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ABSTRACT 

MULTI-SCALE COMPARISON OF FLOOD SOCIOECONOMIC VULNERABILITY FOR 

URBAN AND AGRICULTURAL COMMUNITIES 

Tuğkan Tanır, M.S. 

George Mason University, 2020 

Thesis Director: Dr. Celso M. Ferreira 

Flood events are one of the common natural hazards causing a considerable 

amount of damage to different sectors and communities all around the world. Due to 

several factors, such as climate change, urbanization, and deforestation, the impacts of 

different flood types, including riverine flood, coastal storms, and urban pluvial, increase 

in urban and agricultural communities. Especially, the co-occurrence of flood drivers (i.e 

compound floods) cause severe damages on coastal metropolitan areas, such as DC. 

Riverine flood events can also have destructive effects on agricultural production and 

threaten food security on both national and local scales, such as Potomac River 

Watershed. In this context, this study proposes two separate modules to assess flood 

socio-economic vulnerability (FSOEVI) to quantify both urban compound and riverine 

flood risks on the residential population in Washington, DC metropolitan area and 

agricultural communities in the Potomac River Watershed (PRW), respectively. A 

combination of the HAZUS-MH flood damage estimation tool and the Social 

Vulnerability Index (SOVI) were used to quantify overall vulnerability for both 
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communities. For urban populations, two different compound flood scenarios were used 

to estimate socioeconomic losses, while 100-year riverine flood event was used for 

agricultural crop damage analysis. Although the agricultural communities in Highland 

and Prince George’s were more vulnerable, they did not experience high flood damages 

in any scenarios. The spatiotemporal distribution of vulnerabilities indicated that 

agricultural populations in Shenandoah County were most vulnerable in September and 

October, which were months with the highest flood probability. The compound event 

with coastal surge and riverine flood caused high damage on the banks of the Potomac 

River. In addition, a high precipitation scenario led to severe damages in locations with 

denser infrastructures, such as DC and Arlington County. The block level analysis was 

more sensitive to vulnerability and flood damages compared to coarser scales i.e. group 

and tract. The distribution of the risk was found significantly dependent on the compound 

flood event type and scale of the analysis for urban populations, while time of the year of 

a flood event and dominant crop type were the main determinant of the risk for 

agricultural communities. The method presented in this study is a tool that can identify 

most vulnerable agricultural and urban communities in order to aid vulnerability 

reduction efforts in flood risk management. 
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INTRODUCTION 

Problem Statement 

Flood events are one of the most destructive naturally occurring hazards, causing 

a considerable amount of economic damage to economies and societies around the world 

(Sowmya et al. 2015; Remo et al. 2016; Chen et al. 2019b; Rehman et al. 2019) . The 

intensity and the frequency of all different flood types, including riverine, coastal, urban, 

and compound events, increase due to climate change, urbanization, growing population, 

and deforestation (Bradshaw et al. 2007; de la Paix et al. 2013; Hinkel et al. 2014). 

Therefore, damages from each flood type on various land uses are amplified (Zhou et al. 

2012). Urban areas are one of the most susceptible locations to those different flood types 

because of high-value properties and dense populations (Balica et al. 2009; Yerramilli 

2012; Cho and Chang 2017; Bertilsson et al. 2018; Eem et al. 2018). Thus, the impacts of 

flood events are intense and hard to manage in urban areas (Sowmya et al. 2015; 

Bertilsson et al. 2018). Moreover, flood events can have destructive effects on crop yield 

and threaten the sustainability of the agricultural economy and food security on national, 

regional, and local scales (Balica et al. 2009; FAO 2017; Rahman and Di 2020). 

Although these economic damages are relatively higher in residential areas with same 

event characteristics, the flood damage to crops is still responsible for a substantial 

portion of loss experienced every year in the agriculture sector (Merz et al. 2010; Chau et 
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al. 2015; FAO 2017; Rahman and Di 2020). The most effective way of mitigating the 

impacts of those damages from flood events on both land uses is to implement flood risk 

management approaches and evaluating each risk dimensions (De Risi et al. 2018). The 

hazard, exposure and vulnerability, which are the main terms that describe overall flood 

risk (Crichton 2002), need to be well-defined and evaluated to manage the risk efficiently 

(Crichton 2002; Wilby and Keenan 2012; Win et al. 2018). 

Different flood types such as riverine, coastal, and pluvial floods have caused 

substantial damage in disparate locations, sectors and communities (Hinkel et al. 2014; 

Van Ootegem et al. 2015; Duy et al. 2019) throughout history. Additionally, the amount 

of severe flood damage is magnified (Zscheischler et al. 2018; Couasnon et al. 2020; 

Paprotny et al. 2020), when two (or more) co-occur (i.e. compound floods) (Couasnon et 

al. 2020), especially in the large coastal cities (Wahl et al. 2015). For example, Hurricane 

Harvey (Paprotny et al. 2020) and Hurricane Sandy (Zscheischler et al. 2018) caused 

$150 and $50 billion of damage on prominent urban areas in the U.S, respectively. In 

addition, riverine floods have substantially damaged crops around the world (FAO 2017). 

For instance, $30 million loss was compensated by grants because of flood damage on 

crops in Indiana after a severe flood event happened in 2007 (Pantaleoni et al. 2007). The 

estimation of those flood damages on urban and agricultural areas is one of the main 

components of the flood risk management practices for urban and agricultural 

communities (Van Ootegem et al. 2015). Whereas it is unlikely to prevent all possible 

losses, it is possible to estimate them and their impacts on infrastructure and crops  

(Magombeyi and Taigbenu 2008; Singh and Singh 2015; Remo et al. 2016; Win et al. 
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2018). Thus, there is a significant amount of studies focused on the flood damage 

estimation for different types of flood drivers such as river flood (Remo et al. 2016; 

Arrighi and Campo 2019; Muthusamy et al. 2019; Oubennaceur et al. 2019) and coastal 

storms (Xian et al. 2015; Karamouz et al. 2016; Prahl et al. 2018) on urban infrastructure 

and agricultural activities (Vozinaki et al. 2015; Shrestha et al. 2017, 2019). However, 

very few studies have aimed to quantify urban compound flood risk in urban areas 

(Jiménez-Jiménez et al. 2020; Yang et al. 2020). As the Washington, DC metropolitan 

area has an increasing precipitation rate and is under the risk of sea level rise (Ayyub et 

al. 2012), substantial losses from compound events are expected to increase in the future. 

Thus, it is essential to quantify compound flood damages due to its importance for flood 

risk management. Moreover, the agricultural economy is one of the most important 

sectors in most of the counties located in the Potomac River Watershed, including 

Rockingham, Shenandoah, Augusta, Hardy, and Grant (USDA 2019). Especially for the 

west and the middle part of the watershed, agricultural production is the primary source 

of income for a considerable portion of the population (USDA 2019). Since crop types, 

harvest and plantation costs vary significantly across the Potomac River Watershed, the 

impact of flood events indicates high spatial variation as well. Additionally, seasonality is 

identified as one of the important variables for flood damages on crops (Brémond et al. 

2013). Hence, distribution of the risk of flooding on agricultural activities is significantly 

dependent on both spatial and temporal variables. 

The impacts of flood damages are not evenly distributed on societies because of 

the differences in population characteristics and socioeconomic structures (Karagiorgos 
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et al. 2016; Munyai et al. 2019). Socio-economic conditions and population dynamics 

(Cutter et al. 2003; Eakin and Luers 2006; Gu et al. 2018; Kawasaki et al. 2020) are the 

main determinants of inequalities within society which define how consequences of flood 

loss are distributed across the communities (Cutter et al. 2003; Munyai et al. 2019; 

Chakraborty et al. 2020). Since both alterations on vulnerabilities of the population and 

the hazard extent can result in a change in the flood risk, both components need to be 

well understood  (Bhattacharya et al. 2011). Therefore, it is crucial to quantify 

characteristics of socio-economic components of the flood risk, as well as the hazard 

component, in order to assess cumulative risk efficiently (Cutter et al. 2003). 

Vulnerability assessment, which is a comprehensive socio-economic risk drivers 

quantification method (Cutter et al. 2003), is applied to map out vulnerabilities and their 

related factors. The hazard of place model, which is introduced by Cutter et al (1996), is 

the most widely used technique to evaluate social vulnerabilities of the populations in 

both local and national scales (Clark et al. 1998; Tapsell et al. 2002; Rygel et al. 2006; 

Fekete 2009; Cutter et al. 2012; Monterroso et al. 2014; Remo et al. 2016; Bathi and Das 

2016; Gu et al. 2018). Some studies have combined social vulnerabilities with flood 

hazard to assess flood vulnerabilities of the population at different scales (Barroca et al. 

2006; Ouma and Tateishi 2014; Sowmya et al. 2015; Remo et al. 2016; Fernandez et al. 

2016; Weerasinghe et al. 2018; Jha and Gundimeda 2019; Erena and Worku 2019; 

Khajehei et al. 2020). However, few studies evaluate flood vulnerabilities at multiple 

scales (Remo et al. 2016). In addition, there are very few studies that focus on compound 

urban flood damage and risk (Yang et al. 2020).  
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Although generally rural communities are defined as more vulnerable to hazards 

compared the urban populations (ILO 2017), flood vulnerability assessments are under 

reported in the literature. There are few studies particularly focused on agricultural 

communities around the world (Ma et al. 2007; Huang et al. 2012; Monterroso et al. 

2014; Awere et al. 2016; Jose et al. 2017; Hoque et al. 2019; Baky et al. 2020). However, 

any of aforementioned studies have not merged the standardized damage estimation and 

socioeconomic risk drivers to evaluate overall vulnerability of agricultural communities. 

Research Statement 

This study aims to evaluate socio-economic drivers of the riverine and compound 

flood risk and combine those drivers with physical damage for agricultural and urban 

communities, respectively. An integrated flood socio-economic vulnerability assessment 

tool is introduced to assess overall risk of flood on both agricultural and urban 

communities in two different case studies separately.  

The first case study intended to investigate spatiotemporal distributions of flood 

risk over agricultural activities and its impacts on agricultural communities by using the 

Flood Socio-Economic Vulnerability Index (FSOEVI) in the Potomac River Watershed. 

In order to quantify physical and socioeconomic dimensions of risk, the Social 

Vulnerability Index (SOVI) was developed for agricultural communities at the county 

scale. For the physical dimension of the risk, spatiotemporal flood damage distributions 

on crops were evaluated by a proposed script which replicates the widely used flood 

damage estimation tool HAZUS-MH method. Then, these two dimensions were 

combined to introduce an overall vulnerability index, FSOEVI, to highlight the most 
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vulnerable agricultural communities to flood both spatially and temporally in the 

Potomac River Watershed. The article investigates this case study in detail which was 

submitted to “Natural Hazards” with the title “Assessing the spatiotemporal socio-

economic flood vulnerability of agricultural communities in the Potomac River 

Watershed” is currently under review (Tanir et al. 2020). 

The second case study aimed to assess spatial distributions of the urban 

compound flood socioeconomic vulnerabilities of residential population in the 

Washington, DC metropolitan area for three different scales (tract, group, and block) and 

evaluate sensitivities of each scale to flood vulnerability. The social dimension of the risk 

was investigated by SOVI for urban populations with parameters defined by the extensive 

literature search. Compound flood damages on residential buildings and vehicles were 

estimated by HAZUS-MH flood module from two different compound flood scenarios to 

identify physical risk dimension on the residential population. These two dimensions 

were merged to identify FSOEVI which facilitate to illustrate overall compound flood 

risk for the residential population for three disparate scales. The article evaluate urban 

compound flood in the Washington, DC metropolitan area was submitted to “ 

International Journal of Disaster Risk Reduction” journal with the title ” Multi-Scale 

comparison of urban socio-economic vulnerability in the Washington DC Metropolitan 

Region resulting from compound flooding” (Tanir et al. 2020). The manuscript is 

currently under review.  
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Set of objectives 

The set of objectives defined to achieve the research goals for the first case study are; 

• Quantify social vulnerability levels of agricultural communities with 

SOVI at the county scale. 

• Evaluate seasonality of the risk of flooding on agricultural communities. 

• Assess spatiotemporal distributions of flood risk across agricultural 

communities in PRW. 

The set of objectives defined to achieve the research goals for the second case study are: 

• Quantify social vulnerability levels of urban populations with SOVI index 

for three different scales. 

• Assess spatial distribution of compound flood exposure over the 

Washington, DC metropolitan area 

• Evaluate the spatial distributions of combined FSOEVI results for three 

different scales and compare distributions among three scales in the 

Washington, DC Metropolitan area. 

• Determine the most vulnerable locations to compound flood hazard in 

Washington, DC metropolitan area 
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CHAPTER 1 ASSESSING THE SPATIOTEMPORAL SOCIO-ECONOMIC 

FLOOD VULNERABILITY OF AGRICULTURAL COMMUNITIES IN THE 

POTOMAC RIVER WATERSHED 

Abstract   

 

Flood events are one of the most destructive and yet increasingly frequent natural 

hazards causing a considerable amount of economic losses in the United States (U.S.) and 

throughout the world. The agricultural sector is particularly vulnerable to flood hazards 

compared to other sectors of the economy. The representation of spatiotemporal 

distributions of the agricultural damage and the vulnerability of the agricultural 

communities are essential for flood risk management. Therefore, this study is intended to 

investigate spatiotemporal socio-economic flood vulnerability of the agricultural 

communities in the Potomac River Watershed (PRW), which is located at the East Coast 

of the U.S, where corn and soybeans cultivation are one of the important agricultural 

activities. In this context, a combination of the widely used flood damage estimation tool 

HAZUS-MH and the county-based Social Vulnerability Index (SOVI) were utilized for 

the vulnerability assessment. The spatial distribution of agricultural communities 

vulnerable to flood was evaluated for the extreme and average damage conditions for 

365 days along with the monthly average damage from a 100-year flood event. The 

maximum crop damage and most likely months to experience major flood event were 

found in the same temporal periods. The spatial distributions of damage and SOVI 
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assessments suggested that the most vulnerable agricultural communities (Highland (VA) 

and Prince George’s (MD) did not experience high flood damages in any scenarios. The 

agricultural community in Shenandoah County the most vulnerable in September and 

October, which were the months with the highest flood probability. This high risk that is 

highlighted spatiotemporally can aid decision makers regarding the resource allocation 

for mitigation efforts in the PRW. The method presented in this study can potentially be 

replicated throughout the country, thus helping efforts to mitigate flood hazards and 

protect vulnerable agricultural populations. 

1.1 Introduction 

Flood events are the costliest natural hazards in the world (Remo et al. 2016; 

Tella and Balogun 2020; Ullah et al. 2020). Although the total economic loss in the 

agricultural sector is comparatively lower than the residential areas with the same 

exposure (Merz et al. 2010), there is growing attention towards the estimation of these 

devastating damages prior to their occurrence (Chau et al. 2015). Floods can have 

destructive effects on agricultural production and threaten food security on both local and 

national scales (Balica et al. 2013; FAO 2017; Rahman and Di 2020) . The main impact 

of flood hazards on agricultural production is the decline in crop production due to the 

interruption of crop growth  (UNDP 2004; Chen et al. 2017, 2019a; Shrestha et al. 2017). 

Several examples in a variety of scales show that a considerable amount of economic 

damage has occurred owing to flood hazards in agriculture areas (Myers 1997; Hall et al. 

2005; Gonsalves 2014; Pinos et al. 2020). For example, at a national scale analysis, 

annual flood damages to the agricultural economy are calculated as $7.8 million in Great 
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Britain (Hall et al. 2005) and $3 billion in the U.S. (Myers 1997). Additionally, some 

local flood events that happened in India (Mandal 2014), Vietnam (Chau et al. 2015), and 

Saint Vincent & Grenadines (Gonsalves 2014) caused a substantial loss in crop 

production; respectively 3,747 million Indian Rupee (Rs) in 2004, 84.1 million 

Vietnamese dongs (VND) in 2007, and $1.4 million in 2011. In addition, $30 million aid 

was granted because of flood damage on crops in Indiana after a severe flood event 

(Pantaleoni et al. 2007). Since flood damage on crops is experienced across the world 

(Chau et al. 2015), agricultural flood damage estimation becomes a crucial tool to predict 

the risk of experiencing damage and be prepared for its consequences (Chau et al. 2015). 

While it is unlikely to fully prevent the consequences of flooding (Singh and Singh 2015) 

in rural communities (Magombeyi and Taigbenu 2008), it is possible to quantify the 

agricultural population under risk and mitigate its impacts by predicting potential losses. 

