMTL PC

indicates that the MHMTL experiment was conducted only with parent links and sibling

links were removed. We observed that for both CATH and SCOP, the sibling links helped

more than the parent links. However, for MHMTL the effects on SCOP and CATH due

to the removal of sibling or parent links was different. SCOP performance improved with

removal of sibling links and decreased with removal of parent links while the effect on CATH

was the opposite.

90

Graph Trace

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●

●
●

●

●

●●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−0.1

0.0

0.1

0.2

0 4 8 12 0 4 8 12
Number of Siblings

Im
pr

ov
em

en
t (

S
H

M
T

L−
S

T
L)

● CATH

SCOP

Figure 5.7: AUC improvement (SHMTL - STL) with number of siblings

CATH SCOP

0.6

0.7

0.8

S
H

M
TL

 P
S

S
H

M
TL

 P
S

H
M

TL
 S

M
H

M
TL

 P
S

C
M

H
M

TL
 P

C
M

H
M

TL
 S

C
M

H
M

TL
 C

S
H

M
TL

 P
S

S
H

M
TL

 P
S

H
M

TL
 S

M
H

M
TL

 P
S

C
M

H
M

TL
 P

C
M

H
M

TL
 S

C
M

H
M

TL
 C

A
U

C

Figure 5.8: Average AUC for SCOP and CATH with different links in training set for Graph
MTL

91

Table 5.5: Training times (in sec.)

STL SHMTL MHMTL

L3
Sparse 873 214 227
Graph - 371 895
Trace - 1,233 1,721

L3+L4
Sparse 876 536 656
Graph - 1,159 3,463
Trace - 5,498 7,049

5.5.5 Run Time Analysis

Table 5.5 reports the run-times in seconds for the STL, SHMTL and MHMTL with different

regularization penalties and for the L3-only and L3+L4 dataset. We can observe that the

Graph-MHMTL takes longer in comparison to Graph-SHMTL. This is because there are

more relationships (edges) that are added for the MHMTL method in comparison to the

SHMTL method. With the addition of more tasks in L3+L4 dataset in comparison to the

L3-only dataset, we notice a 3-5 fold increase in run time. Our analysis of AUC performance

suggests that use of L4 nodes may not be necessary given the increase in run time.

5.6 Summary

In this work, we have shown the benefit of combining two hierarchical classification schemes

to achieve better classification performance using the protein structure classification prob-

lem. Due to the nature of protein structure classification, the Sparse feature learning MTL

formulation could not achieve any performance improvement over the baseline STL method.

However, both the Graph and Trace MTL methods were able to learn better classifiers in

both single hierarchy settings as well as multiple hierarchy settings. The combined Graph-

Trace setting for MTL did not improve the classification performance over the individual

Graph or Trace MTL setting. In our analysis we found that introducing the Family (SCOP)

and Homologous Superfamily (CATH) tasks did not noticeably improve the classification,

92

but incurred some increase in runtime. For Graph based MTL formulation, which explic-

itly utilizes task relationships, we also examined the effect of various relationships on the

classification performance.

93

Chapter 6: Convex Multi-task Relationship Learning using

Hinge Loss

6.1 Introduction

Multi-task learning improves generalization performance by learning several related tasks

jointly. Several methods have been proposed for multi-task learning in recent years. Many

methods make strong assumptions about symmetric task relationships while some are able

to utilize externally provided task relationships. In hierarchical classification as well, we

are provided with an external hierarchy on the tasks which can be utilized in learning the

models for tasks. In many real world settings, the relatedness among tasks is not explicitly

provided and it needs to be inferred from the data. This task relationship inference adds

an additional level of complexity in the learning process. In addition, even if it is known

that certain tasks are related, the degree of to which these tasks can be said to be related

might vary significantly. Therefore, in addition to the mere fact that two tasks are related,

knowing the strength of the relationship can have a significant impact on the modeling

of these relationships. Besides, most multi-task learning settings are capable of exploiting

only positive correlations between tasks, but sometimes even negative correlations can help

by restricting the possible search space for models. In terms of modeling the tasks as

classification vectors, the assumption is that the linear weight vectors are similar but with

some task specific variations. However, there might be instances where tasks are negatively

correlated, in the sense that the model vectors are similar in the magnitude of values but

opposite in sign. The standard multi-task settings find it difficult to model these kind of

correlations.

In this chapter, we present a model for joint learning of tasks that also concurrently

models task relationships. The main objective of the method presented here is to extend the

94

relationship learning formulation to max-margin based hinge loss formulation. Due to the

non-smooth nature of hinge-loss, the optimization of the objective function is a non-trivial

task. Therefore, we propose an efficient optimization algorithm using bundle methods for

regularized risk minimization. We have validated our method on one simulated and two real

world datasets and have compared its performance to competitive baseline single-task and

multi-task methods.

Notations We use T for the number of tasks and d for the number of input dimensions.

nt denotes the number of examples in task t. W ∈ Rd×T denotes the matrix of task weights,

where each column wt ∈ Rd is the weight vector for tasks t ∈ [1 : T], the rows of W are

denoted by w̃j ∈ RT for j ∈ [1 : d]. Ω ∈ RT×T denotes the task covariance matrix. To

simplify notation, we also define Σ ≡ Ω−1, where Ω−1 is the inverse of Ω.

6.2 Related Work

Multi-task learning has been empirically and theoretically shown to perform well in joint

learning settings. However, a common assumption made by many formulations is that the

tasks are equally related to each other [10,13] or some form of external task relationships are

made available. These formulations try to enforce the constraints that tasks which are related

to each other should be similar with respect to their parameter vectors. This assumption

breaks down in several problem domains where the learning algorithm does not have access

to relationships over the tasks. In such cases, joint learning of tasks can significantly impact

the generalization performance of the learned models due to negative transfer. Cluster multi-

task learning formulations [41,42] try to overcome the adverse affects of negative transfer by

clustering tasks. The essential idea is that tasks can be grouped into clusters such that tasks

within each cluster share a greater degree of similarity within the cluster and are relatively

dissimilar to tasks belonging to other cluster. Therefore, tasks belonging to the same cluster

are forced to learn similar model parameters and consequently only the tasks which are

related fall into the same cluster can influence each other. However, this approach has two

95

main drawbacks. Firstly, it can limit the transfer of information between tasks belonging to

the same cluster and secondly, it is unable to model negative correlations between tasks.

In general joint learning setting, the common assumption of symmetric task relationships

and clustering can only be a crude approximation of the actual interactions or interrelation-

ships between tasks. Generalizing the assumption of relationships between tasks from a

binary relationship exist or does not exist type scenarios, we can further argue that tasks

can positively correlated, negatively correlated or unrelated [31]. The knowledge of positive

correlations can be enforced as constraint such that the tasks are forced to learn similar

model parameters. Similarly learning can be formulated such that the learning algorithm

promotes dissimilarity between negatively correlated tasks and decouples the learning of

uncorrelated tasks. The multi-task relationship learning (MTRL) for smooth squared loss

was proposed by Zang and Yeung [31]. The key feature of this formulation is that it does not

require the task relationships to be known beforehand and it can exploit both the positive

and negative task correlations. In order to extend the formulation to classification problems,

it can be noted that the same regularizer can be utilized in order to leverage its advantages

while using a loss function well suited for classification.

