
LATENT VARIABLE MODELS OF SEQUENCE DATA FOR
CLASSIFICATION AND DISCOVERY

by

Samuel J. Blasiak
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial ful�llment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Huzefa Rangwala, Dissertation Director

Dr. Daniel Barbara, Committee Member

Dr. Carlotta Domeniconi, Committee Member

Dr. Kathryn B. Laskey, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, The Volgenau
School of Engineering

Date: Fall Semester 2013
George Mason University
Fairfax, VA

Latent Variable Models of Sequence Data for Classi�cation and Discovery

A dissertation submitted in partial ful�llment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Samuel J. Blasiak
Master of the Arts

Brandeis University, 2006
Bachelor of the Arts

Colorado College, 2004

Director: Dr. Huzefa Rangwala, Professor
Department of Computer Science

Fall Semester 2013
George Mason University

Fairfax, VA

Copyright c© 2013 by Samuel J. Blasiak
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my parents, Jim and Mimi.

iii

Acknowledgments

I am deeply grateful to my advisor, Dr. Huzefa Rangwala, for all his help during my PhD
studies. Dr. Rangwala consistently provided me with guidance and encouragement even
when it seemed like my work was not going well. I also especially want to Dr. Kathryn
Laskey for her support through weekly meetings, for her attention to detail, and for the
valuable advice that helped to improve the work going into this dissertation. Finally, I would
like to thank my parents, siblings, family, and friends for their support and encouragement
during my studies.

iv

Table of Contents

Page

List of Tables . ix

List of Figures . xii

Abstract . xviii

1 Introduction . 1

1.1 Contributions . 3

2 Background . 6

2.1 Hidden Markov Models . 6

2.1.1 Pro�le HMMs . 9

2.2 Sequence Classi�cation . 11

2.3 Inference and Optimization Methods . 13

2.3.1 Variational Inference . 13

2.3.2 Stochastic Gradient Descent . 16

2.4 Datasets and Evaluation . 18

3 A Hidden Markov Model Variant for Sequence Classi�cation 20

3.1 Problem Statement . 21

3.1.1 Model Description . 21

3.1.2 A simple example . 24

3.1.3 Another interpretation . 24

3.2 Background . 25

3.2.1 Topic Models . 26

3.3 Learning the model parameters . 27

3.3.1 Baum-Welch . 27

3.3.2 Gibbs Sampling . 29

3.3.3 Variational Algorithm . 30

3.4 Experimental Setup . 33

3.4.1 Protein Datasets . 33

3.4.2 Synthetic Datasets . 34

3.4.3 Evaluation Metrics . 35

3.5 Results and Discussion . 35

v

3.5.1 Synthetic Results . 37

3.5.2 Analysis of Inference Algorithms . 37

3.5.3 Comparison with Existing Protein Classi�cation Methods 42

3.5.4 Number of Hidden States . 43

3.5.5 Higher Order Models . 44

3.6 Conclusion . 45

4 The In�nite Pro�le Hidden Markov Model . 47

4.1 Introduction . 47

4.2 Background . 48

4.2.1 Pro�le HMMs . 49

4.3 The In�nite Pro�le HMM . 50

4.3.1 The Geometric Transition HMM . 55

4.4 Inference . 58

4.4.1 Beam Methods . 60

4.5 Experiments . 64

4.5.1 Synthetic Data . 66

4.5.2 SCOP Datasets: Uniform Initialization 68

4.5.3 SCOP Datasets: MSA initialization . 68

4.6 Conclusion . 71

5 Local Pro�le HMMs for Classi�cation . 74

5.1 Introduction . 74

5.2 Background . 75

5.2.1 Sigmoid Belief Networks . 75

5.3 Local Pro�le Hidden Markov Models . 77

5.3.1 Combined Models using SL-pHMMs 81

5.4 Sequence Classi�cation with Combinations of SL-pHMMs 85

5.4.1 Inference . 86

5.4.2 Experimental Analysis: Classifying Synthetic Sequences 87

5.5 Conclusions . 91

6 Relevant Subsequence Detection with Sparse Dictionary Learning 93

6.1 Background: Sparse Dictionary Learning . 94

6.1.1 Least Angle Regression (LARS) for RS-DL 95

6.2 Relevant Subsequence Dictionary Learning . 99

6.2.1 E�ciently running the LARS algorithm with RS-DL 100

6.2.2 Modi�cation and Related Work . 103

6.3 Relationship to Hidden Markov Models . 105

vi

6.4 Experiments . 106

6.4.1 Datasets . 107

6.4.2 Finding Motifs in Synthetic Sequences 107

6.4.3 Motifs in Time-Series Data . 109

6.4.4 Motifs in Text Data . 110

6.4.5 Classi�cation Experiments . 111

6.5 Conclusions . 113

7 A Family of Feed-forward Models for Protein Sequence Classi�cation 118

7.1 Background . 118

7.1.1 Neural Networks . 119

7.2 Sequence Classi�cation with Subsequence Networks 120

7.2.1 Pair-SSMs . 121

7.2.2 Local SSM (L-SSM) . 123

7.2.3 Simpli�ed Local SSM (SL-SSM) . 124

7.2.4 Subsequence Network Objective Function 126

7.2.5 Training Subsequence Networks . 128

7.3 Experiments . 130

7.3.1 Comparative Classi�ers . 130

7.3.2 Models and Parameters . 131

7.3.3 Evaluation Metrics . 132

7.3.4 Synthetic Experiments . 132

7.3.5 Parameter Adjustment . 133

7.3.6 Protein Classi�cation Experiments . 134

7.4 Conclusions . 136

8 Conclusions and Future Work . 137

8.1 Future Directions . 138

A Variational Algorithm for the HMM Variant . 140

A.1 HMM Variant Probability . 141

A.1.1 Mean Field Variational Approximation 141

A.1.2 Expectations . 142

A.1.3 Maximize F (q) with respect to γ̃i . 144

A.1.3.1 Maximize F (q) with respect to α̃nij 145

A.1.3.2 Maximize F (q) with respect to β̃im 146

A.1.3.3 Maximize F (q) with respect to hnti 147

B In�nite pHMM Derivations . 149

vii

B.1 Variational Bound . 149

B.2 Auxiliary Variable Beam Method . 150

B.2.1 Maximum with respect to q(ut) . 150

B.2.2 Maximum with respect to q(zt−1) . 151

C Variational Inference for the Joint SL-pHMM Models 154

C.1 Switching Model . 154

C.1.1 Variational EM algorithm (Training Phase) 156

C.1.2 Variational EM algorithm (Prediction Phase) 157

C.1.3 Compute the maximum with respect to q(sn) 158

C.1.4 Compute the maximum with respect to q(tn,c) 159

C.1.4.1 Compute the maximum with respect to the switching tran-

sition distributions, A
(s)
c . 160

C.1.4.2 Compute the maximum with respect to the emissions, Bc,k . 161

C.2 Factorial Model . 162

C.2.1 Variational EM algorithm (Training) 163

C.2.2 Variational EM algorithm (Training) 164

C.2.3 Compute the maximum with respect to q(tn,c) 164

C.2.4 Compute the maximum with respect to wc 170

C.3 Sigmoid Belief Network . 173

C.3.1 Compute the maximum with respect to q(en,c) 174

C.3.2 Compute the maximum with respect to q(en,c) on the test set 176

C.3.3 Maximize with respect to v(1) . 176

C.3.4 Maximize with respect to v(2) . 178

Bibliography . 180

viii

List of Tables

Table Page

2.1 Description of HMM parameters . 7

3.1 HMM Variant model parameters . 22

3.2 Datasets used to evaluate the HMM variant's ability to classify protein se-

quences. 30

3.3 AUC results from all of the multi-class SVM experiments are displayed. The

best performing algorithm, the best performing setting of K, and the best

combination of K and algorithm is marked in bold. The Gibbs-Sampling-

derived representation most frequently returned the most accurate level of

classi�cation on the majority of the datasets. 38

3.4 AUC results on the SCOP 1.53 Fold dataset over a selected set of 23 superfam-

ilies using Gaussian and linear kernels in one-versus-rest SVM classi�cation. 39

3.5 AUC results from all synthetic data experiments averaged over 10 trials. For

each HMM variant, the number of hidden states is 2. Counts of substrings

of length 2 were used to construct the spectrum kernel. The best performing

entry is marked in bold. 39

3.6 A comparison of results between the Spectrum kernel and the HMM variant

under experiments using the multiclass SVM formulation. The HMM variant

scores are the best performing from Tables 3.3 and 3.4. 43

3.7 A selection of AUC scores using a variety of SVM kernels on the same dataset

(see [1] for details on additional kernel methods). The HMM variant scores

averages over �ve trials from representations derived from Gibbs sampler in-

ference with 20 hidden states. 43

4.1 Parameter de�nitions for the Pro�le Hidden Markov Model 49

4.2 Additional parameter de�nitions for the 2S-HMM 51

4.3 Parameter de�nitions for the GT-HMM . 55

4.4 Pro�le HMMs used to generate synthetic datasets. 65

ix

4.5 The charts above show a comparison of test-set perplexities (a) and run

times (b) between inference using our beam methods and the standard (no

beam) forward-backward method on sets of synthetic datasets. �Narrow,�

�medium,� and �wide� indicate threshold settings of ε =
[
10−2, 10−3, 10−4

]

and θ̃ =
[
10−16, 10−17, 10−18

]
, where ε indicates the KL divergence beam

threshold and θ̃ indicates the auxiliary variable threshold. 66

4.6 The charts above show comparisons of average test-set perplexities (a) and

convergence times (b) between the beam method and the standard (no beam)

forward-backward inference averaged over all folds and categories of our SCOP

1.75 dataset. Inference was initialized with uniform expected transition and

emission distributions. �Narrow,� �medium,� and �wide� indicate threshold

settings of ε =
[
10−2, 10−3, 10−4

]
and θ̃ =

[
10−16, 10−17, 10−18

]
, where ε

indicates the KL divergence beam threshold and θ̃ indicates the auxiliary

variable threshold. 70

4.7 The charts above show comparisons of average test-set perplexities between

our beam methods, the standard (no beam) forward-backward, and the MSA-

derived pHMM for 26 superfamilies of the SCOP 1.75 dataset. Bolded num-

bers indicate experiments where a test perplexity from the inferred pHMM

was lower than that of the MSA-derived pHMM on the same category. In-

ference was initialized using the MSA-induced pHMM. �Narrow,� �medium,�

and �wide� indicate threshold settings of ε =
[
10−2, 10−3, 10−4

]
and θ̃ =

[
10−16, 10−17, 10−18

]
, where ε indicates the KL divergence beam threshold

and θ̃ indicates the auxiliary variable threshold. 71

4.8 The charts above show comparisons of average convergence times in seconds

between our beam methods, the standard (no beam) forward-backward for 26

superfamilies of the SCOP 1.75 dataset. Inference was initialized using the

MSA-induced pHMM. �Narrow,� �medium,� and �wide� indicate threshold

settings of ε =
[
10−2, 10−3, 10−4

]
and θ̃ =

[
10−16, 10−17, 10−18

]
, where ε

indicates the KL divergence beam threshold and θ̃ indicates the auxiliary

variable threshold. 72

5.1 Description of parameters for combined pHMM models. 80

6.1 Relevant Subsequence Dictionary Learning parameters 102

x

6.2 Classi�cation results using RS-DL features on the UCR Time Series datasets.

The �Sequence�, �DTW�, and �RS-DL� columns give error rates from the one-

nearest-neighbor algorithm using the Euclidean distance between sequences,

Dynamic Time Warping scores, and Euclidean distance between RS-DL fea-

tures respectively. RS-DL features improved the classi�cation error for four

out of �ve UCR datasets. 113

7.1 Subsequence Network parameters . 126

7.2 The table above describes the composition of each layer in the Subsequence

Network and gives an expression for the Jacobian with respect to the layer's

input. The values of each layer are given by the vector f (h) for hidden layer h.

The Jacobian of the �rst layer (Conv) with respect to the input is not used

during inference. 127

7.3 Datasets Sizes - # Train indicates the average number of sequences in the

training set over all categories, # Test indicates the average number of test

set sequences, and # Categories indicates the number of one-versus-rest clas-

si�cation problems de�ned by the dataset. 130

7.4 Average ROC results for di�erent settings of the SL-SSM network on the

FD dataset. ROCs were averaged over ten independent trials initialized with

random pattern weights. When varying the number of SL-SSM hidden states

in (a), 96 SL-SSMs were used in the network. In (b), 11 hidden states were

used for each SL-SSM when varying the number of SL-SSMs. 134

7.5 AUC results for the FD and SF datasets (a) and the EC and GO datasets (b).

Because our model is non-convex, we report means and standard deviations

of AUCs from multiple starting points in the SSM weight space. Ten trials

were averaged for both the L-SSM and SL-SSM models for both structural

and functional datasets. Due to the length of Pair-SSM network's runtime,

we report results from only a single trial. 136

C.1 Parameter de�nitions . 155

xi

List of Figures

Figure Page

2.1 The dependency structure of the Hidden Markov Model. 7

2.2 A portion of the HMM's lattice used for the Viterbi and forward-backward

algorithms. The horizontal dimension represents elements in the sequence

and the vertical dimension hidden state values. A forward computation is

associated with each node in the graphs, and edges indicate which terms take

place in the computation. 9

2.3 The pHMM's underlying Deterministic Finite-state Automaton (DFA) [2]:

Match states are represented with a white background, Insert states by light

gray, and Delete states by dark gray. A path through the DFA generates

a sequence of observed symbols. In many pHMM constructions, transitions

to the �nal state of the model (not pictured) can occur only from states

{(M,K) , (I,K) , (D,K)}. In the model described in Chapter 4, any Match

or Insert state can transition to the �nal state. 10

2.4 An example of the SCOP hierarchy of protein structural categories. 19

3.1 Plate diagrams of the (a) LDA model, expanded to show each word separately,

the (b) Hidden Topic Markov Model, and the (c) HMM variant. 27

3.2 A comparison of AUC plots for the Baum Welch algorithm for K = 10 on

the SCOP 1.67, 25% fold recognition dataset (25 classes) over a set of 10

parameters learned through randomly initialized Baum-Welch runs. From the

plots, we can see that the variance of the classi�cation of individual results can

be high, especially for the classes with a small number of examples. However,

there was a comparatively smaller amount of variation (∼ 3%) in the average

AUC score over all classes. 36

3.3 Histogram of the transition matrix associated with the �rst sequence of the

synthetic dataset. The matrix entries have two modes at either end of the

probability distribution. 40

xii

3.4 Histogram of the transition matrix associated with the �rst sequence of the

SCOP 1.67 dataset with 25% Astral �ltering. Modes of the distribution are

more evenly distributed compared to the synthetic data transition matrices. 41

3.5 The original emission matrix used to generate the synthetic dataset (a) com-

pared to typical emission matrices inferred the synthetic dataset using the

Baum-Welch (b), Gibbs Sampling (c), and variational (d) algorithms. The

charts in the �rst column show the �rst row of the matrix and the second

column shows the second row of the matrix. 46

4.1 (a) The plate diagram of the in�nite pHMM, and (b) the generative process

for the in�nite pHMM. Note that emission and transition probabilities are

from the GT-HMM. We use �:� symbols in subscripts as in Matlab nota-

tion, indicating a vector or matrix with all possible values of the replaced

parameter. 56

4.2 A section of the two-dimensional lattice used for GT-HMM inference showing

transitions used to compute the forward recurrence for state (M,k) for posi-

tion t in the sequence. Unlike the pHMM, the GT-HMM no longer includes

Delete states. In addition, transitions have been added from all states in

column t− 1 to states in column t with larger values of k. 58

4.3 The lattice used for pHMM inference. Observed sequences are generated by

paths of hidden states through the graph. Transitions marked in red indicate

a potential beam of highly probable paths within the total set of possible

paths. Match, Insert, and Delete states are merged for clarity. 61

4.4 A set of heat maps generated at 20-step intervals during inference on the

pHMMI dataset for a variety of beam settings. Each cell in the heat map

indicates the expectation that either a Match or Insert state with parameter

k (row index) generated the observed symbol at position t (column value) in

the heat map. Darker colors indicate higher values, and red indicates that a

hidden state was excluded from the beam. 67

xiii

4.5 (a) Shows a comparison of rates of improvement of the variational bound

between the beam algorithms using the three separate thresholds and the

standard (no-beam) forward-backward algorithm. As the beam threshold de-

creases, inference speed increases. All beam settings converge faster than the

no-beam method. (b) Shows detail for the beam methods. Unlike the non-

beam method, each iteration of beam inference is not guaranteed to increase

the variational bound. Both graphs show inference on superfamily a.39.1

from the SCOP 1.75, 95% dataset. �Narrow,� �medium,� and �wide� indicate

threshold settings of ε =
[
10−2, 10−3, 10−4

]
and θ̃ =

[
10−16, 10−17, 10−18

]
,

where ε indicates the KL divergence beam threshold and θ̃ indicates the aux-

iliary variable threshold. 69

5.1 A diagram illustrating the dependency structure of the basic Sigmoid Belief

Network. 78

5.2 Finite State Automata describing transitions between hidden states in the

L-pHMM (a) and the SL-pHMM (b). The Match hidden state for the kth

position of the relevant subsequence is indicated by the pair (M,k). Insert

hidden states are indicated by (I, k), within the relevant subsequence and

(I, Start) and (I,End) outside of it. Delete hidden states, (D, k), allow the

model to skip the kth Match hidden state. 81

5.3 This �gure shows a plate diagram depicting the dependency structure of the

Switching SL-pHMM. C separate SL-pHMMs contribute toward generating

an observed sequence. For each position, t, in observed sequence xn, a switch-

ing variable sn,t selects the SL-pHMM used to generate the observed symbol

xn,t. 82

5.4 An illustration of the feature vector, φ(x). The vector is composed of K

indicator vectors, each describing an observed symbol the relevant subsequence. 85

xiv

5.5 Average area under the ROC curve (AUC) on synthetically generated test set

data. Results for the Joint Switching SL-pHMM are given in (a) while results

for the Joint Factorial SL-pHMM are given in (b). Each graph shows the

variation in AUC as the number of training set examples increases. Di�erent

graphs show results from models with di�erent numbers of constituent SL-

pHMMs (indicated by C). Individual lines in each graph indicate di�erent

values of the regularization parameter. For the switching model, we varied

the Dirichlet prior parameter on the emissions distributions, β, while for the

factorial model, we varied, λw, the precision parameter on the weights, w. . . 91

6.1 The �gure above illustrates the Relevant Subsequence Dictionary Learning

setup. The matrix Wn is constructed from the weights vc,k in C blocks so

that the relevant subsequence patterns given by each vc,: are arranged to

create dictionary elements (columns of Wn) that cover every K length sub-

sequence of the sequence xn (illustrated in blue). White areas of the Wn

matrix are set to zero. The vector αn is L1-regularized to select a small num-

ber of dictionary columns associated with positioned relevant subsequences

patterns. The αn-weighted sum of these positioned relevant subsequences

patterns approximates xn. 101

6.2 The diagram above illustrates example hidden state assignments for the Fac-

torial SL-pHMM. Sequences of SL-pHMM Match states are indicated by blue

nodes with the text �Mk,� indicating the kth Match state. Insert states are

indicated by white-colored nodes with the text �I.� SL-pHMM transition

probabilities are de�ned so that only a single sequence of Match states per

individual SL-pHMM can occur. For a Factorial SL-pHMM with Gaussian

emission distributions, hidden states are associated with di�erent weights

which are summed over the C constituent SL-pHMMs (vertically in the di-

agram) to obtain the mean parameter used to generate the appropriate ob-

served sequence element (in gray). 106

xv

6.3 (a) The graphs in the left-hand �gure depict precision and recall over 20

runs of the RS-DL model on a synthetic dataset. As the L1-regularization

term, λ, increases, fewer motifs are returned, leading to a drop in both recall

and precision. As the length of the relevant subsequence patterns increase,

precision and recall tend to increase. (b) Recovered α coe�cients (left side

of Figure b) and associated subsequences (right) from a low-error run (the

run with the smallest MSE out of 20 random initializations) of the RS-DL

algorithm on the synthetic dataset. The low-error run gave a precision of

0.7 (with an α cuto� of 0) and a recall of 1.0. The number of relevant

subsequences patterns, C, in the model was set to four, while the number

of ground truth motifs was three. Consistent with the ground truth, the

model only used three relevant subsequences patterns to reconstruct the data.

Incorrectly discovered motifs are depicted in red. 109

6.4 A plot of the relevant subsequences patterns (upper plots) associated with

the largest 50 coe�cients of the vector α that were learned by RS-DL to

approximate the ECG sequence (bottom plot, blue line). Only 3 out of the

15 possible relevant subsequence patterns appear in this set of 50. Rele-

vant subsequence patterns learned by RS-DL are strongly associated with

human-identi�able patterns in the sequence. The �gure also shows that the

approximation learned by RS-DL (bottom plot, green line) is very similar to

the original sequence with an MSE of 0.98. The RS-DL approximation is

o�set by −1 on the y-axis to aid in presentation. 115

6.5 The �gure above shows motifs discovered by the RS-DL model in the As-

sociated Press corpus. It lists the top 15 motifs by α coe�cient of the top

four (out of ten possible) relevant subsequence patterns. Motifs found by RS-

DL have, in general, captured sets of semantically coherent phrases. Motifs 1

and 2 contain phrases including organization and noun/concept phrases while

Motifs 2 and 4 contain phrases including a person and occupation descriptions. 116

xvi

6.6 Figures a, b, and c above show the top two (by α value) relevant subse-

quence patterns that approximate positive (bottom blue) and negative cat-

egory (bottom red) sequences in the ECGFiveDays, TwoLeadECG, and our

synthetically-generated Bumps datasets respectively. For each of these datasets,

RS-DL features improve classi�cation performance by picking out similarly

shaped subsequences from di�erent dataset categories. Classi�cation perfor-

mance improves because class distinctions occur in minor variations in the

major trends captured by RS-DL. After processing by RS-DL, these minor

variations can more easily be distinguished by standard classi�cation algorithms.117

7.1 A diagram illustrating a Subsequence Network being applied to an input

sequence. In the bottom row of the network, the maximum of the scores

from each SSM are taken over the input sequence. The Conv layer is de�ned

by a score from an SSM. In the second row, a squashing function is applied

to the maximum SSM scores. The third row computes the distance of these

squashed scores from hyperplanes used to de�ne boundaries between sequence

categories. Finally, the loss function compares the category given by the

hyperplane to the true sequence category. 121

7.2 A diagram of the deterministic �nite-state automaton associated with (a)

the Pair-SSM (b) the Local SSM (L-SSM) and (c) the Simpli�ed Local SSM

(SL-SSM). Match states are indicated with a white background, Insert states

with a light-gray background, and Delete states with a dark-gray background. 123

7.3 The �gures above show responses from each of the 48 unnormalized SL-SSMs

over each length 7 subsequence for a sequence generated from the positive class

(a) and the negative class (b). The positive example contains all three relevant

subsequences while the negative example contains only one relevant sequence.

The �rst 24 SL-SSMs (top half both �gures) were constrained to be associated

with the positive category, while the last 24 were constrained to be associated

with the negative category. The heat maps show that sets of positive SL-

SSMs have adapted to each of the three relevant subsequences in the synthetic

dataset - both the three relevant subsequences in the positive example and the

one relevant subsequence in the negative example were detected by subsets

of the �rst 24 SL-SSMs. In contrast, SL-SSMs associated with the negative

category learn a background distributions of symbols. 133

A.1 Parameters used in the mean �eld variational algorithm 140

xvii

Abstract

LATENT VARIABLE MODELS OF SEQUENCE DATA FOR CLASSIFICATION AND
DISCOVERY

Samuel J. Blasiak, PhD

George Mason University, 2013

Dissertation Director: Dr. Huzefa Rangwala

The need to operate on sequence data is prevalent across a range of real world appli-

cations including protein/DNA classi�cation, speech recognition, intrusion detection, and

text classi�cation. Sequence data can be distinguished from the more-typical vector repre-

sentation in that the length of sequences within a dataset can vary and that the order of

symbols within a sequence carries meaning. Although it has become increasingly easy to

collect large amounts of sequence data, our ability to infer useful information from these

sequences has not kept pace. For instance, in the domain of biological sequences, experi-

mentally determining the order of amino acids in a protein is far easier than determining

the protein's physical structure or its role within a living organism. This asymmetry holds

over a number of sequence data domains, and, as a result, researchers increasingly rely on

computational techniques to infer properties of sequences that are either di�cult or costly

to collect through direct measurement. The methods I describe in this dissertation attempt

to mitigate this asymmetry by advancing state-of-the-art techniques for extracting useful

information from sequence data.

This thesis explores a number of models over sequence data. These models were designed

to produce alternate representations of sequences that distill relevant information, making

them both easier to process with traditional machine-learning tools and potentially improv-

ing on benchmarks over standard inference tasks such as classi�cation and motif �nding.

The �rst model I discuss in this thesis combines two types of statistical models, topic

models and the Hidden Markov Model, in a novel way. Topic models, like Latent Dirichlet

Allocation, make the simplifying assumption that words in a document are independently

generated, while Hidden Markov Models assume a pairwise dependency over adjacent el-

ements of a sequence. Our Hidden Markov Model Variant adds the pairwise dependency

assumption back into the topic modeling structure. This structural change allows the HMM

Variant to be used to extract �xed length representations of variable length sequences by

accumulating statistics from the latent portions of the model. These �xed length represen-

tations can then be used as input to any number of standard machine learning algorithms

that need �xed-length vector inputs. We show that these representations perform well for

classifying protein sequences in conjunction with a support vector machine classi�er.

The second model discussed in this thesis is an extension of the Pro�le HMM, a version

of the Hidden Markov Model commonly used to represent biological sequences. Our In�nite

Pro�le HMM modi�es the basic Pro�le HMM to allow an in�nite number of hidden states.

To run inference given this in�nite set of hidden states, we introduce a transformation of

the model's hidden state space. This transformation allows us to compute an approximate

marginal probability using only a �nite amount of space by pruning low-probability con�g-

urations from the joint distribution. Our inference method not only allows inference for the

in�nite model but also signi�cantly increases the speed of inference in the standard Pro�le

HMM.

This thesis also covers methods to combine structure from multiple Pro�le HMMs. To

accomplish this task, we �rst simplify the Pro�le HMM into a model that we call the

Simpli�ed Local Pro�le HMM (SL-pHMM). Two separate strategies can be used to combine

multiple SL-pHMMs into a uni�ed probabilistic model over sequences. The �rst strategy

uses a separate �switching variable� for each element of a sequence. This switching variable

selects which individual SL-pHMM generates an associated sequence element. The second

strategy, which we call the Factorial SL-pHMM, constructs

probability distributions over individual sequence elements using a linear combination of the

SL-pHMM hidden states. These strategies can then be further combined with a distribution

over sequence labels, allowing the model to both generate sequence elements and the se-

quence label. We show that both of these strategies are e�ective for classifying synthetically-

generated sets of sequences.

An extension of the Factorial SL-pHMM involves relaxing the hidden state space of

the SL-pHMM to a continuous domain. If we place a regularizer that encourages spar-

sity on this new continuous space, then the new model shares many characteristics with

a set of techniques frequently used in computer vision known as Sparse Dictionary Learn-

ing. This relaxation is the basis of our Relevant Subsequence Sparse Dictionary Learning

(RS-DL) model. Applied to continuous sequences, RS-DL is e�ective at extracting human-

recognizable motifs. In addition, subsequences extracted using RS-DL can improve on classi-

�cation performance over standard nearest neighbor and dynamic time warping techniques.

The �nal contributions of this work involve incorporating Hidden Markov Model struc-

ture into a family of purely discriminative models. We call these models Subsequence Net-

works, and they operate by incorporating Pro�le HMM and Pair HMM structure into the

lower level of a neural network. This structure is similar to convolutional neural networks,

which have garnered state-of-the-art results in a number of tasks in computer vision. Subse-

quence Networks are competitive with state-of-the-art sequence Kernel methods for protein

sequence classi�cation but use a signi�cantly di�erent mode of operation.

Chapter 1: Introduction

In recent years, it has become increasingly easy to extract and store digital representations

of sequence and time-series data. The pace of this collection is often far faster than our

progress in making sense of this data. The methods I describe in this dissertation attempt

to advance the state-of-the-art in understanding sequence data, focusing mainly on biological

sequences.

Although large amounts of sequence data is available in public databases, extracting

useful information from this data can be di�cult. In the domain of protein sequences,

for instance, determining characteristics such as a protein's physical structure or its role

within a living organism remains di�cult. As a result, biologists, as well as other domain

experts, increasingly rely on computational techniques to infer important properties from

raw sequence information.

Sequence data is not easily accepted by standard machine-learning algorithms which op-

erate on sets of vectors. Unlike vector representations, sequences vary in length, and the or-

der of symbols in a sequence carries meaning. A general approach for converting a sequence,

x, into vector representation is to de�ne a �xed set of feature functions, ϕ1, . . . , ϕM , each

of which extracts a di�erent piece of domain-relevant information. We can then use these

feature functions to map the original sequence to a vector suitable for input into a learning

algorithm of choice by representing the original sequence as ϕ (x) = [ϕ1 (x) , . . . , ϕM (x)]>.