In order to better quantify risk, it is important to develop an integrated framework 

combining physical damage and the socio-economic features of the rural population 

(Cannon et al. 2003; Messner and Meyer 2006; Ma et al. 2007; Magombeyi and Taigbenu 

2008; Brémond et al. 2013; Nga et al. 2018). Some agricultural flood exposure estimation 

studies have been conducted using remote sensing tools (Rosenzweig et al. 2002; Tapia-

Silva et al. 2011; Shrestha et al. 2017), flood depth-crop damage functions (Vozinaki et 

al. 2015; Shrestha et al. 2019), as well as, publicly available potential loss estimation 

method from floods HAZUS-MH (FEMA 2013; Pinter et al. 2016; Antolini et al. 2020) 

HAZUS-MH stands out for being a standardized GIS-based agricultural damage 

estimation widely used in the U.S. (FEMA 2013).  
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The impact of the amount of damage experienced from flooding depends on the 

socio-economic features and dynamics of the population (Karagiorgos et al. 2016; Sam et 

al. 2017; Munyai et al. 2019; Spielman et al. 2020). For instance, Hurricane Katrina 

catastrophically demonstrated that the consequences of natural hazards are not evenly 

distributed across the different groups of populations (Spielman et al. 2020). 

Vulnerability assessments are used as a tool to evaluate the system and/or population 

features and characteristics (Adger 2006), by assessing socio-economic features of the 

population to define how society, population, or communities are affected by hazards 

(Cutter et al. 2003). Four different approaches are introduced to define vulnerability in 

the vulnerability assessment literature, including Risk-Hazard Approach (RHA), Political 

Economy Approach (PEA), Biophysical Approach (BPA), and Integrated Assessment 

Approach (IAA). As one of the most frequently used methods, Integrated Assessment 

Approach (IAA) is a comprehensive methodology which synthesizes biophysical and 

socio-economic dimensions of vulnerability (Füssel 2007; Zarafshani et al. 2016). The 

most well-known example of the IAA is the hazard of place model introduced by Cutter 

et al. (2003) who developed a social vulnerability index for the U.S. at the county level. 

The hazard of place model is also widely used to develop social vulnerability index for 

both local (Clark et al. 1998; Tapsell et al. 2002; Rygel et al. 2006; Fekete 2009; Cutter et 

al. 2012; Monterroso et al. 2014; Remo et al. 2016; Bathi and Das 2016; Gu et al. 2018) 

and national scales (Cannon et al. 2003; Cutter et al. 2003; Dwyer et al. 2004; Holand et 

al. 2011). Some of the studies combined these indexes with flood hazards to assess flood 

social vulnerability of the populations (Barroca et al. 2006; Ouma and Tateishi 2014; 
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Sowmya et al. 2015; Remo et al. 2016; Fernandez et al. 2016; Weerasinghe et al. 2018; 

Jha and Gundimeda 2019; Erena and Worku 2019; Khajehei et al. 2020). However, most 

of the aforementioned examples were concentrated on the general populations, not 

comprising agricultural communities. There are few studies particularly focused on the 

agricultural population around the world by using socio-economic parameters defining 

agricultural vulnerability factors (Ma et al. 2007; Huang et al. 2012; Monterroso et al. 

2014; Awere et al. 2016; Jose et al. 2017; Hoque et al. 2019; Baky et al. 2020). Ma et al. 

(2007) evaluated farmers’ vulnerability in the Poyang Lake Region of China, by 

combining GIS-based flood hazard estimation and socio-economic vulnerability factors 

of farmers, including cash income, rural population, and share of agricultural revenue in 

the economy etc. (Ma et al. 2007). Similarly, Suryanto and Rahman (2019) integrated 

livelihood vulnerability index and the statistical probability of flood events to scrutinize 

the overall flood vulnerability of farmers in Indonesia (Suryanto and Rahman 2019). 

However, any of the mentioned studies above have not used standardized crop flood 

damage methods to describe exposure terms and merge that with socio-economic risk 

drivers.  

As seen above, most of the existing flood vulnerability assessment studies are 

focused on urban populations both in the U.S and other locations in the world whereas 

the flood vulnerabilities of agricultural communities are under reported. Therefore, there 

is a scientific gap for vulnerability assessment on agricultural populations and 

quantifying risk of flooding across rural communities during flood hazards. This study 

aims to fill the scientific gap by (a) developing a social vulnerability index to map out the 
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most vulnerable agricultural communities in the Potomac River Watershed at county 

scale; (b) assessing spatiotemporal flood damage distributions on crops to indicate flood 

exposure levels on the agricultural economy, and (c) combining social vulnerability 

assessment results with flood exposure to introduce the Flood Socio-Economic 

Vulnerability Index (FSOEVI) to highlight hot spots for both flood hazards and 

vulnerabilities within the PRW. 

1.2 Study Area 

The Potomac River Watershed (PRW) is located in the Mid-Atlantic region of the 

U.S with total coverage of 14,670 miles of the drainage area (Interstate Commission on 

the Potomac River Basin 2020). It is located in parts of the Commonwealth of Virginia, 

Maryland, West Virginia, and Pennsylvania states, as well as the District of Columbia 

(Figure 1). There are 6.11 million residences with different socio-economic features in 

the PRW. Elevation range varies between sea level to 1,482 meters within the basin 

(Interstate Commission on the Potomac River Basin 2018). Spatial distribution of 

precipitation pattern shows that the annual precipitation is lower (700-900 mm) in the 

west and south parts of the basin compared to the east part where close to Chesapeake 

Bay (1000-1200 mm) (Sridhar et al. 2019). Seasonal distribution of precipitation patterns 

indicates that the wettest seasons are May and June in the basin (Sridhar et al. 2019).  
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Figure 1 A) United States; B) East Coast of the U.S; C) Potomac River Watershed (PRW) 

 

The majority of land uses are defined by the land cover map from National Land 

Cover Database (NCLD), as forests, agriculture, developed areas, and water with 54.6%, 

26%, 14.1%, and 5.9%, respectively (Interstate Commission on the Potomac River Basin 

2020). Agricultural activities are generally carried out in the western and central part of 

the watershed (Interstate Commission on the Potomac River Basin 2020). Additionally, 

most of those practices are observed around main rivers, streams, and branches in the 

basin (Battista et al. 1998). The agricultural economic activities play a significant role in 

the state economies in some counties in the PRW. For instance, counties of Rockingham 

(20%) and Augusta (7%) contain a considerable portion of Virginia’s total agriculture 
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sales (USDA 2019). Hardy (25%), Pendleton (13%), and Grant (8%) are important for 

the agricultural economy of West Virginia, while Washington (6%) is for Maryland. 

Furthermore, Franklin (6%) county has an important percentage of total agriculture sales 

in Pennsylvania (USDA 2019). The highest number of producers are reported at 

Rockingham, Augusta, and Franklin counties which is 20% of all 46,400 producers 

recorded in the basin (USDA 2019). 

The majority of the crops observed in the PRW are forage, corn, and soybeans. 

The distributions of those crops are not equal over the basin. For example, although 

Franklin (PA) county has the highest acreage of forage and corn, Frederick (MD) county 

has the highest share of soybeans cultivation in the basin (USDA 2019). Additionally, 

distributions of socio-economic characteristics, which are considered as vulnerability 

factors for farmers, vary within the PRW. All features of the PRW explained above make 

PRW a perfect candidate to demonstrate how both physical and social risks are 

distributed across the agricultural communities (USDA 2019).  

1.3 Methodology 

As depicted in Figure 2, there were three main parts of the overall framework 

applied in this research. The Social Vulnerability Index (SOVI) analysis quantitatively 

evaluated the overall vulnerability of the agricultural communities in the PRW. The 

relative social vulnerability levels of the agricultural communities in the PRW with 

respect to a national scale were assessed within the counties located in its borders and the 

entire U.S, including Puerto Rico. The comparison in the PRW demonstrated the actual 

distribution of vulnerabilities in the study area, while the U.S. scale analysis was only 
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used as a broad-scale comparison for reference in this study to contextualize results to a 

national extent. The PRW scale comparison results were used as a social dimension of 

the risk term in the rest of the study. As a result of the social dimension, the spatial 

distributions of highly vulnerable agricultural populations were determined. The 

spatiotemporal distribution of flood exposure index, which defines flood damage on the 

crops, was obtained by using FEMA’s 100-year flood map (FEMA 2020) and flood 

damage functions in the PRW. Finally, these two indexes were combined to introduce a 

FSOEVI to evaluate relative flood socio-economic vulnerability levels across the PRW.  

 

 
Figure 2 Overall methodology of agricultural flood socio-economic vulnerability 
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1.3.1 Social Vulnerability Index (SOVI) 

1.3.1.1 SOVI parameters 

The vulnerability factors for capturing the social vulnerability of the agricultural 

communities were determined by a detailed literature review. Table 1 summarized the 

selected variables, their correlations with vulnerability, years which data obtained, 

definitions as well as, articles that used them as vulnerability factors. All data related to 

the agricultural production and socio-economic features of producers were acquired from 

the United States Department of Agriculture (USDA) while the data which provides 

information for the general population, including poverty level and educational 

attainment, were obtained from the United States Census Bureau at a county level. 

 

Table 1 List of parameters for the social agricultural vulnerability assessment 

Parameter/Correlation/Year Definition Article 

PerFemPro (+) (2017) Percentage of Female Producers 

(Nelson et al. 2002; Brooks et al. 

2005; Abdur Rashid Sarker et al. 

2013; Monterroso et al. 2014; Hoque 

et al. 2019) 

Per65yrandOld (+) (2017) 
Percentage of 65 years and older 

farmers 
(Jose et al. 2017; Hoque et al. 2019)  

PerInex (+) (2017) 

Percentage of farms with New 

and Beginning Producers, (10 

years or Less Experience) 

(Reid et al. 2007; Nicholas and 

Durham 2012; Abdur Rashid Sarker 

et al. 2013; Jose et al. 2017; Khan et 

al. 2020) 

PerMin (+) (2017) Percentage of Minority Farmers 
(Vásquez-León 2009; Monterroso et 

al. 2014; Bathi and Das 2016) 

AvgAge (+) (2017) Average Age of Producers 
(Abdur Rashid Sarker et al. 2013; 

Hoque et al. 2019) 

AgrSold (+) (2017) 
Total Value of Agricultural 

Products Sold 
(Jose et al. 2017; Hoque et al. 2019) 

PerPopAgri (+) (2017) 

Percentage of Population works 

in Agriculture, Fishing and 

Hunting 

(Brooks et al. 2005; Ma et al. 2007; 

Hoque et al. 2019; Dumenu and 

Takam Tiamgne 2020; Khan et al. 

2020) 

PerPoverty (+) (2018) Percentage of Population under (Monterroso et al. 2014; Jose et al. 



18 

 

Parameter/Correlation/Year Definition Article 

poverty level 2017; Hoque et al. 2019) 

PerInternet (-) (2017) 
Percentage of Farmers Have 

Internet Connection 

(Reid et al. 2007; Chauhan et al. 

2020; Dumenu and Takam Tiamgne 

2020) 

PerHighEducated (-) (2018) 
Percentage of the Population 

Have Completed 12th grade 

(Abdur Rashid Sarker et al. 2013; 

Monterroso et al. 2014) 

NetCash (-) (2017) Net Cash Income of Farms 
(Ma et al. 2007; Abdur Rashid Sarker 

et al. 2013) 

PerFarm250K (-) (2017) 
Percentage of Farms with Sales of 

$250,000 or more 
(Ma et al. 2007) 

LandofFarmers (-) (2017) 

Acres of Land in Farms as 

Percent of Land Area in Acres: 

2017 

(Nelson et al. 2002; Abdur Rashid 

Sarker et al. 2013; Hoque et al. 2019) 

 

1.3.1.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a matrix factorization method commonly 

used to reduce the dimension of many variables to representative parameters which still 

define variation in the initial dataset (Alakkari and Dingliana 2018). As a result of the 

PCA, the most relevant information and variance are extracted with reduced dimensions 

(new orthogonal variables). Those new orthogonal dimensions are acquired by an 

orthogonal linear transformation to determine vectors containing some extent of the total 

variability of a dataset (Medina et al. 2020). PCA is a commonly applied tool in 

vulnerability studies to assign weights to parameters (Abson et al. 2012; Remo et al. 

2016; Stafford and Abramowitz 2017; Medina et al. 2020) with other methods like expert 

judgements (Bjarnadottir et al. 2011)  and equal weighting (Monterroso et al. 2014).   

Since each parameter has different units and features, a normalization process is 

needed to be able to compare them before applying any statistical procedure like PCA. 

This process solves the incommensurability problem within datasets (Abson et al. 2012). 
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The data were normalized with maximum-minimum normalization with the Eq 1 in this 

study (Abson et al. 2012; Monterroso et al. 2014; Remo et al. 2016; Chakraborty et al. 

2020). 

Equation 1 Maximum-minimum normalization 

δ = (X − Xmin)/(Xmax −  Xmin)  
 

where δ is a normalized parameter, X is the original value, and Xmin and Xmax are the 

minimum and maximum values for each parameter in counties.  

After the normalization process, the suitability of the datasets to factor analysis 

was controlled with the Bartlett’s Test of Sphericity and the Kaiser-Mayer-Olkin (KMO) 

sampling adequacy tests (Abson et al. 2012; Monterroso et al. 2014; Remo et al. 2016; 

Kotzee and Reyers 2016; Chakraborty et al. 2020). The p-value of Bartlett’s Test of 

Sphericity should be less than 0.05 to be sure that the dataset is suitable for factor 

analysis while KMO values should be higher than 0.5. All required tests, PCA, and 

visualization of results were performed in RStudio with the packages such as factoextra, 

FactoMiner, REdaS, corrplot, bartlett.test, and KMO.  

1.3.1.3 Calculation of Social Vulnerability Index (SOVI) 

After the required tests were applied to the datasets, the PCA procedure was 

utilized. Scree plots were used as a decision-making tool to select the number of principal 

components extracted from the PCA method (Rygel et al. 2006; Fekete 2009; Medina et 

al. 2020). By extracting these components, weights of each component and loadings of 

each variable in the components were obtained (Equation 2, Equation 3, Equation 4). 

Then, with the implementation of Equation 2, Equation 3, Equation 4 SOVI scores were 

calculated for each county. 



20 

 

 

Equation 2 SOVI (+) 

SOVIscore(+) = (PPCA1 ∗ Weight of PPCA1) + ⋯ (PPCA8 ∗ Weight of PPCA8)    
 

Equation 3 SOVI score (-) 

SOVIscore(−) = (NPCA1 ∗ Weight of NPCA1) + ⋯ (NPCA8 ∗ Weight of NPCA8)    
 

Equation 4 SOVI score 

SOVIscore = (PPCA1 ∗ Weight of PPCA1) + ⋯ (PPCA8 ∗ Weight of PPCA8)    

 

After the SOVI score was calculated for each county, the results were normalized 

with the equation below so that results can be represented comparatively. 

As a result, each county had a value between 0 to 1 indicating their vulnerability 

levels compared to the rest of the domain. Finally, the Natural Jenks Classification 

method was utilized to illustrate the results spatially because it maximizes the difference 

between classes where the largest changes occur (Goodchild et al. 2007). 

1.3.2 Flood Hazard 

Flood depth grids for each county were derived from the National Flood Hazard 

Layer (NFLH) in the PRW. Then, all grids were merged to represent flood hazard in the 

study area. All depth grids were created for the riverine 100-year event (1% frequency), 

which is defined as major flood event in remote areas (National Weather Service), using 

DFRIM data from NFLH database (Cutrell et al. 2018). Flood depth information was 

acquired for AE, AH, and AO riverine flood zones by following Cutrell et al. (2018) 

(Cutrell et al. 2018). USGS 1/3 arc-second Digital Elevation Model (DEM) was used to 

extract flood depth grid information for the study area.  

1.3.3 Exposure Index (Flood Damage) 

The flood depth grid derived from FEMA 100-year flood map was intersected 

with the default HAZUS-MH library, which is developed by combining the National 
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Resources Inventory (NRI) and National Agriculture Statistical Service (NASS) (FEMA 

2013). The data for the implementation of Eq (5), including crop type, average field, the 

unit price, and the harvest price were obtained from those datasets.  

HAZUS-MH uses the Agricultural Flood Damage Analysis (AGDAM) method 

for the calculation of agricultural damage (5).  