6.3 Methods

6.3.1 Multi-task Relationship Learning

Regularized risk minimization has been a dominant theme in machine learning. The general

idea of regularized risk minimization has been implemented in several learning algorithms

such as regularized least squares, regularized logistic regression, support vector machines

and many other learning formulations. The choice of the appropriate regularizer and the

loss function play an essential role in the learning algorithm. The bias on the model is

imposed through the regularization term and in fact, in many successful MTL methods,

the regularizer [28, 31, 39, 43] imposes the multi-task learning bias. However, the role of

the loss function is also non-trivial and can play a significant part in the generalization

96

ability of the learned models [102]. For classification, the perfect loss function would be

0-1 loss, however, due to its non-convexity, it poses several challenges for optimization and

consequently is not used in practice. Several surrogates of 0-1 loss with desirable properties

for optimization, such as convexity and smoothness, are used in practice, the most common

of which are logistic loss and hinge loss. Although logistic loss function yields a smooth

optimization problem, hinge loss has certain theoretical and practical desirable properties,

such as promoting max-margin solution and statistical guarantees of error bounds [102].

Hence, we chose to extend the MTRL formulation using SVM hinge loss [51]. The new

model for MTLR using hinge loss is given by the optimization problem in (6.1).

min
W,Ω

J =
T∑
t=1

1

nt

nt∑
i=1

∣∣1− yit (wTt xit)∣∣+ +
λ1

2
tr
(
WW T

)

+
λ2

2
tr
(
WΩ−1W T

)
s.t. Ω � 0

tr (Ω) = T

(6.1)

In problem (6.1), the objective consists of the hinge loss term which decomposes over all

the examples and all the tasks. The regularizer is composed of two parts — the first term

λ1
2 tr

(
WW T

)
is the Frobenius norm of W , which penalizes the complexity of the weight

matrix, and the second term λ2
2 tr

(
WΩ−1W T

)
penalizes the deviations between correlated

tasks based on the task covariance matrix Ω. Due to the replacement of a smooth squared

loss with non-smooth hinge loss the problem becomes significantly more difficult to solve.

Hence, we propose the following optimization procedure to solve it efficiently.

6.3.2 Optimization

Theorem 1. Problem (6.1) is jointly convex in both W and Ω

97

Proof. To prove that (6.1) is convex we need to prove that the objective function is convex

and the constraints define a convex set. Since the sum of convex functions preserves con-

vexity, we only need to show that the individual terms of the objective function are convex.

It is obvious that the first two terms in the objective function in (6.1) are convex in terms

of W , the first being the sum of hinge losses and the second being a norm. The last term

tr
(
WΩ−1W T

)
can be rewritten as

∑D
j=1 w̃jΩ

−1w̃Tj where w̃j denotes the jth row ofW . The

function f(x, Y) = xTY −1x, where x ∈ Rn and Y � 0, known as the matrix fractional func-

tion, is convex (for proof refer to [72] page 76). Once again, due to the convexity preserving

nature of sum, the last term is also convex. Finally, the constraint Ω � 0 defines a positive

semi-definite cone and the tr(M) is just an affine function of the matrix M , and hence, the

intersection of both the constraints defines a convex set.

Although problem (6.1) is jointly convex in W and Ω, simultaneous optimization over

both W and Ω is difficult. Therefore, we use an alternating optimization strategy [114]

and iterate between optimizing W with Ω fixed and vice-versa. The complete optimization

procedure is summarized in Algorithm 6.

Optimizing Ω with fixed W

WithW fixed, we can ignore the terms which are not dependent on Ω. The reduced problem

involving only terms dependent on Ω can be rewritten as (6.2).

min
W,Ω

tr
(
WΩ−1W T

)
(6.2)

s.t. Ω � 0

tr (Ω) = T

The analytical solution to the above problem can be obtained in the closed form given

98

approx
 gap

Figure 6.1: Illustration of convex function lower bounded by cutting planes. Cutting planes
are tangents to the curve. The black dots represent the points at which the cutting planes
are defined. The piecewise linear approximation is defined by the collective maxima of the
cutting planes. The red dot represents the current minima of JCPk

by (6.3),

Ω =
T (W TW)

1
2

tr
(

(W TW)
1
2

) (6.3)

This can be proved using the Cauchy-Schwarz inequality for the Frobenius norm. For a

detailed proof, please refer to [31].

Optimizing W with fixed Ω

To solve this problem, we use the Bundle Methods for Regularized Risk Minimization

(BMRM) proposed by Teo et al. [115]. BMRM is an optimization scheme for efficiently

solving convex optimization problems commonly encountered in regularized risk minimiza-

tion framework. This method converges in O(ε) steps for general convex problems and in

O(log(1/ε)) steps for smooth convex problems.

The central idea of BMRM is based on the cutting plane and bundle methods, which is

99

to bound a convex objective function using a piecewise linear approximations. The piecewise

linear approximation in iteration k is denoted by JCPk . This is illustrated in Fig. 6.1 for

a single variable convex function. The cutting planes are defined by the (sub)gradients

to the curve at each of the points marked by black circles. The collective maximum of

the cutting planes, JCPk := max1≤j≤k
{
tr
(
W TAj

)
+ bj

}
, provides an approximation of the

objective function. Due to convexity of the objective function, the cutting planes, and as a

consequence JCPk , always lower bound the objective. New cutting planes are added to the

approximation as the algorithm progresses to make the lower bound progressively tighter.

The highlighted gray area in Fig. 6.1 marks the approximation gap, which is defined as the

difference between the current best minimum of the objective function and the minimum of

the cutting plane approximation JCPk

Even though the cutting plane method is convergent [116], it generally suffers from

instability and extremely slow convergence [117] when new iterates move far away from the

previous ones. To mitigate this problem, bundle methods add a proximal term to prevent

the zig-zag behavior caused by next iterates moving too far away from the current iterates.

There are three popular variants of bundle methods [115].

proximal:

wk = argminw

{
ξk
2
‖w − ŵk−1‖2 + JCPk (w)

}
(6.4a)

trust region:

wk = argminw

{
JCPk (w) | 1

2
‖w − ŵk−1‖2 ≤ κk

}
(6.4b)

level set:

wk = argminw

{
1

2
‖w − ŵk−1‖2 | JCPk (w) ≤ τk

}
(6.4c)

100

As it can be seen for (6.4a), (6.4b), and (6.4c), each of the variants penalize large steps in

some form. However tuning the exact parameters for the proximal terms for achieving good

rate of convergence can be difficult. The main insight of BMRM, which is based on proximal

bundle methods, is to note that the objective function in regularized risk minimization

consists of a loss term and a regularization term, and typically the regularization term is a

norm. Therefore, the regularization term can be used as the proximal term, obviating the

need for a specialized proximal term and the additional inconvenience associated with its

parameter tuning.

To apply BMRM to Problem (6.1) we split the objective into two parts — the loss term

and the regularization term.

J = Remp + Ψ

where

Remp =

T∑
t=1

1

nt

nt∑
i=1

∣∣1− yit (wTt xit)∣∣+

Ψ =
λ1

2
tr
(
WW T

)
+
λ2

2
tr
(
WΣW T

)

We proceed by defining a cutting plane approximation of Remp and use Ψ as the proximal

term. The cutting plane approximation is defined by

RCPk (W) = max
1≤i≤k

{
tr
(
W TAj

)
+ bj

}
(6.5)

101

where Ak ∈ ∂Remp (Wk−1) and bk = Remp (Wk−1) − tr
(
W T
k−1Ak

)
. Therefore, we mini-

mize problem (6.6) to get the next iterate

Jk (W) = Ψ (W) + max
1≤i≤k

{
tr
(
W TAj

)
+ bj

}
Wk = arg min

W
Jk (W)

(6.6)

The algorithm terminates when the gap between the approximation and the original

objective function falls below a specified tolerance level ε, i.e. min0≤i≤kJ (Wj)−Jk (Wk) ≤ ε.