The obvious downside of this method is that it presupposes that we know which char-

acteristics of our dataset are important and can de�ne feature functions to capture these

characteristics. For predicting structural or functional categories of protein sequences, these

characteristics are not well-known. As such, researchers have attempted to de�ne feature

functions that can take into account a range of aspects of sequence data. A broad class of

feature functions that exhibit this property stem from the mapping from sequences to counts

1

of each possible subsequence of length k. To create more inclusive feature representations of

sequences, one could increase k. However, a vector of such subsequences would be of length

|Σ|k; as k increases, the size of the vector grows exponentially.

Circumventing this exponential feature vector growth leads to another core idea for

representing sequences. A large class of learning algorithms allow training to take place

given the dot products between training set feature vectors. Thus, instead of presenting

ϕ(x) to the learning algorithm directly, it is possible to precompute 〈ϕ (xi) , ϕ (xj)〉 for all

pairs of training set sequences xi, xj . This strategy is known as the kernel trick, where the

kernel K : X × X → R is de�ned as K(xi,xj) = 〈ϕ (xi) , ϕ (xj)〉. With the kernel trick, it

is no longer necessary to de�ne a set of feature functions. Rather, a kernel between pairs

of sequences can be de�ned directly. Directly de�ning a kernel between sequences can allow

additional prior knowledge to be incorporated into the learning algorithm. For instance,

an e�ective set of kernel functions used for protein structure classi�cation has incorporated

edit distances between sequences parametrized by biologically-motivated scoring matrices

between individual pairs of amino acids.

Although manually de�ned feature functions and kernels have led to successful classi�ca-

tion algorithms over protein sequences, they possess a number of drawbacks. For the simpler

kernels, the assumptions leading to the feature mapping are often not �exible enough to cap-

ture relevant characteristics of the data. For instance, feature vectors of k-mer counts often

only allow a single �xed k - larger values of k require very long training set sequences to be

e�ective, while smaller values of k are inhibited by noise. In contrast, more complex kernels

often have a number of parameters which are typically learned through cross validation or

set heuristically to �xed values.

Generative models that incorporate latent representations of training data o�er a prin-

cipled solution for extracting feature vectors from sequences [3]. By latent representation,

I refer to any of the intermediate representations assumed in the generative process of a

probabilistic model. For instance, a common probabilistic model over sequences, the Hid-

den Markov Model (Section 2.1), assumes that for each symbol in an observed sequence, a

2

hidden symbol is generated in the process of constructing the sequence. Given a dataset and

a generative formulation, it is often possible to compute an optimum latent representation

for the model. These optimal latent representation summarize important aspects of dataset

elements and can often be used e�ectively to construct feature vectors for sequences.

1.1 Contributions

In this thesis I explore a number of models to extract useful features from sequences. A

variety of common tasks can bene�t from improved sequence representations. In much

of this work, I focus on the classi�cation task, but I also show how some of the models

described in this thesis can be useful for motif �nding. I explore these models from both the

perspective of creating novel probabilistic models to generate sequence elements as well as

from the discriminative perspective, in terms of classi�cation systems that �nd boundaries

between sequence categories by discovering structural features within sequence datasets.

These contributions are summarized as follows:

• The Hidden Markov Model Variant [4] combines two types of statistical models,

topic models and the Hidden Markov Model, in a novel way. Topic models, like La-

tent Dirichlet Allocation, make the simplifying assumption that words in a document

are independently generated, while Hidden Markov Models assume a pairwise depen-

dency over adjacent elements of a sequence. The Hidden Markov Model Variant adds

the pairwise dependency assumption back into the topic modeling structure. This

structural change allows the HMM Variant to extract �xed length representations of

variable length sequences by accumulating statistics from the latent portions of the

model. These �xed length representations can then be input to any number of stan-

dard machine learning algorithms that need �xed-length vector inputs. We show that

these representations perform well for classifying protein sequences in conjunction with

a support vector machine classi�er.

3

• The In�nite Pro�le HMM [5] is a modi�cation of the Pro�le HMM, a version of

the Hidden Markov Model commonly used to model biological sequences, that allows

an arbitrarily large number of hidden states. To run inference given this in�nite set of

hidden states we introduce a transformation of the Pro�le HMM hidden state space.

This transformation allows us to compute an approximate marginal probability using

a �nite space by pruning low-probability con�gurations from the joint distribution.

Our inference method not only allows feasible inference for the in�nite model but also

signi�cantly increases the speed of inference in the standard Pro�le HMM.

• To combine structure from multiple Pro�le HMMs, I explore two strategies for

combining hidden state spaces. These strategies operate on a simpli�ed version of the

basic Pro�le HMM, which we call the Simpli�ed Local Pro�le HMM (SL-pHMM). The

�rst strategy, the Switching SL-pHMM, uses a separate �switching variable� associated

with each element of a sequence. This switching variable selects which individual SL-

pHMM generates a given sequence element. The second strategy, known as the Facto-

rial SL-pHMM, constructs a probability distribution over each sequence element using

a linear combination of the SL-pHMM hidden states. These strategies can then be fur-

ther combined with methods to represent sequence labels, allowing the model to both

generate sequence elements and predict the label associated with the sequence. We

show that both of these strategies are e�ective for classifying synthetically-generated

sets of sequences.

• An extension of the Factorial SL-pHMM involves relaxing the discrete SL-pHMM

hidden state space to a continuous domain. If we place a regularizer that encourages

sparsity on this new continuous space, then the new model shares many characteristics

with Sparse Dictionary Learning techniques frequently used in computer vision. This

relaxation is therefore the basis of our Relevant Subsequence Sparse Dictionary

Learning (RS-DL) model [6]. Applied to continuous sequences, RS-DL is e�ective

at extracting human-recognizable motifs. In addition, subsequences extracted using

RS-DL can improve on classi�cation performance over standard nearest neighbor and

4

dynamic time warping techniques.

• Subsequence Networks [7] incorporate Hidden Markov Model structure into the

lower level of a neural network. This structure is similar to that of convolutional neural

networks, which have garnered state-of-the-art results in a number of tasks in computer

vision. Subsequence Networks are competitive with state-of-the-art sequence Kernel

methods on protein sequence classi�cation problems but use a signi�cantly di�erent

mode of operation.

5

Chapter 2: Background

In this chapter, I review a number of models and methods relevant to the work presented

later in this thesis. Probabilistic models over sequences is a core topic of this thesis and,

to better inform the discussion in later chapters, I present an overview of Hidden Markov

Models (HMMs) and Pro�le Hidden Markov Models, a type of HMM commonly used for

modeling biological sequences. Sequence classi�cation is also a core area of this work, and

I review a number of methods used for this task. I also discuss more-general methods for

�nding optimal parameters that I use repeatedly in later chapters. Finally, I discuss sequence

datasets used for experiments in this work and methods for assessment.

2.1 Hidden Markov Models

When discussing distributions over sequences, the Hidden Markov Model (HMM) [2] is a

common starting point. The HMM de�nes a probability distribution over sequences. The

HMM assumes: (i) Each symbol in the sequence was generated from a mixture distribution;

the mixture components are referred to as hidden states. (ii) The Markov property holds

over hidden states i.e., the hidden state generating the current observation depends on the

past only through the hidden state of the previous observation. Figure 2.1 illustrates the

HMM's dependency structure.

The joint probability of a sequence, x1:T of length T , and a set of hidden states, z1:T ,

under an HMM is given as follows:

p(x1:T , z1:T) =

T∏

t=1

p(zt|zt−1)p(xt|zt) =

T∏

t=1

θtranszt−1,ztθ
emit
xt,zt , (2.1)

6

zTz2z1

xTx2x1

. . .

. . .

Figure 2.1: The dependency structure of the Hidden Markov Model.

K the number of HMM hidden states

M the number of possible amino acids

N the number of protein sequences

Tn the length of the nth sequence

xn is the nth amino acid sequence, xn,t is the tth symbol in the nth sequence

yn indicates the category associated with the nth sequence. yn ∈ Y, where Y is the set of all categories

zn is the nth sequence of hidden states, zn,t is the value of the hidden state for the nth sequence at

position t. zn ∈ Z, where Z the set of all possible hidden state sequences.

θtransk,k′ the probability of hidden state k occuring at position t when hidden state k′ appears at position

t+ 1
wtran

k,k′ de�ned as log θtransk,k′

θemit
k,m the probability of emitting symbol m at position t when hidden state at position t is k

wemit
k,m de�ned as log θemit

k,m

w de�ned as
[
wtrans

1,: . . . wtrans
K,: wemit

1,: . . . wemit
K,:

]>
, a vector comprising both the transition and emission

weights - the subscripted � :� is matlab notation for the vector over the relevant index.

nemit
k,m the number of times hidden state k occurs in conjunction with observed symbol m

ntransk,k′ the number of times hidden state k occurs before hidden state k′

Table 2.1: Description of HMM parameters

where θtrans is a set of transition probabilities and θemit is a set of emission probabilities1.

Detailed descriptions of parameters are given in Table 2.1. Converting transitions from

adjacent hidden states over the length of the sequence to counts of emissions and transitions

gives

p(x1:T , z1:T) =
∏

k,k′

(
θtransk,k′

)ntrans
k,k′

∏

k,m

(
θemitk,m

)nemitk,m (2.2)

In the logarithm, the joint probability of a sequence and associated hidden states under

the HMM is a linear function:

1In this thesis we also often use the symbols A to indicate the emission probability matrix and B to
indicate the transition probability matrix.

7

log p(x1:T , z1:T) =
∑

k,k′

ntransk,k′ log θtransk,k′ +
∑

k,m

nemitk,m log θtransk,m (2.3)

def
=

∑

k,k′

ntransk,k′ w
trans
k,k′ +

∑

k,m

nemitk,m wemitk,m

where we de�ne w
def
= log θ for both emissions and transitions. HMMs are probability

distributions and thus require that
∑
X ,Z p(x, z) = 1, where X indicates the set of all possible

sequences with alphabet sizeM , and Z indicates the set of all hidden states assignments for

a sequence x1:T . This constraint is satis�ed as long as
∑

k′ θ
trans
k,k′ = 1 and

∑
m θ

emit
k,m = 1 .

It is often useful to �nd the maximum probability assignment of values to hidden states,

i.e., argmax
z1:T

p (x1:T , z1:T). The maximum can be computed e�ciently by distributing the

addition operator over max function to create the following recurrence:

max
z1:t

log p (x1:t, z1:t) = max
zt

[(
max
z1:t−1

log p (x1:t−1, z1:t−1)

)
+ log p (zt|zt−1) + log p (xt|zt)

]

(2.4)

The algorithm that uses this recurrence to compute the maximum over z1:T is known as the

Viterbi algorithm [2]. A similar algorithm to compute marginal probabilities replaces the

max in the Viterbi algorithm with a summation. this algorithm is known as the forward-

backward algorithm and is a key step in HMM inference.

A convenient way to guide max and sum computations in the Viterbi and forward-

backward algorithms is to use a graph, called a lattice2, whose edges determine which terms

take part in the summation. Figure 2.2 depicts the lattice for the HMM.

2We follow [2] in using the term �lattice� to refer to the directed acyclic graph of transitions between
hidden states associated with each observed symbol. This graph is also commonly referred to as a trellis in
the literature [8].

8

xtxt−1

. . .

zt−1 = 1 zt = 1

zt = 2

zt = 3

zt−1 = 2

zt−1 = 3

xt+1

zt+1 = 1

zt+1 = 2

zt+1 = 3

Figure 2.2: A portion of the HMM's lattice used for the Viterbi and forward-backward
algorithms. The horizontal dimension represents elements in the sequence and the vertical
dimension hidden state values. A forward computation is associated with each node in the
graphs, and edges indicate which terms take place in the computation.

2.1.1 Pro�le HMMs

The Pro�le HMM (pHMM) [9] is an HMM with speci�c restrictions on transitions and

emissions. The model is similar to the Bakis model [2] used in speech recognition in that it

is a left-to-right, non-ergodic HMM. Like other left-to-right HMMs, the pHMM's utility lies

in its ability to capture an archetypal sequence or sequence fragment through the emission

distributions of a portion of the model's hidden states. Pro�le HMMs include three types of

hidden states: Match states, which describe the archetypal sequence, Insert states, which

allow the model to account for symbols not included in the archetypal sequence, and Delete

states, which do not emit a symbol and allow the model to skip a Match or Insert state.

A sequence of symbols is generated from a pHMM by traversing states in the �nite

automata shown in Figure 2.3. The model begins in a designated start state, z0, then

transitions to the �rst Match, Insert, or Delete state. If the transition moves to a Match or

Insert state, then a symbol is emitted. Typically, emissions from Insert states are evenly

distributed across the symbol alphabet, while Match state emissions are attuned to symbol

9

(M,K)(M, 1)(M, 0)

(I,K)(I, 1)(I, 0)

. . .

. . .

(D,K)(D, 1) . . .

(M, 2)

(I, 2)

(D, 2)

Figure 2.3: The pHMM's underlying Deterministic Finite-state Automaton (DFA) [2]:
Match states are represented with a white background, Insert states by light gray, and
Delete states by dark gray. A path through the DFA generates a sequence of observed
symbols. In many pHMM constructions, transitions to the �nal state of the model (not
pictured) can occur only from states {(M,K) , (I,K) , (D,K)}. In the model described in
Chapter 4, any Match or Insert state can transition to the �nal state.

frequencies associated with a particular position in the archetypal sequence. If the model

transitions to a Delete state, no symbol is emitted. From the kth Match, Insert, or Delete

state, denoted respectively as (M,k), (I, k), or (D, k), the pHMM can move to either Insert

state (I, k), Match state (M,k + 1), or Delete state (D, k + 1). The standard pHMM can

transition to a separate terminal state only from the Kth Match, Insert, or Delete state.

The joint probability of an observed sequence, x1:T , and set of hidden states, z1:|z| is

given by

p(x1:T , z1:|z||θtrans, θemit) =
∏

(s,k),s′

(
θtrans(s,k),s′

)ntrans
(s,k),s′

∏

(s∈{M,I},k),m

(
θemit(s,k),m

)nemit
(s,k),m

(2.5)

where θtrans(s,k),s′ indicates the probability of transitioning from state (s, k) to the next s′ ∈

{Match, Insert, or Delete}, and θemit(s,k),m indicates the probability of emitting symbol m from

state (s, k). Similarly, ntrans(s,k),s′ indicates the number of transitions that occurred from hidden

state (s, k) to s′, and nemit(s,k),m indicates the number of time symbolm was emitted from hidden

10

state (s, k).

2.2 Sequence Classi�cation

Classifying sequences is a theme repeated many times across this thesis. In this section, I

review a number of methods applied to the sequence classi�cation problem.

The combination of Support Vector Machines (SVMs) and kernel methods are ubiquitous

in sequence classi�cation literature and have been highly successful in this domain. SVMs are

linear classi�ers; they assume that an input space, X , can be partitioned by a hyperplane so

that positive examples lie on one side of the plane and negative examples on the other. SVMs

can capture nonlinear boundaries by mapping data into a transformed space, ϕ : X → X ′,

where X is the original input space and X ′ is the transformed input space. Instead of

computing this mapping directly, we can substitute the inner product between training

examples in the transformed space, 〈ϕ (xi) , ϕ (xj)〉, with a kernel function, K (xi, xj), where

K : X × X → R and xi, xj ∈ X [10].

String kernels extend the SVM to problem domains of variable-length sequences and also

allow prior knowledge over a particular problem domain to be incorporated into the classi�er.

Examples of string kernels include the following: The spectrum kernel [11] computes, for

a pair of sequences, xi and xj , the count of subsequences of length k that are present in

both sequences. The mismatch kernel [12] can be best described as a fuzzy version of the

spectrum kernel. For two sequences, xi and xj , the mismatch kernel computes the number

of subsequences of length k across xi and xj that contain at most m mismatches. The

sparse spatial sample kernel (SSSK) [13] extracts a set of substring probes of length ki (in

practice two or three are used), separated by gaps parametrized by a maximum length,

from a sequence. Each set of probes is associated with a pattern of amino acids that could

occur at multiple resolutions within a sequence. The local alignment kernel (LA-kernel)

[14] computes the sum over all possible alignment scores between two sequences. Alignment

scores generalize edit distance and score pairs of individual amino acids using a prede�ned

11

distance matrix, commonly the BLOSUM62 matrix [15]. Pro�le kernels [16, 17] are semi-

supervised methods that augment training and test sequences with unlabeled sequences in

the Protein Data Bank (PDB). Cluster kernels are another set of semi-supervised techniques.

Weston et. al. [18] present a number of methods to augment a small set of labeled data

with proteins from a large unlabeled corpus.

Non-SVM methods have also been successful for sequence classi�cation. Ifrim et. al.

[19] solves a regularized classi�cation problem in a way that combines feature selection in

the high dimensional space of fuzzy sequence matches with optimization with respect to

feature weights. Ding and Dubchak [20] apply standard three-layer neural networks using a

feature vector composed of a number of derived amino acid characteristics. Finally, models

similar to the basic Pro�le HMM such as SAM [21] and HMMER [22] have been used for

classi�cation by comparing class-conditional probabilities from models trained on individual

protein categories.

For continuous-valued sequences, di�erent strategies are typically used for classi�cation

than when dealing with discrete-valued protein sequences. One important di�erence between

these domains is that continuous sequences are often extracted from longer-length time series

data, so researchers are more willing to crop sequences to a uniform length and simply treat

them as vector data [23].

Once sequences are in vector format, standard classi�cation tools, such as Nearest Neigh-

bor algorithms, SVMs, Arti�cial Neural Networks, and Decision Trees, can be used [23�25].

These standard classi�ers on vector representations, however, overlook a critical character-

istic of sequence data: patterns in sequences are not tied to a �xed set of indices but can

occur at any point in the sequence. This observation motivates Dynamic Time Warping

(DTW) [26] distance between sequences, which aligns similar subsequences across sequence

pairs. The DTW procedure shares commonalities with the LA-kernel and pro�le kernels

from protein sequence classi�cation literature. DTW distance is typically more e�ective

than Euclidean distance [23] but su�ers from high complexity (O(MN), where M and N

are lengths of the respective sequences). A major focus in sequence classi�cation literature

12

has therefore been in creating fast approximate DTW algorithms [27,28].

2.3 Inference and Optimization Methods

In this section, I describe optimization methods that I use in a number of chapters in this

thesis. The models in this thesis are formulated both as probabilistic graphical models and

as optimization problems with well-de�ned objectives and constraints. In each case, di�erent

methods for discovering model parameters may be appropriate.

2.3.1 Variational Inference

The term variational inference can encompass any number of methods for constructing

parametrized bounds on a marginal distribution [29, 30]. Only the small subset, discussed

below, of this large class of methods are employed in this work.

One meaning of the term variational inference [31,32] involves a class of methods used to

maximize the likelihood of a probabilistic model with respect to a set of parameters. In this

discussion, a probabilistic model de�nes a probability distribution over a set of examples, x,

parametrized by a set of variables, θ. These models make simplifying assumptions about the

process used to generate this data that often involves postulating the existence of hidden

information, which we represent by the vector z. To compute the likelihood of the data

under the model, all con�gurations of hidden states must be accounted for in the form of

a sum or integral over these possibilities. Computing these sums is often intractable, so

approximate methods become necessary for inference.

More formally, given a joint distribution p(x, z|θ), we would like to compute3 maxθ
∑

z p(x, z|θ), or, equivalently, maxθ log (
∑

z p(x, z|θ)). The basic strategy in variational

inference involves constructing a lower bound on the log marginal probability as follows:

3For this explanation, we treat z as a discrete-valued vector. However, variational techniques are appli-
cable for latent variables taking values from any Lebegue-measurable set. Thus, in the more-general case,

the integral
´
dz
p(x, z|θ) can be substituted for

∑
z p(x, z|θ).

13

log p (x|θ) = log

(∑

z

p(x, z|θ)
)

(2.6)

= log

(∑

z

q(z)

q(z)
p(x, z|θ)

)

≥
∑

z

q(z) log

(
p(x, z|θ)
q(z)

)

=
∑

z

q(z) log

(
p(z|x, θ)
q(z)

)
+ log p(x|θ)

= −KL (q(z) || p(z|x, θ)) + log p(x|θ)

def
= F (θ, q(z))

where we have applied Jensen's inequality [33] in combination with the convexity of the

log function in the third line of Equation 2.6 to obtain the lower bound F (θ, q(z)). It is

relevant to note that F (θ, q(z)) is not a single lower bound, but a parametrized bound that

holds for all values of the probability mass function q(z).

The distribution, q(z), is known as the �variational distribution� and can be chosen in a

variety of ways. A common way of doing so is to take q∗(z) = arg max
q(z)

F (θ, q(z)). By Gibbs'

inequality [33], this maximum occurs at q∗(z) ∝ p(x, z|θ) = p(z|x, θ). Once q∗(z) is known,

it then becomes practical to compute θ∗ = arg max
θ
F (θ, q∗(z)) as long as it is also practical

to compute Eq∗(z) [log p(z,x|θ)]. This strategy is known as Expectation-Maximization (EM)

[34,35].

When computing Eq∗(z) [log p(z,x|θ)] is not practical, an alternative strategy is to assume

independence between variational distributions over individual elements of the vector, z.

This independence assumption leads to a variational bound of

14

F (θ, q(z1), . . . , q(zK)) =
∑

z1,...,zK

K∏

k=1

q(zk) log

(
p(x, z|θ)
∏K
k=1 q(zk)

)
(2.7)

Isolating terms that depend on zk we obtain

F (θ, q(z1), . . . , q(zK)) =
∑

zk

q(zk) log

exp
(
E∏

k′ 6=k q(zk′)
[log p(x, z|θ)]

)

q(zk)

 (2.8)

−
∑

k′ 6=k

∑

zk′

q(zk′) log q(zk′)

where z¬k indicates the set of all elements of z excluding zk, {zk′ | k′ ∈ [1 . . .K] , k′ 6= k}.

Again, by Gibbs' inequality, we can �nd the with respect to each q∗(zk) at q∗(zk) ∝

exp
(
E∏

k′ 6=k q(zk′)
[log p(x, z|θ)]

)
. This strategy of assuming independence between all el-

ements of z in the variational distribution is known as mean-�eld variational inference, and

the decomposition q(z) =
∏K
k=1 q(zk) is known as the mean-�eld approximation [31, 36].

With the mean-�eld approximation, practical computation of the expectations

E∏
k′ 6=k q(zk′)

[log p(x, z1, . . . , zK |θ)] (2.9)

and

E∏
k q(zk) [log p(x, z1, . . . , zK |θ)] (2.10)

is often possible because (for discrete-valued z's) their computation involves a series of in-

dependent summations rather than summing over the exponential number of con�gurations

of z. Inference then becomes a matter of iteratively maximizing F (θ, q(z1), . . . , q(zK)) �rst

with respect to each q(zk), then with respect to θ, in a manner similar to EM.

15

A disadvantage of the mean �eld approximation is that the bound F (θ, q(z)) is no longer

tight, as is the case with EM. (Tightness of the variational bound in EM can be veri�ed by

substituting q∗(z) = p(z|x, θ) into Equation 2.6 to obtain F (θ, q∗(z)) = log p(x|θ).) Typ-

ically, better solutions to the original maximum-likelihood problem can be found if tighter

variational bounds can be constructed. Methods to construct tighter bounds are therefore

often the focus when developing variational inference algorithms to solve a particular prob-

lem. One method to construct tighter bounds, known as structured variational inference

[31,36], involves assuming independence between groups of elements, rather than individual

elements, of z. We employ this variational approximation in Chapters 4 and 5. Another

method for tightening the lower bound involves marginalizing with respect to a subset of

elements of z and is known as collapsed variational inference [37].

The term variational inference can also be used in a di�erent sense to refer to methods

for constructing parametrized bounds which allow a particular expectation to be evaluated.

For instance, Jaakola et. al. [32,38] construct parametrized bounds on the logistic sigmoid,

making inference feasible in the Sigmoid Belief Network and Bayesian logistic regression.

We employ this approach in the models described in Chapter 5.

2.3.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) [39�41] is an optimization method for objective func-

tions that decompose over individual examples in a dataset. SGD is often applied in the

supervised empirical risk minimization setting in minimizing the error given by a loss func-

tion, ` (yn, ŷ), that compares a hypothesized output, ŷ, to the ground truth label, yn, over a

dataset consisting of N draws {xn, yn}Nn=1 from a �xed distribution P (x, y). Minimization

occurs over a set of functions fθ ∈ F , parametrized by θ:

L(y1:N , x1:N ; θ) =
∑

n

` (yn, fθ(xn)) (2.11)

16

It is often possible to use a batch gradient descent algorithm, which iteratively updates

θ as follows:

θ(t+1) ← θ(t) − γ ∂
∂θ
L(y1:N , x1:N ; θ) (2.12)

where θ(t) is the value of θ at step t of the algorithm and γ is a �xed learning rate. The

SGD procedure contrasts with the batch procedure in that a single example is drawn from

the dataset and the gradient with respect to the loss associated with this example is used

to update the model parameters:

θ(t+1) ← θ(t) − γ (t)
∂

∂θ
` (yn, fθ (xn))

Bottou et. al. [39] show that if the learning rate, γ (t), is chosen carefully, then, under

certain assumptions about the expected loss function, in the limit as t grows to in�nity, θ(t)

will converge to the optimum almost surely for convex loss functions. They also show that

convergence to local minima with good performance is also possible in the non-convex case

under reasonable conditions [39].

SGD excels because it generally requires fewer computations to achieve a speci�c level of

expected risk, EP (x,y) [` (y, fθ(x))], despite the fact that it often requires more iterations to

achieve a speci�ed level of empirical risk,
∑

n ` (yn, fθ(xn)), than batch methods [40]. This

characteristic makes SGD especially e�ective in cases where datasets are large enough that

computation time rather than the amount of available training data is a limiting factor in

�nding model parameters that produce low generalization error.

17

2.4 Datasets and Evaluation

For many experiments in this thesis, I use datasets derived from the Structural Classi�cation

of Proteins (SCOP) [42] database. The SCOP database categorizes proteins from the Protein

Databank (PDB)4 into a multilevel hierarchy that captures commonalities between protein

structure at di�erent levels of detail (see Figure 2.4). The ASTRAL compendium5, provides

versions of SCOP datasets �ltered to remove sequences whose structures are signi�cantly

similar, allowing for less biased classi�cation.

To eliminate high levels of similarity between sequences across the training and test sets

that could lead to trivially good classi�cation results, the standard method for partitioning

a set of �ltered SCOP sequences into a training and test set imposes certain constraints.

For the fold level classi�cation problem, training sets are partitioned so that no examples

that share superfamily labels are included in both the training and test sets. Similarly, for

the superfamily level classi�cation problem (referred to as the remote homology detection

problem [1, 43]), no examples that share a family-level category are included in both the

training and test sets.

I evaluate the classi�cation algorithms in this thesis primarily by comparing areas under

the receiver operating characteristic (ROC) curve. The ROC curve plots the percentage of

true positives against the percentage of false positives and the area under the curve (AUC)

measures how frequently a positive example is ranked above a negative example. In some

cases, I report AUC50 or AUC10% which indicate the area under the ROC curve excluding

all but the top 50 negative examples or top 10 percent of the negative examples respectively.

4http://www.pdb.org/pdb/home/home.do
5http://astral.berkeley.edu/

18

. . .

SCOP

Class: 1 Class: 2

Fold: 2.a Fold: 2.b
. . .

. . .

Superfamily: 2.a.a Superfamily: 2.a.b

. . .

Family: 2.a.b.a Family: 2.a.b.b . . .

Figure 2.4: An example of the SCOP hierarchy of protein structural categories.

19

Chapter 3: A Hidden Markov Model Variant for Sequence

Classi�cation

In this Chapter, I discuss the Hidden Markov Model Variant, a model that allows a �xed-

length vector representation to be constructed from variable-length sequences. This model

provides a principled approach for constructing vector representations from sequence data.

A variety of strategies, depending on the problem type, are typically used to map se-

quences to representations that can be handled by machine learning methods that accept

vector inputs. A simple technique involves selecting a �xed number of elements from the

sequence and then using those elements as a �xed-length vector in the classi�cation engine.

In another technique, a small subsequence length, `, is selected, and a size M ` vector is

constructed containing the counts of all length ` subsequences from the original sequence.

A third method for classifying sequence data requires only that a positive de�nite map-

ping be de�ned between sequences rather than any direct mapping of sequences to vectors.

This strategy, known as the kernel trick, is often used in conjunction with support vector

machines and allows for a wide variety of sequence similarity measurements to be employed.

Hidden Markov Models (HMM) [44, 45] have a rich history for modeling sequence data

(in speech recognition and bioinformatics applications) for the purposes of classi�cation,

segmentation, and clustering. HMMs' success is based on the convenience of their simplifying

assumptions. The space of probable sequences is constrained by assuming only pairwise

dependencies over hidden states. Pairwise dependencies also allow for a class of e�cient

inference algorithms whose critical steps build on the Forward-Backward algorithm [44].