Equation 5 Agricultural crop damage 

L = A(pYo − H) ∗ D(t) ∗ R(t)    
 

where L is agricultural loss ($), A is cultivated areas (acres), P is the price ($/bushel), Y0 

is normal annual yield (bushels/acre), H is harvest cost ($/acre), D(t) is crop loss at day t 

of the year (% of maximum net revenue), and R(t) is the crop loss modifier for flood 

duration percent of the potential loss. For this study, instant loss, 3-day loss, 7-day loss, 

14-day loss, and total maximum losses were calculated. Crop type, time of the year of 

analysis, the area flooded, and the net revenue from each crop type are significant factors 

for agricultural damage in AGDAM method (see Eq.1) (US Army Corps of Engineers 

1985). Additionally, Brémond et al. (2013) reviewed the related literature and found that 

seasonality is one of the important variables for crop damage functions for many of the 

studies around the world (Brémond et al. 2013). Time of the year of analysis affects both 

production and harvesting cost which can be included to total loss values depending on 

crop maturity levels. Most of the crops are assumed to reach their maximum maturity in 

August and mid-September in the AGDAM method (US Army Corps of Engineers 

1985). The beginning of the harvest period starts at the end of September and finishes 

before mid-October. The highest damage is observed in late September because all 

production expenses are included in the total damage. Additionally, since there is no 
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cultivation between mid-October and early March for most of the crops, the damage is 

likely to lessen in between those times of the year (US Army Corps of Engineers 1985).  

A python code replicating the HAZUS-MH crop damage loss function (eq 5) was 

utilized to run multiple scenarios for PRW. All required information was obtained from 

HAZUS-MH’s library by SQL Server Management Studio (SSMS). Then, the inundation 

layer for the 100-year storm event and the distributions of crop type, average yield, 

harvest price, and the unit price were overlapped to simulate flood damage functions 

spatially. The damage results were compared with HAZUS simulations for validation. It 

was found that the proposed script can replicate total maximum loss values with less than 

10% Relative Error in every county with an average of 4.5% in each scenario. Since this 

method uses agricultural damage information comparatively, an average of 4.5% was 

found acceptable. Total maximum loss results were used for each scenario. To compare 

exposure levels of counties, the same normalization (1) procedure was applied for 

exposure results as well. Therefore, each county had a value between 0-1 that shows how 

large their exposure level is compared to maximum and minimum values of the study 

domain. Sequentially, the spatial distribution of the Exposure Index was demonstrated by 

Natural Jenks Method similar to SOVI results. The exposure indexes were presented for 

the average, minimum and maximum scenarios in this framework. In addition, 

probabilities of each month to experience flood events were analyzed to indicate the most 

likely situation to happen among the scenarios. Frequencies of moderate, major, and total 

flood events were evaluated to identify most likely months to experience flood events. 

The dataset of the National Weather Service was used to investigate numbers of 
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moderate, major, and total events for each subbasin in the PRW (National Weather 

Service 2016).  

1.3.4 Calculation of Flood Social Vulnerability Index (FSOEVI) 

Flood exposure and social vulnerability levels of the agricultural communities in 

the PRW were combined to introduce FSOEVI. There are different ways to combine 

exposure and social vulnerabilities in the flood vulnerability literature, such as using 

weights by expert opinion (Sowmya et al. 2015), statistical analysis (Mansur et al. 2016; 

Yang et al. 2018; Hadipour et al. 2019), equal weights (Remo et al. 2016; Lee and Choi 

2018), and bivariate evaluation (Gu et al. 2018; Khajehei et al. 2020; Mohanty et al. 

2020). A two-way cross tabular map was used to implement a bivariate mapping 

methodology. In the bivariate mapping technique, two different parameters, which 

describe a resultant parameter, were represented in a single map to display coincidence 

(Gu et al. 2018). In this study, 3 different rows (Exposure) and columns (SOVI) were 

used to construct a resultant FSOEVI color matrix. In order to highlight counties with 

higher FSOEVI levels, very low and low classifications for Exposure and the SOVI were 

reclassified as Low, while moderate levels were indicated as Moderate for bivariate 

mapping. Finally, high and very high levels of exposure and SOVI values were grouped 

as High. 

1.4 Results  

1.4.1 SOVI results  

The relative SOVI results in the PRW were compared among the 41 counties in 

its borders and 3234 counties in the entire U.S. separately. The statistical tests (Bartlett’s 
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Test for Sphericity and KMO) prior to PCA were applied to both data. For Bartlett’s Test 

for Sphericity, both datasets acquired p-value 2.2e-16 by satisfying condition p<0.05. 

Also, the U.S and the PRW dataset passed the KMO tests by having 0.74 and 0.63 values, 

respectively. The numbers of the components to be extracted were selected by visual 

evaluation of the scree plots for both datasets. Eight components were extracted, which 

define 91.5% and 94% of the variances in the total dataset for the U.S and the PRW, 

respectively. 

Figure 3 a) and b) illustrated the relationship between variables and the 

components. These correlation plots for both the U.S and the PRW datasets, represent 

which dimensions were expressed with which variables. Squares with darker color 

demonstrate the significant correlation of variables with the component. Also, red and 

blue colors indicate negative and positive correlations of variables with dimensions, 

respectively.  
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Figure 3 Correlation between variables and dimensions of agricultural populations within the a) U.S and b) 

Potomac River Watershed 

 

Figure 3a) illustrated that variables, including average age (Average Age), 

percentage of female producers (PerFemPro), percentage of farmers have an internet 

connection (PerInternet), and percentage of population over 65 years age 

(Per65yrandOld), mostly represented the 1st dimension. Thus, it is fair to claim that the 

socio-economic demographic features of the agricultural communities were represented 

by the 1st dimension. For the second dimension, the correlation plot suggested that acres 

of land in farms, as a percent of land area in acres (LandofFarmers), percentage of the 

population working in the agriculture sector (PerPopAgri) and percentage of farms with 

sales of $250,000 or more (PerFarm250K) vulnerability factors were found as highest 

loadings. Therefore, it can be reported that dimension 2 describes the development of the 
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agriculture industry. Dimension 3, which defines demography and the educational status 

of the agricultural populations, contains the percentage of minority farmers (PerMin) and 

percentage of the population have completed 12th grade (PerHighEducated) parameters 

with the stronger loadings. Since dimension 4 is primarily explained by the total value of 

agricultural products sold (AgrSold) and net cash income of farms (NetCash), 

information of farming economy is represented with that. The 70% of the total variance 

was explained by those first 4 principal components in the U.S level analysis. 

Figure 3b) provided a summary of the correlation of the variables with each 

dimension only in the PRW. The correlation column for the first dimension showed that 

vulnerability factors such as the percentage of farmers have an internet connection 

(PerInternet), percentage of female producers (PerFemPro), percentage of population 

under the poverty level (PerPoverty) and percentage of the population working in the 

agriculture sector (PerPopAgri) have the highest representation in the first component. 

Thus, dimension 1 depicted information accessibility, gender balance and significance of 

the agricultural economy shared in the community. The age distribution of the PRW was 

defined by the 2nd dimension because variables such as average age (AvgAge) and 

percentage of the population over 65 years of age (Per65yrandOld) mostly constitute the 

dimension 2. Moreover, dimension 3 was explained by the percentage of population 

under the poverty level (PerPov) and the percentage of farms with new and beginning 

producers (PerInex). It can be concluded that experienced farmers and socio-economic 

aspects of the agricultural populations were represented in dimension 3. For dimension 4, 

the total value of agricultural products sold (AgrSold) and the percentage of farmers who 
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have an internet connection (PerInternet) were dominant in the representation of the 

components. Hence, it indicated the development of the agricultural economy and the 

information accessibility in the PRW. Those four dimensions described the %77 of the 

initial information in the dataset for the PRW. 

The spatial distribution of the relative vulnerability of agricultural communities in 

the PRW concerning all counties in the entire U.S. was demonstrated in Figure 4. Each 

natural break was represented by different colors in the figure. The lower natural break 

values had green and the higher ones had red colors. Therefore, the red colors highlighted 

higher vulnerability among the agricultural communities while green colors showed 

lower vulnerability levels. 
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Figure 4 Spatial distribution of SOVI in the PRW compared to all counties in the entire U.S (county level): A) 

U.S and B) Potomac River Watershed 

 

The comparison within the entire U.S indicated that the agricultural communities 

in the PRW mostly have moderate and high vulnerability levels relative to the entire U.S. 

The results demonstrated that counties in the PRW are less vulnerable than most of the 

counties in Arizona, Texas, and Georgia. However, some counties in the PRW are as 

vulnerable as counties in Florida, Alabama, Mississippi, Nevada, and California. In 

addition, most of the counties in the PRW have higher vulnerability levels compared to 

the ones in the mid-west. Distributions in the PRW suggested that the agricultural 

population in the south-west of the basin are more vulnerable, while the north-west side 

of the watershed generally has moderate vulnerable level (Figure 4 B).  
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All counties were numbered to demonstrate and discuss results better for the 

relative SOVI assessment within the PRW. Table 2 listed the county name and the 

corresponding number.  

 

Table 2 Counties in the Potomac River Watershed 

Number County Number  County Number County 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Somerset (PA) 

Bedford (PA) 

Fulton (PA) 

Franklin (PA) 

Adams (PA) 

Carroll (MD) 

Frederick (MD) 

Montgomery (MD) 

Prince George's (MD) 

St. Mary's (MD) 

Northumberland (VA) 

Westmoreland (VA) 

King George (VA) 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Stafford (VA) 

Charles (MD) 

Pr. William (VA) 

Fauquier (VA) 

Loudoun (VA) 

Jefferson (WV) 

Washington (MD) 

Berkeley (WV) 

Morgan (WV) 

Allegany (MD) 

Frederick (VA) 

Clarke (VA) 

Warren (VA) 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

Page (VA) 

Rockingham(VA) 

Augusta (VA) 

Highland (VA) 

Pendleton (WV) 

Grant (WV) 

Garrett (MD) 

Mineral (WV) 

Hampshire (WV) 

Hardy (WV) 

Shenandoah(VA) 

Fairfax (VA) 

Arlington(VA) 

 

 

Figure 5 illustrated the spatial distribution of the SOVI results for the PRW. The 

cities were not included in the SOVI assessment because they do not have any 

agricultural practices and production. The same legend and colors were used for the same 

natural break values. 
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Figure 5 Spatial distribution of SOVI (county level PRW) 

 

Figure 5 suggested that only 5% (2) of the counties have very high vulnerability 

levels. The agricultural communities in Highland (30) and Prince George’s (9) were 

labeled as the most vulnerable in the PRW. High values of percentage of female 

producers (PerFemPro), the average age (AvgAge), the percentage of the population over 

65 years of age (Per65yrandOld), low values of the percentage of farmers have an 

internet connection (PerInternet), and the percentage of the population who have 

completed 12th grade (PerHighEducated) led Highland (30) and Prince George’s (9) to 

have a highly vulnerable population. In addition, 28% (11) of the counties indicated 

highly vulnerable agricultural populations. Therefore, it can be concluded that a total of 
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33% of the counties have highly or very highly vulnerable agricultural communities 

within the PRW. Similarly, 28% (11) of the counties demonstrated moderately vulnerable 

farmers. The rest of the study area had either very low or low vulnerability levels.  

Figure 5 showed that nine (52%) counties located in Virginia were determined as 

highly and very highly vulnerable out of 17 of the total in the PRW. In Pennsylvania, all 

counties except Bedford (2) appeared to have low and very low vulnerable agricultural 

populations. Pendleton (37) and Hamisphere (36) were found as highly vulnerable in 

West Virginia. Lastly, three counties indicated high vulnerability levels in Maryland 

(MD).  

1.4.2 Exposure Index results 

1.4.2.1 Flood hazard results 

As explained above, the flood hazard map was derived from FEMA 100-year 

flood maps. The flood depth grids for “A” flood zones, which are the areas with a 1% 

annual chance of flooding, were employed to evaluate a 100-year return period flood 

hazard for only riverine are used (Figure 6). 
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Figure 6 Flood hazard map (FEMA 100 year) 

 

Since the AGDAM method only considers the inundation area for estimating 

flood damage, water depth information was not essential for the analysis. Thus, FEMA 

100-year flood inundation layer was deemed as a good reference to use in this 

framework. 

1.4.2.2 Flood exposure 

The total maximum loss for different crops such as corn, corn silage, wheat, 

alfalfa hay, oats, and soybean was calculated. The analysis was performed for each day of 

the year since the crop damage percentages vary with the time of the year but assuming 

that the 100-year flood event was equally likely to occur any of these days. 
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Figure 7 Seasonality variation of total maximum loss with 100-year FEMA flood map hazard layer in the PRW 

 

 

As seen in Figure 7, the total maximum economic loss from a 100-year flood 

event was lowest in winter, however, highest in September and at the beginning of 

October. After observing the highest damages at the beginning of October, the possible 

total crop damages decreased because the harvest period started to end after that time of 

the year. Figure 7 suggested that the biggest portion of the total crop damages was 

experienced by corn silage. Corn and alfalfa hay were the other crops which shared a 

significant part of the losses. However, the damage occurred on corn silage is almost 5-
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times larger than them. Oats had the least damage throughout the year. Table 3 and Table 

4 explained minimum, maximum, and an average of 365 different scenarios and a 

seasonal average of total maximum loss. Table 3 showed that maximum crop damage 

was experienced on the 30th of September while the minimum was on the 21st of 

December. There was more than a 10-time difference between maximum and minimum 

scenarios. Table 4 suggested that the largest damage was experienced in the Summer and 

Fall seasons. 

 

Table 3 Minimum, average and maximum total economic loss scenarios 

Scenario Date Total Maximum Loss ($) 

Maximum  30 September 341,195,636 

Average 17 May 137,318,256 

Minimum 21 December 33,949,801 

 

 

 
Table 4 Seasonal average of total maximum loss ($) 

Season Average Total Maximum Loss ($) 

Winter 55,076,143 

Spring 79,208,534 

Summer 243,689,188 

Fall 210,765,217 
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Flood exposure levels were analyzed for the scenarios in Table 3 and Table 4. 

Moreover, the simulation of the scenarios which aim to assess the damage in the most 

likely months to experience flood hazard were defined. Thus, the frequencies of 

moderate, major, and total flooding events were evaluated for all basins within the PRW 

(National Weather Service 2016). The results of the evaluation indicated that the most 

likely months to have a moderate flood is March, while October and September are likely 

to have major floods (Figure 8). 40% of the total flood events have happened in October, 

March, and September in the PRW (National Weather Service 2016). Since the 100-year 

flood event is considered as a major flood in remote areas (National Weather Service), 

September and October were found to have the highest potential to experience flood 

damage. Figure 7 illustrated that the most likely months to have major flood events 

experienced the highest damages throughout the year. The seasonality of maximum 

damage and the highest probability of having major flood event highlighted in the same 

temporal period. Additionally, although most of the major flood events have occurred in 

October and September in the PRW, Figure 8 demonstrated that there is a 75% chance of 

experiencing flooding events in the other 9 months. Therefore, the Exposure and FSOEVI 

analyses were performed for each the average total maximum loss for each month to 

quantify risk for the whole year.   
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Figure 8 Percentages of moderate (a), major (b), and total (c) floods for each month in the Potomac River 

Watershed 

 

1.4.2.3 Flood Socio-Economic Vulnerability results 

Figure 9 and Table 5 showed the results of the scenarios from Error! Reference 

source not found.. The FSOEVI results were combinations of both exposure and SOVI 

results for each county. The results for FSOEVI components, which demonstrated high 

and very high exposure and the high FSOEVI levels, were summarized in Error! R

eference source not found.. Comparative results indicated that the number of counties 

with very high exposure levels was larger in the average scenario than others. Augusta 

(29), Loudoun (18), and Rockingham (28) were found as having very high levels of 

exposure in every scenario. Unlike exposure, results of FSOEVI analysis demonstrated 

that Shenandoah (37) and Hampshire (35) are found as the highest FSOEVI scores 

compared to the rest of the study area.  