We solve the approximate problem (6.6) in its dual form using following result from [115]

restated in a modified form for the current problem.

Theorem 2. Let {Aj}kj=1 be the set of (sub)gradients and b = (b1, b2, . . . , bk)
T be defined

such that bk = Remp (Wk−1)− tr
(
W T
k−1Ak

)
. The dual problem of

Wk = arg min
W
{Jk (W)}

Jk (W) ≡ Ψ (W) + max
1≤j≤t

{
tr
(
W TAj

)
+ bj

}
is

αk = arg max
α∈Rt

J∗k (α) = Ψ∗

− k∑
j=1

Ajαj

+ αT b

subject to:

α ≥ 0

‖α‖1 = 1

102

where Ψ∗ denotes the Fenchel Dual of Ψ. Furthermore, Wk and αk are related by the dual

connection Wk = ∂Ψ∗
(
−
∑

j Ajαj

)
Please note that our statement differs slightly, in notation, from the original theorem

presented in [115] because the variables in the original theorem are presented in a vector

form, whereas in our case the optimization variables are presented in matrix format.

Fenchel Dual of Ψ

In order to provide a concrete instantiation of the dual problem we have to compute the

Fenchel dual of Ψ.

Definition 1. Fenchel Dual: Let φ :W → R be a convex function on a convex set W. Then

the dual φ∗ of φ is defined as

φ∗ (µ) := sup
w∈W

wTµ− φ (w) (6.7)

The matrix equivalent of dot product for vectors is the trace of the matrix product.

Hence, the Fenchel dual of Ψ (·) is computed as follows.

Ψ∗ = sup
W

tr
(
UTW

)
−Ψ (W)

= sup
W

tr
(
UTW

)
− λ1

2
tr
(
WW T

)
− λ2

2
tr
(
WΣW T

) (6.8)

To maximize R.H.S., we take its derivative w.r.t. W and equate it to zero to find the

stationary point, noting that Σ is symmetric.

103

∣∣∣∣∂F (W,U)

∂W

∣∣∣∣
W=W∗

= 0

U − λ1W
∗ − λ2W

∗Σ = 0

=⇒ W ∗ = U (λ1I + λ2Σ)−1 ≡ UB,

where we have defined B = (λ1I + λ2Σ)−1. Substituting back into (6.8), we get the closed

form expression for Fenchel dual, which we further simplify using the cyclic property of trace

[118].

Ψ∗ =tr
(
UTUB

)
− λ1

2
tr
(
UBBTU

)
− λ2

2
tr
(
UBΣBTUT

)
=tr

(
UBUT

)
− λ1

2
tr
(
UBBTU

)
− λ2

2
tr
(
UBΣBTUT

)
=tr

{
U

(
B − λ1

2
BBT − λ2

2
BΣBT

)
UT
}

=tr
{
UGUT

}
,

where we define G :=

(
B − λ1

2
BBT − λ2

2
BΣBT

)
Finally, the connection between primal and dual variables according to Theorem 2 is

given by

104

Algorithm 6 Main Algorithm (MTRL-hinge)
Input: X, Y, λ1, λ2
Output: W,Ω
W0 ← 0; Ω0 ← T ∗ I
ε← 10−3 max_iter ← 30; k ← 0; εk ←∞
for k = 1, . . . ,max_iter do

Wk := optimizeW (X,Y,W,Ωk, λ1, λ2)

Ωk := T ∗ (WT
k Wk)

1
2

tr

(
(WT

k Wk)
1
2

)
if ‖Wk−Wk−1‖2

‖Wk‖2
> ε then

break;
end

end
return Wk,Ωk

Wk = ∂Ψ∗

−∑
j

Ajαj

=

∣∣∣∣∣∂tr
{
UGUT

}
∂U

∣∣∣∣∣
U=−

∑
j Ajαj

= |2UG|U=−
∑

j Ajαj

= −2

∑
j

Ajαj

G

(6.9)

The dual problem in this form can be solved using any constrained quadratic solver.

This optimization procedure is summarized in Algorithm 7.

6.4 Experimental Setup

6.4.1 Validation Protocols

In this section we present the results of experimental evaluation of our method on a simulated

dataset and two real world datasets commonly used in multi-task learning literature and

105

Algorithm 7 OptimizeW (BMRM)
Input: W1, X, Y,Ω, λ1, λ2
Output: Wbest

k ← 1, ε← 10−4,max_iter ← 100

B =
(
λ1I + λ2Ω−1

)−1
G =

(
B − λ1

2
BBT − λ2

2
BΩ−1BT

)
for k = 1, . . . ,max_iter do

Ak ∈ ∂Remp (Wk−1)

bk := Remp (Wk−1)− tr
(
WT
k−1Ak

)
M such that Mpq = tr

{
ApGA

T
q

}
αk = arg minα∈Rk

{
αTMα− αT b | α ≥ 0,1Tα = 1

}
Wk = −2

(∑k
j=1Ajαj

)
G

Wbest = argminW∈{W1,...,Wk} {J (W)}
εk ← J (Wbest)− Jk (Wk)

if εk < ε then
break

end
end
return Wbest

compare the results with a single task model and two competitive multi-task learning models

described below.

MTRL: Our method proposed in this chapter.

SVM: STL baseline using support vector machines. SVM is the most competitive single

task learning baseline because our method uses hinge loss in its objective.

TRACE: MTL formulation using Trace Norm minimization [43,107] tries to enforce a low

rank constraint on the combined weights matrix for all the tasks, thereby favoring

the weight vectors for the tasks that lie in a low dimensional subspace. Due to the

difficulties involved in directly minimizing the rank of a matrix, trace norm is used as

a surrogate.

L21: MTL formulation uses L21 norm as the regularizer [8,119]. This has the effect of joint

feature selection on all the tasks.

106

Both TRACE and L21 MTL formulations use a smooth logistic loss which is different

from the non-smooth hinge loss used in our method. For our experiments we used the

publicly available implementation of libSVM for SVM 1. TRACE and L21 are available in

MALSAR package [108], which provides implementations for several well known multi-task

methods using logistic loss and squared loss.

6.5 Results

6.5.1 Simulated Toy Dataset

In this section, we discuss the results on a simulated dataset. The purpose of testing our

method on this dataset is to verify that our method is indeed able to extract the task

relationships as encoded in the data. By controlling the dataset generation process we know

the ground truth about the task relationship, which can be then compared with the results

of the method execution. To generate this dataset, we create two groups of four tasks each

by first generating two orthonormal vectors which form the bases for the two groups. Then,

we add random noise to the weight vectors of the group weight vectors to generate four

independent task weight vectors in each group. Therefore, by construction we have one

group of four tasks which has high correlation within the group and another group of four

tasks with similarly high correlation within the group. Finally, we generate random examples

and assign positive and negative classes using the generated weight vectors. Any correlation,

positive or otherwise, with tasks from the other group are mere chance occurrences. We chose

the number of input dimensions as 4. Each task has equal number of positive and negative

training examples. We used a validation set for tuning the model parameters in the range{
10−5, 10−4, 10−3, 10−2, 10−1, 100

}
and measured the performance on an independent test

set.