This work describes an HMM variant over a set of sequences, with one transition ma-

trix per sequence, as a novel alternative for handling sequence data. After training, the

per-sequence transition matrices of the HMM variant are used as �xed-length vector rep-

resentations for each associated sequence. There are a number of ways for understanding

20

how the HMM variant represents sequence data, and we connect these ways of understand-

ing to both traditional explanations using simple Hidden Markov Models and more recent

interpretations arising from topic models [46]. We then describe three methods to infer the

parameters of our HMM variant, explore connections between these methods, and provide

rationale for the classi�cation behavior of the parameters derived through each.

We perform a comprehensive set of experiments, evaluating the performance of our

method in conjunction with support vector machines, to classify synthetically generated data

and sequences of amino acids into structural classes (fold recognition and remote homology

detection problem [47]).

The combination of these methods, their interpretations, and their connections to prior

work constitutes a new twist on classic ways of understanding sequence data that we believe

is valuable to anyone approaching a sequence classi�cation task and constitutes a signi�cant

contribution.

3.1 Problem Statement

Given a set of sequences, we would like to �nd a set of �xed-length vectors, A, that, when

used as input to a function f(A), maximize the probability of reconstructing the original

set of sequences. Under our scheme, f(A) is a Hidden Markov Model variant with one

transition matrix, An, assigned to each sequence, a single emissions matrix, B, and a single

start probability vector, a, for the entire set of sequences. By maximizing the likelihood of

the set of sequences under the HMM variant model, we will also �nd the set of transition

matrices that best represent our set of sequences. We further postulate that this maximum

likelihood representation will achieve good classi�cation results if each sequence is later

associated with a meaningful label.

3.1.1 Model Description

We de�ne a Hidden Markov Model variant that represents a set of sequences. Each sequence

is associated with a separate transition matrix, while the emission matrix and initial state

21

Parameter Description

N the number of sequences

Tn the length of sequence n

K the number of hidden symbols

M the number of observed symbols

ai start state probabilities, where i is the value of the �rst hidden
state

Anij transition probabilities, where n indicates the sequence, i the
originating hidden state, and j the destination hidden state

Bim emission probabilities, where i indicates the hidden state, and
m the observed symbol associated with the hidden state

znt the hidden state at position t in sequence n

xnt the observed state at position t in sequence n

Table 3.1: HMM Variant model parameters

transition vector are shared across all sequences. We use the value of each transition matrix

as a �xed-length representation of the sequence. We de�ne the parameters and notation for

the model in Table 3.1.

The probability of the model is shown below:

p(x, z|a,A,B) =

N∏

n=1

(
azn1

(
Tn∏

t=2

Anznt−1znt

)(
Tn∏

t=1

Bzntxnt

))
(3.1)

This di�ers from the standard hidden Markov model only in the addition of a transition

matrix for each sequence. The probability of a set of sequences under the standard HMM

is shown below (di�erences highlighted in bold):

p(x, z|a,A,B) =

N∏

n=1

(
azn1

(
Tn∏

t=2

Aznt−1znt

)(
Tn∏

t=1

Bzntxnt

))
(3.2)

22

To regularize the model, we further augment the basic HMM by placing Dirichlet priors

on a, each row of A, and each row of B. The prior parameters are the uniform Dirichlet

parameters γ, α, and β for a, A, and B respectively. The probability of the model with

priors is shown below, where the prior probabilities are the �rst three terms in the product

below and take the form Dir(x; a,K) = Γ(Ka)
Γ(a)K

∏
i x

a−1
i :

p(x, z, a, A,B|α, β, γ) =

(
Γ(Kγ)

Γ(γ)K

∏

i

aγ−1
i

)
∏

ni

Γ(Kα)

Γ(α)K

∏

j

Aα−1
nij

(∏

i

Γ(Mβ)

Γ(β)M

∏

m

Bβ−1
im

)

N∏

n=1

(
azn1

(
Tn∏

t=2

Anznt−1znt

)(
Tn∏

t=1

Bzntxnt

))
(3.3)

One potential di�culty that could be expected in classifying simple HMMs by transi-

tion matrix is that the probability of a sequence under an HMM does not change under a

permutation of the hidden states. This problem is avoided when we force each sequence to

share an emissions matrix, which locks the meaning of each transition matrix row to a par-

ticular emission distribution. If the emission matrix were not shared, then two HMMs with

permuted hidden states could have transition matrices that with large Euclidean distances.

For instance, the following HMMs have di�erent transition matrices, but the probability of

an observed sequence is the same under each.

HMM1 :A1 =

.9 .1

.9 .1

 , B1 =

.9 .1

.1 .9

HMM2 :A2 =

.1 .9

.1 .9

 , B2 =

.1 .9

.9 .1

23

However, a Euclidean distance between their two transition matrices, A1 and A2 is large.

3.1.2 A simple example

To gain an intuitive understanding of how our scheme operates, consider the following sce-

nario. Assume that instead of learning the parameters of our emissions matrix, B, we �x

B so that row m describes a multinomial distribution with probability of 1 of emitting the

mth observed symbol and zero probability of emitting any other symbol. For instance, if we

have three possible emission symbols, [a, b, c], then M = 3, K = 3, and B is set to I3:

B =

xa xb xc

z1 1 0 0

z2 0 1 0

z3 0 0 1

Because there is a deterministic correspondence between observed and hidden states, the

hidden states are e�ectively observed, and Anij is simply P (xnt = j|xnt−1 = i), which can

be estimated by taking the normalized count of the number of pairs of symbols ij in the

sequence: {#t : xnt−1 = i, xnt = j, t > 1} divided by the total number of xnt with the value

i,{#t : xnt = i, t < Tn}.

Our HMM variant is similar to this simpli�ed scheme, but the number of hidden states,

K, is set beforehand, and an inference algorithm is used to jointly optimize the transition

and emission matrices to capture the best representation of the set of input sequences.

3.1.3 Another interpretation

Earlier we noted that we can interpret each transition matrix An as the argument to a

function that allows us to reconstruct the sequence xn with minimum error.

Using the basic HMM, we can describe a method to perform this reconstruction: �rst,

24

an initial hidden state, zn1, is sampled from a. Next, for every znt with 1 < t ≤ Tn, znt

is sampled from a multinomial with parameters Anznt−1 . Finally, each observed sequence

element, xnt is sampled from a multinomial with parameters Bznt .

Given a single sequence, we can create a standard HMM, with a probability of 1 of

regenerating the source sequence by setting the number of hidden states equal to the length

of the sequence, K = T . Next, at each hidden state, k, we set the probability of a transition

to the hidden state k+ 1 to one and transitions to any other hidden states to zero. Finally,

we set the matrix B so that at hidden state k = t we emit the symbol xk.

Taking this idea further, we can see intuitively how the size of A relates to some measure

of information in the sequence. To best illustrate this, if we take a sequence that consists

of two repeated sections, we would need only K = T
2 states to reconstruct it without error

(with n repeats we would needK = T
n states) because we can set stateK to deterministically

transition to state 1.

If the set of sequences has varying amounts of information per sequence, then, for small

values of K, our scheme will be able to reconstruct low-information sequences with small

error but will have a high error rate when reconstructing high-information sequences. If we

choose a large K, then our scheme will be able to reconstruct high-information sequences

well, but for low-information sequences some values of A will be meaningless.

3.2 Background

HMMs have a rich history in sequence classi�cation and clustering [44, 45]. Smyth intro-

duces a mixture of HMMs in [48] and presents an initialization technique that is similar to

our model in that an individual HMM is learned for each sequence, but di�ers from our

model in that the emission matrices are not shared between HMMs. In [48], these initial

N models are used to compute the set of all pairwise distances between sequences, de�ned

as the symmetrized log likelihood of each element of the pair under the other's respective

model. Clusters are then computed from this distance matrix, which are used to initialize a

25

set of K < N HMMs where each sequence is associated with one of K labels. Smyth notes

that while the log probability of a sequence under an HMM is an intuitive distance measure

between sequences, it is not intuitive how the parameters of the model are meaningful in

terms of de�ning a distance between sequences. In this research, we demonstrate experi-

mentally that the transition matrix of our model is useful for sequence classi�cation when

combined with standard distance metrics and tools.

3.2.1 Topic Models

Simpler precursors of LDA [46] and pLSI [49], which represent an entire corpus of documents

with a single topic distribution vector, are very similar to the basic Hidden Markov Model,

which assigns a single transition matrix to the entire set of sequences that are being modeled.

To extend the HMM to a pLSI analogue, all that is needed is to split the single transition

matrix into a per-sequence transition matrix. To extend this model to an LDA analogue,

we must go a step further and attach Dirichlet priors to the transition matrices.

Inference of the LDA model (Figure 3.1a) on a corpus of documents learns a matrix

of document-topic probabilities. A row of this matrix, sometimes described as a mixed-

membership vector, can be viewed as a measurement of how a given document is composed

from the set of topics. In our HMM variant (Figure 3.1c), a single transition matrix, An,

can be thought of as the analogue to a document-topic matrix row and can be viewed as a

measurement of how a sequence is composed of pairs of adjacent symbols.

More recent topic models contain signi�cant similarities to our HMM variant. Both the

Hidden Topic Markov Model (HTMM) (Figure 3.1b) [50] and Conditional Topic Random

Fields (CTRF) [51] are similar to our HMM variant in that they add pairwise dependencies

between hidden topics to the LDA model. The key di�erence between our HMM variant

and the HTMM lie in the HTMM's explicit modeling of text. Like LDA, the HTMM assigns

one topic composition vector to each document. Dependencies between topics of adjacent

words are modeled using a separate binomial parameter and associated set of indicator

hidden variables per topic, rather than using a transition matrix like the HMM variant.

26

This binomial parameter has the e�ect of restricting the possible transitions between topics

according to a per-sentence composition. For the CTRF, hidden states (topics) are modeled

using a conditional random �eld .

(a) (b) (c)

Figure 3.1: Plate diagrams of the (a) LDA model, expanded to show each word separately,
the (b) Hidden Topic Markov Model, and the (c) HMM variant.

3.3 Learning the model parameters

We experimented with three methods for learning parameters of our model: an MAP method

based on the Baum-Welch algorithm, a Markov Chain Monte Carlo method based on the

forward-backtrack sampler, and a mean �eld variational method.

3.3.1 Baum-Welch

A well-known method for learning HMM model parameters is the Baum-Welch algorithm.

The Baum-Welch algorithm is an expectation maximization algorithm for the standard

HMM model, and the basic algorithm is easily modi�ed to learn the multiple transition

matrices of our variant. The parameter updates shown below converges to a maximum a

priori (MAP) estimate of p(z, a,A,B|x, γ, α, β) [44]:

27

ai ∝
∑

n

fni(1)bni(1) + γ − 1 (3.4)

A
(new)
nij ∝

Tn∑

t=2

fni(t− 1)AnijBjxtbnj(t) + α− 1 (3.5)

Bim ∝
∑

n

∑

t:xt=m

fni(t)bnj(t) + β − 1 (3.6)

where f and b are the forward and backward recurrences de�ned below:

fni(t) =

∑
j fnj(t− 1)AnjiBixt , t > 1

aiBix1 , t = 1

(3.7)

bni(t) =

∑
j AnijBjxt+1bnj(t+ 1), t < Tn

1
K , t = Tn

(3.8)

The complexity of the Baum-Welch-like algorithm for our variant is identical to the

complexity of Baum-Welch for the standard HMM. The update for Aij in the original HMM

involves summing over
∑

n Tn terms, while the update for a single Anij is a sum over Tn

terms, making the total number of terms over all the An's in our variant,
∑

n Tn, which is

the same as number the original algorithm.

28

3.3.2 Gibbs Sampling

Two Gibbs sampling schemes are commonly used to infer Hidden Markov Model parameters

[52]. Unlike the Baum-Welch algorithm which returns a MAP estimate of the parameters,

these sampling schemes allow the expectation of the parameters to be computed over the

posterior distribution p(z, a,A,B|x, γ, α, β).

In the Direct Gibbs sampler (DG), hidden states and parameters are initially chosen at

random, then new hidden states are sampled using the current set of parameters:

p(z
(new)
ti |zt−1, zt+1) ∝ Azt−1iBixtAizt+1 (3.9)

In the Forward Backward sampler (FB), the initial settings and parameter updates are

the same as the DG scheme, but the hidden states are sampled in order from Tn down to 1

using values from the forward recursion. Speci�cally, each hidden state znt is sampled given

znt+1 = j from a multinomial with parameters

p(z
(new)
nTn

|xn1:Tn) ∝ fni(Tn) (3.10)

p(z
(new)
nt |xn1:Tn , z

(new)
nt+1) = p(z

(new)
nt |xn1:t, z

(new)
nt+1)

∝ fni(t)Anij , t < Tn (3.11)

In both algorithms, after the hidden states are sampled, parameters are sampled from

Dirichlet conditional distributions, shown for A below, where I(ω) = 1 if ω is true and 0

otherwise:

29

SCOP Version Filtering Taxonomic type # sequences # categories SVM classi�er

1.67 25% class 4995 7 multiclass

1.67 25% fold 1127 25 multiclass

1.67 40% fold 1653 27 multiclass

1.67 40% superfamily 1044 37 multiclass

1.53 1e-25 fold 4352 23 one-versus-rest

1.53 1e-25 superfamily 4352 54 one-versus-rest

Table 3.2: Datasets used to evaluate the HMM variant's ability to classify protein sequences.

p(Anij |zn, α) = Dir(

Tn∑

t=2

I(znt−1 = i)I(znt = j) + α) (3.12)

The FB sampler has been shown to mix more quickly than the DG sampler, especially

in cases where adjacent hidden states are highly correlated [52]. We therefore use the FB

sampler in our implementation.

3.3.3 Variational Algorithm

Another approach for inference of the HMM variant parameters is through variational tech-

niques. We employ a mean �eld variational algorithm that follows a similar pattern as EM.

When the variational update steps are run until convergence, Kullback-Leibler divergence

between the variational distribution, q(z, a,A,B), and the model's conditional probability

distribution, p(z, a,A,B|x, γ, α, β), is minimized. The transition matrices returned by the

variational algorithm are the expectations of those matrices under the variational distribu-

tion. Thus, like the Gibbs sampling algorithm, the parameters returned by the variational

algorithm approximate the expectations of the parameters under the conditional distribu-

tion.

Our mean �eld variational approximation is shown below:

30

q(z, a,A,B) =q(a)
N∏

n=1

K∏

i=1

q(Ani)
K∏

i=1

q(Bi)
∏

nt

q(znt) (3.13)

=

(
Γ(
∑

i γ̃i)∏
i Γ(γ̃i)

∏

i

aγ̃i−1
i

)
∏

ni

Γ(
∑

j α̃nij)∏
j Γ(α̃nij)

∏

j

A
α̃nij−1
nij

(∏

i

Γ(
∑

m β̃im)∏
m Γ(β̃im)

∏

m

Bβ̃im−1
im

)∏

nti

hzntinti

with variational parameters hnti, which acts as an approximate mean for each znti, and

α̃nij , β̃im, and γ̃i, which can be thought of as Dirichlet parameters approximating α, β, and

γ.

When we maximize the variational free energy with respect to the variational parameters,

we obtain the following update equations, where Ψ(x) = d log Γ(x)
dx :

α̃nij =
∑

t

hnt−1ihntj + α (3.14)

β̃im =
∑

nt:xt=m

hnti + β (3.15)

γ̃i =
∑

n

hn1i + γ (3.16)

31

hnti ∝

exp
(

Ψ(γ̃i)−Ψ(
∑

i′ γ̃i′)

+
∑

j hn2j

(
Ψ(α̃nij)−Ψ(

∑
j′ α̃nij)

)

+
(

Ψ(β̃ixn1)−Ψ(
∑

m β̃im)
))

,

t = 1

exp
(∑

i′ hnt−1i′

(
Ψ(α̃ni′i)−Ψ(

∑
j α̃ni′j)

)

+
∑

j hnt+1j

(
Ψ(α̃nij)−Ψ(

∑
j′ α̃nij′)

)

+
(

Ψ(β̃ixnt)−Ψ(
∑

m β̃im)
))

,

1 < t < Tn

exp
(∑

i′ hnt−1i′

(
Ψ(α̃ni′i)−Ψ(

∑
j α̃ni′j)

)

+
(

Ψ(β̃ixnTn−1)−Ψ(
∑

m β̃im)
))

,

t = Tn

(3.17)

Notice that the update for hnti depends only on the adjacent h's, hnt−1i and hnt+1i

as well as the expectations of the transition probabilities from the adjacent h's and the

expectation of the emission probabilities from the current hnti. This mean �eld algorithm

can therefore be understood as an equivalent of the Direct Gibbs sampling method except

that at subsequent time steps interactions occur between variational approximations rather

than through the sampled values of z. A complete derivation of the variational algorithm is

included in Appendix A.

Other authors have performed variational inference over hidden Markov models. Most

notably, Ghahramani et. al. derive variational updates to iteratively optimize parameters

of factorial HMMs [53] and switching state space models [54]. MacKay derives a variational

ensemble for HMM posterior parameters [55]. Our variational algorithm is most similar to

the mean �eld variational algorithm described by Ghahramani et. al. [53].

32

3.4 Experimental Setup

To evaluate our �xed-length representation scheme, for each classi�cation experiment, we

created three sets of �xed-length representations per trial over ten trials by running each

of the three inference algorithms: (i) Baum-Welch, (ii) Gibbs Sampling, and (iii) the mean

�eld variational algorithm, on the entire set of input data. We varied the number of hidden

states from 5 to 20 in increments of 5 (K = {5, 10, 15, 20}). This procedure created a total

of 120 (3× 10× 4) �xed-length representations for each dataset.

The �xed-length vector data was then used as input to a support vector machine (SVM)

classi�er 1. We used the SVM to either perform either multiway classi�cation on the dataset

under the Crammer-Singer [57] construction or the one-versus-rest approach, where a binary

classi�er was trained for each of the classes. No attempt was made to optimize the SVM

parameters in any of the experiments.

We compare classi�cation results from our model with results from the Spectrum(2)

kernel for all experiments. The Spectrum(`) kernel is a simple string kernel whose vector

representation is the set of counts of substrings of of observed symbols length ` in a given

string [43]. For the one-versus rest experiments, we compare our results to more sophisticated

biologically sensitive kernels for protein classi�cation, described in Rangwala et. al [1].

3.4.1 Protein Datasets

To evaluate our representation, we ran sets of protein classi�cation experiments on the three

top levels of the SCOP taxonomy, class, fold, and superfamily. Table 3.2 provides a detailed

description of the di�erent SCOP-derived protein sequence classi�cation datasets, that were

obtained from previous studies [47, 58]. Speci�cally, the datasets were derived from either

the SCOP 1.67 or the SCOP 1.53 versions and �ltered at 25% and 40% pairwise sequence

identities or with E-values [59] of less than 10−25.

We partitioned the data into a single test and training set for each category. At the class

1We used SVM-light and SVM-struct for classi�cation (http://www.cs.cornell.edu/People/tj/svm_light/)

[56].

33

level, the original dataset was split randomly in to training and test sets. To eliminate high

levels of similarity between sequences that could lead to trivially good classi�cation results,

we imposed certain constraints on the training/test set partitioning for classi�cation in the

fold and superfamily experiments. For the fold level classi�cation problem, the training

sets were partitioned so that no examples that shared the fold and superfamily labels were

included in both the training and test sets. Similarly, for the superfamily level classi�cation

problem (referred to as the remote homology detection problem [1, 43]), no examples that

shared the superfamily and family levels were included in both the training and test sets.

3.4.2 Synthetic Datasets

As a basic test of concept, we constructed synthetic datasets by drawing samples from two

HMMs with transition matrices

A1 =

.6 .4

.4 .6

 , A2 =

.4 .6

.6 .4

with a discrete emissions matrix where each state's output is an eight state discretized

version of a univariate normal distribution with means of 3 and 5 respectively. These HMMs

were constructed to be discretized versions of the HMMs used to generate synthetic data in

a previous study [48].

We ran experiments on a dataset consisting of 500 samples from each HMM with the

length of each sequence Poisson distributed with a mean of 100. We then randomly parti-

tioned the dataset into 20% test and 80% training samples and used the protocol described

above to classify training samples by their generating HMM. The experiment was run 10

times on separately generated datasets.

For the synthetic experiments, we included two additional kernels. The �rst, a Kullback-

Leibler Divergence Kernel, [60], was used to attempt to answer the question whether a �nat-

ural� metric over the space of transition matrices produces better results than the standard

34

dot product. Because each transition matrix row resides in a K-simplex, we considered the

possibility that a symmetrized DKL measurement between rows of di�erent matrices would

allow for better comparisons.

We also tested a representation, that we call the gradient kernel, where the feature vector

for each sequence was given by the gradient of the log probability of a sequence with respect

to the transition matrix associated with that sequence. This representation is similar to the

Fisher kernel [61] but di�ers from the standard Fisher kernel in that the scheme does not

take advantage of information about the classes associated with sequences in the training set.

A more complete version of the Fisher kernel for the HMM variant would take into account

sequence labels in the training set and would require taking the gradient of a sequence under

the portion of the HMM variant model associated with each positive and negative training

example, a computationally intensive task.

3.4.3 Evaluation Metrics

We evaluated each classi�cation experiment by computing the area under the ROC curve

(AUC), a plot of the true positive rate against the false positive rate, constructed by adjust-

ing the SVM's intercept parameter. We were worried about variance over di�erent Baum-

Welch runs due to convergence of the algorithm to di�erent local optima. To mitigate this

concern, we ran both the Baum-Welch algorithm and the other inference algorithms, for

consistency, 10 separate times on each dataset. The results presented for each inference

method are averages over individual results of the 10 trials across the di�erent classes.

3.5 Results and Discussion

Table 3.3 shows a comparison of average AUC scores across the inference algorithms on

the class, fold, and superfamily levels of the SCOP hierarchy using the multiclass SVM.

Although the AUC scores are close for each algorithm in most cases, the Gibbs sampling

algorithm outperforms the other algorithms the majority of the time.

35

fold a.102 fold a.118 fold a.24 fold a.4 fold a.60

fold a.7 fold b.1 fold b.121 fold b.2 fold b.34

fold b.40 fold b.42 fold b.82 fold b.85 fold c.1

fold c.23 fold c.55 fold d.110 fold d.15 fold d.17

fold d.58 fold d.68 fold d.79 fold g.3 fold g.41

trial 0 trial 1 trial 2 trial 3 trial 4 trial 5 trial 6 trial 7 trial 8 trial 9

Figure 3.2: A comparison of AUC plots for the Baum Welch algorithm for K = 10 on the
SCOP 1.67, 25% fold recognition dataset (25 classes) over a set of 10 parameters learned
through randomly initialized Baum-Welch runs. From the plots, we can see that the variance
of the classi�cation of individual results can be high, especially for the classes with a small
number of examples. However, there was a comparatively smaller amount of variation
(∼ 3%) in the average AUC score over all classes.

Table 3.4 shows a comparison of results over the inference algorithms for the one-versus-

rest superfamily classi�cation experiment on the SCOP 1.53 dataset. Similarly to the mul-

ticlass experiments using the linear kernel, the Gibbs sampling algorithm outperforms the

other inference methods in the one-versus-rest experiments. The variational algorithm shows

the largest improvement in AUC when switching from linear to Gaussian kernels, ranging

from 6% to 30%.

The results over multiple trials also revealed an interesting characteristic of the data.

Although the standard deviation of the AUC score between categories within a single trial

is high, with an average of 0.17 over 10 trials, the standard deviation of the average AUC

score over all categories was low (0.03 averaged over 10 trials), indicating that a trade-

o� is occurring. If the AUC on a single taxonomic category is high in one trial, then it

will generally be o�set by a low AUC score on another taxonomic category and vice versa.

36

Figure 3.2 graphically illustrates this trade-o�, showing an overlay of AUC curves for fold

classi�cation over 10 Baum-Welch transition matrix representations.

3.5.1 Synthetic Results

Table 3.5 compares average AUC scores from the synthetic data classi�cation experiments

between each inference algorithm and the Spectrum(2) kernel. The table also shows the

e�ects of a variety of additional kernels over the basic description vectors. Notably, the

Baum-Welch algorithm outperforms the others inference algorithms under both the linear

kernel and all of the external kernels. No HMM variant formulation performs better on the

synthetic data than the Spectrum(2) vector under a linear kernel. However, the spectrum

kernel results degrade across the non-linear kernels, while the HMM variant results are

consistent.

We compared several kernel functions over the HMM variant sequence representation

vectors. Although the DKL kernel appears to perform better than the linear kernel, it does

not outperform the Gaussian. Similarly, the gradient kernel does not consistently perform

better than the Gaussian. The Gibbs Sampling algorithm performs comparatively better

under the Fisher kernel, a trend not re�ected in the variational algorithm's performance.

3.5.2 Analysis of Inference Algorithms

Di�erent inference algorithms for our model produced signi�cantly di�erent AUC scores in

both the protein classi�cation experiments (Table 3.3) and in the experiments on synthetic

data (Table 3.5).

A potential explanation of these di�erences lies in the targets of each algorithm's ob-

jective function. While the Baum-Welch algorithm returns MAP parameters of the model,

both the Gibbs sampling method and the variational algorithm produce expectations of the

parameters. These di�erent convergence points would seem to make a much larger di�erence

in the results if the posterior distribution of the transition matrix is highly multimodal. Un-

der a multimodal distribution, we expect the Baum-Welch algorithm to converge to a local

37

Class Level, 7 categories
SCOP 1.67, 25%

Alg/K 5 10 15 20

Baum Welch 0.61 0.64 0.65 0.63

Gibbs Sampling 0.61 0.65 0.66 0.68

Variational 0.60 0.63 0.60 0.60

Fold Level, 25 categories
SCOP 1.67, 25%

Alg/K 5 10 15 20

Baum Welch 0.56 0.59 0.59 0.58

Gibbs Sampling 0.56 0.58 0.59 0.61

Variational 0.54 0.57 0.59 0.58

Fold Level, 27 categories
SCOP 1.67, 40%

Alg/K 5 10 15 20

Baum Welch 0.58 0.60 0.55 0.57

Gibbs Sampling 0.60 0.63 0.65 0.67

Variational 0.58 0.58 0.59 0.59

Superfamily, 37 categories
SCOP 1.67, 40%

Alg/K 5 10 15 20

Baum Welch 0.59 0.63 0.63 0.61

Gibbs Sampling 0.59 0.62 0.64 0.63

Variational 0.59 0.57 0.58 0.57

Table 3.3: AUC results from all of the multi-class SVM experiments are displayed. The best
performing algorithm, the best performing setting of K, and the best combination of K and
algorithm is marked in bold. The Gibbs-Sampling-derived representation most frequently
returned the most accurate level of classi�cation on the majority of the datasets.

maximum at one of these modes. In contrast, the expectation computed under both the

Gibbs sampling and the variational algorithm may lie at a point in the parameter space de-

scribed by the weighted center of mass of these modes. Di�erent topologies of the posterior

distribution will clearly have an e�ect on how well the expected value of the parameters com-

pares to the MAP parameters. If many maxima occur in a single region, then the expected

parameter may perform well. However, if a small number of maxima are highly separated,

then the MAP solution, which will likely reside at one of the maxima, will probably contain

38

Linear Kernel

Evaluation Metric AUC

Algorithm/K 5 10 15 20

Baum Welch 0.58 0.55 0.52 0.57

Gibbs Sampling 0.64 0.67 0.69 0.69

Variational 0.63 0.59 0.54 0.58

Gaussian Kernel

Evaluation Metric AUC

Algorithm/K 5 10 15 20

Baum Welch 0.61 0.60 0.58 0.59

Gibbs Sampling 0.63 0.63 0.63 0.63

Variational 0.67 0.60 0.70 0.68

Table 3.4: AUC results on the SCOP 1.53 Fold dataset over a selected set of 23 superfamilies
using Gaussian and linear kernels in one-versus-rest SVM classi�cation.

AUC

Alg/Kernel Linear Gaussian DKL Gradient

Baum Welch 0.894 0.926 0.919 0.860

Gibbs 0.606 0.537 0.563 0.828

Variational 0.562 0.562 0.578 0.546

Spectrum 0.997 0.472 0.548 N/A

Table 3.5: AUC results from all synthetic data experiments averaged over 10 trials. For
each HMM variant, the number of hidden states is 2. Counts of substrings of length 2 were
used to construct the spectrum kernel. The best performing entry is marked in bold.

more information about the sequence than the expected parameter value.