 

Table 5 Results of the FSOEVI analysis 

Scenario High/ Very High Exposure Highest FSOEVI 

Maximum  Frederick (7), Berkeley (21), Hardy (36), 

Shenandoah (37), Augusta (29), Loudoun 

Shenandoah (37) 
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(18), Rockingham (28) 

Average 

Bedford (2), Franklin (4),  Adams (5), 

Carroll (6), Berkeley (21), Hampshire 

(35), Hardy (36), Shenandoah (37), 

Augusta (29), Loudoun (18), Rockingham 

(28) 

Hampshire (35)  

Minimum 

 

Berkeley (21), Shenandoah (37), Frederick 

(7), Augusta (29), Loudoun (18), 

Rockingham (28) 

Shenandoah (37) 

 

Three plots represented three different scenarios, including minimum, average, 

and maximum damage. The left part of Figure 9 summarized the distribution of the 

exposure indexes, which were normalized crop damage values for each county. The 

lower natural jenks break values had green while higher values had a red color. Also, the 

counties with beige color did not experience any flood damage in the corresponding 

scenario. The right part illustrated FSOEVI results, which were a combination of 

exposure and SOVI distributions. The color scale indicated that the counties with red 

color have both very high or high exposure and SOVI results while the green ones have 

very low of both. The number of counties which had high and very high exposure 

increased from minimum to average damage scenario. The majority of the counties 

indicating low, very low, and moderate exposure levels in the minimum scenario had 

high exposure levels in the average scenario. For example, Bedford (PA) (2), Franklin 

(PA) (4), Adams (PA) (5), Carroll (MD) (6), Hampshire (WV) (35), and Hardy (WM) 

(36) experienced moderate levels of exposure in the minimum scenario, while they were 

labeled as high exposure in the average scenario. Figure 9 also showed that the average 

scenario has the highest number of counties, which had very high and high (12) flood 
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exposure. The minimum scenario 6 (15%) and maximum scenario 7 (18%) experience 

contained high and very high exposure extent.  

 

 
Figure 9 Spatiotemporal distributions of Exposure Index and FSOEVI 

 

The spatiotemporal comparison (Figure 9) demonstrated that flood socio-

economic vulnerability of the agricultural communities in the south-east of the study area 

varies significantly in each scenario. In the minimum loss scenario (21 December), 

almost all counties obtained low levels of exposure and moderate levels of SOVI in the 
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south-east. Thus, the combined risk was lower compared to the south-west and north part 

of the study area. However, the results of the average loss scenario (17 May) reported 

that most of the counties have moderate exposure and high SOVI values. As a result, the 

overall FSOEVI levels were higher than counties located in the west and north. In 

addition, the spatiotemporal distribution of the FSOEVI results showed that in the 

maximum economic loss scenario (30 September), the northern half of the south-east of 

the study area had a higher risk than the southern half. The northern and western half of 

the study area had similar risk distributions in each scenario. Similar to exposure results, 

the average scenario contained more flood socio-economic vulnerable agricultural 

communities in the PRW.  

As explained in the previous section, FSOEVI assessment was conducted for the 

exposure indexes for the average damage experienced each month in Figure 10. Twelve 

different plots, which were the combinations of SOVI and average exposure values in 

each month, aimed to show spatiotemporal distributions of flood socio-vulnerability 

levels of agricultural communities in the PRW. 

The number of counties experienced flood damage in April, May, June, July, 

August, September, October, and November was more than in the rest of the year. 

Hampshire (35), Shenandoah (37), and St. Mary’s (10) appeared to have the highest 

FSOEVI levels in monthly average scenarios. Hampshire county was highlighted in 

December, April, May, and November, while St. Mary’s (10) county only classified as 

high FSOEVI among all scenarios. Moreover, in January, February, March, July, August, 

September and October, Shenandoah (37) county was indicated as high FOSEVI. 
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Shenandoah (37) county had the most vulnerable agricultural communities in most likely 

months to experience major flood hazard. There was no county found to have high 

FSOEVI in June. However, Shenandoah( 37), Augusta (29), Rockingham (28), Frederick 

(7) and Loudoun (18) had high-very high exposure and moderate SOVI levels in that 

scenario and were classified as the most vulnerable agricultural population in that 

simulation. Highland (30), Pendleton (31), Mineral (34), Warren (26), and Fairfax (38) 

did not show any exposure for some scenarios throughout the year. In the summer and 

fall seasons, there were more counties experiencing flood damage compared to winter 

and spring. The spatiotemporal distributions of risk for each month illustrated that the 

risk varies significantly in everywhere in the PRW except the west side of the study area. 

Most of the counties in the western part of the PRW indicated low levels of flood socio-

economic vulnerabilities of the farmers. The rest of the year generally demonstrated 

moderate and low levels of risk for farmers.  
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Figure 10 FSOEVI results for average economic loss scenarios for each month 
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1.5 Discussion 

In the Potomac River Watershed, the spatial distribution of the multidimensional 

social vulnerability index of agricultural communities illustrated a high-level of spatial 

variability. Our findings showed that population under poverty, percentages of female 

producers, the minority producers, internet accessibility rate within the producers, a 

portion of the population works in the agricultural sector as a primary job, percentage of 

farms with sales of $250,000 or more, and net cash income of farmers were the most 

important vulnerability factors defining overall vulnerability levels in the Potomac River 

Watershed. Several counties, including south-west, south-east and middle parts were 

highlighted as having vulnerable agricultural communities. Agricultural communities in 

Highland (30) and Prince George’s (9) were found as the most vulnerable within the 

Potomac River Watershed. The comparison in the context of the U.S. demonstrated that 

the most of the counties (64%) were found as moderately vulnerable compared to all 

3234 counties in the U.S., while nine of them (23%) appeared as highly vulnerable. This 

result suggested that 23% of the counties are as vulnerable as most of the counties located 

in the southern states, known for having a large number of disadvantaged rural population 

groups in terms of ethnicity, poverty, gender and socio-economic status, including Texas, 

Florida, Mississippi, and Georgia (Oxfam America 2009). Consistent with these studies, 

the distributions of high SOVI results were also found to be similar by two different 

comparisons performed in this study. Almost all counties which had vulnerable 
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agricultural communities in the PRW for countywide analysis also found as highly 

vulnerable within its borders. 

Similar to literature (Brémond et al. 2013; Klaus et al. 2016; Bathrellos et al. 

2018), seasonality was found as the main factor for the spatiotemporal distribution of the 

crop damages in this study. This study demonstrated that the 100-year flood event 

happening in summer and fall season causes more severe damage to crops than winter 

and spring. The temporal distribution of the crop damage values indicated that the lowest 

values were observed in most of the winter season because the damage was only 

estimated on alfa hay and corn silage with the lowest percentage damages of 32% and 

7%, respectively. The losses started to be observed after 1st of April for wheat, oat, and 

corn plants. Moreover, soybean crops experience losses only between 1st of May and the 

25th of November. For most of the crops cultivated in the PRW, the highest percentage 

loss was observed in the late Summer except for corn silage. Corn silage crop damage 

function indicated that the maximum percentage losses are in late September. The 

maximum of total flood damage was observed in late September since corn silage is one 

of the highest acreage values in the PRW, and its unit and harvest prices are higher than 

other crops. According to the US Army Corps of Engineers (1985) (US Army Corps of 

Engineers 1985), this might be due to the fact that it coincides with the beginning of the 

harvesting period for the corn silage (FEMA 2013). Hence almost all crops reached their 

maturity levels until that time, and all production costs were also included in the 

economic damage. Although it is stated that the seasonality of the flood damage on crops 

changes depending on the hemisphere and latitude (Huizinga et al. 2017), the maximum 
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damage was found to be occurring between August and the early-October in Germany 

(Klaus et al. 2016), Mexico (Vega-Serratos et al. 2018), and Greece (Bathrellos et al. 

2018) as consistent with our results. 

Socio-economically sustainable agricultural communities can adopt the impacts of 

biophysical risk easier than the vulnerable, unsustainable communities because their 

wealth, socioeconomic status, and levels of accessibility to resources facilitate mitigation 

efforts (Ma et al. 2007; Cutter et al. 2012). However, generally, the most vulnerable 

population and the locations which have the highest biophysical risk do not overlap 

(Cutter et al. 2012). Similarly, our findings indicated that counties which have highest 

SOVI results did experience lower damages compared to the rest of the PRW in all 

scenarios. The average unit price of the main crops and average yields were lower in 

Highland and Prince George’s counties. Therefore, the agricultural communities were not 

highlighted as vulnerable to flood in those counties. However, several counties, which 

have high SOVI values, also experienced high levels of flood exposure, including St 

Mary’s and Hampshire. The counties with high and very high exposure levels mainly 

located in the south and middle part of the PRW such as Augusta, Rockingham, 

Shenandoah, Hampshire, and Hardy. This finding can be explained by the fact that 

agricultural activities are mainly carried out around main rivers, streams and the branches 

in the western and the central part of the basin (Battista et al. 1998; Interstate 

Commission on the Potomac River Basin 2020). The rivers which have greater size like 

Shenandoah River may cause more damage to the agricultural activities around its banks.  
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The findings of the flood socioeconomic vulnerability assessment results demonstrated 

that spatiotemporal distributions of the risk vary significantly depending on the time of 

the year. For instance, although St Mary’s (10) had low/moderate FSOEVI levels in 11 

months, it had high FSOEVI levels in November. Therefore, St Mary’s (10) county had a 

higher risk when the 100-year flood event happened in November. Additionally, flood 

socioeconomic vulnerability levels of the agricultural communities located in the north 

side of the study area generally increased substantially in April, May, and December. 

These results suggested that mitigation efforts should be focused on different locations at 

a different time of the year. To the best of our knowledge, this is the first study evaluating 

spatiotemporal distributions of farmers’ flood vulnerabilities, not only in Potomac River 

Watershed, but also in the world. However, methodologically similar studies are found in 

the literature such as the studies of Ma et al. (2007), Awere et al. (2016), and Suryanto 

and Rahman (2019). The main difference of this study is the consideration of the 

spatiotemporal variation of the risk in the agricultural communities. Additionally, 

Suryanto and Rahman (2019) and Ma et al. (2007) did not define the exposure as the 

actual impact of a flood on the agricultural communities. The reason may be the data 

scarcity and lack of institutional capacities in those study areas which are located in 

underdeveloped and developing countries. The common vulnerability factors used in 

those studies mentioned above is the percentage of households working in the agriculture 

sector as a primary job out of 24 parameters (Ma et al. 2007; Awere et al. 2016; Suryanto 

and Rahman 2019). The crop damage functions are represented in the Huizinga et al. 

(2017) for each continent in the world except Oceania, South America, and Central 
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America. Therefore, the presented methodology in this study can be replicated by using 

those crop damage functions to define exposure and population data for the social 

vulnerability of the farmers anywhere in the world. 

Vulnerability reduction is one of the main elements of disaster risk mitigation 

procedures, which aims to both reduce the physical and the social vulnerabilities of the 

risk areas (McEntire 2011; Gu et al. 2018). Although some researches highlight the 

shortcomings of the studies which quantitatively assess the social vulnerabilities, 

quantifying vulnerability with multidimensional index can facilitate to identify most 

vulnerable locations and people as well as the main contributors to the overall 

vulnerability (Rufat et al. 2015; Chakraborty et al. 2020). Simplified and combined 

information about social vulnerabilities and the hazard, make vulnerability assessment 

suitable to be used in the prioritization of emergency planning, resource allocation and 

decision making processes (Cutter et al. 2012; Rufat et al. 2015). Therefore, the findings 

of this study facilitate the understanding of the spatiotemporal distribution of the flood 

socioeconomic vulnerability in the Potomac River Watershed. The represented 

methodology can easily be applied in any location in the world to quantify and evaluate 

the spatiotemporal nature of the flood risk of flooding across agricultural communities at 

any scale.   

In addition, the main limitation and possible improvements in the study are 

investigated. Firstly, this study was carried out by replicating HAZUS-MH crop-damage 

functions for agricultural flood damage analysis. However, there are some studies stating 

that (Crow 2014; Maroof 2016; Rahman and Di 2020) functions used for calculation of 
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agricultural damage do not effectively predict the damage because it does not consider 

some parameters that may affect the damage, including flood depth, flow, sediment etc. 

There are also some uncertainty issues with the social vulnerability assessment 

methodology since the number of available data was the restricted parameter for defining 

population features as well. Also, as mentioned in the (Remo et al. 2016) study, there are 

some parameters that are correlated with each other, although they are assumed to be 

independent. Finally, since there are not many studies focusing on vulnerabilities aiming 

at agricultural communities in the U.S., parameters employed to define vulnerability 

factors are coming from studies that have been conducted around the world. This comes 

with some drawbacks like the fact that some parameters may not define the features of 

the agricultural population in the U.S. well. For future work, both flood hazard and 

exposure terms can be further investigated with hydrological and hydraulics modelling 

for the entire PRW area. Additionally, storm surge analysis can be included in the coastal 

areas in the PRW to explain the compound flood impacts. The presented method can be 

easily applied to states leading the agricultural economy in the U.S. such as California, 

Iowa, Texas, Nebraska etc., to evaluate possible flooding effects on agricultural 

populations. In addition, SOVI analysis results for the entire U.S. can be combined with 

hydrological flooding model output for the whole country. In that way, not only SOVI 

but also FSOEVI results can be analyzed within the U.S. Furthermore, climate change 

effects can be integrated with further analysis, to observe possible future changes in both 

agricultural damage and FSOEVI levels in the PRW or new applied study areas. 
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1.6 Conclusion 

This paper aimed to construct a social vulnerability index for agricultural 

populations and evaluate the PRW to aid planners to understand the socio-economic 

dimension of the flood risk. With an extensive literature search, 13 different parameters 

were defined to identify social vulnerability levels. After the assessment methodology, 

results were interpreted spatially. In addition, an integrated FSOEVI methodology, which 

aims to quantify risk as a combination of the social vulnerabilities and physical damage 

to crops, was introduced in this paper for the PRW.  

The SOVI results showed that Highland (30) and Prince George’s (9) were more 

vulnerable comparatively than the rest of the counties in the watershed. It was found that 

the majority of the agricultural communities in the PRW were less vulnerable than the 

ones in the southern states in the U.S. However, 23% of the counties were found as 

vulnerable as several agricultural communities in Texas, Florida, Georgia, Arizona, and 

Mississippi.  

The 100-year FEMA flood map was used to define major flood event. The 

exposure term was evaluated by combining the inundation area with cropland 

information to calculate the agricultural damage from a flood event. 365 different damage 

loss, exposure, and FSOEVI scenarios were evaluated for considering a 100-year flood to 

happen each day. By doing so, the seasonality of both exposure and risk was examined. 

Flood damages were higher in the fall and summer seasons compared to winter and 

spring. The seasonality of exposure indicated that major flood event in late September 

caused the highest damage in the PRW. This finding suggests that the agricultural 
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activities are significantly affected from major floods occurring in fall and summer 

seasons, especially in late September. Therefore, more resources should be allocated for 

mitigation efforts for that time of the year.    

Agricultural communities in Shenandoah County were identified as the producers 

with the highest risk in September and October, which are the months when major flood 

events are most likely to occur in the Potomac River Basin. In addition, the findings of 

most results suggested that Hampshire, Shenandoah, and St Mary’s counties, which have 

12% of the total producers in the Potomac River Watershed, are more vulnerable to flood 

hazard among the others. Therefore, it can be concluded that 12% of the producers in the 

entire Potomac River Watershed is under high flood risk at different times of the year. 

The spatiotemporal distributions of flood vulnerabilities suggested that some socially 

vulnerable agricultural communities may experience severe flood damages only in 

specific times of the year. Therefore, the communities who need the largest resources to 

mitigate flood risk varies throughout the year. Our findings can be used as a temporal 

guidance to plan mitigation actions for agricultural communities. 
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CHAPTER 2 MULTI-SCALE COMPARISON OF URBAN SOCIO-ECONOMIC 

VULNERABILITY IN THE WASHINGTON DC METROPOLITAN REGION 

RESULTING FROM COMPOUND FLOODING 

Abstract 
 

The co-occurrence of different flood drivers (i.e. compound floods), such as 

coastal storms, riverine flow, and urban pluvial runoff, can cause severe damage to urban 

areas. Like many U.S. metropolitan regions along the coast, the Washington, DC 

metropolitan area, where increasing precipitation rates and sea-level rise have been 

observed, is vulnerable to the impacts from such events because of its complex 

demographics and socioeconomics structure. This study aims to evaluate urban socio-

economic vulnerability in the Washington, DC Metropolitan Region resulting from 

compound flooding at multiple scales. The socioeconomic damages from riverine flood 

and coastal surges, which is defined as Exposure Index, were combined with the Social 

Vulnerability Index (SOVI) in order to detect vulnerable populations to compound flood 

events at range of scales (tract, group, and block). The results of each index were 

compared among each scale to evaluate their sensitivities. The highest damage was found 

on the banks of Potomac River in the compound scenario. A high-precipitation scenario 

was also performed, leading to severe damages in locations with denser infrastructures, 

such as DC and Arlington County. The multiscale comparison suggested that block scale 

analysis is more sensitive to vulnerability and flood damages compared to coarser scales 
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i.e. group and tract. Distribution of the risk was found significantly dependent on both the 

type of the compound flood event and scale of the analysis. From a flood management 

perspective, coarser scale assessments can mislead efforts as it is not able to highlight 

specific locations with substantial vulnerable populations. The method presented in this 

study is a tool that can potentially aid decision makers to identify the vulnerable 

populations to compound flood in large coastal metropolitan areas. 