In Table 6.1, we compare the accuracy of our MTRL formulation with that of STL using

SVM. Our MTRL model outperforms SVM by a huge margin when the amount of training
1http://www.csie.ntu.edu.tw/~cjlin/libsvm/

107

Input

1

8

From Source: Input, Layer or Bias

N
eu

ro
ns

 w
ith

in
 L

ay
er

s

1 8

Layer

Elements within Sources

To
 L

ay
er

Figure 6.2: Learned task correlations for simulated data using 10 training examples. Each
square represents the correlation between a pair of tasks. The size of the squares represents
the magnitude of the value with positive values shown in green and negative values in red.

Table 6.1: Simulated dataset accuracy

Train Size (# Examples) SVM MTRL

5 0.8158 0.8785
10 0.8979 0.9186
30 0.9815 0.9822
50 0.9941 0.9948

data per task is small. Given sufficient amount of training data, SVM performs just as well

as our MTRL formulation. In Fig. 6.2 we show the task correlations for our MTRL model

learned with 10 training examples. The figure shows two distinct groups of tasks uncovered

by our method.

6.5.2 Landmine Detection

The Landmine detection dataset2 consists of 29 tasks. Each task is a binary classification

problem of learning a classification model to discriminate between instances of landmines

and clutters using features extracted from radar images. The 9 features in this dataset

consist of four moment-based features, three correlation-based features, one energy ratio

feature and one spatial variance feature [120]. Tasks 1-15 are taken from regions with high
2http://people.ee.duke.edu/~lcarin/LandmineData.zip

108

foliage and the rest are taken from bare earth or desert regions. Therefore, it is reasonable

to assume that the tasks form two distinct groups. The number of examples per task vary

between 445 and 690, whereas the number of positive examples per task vary in the range

from 15 to 48.

We selected 25% of the examples for test set and 25% for validation set and using the

remaining 50% of the examples we created datasets of varying sizes to evaluate classifica-

tion performance at different training sizes. We used the validation set to select the best

parameters for all the methods in the range
{

10−5, 10−4, 10−3, 10−2, 10−1, 100
}
.

Due to the imbalance in the number of positive and negative examples in this dataset,

accuracy is not a good measure of performance. Hence, we evaluate the performance of

different models using area under the receiver operating characteristic curve (AUC). The

results for this dataset are provided in Table 6.2. In general, with increasing training size

the performance of the classifier improves, as can be expected. Our MTRL model performs

better than the STL using SVM, but for this dataset, the performance using hinge loss based

models was considerably worse than the models using logistic loss.

As mentioned earlier, the tasks in this dataset are naturally clustered into two groups.

In order to observe our method’s ability to extract these groups at various training sizes,

we plotted the correlations of the weight vectors of the models extracted from the learned

model parameter Ω in Fig. 6.3, for different training sizes. We observed that the first

group of tasks, consisting of tasks 1-15, is more strongly correlated than the second group

of tasks, consisting of task 16-29. With sufficient training sample sizes, the correlation

pattern between tasks recovered by MTRL converges to the expected pattern consisting of

two distinct groups.

6.5.3 Amazon Sentiment Classification

The tasks in Amazon sentiment classification dataset 3 are to classify the the polarity of

different product reviews using their text. This dataset was originally provided by Blitzer
3http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

109

Table 6.2: Landmine AUC scores

Train Size (%) SVM MTRL TRACE L21

10 0.6902 0.6708 0.7512 0.7533
20 0.6697 0.6688 0.7393 0.7384
30 0.6841 0.6914 0.7711 0.7676
40 0.6983 0.7107 0.7708 0.7646
50 0.7016 0.7225 0.7724 0.7682

Input
1

29

From Source: Input, Layer or Bias

N
eu

ro
ns

 w
ith

in
 L

ay
er

s

1 29

Layer

Elements within Sources

To
 L

ay
er

(a) 10%

Input
1

29

From Source: Input, Layer or Bias

N
eu

ro
ns

 w
ith

in
 L

ay
er

s

1 29

Layer

Elements within Sources

To
 L

ay
er

(b) 20%

Input
1

29

From Source: Input, Layer or Bias

N
eu

ro
ns

 w
ith

in
 L

ay
er

s

1 29

Layer

Elements within Sources

To
 L

ay
er

(c) 30%

Input
1

29

From Source: Input, Layer or Bias

N
eu

ro
ns

 w
ith

in
 L

ay
er

s

1 29

Layer

Elements within Sources

To
 L

ay
er

(d) 40%

Input
1

29

From Source: Input, Layer or Bias

N
eu

ro
ns

 w
ith

in
 L

ay
er

s

1 29

Layer

Elements within Sources

To
 L

ay
er

(e) 50%

Figure 6.3: Task correlations of best models for Landmine dataset. Sub-figures correspond
to different percentages of data used for training. Each square represents the correlation
between a pair of tasks. The size of the squares represents the magnitude of the value with
positive values shown in green and negative values in red.

110

et al. [121] and used in the context of domain adaptation. The instances consist of product

reviews, and ratings, which are provided in terms of 1 to 5 stars. The ratings are converted

into positive and negative reviews for classification tasks. Each task corresponds to a par-

ticular product category - books, DVDs, electronics, and kitchen appliances. 1000 positive

and 1000 negative examples are available for each task. The instances are represented by a

term frequency vector of 473856 feature dimensions. We selected 25% examples for testing

and 25% examples for validation and to assess the performance with different training sizes,

we created different training split with 10%, 20%, 30%, 40%, and 50% of the original data.

We validated the models using parameters in the range
{

10−5, 10−4, 10−3, 10−2, 10−1, 100
}

on a validation set and selected the best model for final test on a held out test set.

Accuracies on the test set for various methods are reported in Table 6.3. Both MTRL

and Trace perform considerably better than STL and L21. We expected L21 to perform

well, given the high dimensionality of this dataset, but, it performed worse than STL for

this dataset. The overall performance of our model was better than all other models.

In Table 6.4, we show the task correlations recovered by our model for different tasks. We

observed a strong correlation between the Books-DVDs and Electronics-Kitchen Appliances

task pairs.

6.6 Summary

In this work, we have presented a multi-task model using non-smooth hinge loss which is

capable of learning the task relationships between different tasks. Our method can not

only use positive task relationships, but it can also leverage negative task relationships.

We demonstrated the effectiveness of the method in improving generalization performance

using a simulated dataset and two real world datasets. Our method compared favorably

with competing multi-task learning methods and consistently outperformed them on one of

the datasets. We also compared the performance of our method to competing STL and MTL

methods at different training sizes and found that the MTL methods significantly outperform

STL methods and the performance gains are more pronounced for smaller training sizes.