To test this hypothesis, we constructed histograms of transition matrices using 1000 sam-

ples from the Gibbs sampling algorithm. Figure 3.3 shows a histogram of the 2×2 transition

matrix associated with the �rst sequence from the synthetic data and is clearly bimodal with

the modes at opposite ends of the distribution for each matrix entry. Similarly, Figure 3.4

shows a histogram of the 5× 5 transition matrix associated with the �rst sequence from the

SCOP 1.67, 25% Astral �ltering dataset. This histogram exhibits much less multimodality

than the histogram from the synthetic experiments. Taken together, the histograms, which

39

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,0

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,1

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,2

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,3

Figure 3.3: Histogram of the transition matrix associated with the �rst sequence of the
synthetic dataset. The matrix entries have two modes at either end of the probability
distribution.

approximate the posterior distribution of the transition matrices, illustrate how the multi-

modality seen in the posteriors of the synthetic data but not in posteriors of the the protein

data likely causes the Gibbs sampling and variational transition matrices to perform poorly

for classi�cation.

To further analyze the results on the synthetic data, we observe the emission matrices

learned by each inference method. There are clearly observable di�erences between the emis-

sion matrices returned from Baum-Welch and from both the Gibbs sampling and variational

algorithm. Although all inferred emissions matrices exhibit some amount of bimodality, the

degree of bimodality in the Baum-Welch emissions matrix is much less than the other algo-

rithms (see Figure 3.5), allowing hidden states, and thus transitions between hidden states,

to be more easily distinguished.

40

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,0

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,1

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,2

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,3

0.0 0.2 0.4 0.6 0.8 1.0
A0,0,4

0.0 0.2 0.4 0.6 0.8 1.0
A0,1,0

0.0 0.2 0.4 0.6 0.8 1.0
A0,1,1

0.0 0.2 0.4 0.6 0.8 1.0
A0,1,2

0.0 0.2 0.4 0.6 0.8 1.0
A0,1,3

0.0 0.2 0.4 0.6 0.8 1.0
A0,1,4

0.0 0.2 0.4 0.6 0.8 1.0
A0,2,0

0.0 0.2 0.4 0.6 0.8 1.0
A0,2,1

0.0 0.2 0.4 0.6 0.8 1.0
A0,2,2

0.0 0.2 0.4 0.6 0.8 1.0
A0,2,3

0.0 0.2 0.4 0.6 0.8 1.0
A0,2,4

0.0 0.2 0.4 0.6 0.8 1.0
A0,3,0

0.0 0.2 0.4 0.6 0.8 1.0
A0,3,1

0.0 0.2 0.4 0.6 0.8 1.0
A0,3,2

0.0 0.2 0.4 0.6 0.8 1.0
A0,3,3

0.0 0.2 0.4 0.6 0.8 1.0
A0,3,4

0.0 0.2 0.4 0.6 0.8 1.0
A0,4,0

0.0 0.2 0.4 0.6 0.8 1.0
A0,4,1

0.0 0.2 0.4 0.6 0.8 1.0
A0,4,2

0.0 0.2 0.4 0.6 0.8 1.0
A0,4,3

0.0 0.2 0.4 0.6 0.8 1.0
A0,4,4

Figure 3.4: Histogram of the transition matrix associated with the �rst sequence of the
SCOP 1.67 dataset with 25% Astral �ltering. Modes of the distribution are more evenly
distributed compared to the synthetic data transition matrices.

The gap in performance between the Gibbs sampling algorithm and the variational algo-

rithm in the protein classi�cation experiments is not as surprising as the di�erent between

the Baum-Welch algorithm and the rest. Both the Gibbs sampling algorithm and the vari-

ational algorithm compute expectations of the parameters under an approximate posterior

distribution, but each uses a di�erent method to construct this approximation. The vari-

ational algorithm will be less likely to converge to a good approximation of the marginal

distribution because the mean �eld variational approximation necessarily does away with

the direct coupling between adjacent hidden states characteristic of the HMM.

41

3.5.3 Comparison with Existing Protein Classi�cation Methods

Tables 3.5, 3.6 show a comparison between the HMM variant and common classi�cation

methods for the synthetic and multiclass experiments respectively. Table 3.7 shows a sep-

arate experiment conducted on the one-versus rest classi�cation problem over SCOP su-

perfamilies. This problem is known as the remote homology detection problem and many

previous e�orts at protein sequence classi�cation ran experiments on the same dataset [12],

allowing us to compare our method to results from the literature. Results from the HMM

Variant on the remote homology detection problem were averaged over �ve runs of the Gibbs

sampler using 20 hidden states. Feature vectors from the Gibbs sampler were normalized to

a magnitude of one.

AUC scores indicate that our scheme produces a representation that is roughly equivalent

in power to the Spectrum kernel for multiclass protein classi�cation but is outperformed by

the Spectrum kernel for synthetic data classi�cation. For the remote homology detection

problem, the HMM Variant outperforms the Spectrum Kernel and the Fisher Kernel but

is outperformed by the Mismatch kernel and the semi-supervised SW-PSSM kernel (Table

3.7). In defense of the HMM variant, the size of the vector representation produced by the

the Mismatch and SW-PSSM kernels is signi�cantly larger than the typical representations

produced by our HMM variant. The Mismatch(5,1) kernel, used for SCOP 1.53 superfamily

classi�cation, is similar to the Spectrum(5) kernel but also counts substrings of length 5 that

di�er by one amino acid residue from those found in an observed sequence. The size of the

vector representation associated with this kernel can be up to 205 and is not sparse. This

value is large compared to the largest vector representation in our experiments, which is 400

for the HMM variant with 20 hidden states. Similarly, in the synthetic data classi�cation

task, the HMM variant uses a vector representation of length 4, while the Spectrum kernel

vector representation is of length 64. Even though the vector representation associated with

these kernels does not need to be explicitly computed, the size of the representation itself

is an indication of the relative amounts of information used by these methods compared to

the HMM variant.

42

Dataset/Kernel HMM Variant Spectrum

Class 0.68 0.66

Fold (25 Categories) 0.61 0.62

Fold (27 Categories) 0.67 0.67

Superfamily 0.69 0.64

Table 3.6: A comparison of results between the Spectrum kernel and the HMM variant
under experiments using the multiclass SVM formulation. The HMM variant scores are the
best performing from Tables 3.3 and 3.4.

Algorithm AUC

Spectrum(2) [43] 0.712

Fisher [61] 0.773

HMM Variant 0.815

Mismatch(5,1) [62] 0.870

SW-PSSM [1] 0.982

Table 3.7: A selection of AUC scores using a variety of SVM kernels on the same dataset
(see [1] for details on additional kernel methods). The HMM variant scores averages over
�ve trials from representations derived from Gibbs sampler inference with 20 hidden states.

The HMM variant does not perform as well as pro�le HMM kernels like the SW-PSSM

kernel, which are members of a family of kernels commonly used for protein taxonomy

classi�cation. Pro�le kernels, unlike the HMM variant, employ domain speci�c knowledge,

such as carefully tuned position-speci�c scoring matrices, to aid classi�cation. In contrast,

only parameter that needs to be adjusted in the HMM variant is the value of K. In addition,

pro�le kernels use �pro�les� rather than protein sequences as input. These pro�les are

constructed from a labeled set protein sequences augmented by large databases of unlabeled

sequences and are, in e�ect, semi-supervised methods.

3.5.4 Number of Hidden States

Table 3.3 not only shows how AUC scores are e�ected by the inference algorithm used but

also how the performance of the algorithms changes as the number of hidden states change.

43

For many of the trials, a maximum AUC score occur at 10 or 15 hidden states (although

notably, the Gibbs sampling results appear to increase as K increases), indicating that the

best performing value of K in each experiment is probably near the range that we tested.

Although we do not present experimental results with larger numbers of hidden states,

our experiments show that larger values of K tend to produce worse AUC results (The Baum-

Welch Algorithm with K=75 results in a AUC score of .54 on the class-level dataset using a

Gaussian kernel, which was superior to the linear kernel's performance.). This trend can be

accounted for using arguments similar to those that explain over�tting. As the transition

matrix size increases it seems likely that the number of �junk� hidden states, hidden states

that contribute to generating observed symbols for only a small number of sequences in

the dataset, would also increase. These meaningless hidden states would cause distances

between transition matrices to be corrupted with noise.

3.5.5 Higher Order Models

In addition to the experiments described above, we also ran a limited number of experiments

with higher order HMM variants, where transition matrices are de�ned between the group

of hidden states znt−`, . . . , znt−1 and znt, where ` is the order of the HMM. Classi�cation

performance under this set of models was also inferior to the �rst order results presented

in Table 3.3. Decreasing performance with higher order results also occurs in the Spectrum

and Mismatch kernels. The best performing Spectrum or Mismatch models on the multi-

class protein taxonomy classi�cation problems use substrings of length 5, and performance

decreases using counts of larger substrings. This trend of reduced performance under higher

order correlations can be explained by observing that the number of parameters in the higher

order models increase by a factor of K when ` is incremented by 1 but our dataset size re-

mains constant. Thus, as the order of the model increases, the uncertainty in the HMM

variant transition matrices will also likely increase.

44

3.6 Conclusion

Our HMM variant is an extension of the standard HMM that assigns individual transition

matrices to each sequence in a dataset. At least two intuitive interpretations describe the

mechanisms that allow the HMM variant to capture meaningful information about a set of

sequences. In addition, we describe three inference algorithms, two of which, a Baum-Welch-

like algorithm and a Gibbs sampling algorithm are similar to standard methods used to infer

HMM parameters. A third, the variational inference algorithm, is related to algorithms used

for inference on topic models and more complex HMM extensions. We demonstrate, by com-

paring results on protein sequence classi�cation using our method in conjunction with SVMs,

that each of these algorithms infers transition matrices that capture useful characteristics of

individual sequences. We further show, through an analysis of the transition matrices, what

types of information are best captured by each the inference method. Although classi�cation

performance using our model does not outperform either highly optimized kernels or simple

string kernels, our HMM variant facilitates new ways of understanding issues in sequence

classi�cation.

45

0 1 2 3 4 5 6 7 8
B0 ·

0.0
0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8
B1 ·

0.0
0.1
0.2
0.3
0.4
0.5

(a)

0 1 2 3 4 5 6 7 8
B0 ·

0.0
0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8
B1 ·

0.0
0.1
0.2
0.3
0.4
0.5

(b)

0 1 2 3 4 5 6 7 8
B0 ·

0.0
0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8
B1 ·

0.0
0.1
0.2
0.3
0.4
0.5

(c)

0 1 2 3 4 5 6 7 8
B0 ·

0.0
0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8
B1 ·

0.0
0.1
0.2
0.3
0.4
0.5

(d)

Figure 3.5: The original emission matrix used to generate the synthetic dataset (a) compared
to typical emission matrices inferred the synthetic dataset using the Baum-Welch (b), Gibbs
Sampling (c), and variational (d) algorithms. The charts in the �rst column show the �rst
row of the matrix and the second column shows the second row of the matrix.

46

Chapter 4: The In�nite Pro�le Hidden Markov Model

4.1 Introduction

Pro�le Hidden Markov Models (pHMM) [9] have been useful in bioinformatics applications

for analyzing amino acid, DNA, and RNA sequences. A pHMM is a left-to-right HMM that

captures position-speci�c commonalities of amino acids within a group of related proteins.

Pro�le HMMs are often constructed from multiple sequence alignments (MSAs) [63], which

are arrangements of amino acid sequences used to identify regions of structural similarity

or evolutionary relationships. Pro�le HMMs can be used in applications such as classifying

sequences, querying sequence databases, and constructing multiple sequence alignments for

additional sets of sequences. In this chapter, I improve on the basic Pro�le HMM by show-

ing how the model can be extended to allow for an unbounded number of hidden states.

This in�nite extension also gives a new perspective on how the model operates, and this

perspective can be used to develop fast approximate inference methods.

A core concept in constructing the In�nite-pHMM involves a transformation from the

pHMM to an equivalent standard-HMM. This equivalent standard-HMM, which we call the

Geometric Transition HMM, allows us to use beam methods [8, 64, 65], both traditional

and novel, to run an approximate version of the forward-backward [2] algorithm. We show

experimentally that these beam methods can lead to signi�cant performance gains compared

to the standard forward-backward algorithm in pHMMs.

The In�nite-pHMM and resulting beam methods constitutes an advance in understand-

ing Pro�le HMMs. In addition, our novel beam method has the potential to increase the

computational e�ciency of bioinformatics software that currently relies heavily on running

the forward-backward algorithm over Pro�le HMMs.

47

4.2 Background

The Hidden Markov Model (HMM) explains a sequence of observed symbols by postulating

that a hidden state is responsible for generating each observation (Section 2.1). In an HMM,

the sequence of hidden states exhibits the Markov property - that is, the value of each

hidden state depends on past states only through the immediately preceding hidden state.

A number of extensions have been proposed to the basic HMM. These include the Bayesian

HMM [66], where prior probabilities are added to emission and transition probabilities, and

non-parametric HMMs [67, 68], which make no a priori assumptions about the number of

hidden states.

There are two key requirements for a non-parametric HMM suitable for modeling amino

acid sequences: (i) transition probabilities from each hidden state should be concentrated

on a small subset of the entire set of possible hidden states; and (ii) transitions out of all

hidden states should share a common, countably-in�nite set of possible destination states.

A common model for prior probabilities on an unbounded number of latent components

is the Dirichlet Process (DP) [69] distribution. Condition (i) can be satis�ed by using

a DP prior for transition probabilities of an HMM. However, if separate, uncoupled DP

distributions are used for transitions out of each hidden state, then with probability 1, the

set of possible destination states for transitions out of any two hidden states will be disjoint

[67], violating condition (ii).

To ensure that multiple observed symbols share hidden states, Beal et. al. [67] use

the Hierarchical Dirichlet Process (HDP) [70]. The HDP models a prior over emission

distributions for an unbounded number of hidden states as a set of Dirichlet Processes with

a shared base measure given by a root Dirichlet Process. Using this construction allows

HDP-HMM to satisfy condition (ii), thereby allowing a sparse set of hidden states to model

the observed sequence.

Another in�nite HMM is the Stick Breaking HMM (SB-HMM) [68]. The SB-HMM as-

signs a separate stick-breaking prior [71] to each transition probability. These stick-breaking

48

Symbol Description

Σ the set of observed symbols; |Σ| indicates the number of observed symbols.

T the length of the observed sequence

t indexes a position in a sequence

K the number of base hidden states, where a �base hidden state� can be thought of as an index to the Match

columns in a multiple sequence alignment

k ∈ {1 . . . K} indexes a base hidden state in a Pro�le HMM

(s, k) indexes the current base hidden state, k, as well as the current choice of s = {Match, Insert,Delete},
which are indicated in subscripts by the capital letters {M, I,D}

xt ∈ {1 . . . |Σ|} an observed symbol in sequence n at position t

z1:|z| or ~z A sequence of hidden states consisting of pairs (s ∈ {Match, Insert,Delete} , k ∈ 1..K). Each sequence of

pairs forms a path through the DFA shown in Figure 2.3. Unlike the standard HMM, due to non-emitting

Delete states, the number of hidden states used to generate an observed sequence in the pHMM could be

larger than the length of the observed sequence, so we use |z| to indicate the length of the sequence of

hidden states.

z0 = (Match, 0) The �rst hidden state is de�ned as an observed start state, allowing us to encode the distribution of start

transitions inside the main transition matrix.

n(s,k),s′ The number of transitions from hidden state (s, k) to one of the following three states:

s′ = M =⇒
(
s′, k′

)
= (M,k + 1); s′ = I =⇒

(
s′, k′

)
= (I, k); s′ = D =⇒

(
s′, k′

)
= (D, k + 1) for a

given sequence of hidden states z1:|z|. Note that the choice of s′ uniquely determines the value of k for at

the destination state of the transition.

n(s,k),m The number of emissions of symbol m from hidden state (s, k) for a given sequence of hidden states z1:|z|.

A The transition probability matrix. A(s,k),s′ indicates the probability of transitioning from state (s, k) to

to one of the following three states: s′ = M =⇒
(
s′, k′

)
= (M,k + 1); s′ = I =⇒

(
s′, k′

)
= (I, k);

s′ = D =⇒
(
s′, k′

)
= (D, k + 1). For instance, A(M,1),D represents the transition probability from

hidden state (M, 1) to hidden state (D, 2).

B The emission probability matrix. B(s,k),m indicates the probability of emitting symbol m from hidden

state (s, k), where s ∈ {M, I} can only be a Match or Insert state. For instance, B(M,1),"a" represents

the probability of emitting an �a� from state (M, 1).

αs,s′ Dirichlet prior parameters on transition probabilities. A(s,k),s′ shares the prior parameter αs,s′ for all k.

βs,m Dirichlet prior parameters on emission probabilities. B(s,k),m shares the parameter βs,m for all k.

Table 4.1: Parameter de�nitions for the Pro�le Hidden Markov Model

priors are parametrized by an in�nite length vector of concentration parameters, which are

each given Gamma hyperpriors to make the number of prior parameters on the model �nite.

This careful combination of stick-breaking distributions allows each transition probability

to be attached to a single set of emission parameters, also ful�lling condition (ii).

4.2.1 Pro�le HMMs

The Pro�le HMM (pHMM) (Section 2.1.1) is an HMM with speci�c restrictions on transi-

tions and emissions. These restrictions allow the pHMM to capture an archetypal sequence

or sequence fragment through the emission distributions of a portion of the model's hidden

49

states.

As with the Bayesian HMM, Dirichlet priors can be added to the transition and emission

probabilities of the pHMM to produce a model with the following joint probability:

p(x1:T , z1:|z|, A,B|α, β) =
∏

(s,k),s′

(
A(s,k),s′

)n(s,k),s′
∏

(s∈{M,I},k),m

(
B(s,k),m

)n(s,k),m

∏

(s,k)

Dir(A(s,k),·;αs,s′)
∏

(s,k)

Dir(B(s,k),·;βs,m) (4.1)

4.3 The In�nite Pro�le HMM

To construct an in�nite pHMM, we consider the case where K is unbounded. In addition,

we modify the pHMM so that the model can transition to the end state from any Match or

Insert state (Figure 2.3). This modi�cation allows the model to emit a sequence of observed

symbols without needing to traverse in�nitely many Delete states. We believe that we are

the �rst to propose an in�nite version of the pHMM.

Unlike the HDP-HMM and SB-HMM, we run into di�culties constructing a non-informative

prior. An uninformative prior on pHMM transitions places a uniform distribution on all

paths through the three-dimensional lattice. In the limit of in�nite states, this leads to a

Dirichlet prior that places all of its probability mass on Delete transitions.1 Rather than us-

ing an uninformative prior in our model, we choose priors that make reasonable assumptions

about how amino-acid sequences in a dataset should align for practical purposes. For exam-

ple, it is unreasonable to expect that a model will use more than K =
∑

n |xn| states. With

these assumptions in mind, we note that the major di�erence between the �nite and in�nite

models is that in the �nite model we encode our assumptions about the length of a sequence

alignment in the value of K. In contrast, for the in�nite model, our assumptions about the

total length of the alignment are encoded in the Dirichlet priors on transition probabilities.

1To see this, note that each path that generates an observed sequence passes through a �xed number of
Match and Insert states but can use an arbitrarily large number of Delete states.

50

This characteristic of the model can be seen visually in the upper right-hand heat map in

Figure 4.4. In the heat map, areas of high intensity under uniform transition and emission

probabilities at the start of inference do not reach the model's truncation threshold, K. The

model should therefore be more �exible in the sense that a small number of hidden states

should produce emitted symbols and the number of these states should re�ect characteristics

of the dataset rather than be determined by a preset model parameter.

Symbol Description

A
(2S)
(s,k),k′ The probability of a sequence of pHMM transitions beginning

at state (s, k) ending in a transition to either a Match or Insert
state from the hidden state at k′.

B
(2S)
(s,k),m Given than the transition to state (s, k) is not a delete state,

the probability of making a single pHMM transition to (s, k)
then emitting symbol m.

n
(2S)
(s,k),k′ Given a set of hidden states, ~z(2S), the total number of

transitions in the dataset between hidden states (s, k) and
transitioning to either a Match or Insert state from the hidden
state at k′.

Table 4.2: Additional parameter de�nitions for the 2S-HMM

To show the the In�nite pHMM is not degenerate, we must show that the model tra-

verses a �nite number of hidden states to generate a �nite-length observed sequence. We

establish non-degenerate behavior by showing that transitions in the In�nite pHMM are

drawn from a stick breaking distribution. To do so, we consider an aggregation of the orig-

inal pHMM transition probabilities, which we term the Two-Step HMM (2S-HMM). In this

reformulation, we view each transition as a two-step process. In the �rst part of the process,

we begin at hidden state k in the pHMM and draw a sequence of delete transitions from

A(k,s),:, A(k+1,D),:, A(k+2,D),:, . . . , A(k′,D),:. When the sequence of deletes terminates, we draw

either a Match or Insert transition from A(k′,D),:. This draw constitutes the second part of

the process.

51

We can now rewrite these two-part transition probabilities in terms of the original

pHMM transition probabilities. In contrast to the GT-HMM transformation, we merge

the Match/Insert portion of the transition into a modi�ed emission probability:

A
(2S)
(s,k),k′ =

A(s,k),D

(∏k′−1
k′′=k+1A(D,k′′),D

) (
1−A(D,k′),D

)
k ≤ k′ − 1 (a)

1−A(s,k),D k = k′ − 1 (b)

0 k > k′ (c)

(4.2)

B
(2S)
(s,k),m =

A(s,k−1),M

1−A(s,k−1),D
B(M,k),m s = M (a)

A(s,k),I

1−A(s,k),D
B(I,k),m s = I (b)

(4.3)

To see that this transformation produces a valid HMM that is equivalent to the original

pHMM, observe that each sequence of Delete transitions always terminates with a transition

to a non-delete (1 − A(D,k′),D) (Equation 4.2). Each transition to a non-delete is also

associated with a choice between a Match or Insert state, which cancels the factor, 1 −

A(D,k′),D, from the non-delete transition (Equation 4.3). The Match or Insert transition is

included in the modi�ed emission, B
(2S)
(s,k),m. This sequence of steps has the same probability

as each sequence of transitions that lead to an emitted symbol in the original pHMM.

Sethuraman's stick-breaking construction of the [71] Dirichlet Process is de�ned by the

following generative procedure:

Vi ∼ Beta (1, γ)

πj = Vj
∏

i<j

(1− Vi) (4.4)

52

The distribution π is then said to be generated by a stick-breaking process, and we

denote a draw from this in�nite multinomial by π ∼ SB (γ).

To establish equivalence between pHMM transitions and the stick-breaking process, we

use the aggregation property of the Dirichlet distribution [72] to decompose the Dirichlet

prior on transition probabilities as follows:

Dir(A(s,k),·;αs,s′)

= Beta
(
A(s,k),D;αs,D, αs,M + αs,I

)
Beta

(
A(s,k),M

1−A(s,k),D
;αs,M , αs,I

)
(4.5)

The Beta distribution that generates A(s,k),D (Equation 4.5) is a prior on the choice of

transitioning to a Delete or non-Delete state. If we set αs,D = 1, the process of selecting

a non-Delete state for a sequence of length one becomes equivalent to the stick-breaking

construction for the Dirichlet process (Equation 4.4):

A(s,k),D ∼ Beta(1, αs,M + αs,I)

⇓

A
(2S)
(s,k),k′ ∼ SB (αs,M + αs,I) (4.6)

All valid settings of Dirichlet prior parameters (i.e. αs,s′ > 0) also lead to valid distribu-

tions over transition probabilities to an unbounded number of hidden states as determined by

the criterion given by Ishwaran and James [73]:
∑∞

i=1 πi = 1 a.s. i�
∑∞

i=1 log
(

1 +
αs,D

αs,M+αs,I

)
=

+∞.

From the 2S-HMM construction, we can also derive an expression for the a-priori prob-

ability for nD, the number of Delete states that the model traverses to generate a single

observed symbol:

53

p(nD|α) =

ˆ
dA
p(A|α)A

(2S)
(s,k),nD−k

=
∏

s,k

Γ (α·)

Γ (αD) Γ (α¬D)

ˆ
dA

(∏

s′

A
αs′−1

(s,k),s′

)
A

(2S)
(s,k),nD−k

=
Γ (α·)

Γ (αD) Γ (α¬D)

Γ (αD) Γ (α¬D + 1)

Γ (α· + 1)
(4.7)

nD∏

k=1

Γ (α·)

Γ (αD) Γ (α¬D)

Γ (αD + 1) Γ (α¬D)

Γ (α· + 1)

=
α¬D
α·

(
αD
α·

)nD

where , where we have overloaded the de�nition of nD and �xed αD=̇αs,D and α¬D=̇αs,¬D

to be the same for all s. It is clear from the expression in Equation 4.7 that the probability

decreases to zero as the number of delete states approaches in�nity. We can also compute

the expected number of Delete states traversed over a single transition as follows:

E [nD|α] =

∞∑

nD=1

nD
α¬D
α·

(
αD
α·

)nD
(4.8)

=
αD
α¬D

In the In�nite pHMM we can therefore expect, a-priori, to traverse a �nite number of

Delete states for a sequence of length one. We can perform a similar derivation for a single

sequence of T emitted symbols, where the model traverses nD,t delete states for each position

in the sequence:

54

Symbol Description

z
(GT)
t The hidden state associated with the emitted symbol at

position t of the sequence, taking on values from the pair

(k ∈ 1..K, s ∈ {Match, Insert}), z(GT)
t ∈ (s, k) (Delete states

are not included in this sequence).

A
(GT)
(s,k),(s′,k′) The probability of a sequence of pHMM transitions beginning

at state (s, k) ending at state (s′, k′), s, s′ ∈ {M, I}.
n

(GT)
(s,k),(s′,k′) Given a set of hidden states, z

(GT)
1:T , the total number of

transitions in the dataset between hidden states (s, k) and
(s′, k′).

Table 4.3: Parameter de�nitions for the GT-HMM

p(nD,:|α, T) =

T∏

t=1

α¬D
α·

(
αD
α·

)nD,t
(4.9)

In a single sequence, the nD,t's are independent, and we can expect to traverse E [
∑

t nD,t|α] =

T αD
α¬D

= O(T) hidden states, a-priori, for a sequence of length T . Because the In�nite pHMM

must traverse hidden states in order by base hidden state (e.g. to get to state (s, k + `), s′

the model must have traversed (sp, k), s′p for some sp, s
′
p ∈ {M, I,D},` > 1), modeling a

set of sequences causes the desired behavior of forcing the In�nite pHMM to reuse hidden

states as it generates separate sequences from the set.

4.3.1 The Geometric Transition HMM

To construct a set of e�cient inference methods, we present a transformation from the

pHMM to an equivalent HMM, which we refer to as the Geometric Transition HMM (GT-

HMM) due to the geometrically decreasing transition probabilities from each hidden state.

This transformation merges sequences of Delete transitions with a single terminating Match

or Insert transition so that every transition becomes associated with an emission. This

55

zTz2z1

xTx2x1

. . .

. . .

z0A(:,k),:

B(:,k),:β:,:

K = 1 . . .∞

α:,:

A(s,k),: ∼ Dir (αs,:)

B(s,k),: ∼ Dir (βs,:)

zt ∼ Mult

(
A

(GT)
zt−1,(:,:)

)

xt ∼ Mult (Bzt,:)

(a) (b)

Figure 4.1: (a) The plate diagram of the in�nite pHMM, and (b) the generative process for
the in�nite pHMM. Note that emission and transition probabilities are from the GT-HMM.
We use �:� symbols in subscripts as in Matlab notation, indicating a vector or matrix with
all possible values of the replaced parameter.

transformation is similar to existing techniques in speech recognition applications for trans-

forming an HMM with non-emitting states to one that emits after every transition [8]. To

the best of our knowledge, we are the �rst to propose this transformation for pHMMs.

We illustrate the e�ect of the transformation from pHMM to GT-HMM in Figure 4.2,

which shows all transitions to hidden state (M,k) emitting xt from the set of previous hidden

states that could emit xt−1 in a portion the lattice used for the forward-backward algorithm.

The GT-HMM does not contain any non-emitting Delete states. Instead, it merges Delete

states in the pHMM with emitting states, allowing transitions from a much larger number

of states in column t− 1.

The in�nite pHMM can be represented by a plate diagram using the GT-HMM as shown

in Figure 4.1a. The generative procedure for the in�nite pHMM is given in Figure 4.1b.

Equation 4.10 shows GT-HMM transition probabilities to Match states in terms of the

original pHMM transitions, where (a) indicates a sequence of delete transitions followed

by a Match, (b) indicates a single Match transition, and (c) disallows transition to a state

with a value of k less than or equal to that of the current state. Similarly, Equation 4.11

shows GT-HMM transition probabilities to Insert states in terms of the original pHMM

transitions, where (d) indicates a sequence of Deletes followed by an Insert, (e) indicates a

single Insert transition, and (f) disallows transition to a state with a smaller value of k.