2.1 Introduction 

Flood events are one of the costliest natural hazards impacting societies around 

the world (Deely et al. 2010; Remo et al. 2016). Flooding is especially a problem in 

urban areas, which is intensifying by an increase in storms intensity and 

frequency(Fernandez et al. 2016; Abebe et al. 2018; Gu et al. 2018; Wu et al. 2019; 

Oubennaceur et al. 2019; Chakraborty et al. 2020; Khajehei et al. 2020). In addition, 

growing population and urbanization amplify the flood-related losses in both economic 

and social dimensions (De Risi et al. 2018; Chakraborty et al. 2020). However, the 

impacts of flood events are unequally distributed across infrastructure and communities 

due to their characteristics (Gu et al. 2018). Conditions such as infrastructure 

characteristics, including age, foundation type, elevation (FEMA 2013), and demographic 

information, such as socio-economic conditions leading to inequalities between people 

are some of the determinant factors for how consequences of flood damage are 

distributed within society and structures (Cutter et al. 2003; Eakin and Luers 2006; 

Karagiorgos et al. 2016; Gu et al. 2018; Kawasaki et al. 2020). Therefore, it is essential to 

assess the characteristics of construction and vulnerability factors of the community to 
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quantify risk on assets and communities better (Zahran et al. 2008; Fernandez et al. 2016; 

Munyai et al. 2019; Chakraborty et al. 2020; Walkling and Haworth 2020). 

Social vulnerability assessment is a comprehensive tool that aims to measure 

those socio-economic factors, which defines sensitivity and the adaptive capacity of the 

population to the hazard (Gu et al. 2018). Hence, susceptibilities of population subgroups, 

such as limited resources to cope with the consequences of hazards, low well-being 

levels, and disabilities, are evaluated, quantified, and documented (Fatemi et al. 2017). 

Multiple studies have mapped out socio-economic vulnerability factors and quantified 

them around the world at both national and local scales (Rufat et al. 2015). The hazards-

of-place model of vulnerability introduced by Cutter (Cutter 1996), a specific method to 

perform place-based vulnerability analysis to any hazard, is applied in many social 

vulnerability assessment studies (Cutter et al. 2003; Ahsan and Warner 2014; Monterroso 

et al. 2014; Remo et al. 2016; Gu et al. 2018; Khajehei et al. 2020). In one example, the 

spatial distribution of the social vulnerabilities in the entire U.S. is assessed (Cutter et al. 

2003) at the county scale by using vulnerability factors, such as age, gender, race, 

education level, social dependence, family structure, and socioeconomic status as in most 

of the vulnerability studies (Cutter et al. 2003; Rufat et al. 2015; Pricope et al. 2019; 

Khajehei et al. 2020; Walkling and Haworth 2020). Although this county scale social 

vulnerability index results illustrate the broad vulnerability distribution for regional study 

areas, several studies used the same approach to evaluate social vulnerability levels in 

finer scales and within their study areas in the U.S. (Rygel et al. 2006; van Zandt et al. 

2012; Remo et al. 2016). It is very important to identify the most vulnerable 
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neighborhoods to flood hazards in order to analyze impacts spatially (Yang et al. 2018; 

Chakraborty et al. 2020) . According to (Rufat et al. 2015), the number of studies focused 

on social vulnerability to floods is highest in the U.S., followed by Western Europe and 

Southeast Asia. Flood vulnerability is a specific term for measuring the social 

vulnerability based on exposure, sensitivity, and adaptive capacity of a population to 

flood hazard particularly (Lee and Choi 2018). In most studies, exposure is defined as a 

potential loss, while sensitivity and adaptive capacities are fragilities and abilities of the 

population to cope with damage, respectively (Lee and Choi 2018). Some particular 

studies combine the hazard of place social vulnerability model with exposure, such as 

flood damages, to quantify risk (Zhou et al. 2012; Remo et al. 2016; Chen et al. 2019a), 

while some others utilize flood hazard information using statistical flood probability 

(Thakuy et al. 2011; Hoque et al. 2019; Khajehei et al. 2020), and satellite imagery 

(Zheng et al. 2008). Since both hazard and exposure are the components of the risk 

definition in the widely accepted risk triangle approach (Crichton 2002), they both need 

to be well represented in the description of the risk. 

Different flood drivers, such as coastal storms, riverine flow, and urban pluvial 

runoff can cause severe damage to urban areas. However, whenever co-occurring, the 

amount of severe flood damage can be magnified (Couasnon et al. 2020), as observed 

during Hurricane Harvey (Zscheischler et al. 2018) and Cyclone Idai (Couasnon et al. 

2020). In a study conducted in the entire U.S., it is reported that the frequency of the 

compound flood events has increased in the majority of the coastal cities (Wahl et al. 

2015). In addition, Couasnon et al. (Couasnon et al. 2020) stated that the large 
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metropolitan areas in the U.S., such as Washington DC and Baltimore MD, are 

susceptible to compound flooding. It is also important to estimate future flood damages 

due to its importance for flood risk management methods (Middelmann-Fernandes 2010). 

Thus, several studies have shown efforts to quantify urban flood damage from riverine 

and urban runoff (Remo et al. 2016; Arrighi and Campo 2019; Muthusamy et al. 2019; 

Oubennaceur et al. 2019), and coastal storms (Xian et al. 2015; Karamouz et al. 2016; 

Prahl et al. 2018) by applying various methodologies, including depth-damage functions 

and remote sensing techniques. There are very few studies that focus on compound urban 

flood damage and risk (Yang et al. 2020). Since the quantification of urban compound 

flood risk is an essential component of risk management in coastal metropolitan areas, 

there is a clear need to further improve this subject in order to support flood resilience of 

communities (Shen et al. 2019). Therefore, this study aims to quantify both social and 

physical dimensions of compound urban flood risk in the Washington, DC metropolitan 

area by: (a) evaluating the spatial distribution of the social vulnerability within the 

Washington, DC metropolitan area at multiple scales (census tract, group, and block 

levels); (b) investigating the impacts of different flood drivers and their consequences; (c) 

assessing the urban compound flooding hazard in the Washington, DC metropolitan area 

for 7 different compound flooding scenarios; (d) estimating compound flood damages to 

residential buildings; and (e) combining social vulnerability assessment with damage 

results to introduce the Flood Socio-Economic Vulnerability Index (FSOEVI) to illustrate 

compound flood risk for the residential population. 



55 

 

2.2 Study Area 

As one of the most prominent locations in the U.S., the Washington, DC 

metropolitan area (Figure 11) is located in the Mid-Atlantic region of the U.S. with 6.2 

million residences. It encompasses the counties of Alexandria, Arlington, Fairfax, and the 

Falls Church City from the State of Virginia, some portions of Montgomery and Prince 

George’s counties from the State of Maryland and the District of Columbia (DC) within 

its borders. Washington, DC experienced significant floods in history, such as Hurricane 

Agnes (1972) and the Federal Triangle Flash Flood (2006). Different types of floods, 

including coastal, riverine, and pluvial were observed in those events (Commission 

2008). For instance, streets and buildings including some important federal agencies were 

flooded and caused $10 million damage in the Flash Flood event (Commission 2008). 

These kinds of events, with substantial losses, are expected to increase in the future, since 

the Washington, DC metropolitan area has an increasing precipitation rate and is under 

the risk of sea-level rise (Ayyub et al. 2012).  

On the other hand, the Washington, DC metropolitan area has complex 

demographics and socio-economic. In addition to differences in the distribution of 

population density in the study area, there are noticeable differences between the 

common indicators of socio-economic features, such as age, educational attainment, the 

median value of a house, and poverty (U.S. Census Bureau 2019a). Some parts of the 

area have the most educated people, but some have less-educated ones compared to the 

entire U.S. (U.S. Census Bureau 2019b). Hence, these main differences in population 
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structures lead to highly variant spatial social vulnerabilities (Gu et al. 2018). This was 

one of our motivations to further investigate this area. 

 

 

Figure 11 Study area A) U.S; B) East coast of the U.S.; C) Washington, DC metropolitan region 

 

2.3 Methodology 

Figure 12 summarizes the overall method showing how the flood socioeconomic 

vulnerability of the residential population was assessed. In the left part of the figure, the 

social vulnerability assessment module was presented, which utilized Principal 

Component Analysis (PCA) with vulnerability factors defined from census data for tract, 
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group, and block scales. The right part computes the flood exposure index by applying 

the flood damage estimation tool of HAZUS-MH to compute flood damages from 

compound urban flood scenarios. Finally, the results of social vulnerability assessment 

and exposure index were combined to evaluate the overall flood socioeconomic 

vulnerabilities in tract, group, and block scales. Each step of the general method was 

described in detail over the following sections.  

 

 
Figure 12 Overall method to calculate Flood Socio-Economic Vulnerability Index (FSOEVI) 

 

2.3.1 Social Vulnerability Assessment (SOVI) 

The hazards-of-place model is a popular model applied in the vulnerability 

assessment frameworks which combines social and biophysical dimensions of 
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vulnerabilities to introduce the overall vulnerability of a location (Fernandez et al. 2016). 

The Social Vulnerability Index (SOVI) generated by this approach helps to map out the 

vulnerability distribution of the population. In this study, the method represented in 

(Cutter et al. 2003) was employed by adding some vulnerability factors from studies on 

flood social vulnerability (Remo et al. 2016; Khajehei et al. 2020). The study by (Cutter 

et al. 2003) not only demonstrates the SOVI levels spatially in the entire U.S. at the 

county level for environmental hazards, but also introduces a comprehensive method for 

assessing social vulnerability. The spatial distribution of socially vulnerable populations 

in the U.S. (Cutter et al. 2003) suggests that the counties in the Washington, DC 

metropolitan area have medium, medium-low, and low levels of SOVI compared to other 

counties in the U.S. However, their results are not appropriate to be applied for this study 

area because it performs SOVI analysis comparatively within the entire U.S. 

Additionally, the county scale is too coarse to be used in this study area since there are 

only 7 different counties and cities. Thus, the SOVI analyses were performed using some 

additional variables that focus on flood vulnerability at the finest scales possible. SOVI 

analyses were conducted at three different scales: i) tract, ii) group, and iii) census block 

levels. Block, the finest scale in which population data is available, is generally bounded 

by roads, highways, rivers, and means city block in the urbanized areas (United States 

Census Bureau 2019). A group contains between 600 and 3,000 people while tract level 

generally contains between 1,000 and 8,000 people (United States Census Bureau 2019).   

The variables used for the definition of social vulnerabilities, which are found by 

considering data availability and their correlation with vulnerability, are demonstrated in 
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Table 9A (Appendix A). Although common vulnerability factors utilized in the literature 

are similar, there is still some subjectivity in choosing vulnerability indicators (Roder et 

al. 2017). Therefore, it is necessary to analyze the study area well and then decide which 

parameters to define vulnerability (Roder et al. 2017). Different representative variables 

(41 total) for social, cultural, and demographic features of the study area were chosen for 

three different geographic aggregation levels. There are different numbers of variables 

available for disparate geographic aggregation levels due to the availability of datasets for 

block, group, and tract level. The 2010 decennial census survey results were used to 

analyze the census block level, while 2018 (5-year estimates) of the American 

Community Survey (ACS) dataset were employed for tract and group level analysis. The 

5-year estimates were selected because the statistical reliability of the dataset for the less 

populated areas is higher in 5-year estimates of the United States Census Bureau (Bureau 

n.d.). The number of variables utilized was less for block (18) and group (27) levels when 

they are compared to tract (31). However, the socioeconomic factors of vulnerability 

were described by selecting variables to quantify the differentiation of those factors 

including advantages and disadvantages, capacities to cope with hazard, as well as 

sensitivity to exposure. 

After collecting all related data, the normalization procedure was performed to 

solve the incommensurability problem of using different data with various units. The 

maximum-minimum normalization technique was applied by Equation 1. (Abson et al. 

2012; Monterroso et al. 2014; Remo et al. 2016; Chakraborty et al. 2020): 
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Principal Component Analysis (PCA) is a factor analysis method that aims to 

reduce the number of variables by the matrix factorization process (KC et al. 2015; Jha 

and Gundimeda 2019). After PCA, fewer representative variables are acquired by storing 

the optimum portion of the information (KC et al. 2015; Jha and Gundimeda 2019). The 

first dimension of the principal component has the highest amount of information from 

the initial dataset. The total information explained by principal components decreases 

with each component (Jha and Gundimeda 2019). Since social vulnerability assessments 

contain many parameters, PCA is widely used as an effective way of combining variables 

and reducing dimensions(Cutter et al. 2003; Fekete 2009; Monterroso et al. 2014; KC et 

al. 2015; Remo et al. 2016; Gu et al. 2018; Jha and Gundimeda 2019; Rufat et al. 2019; 

Khajehei et al. 2020). Some statistical tests need to be applied prior to any factor analysis 

to evaluate if the dataset is appropriate for the procedure. Bartlett’s Test of Sphericity and 

Kaiser-Meyer Olkin (KMO) measure of sampling adequacy tests are commonly 

performed before PCA in the literature (Fekete 2009; Mavhura et al. 2017; Jha and 

Gundimeda 2019; Pricope et al. 2019; Chakraborty et al. 2020). The acceptable p-value 

for Bartlett’s Test of Sphericity is less than 0.05. KMO values that facilitate the 

assessment of interdependencies of initial variables should be greater than 0.5 (Gu et al. 

2018). Several RStudio packages, including factoextra, FactoMiner, REdaS, corrplot, 

bartlett.test, and KMO were employed for simulating all required tests and PCA.   

After the PCA application, a scree plot was used as a decision tool to select a 

number of representative principal components retained from the analysis. The 

information about the percentage of variance explained by each component and the total 
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explained variance were obtained. In addition to component extraction, loadings of all 

variables on every component were derived. Then, SOVI scores were calculated by 

applying the Equation 2, Equation 3, Equation 4 (Remo et al. 2016): 

After the SOVI values were computed for each geographic aggregation level, they 

are normalized again to represent results of the SOVI scores. Lastly, the Natural Jenks 

classification method was applied to show results spatially.  

2.3.2 Compound Flood   

The spatial and temporal variability of the compound urban flooding in 

Washington, DC resulting from riverine flow, coastal storm surges, and urban 

rainfall/runoff were investigated (Sumi 2020). The impacts of the flood drivers in 

different urban locations were explored to understand how the flood propagates into 

inland areas and what are the consequences associated with such flooding. The storm 

surge and river discharge values used for the analysis are representative of the low-

probability and high-probability events occurring in the study area. The results of a 

hydrodynamic model for the region with synthetic time series of flood drivers and by 

generating a set of runoff data from design rainfall depths were utilized. The synthetic 

events were evaluated for understanding the patterns of flood inundation extent, flood 

depth, and ultimately the flood risk in the area (Sumi 2020). 

A 2D hydrodynamic model, using the River Analysis System (HEC-RAS) 

software from the Hydrologic Engineering Center's (HEC), was implemented for the 

flood simulation along the Potomac River. The HEC-RAS 2D software is capable of 

modelling unsteady-flow routing with Saint-Venant and diffusion wave equations by 
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solving implicit finite volume (U.S. Army Corps of Engineering 2016). A total of 7 

scenarios were selected for this analysis out of 28 scenarios implemented based on 

historical extreme and non-extreme values of flow and surge at Little Falls, DC, and 

Alexandria, VA, respectively (Sumi 2020). The 100-year, 25-year, and 5-year 6-hour 

duration design rainfalls were used to generate storm runoffs. Runoffs were generated for 

each rainfall based on two Curve Numbers (CN): CN 65 and CN 85 based on the 

minimum and maximum area coverage of CN values in the study area (Sumi 2020). Two 

of selected synthetic 7 compound events which are defined as High Flow High Surge 

with and without rain, are seen in Figure 13. 