111

Table 6.3: Per task accuracy - Amazon Sentiment Classification

Train Method Books DVDs Electronic Kitchen
Size (%) Appliances

10

SVM 0.6360 0.6800 0.7720 0.7560
MTRL 0.7380 0.7500 0.8280 0.8100
TRACE 0.7000 0.7620 0.8180 0.7920
L21 0.6380 0.6960 0.7640 0.7620

20

SVM 0.7040 0.7680 0.8080 0.8020
MTRL 0.7580 0.7860 0.8640 0.8420
TRACE 0.7600 0.7680 0.8660 0.8420
L21 0.7000 0.7400 0.8200 0.7620

30

SVM 0.7540 0.7880 0.8060 0.8160
MTRL 0.7860 0.8020 0.8600 0.8520
TRACE 0.7940 0.7960 0.8620 0.8420
L21 0.7280 0.7440 0.8320 0.8320

40

SVM 0.7420 0.8180 0.8200 0.8240
MTRL 0.7980 0.8380 0.8640 0.8340
TRACE 0.7860 0.8260 0.8560 0.8280
L21 0.7320 0.8020 0.8160 0.8220

50

SVM 0.7740 0.8160 0.8240 0.8540
MTRL 0.8080 0.8440 0.8820 0.8640
TRACE 0.7940 0.8300 0.8720 0.8460
L21 0.7360 0.8140 0.8420 0.8400

112

Table 6.4: Task correlation - Amazon Sentiment Classification

Correlation Tables

Train Size(%) Books DVDs Electronic Kitchen
Appliances

10

1.0000 0.7830 0.6192 0.5629
0.7830 1.0000 0.7291 0.7000
0.6192 0.7291 1.0000 0.9413
0.5629 0.7000 0.9413 1.0000

20

1.0000 0.5848 0.5492 0.5516
0.5848 1.0000 0.4589 0.5263
0.5492 0.4589 1.0000 0.7397
0.5516 0.5263 0.7397 1.0000

30

1.0000 0.5898 0.5774 0.6009
0.5898 1.0000 0.5557 0.5885
0.5774 0.5557 1.0000 0.7925
0.6009 0.5885 0.7925 1.0000

40

1.0000 0.6084 0.4683 0.5578
0.6084 1.0000 0.4847 0.5593
0.4683 0.4847 1.0000 0.7450
0.5578 0.5593 0.7450 1.0000

50

1.0000 0.6835 0.5638 0.6386
0.6835 1.0000 0.5782 0.6214
0.5638 0.5782 1.0000 0.8179
0.6386 0.6214 0.8179 1.0000

113

With respect to extracting task correlations we observed that some amount of training data

is required to extract robust task correlations.

114

Chapter 7: Future Work

In this thesis, we have presented several methods to improve the efficiency and effectiveness

in classification with several tasks in hierarchical and multi-task learning scenarios. There

are several interesting directions to explore for future work.

7.1 Large Scale Multi-task Learning

Majority of the current work in multi-task learning deals with small scale problems com-

pared to the web-scale problems encountered in the real world. To be practically applicable,

these methods should be able to scale to scenarios involving thousands or even millions of

tasks. For example modeling the news preferences of subscribers of an online news website,

or the buying preferences of the users of a web-retailer using current methods is impractical.

The primary challenge is that these methods involve complex regularization penalties that

involve all the model variables. Hence, using the current optimization methods limits us

to the memory and computational capability of current commodity computers or mid-sized

servers. However, with further understanding into various regularization penalties that can

be advantageous to multiple tasks and efficient implementation of distributed optimization

methods, these multi-task methods can be scaled to extremely large problems. Promis-

ing advances in distributed optimization methods have been made in recent years, such as

parallel block-coordinate descent methods [122]. Understanding the applicability of these

methods to current multi-task formulations and designing efficient implementations in dis-

tributed computing frameworks such as map-reduce or spark is a challenging and interesting

direction.

115

7.2 Hierarchical Classification Targeting Application Specific

Losses

Most binary, multi-class and hierarchical classification methods are geared towards mini-

mizing 0/1 misclassification error, albeit using a convex surrogate instead of using 0/1 loss

directly. Most of the current algorithms only achieve minimization/maximization on other

metrics as a by product of minimizing misclassification error. In many application domains it

might be more beneficial to optimize other metrics such as tree-error or hierarchical f1-score

rather than targeting misclassification error in order to maximize the utility of the classifier.

Recently, Chen et al. [75] proposed a method to maximize revenue generation targeting

specific business goals. The large margin method proposed by Dekel et al. [59] is geared to-

wards minimizing the tree induced error instead of the misclassification error. However, such

work targeting specific classification metrics is sparse in comparison to methods focusing on

misclassification error. More work needs to be done to understand the specific properties of

different loss functions and their applicability and feasibility in learning problems.

One promising line of attack can be inspired from Search based structured prediction

(SEARN) proposed by Daume et al. [123]. SEARN is applicable in more general context

of structure output learning. It is a meta-algorithm which reduces the problem of learning

over structured output spaces to binary classification. The general idea is to start with

an initial policy for classification over the output space and iteratively refine it using the

losses incurred by the classification policy of the previous iteration. The algorithm is able

to incorporate any user defined loss function and relatively efficient in practice.

7.3 Top-down Classification with Feature Selection

Hierarchical classification methods that train one-vs-rest type of models for all the terminal

class labels have been noted to empirically outperform their hierarchical counterparts that

train top down models [11, 79]. However, one-vs-rest flat classifiers are considerably more

expensive in terms of both training times and testing times. In the domains where this

116

trade-off of slight decrease in classification performance is acceptable in order to achieve

significant improvement in training and testing efficiency, top-down classification can be a

feasible alternative.

In large scale classification problems where feature space as well as the number of classes

are large, the number of features that are relevant to any local classifier in top-down approach

tend to small. However, traditional approaches tend to use all the features in learning the

models. Such problems are commonly encountered in large scale text classification with large

vocabularies. The motivation for this method is based on the observation that although

the number of features in the entire vocabulary of English language is enormous, for any

given classification problem the majority of the words are not relevant for the classification

problem of a particular node in the hierarchy. The discriminative features for classifiers

at different nodes might be different. In the case of text classification, for example, the

important features at a node related to computer science might be words such as compilers,

programs, and so on, whereas words like seeds, crop, and wheat might be more important

for agriculture. Words which are discriminative at a more general level might cease to be

so at a more specific level. Although, the entire set of features might be used by the overall

hierarchical classification problem, only a subset of features will be used by the different

independent models.

Determining the relevant features for each local classifier can significantly improve effi-

ciency while simultaneously mitigating the impact of noisy features. Towards this end, we

make use of the advances in Multi-task learning feature selection and feature learning meth-

ods. Considering the classification at an internal node with c children, we are presented with

the problem of multi-class classification to distinguish between the c children. Without any

feature selection, we are can use any multi-class classifier such as binary SVM in one-vs-rest

settings or direct multi-class SVM formulation [52]. However our requirement in the current

case is to learn a set of features that are useful for all the classes. It has two fold advantage,

on one hand, feature selection reduces the number of parameters of the model therefore the

models tend to be compact; secondly for several categories in large scale classification suffer

117

from insufficient data problem as illustrated on Yahoo! directory dataset by Lui et al. [1],

therefore by incorporating the multi-task bias of selecting or learning relevant features for

related tasks should supposedly help.

For a given set of related learning problem multi-task feature selection solves the following

problem given in (7.1)

min
W

T∑
t=1

nt∑
i=1

L
(
yit, w

T
t xit

)
+ γ ‖W‖2,1 (7.1)

T is the number of tasks, and for task t, the number of examples is represented by

nt and weight vector by wt. (yit, xit) denote the ith example for task t, where yit ∈ ±1.

Although, the feature learning problem was originally proposed in [8]. Two methods to

solve the problem efficiently using accelerated proximal gradient descent were proposed by

Liu et al. [28].