56

A
(GT)
(s,k),(M,k′) =

A(s,k),D

(∏k′−2
k′′=k+1A(D,k′′),D

)
A(D,k′−1),M k < k′ − 1 (a)

A(s,k),M k = k′ − 1 (b)

0 k ≥ k′ (c)

(4.10)

A
(GT)
(s,k),(I,k′) =

A(s,k),D

(∏k′−1
k′′=k+1A(D,k′′),D

)
A(D,k′),I k < k′ (d)

A(s,k),I k = k′ (e)

0 k > k′ (f)

(4.11)

The probability of a set of sequences for the GT-HMM is given by the same expression

as the standard HMM, but with hidden states parametrized by (s, k) pairs with s ∈ {M, I}

and k ∈ [1 . . .K]:

p(x1:T , z1:|z||A,B) =
∏

(s,k),(s′,k′)

(
A

(GT)
(s,k),(s′,k′)

)n(GT)

(s,k),(s′,k′)
∏

(s,k),m

(
B(s,k),m

)n(s,k),m (4.12)

Because each transition under the GT-HMM results in an emission, we can now con-

sider all possible transitions between hidden states (s, k) and (s′, k′), which allows forward

and backward recursions to be run using the standard two-dimensional lattice (shown in

Figure 4.2 for transitions to a single Match state) rather than the three-dimensional lattice

commonly used in pHMM inference.

In addition, Equations 4.10 and 4.11 indicate that increasing the destination state index

k′ while holding the source index k �xed causes additional A(D,k),D terms (Delete-to-Delete

transitions) to be included in A
(GT)
(s,k),(s′,k′), leading to both an exponential decrease in the

GT-HMM transition probability and to a limit of 0 as k increases inde�nitely.

57

xtxt−1

zt−1 zt

...
...

(M, 0) (M, 0)

(I, 0) (I, 0)

(M, 1)

(I, 1)

(M, 1)

(I, 1)

(M,k)

(I, k)

(M,k)

(I, k)

Figure 4.2: A section of the two-dimensional lattice used for GT-HMM inference showing
transitions used to compute the forward recurrence for state (M,k) for position t in the
sequence. Unlike the pHMM, the GT-HMM no longer includes Delete states. In addition,
transitions have been added from all states in column t− 1 to states in column t with larger
values of k.

4.4 Inference

We use a structured variational algorithm for inference, factoring the variational distribution

as follows:

q(~z,A,B) =q(~z)
∏

(s,k)

q(A(s,k),:)
∏

(s,k)

q(B(s,k),:)

The update equations for maximizing the variational bound2 on the marginal likelihood

and minimizing the KL divergence between the true posterior and variational posterior are

given in Algorithm 4.4 (Figure 4.1).

Similar structured variational methods for performing HMM inference are described in

[66,68,74], so we omit the details of our derivation. Care must be taken, however, to correctly

2The full expression for the bound is provided in Appendix B.1.

58

Algorithm 4.1 Variational Inference algorithm for the in�nite pHMM. Parameter de�-
nitions are given in Tables 4.1 and 4.3. The Ψ symbol indicates the digamma function:

Ψ (x) = ∂ log Γ(x)
∂x .

Repeat until the variational bound converges:
1) Compute Expectations

E
[
n(s,k),s′

]
from the forward-backward algorithm

E
[
n(s,k),m

]
from the forward-backward algorithm

E
[
logA(s,k),s′

]
= Ψ

(
α̃(s,k),s′

)
−Ψ

(∑

s′′

α̃(s,k),s′′

)

E
[
logB(s,k),m

]
= Ψ

(
β̃(s,k),m

)
−Ψ

(∑

m′

β̃(s,k),m′

)

2) Maximize with respect to variational parameters

α̃(s,k),s′ ← αs,s′ + E
[
n(s,k),s′

]

β̃(s,k),m ← βs,m + E
[
n(s,k),m

]

Ã(s,k),s′ ← exp
(
E
[
logA(s,k),s′

])

B̃(s,k),m ← exp
(
E
[
logB(s,k),m

])

convert counts of transitions (the su�cient statistic associated with transition probabilities)

in the GT-HMM (E
[
n

(GT)
(s,k),(s′,k′)

]
) back to pHMM counts (E

[
n(s,k),s′

]
), used to update the

variational parameter, Ã:

E
[
n(s,k),s′

]
=

∑

(s,k),s′∈(s,k),(s′,k′)

E
[
n

(GT)
(s,k),(s′,k′)

]
(4.13)

If a pHMM transition is an element of the aggregate GT-HMM transition, then we add

this expectation to the expectation under the pHMM.

These expected emission and transition counts, which are normally computed using the

forward-backward algorithm, are computed for the GT-HMM using a beam search version

59

of the forward backward algorithm described in the next section.

We use a truncated model for our variational approximation, setting the value of K to

a large, but �nite, value. Truncation, of course, transforms the in�nite model into a �nite

model. To ensure that this approximation is accurate, it is critical to set the truncation

levels large enough to capture the bulk of the posterior probability mass over the set of

hidden states.

4.4.1 Beam Methods

Beam methods [8, 64] increase the speed of computation in message passing algorithms

by eliminating hidden variable assignments that do not contribute signi�cantly to the ex-

pectation or marginal probability. Speci�cally, we would like to eliminate, without major

degradation in accuracy, as many terms as possible from the sum over zt−1 in each for-

ward recurrence, p(zt, x1:t) =
∑

zt−1
p(xt|zt)p(zt|zt−1)p(zt−1, x1:t−1), where zt−1 indicates

the column in the lattice associated with the t− 1th observation. Figure 4.3 shows a beam

containing the values of zt−1 that are retained in the sum.

Beam methods are not e�ective in the standard pHMM because the forward and back-

ward recurrences in the three-dimensional lattice are computed over only three states,Match,

Insert, and Delete (Figure 2.3). In contrast, the forward and backward recurrences in the

GT-HMM involve sums over the O(K) moves (K is the truncation level of the pHMM),

between adjacent columns in the two-dimensional lattice (Figure 4.2). This allows us to

eliminate a larger number of terms from the sum in each recurrence.

Although the GT -HMM transformation has the potential to speed up inference, it may

have the opposite e�ect in certain cases. These cases can be quanti�ed by a straightforward

analysis of the number of messages passed for each observed symbol. The forward-backward

algorithm on the GT-HMM passes O
(
T ·K2

)
messages per sequence, while on the pHMM

it passes O
(
T ·K

(
32
))

messages. This means that for the beam method to run faster than

the standard pHMM forward-backward algorithm, the size of the beam, K(beam), (if we

60

Observed Sequence

H
id

de
n

S
ta

te
s

Beam of high-probability paths

k=0

k=1

k=2

k=3

k=4

...

x1 x2 x3 x4 x5 x6 xT

Figure 4.3: The lattice used for pHMM inference. Observed sequences are generated by
paths of hidden states through the graph. Transitions marked in red indicate a potential
beam of highly probable paths within the total set of possible paths. Match, Insert, and
Delete states are merged for clarity.

61

assume a constant beam size) must satisfy K(beam) < 3
√
K. Therefore, if the number of

pHMM hidden states needed to accurately model the set of observed sequences is known to

be small beforehand, the standard forward-backward algorithm may be more desirable than

our beam methods. However, if the number of hidden states needed to accurately model a

dataset is large, then beam methods will be useful in pHMM inference because the size of

K(beam) depends primarily on the prior parameters in the distributions over transition and

emission probabilities, α and β, rather than the truncation level, K.

In the GT -HMM, we apply the KL divergence beam method from [64]. However, the

KL-divergence approach by itself is not enough. We are still required to compute O(K)

forward messages for each lattice column t even though some these messages are very close

to zero. These tiny values result from the combined e�ect of a small number of forward

messages in the beam of column t− 1 and exponentially decreasing transition probabilities.

For a faster beam method, we can specify, for each column of the lattice, a threshold on the

hidden state index k, and stop computing forward messages when the threshold is exceeded.

We derive this thresholding criterion from an adaptation of the auxiliary variable beam

method described by Van Gael et. al. [65]. In the auxiliary variable method, a uniformly

distributed auxiliary variable, ut, is added to the model. The distribution of ut is conditioned

on the values of hidden states t and t− 1, yielding the joint distribution:

p(u1:T , z1:T , x1:T |A,B) =
∏

t

p(ut|zt, zt−1)p(zt|zt−1)p(xt|zt) (4.14)

p (ut|zt, zt−1) is chosen so that marginalizing with respect to u1:T returns the original

joint distribution: p (ut|zt, zt−1) = I(ut<p(zt|zt−1))
p(zt|zt−1) , where I (ω) = 1 if ω is true and 0 otherwise

and zt indicates the hidden state at position t in the sequence.

We use the auxiliary variables in conjunction with a variational argument to justify

truncating the computation of forward probabilities using a �xed thresholding criterion.

With the addition of auxiliary variables, forward messages in the GT-HMM can be expressed

as follows:

62

p(zt, x1:t) =

ˆ
ut

∑

zt−1

p(xt|zt)p(ut|zt, zt−1)p(zt|zt−1)p(zt−1, x1:t−1) (4.15)

where x1:t indicates the sub-sequence of observed symbols from positions 1 to t.

This formulation allows us to construct the following variational bound:

log p(zt, x1:t) ≥
ˆ
ut

∑

zt−1

qzt(zt−1, ut) log
p(x1:t, zt, zt−1, ut)

qzt(zt−1, ut)

= log p(xt|zt) +

ˆ
ut

∑

zt−1

qzt(zt−1, ut) log
p(ut|zt, zt−1)p(zt|zt−1)p(zt−1, x1:t−1)

qzt(zt−1, ut)

(4.16)

We assume a factorization of qzt(zt−1, ut) = qzt(zt−1)qzt(ut), which allows us to maximize

with respect to the individual factored portions of the distribution. This maximization

results in following expressions (derivation in Appendix B.2):

qzt(zt−1) ∝ I
(
p(zt|zt−1) ≥ θ̃t

)
p(zt−1, xt−1) (4.17)

qzt(ut) =
I
(
ut < θ̃t

)

θ̃t
(4.18)

where θ̃t is a variational parameter specifying a truncation threshold for each position in the

observed sequence. A set of approximate posteriors, qzt(zt−1) and qzt(ut), are computed for

the forward recurrence, p(zt, x1:t), for each value of zt, hence the subscript on the variational

distributions.

The distribution qzt(zt−1) is over zt−1 rather than zt. Therefore, it does not make sense

to use these quantities directly for computing forward recurrences. Instead, we pretend that

63

we are using qzt(zt−1) to sample values of zt−1 in the backward direction given that we know

the value of zt. If qzt(zt−1) is empty, i.e., there are no transitions to zt where p(zt|zt−1) ≥ θ̃t,

then we would have no way to sample a hidden state given that the value of the current

hidden state is zt. We therefore use this criterion for truncating computation of forward

recurrence values: if transitions from all states in the beam for lattice-column t − 1 to the

current state zt = (s, k) fall below θ̃t, then we do not compute values of p(zt = (s, k′) , x1:t)

for k′ > k.

4.5 Experiments

We evaluated the e�ectiveness of the beam method using the GT-HMM model, computing

both the speed of the inference and test-set perplexities. We compared our approach to

the forward-backward algorithm in the standard pHMM. We conducted experiments on a

synthetic dataset generated from three pHMMs designed to emphasize di�erent possible

latent con�gurations. The structures of these pHMMs are described in Table 4.4. We also

ran experiments on an ASTRAL3-�ltered subset of the Structural Classi�cation of Proteins

(SCOP) [75] database (see Section 2.4). Tests were run using 5-fold cross validation on a

subset of the SCOP 1.75 dataset �ltered at 95% identity. This dataset contained classes

having between 80 and 200 sequences.

We evaluated the ability of our beam method to increase the speed of inference while

maintaining an accuracy (in terms of perplexity) comparable to the standard (no beam)

forward-backward algorithm (We refer to the standard pHMM as the �no beam� model in

results Tables 4.5, 4.6, and 4.7). For all experiments, we conducted inference using the

variational algorithm described in Figure 4.1. The algorithm was stopped when either the

criterion, 0 ≤ Bt
Bt−1

− 1 < 10−6, was reached, where Bt indicates the value of the variational

bound at iteration t, or until 300 iterations were performed. We set the prior parameters,

3http://astral.berkeley.edu/

64

Hidden Emitted

Name States Symbols Description

(K) (M)

PHMMM 20 2 90% probability of a match transition; emission of

symbol zero from match states increases as the value

of k increases; uniform emissions from insert states

PHMMI 20 3 99.9% probability transitioning to an insert state

and a 90% probability of remaining in an insert

state at the 10th hidden state

PHMMD 40 3 47.5% probability of a delete transition and a 47.5%

probability of a match transition from the central 20

hidden states; 90% probability of a match transition

from all other hidden states

Table 4.4: Pro�le HMMs used to generate synthetic datasets.

α and β, uniformly to 0.5 and truncated the in�nite model by setting K to be twice the

maximum length sequence in the dataset. Learning transitions from Insert states tends to

drive inference toward bad local minima with multiple chains of insertions. Hence, we �xed

the distribution of Insert transitions to uniform.

To compute perplexity under the Bayesian model, we approximated A and B using the

expectations under the variational distributions q(A; α̃) and q(B; β̃):

perplexity = exp

(
−
∑

n log p(xn|Eq(A) [A] , Eq(B) [B])∑
n |xn|

)

For all experiments, perplexity was computed using expectation from the standard (no beam)

forward-backward algorithm.

In all experiments, we tested three settings of beam parameters, �narrow,� �medium,�

and �wide� with threshold settings of ε =
[
10−2, 10−3, 10−4

]
and θ̃ =

[
10−16, 10−17, 10−18

]
.

The parameter ε indicates the threshold used for the KL divergence beam and θ̃ indicates

the threshold used for the auxiliary variable beam. Smaller beam thresholds are associated

with larger beams.

65

Synthetic Data: Test Set Perplexities

Model/ Beam No Beam

SCOP Narrow Medium Wide
Category
PHMMM 1.72 1.71 1.71 2.15
PHMMI 2.27 2.21 2.22 2.65
PHMMD 2.34 2.33 2.33 2.74

Synthetic Data: Inference Times (seconds)

Model/ Beam No Beam

SCOP Narrow Medium Wide
Category
PHMMM 11.36 22.98 35.31 101.11
PHMMI 3.95 38.91 47.86 280
PHMMD 9.2 36.09 54.96 245.57

(a) (b)

Table 4.5: The charts above show a comparison of test-set perplexities (a) and run times (b)
between inference using our beam methods and the standard (no beam) forward-backward
method on sets of synthetic datasets. �Narrow,� �medium,� and �wide� indicate threshold

settings of ε =
[
10−2, 10−3, 10−4

]
and θ̃ =

[
10−16, 10−17, 10−18

]
, where ε indicates the KL

divergence beam threshold and θ̃ indicates the auxiliary variable threshold.

4.5.1 Synthetic Data

To test the performance of our beam method, we generated 100 training and 25 test se-

quences from the pHMM models described in Table 4.4. We then compared pHMMs inferred

on the training set using our beam methods against models inferred using the standard

forward-backward algorithm by both computing perplexities on test sets and recording the

time needed for inference. Table 4.5 shows the results of these experiments. The beam

methods achieved a lower perplexity than the standard forward-backward algorithm, with

an average decrease of 17% over all beam thresholds. The beam methods were able to

converge to a better optimum by eliminating paths of hidden states that were not useful

for inference. The results con�rmed our expectations that beam methods improve runtime,

with an average improvement of 84% over all of the thresholds tested (Table 4.5a). As

the threshold values increased, more hidden states were included in the beam, and runtime

increased by an average of 13% from the narrow to the medium beam and 9.5% from the

medium to the wide beam (Table 4.5b).

To show that our beam methods capture similar characteristics of the data as standard

forward-backward inference, we present a series of heat maps. Cells in each heat map (Figure

4.4) associate expectations of the number of paths though hidden states to intensity in a

two-dimensional grid - i.e., a cell (k, t) in the heat map is the sum expectations that a

66

0 10 20 30 40 50 60
t

0

10

20

30

40

ite
ra

tio
n

1
k

Beam ε=10−2 , ̃θ=10−16

0 10 20 30 40 50 60
t

0

10

20

30

40

k

Beam ε=10−3 , ̃θ=10−17

0 10 20 30 40 50 60
t

0

10

20

30

40

k

Beam ε=10−4 , ̃θ=10−18

0 10 20 30 40 50 60
t

0

10

20

30

40

k

no beam

0 10 20 30 40 50 60
t

0

10

20

30

40

ite
ra

tio
n

20
k

0 10 20 30 40 50 60
t

0

10

20

30

40
k

0 10 20 30 40 50 60
t

0

10

20

30

40

k

0 10 20 30 40 50 60
t

0

10

20

30

40

k

0 10 20 30 40 50 60
t

0

10

20

30

40

ite
ra

tio
n

40
k

0 10 20 30 40 50 60
t

0

10

20

30

40

k

0 10 20 30 40 50 60
t

0

10

20

30

40
k

0 10 20 30 40 50 60
t

0

10

20

30

40

k

Figure 4.4: A set of heat maps generated at 20-step intervals during inference on the pHMMI
dataset for a variety of beam settings. Each cell in the heat map indicates the expectation
that either a Match or Insert state with parameter k (row index) generated the observed
symbol at position t (column value) in the heat map. Darker colors indicate higher values,
and red indicates that a hidden state was excluded from the beam.

path of hidden states passing though either (M,k) or (I, k) generates symbol xt. The heat

maps depict expectations for the longest sequence in the training set generated by pHMMI

collected at intervals of 20 steps during inference. We created heat maps for each beam

threshold setting and for the no-beam experiment. For all levels of the beam threshold, the

con�guration of hidden state expectations nearly matches the con�guration in the no-beam

setting. The areas of red in the beam-inference heat maps indicate hidden states that were

excluded from inference. Darker colors in the heat maps indicate larger values. Comparing

areas of red in the graphs shows how lower beam thresholds consider larger numbers of

hidden states.

67

4.5.2 SCOP Datasets: Uniform Initialization

To compare the in�nite pHMM's performance on the SCOP dataset, we ran experiments

using 5-fold cross validation on each SCOP category. Models were initialized using uniform

expectations of transition and emission probabilities, i.e. we initialize variational parameters

Ã(s,k),s′ = 1
3 (standard pHMM) and B̃(s,k),m = 1

|Σ| . Results on the SCOP datasets (Table

4.6) show a similar pattern as in the synthetic experiments: in comparison to the no-beam

method, the beam method improved both perplexity (3.51% for the narrow beam, 4.56% for

the medium beam, and 4.75% for wide beam averaged over all categories - see Table 4.6a)

and substantially decreased inference runtime (98.60% for the narrow beam, 96.90% for the

medium beam, and 94.46% for the wide beam, averaged over all categories - see Table 4.6b).

To better visualize the e�ect of the beam on inference, we plotted the variational bound

on the marginal likelihood against runtime for the �rst fold of the 5-fold training parti-

tion (Figure 4.5a). As expected, narrower beam thresholds converge faster, and the beam

methods converge faster than the no-beam forward-backward algorithm for all thresholds

tested. Figure 4.5b shows a zoomed portion of the graph in Figure 4.5a toward the end

of convergence of the beam methods. This portion shows that inference using the beam

method, unlike the standard forward-backward algorithm, does not necessarily increase the

variational bound at every step. If the optimum that the algorithm approaches is well-

behaved, then it is possible for the beam method to perform better than the non-beam

method by ignoring irrelevant states. However, the beam could also ignore useful states,

causing inference to progress to a non-optimal point in the model's parameter space.

4.5.3 SCOP Datasets: MSA initialization

We ran additional inference experiments where we attempted to improve perplexities from

pHMMs constructed using multiple sequence alignments (MSAs) [63]. The MSAs were

created on each training partition of our SCOP 1.75 dataset using the MUSCLE program

68

0 200 400 600 800
Time (seconds)

80000

70000

60000

50000

40000

30000

Va
ria

tio
na

l B
ou

nd

Progress of inference on dataset a.39.1

Narrow Beam
Medium Beam
Wide Beam
No Beam

10 20 30 40 50 60 70 80 90 100
Time (seconds)

35500

35400

35300

35200

35100

35000

34900

Va
ria

tio
na

l B
ou

nd

Progress of inference on dataset a.39.1
(beam method detail)

Narrow Beam
Medium Beam
Wide Beam

(a) (b)

Figure 4.5: (a) Shows a comparison of rates of improvement of the variational bound be-
tween the beam algorithms using the three separate thresholds and the standard (no-beam)
forward-backward algorithm. As the beam threshold decreases, inference speed increases.
All beam settings converge faster than the no-beam method. (b) Shows detail for the beam
methods. Unlike the non-beam method, each iteration of beam inference is not guaranteed
to increase the variational bound. Both graphs show inference on superfamily a.39.1 from
the SCOP 1.75, 95% dataset. �Narrow,� �medium,� and �wide� indicate threshold settings of

ε =
[
10−2, 10−3, 10−4

]
and θ̃ =

[
10−16, 10−17, 10−18

]
, where ε indicates the KL divergence

beam threshold and θ̃ indicates the auxiliary variable threshold.

[76] with default settings. We constructed pHMMs from each MSA using an 80% Match-

state cuto� value. The cuto� values were used to determine the number of non-blanks in an

alignment column that would cause us to associate that column with a Match state in the

derived pHMM. The pHMM size K was set to the number of Match columns, and emission

probabilities for each Match state were estimated using the frequencies of amino acids in

each Match column of the alignment. We computed initial perplexities of the pHMM-MSAs

using the marginal likelihood, p(xn|A,B), computed directly from the (no-beam) forward-

backward algorithm.

Once these initial pHMMs were constructed, we used expected counts as a starting point

for variational inference using both the standard forward-backward algorithm as well as our

beam method with the same set of beam thresholds as in the previous set of SCOP 1.75

experiments. Unlike the previous experiments, we did not �x insert transition probabilities.

Narrower beams (large thresholds) produced higher perplexities than wider beams. In

some cases, beams that were too narrow led to inference steps that decreased the variational

69

Uniform Initialization: Test Set Perplexities

Model Beam No Beam

Narrow Medium Wide

Average 16.68 16.50 16.48 17.31

StDev 1.81 1.80 1.83 1.94

Uniform Initialization: Inference Times (seconds)

Model Beam No Beam

Narrow Medium Wide

Average 85 205 373 9138

StDev 54 151 260 7959

(a) (b)

Table 4.6: The charts above show comparisons of average test-set perplexities (a) and
convergence times (b) between the beam method and the standard (no beam) forward-
backward inference averaged over all folds and categories of our SCOP 1.75 dataset. Infer-
ence was initialized with uniform expected transition and emission distributions. �Nar-

row,� �medium,� and �wide� indicate threshold settings of ε =
[
10−2, 10−3, 10−4

]
and

θ̃ =
[
10−16, 10−17, 10−18

]
, where ε indicates the KL divergence beam threshold and θ̃ indi-

cates the auxiliary variable threshold.

bound. The beam methods improved perplexity from the MSA-induced pHMM for 5, 7,

and 10 out of 26 categories for the narrow, medium, and wide beams respectively (see Table

4.7a for a full list of perplexities). For the categories where the beam method produced

an improvement in perplexity, we saw average improvements in runtime of 92.68%, 95.88%,

and 97.79% for the narrow, medium, and wide beams over no-beam inference, respectively

(see Table 4.7b for a full list of runtimes).

Using approximate expectations from the beam during inference does not guarantee an

inference algorithm that increases the variational bound at each step (see Figure 4.5). To

mitigate this concern, the beam can be increased to allow inference to perform more similarly

to the no-beam method, as indicated by the trend of decreasing average perplexities in Table

4.7a as the beam thresholds decrease. However, increasing the size of the beam reduces the

speed of the algorithm.

70

MSA Initialization: Test Set Perplexities

Model/ Beam No Beam MSA PHMM

SCOP Narrow Medium Wide
Category

a.1.1 13.89 13.34 12.85 12.65 13.67
a.39.1 14.75 13.31 13.44 11.18 11.66
a.4.1 17.63 17.13 16.71 14.56 15.33
b.1.18 17.72 17.33 16.99 16.70 17.10
b.1.2 18.19 18.19 18.08 16.41 16.94
b.121.4 15.56 14.07 14.46 12.87 13.80
b.29.1 16.17 16.47 16.11 15.46 16.59
b.36.1 13.65 13.15 13.25 9.56 9.85
b.40.4 17.57 17.57 17.57 17.69 18.05
b.47.1 9.98 9.85 9.75 9.86 10.22
b.55.1 17.78 17.60 17.85 16.36 16.85
b.6.1 17.81 17.51 16.85 14.83 15.31
c.3.1 17.36 16.60 16.43 15.89 16.43
c.47.1 17.99 17.99 17.99 15.45 15.98
c.55.1 17.10 17.36 17.13 16.65 16.88
c.66.1 18.09 18.08 18.09 16.49 17.29
c.67.1 17.87 17.85 17.86 15.02 15.51
c.69.1 17.91 17.70 17.68 16.39 17.04
c.94.1 13.47 13.01 12.97 13.61 15.38
d.108.1 18.29 18.26 18.28 17.03 17.28
d.144.1 18.34 17.41 17.20 10.62 11.17
d.15.1 16.69 16.42 16.69 14.05 14.46
d.3.1 15.61 15.42 15.62 14.13 15.96
d.58.7 11.89 11.51 11.50 11.21 11.51
g.37.1 12.53 11.65 11.67 11.28 11.70
g.39.1 14.16 14.38 14.36 12.88 13.38

Average 16.08 15.74 15.67 14.18 14.60

Table 4.7: The charts above show comparisons of average test-set perplexities between our
beam methods, the standard (no beam) forward-backward, and the MSA-derived pHMM
for 26 superfamilies of the SCOP 1.75 dataset. Bolded numbers indicate experiments
where a test perplexity from the inferred pHMM was lower than that of the MSA-derived
pHMM on the same category. Inference was initialized using the MSA-induced pHMM.

�Narrow,� �medium,� and �wide� indicate threshold settings of ε =
[
10−2, 10−3, 10−4

]
and

θ̃ =
[
10−16, 10−17, 10−18

]
, where ε indicates the KL divergence beam threshold and θ̃ indi-

cates the auxiliary variable threshold.

4.6 Conclusion

In this chapter, I have shown how the Pro�le HMM can be extended to allow an in�nite

number of hidden states. Our understanding of the in�nite model is closely linked to two

views of the pHMM where transitions are aggregated to form standard HMMs. These

aggregate views lead to a novel beam search inference algorithm. A sub-portion of our beam

method, the variational auxiliary variable criterion, is a thresholding scheme derived from

71

MSA Initialization: Inference Times (seconds)

Model/ Beam No Beam

SCOP Narrow Medium Wide
Category

a.1.1 29 47 106 839
a.39.1 24 37 67 760
a.4.1 4 10 23 401
b.1.18 5 11 72 475
b.1.2 8 23 71 867
b.121.4 30 83 116 2023
b.29.1 28 122 311 2867
b.36.1 5 15 33 499
b.40.4 4 15 39 809
b.47.1 32 42 70 1365
b.55.1 15 22 37 582
b.6.1 33 31 69 709
c.3.1 18 60 165 2860
c.47.1 21 38 80 1545
c.55.1 11 22 86 993
c.66.1 21 62 171 3398
c.67.1 23 102 108 5133
c.69.1 34 151 323 5732
c.94.1 50 77 198 2497
d.108.1 6 19 32 767
d.144.1 8 17 28 2454
d.15.1 14 19 16 239
d.3.1 35 69 103 1346
d.58.7 17 18 43 366
g.37.1 2 3 11 60
g.39.1 16 15 26 168

Average 19 43 92 1529

Table 4.8: The charts above show comparisons of average convergence times in seconds
between our beam methods, the standard (no beam) forward-backward for 26 superfami-
lies of the SCOP 1.75 dataset. Inference was initialized using the MSA-induced pHMM.

�Narrow,� �medium,� and �wide� indicate threshold settings of ε =
[
10−2, 10−3, 10−4

]
and

θ̃ =
[
10−16, 10−17, 10−18

]
, where ε indicates the KL divergence beam threshold and θ̃ indi-

cates the auxiliary variable threshold.

the beam sampling method in [65] and constitutes a novel way of adapting auxiliary-variable

sampling methods to the variational realm.

In experiments on both synthetically generated datasets and a subset of the SCOP 1.75

dataset, we show that our beam method signi�cantly increases inference speed over standard

pHMM inference methods and also maintains the model's ability to represent amino acid

sequences. The ways of understanding pHMMs that we presented in this chapter have

allowed us to construct more e�cient inference methods, which have the potential to increase

the speed of commonly-used bioinformatics applications.

72

73

Chapter 5: Local Pro�le HMMs for Classi�cation

5.1 Introduction

In this chapter, I discuss a number of probabilistic models which attempt to discover sets of

relevant subsequences within individual dataset sequences. Constructing models to discover

sets of subsequences involves combining multiple instances of individual models each of which

detect a single subsequence. These combined models not only represent a �exible method

for understanding sequence data but also provide context useful for understanding concepts

and structures discussed in the next chapters.

The models covered in this chapter are incorporate portions derived from the Pro�le

HMM (pHMM) (see Chapter 2). These pHMM derivatives are called the Local Pro�le HMM

(L-pHMM) and the Simpli�ed Local pHMM (SL-pHMM). Both of these models extend the

standard Pro�le HMM so that the model captures a single relevant subsequence within each

sequence. We show how to combine the latent spaces of SL-pHMMs using two strategies.