 

 

Figure 13 Compound flood hazard scenarios (Sumi 2020) 
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2.3.3 Flood Exposure (HAZUS-MH) 

The flood exposure index term was introduced as flood damage from the 

previously described 7 different urban compound flood scenarios. Flood damage 

estimation was performed by using HAZUS-MH, which is a comprehensive, standardized 

damage estimation tool for multi-hazards (FEMA 2013). The flood module of HAZUS-

MH has been used for decision-makers and floodplain managers to quantify potential 

losses and flood risks to protect citizens and properties (FEMA 2013). There are three 

different levels of flood damage simulations available in HAZUS-MH. Level 2 analysis, 

which requires modification of both inventory and hazard data (FEMA 2013), was 

performed importing the HEC-RAS2D flood depth grids to HAZUS-MH. 

HAZUS-MH has the ability to calculate flood damage for different building 

occupancies, such as residential, commercial, industrial, governmental, educational, 

religious, and agricultural, as well as transportation, motor vehicles, essential 

infrastructure (i.e. bridges, roads, oil stations, wastewater treatment facilities), and 

indirect losses (FEMA 2013). All building-related losses were computed for all specific 

occupancies. However, this study intends to assess the socio-economic vulnerability of 

the residential urban population. Thus, socioeconomic losses, which are defined as 

residential buildings-related losses (structural, content, inventory, relocation, income, 

rental income, wage), and vehicles, were only included in the flood exposure definition in 

this study (Table 6).  
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Table 6 Specific occupancies included in exposure analysis 

Specific 

Occupancy 

General 

Occupancy 
Description 

Specific 

Occupancy 

General 

Occupancy 
Description 

RES1 SingleFam. 
Single Fam. 

Dwelling 
RES3E Residential 

Multi-dwellings (20 to 49 

units) 

RES2 Residential 
Manufactured 

Housing 
RES3F Residential 

Multi-dwellings (+50 

units) 

RES3A Residential Duplex RES4 Residential Temporary Lodging 

RES3B Residential Triplex/Quads RES5 Residential Institutional Dormitory 

RES3C Residential 

Multi-

dwellings (5 to 

9 units) 

RES6 Residential Nursing Home 

RES3D Residential 

Multi-

dwellings (10 

to 19 units) 

Vehicle 
Vehicle 

Loss 

Cars, Light Truck, Heavy 

Truck 

 

Foundation type, building age, first-floor elevation, and building type are some 

essential components of the flood damage estimation procedure used for structural, 

content, and inventory losses in HAZUS-MH. Depth-damage functions are mainly 

derived from those components (FEMA 2013). There are also different depth-damage 

functions for rental income, relocation, income, and wage losses, such as disruption cost, 

restoration time, etc. Moreover, parking demand rates, expected daily utilization at 

commercial parking lots, parking distribution by parking area type are the information 

needed to estimate flood damage on vehicles (FEMA 2013). Vehicle ages and types also 

affect the related function implemented for vehicle loss evaluation. Information about 

three different vehicle classes; automobiles, light trucks, and heavy trucks were estimated 

for each geographic aggregation level by combining the National Automobile Dealers 
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Association (NADA), U.S. Department of Transportation’s Truck Size and Weight Study 

(TSWS), and National Personal Transportation Survey (NPTS) in HAZUS-MH (FEMA 

2013).  

All residential building-related and vehicle losses were calculated for census 

block level and summed for the group, and tract levels as full replacement costs. Then, all 

losses were summed to define total economic damage for each aggregation level. In order 

to compare exposure indexes within the study area, the same maximum-minimum 

normalization technique was applied (Equation 1). Finally, the Natural Jenks 

classification method was implemented again to show the spatial distribution of exposure 

indexes. 

2.3.4 Flood Socio-Economic Vulnerability (FSOEVI) Calculation 

Two scenarios were chosen to implement the FSOEVI calculation. The scenarios 

indicating compound flood events with and without rain were selected to indicate the 

impacts of precipitation as an additional flood driver to riverine flow and storm surge. 

The Exposure Index was evaluated for the most and least intense compound flood 

scenarios to observe the effect of high intensity rain in overall risk distributions. The 

most intense scenario was defined as High Flow High Surge with 100-year return period 

with CN of 85, while High Flow High Surge without rain was identified as the least 

intense scenario. After the evaluation of both SOVI and Exposure indexes, each 

geographic aggregation level had one value representing social vulnerability and one for 

exposure intensity from the flood events. Both have their own five Natural Jenks break 

values to classify results as “Very Low”, “Low”, “Moderate”, “High” and “Very High”. 
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In order to evaluate the Flood Socio-economic Vulnerability Index, both results were 

merged. Some studies combine both terms using weights defined by expert opinion 

(Sowmya et al. 2015), equal weighting (Remo et al. 2016; Lee and Choi 2018), statistical 

procedure (Mansur et al. 2016; Yang et al. 2018; Hadipour et al. 2019), and cross tabular 

bivariate (Gu et al. 2018; Khajehei et al. 2020) method. A two-way cross-tabulation was 

chosen to apply the bivariate method to illustrate the relationship between two different 

indexes (Gu et al. 2018). Three different rows (exposure) and columns (SOVI) were used 

to develop the FSOEVI scores for each geographic aggregation level. Very low and low 

values of Exposure and SOVI were reclassified as low while moderate values of both 

were considered as moderate FSOEVI. For the high FSOEVI, high and very high 

exposure and SOVI results were combined to highlight high risk areas in the Washington, 

DC metropolitan area. 

2.4 Results and Discussion 

2.4.1 SOVI Results  

The SOVI analysis was conducted at three contrasting scales with different 

variables due to data availability. The variables indicating the same population features 

were chosen for each scale. The statistical tests (Bartlett-Sphericity, KMO) were 

performed before the PCA procedure. The datasets passed both tests for each geographic 

aggregation level for the study area (Table 7) with acceptable values defined in the 

related literature (Remo et al. 2016; Fatemi et al. 2017; Roder et al. 2017; Chakraborty et 

al. 2020). This finding suggested that all datasets are reliable, consistent, and the 

multicollinearity problem is under accepted levels for any factor analysis. 
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Table 7 Results of statistical tests prior to PCA 

Aggregation Level Bartlett-Sphericity(p) KMO value 

Tract 2.2e-16 0.85 

Group 2.2e-16 0.89 

Block 2.2e-16 0.80 

 

The selection of the number of principal components to be used for the 

representation of the initial data is a subjective decision. However, there are some 

common standards and requirements for that decision. In this paper, visual assessment 

with scree plots, which optimize the selection process for the percentage of variance 

explained of the initial dataset, was utilized. Scree plots in Figure 14 were an illustration 

of the contributions of each dimension which intend to identify the total dataset. 

 

 
Figure 14 Scree plots for A) tract; B) group; C) block levels 
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In this study, it was aimed to describe 75-80% of total information with principal 

components to be consistent with the related literature (Cutter et al. 2003; Fekete 2009; 

Chakraborty et al. 2020). Therefore, after examining scree plots, 8 principal components 

were extracted. The total percentage of described variance was 82.7%, 75.3%, and 77.4% 

for tract, group, and block levels, respectively (Figure 14). The percentage variance 

explained by the first dimensions were the greatest for all geographic aggregation levels 

again similar to the literature (Rygel et al. 2006; Fekete 2009; Ganguly et al. 2019; 

Chakraborty et al. 2020). The explanation percentage declined with an increasing 

component number. In coarser scale scree plots (Figure 14), the first dimensions had 

more information about variance than block level.  

Correlation plots in Figure 15 indicated the relationships between each variable 

and the principal components. The squares had darker colors showing a strong correlation 

and strong representation of variables in a specific dimension. Thus, the darker colors 

showed the most significant variables which had the dominant loadings in the 

components. Additionally, blue and red colors indicated different signs of each 

relationship of variables to each dimension.  
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Figure 15 Correlation between variables and dimensions at A) Tract; B) Group; C) Block for Washington DC, 

metropolitan area 

 

The parameters define the first dimension of each scale, which explains the 

biggest portion of initial datasets, which were similar for tract and group levels. Yet, the 

results for block level indicated different parameters as important ones for the first 

dimension. These differences could be explained by the usage of disparate census 

datasets for block level. For tract and group levels, parameters which mostly represent 

economic aspects of vulnerability factors had the highest loading in the first dimension. 

In block level, age and gender were the parameters, which have the highest explanation in 

the results.  

Only a few studies found similar variables as the main determinant of the 

vulnerability in the related literature (Fernandez et al. 2016; Rufat et al. 2019). For 

instance, in a research conducted to validate different social vulnerability models for 

Hurricane Sandy in New York and New Jersey (Rufat et al. 2019), similar parameters 



70 

 

were used to define social vulnerabilities of the population by principal components and 

weighted methods. In both methods, the variables defining economic aspects of the 

population, such as per capita income, population under the poverty level, unemployment 

rate,  and income levels of the households were determined as having the highest weights 

and loadings for the explanation of the overall vulnerability levels. In the study of (Cutter 

et al. 2003), the variables embedded in the personal wealth indicator were found as the 

most influential to the overall vulnerability results. In addition, the social vulnerability 

assessment carried out in the metropolitan area of Hampton Roads, Southeast Virginia, 

by principal component analysis and the significantly loaded first component was again 

defined by the poverty term. Some other studies also reported poverty term as the main 

contributor to social vulnerability (Kaźmierczak and Cavan 2011; Armaș and Gavriș 

2013). Consistent with all those studies, the results of the principal component analysis in 

this study suggested that the variables, which represent the economic status of the 

population, were generally highly loaded in first components in each geographic 

aggregation level in this study. On the other hand, in another studies conducted in 

different locations, variables related to age (Kaźmierczak and Cavan 2011; Zhang and 

Huang 2013; Remo et al. 2016), minorities (Zhang and Huang 2013; Remo et al. 2016; 

Pricope et al. 2019; Chakraborty et al. 2020), housing (Fekete 2009; Jha and Gundimeda 

2019; Medina et al. 2020), family structure (Armaș and Gavriș 2013; Pricope et al. 2019), 

employment (Armaș and Gavriș 2013; Roder et al. 2017), vehicles available (Jha and 

Gundimeda 2019; Medina et al. 2020), insurance (Medina et al. 2020), and education 

level (Armaș and Gavriș 2013; Kotzee and Reyers 2016; Ganguly et al. 2019), were 
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determined as having the highest impact on the resultant vulnerability term. These 

findings suggested that the main determinants of the overall vulnerability significantly 

depend on both the distribution of vulnerability data over the study area and scale. As a 

result of all information depicted above in Figure 15 the spatial distributions of SOVI 

were represented in Figure 16. 

 

 
Figure 16 SOVI results for Washington DC, Metropolitan area (A)Tract; (B)Group; (C)Block 

 

Figure 16 illustrated the spatial distribution of the SOVI results at tract(a), 

group(b), and block(c) levels. Each of the geographic aggregation levels demonstrated a 

similar spatial distribution of the SOVI. Moreover, the block level analysis highlighted 
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more locations with high and very high vulnerability levels. The population at the north-

west of the study area had mostly “Very Low” and “Low” vulnerability levels since the 

population living in that area were wealthier than the average of the study area. The 

population located in the south-east and the north part of the study area had more “High” 

and “Very High” vulnerable populations. Additionally, it can be depicted that the 

population in the inner city are more vulnerable than the surrounding suburban areas 

(Figure 16). This may be due to the fact that the wealthier population generally lives in 

suburbs and exurbs, which explains why the population in the inner city are more 

vulnerable. However, several locations were also found that had low levels of 

vulnerability in the city and high levels in the surrounding suburbs. This finding was 

consistent or contrasting with some of the urban vulnerability studies conducted in 

different cities of the world (Gu et al. 2018). For instance, population groups in suburban 

places were found more vulnerable in Bucharest (Armaș and Gavriș 2013), Beijing 

(Zhang and Huang 2013), and Sao Paulo (Roncancio and Nardocci 2016), whereas 

population groups in inner cities are found more vulnerable in Manchester (Kaźmierczak 

and Cavan 2011) and Mumbai (Sherly et al. 2015). In addition, Shanghai (Gu et al. 2018) 

by demonstrating more mixed vulnerability levels in the inner city was found similar to 

the Washington, DC Metropolitan area in terms of distributions. 
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Figure 17 Distribution of vulnerability levels in the Washington, DC Metropolitan Area A) in tract, group and 

block scales; B) spatial distributions of highly and very highly vulnerable populations 

 

Generally, residents of the Commonwealth were less socially vulnerable than 

residents of Maryland and DC for each scale (Figure 17). Among all areas, DC had the 

highest portion of the vulnerable population (Figure 17). Most of the population located 

in DC labelled as very highly vulnerable for each scale (Tract: 88%, Group 86%, Block 

76%). These vulnerability distributions in the Washington, DC metropolitan area were 

consistent with the literature although the studies found have different scales, aims and 

extent of comparison. The study aimed to illustrate the spatial distribution of the 

vulnerable population in the entire U.S (Cutter et al. 2003) indicated that the residents of 

DC and Prince George’s County were more vulnerable (Medium-low) than the residents 
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of Montgomery, Fairfax, Arlington counties, and Alexandria City (Low). Similarly, the 

number of geographic aggregation levels, which had a high and very highly vulnerable 

population, were found to be higher in DC and Prince George’s County in this paper. 

However, since this study was conducted on a much finer scale than the county, findings 

revealed that there are some locations in Alexandria City, Arlington, Fairfax, and 

Montgomery counties which had highly and very highly vulnerable populations. Another 

reason for that difference was the extent of the comparative evaluation. In the (Cutter et 

al. 2003) study, SOVI results were analyzed within the entire U.S. Thus, the other 

hotspots, which have a vulnerable population, suppress the possible substantial 

vulnerable population in the borders of our study area. Likewise, consistent with our 

findings, the country-wide tract scale SOVI map, which was constructed by the Centers 

for Disease Control and Prevention (CDC), indicated that the south-east DC and Prince 

George’s County have a more vulnerable population than Montgomery, Arlington and 

Fairfax counties (Centers for Disease for Control and Prevention 2015). CDC’s study 

also found highly vulnerable tracts in Alexandria and Fairfax since it assessed the 

vulnerability levels on a finer scale than counties (Centers for Disease for Control and 

Prevention 2015). However, tract level countywide comparison again was not able to 

capture some vulnerable populations not only in Arlington and Montgomery counties but 

also in the rest of the study area. Yet, several locations with vulnerable populations were 

detected with block and group level analysis in this study.  

Figure 17 indicated that the percentage of the vulnerable (highly and very highly) 

population was larger in the block level compared to the coarser scale analysis. 
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Additionally, 15% of the total population in the study area appeared had “Very High” 

vulnerability level in block level which is the largest compared to group (8%) and tract 

(10%) scales. Finer scale assessment indicated a higher level of spatial variability on a 

vulnerable population compared to others. For instance, there was no tract found as 

highly or very highly vulnerable in the portion of Montgomery County located in the 

study area. Reversely, group and block levels demonstrated some vulnerable populations 

in residences of Montgomery County in the study area (Figure 17). Furthermore, 

especially in the block level, the highly vulnerable population was more evenly 

distributed to the study area compared to two other scales. The complex demographics 

and socioeconomic structure of the metropolitan areas are hard to detect with coarser 

scale analysis because the distribution of vulnerability factors varies highly in even in 

geographically close neighborhoods (Lawrence 2002; Boulant et al. 2016; Nijman and 

Wei 2020). This suggests that the finer scale assessment is able to capture more locations 

with vulnerable populations. Therefore, finest scale comparison should be performed in 

order not to overlook some possible considerable vulnerable population.  

2.4.2 Flood Exposure 

The results of the total flood damage from the HAZUS-MH simulations for 7 

different compound flood scenarios were shown in Figure 18. Each scenario contained 

high flow and surge conditions represented with HQ and HS, respectively. All scenarios 

were numbered as in Table 8. 
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Table 8 Representation of each scenario 

Scenario Definition Number 

HQHS100year85CN High Flow High Surge 100-year 85CN 1 

HQHS25year85CN High Flow High Surge 25-year 85CN 2 

HQHS5year85CN High Flow High Surge 5-year 85CN 3 

HQHS100year85CN High Flow High Surge 100-year 65CN 4 

HQHS25year85CN High Flow High Surge 25-year 65CN 5 

HQHS5year85CN High Flow High Surge 5-year 65CN 6 

HQHS-No Rain High Flow High Surge No Rain 7 

 

 

 
Figure 18 Economic damage from different compound flood scenarios A) Social and total economic damages B) 

spatial distributions of social damage values across the counties and cities 
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As expected, the highest damage was estimated in “High Flow High Surge 100 

year return period with 85CN (1)” with 46 billion dollars while the lowest one in “High 

Flow High Surge without Rain (7)” scenario with approximately 1 billion dollars when 

all building-related and vehicle losses were included. Estimated flood damages on 

residential buildings, which were identified as socioeconomic losses, showed a similar 

pattern with all building losses. The highest (High Flow High Surge 100-year return 

period with 85CN) and lowest (High Flow High Surge without Rain) total damages were 

found to be 20 billion dollars and 396 million dollars, respectively for socioeconomic 

losses. The findings of damage estimation indicated that when precipitation event 

occurred as a third component of the compound flood event, in addition to riverine and 

coastal floods, the total damage is magnified for both total and socioeconomic losses. The 

damage differences caused by the intensifying precipitation events were larger in 

locations with denser infrastructure, such as DC, Prince George’s, and Arlington. 