7.4 Imbalance Classification Methods for Large Scale Hierar-

chical Classification

The limited success of hierarchical classification methods on large scale problems, has been

attributed to three main causes: sparsity of training data at deeper levels in the hierarchy,

complex decision surfaces at higher levels because they are composed of several more specific

classes, and error propagation where mistakes at higher levels can not be corrected at lower

levels [1,68]. While the third reason is applicable mainly to the top-down local classification

methods, the first two are inherent to the nature of these problems. Typically, for majority

of the classes, the ratio of number of positive examples to that of the negative examples is

very small. This problem can be seen in many standard text classification datasets. Going

from top to down in the hierarchy the classes increasingly become sparser. In Fig. 7.1 this

phenomenon can be seen for for Yahoo! document classification hierarchy where the category

118

size exhibits a power-law distribution. Some methods have tried to indirectly deal with this

issue by biasing the parameters towards the more general, subsuming categories [11, 16].

Although the performance tends to be high on measures such as Micro-F1, the measures

such as Macro-F1 which give equal importance to all the categories, the performance tends

to be very poor.

Figure 7.1: Power law distribution of class sizes for Yahoo! documents dataset [1]

Considering this extremely skewed distribution of examples, methods need to be devel-

oped to address the sparsity of training data. In recent years, Imbalance classification has

gained considerable attention. The task addressed by Imbalance classification is concerned

with improvements in the performance of learning algorithms when the class distribution

is highly skewed [124]. The major challenge here is that the induction rules that describe

the minority concepts are often fewer and weaker than those of majority concepts, since the

minority class is often both outnumbered and under-represented. Two major directions in

which the problem has been addressed are sampling methods and cost sensitive methods.

In chapter 4, we have tried to mitigate the effect of imbalance by incorporating higher mis-

classification cost for smaller categories. In addition, one-class classification methods have

also been applied to the problem with some degree of success [125]. Since, one class classifi-

cation models the characteristics of a single class, their application imbalance classification

has been successful because characterizing the specifics of minority classes takes the center

119

stage. It would be interesting to investigate the applicability and adaptation of imbalance

classification methods to the problem of hierarchical classification, especially to deal with

the imbalance in large scale hierarchies.

120

Bibliography

121

Bibliography

[1] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-Ying
Ma. Support vector machines classification with a very large-scale taxonomy. ACM
SIGKDD Explorations Newsletter, 7(1):36–43, 2005.

[2] Carlos N Silla Jr and Alex A Freitas. A survey of hierarchical classification across
different application domains. Data Mining and Knowledge Discovery, 22(1-2):31–72,
2011.

[3] M.S. Sorower. A literature survey on algorithms for multi-label learning.

[4] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The Journal
of Machine Learning Research, 5:101–141, 2004.

[5] Alina Beygelzimer, John Langford, and Bianca Zadrozny. Machine learning
techniques—reductions between prediction quality metrics. In Performance Model-
ing and Engineering, pages 3–28. Springer, 2008.

[6] J. Baxter. A model of inductive bias learning. JAIR, 12:149–198, 2000.

[7] S. Thrun. Is learning the n-th thing any easier than learning the first? NIPS, pages
640–646, 1996.

[8] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. NIPS, 19:41,
2007.

[9] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

[10] T. Evgeniou and M. Pontil. Regularized multitask learning. KDD, pages 109–117,
2004.

[11] Siddharth Gopal and Yiming Yang. Recursive regularization for large-scale classifica-
tion with hierarchical and graphical dependencies. In Proceedings of the 19th ACM
SIGKDD, pages 257–265. ACM, 2013.

[12] Siddharth Gopal, Yiming Yang, Bing Bai, and Alexandru Niculescu-Mizil. Bayesian
models for large-scale hierarchical classification. In NIPS, pages 2420–2428, 2012.

[13] T. Evgeniou, C.A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6(1):615, 2006.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

122

[15] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation,
pages 2–2. USENIX Association, 2012.

[16] Andrew McCallum, Ronald Rosenfeld, Tom M Mitchell, and Andrew Y Ng. Improving
text classification by shrinkage in a hierarchy of classes. In ICML, volume 98, pages
359–367, 1998.

[17] A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classifi-
cation of proteins database for the investigation of sequences and structures. Journal
of molecular biology, 247(4):536–540, 1995.

[18] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler,
J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al.
Gene ontology: tool for the unification of biology. Nature genetics, 25(1):25–29, 2000.

[19] C.A. Orengo, AD Michie, S. Jones, D.T. Jones, MB Swindells, and J.M. Thornton.
Cath-a hierarchic classification of protein domain structures. Structure, 5(8):1093–
1109, 1997.

[20] Anveshi Charuvaka and Huzefa Rangwala. Multi-task learning for classifying pro-
teins using dual hierarchies. In Data Mining (ICDM), 2012 IEEE 12th International
Conference on, pages 834–839. IEEE, 2012.

[21] Anveshi Charuvaka and Huzefa Rangwala. Approximate block coordinate descent
for large scale hierarchical classification. In Proceedings of The 30th ACM SIGAPP
Symposium On Applied Computing, 2015.

[22] Anveshi Charuvaka and Huzefa Rangwala. Convex multi-task relationship learning
using hinge loss. In Computational Intelligence and Data Mining (CIDM), 2014 IEEE
Symposium on, pages 63–70. IEEE, 2014.

[23] Anveshi Charuvaka and Huzefa Rangwala. Multi-task learning for classifying pro-
teins using dual hierarchies. In Data Mining (ICDM), 2012 IEEE 12th International
Conference on. IEEE, 2012.

[24] Anveshi Charuvaka and Huzefa Rangwala. Classifying protein sequences using regu-
larized multi-task learning. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2014.

[25] S.J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 2009.

[26] S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning.
Learning Theory and Kernel Machines, pages 567–580, 2003.

[27] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine
Learning, 73(3):243–272, 2008.

123

[28] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l 2, 1-norm minimiza-
tion. UIA, pages 339–348, 2009.

[29] S. Thrun and J. O’Sullivan. Clustering learning tasks and the selective cross-task
transfer of knowledge. Learning to learn, pages 181–209, 1998.

[30] E. Bonilla, K.M. Chai, and C. Williams. Multi-task gaussian process prediction. NIPS,
20(October), 2008.

[31] Y. Zhang and D.Y. Yeung. A convex formulation for learning task relationships in
multi-task learning. In Proceedings of the Twenty-fourth Conference on Uncertainty
in AI (UAI), 2010.

[32] Y. Qi, D. Liu, D. Dunson, and L. Carin. Multi-task compressive sensing with dirichlet
process priors. In Proceedings of the 25th international conference on Machine learning,
pages 768–775. ACM, 2008.

[33] Jian Zhang, Zoubin Ghahramani, and Yiming Yang. Flexible latent variable models
for multi-task learning. Machine Learning, 73(3):221–242, 2008.

[34] T. Jebara. Multi-task feature and kernel selection for SVMs. ICML, page 55, 2004.

[35] T. Kato, H. Kashima, M. Sugiyama, and K. Asai. Multi-task learning via conic
programming. Advances in Neural Information Processing Systems, 20:737–744, 2008.

[36] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[37] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–
320, 2005.

[38] D.L. Donoho. For most large underdetermined systems of linear equations the minimal
l1-norm solution is also the sparsest solution. Communications on pure and applied
mathematics, 59(6):797–829, 2006.