These involve (i) including an additional switching variable in the Switching SL-pHMM and

(ii) constructing multinomial distributions over observed sequence elements through linear

combinations of SL-pHMM hidden states in the Factorial SL-pHMM.

To use these combined models, we further extend them into joint models over sequences

and associated labels. We do so by tying latent information from the models to a Sigmoid

Belief Network-like structure, which is then used to de�ne a probability distribution over

label assignments. We validate basic operation of these joint models on sets of synthetically

generated sequences.

74

5.2 Background

Understanding the probabilistic models in this section require knowledge of a variety of

basic components. In this section, I review and de�ne structures needed to build the more

complicated models described later in this section.

5.2.1 Sigmoid Belief Networks

Sigmoid Belief Networks (SBNs) [77, 78] can be viewed as a probabilistic interpretation of

the standard multilayer perceptron [79]. For the purposes of this work, we are interested

in standard three-layer networks. These networks consist of a number of components: an

input layer, x ∈ Rd, a hidden layer, z ∈ {0, 1}K , and an output layer, y ∈ {0, 1}D, a matrix

of linear weights for each layer, W (i), where i indicates the layer, and a vector of biases, b(i),

for each layer (see Figure 5.1).

Each element, zi, of the hidden layer, z, can take on values of zero or one. These values

are drawn from Bernoulli distributions whose parameters are computed from squashed, linear

combinations of values, x, from the �rst layers of the network. Speci�cally, p(zi|x,W, b) =

f(W
(1)
i,: x+b

(1)
i)zi

(
1− f(W

(1)
i,: x + b

(1)
i)
)1−zi

, where f indicates the logistic sigmoid function,

f(z) = (1 + exp (−z))−1. In this work, we are only interested in the case where our the

output variables, y, are binary, i.e. yi ∈ {0, 1} ∀i. The output vector, y, is treated as a set

of random variables drawn from a Bernoulli distribution whose parameters are a function of

the middle layer, z: p(yi|z,W, b) = f(W
(2)
i,: z + b

(2)
i)yi

(
1− f(W

(2)
i,: z + b

(2)
i)
)1−yi

.

The joint probability of the hidden layer and the output layer, given the input layer

can be used as a measure of quality of a prediction from the network over a dataset of N

elements, x1:N , y1:N :

75

p(y1:N , z1:N |x1:N) =

N∏

n=1

D∏

j=1

p(yn,j |zn,W, b)

(

K∏

k=1

p(zn,k|xn,W, b)
)

The marginal probability is given by

p(y1:N |x1:N) =

N∏

n=1

∑

zn

D∏

j=1

p(yn,j |zn,W, b)

(

K∏

k=1

p(zn,k|xn,W, b)
)

To train the model, we would like to maximize the marginal likelihood with respect

to the parameters W and b. However, there are 2K terms in the sum over zn, so even

for relatively small values of K, this becomes intractable. Thus, strategies to learn SBN

parameters must resort to approximate methods. A common approximate method used for

the SBN is variational inference [38, 78] (see Section 2.3.1 for an overview of variational

methods).

We can construct a mean �eld variational bound on the SBN's marginal likelihood as

follows:

76

log p(y1:N |x1:N) =
N∑

n=1

log
∑

zn

D∏

j=1

p(yn,j |zn,W, b)
K∏

k=1

p(zn,k|xn,W, b)

≥
N∑

n=1

∑

zn

(
K∏

k=1

q(zn,k)

)
log

(∏D
j=1 p(yn,j |zn,W, b)

)(∏K
k=1 p(zn,k|xn,W, b)

)

∏K
k=1 q(zn,k)

=
N∑

n=1

D∑

j=1

E∏K
k=1 q(zn,k) [log p(yn,j |zn,W, b)]

+

N∑

n=1

K∑

k=1

Eq(zn,k) [log p(zn,k|xn,W, b)]

+
N∑

n=1

K∑

k=1

H (q(zn,k))

where H(q(z)) = −∑z q(z) log q(z) indicates the entropy. This variational bound allows

us to decompose the expectation over the expression for each Eq(zn,k) [log p(zn,k|xn,W, b)].

However, the expectation does not decompose over the expressions forE∏K
k=1 q(zn,k) [log p(yn,j |zn,W, b)].

To enable such a decomposition it is possible to resort to an additional variational bound on

the log of the logistic sigmoid. This bound must be applied on each instance of log p(yn,j |zn,W, b).

A number of these variational bounds are possible . In this work, we employ the quadratic

bound described by Jaakkola et. al. [38].

5.3 Local Pro�le Hidden Markov Models

Hidden Markov Models (HMMs) (Section 2.1) are a popular generative model over se-

quences. HMMs describe sequences by postulating generating each observation in the se-

quence from a mixture model and conditioning each mixture component on the mixture

assignment from the previous observation. The Pro�le HMM (pHMM) (Section 2.1.1) is a

77

x1 x2 x3 xd. . .

z1 z2 zK. . .

y1 y2 y3 yD. . .

W (1), b(1)

W (2), b(2)

Input

Hidden

Output

Figure 5.1: A diagram illustrating the dependency structure of the basic Sigmoid Belief
Network.

type of HMM commonly used to model biological sequences. The probability distribution

of a sequence under a pHMM is an implicit measurement of the distance of the sequence

from an archetypal sequence encoded in the model. It is possible to modify the pHMM to

target smaller subsequences from within a sequence with a small modi�cation to the original

hidden state structure (see Figure 5.2a). This modi�cation includes a requirement symbols

from the sequence generated by the model and occurring before or after the Match states

that describe the archetypal sequence be generated from a background emission distribu-

tion indexed by a �Start� or �End� Insert state. We call the subsequences captured by the

Match states in the model "relevant subsequences," and we call this model the Local-pHMM

(L-pHMM).

A potential problem with the L-pHMM is that if the emission distributions from Match

states have high variance (i.e. if a discrete distribution does not assign high probability

to a small number of symbols from the alphabet), then high probability paths through the

L-pHMM may include long chains of Insert states separating Match states. Thus, in certain

cases, the L-pHMM may have di�culty capturing desired subsequence information. To

increase both the ease of inference and the identi�ability of subsequences during inference,

78

we can simplify the L-pHMM to a model which we call the Simpli�ed Local pHMM (SL-

pHMM).

The Simpli�ed Local Pro�le HMM (SL-pHMM) postulates that an observed sequence

contains a single contiguous relevant subsequence surrounded by symbols drawn from a

background distribution. The SL-pHMM represents the relevant subsequence using two

type of hidden states. A Match hidden state, denoted by the pair,(M,k), is associated with

a position k in the relevant subsequence and emits an observed symbol from the multinomial

distribution, Bk,:, where we use �:� as Matlab notation indicating the array consisting of all

values over the �nal index. The relevant subsequence is surrounded symbols generated from

a background distribution indexed by sequences of Insert hidden states. The Insert states,

(I, Start) and (I,End), cause the model to emit a symbol from a background multinomial

distribution B0. We give a diagram of possible hidden states in Figure 5.2b.

The set of hidden states, zn, in the SL-pHMM can be summarized by a single variable

tn, which indicates the starting position of the relevant subsequence (hidden state (M, 1))

in sequence n. Transitions from Insert to Match states or the Insert to the End state occur

with probability ω. Transitions from Insert to Insert state occur with probability (1− ω).

Transitions from Match states occur with probability 1 for states (M,k) , k < K (the model

transitions deterministically to the next symbol in the relevant subsequence). For Match

state (M,K), transitions occur with probability ω to hidden state (I,End) and (1−ω) to the

End hidden state to remove any locational preference within the sequence for the relevant

subsequence. To simplify inference, unless otherwise indicated, we leave parameters ω and

B0 �xed and place Dirichlet priors on each Bk,:. We use A to represent the full transition

probability matrix between SL-pHMM hidden states. We give the A matrix in terms of ω

below in Equation 5.1:

79

Parameter De�nition

General Notation

xn the nth observed sequence

yn the binary response variable associated with the nth sequence,
yn ∈ {−1, 1}

q(. . .) indicates a variational distribution over the parameters inside
the parentheses

SL-pHMM Variables

tn,c start of the relevant subsequence of the cth SL-pHMM

zn,c the set of hidden variables associated with the cth pHMM used
to generate the nth observed sequence. zn,c can be fully

reconstructed given only tn,c, the position of the �rst Match

hidden state

A �xed transition matrix for all SL-pHMMs

Switching Model Variables

sn the nth sequence of switching variables

A(s) transition matrix on the switching variables p(s′|s) = A
(s)
s,s′

B an emissions matrix. Bc,k,m is the probability of observed
symbol m given that the symbol is generated from the cth

SL-pHMM's kth relevant subsequence position

B0 a �xed background distribution

α Dirichlet prior parameter on A(s), A
(s)
s,: ∼ Dirichlet(α) ∀s

β Dirichlet prior parameter on B, Bc,k,: ∼ Dirichlet(β) ∀c, k
Factorial Model Variables

w weights used to compute emission probabilities given the
SL-pHMM hidden states

λw regularization parameter on w. i.e. w ∼ N
(
0, λ−1w

)

Sigmoid Belief Network Variables

en,c variables in the Sigmoid Belief Network's hidden layer,
en,c ∈ {0, 1}

v Sigmoid Belief Network weights. v(1) are the weights for the

lower level of the network, with v
(1)
c and v

(1)
c,0 (bias term)

associated with the cth SL-pHMM. v(2) and v
(2)
0 are associated

with the top layer of the network.

λv regularization parameter on v. i.e. v ∼ N
(
0, λ−1v

)

Table 5.1: Description of parameters for combined pHMM models.

80

(M,K)(M, 1)(M, 0)

(I, 1)(I, 0)

. . .

. . .

(D,K)(D, 1) . . .

(M, 2)

(I, 2)

(D, 2)

(I, start) (I, end) End

(I, 1) (M, 2) (M,K) (I, 2) End(M, 1)

(a) (b)

Figure 5.2: Finite State Automata describing transitions between hidden states in the L-

pHMM (a) and the SL-pHMM (b). The Match hidden state for the kth position of the
relevant subsequence is indicated by the pair (M,k). Insert hidden states are indicated
by (I, k), within the relevant subsequence and (I, Start) and (I,End) outside of it. Delete

hidden states, (D, k), allow the model to skip the kth Match hidden state.

A =

(I, Start) (M, 1) . . . (M,K) (I,End) End

(I, Start) ω (1− ω)

(M, 1) 1

...
. . .

(M,K) ω (1− ω)

(I,End) ω (1− ω)

End

(5.1)

A full description of model parameters is given in Table 5.1.

5.3.1 Combined Models using SL-pHMMs

It can often be advantageous to postulate that a set of components rather than a single

component can contribute toward generating elements of a dataset. To apply this principle

on datasets of discrete-valued sequences, we propose two methods for combining hidden

state sequences from multiple SL-pHMMs. Both of these methods allow the model to �nd

multiple relevant subsequences within a single sequence.

We call the �rst of these models the Switching SL-pHMM. As shown in Figure 5.3, C

constituent SL-pHMMs contribute to generating an observed sequence. For the nth sequence

81

zn,C,1 zn,C,2 zn,C,Tn

xn,1 xn,2 xn,Tn

Bc

. . .

N
C

zn,1,1 zn,1,2 zn,1,Tn

sn,1 sn,2 sn,Tn

... ...
...

α

β

B0

A

A(s)

Figure 5.3: This �gure shows a plate diagram depicting the dependency structure of the
Switching SL-pHMM. C separate SL-pHMMs contribute toward generating an observed
sequence. For each position, t, in observed sequence xn, a switching variable sn,t selects the
SL-pHMM used to generate the observed symbol xn,t.

82

in the training set, xn, of length Tn, the sequence of hidden states associated with the cth

constituent SL-pHMM is given by zn,c = zn,c,1, . . . , zn,c,Tn . For these SL-pHMM models,

we encode the entire sequence of hidden states associated with the cth SL-pHMM and the

nth sequence by specifying the index of the �rst Match hidden state as tn,c. Each SL-

pHMM's contribution toward generating the observed sequence, xn, is mediated through a

sequence of switching variables, sn = sn,1, . . . , sn,Tn . We assume the Markov property on

the switching variables and specify the transition probabilities between switching variables

using the matrix A(s): p(sn,t|sn,t−1) = A
(s)
sn,t−1,sn,t , with p(sn|A(s)) =

∏T
t=0 p(sn,t|sn,t−1) and

sn,0 �xed to a dedicated start state. A full description of Switching SL-pHMM parameters

is given in Table 5.1. Given both the switching variables and the SL-pHMM hidden states,

the probability of an observed symbol at position t in the sequence is as follows:

p(xn,t|sn,t, zn,1:C,t) =

B0,xn,t zn,sn,t,t ∈ {(I, Start) , (I,End)}

Bsn,t,k,xn,t zn,sn,t,t ∈ {(M,k)} , k ∈ [1 . . .K]

(5.2)

Equivalently, in term of the t variables we have

p(xn|sn, tn,1:C , B,B0) =

Tn∏

t=1

B
I(t<tn,sn,t∨t≥tn,sn,t+K)
0,xn,t

B
I(tn,sn,t≤t<tn,sn,t+K)
sn,t,tn,sn,t−t+1,xn,t

(5.3)

=

Tn∏

t=1

(∏

c

B
I(c=sn,t)I(t<tn,c∨t≥tn,c+K)
0,xn,t

)
∏

c,k

B
I(c=sn,t)I(k=tc,n−t+1)
c,k,xn,t

(5.4)

where B0 is a background emissions distribution and Bc,k,m is the probability of observed

symbol m under the kth Match hidden state of the cth constituent SL-pHMM. The joint

distribution of a set of sequences, hidden variables of the Switching SL-pHMM is given by

83

the following expression:

p(x1:N , t1:N,1:C , s1:N |B,A(s), A,B0) (5.5)

=
∏

n

p(xn|sn, zn,1:C , B1:C , B0)p(sn|A(s))
∏

c

p(zn,c|A)

The switching structure allows a valid joint distribution over observed sequences from

multiple sets of relevant subsequence positions given by the set of SL-pHMMs. A plate

diagram showing the model's dependency structure is given in Figure 5.3.

We call the second model the Factorial SL-pHMM. Like the Switching SL-pHMM, the

Factorial SL-pHMM combines hidden states from C SL-pHMMs. However, rather than

using a separate switching state to index emissions probabilities, the Factorial SL-pHMM

computes multinomial emission parameters for each position in each dataset sequence by

passing a linear combination of SL-pHMM hidden states through a softmax function:

p(xn,t = m|zn,1:C,1:Tn ,w) =
exp

(∑
cw
>
c,zn,c,t,m

)

∑
m′ exp

(∑
cw
>
c,zn,c,t,m′

) (5.6)

where wc,k,m indicates a weight associated with emitting character m in the alphabet

using the kth position of the cth SL-pHMM. The Factorial SL-pHMM uses these weights,

rather than directly de�ning an emission distribution, B, as in the switching model. The

Factorial SL-pHMM has a potential advantage over the switching model, in that it has the

ability to use the same set of SL-pHMM states to represent a sequence without the addition

of extra hidden variables in the switching states.

84

0, 0, 0, 0, 0, 0, 1, 0, 0, 0︸ ︷︷ ︸
xn,tn,c

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1︸ ︷︷ ︸
xn,tn,c+1

, . . . , 0, 0, 1, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
xn,tn,c+K−1

Figure 5.4: An illustration of the feature vector, φ(x). The vector is composed ofK indicator
vectors, each describing an observed symbol the relevant subsequence.

5.4 Sequence Classi�cation with Combinations of SL-pHMMs

The generative Switching and Factorial SL-pHMMs both employ a latent space on which we

can condition the label assignment of over an entire sequence. Our basic approach toward

sequence classi�cation with these models involves de�ning joint models over both sequences

and associated labels. The probability distributions over labels are conditioned on both the

SL-pHMM hidden states and over elements of the sequence. We call these joint models over

sequences and labels the Joint Switching SL-pHMM and Joint Factorial SL-pHMM.

Both joint models use a similar strategy to predict sequence labels: First, given sequence

xn, a set of relevant subsequences beginning at the �rst Match state in each constituent SL-

pHMM are selected. We indicate these start positions by the variable tn,c. As mentioned in

Section 5.3, for the SL-pHMM the entire sequence of hidden states, zn,c, can be reconstructed

given only tn,c. Second, a Sigmoid Belief Network (SBN) is given the C relevant subsequences

as input (i.e., each subsequence xtn,c:tn,c+K−1), and the output label of the network is set

to the sequence label yn. A diagram of the feature vector extracted from the cth SL-pHMM

for use as input to the SBN is given in Figure 5.4.

The probability over sequences, labels, and hidden states in the Switching model is given

below in Equation 5.7:

85

p(y1:N ,x1:N , z1:N,1:C , s1:N ,v|B,A(s), A,B0, λv) =

p(v|λv)
N∏

n=1

p(xn|zn,1:C , sn, B,B0)p(sn|A(s))p(zn,1:C |A)p(yn|en,1:C ,v)
∏

c

p(en,c|xn, zn,c,v)

(5.7)

where the Sigmoid Belief Network weights are encoded in the vector, v, and the hidden

nodes in the SBN are given by en,1:C for sequence n. For the factorial model, the probability

can be expressed similarly as the generative portion of the model multiplied by the SBN

over labels:

p(y1:N ,x1:N , z1:N,1:C ,w,v|A, λw, λv) =

p(w|λw)p(v|λv)
N∏

n=1

p(xn|zn,1:C ,w)p(zn,1:C |A)p(yn|en,1:C ,v)
∏

c

p(en,c|xn, zn,c,v) (5.8)

5.4.1 Inference

Because of the interdependence between relevant subsequence positions, tn,c, across con-

stituent SL-pHMMs, switching variables, sn, and SBN hidden states, en,c, we use a vari-

ational Bayesian approach to compute approximate maximum-a-posteriori solutions with

respect to the model parameters (see Table 5.1). Variational inference (see Chapter 2)

constructs a lower bound on the marginal likelihood of the model by postulating a set of

variational distributions where an independence assumption is made over latent variables in

the model. These independence assumptions allow the expectation of the latent variables in

the model to be computed relatively easily, leading to tractable inference. Algorithm 5.1 and

5.2 gives the steps used for the variational inference during the training phase of the Joint

86

Algorithm 5.1 Training Phase - Variational Inference for the Joint Switching SL-pHMM

Initialize inference with v, w, A(s), and B sampled from their prior distributions. Initialize q(tn,c) and q(en,c) to

uniform distributions. Below, τ() indicates the following function: τ(ξ)
def
= 1

4ξ
tanh

(
ξ
2

)
[38].

• Repeat until the variational bound converges:

1. Maximize with respect to q(sn) for all n

q(sn) ∝
Tn∏
t=1

A
(s)
sn,t−1,sn,tB

Eq(tsn,t,n)

[
I
(
t<tsn,t,n∨t≥tc,n+K

)]

0,xn,t

∏
k

B
Eq(tsn,t,n)

[
I
(
k=tsn,t,n−t+1

)]

sn,t,k,xn,t

2. Maximize with respect to q(tn,c) for all n, c

q(tn,c) ∝ exp

(
−Eq(en,c) [en,c]

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

))−1

×

Tn∏
t=1

B
Eq(sn)[I(c=sn,t)]I(t<tc,n∨t≥tc,n+K)
0,xn,t

B
Eq(sn)[I(c=sn,t)]I(k=tc,n−t+1)
c,k,xn,t

3. Maximize with respect to q(en,c) for all n, c

q(en,c) ∝ exp

(
en,c

(
1

2
ynv

(2)
c − τ (ζn)

2v
(2)
c

v(2)
0 +

∑
c′ 6=c

Eq(en,c′)
[
en,c′

]
v

(2)
c′

+
(
v

(2)
c

)2

−Eq(tn,c)

[
v

(1)
c,0 +

K∑
k=1

v
(1)
c,k,xn,tn,c+k

]))

Switching SL-pHMM. A variational inference procedure is also needed to predict labels of

test set sequences because predictions are a function of the variational bound (Algorithm

5.1). Variational distributions over latent variables in each model are indicated by q(ω),

where ω is a latent variable. Both the training and prediction phases of the Joint Factorial

SL-pHMM are follow a similar outline to that of the Joint Switching SL-pHMM. Derivations

of the variational update steps for both models are given in Appendix C.

5.4.2 Experimental Analysis: Classifying Synthetic Sequences

In sets of experiments on a set of synthetically generated discrete sequences, we verify that

the Joint Switching and Factorial SL-pHMMmodels can simultaneously extract subsequence

87

Algorithm 5.2 Training Phase - Variational Inference for the Joint Switching SL-pHMM
(continued)

1. Maximize with respect to A
(s)
c for all c

A
(s)
c,c′ ∝ Eq(sn)

[
I(sn,t−1 = c, sn,t = c′)

]
+ α− 1

5. Maximize with respect to Bc,k for all c, k

Bc,k,m ∝
∑
n

∑
t

Eq(sn) [I (c = sn,t)]Eq(tc,n) [I (tc,n − t+ 1 = k)] I (xn,t = m) + β − 1

6. Maximize with respect to v(1) using L-BFGS [80] with the following gradients

∂F(v
(1)
c)

∂v
(1)
c,k,m

= −
∑
n

Eq(en,c) [en,c]Eq(tn,c)

[
I
(
xn,tn,c+k = m

)]

+
∑
n

(
1− Eq(tn,c)

[
σ

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)])

−λv(1)
c,k,m

∂F(v
(1)
c,0)

∂v
(1)
c,0

=
∑
n

(
1− Eq(tn,c)

[
σ

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)])
−
∑
n

Eq(en,c) [en,c]− λv(1)
c,0

7. Maximize with respect to the variational parameter,ζn, for all n

ζn = yn

(
v

(2)
0 +

∑
c

en,cv
(2)
c

)

8. Maximize with respect to v(2)

v(2) =

(
λvI +

∑
n

τ (ζn)E∏
c q(en,c)

[[
en,1:C

1

] [
en,1:C

1

]>])−1(∑
n

1

2
yn

[
ēn,1:C

1

])

88

Algorithm 5.3 Prediction Phase - Variational Inference for the Joint Switching SL-pHMM

Initialize q(tn,c) and q(en,c) to uniform distributions. Values of v, w, A(s), and B set using values from the training
phase.

• Repeat until the variational bound converges:

1. Maximize with respect to q(sn) for all n

q(sn) ∝
Tn∏
t=1

A
(s)
sn,t−1,sn,tB

Eq(tsn,t,n)

[
I
(
t<tsn,t,n∨t≥tc,n+K

)]

0,xn,t

∏
k

B
Eq(tsn,t,n)

[
I
(
k=tsn,t,n−t+1

)]

sn,t,k,xn,t

2. Maximize with respect to q(tn,c) for all n, c

q(tn,c) ∝ exp

(
−Eq(en,c) [en,c]

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

))−1

×

Tn∏
t=1

B
Eq(sn)[I(c=sn,t)]I(t<tc,n∨t≥tc,n+K)
0,xn,t

B
Eq(sn)[I(c=sn,t)]I(k=tc,n−t+1)
c,k,xn,t

3. Maximize with respect to q(en,c) for all n, c

q(en,c) ∝ exp

−en,c Tn−K∑
tn,c=1

q(tn,c)

(
v

(1)
c,0 +

K∑
k=1

v
(1)
c,k,xn,tn,c+k

)

• Predict yn = sign

((
v(2)

)> [ēn,1:C

1

])

89

features and use these features to construct a decision boundary between positive and neg-

ative sets of sequences. Our synthetic dataset was designed to ensure that our assumption

that relevant subsequences are highly correlated with class labels holds. The datasets con-

sisted of sequences generated to contain up to three non-overlapping motifs. These motifs

consisted of 5 repetitions of �a,� �r,� or �n,� with a 10% chance at each motif position for

a motif character to be replaced by a character generated uniformly from the full sequence

alphabet of 20 possible characters. Non-motif sequence elements were chosen uniformly at

random from the full 20-characters alphabet. Sequence lengths were generated uniformly at

random from a range of 25 to 75. A sequence was selected to be in the positive category if all

three possible relevant subsequences occurred within the sequence. A sequence was selected

to be in the negative category if it contained either one or two relevant subsequences.

We ran classi�cation experiments on this dataset, using both the Joint Switching SL-

pHMM and the Joint Factorial SL-pHMM, varying both parameters of the models and the

number of sequences generated. Figures 5.5a and 5.5b show results from experiments us-

ing the Joint Switching SL-pHMM and Joint Factorial SL-pHMM for di�erent values of

regularization parameters as the size of the dataset increases. In the switching model, we

selected the β parameter, the Dirichlet prior on the emission distribution B, from the set

{1.01, 1.1, 1.5, 2.0}. In the factorial model, we selected the λw parameter, the precision pa-

rameter on the Normally-distributed weights w, from the set {.1, .5, 1.0, 10.0}. We trained

each model on our synthetically generated datasets using the following numbers of train-

ing and testing examples: {5, 10, 25, 50, 100, 200}. All reported results are averaged over

10 trials with the same settings. To evaluate the robustness of our model with respect to

preset parameters di�ering from the ground truth, we ran experiments using the number of

relevant subsequences, C ∈ {2, 3, 6}, where the values 2 and 6 were smaller and larger than

the ground truth number of relevant subsequences respectively.

As shown in Figures 5.5a and 5.5b, smaller values of β seemed to lead to better perfor-

mance in the switching model, while larger values of λw seemed to lead to better performance

in the factorial model. The graphs also indicate that the optimal values of these parameters

90

0 50 100 150 200
Number of Training Examples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

C=2

β=1.01

β=1.1

β=1.5

β=2.0

0 50 100 150 200
Number of Training Examples

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

C=3

β=1.01

β=1.1

β=1.5

β=2.0

0 50 100 150 200
Number of Training Examples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

C=6

β=1.01

β=1.1

β=1.5

β=2.0

(a)

0 50 100 150 200
Number of Training Examples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

C=2

λw =.1

λw =.5

λw =1.0

λw =10.0

0 50 100 150 200
Number of Training Examples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

C=3

λw =.1

λw =.5

λw =1.0

λw =10.0

0 50 100 150 200
Number of Training Examples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

C=6

λw =.1

λw =.5

λw =1.0

λw =10.0

(b)

Figure 5.5: Average area under the ROC curve (AUC) on synthetically generated test set
data. Results for the Joint Switching SL-pHMM are given in (a) while results for the
Joint Factorial SL-pHMM are given in (b). Each graph shows the variation in AUC as
the number of training set examples increases. Di�erent graphs show results from models
with di�erent numbers of constituent SL-pHMMs (indicated by C). Individual lines in each
graph indicate di�erent values of the regularization parameter. For the switching model, we
varied the Dirichlet prior parameter on the emissions distributions, β, while for the factorial
model, we varied, λw, the precision parameter on the weights, w.

is correlated with the size of the dataset. Our experiments also indicate that the facto-

rial model outperforms the switching model in the sense that the factorial model produced

higher AUCs both with smaller training sets and also when the number of ground truth

relevant subsequences was smaller than the preset C parameter in the model.

5.5 Conclusions

In this chapter, we have introduced a series of probabilistic models to combine latent struc-

ture from multiple HMMs. First, we introduced the Local pHMM and the Simpli�ed Local

pHMM, which modify the Pro�le HMM to attempt to capture relevant subsequences. We

91

then extended the SL-pHMM to the Switching and Factorial SL-pHMMs, which attempt to

discover multiple relevant subsequences within a sequence. Finally, we showed how to use

this latent subsequence information in conjunction with a structure similar to the Sigmoid

Belief Network to predict sequence labels. Experiments on synthetic data validate that

these models can both discover subsequence features within sequence data and are able to

use these subsequence features to predict sequence categories.

92

Chapter 6: Relevant Subsequence Detection with Sparse

Dictionary Learning

Sparse Dictionary Learning has recently become popular for discovering latent components

that can be used to reconstruct elements in a dataset. It has seen particular success in

computer vision where it has been incorporated into solutions for problems in image recon-

struction, in-painting, and classi�cation [81�86].

Sparse Dictionary Learning's success in computer vision makes it a promising candi-

date for discovering patterns in sequence data. Sequence data, however, is not natively

accepted by the Sparse Dictionary Learning model: Sequences can be of variable length,

and patterns within sequences are not associated with a �xed set of indices. These patterns

can occur at any point within a sequence and can be repeated multiple times. A strat-

egy for making sequence data more manageable is to extract all subsequences of length K

from the original dataset and use these as input to a Sparse Dictionary Learning algorithm.

This strategy poses a problem, however, because self-similar patterns within sequences are

over-represented.

In this chapter, I propose an alternative to this standard subsequence dataset approach,

which we call Relevant Subsequence Dictionary Learning (RS-DL). Our method involves

constructing separate dictionaries for each sequence in a dataset from shared �relevant sub-

sequence patterns.� This structured dictionary can be used to pick out shared information

from sets of sequences and can be learned using standard optimization methods. An impor-

tant contribution of this chapter is in showing how to e�ciently run the LARS algorithm

given our relevant subsequence dictionary structure.