Alexandria and Fairfax counties indicated lower differences of damage among the 

scenarios because coastal storm surge, which causes the biggest portion of damage in 

those locations, was constant for each scenario. 

The results of the spatial distribution of flood damages (Figure 18) suggested that 

DC had the highest damage amount in all scenarios with rain. In a scenario without rain, 

Fairfax County, which has the longest coastline to Potomac River in the study area, 

appeared as having the maximum damage.  Arlington, Prince George’s, and Alexandria 

counties experienced more damage than Montgomery County and Falls Church City in 

each scenario. The low levels of damage in Montgomery and Prince George’s County 
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were not surprising since only a small part of their area was included in the study area. 

Figure 9 illustrated the spatial distribution of exposure index results for each scale and 

two selected scenarios. 

 

 
Figure 19 Spatial distribution of flood exposure index in each scale 

 

For the no rain scenario, Figure 19 indicated that the exposure was higher in the 

Virginia side of the Potomac River in each scale. The middle and the north-east part of 

the study area had lower exposure levels. These findings could be explained by flood 

depth grids Figure 13 and Fairfax and Alexandria counties having more inundated 



79 

 

valuable single and multi-family dwellings (RES1, RES3B, RES3E, RES3F) than the rest 

of inundated locations. Larger inundation areas in Fairfax County and Alexandria City 

could be interpreted by the susceptibility of low-lying areas near the Potomac River to 

coastal flood events (Mitigation Advisory Committee 2017). Additionally, lower 

damages were observed in the coastal parts of DC because only a few residential 

buildings were inside of the inundation boundary. Figure 13 illustrated that the 

inundation area was larger and flood depth height was higher in the Virginia side of the 

Potomac River compared to the rest of the inundated area in the no rain scenario. The 

distribution of the exposure levels was similar in each scale, yet the block level analysis 

highlighted more areas experiencing higher flood damages. In addition, the coarser scale 

exposure index did mask some considerably damaged blocks since they aggregate the 

economic losses in several blocks to represent damage in the group and tract scales. For 

instance, one block, which is located in the south bank of the Anacostia River in the 

south-east of the DC, indicated a high level exposure in the no rain scenario although the 

corresponding tract and group were classified as a moderate level of exposure.  

For the rain scenario, tract and group scales demonstrated similar distributions of 

high and very high exposure levels. However, the block level distribution indicated 

additional areas that had very high exposure in the study area especially in Prince 

George’s, Montgomery, and Fairfax counties. The damage values were maximum in the 

blocks that had a high value single and multi-family dwellings as well as temporary 

lodgings. In tract and group, same locations in north and north-west of the National 

Capital Region in DC, Alexandria and Arlington counties had the highest exposure. Tract 



80 

 

level showed two additional locations in Arlington county which had very high exposure 

levels. Similar to no rain scenario, those differences might be explained by the 

methodology of calculating damage values by summing the economic loss values of 

blocks to indicate total damage in groups and tracts. There were blocks in several 

locations which had very high damage whereas neighborhood blocks did not. Therefore, 

they showed these severe damage values in the block level assessment but not in coarser 

scale summations. For both scenarios, the spatial distribution of the flood exposure index 

indicated that flooding in the Potomac River caused more damage compared to other 

streams, rivers and tributaries in the Washington, DC Metropolitan Area, such as 

Anacostia River, Four Mile Run, Cameron Run, etc. Hence, locations in the banks of 

Potomac River generally indicated more severe damage than the other ones. This may be 

explained by the larger size and volume of water of Potomac River (Commission 2008). 

In addition, the results of the rain scenario indicated severe damages in the locations with 

denser infrastructure, such as Arlington County and DC, while no rain scenario caused 

more damage on the banks of the Potomac River due to coastal storm surges.  

2.4.3 Flood Socio-Economic Vulnerability Assessment (FSOEVI) 

The SOVI, Exposure index, and FSOEVI scores were illustrated in Figure 20 and 

Figure 21  for “High Flow High Surge No Rain” and “High Flow High Surge 100 year 

85CN” scenarios. The geographic aggregation levels, which have very high or high levels 

of SOVI and exposure, were shown with dark umber color and defined as the highly 

socioeconomic vulnerable to flood events. Figure 20 indicated that the number of 

geographic aggregation levels under compound flood risk less in the no rain scenario.  
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In no rain scenario, (Figure 20) tract and block-level analysis demonstrated high 

FSOEVI, while group level did not due to the highly and very highly vulnerable 

population that experienced lower damage values. Two groups located in the west bank 

of the Potomac River exposed to high (high & very high) flood damage but had moderate 

levels of FSOEVI. The north-west of the study area and the Maryland side of the 

Potomac River showed low FSOEVI levels on each scale. For each scale, the south-

western part was highlighted with high FSOEVI levels. The Tract level analysis found 

one tract which had a high FSOEVI level in Alexandria City. For the block-level 

analysis, the high FSOEVI scores were found in the same location with the tract levels. 

However, one more location in the south bank of Cameron Run in Fairfax County, which 

had very high exposure and SOVI, was also captured by block levels assessment. 
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Figure 20 Spatial distributions of the FSOEVI results in the Washington, DC Metropolitan Area 

 

The findings of rain scenario (Figure 20) indicated different distributions in 

disparate scales. Block and group level results showed more parallel distributions 

compared to tract level. For instance, in group and block levels, most of the geographic 

aggregation levels in the north-west of the study area appeared as less vulnerable than the 

rest of the Washington, DC metropolitan area. However, the tract level distribution of 

FSOEVI showed several moderately vulnerable locations in the north-west, especially 

around the north-west of Arlington County. Unlike no rain scenario, the populations with 
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high FSOEVI were more distributed to the entire area. 13, 10 geographic aggregations 

found under high risk from three different counties and cities in coarser scale analyses 

while block-level results highlighted 45 different locations from six different counties 

and cities. The blocks with high FSOEVI were found in Alexandria City, DC, Prince 

George’s, and Montgomery counties. In tract and group scales, no aggregation levels 

classified as high FSOEVI in Montgomery County (Figure 20, Figure 21, Figure 22).   

Figure 21 summarized comparison of the total number of a socioeconomically vulnerable 

population to compound flood hazard and the number of socially vulnerable populations 

for two different scenarios.   
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Figure 21 Comparison of the spatial distribution of vulnerable population in tract, group, and block 

 

 Figure 21 demonstrated that the high spatial variances were observed in each 

scale in terms of the population vulnerable to flood. In tract and group levels, vulnerable 

population to flood was only found in Alexandria, Arlington, Prince George’s, and DC 

while block level analysis indicated some vulnerable population in Fairfax and 

Montgomery counties as well in the rain scenario. In no rain scenario, only Alexandria 

City was detected to have a highly vulnerable population to flood. The differences of 

results for each scale are parallel between rain and no rain scenarios, including finer scale 

that highlighted more locations as vulnerable. The main difference was for the block 

scale not only in Alexandria City but also in Fairfax where some geographic aggregation 
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levels were determined as vulnerable to flood. Figure 22 illustrated the ratio between the 

population vulnerable to flood and the socially vulnerable population. 

 

 
Figure 22 Vulnerable to flood/ Socially vulnerable (%) 

 

Figure 22 illustrated that the ratio of vulnerable population to flood was the 

highest in Alexandria City for both scenarios in each scale. The ratio was much lower in 

scenarios with no rain because there was no inundation in most of the land. In tract level, 

almost all socially vulnerable populations (98%) were also found vulnerable to flood in 

Alexandria City for rain scenario. For no rain scenario, 36 % of the vulnerable population 

were classified as vulnerable to flood. There was no tract found vulnerable to flood in 
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Arlington and Fairfax counties in any scenarios. Group level analysis indicated that any 

of the groups which had vulnerable populations experienced flood damage in no rain 

scenario. However, it was found that different portions of the socially vulnerable 

population were revealed as vulnerable to flood as well in the rain scenario in Alexandria 

City, DC, and Prince George’s County with ratios of 18%, 4%, and 5%, respectively. 

Similar to tract level, there was no vulnerability found to flood in Arlington, Fairfax and 

Montgomery counties. Block level analysis illustrated high spatial variability in terms of 

vulnerable population to flood. Unlike tract and group levels, portions of the vulnerable 

population in the Montgomery, Fairfax and Arlington counties were also found 

vulnerable to flood. Only block level assessment could capture that substantial vulnerable 

population to flood in those counties. Consistent with the other scales, the highest portion 

of the vulnerable population was identified in Alexandria City for both scenarios (no rain: 

4%, rain: 23.5%). The lowest ratio was determined in Fairfax County for both scenarios. 

On the Maryland side of the study area, 8% and 5% of the vulnerable population was 

classified as vulnerable to flood in Montgomery and Prince George’s counties, 

respectively.  

The comparison of the compound flood vulnerability in three scales suggested 

that more population was found as highly vulnerable to flood in tract level than block 

level. The reason is the cross-scale relationship among the geographic aggregation levels. 

Populations in the tract levels are almost five times larger than block level. When several 

blocks indicating high vulnerabilities were located in the same tract, the corresponding 

tract could be classified as vulnerable although the rest of blocks did not show high levels 
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of vulnerability in the same tract. In fact, those vulnerable blocks only account for a small 

portion of the population in tract level. Thus, the assessment in tract level can be 

misleading in locations that have complex demographic and socio-economic structure 

(Lawrence 2002; Boulant et al. 2016; Nijman and Wei 2020), such as Washington, DC 

metropolitan area. However, finer level analyses demonstrated more vulnerable locations 

than other scales’ spatial variances. These findings are consistent with the literature (van 

Zandt et al. 2012; Remo et al. 2016).  

Despite the disadvantages of block level analysis, such as limited data availability 

(Cutter et al. 2012; van Zandt et al. 2012; Fatemi et al. 2017) and being relatively small to 

be utilized in the planning efforts (Remo et al. 2016), the complexity of the data of 

vulnerability factors (Rygel et al. 2006; Pricope et al. 2019) and the results of the hazards 

could be better explained by micro-scale analysis (Cutter et al. 2012; Frazier et al. 2013). 

Furthermore, risk distributions in finer scales might be useful in metropolitan areas since 

the high-level localized variation of both distributions of biophysical and social 

dimensions of the risk may support the coordination of the emergency planning within 

the area (Lawrence 2002; Boulant et al. 2016; Nijman and Wei 2020). Similarly, in our 

study, block level analysis was able to capture more locations with substantial compound 

flood vulnerabilities, which were found as moderate or low levels of vulnerability in the 

coarser scales. Consistent with our results, a similar study conducted in the entire Illinois 

state (Remo et al. 2016) , which also aimed to identify flood vulnerability by merging 

flood damage and social vulnerability index at the county, jurisdictional and block levels, 

found that a number of block-level that shows high vulnerability is larger than the other 
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coarser scales. Although there are some methodological differences with that study, 

including merging the SOVI and the exposure terms, considering different types of 

losses, the main outcomes were that aggregation of flood vulnerabilities on coarser scales 

may lead to not being able to highlight some locations with considerable vulnerabilities.  

Tract and group scales may be claimed as the aggregation levels which have the 

most uncertainty levels in terms of damage and exposure values among all scales due to 

aggregation of losses. Yet, the data availability is higher in those two scales compared to 

block scale, which has the least uncertainty regarding exposure. Thus, each scale seems 

to have its own advantages and disadvantages to be used in this framework to quantify 

compound flood socioeconomic vulnerability. However, since the socioeconomic 

structure and demographics vary significantly within the metropolitan areas (Lawrence 

2002; Boulant et al. 2016; Nijman and Wei 2020), the finer scale social vulnerability 

assessment are more powerful tools to indicate those complexity of the population of the 

metropolitan areas. Therefore, finer scale analysis should be implemented for better 

representation of vulnerable population to flood. 

Total vulnerable to flood/socially vulnerable ratios were found 10%, 5%, and 6% 

in tract, group, and block scales, respectively for rain scenarios. Same ratios were found 

as 37% for tract and 3% for block scales in no rain scenarios. Furthermore, less than 5% 

of the total population was determined as a vulnerable population to flood in all scales in 

the study area for both scenarios. Those portions of the population vulnerable to flood 

were located in less than 3% of the total land in the Washington, Dc Metropolitan area 

for both scenarios.  
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All results in every geographic aggregation level were justified with very high and 

high levels of exposure and social vulnerability levels. In addition, results of tract and 

group-level analysis showed some similar patterns because they utilized the same dataset 

even though they had different variables. Another reason for some differences in the 

results can be the scale. Since damage values were summed for each census block for a 

definition of group and tract levels, distributions of exposure index vary. In some cases, 

the census block had high flood damage, but the other blocks around it do not have much 

damage. Therefore, when damage values were summed to get group and tract level, they 

may have lower damages in total when comparing with others in the study area.  

2.5 Conclusion 

This study aimed to evaluate the urban compound flood risk of the residential 

population at three different scales (Figure 22) in the Washington, DC metropolitan area 

that is an important geographical location to provide robust information to planners and 

decision-makers in three different scales by assessing socio-economic drivers of flood 

risk. 41 variables were defined from the literature considering data availability for tract, 

group, and block scales. Then, flood hazard was modeled by the HEC-RAS 2D model to 

represent the variability of impacts of compound urban flood for seven scenarios. Flood 

depth information, which was acquired from the flood hazard module, was used for flood 

damage estimation with HAZUS-MH. Two of seven scenarios were chosen to quantify 

socioeconomic flood vulnerability. With the normalization of those estimated damage 

values, the Exposure Index was calculated. Then, the SOVI and Exposure Index results 

were combined to introduce the FSOEVI distribution in the study area. After the method 
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was applied, flood risk and its drivers were represented spatially to highlight the riskiest 

locations. This analysis provides scientific insights on compound flooding in the cities 

along tidal areas and can be implemented for risk analysis of other coastal metropolitan 

cities with the associated flood driver inputs.  

It was found that the south-east shows higher, while north-west indicated lower 

social vulnerability levels in the study area. The vulnerable population was more spatially 

distributed in block scale results. The results of loss estimation suggested that the 

locations in DC experienced the most severe damages in all scenarios with rain due to 

denser residential infrastructure. In no rain scenario, Alexandria City and Fairfax County 

demonstrated the highest damage owing to their low-lying coastal areas and high value 

residential buildings. The normalized values of flood damages, which was defined as an 

exposure index in this study, for two selected scenarios indicating riverine and coastal 

flooding together with and without 100-year storm were compared. In no rain scenario, 

the results illustrated that the south-west side of the study area was exposed to more 

severe damages on residential buildings and vehicles. The more severe damages were 

found on the banks of Potomac River due to the fact that storm surges cause more 

damage than riverine flood. For the rain scenario, exposure index results were more 

evenly distributed over the areas because the rain scenario lead larger inundated areas in 

more locations.  

In the spatial distribution of FSOEVI, which was defined with a combination of 

exposure and social vulnerability terms, the residential population located at the south-

west of the study area tended to highlight more risk in no rain scenario. On the other 
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hand, the 100-year compound flood scenario identified some hotspots in DC, Arlington, 

Alexandria, and Fairfax Counties. This finding suggests that the distribution of the 

population who have more compound flood vulnerability, significantly depends on 

characteristics of the event. The multiscale comparison suggested that block scale 

comparison was able to capture more locations with high vulnerabilities and considerable 

amount of flood damages compared to coarser scales. Therefore, it is important to assess 

flood socioeconomic vulnerability in the finest scale possible to be able to notice 

vulnerable locations effectively in the metropolitan areas. Since planning for mitigation 

and vulnerability reduction efforts are generally conducted in coarser scale, there is a risk 

of not being able to cover all vulnerable locations and populations. Finer scale 

assessments may help decision-makers to highlight additional locations which are not 

able to be found in a coarser scale analysis. Understanding of the distributions of those 

identified vulnerable populations could facilitate pre- and post-disaster emergency 

response efforts (Remo et al. 2016; Gu et al. 2018; Karunarathne and Lee 2020). All 

results explained above can aid decision-makers from different administration levels to 

quantify risk and plan mitigation and adaptation actions for the residential population in 

one of the most important locations of the U.S. In addition, presented framework in this 

study can easily be applied some other coastal metropolitan areas under compound flood 

risk, such as New York and Baltimore MD.  