[39] G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace
selection for multiple classification problems. Statistics and Computing, 20(2):231–252,
2010.

[40] Seyoung Kim and Eric P. Xing. Tree-guided group lasso for multi-task regression with
structured sparsity. In ICML, pages 543–550, 2010.

[41] J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alternating structure
optimization. NIPS, 2011.

[42] Laurent Jacob, Francis Bach, and Jean-Philippe Vert. Clustered multi-task learning:
A convex formulation. CoRR, abs/0809.2085, 2008.

[43] S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages
457–464. ACM, 2009.

124

[44] Andreas Argyriou, Andreas Maurer, and Massimiliano Pontil. An algorithm for trans-
fer learning in a heterogeneous environment. In Machine Learning and Knowledge
Discovery in Databases, pages 71–85. Springer, 2008.

[45] Ke Wang, Senqiang Zhou, and Shiang Chen Liew. Building hierarchical classifiers
using class proximity. In VLDB, volume 99, pages 363–374, 1999.

[46] Celine Vens, Jan Struyf, Leander Schietgat, Sašo Džeroski, and Hendrik Blockeel.
Decision trees for hierarchical multi-label classification. Machine Learning, 73(2):185–
214, 2008.

[47] Miguel E Ruiz and Padmini Srinivasan. Hierarchical text categorization using neural
networks. Information Retrieval, 5(1):87–118, 2002.

[48] Daphne Koller and Mehran Sahami. Hierarchically classifying documents using very
few words. In ICML, pages 170–178, 1997.

[49] Alexander Genkin, David D Lewis, and David Madigan. Large-scale bayesian logistic
regression for text categorization. Technometrics, 49(3):291–304, 2007.

[50] Lin Xiao, Dengyong Zhou, and Mingrui Wu. Hierarchical classification via orthogonal
transfer. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 801–808, 2011.

[51] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2):121–167, 1998.

[52] K. Crammer and Y. Singer. On the learnability and design of output codes for multi-
class problems. Machine Learning, 47(2):201–233, 2002.

[53] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.
Support vector machine learning for interdependent and structured output spaces. In
Proceedings of the twenty-first international conference on Machine learning, page 104.
ACM, 2004.

[54] Aris Kosmopoulos, Ioannis Partalas, Eric Gaussier, Georgios Paliouras, and Ion An-
droutsopoulos. Evaluation measures for hierarchical classification: a unified view and
novel approaches. arXiv preprint arXiv:1306.6802, 2013.

[55] W. Bi and J.T. Kwok. Multi-label classification on tree-and dag-structured hierarchies.
ICML, 2011.

[56] Farbound Tai and Hsuan-Tien Lin. Multilabel classification with principal label space
transformation. Neural Computation, 24(9):2508–2542, 2012.

[57] Daniel Hsu, Sham Kakade, John Langford, and Tong Zhang. Multi-label prediction
via compressed sensing. In NIPS, volume 22, pages 772–780, 108, 2009.

[58] Z. Barutcuoglu, R.E. Schapire, and O.G. Troyanskaya. Hierarchical multi-label pre-
diction of gene function. Bioinformatics, 22(7):830, 2006.

125

[59] Ofer Dekel, Joseph Keshet, and Yoram Singer. Large margin hierarchical classifica-
tion. In Proceedings of the twenty-first international conference on Machine learning,
page 27. ACM, 2004.

[60] Artem Sokolov and Asa Ben-Hur. Hierarchical classification of gene ontology terms
using the gostruct method. Journal of Bioinformatics and Computational Biology,
8(02):357–376, 2010.

[61] Lijuan Cai and Thomas Hofmann. Hierarchical document categorization with support
vector machines. In Proceedings of the thirteenth ACM international conference on
Information and knowledge management, pages 78–87. ACM, 2004.

[62] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures
for classification tasks. Information Processing & Management, 45(4):427–437, 2009.

[63] S. Dumais and H. Chen. Hierarchical classification of Web content. In Proceedings of
the 23rd annual international ACM SIGIR conference on Research and development
in information retrieval, page 263. ACM, 2000.

[64] Nicolò Cesa-Bianchi, Claudio Gentile, Luca Zaniboni, et al. Incremental algorithms
for hierarchical classification. Journal of Machine Learning Research, 7(1), 2006.

[65] Michelangelo Ceci and Donato Malerba. Classifying web documents in a hierarchy
of categories: a comprehensive study. Journal of Intelligent Information Systems,
28(1):37–78, 2007.

[66] Aris Kosmopoulos, Eric Gaussier, Georgios Paliouras, and Sujeevan Aseervatham.
The ecir 2010 large scale hierarchical classification workshop. In ACM SIGIR Forum,
volume 44, pages 23–32. ACM, 2010.

[67] Yiming Yang, Jian Zhang, and Bryan Kisiel. A scalability analysis of classifiers in text
categorization. In Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval, pages 96–103. ACM, 2003.

[68] Paul N Bennett and Nam Nguyen. Refined experts: improving classification in large
taxonomies. In Proceedings of the 32nd international ACM SIGIR conference on Re-
search and development in information retrieval, pages 11–18. ACM, 2009.

[69] Gui-Rong Xue, Dikan Xing, Qiang Yang, and Yong Yu. Deep classification in large-
scale text hierarchies. In Proceedings of the 31st annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 619–626. ACM,
2008.

[70] Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of optimization theory and applications, 109(3):475–494, 2001.

[71] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam
Sundararajan. A dual coordinate descent method for large-scale linear svm. In Proceed-
ings of the 25th international conference on Machine learning, pages 408–415. ACM,
2008.

126

[72] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ Pr, 2004.

[73] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[74] Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and Sašo Džeroski. Hierarchical
annotation of medical images. Pattern Recognition, 44(10):2436–2449, 2011.

[75] Jianfu Chen and David Warren. Cost-sensitive learning for large-scale hierarchical
classification. In Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management, pages 1351–1360. ACM, 2013.

[76] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun.
Large margin methods for structured and interdependent output variables. In Journal
of Machine Learning Research, pages 1453–1484, 2005.

[77] Babak Shahbaba, Radford M Neal, et al. Improving classification when a class hi-
erarchy is available using a hierarchy-based prior. Bayesian Analysis, 2(1):221–237,
2007.

[78] Budhaditya Saha, Sunil Gupta, Dinh Phung, and Svetha Venkatesh. Multiple task
transfer learning with small sample sizes. Knowledge and Information Systems, pages
1–28, 2015.

[79] Rohit Babbar, Ioannis Partalas, Eric Gaussier, and Massih-Reza Amini. On flat versus
hierarchical classification in large-scale taxonomies. In Advances in Neural Information
Processing Systems, pages 1824–1832, 2013.

[80] Hamed Masnadi-Shirazi and Nuno Vasconcelos. Risk minimization, probability elici-
tation, and cost-sensitive svms. In ICML, pages 759–766, 2010.

[81] Yurii Nesterov. Introductory lectures on convex optimization, volume 87. Springer
Science & Business Media, 2004.

[82] Yiming Yang. A study of thresholding strategies for text categorization. In Proceedings
of the 24th annual international ACM SIGIR, pages 137–145. ACM, 2001.

[83] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. The Journal of Machine Learning Research,
5:361–397, 2004.

[84] Yiming Yang and Xin Liu. A re-examination of text categorization methods. In
Proceedings of the 22nd annual international ACM SIGIR, pages 42–49. ACM, 1999.