To show the utility of the RS-DL model, we run experiments on several types of sequence

data. Running our algorithm on synthetic sets of sequences with discrete-valued elements,

continuous electrocardiogram data, and text datasets, we show that our RS-DL model is

93

e�ective for discovering repeated patterns meaningful to humans (also called motifs). We

also show that RS-DL is e�ective for classi�cation. To do so, we use RS-DL to extract

features from time-series data and show that these features can reduce classi�cation error

compared to standard methods.

6.1 Background: Sparse Dictionary Learning

Sparse Dictionary Learning is a method of decomposing a dataset into the product of a

dictionary matrix and a sparse vector of coe�cients. Here we represent the N dataset

vectors as x1:N , with the nth vector given by xn ∈ Rd, the dictionary matrix as W ∈ Rd×C ,

and the set of N sparse vectors of coe�cients as α1:N , αn ∈ RC . The number of dictionary

columns, C, is chosen beforehand. The Sparse Dictionary Learning objective is typically

de�ned as follows:

f(xn;W) = min
αn

1

2
||xn −Wαn||22
︸ ︷︷ ︸

loss

+ λψ (αn)︸ ︷︷ ︸
sparsity-inducing term

(6.1)

where ψ is a regularization function, typically an L1 norm.

There has been a signi�cant amount of research to develop e�cient algorithms for solving

the Sparse Dictionary Learning problem [83]. These algorithms typically consist of repeating

two optimization steps. In the �rst step, a linear regression problem with the sparsity-

inducing regularization term is solved to compute αn = minαn ||xn − Wαn||22 + λψ (αn)

given the current value of the dictionary, W , for each example in the dataset. Common

algorithms to perform this task include pursuit algorithms [87], Least Angle Regression

(LARS) [88], coordinate-wise descent methods [89], and proximal methods [90].

In the second step, the value of the dictionary,W , is updated given the current minimum

values of αn. As with methods for optimizing with respect to the α's, it is possible to use

any of a number of di�erent methods to minimize with respect to the dictionary. These

94

methods include K-SVD [87] (which also updates the α terms), stochastic gradient methods

[86], and solutions of the dual problem (for a constrained dictionary) [85], among others.

Sparse Dictionary Learning is similar to other decomposition techniques like Principal

Component Analysis (PCA). PCA decomposes elements of a dataset into linear combina-

tions of vectors from an orthogonal basis. Sparse Dictionary Learning di�ers from PCA

in two important respects. First, dictionary columns are non-orthogonal, and second, the

sparsity inducing regularization term forces only a small number of columns to be used for

reconstruction. These characteristics can be advantageous compared to PCA because the

sparsity inducing term allows the dictionary to include more columns that the dimensional-

ity of the vector being reconstructed [83]. This �overcomplete� representation allows a large

number of patterns to be found in the data but only a small number of these patterns are

used to reconstruct each data element.

6.1.1 Least Angle Regression (LARS) for RS-DL

Least Angle Regression (LARS) [88] is a method for solving L1 and L0 regularized linear

least squares problems e�ciently. We describe LARS here brie�y because the factorial

formulation requires that a number of matrix multiplication steps in the original LARS

algorithm be modi�ed for e�cient computation.

LARS solves the problem

min
α

1

2
||x−Wα||2 (6.2)

by constructing an incremental approximation of x, which we de�ne as µA, by taking

steps along a vector that is equally correlated with an active set, A, of columns of W .

This active set is incrementally constructed by choosing the next column of W that is

most correlated with the residual, y − µA. Because the approximation µA is constructed

incrementally, LARS is well suited to computing solutions where α is sparse, by stopping

95

iteration early, and can be extended to the L1-regularized case (minα
1
2 ||x−Wα||2 + λ|α|),

described later in this section.

To compute this next maximally correlated column, a vector of correlations is de�ned

as follows:

~c = W> (x− µA) (6.3)

The active set is de�ned as

A = {ci : ci = max |c|} (6.4)

With the maximum correlation, cA, de�ned as

cA =̇ max |c| (6.5)

and the active columns, WA, de�ned as

WA
def
= [sgn (ci)W:,i|ci ∈ A] (6.6)

At each iteration of LARS, µA is incremented along an equi-angular unit vector, uA,

satisfying

W>AuA ∝ ~1 (6.7)

u>AuA = ~1 (6.8)

96

uA can be computed as follows:

G−1
A =

(
W>AWA

)−1
(6.9)

aA =
(
~1>G−1

A
~1
)− 1

2
(6.10)

ωA = aAG
−1
A
~1 (6.11)

uA = WAωA (6.12)

At each step of the LARS algorithm attempts to �nd a real number γ such that for

µA+ = µA + γuA, no element of c+ = W> (x− µA+) is greater than cA+ (the maximum

correlation with the residual should decrease at every iteration), where A+ indicates the

active set after one step of the algorithm - i.e. A+ =
{
A+ j(new)

}
where j(new) indexes a

new column of W .

To �nd the value of γ that gives the next correlation, observe that

c+
j = W:,j (x− µA+) (6.13)

= W:,j (y − µA − γuA) (6.14)

= cj − γaj (6.15)

= sgn (cj) (cA − γaA) if j ∈ A (6.16)

where cj is from the correlation vector, c, de�ned in Equation 6.3 and a = W>uA. We

solve the following equation to �nd the smallest γ that makes the correlation of the previous

active set equal to the current correlation:

97

|sj(A) (cA − γaA) | = |cj − γaj | (6.17)

cA − γaA = cj − γaj (6.18)

or (6.19)

cA − γaA = γaj − cj (6.20)

aA and cA must be positive (aA because G−1 is positive de�nite, and cA from its de�ni-

tion), so γ must be positive if we want to reduce the maximum correlation at each step of

the algorithm, giving

γ = min
j

+

(
cA − cj
aA − aj

,
cA + cj
aA + aj

)
(6.21)

where minj
+ indicates taking the minimum over all non-negative elements.

After taking the next step on the LARS path, we update α using the de�nitions µ = Wα

and uA = WAG
−1
A WA~1:

µA+ = µA + γuA (6.22)

= WAα+ γWAG
−1
A aA~1 (6.23)

= WA(α+ γd) (6.24)

The vector α is therefore updated as α← α+γd, where dj =

sgn(cj)
(
G−1
A aA~1

)
j(A)

j ∈ A

0 j /∈ A
.

To extend LARS to the L1-regularized case, we can compute optimality conditions in

98

the L1-regularized problem by observing the set of subgradients with respect to α at the

optimum:

W>:,i (x−Wα?) = λsgn (α?i) α?i 6= 0

W>:,i (x−Wα?) ≤ λ α?i = 0

These conditions imply that the sign of the maximum correlations must equal the sign

of each associated value of α at each step of the LARS algorithm. Therefore, to maintain

this condition, we must verify that sgn (αi) = sgn (αi + γdi) ∀i. If the condition does not

hold, then we then choose a new γ so that the violating example is removed from the active

set. That is, the new value of γ must enforce the condition αi + γdi = 0, leading to the

update γ = mini−αi
di
.

6.2 Relevant Subsequence Dictionary Learning

We propose an approach, which we call Relevant Subsequence Dictionary Learning (RS-

DL)1, to extend Sparse Dictionary Learning to the domain of sequences. Sequences di�er

from more-standard vector representations in that they can vary in length across a single

dataset, and patterns within sequences can occur at any position rather than being associated

with a �xed set of indices. To account for these characteristics of sequence data, RS-DL

constructs dictionaries from C di�erent subsequence dictionary components. We refer to

these constituent components as �relevant subsequence patterns� and indicate these patterns

by the two-dimensional array, v, of size C ×K, where vc,k is a value associated with the kth

position in the cth relevant subsequence pattern.

Unlike standard Sparse Dictionary Learning, RS-DL constructs a separate dictionary,

Wn, for each sequence, xn, in a dataset by positioning relevant subsequence parameters,

1We have made code available at http://cs.gmu.edu/∼sblasiak/RS-DL.tar.gz

99

vc,:, so that they cover all possible subsequence starting positions. Positions in dictionary

columns that are not given by relevant subsequence parameters are set to zero.

Figure 6.1 shows how the array of constituent relevant subsequence patterns, v, is used

to construct Wn, the dictionary associated with sequence xn. Table 6.1 gives descriptions

of all parameters in the RS-DL formulation. After building the dictionaries, Wn, we are left

with an objective very similar to that of standard Sparse Dictionary Learning:

f(x1:N ;v) =

N∑

n=1

min
αn

1

2
||xn −Wnαn||22 + λ|αn|1 (6.25)

To optimize with respect to this objective, we employ a stochastic gradient descent

procedure that alternatively solves �rst for each αn, then takes a gradient step with respect

to the array, v. This procedure is similar to existing Sparse Dictionary Learning optimization

algorithms. For the optimization step with respect to αn, we apply a variation of the Least

Angle Regression (LARS) [88] algorithm. The LARS algorithm requires computing a number

of matrix products involvingWn. However, computing these matrix products directly would

be ine�cient, as each Wn matrix is of size O(Tn) × O(CTn). To improve performance, we

can take advantage of the sparse construction of each Wn, allowing these products to be

computed more quickly, as we describe in the next section.

After computing each new value of αn, the RS-DL algorithm takes a single stochastic

gradient step in v: vi+1 ← vi −
(

γ
i+1

)
∂ 1

2
||xn−W i

nαn||22
∂v , where γ is a learning rate term. We

found empirically that, for RS-DL, this single stochastic gradient step is often faster than

solving for v after accumulating information from a batch of αn's as in Mairal et. al. [83].

6.2.1 E�ciently running the LARS algorithm with RS-DL

RS-DL involves constructing dictionaries, Wn of size O(Tn) × O(CTn), many of whose en-

tries are set to zero. If not carefully handled, this large, sparse matrix can cause the RS-DL

100

Sequence: xn Matrix: Wn Vector: αn

≈Tn
. . .

C
(T
n −

K
+
1)

K

Tn −K + 1

C(Tn −K + 1)

v1,: v2,: vC,:

Figure 6.1: The �gure above illustrates the Relevant Subsequence Dictionary Learning setup.
The matrix Wn is constructed from the weights vc,k in C blocks so that the relevant sub-

sequence patterns given by each vc,: are arranged to create dictionary elements (columns of

Wn) that cover every K length subsequence of the sequence xn (illustrated in blue). White
areas of the Wn matrix are set to zero. The vector αn is L1-regularized to select a small
number of dictionary columns associated with positioned relevant subsequences patterns.
The αn-weighted sum of these positioned relevant subsequences patterns approximates xn.

training algorithm to operate ine�ciently. The LARS algorithm constitutes a major substep

in RS-DL training and requires a number of computations involving Wn. E�ciency of these

computations can be considerably improved by taking Wn's sparse construction from ele-

ments of the array v into account. Three LARS computations involving the dictionaries,Wn

are (i) the matrix-matrix product (Wn)>A (Wn)A, (ii) the matrix-vector product (Wn)A ωA,

and (iii) the matrix-vector product W>n u, where A indicates an active set of columns (the

number of non-zero components of α), (Wn)A indicates a matrix constructed from this ac-

tive set, ωA is a vector of length |A|, and u is a vector of length Tn. Below, t(i) indicates

the index of the start of the subsequence associated with the ith column of Wn (see Figure

101

Parameter De�nition

M The size of the alphabet for discrete sequences. We omit the M parameter when dealing with

continuous-valued sequences.

x1:N A set of N observed sequences. Individual sequences, xn, can be of variable length. Discrete

sequences are expanded to M concatenated sequences of Tn indicator variables.

Tn The length of the nth sequence.

α1:N A set of N vectors. Each αn vector is of length C (Tn −K + 1).
Wn A weight matrix of size Tn × C (Tn −K + 1) created from elements of the array v.
v An array of values used to construct dictionary elements. vc,k is associated with the kth position

in the cth relevant subsequence pattern.

λ The L1 regularization parameter associated with each αn.

Table 6.1: Relevant Subsequence Dictionary Learning parameters

6.1), c(i) indicates the relevant subsequence position associated with the ith column of Wn,

and sgn(i) indicates the sign of the correlation between the ith matrix column, (Wn)>i , and

the current residual: sgn
(

(Wn)>i

(
xn − (Wn)>A αn

))
.

The matrix-matrix product, X = (Wn)>A (Wn)A, can be computed as follows:

Xij =

∑max(K−t(j)+t(i),0)
k=0 sgn (i) vc(i),ksgn (j) vc(j),t(j)−t(i)+k t(j) ≥ t(i)

∑max(K−t(i)+t(j),0)
k=0 sgn (i) vc(i),t(i)−t(j)+ksgn (j) vc(j),k t(j) < t(i)

(6.26)

This matrix-matrix product has an overall complexity of O(|A|2K). However, the

full product does not need to be computed at each LARS iteration. Rather, as addi-

tional columns are added to the active set, we update a stored Cholesky decomposition

of (Wn)>A (Wn)A, at a cost of O(|A|K) for each update (updates involve computing a single

column of the product in Equation 6.26), plus O(|A|2) for a back-substitution operation.

We compute the matrix-vector product, x = (Wn)A ωA, incrementally as the weighted

sum of components of v:

102

x(1:i) =
K∑

k=1

x
(1:i−1)
t(i)+k + sgn (i) (ωA)i vc(i),k (6.27)

where x(1:i) indicates the sum up to the ith term, and i ∈ [1 . . . |A|]. This matrix-vector

product has an overall complexity of O(|A|K).

Finally, we compute the matrix-vector product, x = W>n u, as follows:

xi =
K∑

k=1

vc(i),kut(i)+k (6.28)

with an overall complexity of O(CTnK).

For each LARS iteration, we must also compute CTn correlations between each column

of the matrix, Wn, and the current residual at a cost of K each. These are computed in the

same way as the matrix-vector product in Equation 6.28. In most of out experiments, we

restrict |A| to values less than or equal to C. Thus, each LARS iteration has a complexity of

O(CTnK) when |A| is small, which can be a signi�cant reduction from O(CT 2
n). However,

with no restrictions on the size of the active set, |A| can potentially grow to CTn. In

this case, complexity is eventually dominated by back-substitution operations involving the

incrementally-updated Cholesky decomposition of (Wn)>A (Wn)A at a cost of up to O(C2T 2
n)

per iteration.

6.2.2 Modi�cation and Related Work

The procedure for constructing the RS-DL dictionary (Figure 6.1) is applicable only to

sequences with continuous-valued elements. To allow RS-DL to �nd decompositions of

sequences of discrete symbols, we �rst transform each original sequence into M separate

103

binary sequences, where elements of the mth binary sequence indicate if the symbols in the

original sequence are equal to themth symbol in the alphabet. TheseM binary sequences are

then concatenated to obtain the input sequence to RS-DL. Dictionary construction must also

be modi�ed for discrete sequences. In this case, v becomes a three-dimensional constituent

array, where vc,k,m is associated with the mth symbol of the kth position in the cth relevant

subsequence. Separate dictionaries are constructed for each of theM possible symbols using

vc,:,m for the cth relevant subsequence pattern associated with the mth constructed binary

sequence. TheseM dictionaries are then stacked vertically to create a composite dictionary.

It is also possible to use RS-DL to �nd decompositions of multi-variate sequences. To

do so, we rearrange each multivariate sequence as a concatenation of univariate sequences.

We then create a stack of M dictionaries as we did to create the dictionary for discrete

sequences.

Another modi�cation of the basic RS-DL algorithm includes appending a column to the

dictionary whose entries are set to a constant value. This addition has the e�ect of including

a bias term whose magnitude varies depending on the associated αn term. This bias term

is useful for modeling time series datasets where the amplitudes of major trends that occur

in individual sequences are o�set by varying amounts. We employ this bias term in all

experiments conducted on time series sequences. A similar strategy can also be employed

to capture linear trends.

Finally, we can modify the LARS algorithm so that, rather than �nding an L1-regularized

solution for α, it �nds solutions with one or fewer non-zero α terms associated with each of

the C relevant subsequence patterns. Although the L1 regularization is no longer enforced

in this case, sparsity is maintained in a similar manner to the L0-regularized
2 version of

LARS[88].

Other authors have proposed similar dictionary learning structures to RS-DL. Mailhe

2The �L0 norm� [87] is a pseudo-norm that counts the number of non-zero components in a vector, i.e.,

||x||0 =
∑
i I (xi 6= 0).

104

et. al. proposed Shift Invariant Dictionary Learning [91], which introduces a similarly-

constructed dictionary to the one in RS-DL. In Shift Invariant Dictionary Learning single

sequences are decomposed into a linear combination of dictionary elements. Training is

conducted using Matching Pursuit combined with K-SVD to solve for the dictionary and

associated weights.

6.3 Relationship to Hidden Markov Models

The Factorial SL-pHMM, described in Chapter 5, shares characteristics of RS-DL. The Fac-

torial HMM [53] extends the basic HMM by postulating that the distribution over sequence

elements depends on hidden states from multiple, parallel HMMs. If SL-pHMM factors

are used, then the resulting Factorial SL-pHMM (Section 5.3.1), with Gaussian emission

distributions, operates very similarly to RS-DL.

Figure 6.2 shows an example con�guration of Match hidden states in a Factorial SL-

pHMM. This hidden state con�guration leads to the same additive composition of parame-

ters used to represent symbols of an observed sequence in RS-DL. The primary di�erences

between RS-DL and the Factorial SL-pHMM lie in how the parameters of each model are con-

strained. In the Factorial SL-pHMM, the model's hidden states can be encoded in a vector,

α
(FHMM)
n of length C(Tn−K+1), where C indicates the number of factors in the model, Tn

is the length of the sequence, andK is the number ofMatch states in the SL-pHMM. Because

the hidden state sequence in the SL-pHMM only allows a single start position for each chain

ofMatch states, encoding the positions of initialMatch hidden states requires that α
(FHMM)
n

be constrained as α
(FHMM)
n,i ∈ {0, 1} and∑Tn−K

t=0 α
(FHMM)
n,c(Tn−K+1)+t = 1 ∀c ∈ [1 . . . C]. In con-

trast, the αn-vectors in RS-DL are not explicitly constrained but are instead subject to L1

regularization. Substituting an L1 regularizer in RS-DL for the binary constraint in the

Factorial SL-pHMM is advantageous, because it converts the combinatorial optimization

problem associated with the MAP solution over hidden state con�gurations of the Factorial

SL-pHMM into one that is more-easily solvable.

105

MKM1M0 . . .I I EndIII I I I

MKM1M0 . . .I I End

III

I I I I I I

MKM1M0 . . .I EndIIII

x3x2x1 x8x7x6x5x4 xTnx10x9

...

. . .

C
F
ac
to
rs

Figure 6.2: The diagram above illustrates example hidden state assignments for the Factorial
SL-pHMM. Sequences of SL-pHMM Match states are indicated by blue nodes with the text

�Mk,� indicating the k
th Match state. Insert states are indicated by white-colored nodes with

the text �I.� SL-pHMM transition probabilities are de�ned so that only a single sequence of
Match states per individual SL-pHMM can occur. For a Factorial SL-pHMM with Gaussian
emission distributions, hidden states are associated with di�erent weights which are summed
over the C constituent SL-pHMMs (vertically in the diagram) to obtain the mean parameter
used to generate the appropriate observed sequence element (in gray).

6.4 Experiments

We evaluate Relevant Subsequence Dictionary Learning using two types of measurements.

First, we expect RS-DL to �nd meaningful subsequences within a dataset. This task is

also referred to as �motif �nding� [92, 93]. We quantitatively assess motif �nding on a

synthetic dataset consisting of discrete sequences where the ground truth motif positions

are known. We also qualitatively assess motif �nding results on sets of both time-series

and text sequences to verify that RS-DL can pick out portions of a sequence meaningful to

humans. In the next sections we make a distinction between the terms �relevant subsequence

pattern� and �motif�. We use �relevant subsequence pattern� to indicate the pattern encoded

in RS-DL parameters, and �motif� to denote subsequences selected from a dataset because

of their association with a particular relevant subsequence pattern.

We also test RS-DL in sequence classi�cation. We hypothesize that if RS-DL can dis-

cover informative subsequences with no access to label information, then these subsequence

features will be e�ective for classi�cation. In these experiments, RS-DL features are input

to a one-nearest-neighbor classi�er to isolate the e�ect of di�erent feature representations.

106

6.4.1 Datasets

We employ four types of datasets to evaluate our algorithm. To evaluate the ability of RS-

DL to discover known motifs, we generated a synthetic dataset of discrete-valued sequences

containing three prede�ned subsequences. We also assessed motif �nding ability using a set

of continuous-valued ECG sequences3 and the Associated Press (AP) dataset4, consisting

of English language text. We assessed classi�cation ability using only continuous-valued

sequences. These included both a synthetic dataset, which we call the �Bumps� dataset,

and datasets from the University of California Riverside (UCR) Time Series Classi�cation

Database [23].

6.4.2 Finding Motifs in Synthetic Sequences

To verify basic motif �nding abilities of RS-DL, we constructed a synthetic dataset, allowing

us to control the location and frequency of motifs. The synthetic dataset consisted of 20

sequences, generated to contain up to three non-overlapping motifs. These motifs consisted

of 5 repetitions of �a,� �r,� or �n,� with a 10% chance at each motif position for a motif

character to be replaced by a character generated uniformly from the full sequence alphabet

of 20 possible characters. Non-motif sequence elements were chosen uniformly at random

from the full 20-characters alphabet. Sequence lengths were generated uniformly at random

from a range of 25 to 75.

To explore the behavior of the RS-DL model, we ran a number of experiments, varying

the values of K, the length of the relevant subsequence pattern, from 3 to 7, and the values

of λ, the L1-regularization parameter, from 0.4 to 0.8 in steps of 0.05. We con�gured

the algorithm to use at most one of each relevant subsequence pattern to reconstruct each

sequence.

Figure 6.3a shows graphs of the average precision and recall associated with motifs

recovered by the RS-DL algorithm over 20 trials for each con�guration of K and λ. We

3http://www.cs.ucr.edu/∼eamonn/discords/ECG_data.zip
4http://www.cs.princeton.edu/∼blei/lda-c/ap.tgz

107

counted a ground truth motif as �discovered� if its start position was within bK/2c of the

motif returned by the RS-DL algorithm. To verify the upper limit of algorithm performance

and to con�rm the trend that ground truth motifs were associated with larger values of α

than false positive motifs, we counted motifs as �not found� if their associated α values were

below 0.25.

Figure 6.3b, shows the output of the run of the RS-DL algorithm with the lowest mean-

squared error (MSE) out of 20 random initializations. Columns in the �gure display both

values of α and motifs selected from the dataset sequence. Di�erent dataset sequences are

associated with di�erent rows in the �gure. In this run, low values of α are consistently

associated with incorrectly discovered motifs (in red), and, out of four possible relevant

subsequence patterns given by the model, only three are used, which is consistent with the

ground truth.

Figure 6.3a shows that both precision and recall tend to increase as the value of K

increases. In addition, the �gure shows that if we set λ to a value that is too high, both

precision and recall are degraded. This behavior, when varying λ, occurs because at high

λ levels, the model becomes too sparse, reducing the number of motifs returned. In this

case, we do not see a corresponding increase in precision because sparsity is only enforced

in the number of relevant subsequences patterns used to reconstruct a sequence. Also from

Figure 6.3a, the best precision scores were near 1.0, occurring with K = 6 and λ = 0.65 and

�ltering motifs with α coe�cients less that 0.25. This result contrasts with top precision

values of 0.5 (not shown in the �gure) when the α �ltering level is set to zero. The reason

for this trend is illustrated in Figure 6.3b, where motifs associated with small α coe�cients

also tend to be less correlated with core relevant subsequence patterns.

To avoid low recall solutions it is possible to rerun the model for a number of trials

with initial relevant subsequence patterns, v, drawn from a standard Normal distribution.

Because the RS-DL problem is non-convex, the optimization algorithm will converge to

di�erent areas in the parameter space depending on initial parameter settings. We found

that, with our synthetic dataset, low-MSE runs consistently produced recall values of 1.0

108

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
v
er

ag
e

P
re

ci
si

o
n

Average Precision and Recall as a function of λ

K=3

K=4

K=5

K=6

K=7

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
λ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
v
er

ag
e

R
ec

al
l

α Motif 1 α Motif 2 α Motif 3 α Motif 4

0.41 aaaaa 0.00 �� 0.44 rrrrv 0.44 nnnnn

0.32 asaaa 0.00 �� 0.42 rrryr 0.18 yrnnl

0.33 laaaa 0.00 �� 0.00 �� 0.36 nnnen

0.41 aaaaa 0.00 �� 0.53 rrrrr 0.00 ��

0.41 aaaaa 0.00 �� 0.53 rrrrr 0.29 nrnkn

0.17 safra 0.00 �� 0.10 anrqv 0.44 nnnnn

0.26 eaapa 0.00 �� 0.21 rgqrt 0.08 qrtnd

0.41 aaaaa 0.00 �� 0.53 rrrrr 0.44 nnnnn

0.41 aaaaa 0.00 �� 0.53 rrrrr 0.44 nnnnn

0.41 aaaaa 0.00 �� 0.00 �� 0.07 lenma

0.41 aaaaa 0.00 �� 0.20 rsgpr 0.09 aaten

0.08 vsnca 0.00 �� 0.53 rrrrr 0.44 nnnnn

0.41 aaaaa 0.00 �� 0.43 rnrrr 0.44 nnnnn

0.41 aaaaa 0.00 �� 0.53 rrrrr 0.44 nnnnn

0.17 vafsa 0.00 �� 0.32 rrvry 0.08 famln

0.33 aaaea 0.00 �� 0.00 �� 0.18 nwtwn

0.41 aaaaa 0.00 �� 0.53 rrrrr 0.37 nrnnn

0.41 aaaaa 0.00 �� 0.43 rrrrm 0.44 nnnnn

0.08 lytia 0.00 �� 0.43 rtrrr 0.44 nnnnn

0.08 nigpa 0.00 �� 0.08 lkrei 0.36 fnnnn

(a) (b)

Figure 6.3: (a) The graphs in the left-hand �gure depict precision and recall over 20 runs of
the RS-DL model on a synthetic dataset. As the L1-regularization term, λ, increases, fewer
motifs are returned, leading to a drop in both recall and precision. As the length of the
relevant subsequence patterns increase, precision and recall tend to increase. (b) Recovered
α coe�cients (left side of Figure b) and associated subsequences (right) from a low-error run
(the run with the smallest MSE out of 20 random initializations) of the RS-DL algorithm
on the synthetic dataset. The low-error run gave a precision of 0.7 (with an α cuto� of 0)
and a recall of 1.0. The number of relevant subsequences patterns, C, in the model was set
to four, while the number of ground truth motifs was three. Consistent with the ground
truth, the model only used three relevant subsequences patterns to reconstruct the data.
Incorrectly discovered motifs are depicted in red.

(see Figure 6.3b). Selecting a low-MSE run also allows us to better take advantage of RS-

DL's sparsity. For instance, if we set C, the number of relevant subsequence patterns, to 4,

larger than the 3 ground truth motifs in our dataset, then low-MSE solutions return only 3

discovered motifs (higher error solutions �nd a fourth motif with noisy parameters).

6.4.3 Motifs in Time-Series Data

To show that RS-DL can pick out patterns meaningful to humans in continuous-valued se-

quences, we trained it on a single sequence of electrocardiogram (ECG) data, containing 3750

datapoints. The ECG sequence consists of a recording of electrical signals from the human

heart measured at the surface of the skin. A plot of the signal (Figure 6.4) contains repeated

patterns easily identi�able to humans. The ECG sequence also contains an anomalous motif,

which, like the main set of patterns in the sequence, is easily identi�ed by humans. We ran

109

the RS-DL algorithm on the sequence with the L1 regularization term, λ, set to .1 and the

length of the relevant subsequence pattern, K, set to 150, and C, the number of relevant

subsequence patterns, set to 15. In Figure 6.4, we plotted the relevant subsequence patterns

learned by RS-DL associated with the largest 50 regression coe�cients, α. Each pattern in

the plot (top three graphs) consists of 150 values of the relevant subsequence pattern given

by the constituent vector, v, multiplied by its corresponding α coe�cient. Summing over

all of these plotted subsequences gives the approximate sequence reconstructed by RS-DL

(bottom plot in green, o�set by −1). The original sequence is also shown in the �gure (bot-

tom plot in blue). The MSE between reconstructed sequence and the original sequence was

0.98. As expected, the �gure demonstrates how the relevant subsequence patterns in the

upper graphs are strongly correlated with the human-perceptible patterns from the original

sequence in the bottom graph. Another interesting property of the RS-DL decomposition

shown in Figure 6.4 relates to the sparsity of the model. Only a three (6, 10, and 11) out of

�fteen possible relevant subsequence patterns account for the main patterns in the sequence

while additional patterns are responsible for increasingly �ne-grained approximations. This

type of behavior is similar to commonly-used orthonormal bases, such as the DCT basis,

which consist of low frequency components that capture major trends, while high-frequency

basis elements capture �ner-grained variations. Another characteristic of the RS-DL solu-

tion is that the anomalous portion of the sequence is associated with a di�erent relevant

subsequence pattern (Relevant Subsequence Pattern 10) than the common ECG pattern.