Both results and the framework from this study could be improved for the flood 

damage and integrated risk analysis during urban flooding from multiple flood drivers. 

For example, all information related to the population for block level was obtained from 
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the 2010 decennial census, which is the latest dataset available. However, this data may 

be counted as a bit outdated in comparison with tract and group level studies which were 

utilizing data from 2018. It is known that data from census 2020 is going to be published 

soon. For this reason, it is recommended to apply this framework by using the new 

population data. That would make SOVI analysis more robust and representative of 

today's population features. Addition of climate change and further development 

scenarios could facilitate the efforts of vulnerability reduction in the future as well. In 

that way, both SOVI and exposure distributions would be projected, and change over 

time may be assessed. Furthermore, with projected flood risk levels, the mitigation 

actions can be planned better for the future. 
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CONCLUSIONS 

The first aim of the study was to introduce the Social Vulnerability Index for 

agricultural communities and quantify the overall flood risk of the agricultural 

communities in the Potomac River Watershed. 13 different parameters were defined to 

assess spatial distribution of the social vulnerability levels in the Potomac River 

Watershed. The temporal distribution of physical damage to crops from a 100-year flood 

event were calculated for 365 days. The spatiotemporal distributions of physical damage 

and spatial distribution of social vulnerabilities were combined to evaluate spatiotemporal 

distribution of the agricultural communities in the Potomac River Watershed.  

The Social Vulnerability Index (SOVI) results indicated that agricultural 

communities in Highland and Prince George’s counties were more vulnerable than the 

rest of the basin. In addition, 23% of the counties were found to be as vulnerable as most 

of the agricultural communities in Texas, Florida, Georgia, Arizona, and Mississippi, 

which were highlighted as one of the most vulnerable agricultural communities in the 

U.S. 

The results of temporal distribution of flood damages from the 100-year flood 

event, which is classified as major flood event, demonstrated that flood damages were 

higher in the summer and fall seasons. Furthermore, the maximum damage was observed 
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in late September in the entire Potomac River Watershed. This finding can aid decision 

makers to allocate more resources for resilience actions in late September.  

The spatiotemporal distributions of the overall flood risk illustrated that 

agricultural communities in the Shenandoah County were identified as the most 

vulnerable agricultural communities in most likely months to experience major flood 

hazards (September and October) in the Potomac River Watershed. Additionally, the 

agricultural communities in Hampshire, Shenandoah, and St Mary’s counties had high 

vulnerability levels to floods in different times of the year. To conclude, the socially 

vulnerable agricultural communities may experience severe flood damages only in 

specific times of the year. In most of the cases, the communities who may need extra 

support for adaptation vary throughout the year. Therefore, mitigation actions need to be 

planned based on both spatial and temporal distribution of the risk of flooding across 

agricultural communities.  

The second aim of the study was to quantify the urban compound flood risk in 

residential populations at three different scales to provide decision-makers robust 

information about both physical and social dimensions of risk in the Washington, DC 

metropolitan area. 41 different vulnerability factors were selected for urban population by 

both considering data availability and suitability to study area for census tract, group, and 

block scales. The compound flood hazard was evaluated for two different compound 

flood scenarios, which represent coastal surge and riverine flood with and without rainfall 

events. Flood depth information, which was acquired from the flood hazard module, was 

used for flood damage estimation for socioeconomic losses with HAZUS-MH. Then, 
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SOVI and exposure index were merged to introduce the Flood Socioeconomic 

Vulnerability Index (FSOEVI).   

 The Social Vulnerability Index (SOVI) was calculated and compared for each 

scale. The spatial distributions of socially vulnerable populations indicated similar results 

in each scale. The south-east of the study area was highlighted as more vulnerable. 

Generally, populations located in the inner city were more vulnerable than the ones 

located in suburbs and exurbs. This finding can be explained by the fact that the wealthier 

population, which were defined as more resilient to flood hazard, generally lives in 

suburbs and exurbs. Therefore, the populations in the inner city were found less resilient 

compared to suburbs and exurbs. However, there were some locations in the inner city 

with low levels of vulnerability. The multiscale comparison showed that block scale 

analysis was able to reveal more locations with high vulnerability levels. Thus, coarser 

scale analysis was not sensitive to capture the complexity of demographics and 

distributions of socioeconomic structure of the population in the metropolitan area.  

The findings of the Exposure Index showed that residential populations located in 

the south-west of the study area had more population vulnerable to compound flood. The 

general distribution of risk for the no rain scenario demonstrated that the populations 

located near the banks of the Potomac River were more vulnerable compared to other 

locations. For the compound flood event with significant rain, the risk was more 

distributed across the study area. Some hotspots with highly vulnerable populations were 

determined in DC, Arlington County, Alexandria City, and Fairfax County. Therefore, it 

can be concluded that distributions of the risk were significantly dependent on 
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characteristics of the compound flood event, which is inclusion of rainfall event in our 

case. The multiscale comparison suggest that block scale analysis was able to reveal more 

locations with high vulnerability levels. Thus, it is important to evaluate flood 

vulnerabilities in the finest scale in order to discover vulnerable locations in the 

metropolitan areas. Although planning for vulnerability reduction efforts were generally 

performed in coarser scales, there is a risk of not being able to capture all vulnerable 

populations. It can be concluded that flood vulnerability assessments in the finest scale 

aid decision makers to highlight additional locations with substantial vulnerability levels. 

To conclude, the study was aimed to quantify the different type of flood risks by 

combining physical and socio-economic dimensions on urban and agricultural 

populations. This objective was achieved by using tools including the comprehensive 

social vulnerability assessment, HAZUS-MH, and HEC-RAS 2D. All results 

aforementioned can help decision-makers, planners, and risk managers to quantify, 

observe, evaluate, and mitigate risk of flood on assets and communities better. The 

presented framework for the urban study can easily be applied in other coastal 

metropolitan areas in the U.S. For the agriculture framework, presented method can be 

performed in the states leading the agricultural economy in the U.S. such as California, 

Iowa, Texas, Nebraska to aid decision makers to plan mitigation efforts.  
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APPENDIX 

Appendix A 

The parameters used for flood urban vulnerability are shown in the Table 9. 

 

Table 9A1 SOVI parameters for urban SOVI 

Parameter/Correlation Definition References 

PerFem (+) 
% Female 

population 

(Cutter et al. 2003; Fekete 2009; Cutter et al. 2012; van Zandt et 

al. 2012; Rufat et al. 2015; Remo et al. 2016; Fernandez et al. 

2016; Roder et al. 2017; Gu et al. 2018; Rufat et al. 2019; 

Pricope et al. 2019; Chakraborty et al. 2020; Khajehei et al. 

2020; Medina et al. 2020) 

PerSensAge (+) 

% age 5 

years and 

under& 65 

years and 

over 

(Clark et al. 1998; Cutter et al. 2003; Fekete 2009; Cutter et al. 

2012; van Zandt et al. 2012; Felsenstein and Lichter 2014; 

Bergstrand et al. 2015; KC et al. 2015; Rufat et al. 2015; Remo 

et al. 2016; Roder et al. 2017; Schuster-Wallace et al. 2018; Gu 

et al. 2018; Rufat et al. 2019; Pricope et al. 2019; Chakraborty et 

al. 2020; Khajehei et al. 2020; Medina et al. 2020) 

MedAge (-) Median Age 

(Cutter et al. 2003; Bergstrand et al. 2015; Fernandez et al. 

2016; Fatemi et al. 2017; Rasch 2017; Rufat et al. 2019; 

Chakraborty et al. 2020; Khajehei et al. 2020) 

PerBlack (+) 

% African 

American 

population 

(Clark et al. 1998; Cutter et al. 2003, 2012; van Zandt et al. 

2012; Bergstrand et al. 2015; KC et al. 2015; Rufat et al. 2015; 

Remo et al. 2016; Rufat et al. 2019; Pricope et al. 2019; 

Chakraborty et al. 2020; Khajehei et al. 2020) 

PerAs (+) 
% Asian 

population 

(Clark et al. 1998; Cutter et al. 2003, 2012; van Zandt et al. 

2012; Bergstrand et al. 2015; KC et al. 2015; Rufat et al. 2015; 

Remo et al. 2016; Rufat et al. 2019; Pricope et al. 2019; 

Chakraborty et al. 2020; Khajehei et al. 2020) 

PerAm (+) 

% Native 

American 

population 

(Clark et al. 1998; Cutter et al. 2003, 2012; van Zandt et al. 

2012; Bergstrand et al. 2015; KC et al. 2015; Rufat et al. 2015; 

Remo et al. 2016; Rufat et al. 2019; Pricope et al. 2019; 
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Parameter/Correlation Definition References 

Chakraborty et al. 2020; Khajehei et al. 2020) 

PerHaw (+) 

% Native 

Hawaiian 

population 

(Cutter et al. 2012; van Zandt et al. 2012; KC et al. 2015; Rufat 

et al. 2015; Remo et al. 2016; Pricope et al. 2019; Chakraborty 

et al. 2020) 

PerHis (+) 
% Hispanic 

population 

(Clark et al. 1998; Cutter et al. 2003; van Zandt et al. 2012; 

Bergstrand et al. 2015; KC et al. 2015; Rufat et al. 2015; Remo 

et al. 2016; Rufat et al. 2019; Pricope et al. 2019; Chakraborty et 

al. 2020; Khajehei et al. 2020) 

PerFemEmp (+) 
% Female 

Employment 

(Cutter et al. 2003; Bergstrand et al. 2015; Chakraborty et al. 

2020; Khajehei et al. 2020) 

PerPop12thGrade (+) 

% Adult 

educational 

attainment 

less than 12th  

(Clark et al. 1998; Cutter et al. 2003; Fekete 2009; van Zandt et 

al. 2012; Bergstrand et al. 2015; KC et al. 2015; Fernandez et al. 

2016; Schuster-Wallace et al. 2018; Gu et al. 2018; Rufat et al. 

2019; Chakraborty et al. 2020; Khajehei et al. 2020; Medina et 

al. 2020) 

PerIncom (-) 
Per capita 

income 

(Clark et al. 1998; Cutter et al. 2003; KC et al. 2015; Roder et 

al. 2017; Rufat et al. 2019; Khajehei et al. 2020) 

PerUnemp (+) 
% 

Unemployed 

(Cutter et al. 2003; van Zandt et al. 2012; KC et al. 2015; 

Fernandez et al. 2016; Roder et al. 2017; Khajehei et al. 2020; 

Medina et al. 2020) 

PerPopPov (+) 

% 

Population 

under 

poverty level 

(Cutter et al. 2003; van Zandt et al. 2012; Bergstrand et al. 2015; 

KC et al. 2015; Fatemi et al. 2017; Rufat et al. 2019; 

Chakraborty et al. 2020; Khajehei et al. 2020) 

PerHouPov (+) 

% 

Households 

under the 

poverty level 

(Cutter et al. 2003; van Zandt et al. 2012; Bergstrand et al. 

2015) 

PerDis (+) 
% Disabled 

population 

(Clark et al. 1998; Bergstrand et al. 2015; Rufat et al. 2015, 

2019; Pricope et al. 2019; Chakraborty et al. 2020) 

PerDiswpov (+) 

 

% Disabled 

population 

below 

poverty level 

(Bergstrand et al. 2015; Rufat et al. 2019; Chakraborty et al. 

2020) 

PerNoVehic (+) 

% Housing 

without 

vehicle 

(van Zandt et al. 2012; Felsenstein and Lichter 2014; Bergstrand 

et al. 2015; Rufat et al. 2019; Chakraborty et al. 2020; Khajehei 

et al. 2020; Medina et al. 2020) 
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Parameter/Correlation Definition References 

Incless35K (+) 

% 

Population 

earning less 

than 35K in 

the last 12 

months 

(Cutter et al. 2003; Remo et al. 2016) 

Incless40K (+) 

% 

Population 

earning less 

than 40K in 

the last 12 

months 

(Cutter et al. 2003; Remo et al. 2016) 

PerwthoutEarn (+) 

% 

Population 

without 

earnings 

(Remo et al. 2016) 

MedHouInc (-) 

Median 

household 

income 

(Thakuy et al. 2011; Schuster-Wallace et al. 2018) 

AggInc (-) 
Aggregate 

Income 
(Thakuy et al. 2011; Schuster-Wallace et al. 2018) 

PerNoHealth (+) 

% 

Population 

without 

health 

insurance 

(Bergstrand et al. 2015) 

PerAsis (+) 

% 

Population 

with Food 

Stamp 

assistance 

(Fatemi et al. 2017; Roder et al. 2017) 

PerVac (-) 
% Vacant 

housing 
(Remo et al. 2016; Rufat et al. 2019; Medina et al. 2020) 

PerMob (+) 
% Mobile 

housing 

(Cutter et al. 2003, 2012; van Zandt et al. 2012; KC et al. 2015; 

Fatemi et al. 2017; Rufat et al. 2019; Khajehei et al. 2020) 

PerRent (+) 
% Renters 

occupied 

(Fekete 2009; van Zandt et al. 2012; Bergstrand et al. 2015; KC 

et al. 2015; Remo et al. 2016; Fernandez et al. 2016; Gu et al. 

2018; Rufat et al. 2019; Pricope et al. 2019) 
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Parameter/Correlation Definition References 

MedVal (-) 
Median 

house value 

(Clark et al. 1998; Cutter et al. 2003, 2012; Bergstrand et al. 

2015; Fatemi et al. 2017; Rufat et al. 2019; Khajehei et al. 2020) 

AvgValue (-) 
Average 

home value 

(Clark et al. 1998; Cutter et al. 2003, 2012; Bergstrand et al. 

2015; Fatemi et al. 2017; Rufat et al. 2019; Khajehei et al. 2020) 

MedGrossRent (-) 
Median 

gross rent 

(Clark et al. 1998; Cutter et al. 2003; Bergstrand et al. 2015; 

Rufat et al. 2019; Khajehei et al. 2020) 

AvgCashRen (-) 
Average 

cash rent 

(Clark et al. 1998; Cutter et al. 2003; Bergstrand et al. 2015; 

Rufat et al. 2019; Khajehei et al. 2020) 

PerLimEng (+) 

% speaking 

English as a 

second 

language 

with limited 

English 

proficiency  

(van Zandt et al. 2012; Bergstrand et al. 2015; KC et al. 2015; 

Rufat et al. 2015; Fatemi et al. 2017; Chakraborty et al. 2020) 

PerRatInctoPov (+) 

% 

Population 

Ratio of 

Income to 

Poverty 

level less 

than 1.0  

(Clark et al. 1998; Chakraborty et al. 2020) 

GINI (+) GINI Index (Thakuy et al. 2011; Felsenstein and Lichter 2014; Rasch 2017) 

PerwthoutSocSec (+) 

% 

Population 

no social 

security 

income 

(Cutter et al. 2003; Bergstrand et al. 2015; Rufat et al. 2015; 

Fatemi et al. 2017; Khajehei et al. 2020) 

PerFemHou (+) 

% Female 

headed 

householders 

(Cutter et al. 2003; Rufat et al. 2019; Khajehei et al. 2020) 

PerFemHouAlo (+) 

% Female 

headed 

householders 

living alone 

(Schuster-Wallace et al. 2018; Gu et al. 2018; Chakraborty et al. 

2020) 

PerFemHwChild (+) 
% Female 

householder 

with 

(van Zandt et al. 2012; Bergstrand et al. 2015; Roder et al. 2017) 
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Parameter/Correlation Definition References 

children 

PerChilwFam (-) 

% Children 

living with 

family 

(van Zandt et al. 2012; Bergstrand et al. 2015; Roder et al. 2017) 

PerServ (-) 

% 

Population 

works in 

service 

industry 

(Cutter et al. 2003; Bergstrand et al. 2015; Rufat et al. 2019; 

Khajehei et al. 2020) 

PerExtrac (-) 

% 

Population 

works in 

extractive 

industry 

(Clark et al. 1998; Cutter et al. 2003; Bergstrand et al. 2015; 

Rufat et al. 2019; Khajehei et al. 2020) 
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