[85] C.A. Orengo, AD Michie, S. Jones, D.T. Jones, MB Swindells, and J.M. Thornton.
CATH-a hierarchic classification of protein domain structures. Structure, 5(8):1093–
1109, 1997.

[86] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting
remote protein homologies. Journal of Computational Biology, 7(1-2):95–114, 2000.

127

[87] Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein ho-
mology detection using string alignment kernels. Bioinformatics, 20(11):1682–9, 2004.

[88] C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: A string kernel for svm pro-
tein classification. In Proceedings of the pacific symposium on biocomputing, volume 7,
pages 566–575. Hawaii, USA., 2002.

[89] H. Rangwala and G. Karypis. Profile-based direct kernels for remote homology detec-
tion and fold recognition. Bioinformatics, 21(23):4239–4247, 2005.

[90] J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W.S. Noble. Semi-supervised
protein classification using cluster kernels. Bioinformatics, 21(15):3241, 2005.

[91] G. Csaba, F. Birzele, and R. Zimmer. Systematic comparison of SCOP and CATH:
a new gold standard for protein structure analysis. BMC Structural Biology, 9(1):23,
2009.

[92] R. Day, D.A.C. Beck, R.S. Armen, and V. Daggett. A consensus view of fold
space: Combining SCOP, CATH, and the Dali Domain Dictionary. Protein Science,
12(10):2150–2160, 2003.

[93] C. Hadley and D.T. Jones. A systematic comparison of protein structure classifications:
Scop, cath and fssp. Structure, 7(9):1099–1112, 1999.

[94] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local align-
ment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[95] SF Altschul, TL Madden, AA Schaffer, J. Zhang, Z. Zhang, W. Miller, and DJ Lipman.
Gapped blast and psi-blast: a new generation of protein database search programs.
Nucleic acids research, 25(17):3389, 1997.

[96] C. Leslie and R. Kuang. Fast kernels for inexact string matching. Learning Theory
and Kernel Machines, pages 114–128, 2003.

[97] R. Kuang, IE EUGENE, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie.
Profile-based string kernels for remote homology detection and motif extraction. Jour-
nal of bioinformatics and computational biology, 3(03):527–550, 2005.

[98] Pavel P. Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Scalable algorithms for string
kernels with inexact matching. In Advances in Neural Information Processing Systems
20, pages 881–888, 2008.

[99] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6(2):1453, 2006.

[100] H. Rangwala and G. Karypis. Building multiclass classifiers for remote homology
detection and fold recognition. BMC bioinformatics, 7(1):455, 2006.

[101] I. Melvin, E. Ie, J. Weston, W.S. Noble, and C. Leslie. Multi-class protein classification
using adaptive codes. Journal of Machine Learning Research, 8(1557-1581):6, 2007.

128

[102] L. Rosasco, E.D. Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss functions all
the same? Neural Computation, 16(5):1063–1076, 2004.

[103] G. Obozinski, B. Taskar, and M. Jordan. Multi-task feature selection. ICML, 2006.

[104] T. Kato, H. Kashima, M. Sugiyama, and K. Asai. Conic programming for multitask
learning. Knowledge and Data Engineering, IEEE Transactions on, 22(7):957–968,
2010.

[105] M. Fazel, H. Hindi, and S.P. Boyd. A rank minimization heuristic with application
to minimum order system approximation. In American Control Conference, 2001.
Proceedings of the 2001, volume 6, pages 4734–4739. IEEE, 2001.

[106] Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-Philippe Vert. Low-
rank matrix factorization with attributes. CoRR, abs/cs/0611124, 2006.

[107] T.K. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: Reformulations,
algorithms, and multi-task learning. SIAM Journal on Optimization, 2009.

[108] J.Zhou, J.Chen, and J. Ye. MALSAR: Multi-tAsk Learning via StructurAl Regulariza-
tion. Arizona State University, 2011.

[109] Yu. NESTEROV. Gradient methods for minimizing composite objective function.
CORE Discussion Papers 2007076, Université catholique de Louvain, Center for Op-
erations Research and Econometrics (CORE), September 2007.

[110] C.S. Leslie, E. Eskin, A. Cohen, J. Weston, and W.S. Noble. Mismatch string kernels
for discriminative protein classification. Bioinformatics, 20(4):467–476, 2004.

[111] P. Kuksa, P.H. Huang, and V. Pavlovic. Fast protein homology and fold detection
with sparse spatial sample kernels. In Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on, pages 1–4, 2008.

[112] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel princi-
pal component analysis. In Artificial Neural Networks—ICANN’97, pages 583–588.
Springer, 1997.

[113] M.H. Zweig and G. Campbell. Receiver-operating characteristic (roc) plots: a funda-
mental evaluation tool in clinical medicine. Clinical chemistry, 39(4):561–577, 1993.

[114] James Bezdek and Richard Hathaway. Some notes on alternating optimization. Ad-
vances in Soft Computing—AFSS 2002, pages 187–195, 2002.

[115] Choon Hui Teo, SVN Vishwanthan, Alex J Smola, and Quoc V Le. Bundle methods for
regularized risk minimization. The Journal of Machine Learning Research, 11:311–365,
2010.

[116] James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal
of the Society for Industrial & Applied Mathematics, 8(4):703–712, 1960.

[117] Krzysztof C Kiwiel. Proximity control in bundle methods for convex nondifferentiable
minimization. Mathematical Programming, 46(1-3):105–122, 1990.

129

[118] K.B. Petersen and M.S. Pedersen. The matrix cookbook. Technical University of
Denmark, 2006.

[119] X. Chen, W. Pan, J.T. Kwok, and J.G. Carbonell. Accelerated gradient method for
multi-task sparse learning problem. In Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference on, pages 746–751. IEEE, 2009.

[120] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification
with dirichlet process priors. The Journal of Machine Learning Research, 8:35–63,
2007.

[121] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Annual Meeting-
Association For Computational Linguistics, volume 45, page 440, 2007.

[122] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data
optimization. arXiv preprint arXiv:1212.0873, 2012.

[123] Hal Daumé Iii, John Langford, and Daniel Marcu. Search-based structured prediction.
Machine learning, 75(3):297–325, 2009.

[124] Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowledge and
Data Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[125] Larry M Manevitz and Malik Yousef. One-class svms for document classification. the
Journal of machine Learning research, 2:139–154, 2002.

130

Curriculum Vitae

Anveshi Charuvaka was born and raised in India. Growing up, he lived in several places
across India, thanks to his father’s job, which gave him the opportunity to witness India’s
unity in diversity first hand. He did his schooling from various schools of the Kendriya
Vidyala Sanghathan, and obtained a degree of Bachelors of Technology in Information Sci-
ence and Technology, with first class distinction, from Koneru Lakshmaiah College of En-
gineering. He joined Wipro Technologies as a Project Engineer straight out of college, but
soon afterwards moved to Oracle India Pvt. Ltd. as an Applications Engineer to pursue
more challenging undertakings. Here, he got the opportunity to work with several very tal-
ented people in helping develop Oracle Fusion Applications. After spending about 3 years
in software development, he decided to pursue a doctoral degree in Computer Science at
George Mason University, and moved to USA in August 2009. Upon graduation, he will
be joining General Electric’s Global Research as a Senior Data Scientist at their Software
Development Center in San Ramon, California.

131