This characteristic shows how RS-DL can be used not only to �nd positions of recurrent

patterns but also to distinguish between pattern types.

6.4.4 Motifs in Text Data

As an additional test of RS-DL's motif-�nding ability, we trained the model on the Associ-

ated Press (AP) corpus. We preprocessed the corpus by removing words that occurred more

than 500 times or in fewer than three documents. We then removed documents containing

fewer than 10 words. The processed corpus size was 2213 documents. Finally, to make

110

processing the text dataset tractable, rather than representing each word as a large binary

vector (which would typically have a length of at least 10,000), we used the �word embed-

ding� representation from Collobert et. al. [94]. These word embeddings are vectors in

R50 and were constructed with the intent that Euclidean distances between pairs of vectors

should be small if the meanings of their associated words are similar.

Figure 6.5 shows the top 15 examples, as ordered by the absolute value of the associated

α coe�cient, of the top four relevant subsequence patterns (out of C = 10 total possible

relevant subsequence patterns) learned from a run of the RS-DL algorithm. Unlike text

processing methods that treat words independently, RS-DL preserves the order of words

within each document (minus words removed in the document preprocessing step). As the

columns of �ve-word groups in the �gure show, RS-DL, in minimizing reconstruction error

over sequences of word embeddings, is capable of �nding and grouping together meaningful

sequences of words within the text. In the �gure, all columns of discovered motifs share in-

ternally consistent semantic themes. Moreover, these themes tend to center around phrases

containing important nouns. For instance, Motif 1 includes organization-related phrases like

�product safety commission defended�, �public health system plagued�, and �environmental

protection agency banned�. Motifs 2 and 4 contain phrases including a person and occupa-

tion description such as �defense attorney thomas e. wilson�, �district attorney william h.

ryan�, and �secretary james a. baker� in Motif 2 and �attorney michael rosen,� �education

secretary william bennett,� and �assistant district attorney ted stein.� Motif 3 is centered on

organizations and concepts like �natural resources,� �public services,� and �tough economic

conditions.�

6.4.5 Classi�cation Experiments

To assess whether features derived by RS-DL are useful for classi�cation, we compared

the performance of these features on both a synthetic dataset of our own design and �ve

UCR Time Series datasets that satis�ed the underlying assumptions of our model. Because

RS-DL selects subsequences, we do not expect features from the algorithm to be e�ective

111

for classi�cation when discriminative information between sequence categories lies in global

trends over an entire sequence or if the order of di�erent patterns within a sequence is highly

correlated with its category. Similarly, because RS-DL is a sparse regression algorithm, we

expect relevant subsequence patterns to be matched to high-magnitude areas of dataset

sequences. Therefore, if dataset sequences contain large-magnitude areas (e.g. spikes in an

ECG sequence), but discriminative information found elsewhere in the sequence, we do not

expect RS-DL features to be e�ective for classi�cation.

We these assumptions in mind, we generated a set of continuous sequences, which we call

the �Bumps� dataset5 (see Figure 6.6c). Each sequence in this dataset contains two large

magnitude bumps placed at random and without overlap. In the negative category one out

of the two bumps in each sequence contains a divot. We also selected �ve datasets from the

UCR Time Series database that conform to the underlying assumptions about RS-DL: CBF,

Co�ee, DiatomSizeReduction, ECGFiveDays, and TwoLeadECG. These datasets consist of

sequences that contain large magnitude patterns occurring in all or nearly all sequences,

satisfying the assumptions needed for RS-DL to extract useful features.

We ran RS-DL with randomly initialized v arrays for ten trials on all sequences in both

the training and test sets, excluding label information, for each dataset. For all experiments,

we set C = 10, K to 30% of the sequence length, and λ = 3.0. We also enabled the restriction

on the LARS algorithm (see Section 6.2.2) where only a single relevant subsequence pattern

of each type was used. For each sequence, we created feature vectors by concatenating

the subsequences associated with each relevant subsequence pattern. Table 6.2 shows a

comparison of classi�cation errors using the one-nearest-neighbor algorithm on (i) features

given by treating sequences as vectors in Euclidean space, (ii) Dynamic Time Warping

(DTW)6 [26] distances between sequences, and (iii) Euclidean distance between RS-DL

feature vectors. As assessed by McNemar's test [95], RS-DL features reduce classi�cation

error over raw sequence vectors with p-values of less than 0.014 for all datasets. For all

datasets except for the CBF dataset, RS-DL features improved on the classi�cation error

5This dataset is included with the RS-DL code at http://cs.gmu.edu/∼sblasiak/RS-DL.tar.gz
6DTW scores were computed using the R DTW package at http://dtw.r-forge.r-project.org/

112

Dataset # Categories # Train # Test Sequence DTW RS-DL

Bumps (synthetic) 2 50 50 0.460 0.140 0.056

CBF 3 30 900 0.148 0.030 0.108

Co�ee 2 28 28 0.250 0.214 0.171

DiatomSizeReduction 4 16 306 0.065 0.042 0.028

ECGFiveDays 2 23 861 0.203 0.249 0.095

TwoLeadECG 2 23 1139 0.253 0.073 0.035

Table 6.2: Classi�cation results using RS-DL features on the UCR Time Series datasets. The
�Sequence�, �DTW�, and �RS-DL� columns give error rates from the one-nearest-neighbor
algorithm using the Euclidean distance between sequences, Dynamic Time Warping scores,
and Euclidean distance between RS-DL features respectively. RS-DL features improved the
classi�cation error for four out of �ve UCR datasets.

over Dynamic Time Warping. Here, all results were signi�cant with p-values of less than

0.01, except for the Co�ee dataset, where RS-DL's improvement over DTW was signi�cant

with a p-value of 0.17.

Figure 6.6 shows examples of positive and negative category sequences from three of the

classi�cation datasets. In each case, RS-DL features lead to improved time-series category

prediction by isolating large-magnitude trends in subsequences shared across the set of

sequences (as shown in the upper portions of each plot in the �gure). Constructing features

from these isolated subsequences aligns these major subsequence trends, allowing minor

variations that occur between the positive and negative sequence categories to be more-

easily distinguished. When variations in the general trend are highly correlated with a

category label, then the feature isolation provided by RS-DL can lead to more accurate

classi�cation.

6.5 Conclusions

In this chapter, I have presented Relevant Subsequence Dictionary Learning, a novel method

for adapting Sparse Dictionary Learning to discover interesting subsequence patterns across

sets of sequences. RS-DL is related to standard statistical models over sequences through a

version of the Factorial HMM with specially formulated restrictions on transition probabili-

ties. In a series of experiments, we have shown that RS-DL can discover useful information

113

across a variety of sequence domains. In addition, as demonstrated on time-series data,

sequence features extracted using RS-DL can improve sequence classi�cation performance.

114

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

Relevant Subsequence Pattern 6

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

Relevant Subsequence Pattern 10

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

Relevant Subsequence Pattern 11

1500 2000 2500 3000 3500
Time

5

4

3

2

1

0

1

2

S
ig

n
al

Original and Reconstructed Sequences

Original

Reconstructed

Figure 6.4: A plot of the relevant subsequences patterns (upper plots) associated with the
largest 50 coe�cients of the vector α that were learned by RS-DL to approximate the ECG
sequence (bottom plot, blue line). Only 3 out of the 15 possible relevant subsequence
patterns appear in this set of 50. Relevant subsequence patterns learned by RS-DL are
strongly associated with human-identi�able patterns in the sequence. The �gure also shows
that the approximation learned by RS-DL (bottom plot, green line) is very similar to the
original sequence with an MSE of 0.98. The RS-DL approximation is o�set by −1 on the
y-axis to aid in presentation.

115

Motif 1, max |α| = 5.357 Motif 2, max |α| = 1.659

product safety commission defended record defense attorney thomas e. wilson

community service act provides community district attorney william h. ryan

standards computer industry announced technology coalition secretary james a. baker

intelligence support ship passed black assistant secretary john h. kelly

�ight training manuals brought date treasury secretary james a. baker

public service employees received raise treasury secretary james a. baker

public health system plagued months district judge william t. hart

foreign debt economy warned loss navy secretary james h. webb

center health promotion issued warning washington secretary james a. baker

korea security force placed armed letter secretary james a. baker

u.n. security council passed use washington secretary james a. baker

emergency fund funds provided embassies date secretary james a. baker

environmental protection agency banned chemical announced secretary james a. baker

forces law order opened �re campaign chairman james a. baker

justice information organization conducted survey assistant attorney stephen a. mans�eld

Motif 3, max |α| = 1.635 Motif 4, max |α| = 1.628

workers discrimination foreign workers impact education university attorney michael rosen

authority conduct foreign policy direct debt education secretary william bennett

detainees paying legal fees work hearing assistant attorney john carroll

assets include private loans trade assistant district attorney ted stein

workers give local unions grievances assistant immigrationcommissioner james kennedy

program �nanced foreign aid assets white assistant attorney richard roberts

bills raise environmental protection agency questioning assistant attorney john carroll

planning aid foreign organizations perform controversy press secretary david beckwith

penalties sought corporate executives release talks treasury secretary james brady

problem �nding foreign aid money deputy assistant attorney john martin

policies managing public a�airs front phone treasury secretary james baker

law banned agricultural products coal hearing district judge edward davis

proposal noted natural resources issue list assistant attorney william reynolds

money available public services whose ruling district judge edward davis

reasons tough economic conditions particular acting prime minister ben jones

Figure 6.5: The �gure above shows motifs discovered by the RS-DL model in the Associated
Press corpus. It lists the top 15 motifs by α coe�cient of the top four (out of ten possible)
relevant subsequence patterns. Motifs found by RS-DL have, in general, captured sets
of semantically coherent phrases. Motifs 1 and 2 contain phrases including organization
and noun/concept phrases while Motifs 2 and 4 contain phrases including a person and
occupation descriptions.

116

6

4

2

0

2

4
Relevant Subsequence Pattern 1

6

4

2

0

2

4
Relevant Subsequence Pattern 2

6

4

2

0

2

4
Relevant Subsequence Pattern 3

0 20 40 60 80 100 120
Time

6

4

2

0

2

4

S
ig

n
al

Positive Category: ECGFiveDays Sequence

6
4

2

0
2

4
Relevant Subsequence Pattern 1

6
4

2

0
2

4
Relevant Subsequence Pattern 2

6
4

2

0
2

4
Relevant Subsequence Pattern 3

0 20 40 60 80 100 120
Time

6
4

2

0
2

4

S
ig

n
al

Negative Category: ECGFiveDays Sequence

(a)

2

1

0

1

Relevant Subsequence Pattern 1

2

1

0

1

Relevant Subsequence Pattern 2

2

1

0

1

Relevant Subsequence Pattern 3

0 10 20 30 40 50 60 70 80
Time

2

1

0

1

S
ig

n
al

Positive Category: TwoLeadECG Sequence

3

2

1

0

1

Relevant Subsequence Pattern 1

3

2

1

0

1

Relevant Subsequence Pattern 2

3

2

1

0

1

Relevant Subsequence Pattern 3

0 10 20 30 40 50 60 70 80
Time

3

2

1

0

1

S
ig

n
al

Negative Category: TwoLeadECG Sequence

(b)

0.0
0.2
0.4
0.6
0.8
1.0

Relevant Subsequence Pattern 1

0.0
0.2
0.4
0.6
0.8
1.0

Relevant Subsequence Pattern 3

0 50 100 150 200
Time

0.0
0.2
0.4
0.6
0.8
1.0

S
ig

n
al

Positive Category: Bumps Sequence

0.0
0.2
0.4
0.6
0.8
1.0

Relevant Subsequence Pattern 1

0.0
0.2
0.4
0.6
0.8
1.0

Relevant Subsequence Pattern 3

0 50 100 150 200
Time

0.0
0.2
0.4
0.6
0.8
1.0

S
ig

n
al

Negative Category: Bumps Sequence

(c)

Figure 6.6: Figures a, b, and c above show the top two (by α value) relevant subse-
quence patterns that approximate positive (bottom blue) and negative category (bottom
red) sequences in the ECGFiveDays, TwoLeadECG, and our synthetically-generated Bumps
datasets respectively. For each of these datasets, RS-DL features improve classi�cation per-
formance by picking out similarly shaped subsequences from di�erent dataset categories.
Classi�cation performance improves because class distinctions occur in minor variations in
the major trends captured by RS-DL. After processing by RS-DL, these minor variations
can more easily be distinguished by standard classi�cation algorithms.

117

Chapter 7: A Family of Feed-forward Models for Protein

Sequence Classi�cation

Popular and successful approaches for protein sequence classi�cation employ Support Vec-

tor Machines (SVM) [11, 12, 14, 16, 96, 97]. Performance of SVM-based classi�ers is highly

dependent on the kernel function, which can be di�cult to specify and to interpret. Ker-

nel functions often have free parameters that must be set either through cross validation

or heuristics. Further, ad hoc techniques are often employed to normalize pre-computed

kernels so that the algorithm can learn larger margins between classes.

We present a sequence classi�cation framework that di�ers from the SVM/kernel-based

approach. We construct a type of neural network called a Subsequence Network (SN) that

incorporates structural models over subsequences. These structural models, called Sequence

Scoring Models (SSMs), are similar to Hidden Markov Models and act as a mechanism to

extract relevant features from sequences. Our feed-forward structure allows standard opti-

mization techniques to be used for learning linear discrimination weights in conjunction with

sequence-level features. We compare our algorithm against state of the art kernel methods

on a set of canonical datasets for structural and functional protein sequence classi�cation.

7.1 Background

The methods we present in this chapter combine ideas from Hidden Markov Models (HMMs)

(Section 2.1) and Arti�cial Neural Networks. Hidden Markov models are probabilistic models

over sequences. They postulate a generative process where a sequence of hidden states is

generated from a Markov process. Each hidden state is then used as a component of mixture

distribution to generate observed sequence symbols. The type of HMM most commonly used

to model protein sequence is the Pro�le HMM (Section 2.1.1). The models in this chapter

118

rely on structures similar to the Pro�le HMM to map sequences to a latent space, which is

then used for classi�cation in a neural network-like architecture.

7.1.1 Neural Networks

A feed-forward arti�cial neural network (ANN) is a nonlinear classi�er or regression func-

tion where the input to output transformation is a composition of di�erentiable functions:

f (H)
(
. . .
(
f (1) (x)

)
. . .
)
. We assume a dataset {(xn, yn)}Nn=1, x ∈ X , y ∈ Y where xn is an

input vector associated with an output yn. We denote the vector valued output of each layer

as f (h), which we call �layer h� of the neural network. The top layer of the network (layer

H) is compared against the true output, y, using a loss function `
(
f (H), y

)
. In a standard

ANN, f
(h)
i , the ith element of the vector f (h), is computed by passing a linear combination

of the values from the previous layer through a squashing function (usually the hyperbolic

tangent function). Each f
(h)
i is computed independently of f

(h)
j , i 6= j given values from

layer h− 1 :

f (h) =
[
f

(h)
1

(
f (h−1)

)
, . . . , f (h)

nh

(
f (h−1)

)]>
, (7.1)

where nh is the number of elements in layer h and f
(h)
i denotes the composition of squashing

and linear functions used to compute the ith element of f (h).

Convolutional Neural Networks (CNNs) [98] are inspired by neural connections in the

human visual cortex. In CNNs, lower levels of the network respond to local portions of

the input. For instance, the Time Delay Neural Network (TDNN) [99] is a type of CNN

used in speech recognition. In the TDNN, the �rst hidden layer of the network is computed

from a set of overlapping windows of an input sequence i.e., f (1) is computed from an input

119

sequence x1:T :

f (1) =

[
f

(1)
1 (x1:ncnv) , f

(1)
1 (x2:ncnv+1) , . . . , f

(1)
1 (xT−ncnv :T) , . . .

, f (1)
nh

(x1:ncnv) , f
(1)
nh

(x2:ncnv+1) , . . . , f (1)
nh

(xT−ncnv :T)

]>
(7.2)

where nh−1 indicates the number of elements in the vector f (h−1) and ncnv is the size of

the �convolutional window� (the number of elements from the input, x, which contribute to

produce the value of layer 1). We use Matlab slice notation, xi1:i2 , to indicate a sub-vector

of the input sequence starting at index i1 and ending at index i2.

7.2 Sequence Classi�cation with Subsequence Networks

Our family of feed-forward classi�cation models are convolutional neural networks that as-

sume a protein's structural or functional category can be predicted by the presence of a

set of subsequences. We call these models Subsequence Networks (SN). In a Subsequence

Network, the convolutional layer learns the degree to which a subsequence is present in a

protein sequence. The degree of presence of a subsequence acts as a feature, which can be

input to a linear classi�cation layer, allowing combinations of these subsequence features to

be detected.

Convolutional units in the Subsequence Network are structured like HMMs (Section

2.1), except that we relax the constraint that the output of each unit de�nes a probability

distribution over sequences. That is, we perform unconstrained optimization with respect

to the logarithm of the transition and emission probabilities, i.e., wtransk,k′
def
= log θtransk,k′ and

wemitk,m
def
= log θemitk,m , rather than enforcing the constraint that each θ vector sums to one. We

refer to these unnormalized models as �Sequence Scoring Models� (SSM). Figure 7.1 shows

a diagram of our Subsequence Network using an SSM convolutional layer.

120

7.2.1 Pair-SSMs

The Pair-SSM is an unnormalized version of the Pair HMM [100]. Pair HMMs probabilis-

tically extend the concept of edit distance by assigning probabilities to a symmetric set of

insertions, deletions, and substitutions that allows one sequence from a pair to be created

from the other.

tanh
(
f
(2)
Ns

)
tanh

(
f
(2)
2

)
tanh

(
f
(2)
1

)
. . .tanh

(
f
(2)
3

)

x1 x2 x3 x4 x5 x6 xN. . . Protein Sequence

Squashing Layer

∑
i w

(lin)
|Y|,i f

(3)
i

∑
i w

(lin)
2,i f

(3)
i

∑
i w

(lin)
1,i f

(3)
i . . .

∑
i w

(lin)
3,i f

(3)
i

log
(∑

y′ exp
(
f
(4)
y′

))
− f

(4)
y

Linear Layer

Softmax loss

function

. . .

max
z

(SSMNs
(x, z))max

z
(SSM2(x, z))max

z
(SSM1(x, z)) . . .max

z
(SSM3(x, z)) Max and Conv

Layers

Figure 7.1: A diagram illustrating a Subsequence Network being applied to an input se-
quence. In the bottom row of the network, the maximum of the scores from each SSM are
taken over the input sequence. The Conv layer is de�ned by a score from an SSM. In the
second row, a squashing function is applied to the maximum SSM scores. The third row
computes the distance of these squashed scores from hyperplanes used to de�ne boundaries
between sequence categories. Finally, the loss function compares the category given by the
hyperplane to the true sequence category.

121

The log probability of a pair of sequences, xi and xj , in the Pair HMM can be given by

a linear model in the log of the distribution parameters:

log p(xi,xj , z) =
∑

k,k′

ntransk,k′ w
trans
k,k′ +

∑

m,m′

nemitm,m′w
emit
m,m′ (7.3)

where nemitm,m′ indicates the number of times we substituted an amino acid, m, from sequence

xi with m′ from sequence xj , and wemitm,m′ is the associated cost of this substitution. The

expression in Equation 7.3 di�ers from the probability of the standard HMM (Equation

2.3) in that we replace counts of emissions from a hidden state by counts of substitutions

of amino acid m from sequence i with amino acid m′ from sequence j i.e., nemitk,m becomes

nemitm,m′ and w
emit
k,m becomes wemitm,m′ . The Pair-SSM includes three types of hidden states: In an

Insert hidden state, the model emits a symbol from sequence xi. In a Delete hidden state

the model emits a symbol from sequence xj . In a Match hidden state, the model emits a

symbol from both sequences. To allow the model to capture relevant subsequences, we add

additional hidden states Istart and Iend. These hidden states emit symbols of either xi or xj

from a background distribution, allowing the main portion of the Pair-SSM to emit symbols

from the relevant subsequence. We show a diagram of hidden state transitions in Figure

7.2a.

If used in the convolutional layer of a Subsequence Network, the Pair-SSM extracts

features using a similar technique as the LA-kernel. In this type of network, subsequences

that best match an input sequence are selected from within each training set sequence by

the Pair-SSMs. This view is closely related to the empirical kernel map [14, 101]. In the

empirical kernel map, a feature vector associated with an unknown sequence is given by a

vector of kernel evaluations over the training set i.e., we map the sequence x to the vector

[K (x1, x) , . . . ,K (xN , x)]>, where K (·, ·) is the kernel function and {xn} , n ∈ [1 . . . N] is

the set of training sequences. In the �rst layer of empirical kernel map, a feature vector is

computed from an input sequence by evaluating a �xed kernel function on the input sequence

122

paired with each training set sequence. This set of values is then combined linearly using

weights, wn, to produce an overall score for the query sequence: s(x) =
∑

nwnK(xn, x).

We classify the query sequence, x, as a member of the positive class if s(x) > 0 and as a

member of the negative class otherwise. In SVM/kernel classi�cation, kernel evaluations for

all pairs of sequences are computed independently. Then, given K(xi, xj), ∀i, j, the SVM

learning algorithm solves a (convex) quadratic program to compute the linear weights, wn.

Although optimization over the Subsequence Network with a Pair-SSM convolutional

layer is tractable, it is not yet practical without distributing computation over multiple

processors. For each SGD epoch we must compute the Viterbi paths over N2 pairs of

sequences, xi and xj , at a cost of O(|xi|×|xj |) (where N is the number of training sequences

and |x| is the length of a sequence).

M

I D

(I, start) (I, end) End

(M,K)(M, 1)(M, 0)

(I, 1)(I, 0)

. . .

. . .

(D,K)(D, 1) . . .

(M, 2)

(I, 2)

(D, 2)

(I, start) (I, end) End

(a) (b)

(M,K)(M, 1)(M, 0) . . .(M, 2)(I, start) (I, end) End

(c)

Figure 7.2: A diagram of the deterministic �nite-state automaton associated with (a) the
Pair-SSM (b) the Local SSM (L-SSM) and (c) the Simpli�ed Local SSM (SL-SSM). Match
states are indicated with a white background, Insert states with a light-gray background,
and Delete states with a dark-gray background.

7.2.2 Local SSM (L-SSM)

The Local SSM (Figure 7.2b) is an unnormalized version of the Pro�le HMM (pHMM)

adapted to model a single subsequence within an observed sequence. Pro�le HMMs [9]

123

are a variation of the standard HMM commonly used for modeling biological sequences.

They are left-to-right, non-ergodic HMMs [2] that represent sequences in relation to an

archetypal sequence encoded in the emission distributions of the pHMM's hidden states.

Pro�le HMMs use three types of hidden states: (1) Match (M) states encode individual

symbols of the archetypal sequence, (2) Insert (I) states allow additional symbols to be

inserted between matched symbols, and (3) Delete (D) states allow matched symbols to

be skipped. Hidden states of the archetypal sequence are expressed as pairs of symbols

(s, k), where s ∈ {M, I,D} indicates a Match (M), Insert (I), or Delete (D), paired with a

base state, k ∈ [1 . . .K], which can be thought of as indexing a symbol in the archetypal

sequence. The form of the archetypal sequence is encoded by the emission distributions

from each of the K match states. In the local version of the pHMM, which models a single

subsequence within the observed sequence, Istart and Iend are special insert states that allow

portions of the sequence before the archetypal sequence to be skipped. We �x transition and

emission probabilities from Istart and Iend, allowing these to be ignored during optimization.

In addition, we explicitly include an End state to mark the end of the observed sequence.

We must include the End state because without transition from Iend to End, the model

favors archetypal subsequences positioned near the beginning of the observed sequence. As

in the standard pHMM, in our L-SSM, emissions occur only from Match and Insert states.

7.2.3 Simpli�ed Local SSM (SL-SSM)

Like the L-SSM, the SL-SSM models relevant subsequences within a set of sequences. The

SL-SSM (Figure 7.2c) simpli�es the L-SSM by removing Insert and Delete states from the

model. This change in the model results in contiguous subsequences of match states. This

structural change speeds inference i.e., the highest scoring set of hidden states can be e�-

ciently computed by sliding the window of K match states over a sequence and returning

the position with the highest probability. We use the same parametrization of hidden states

as in the L-SSM: {Istart,(M, 1),. . . ,(M,K),Iend,END}, where the pair (M,k), indicates a

hidden state that emits the kth symbol of the archetypal sequence. Transitions from the

124

Match state (M,k) , k < K to (M,k + 1) and transitions from the state (M,K) to the state

Iend occur with probability one.

The L-SSM or SL-SSM convolutional layer in the Subsequence Network can be inter-

preted as a simpli�cation of the SN with a Pair-SSM convolutional layer. This simpli�cation

is motivated by two assumptions about the domain of protein sequences: (i) the set of pro-

tein sequences lies on a lower-dimensional manifold within the sequence space and (ii) the

basis given by the training set spans the manifold of our domain and is redundant. With

these assumptions it becomes reasonable to simplify the Pair-SSM convolutional layer by

creating a model with a lower-dimensionality basis independent of the training examples.

For our model, we choose this basis to be a �xed set of L-SSMs or SL-SSMs.

When we replace Pair-SSMs with (S)L-SSMs, additional computational e�ciencies be-

come possible because the (S)L-SSM allows us to store only the locally relevant pattern

rather than an entire sequence. Computing the score of a sequence under an (S)L-SSMs

where hidden states are restricted to small, �xed lengths therefore requires less computation

time than evaluating the Pair-SSM between pairs of sequences. A disadvantage of these

simpli�cations is that new parameters are added to the model. In particular, the number

of (S)L-SSMs and the number of hidden states for each (S)L-SSM must be speci�ed in ad-

vance. In the results section, we show that these simpli�cations not only maintain much

of the accuracy of the Pair-SSM layer, but they are also robust to variations in parameter

choices.

125

7.2.4 Subsequence Network Objective Function

Parameter De�nition

Ns number of SSMs in the convolutional layer

f (h) the vector of values that comprise hidden layer h
wall a combined vector of all SSM and linear weights,[(

w(lin)
)>
,
(
w(1)

)>
, . . . ,

(
w(Ns)

)>]>

w(lin) linear weights that de�ne linear boundaries between dataset categories,

w(lin) =
[
w

(lin)
1,1 , . . . , w

(lin)
1,Ns

, . . . , w
(lin)
|Y|,1, . . . , w

(lin)
|Y|,Ns

]

w(i) a vector of transition and emission weights for the ith SSM,

w(i) =
[(
wtrans

1,:

)(i)
, . . . ,

(
wtrans

K,:

)(i)
,
(
wemit

1,:

)(i)
, . . . ,

(
wemit

K,:

)(i)]>

where K is the number of hidden states in the SSM

Z(i) the set of hidden states for the ith SSM

Table 7.1: Subsequence Network parameters

The objective function for our model includes a loss for each sequence in the dataset and a

regularization term that penalizes large parameter values:

F (x) =
∑

n

`
(
xn, yn;wall

)
+
λ

2
||wall||2 (7.4)

wherewall is an agglomeration of all of the SSM weight vectors in the model (the composition

of wall varies depending on which type of SSM is used for the convolutional layer) and linear

combination weights associated with each SSM; `(x, y;wall) is a loss function. The λ term

determines the trade o� between the loss and magnitude of the weights.

A loss function compares the output of a CNN with the label of a single protein sequence.

In our model, we use the a softmax loss, shown in the �rst row of Table 7.2. The output of

the network is given by

126

Layer De�nition Jacobian with respect to f (h)

`
(
f (4), y

)
log
∑

i exp
(
f
(4)
i

)
− f

(4)
y

exp
(
f
(4)
1

)

∑
i exp

(
f
(4)
i

) , . . . ,
exp
(
f
(4)

|Y|

)

∑
i exp

(
f
(4)
i

)

...

exp
(
f
(4)
1

)

∑
i exp

(
f
(4)
i

) , . . . ,
exp
(
f
(4)

|Y|

)

∑
i exp

(
f
(4)
i

)

− I

f (4) ≡Lin
(
f (3)
) [∑Ns

i=1 w
(lin)
1,i f

(2)
i , . . . ,

∑Ns

i=1 w
(lin)
|Y|,i f

(2)
i

]>

w
(lin)
1,1 , . . . , w

(lin)
|Y|,1

...

w
(lin)
1,Ns

, . . . , w
(lin)
|Y|,Ns

f (3) ≡Tanh(f (2))
[
tanh

(
f
(2)
1

)
, . . . , tanh

(
f
(2)
Ns

)]> [
d tanh

(
f
(2)
1

)
, . . . , d tanh

(
f
(2)
Ns

)]>
I

f (2) ≡Max
(
f (1)
)

max
([
f
(1)
1,1 , . . . , f

(1)

1,|Z(1)|

])

...

max
([
f
(1)
Ns,1

, . . . , f
(1)

Ns,|Z(Ns)|

])

I
(
f
(1)
1,1 = max

(
f
(1)
1,:

))
, . . . , I

(
f
(1)
Ns,1

= max
(
f
(1)
Ns,:

))

...

I
(
f
(1)

1,|Z(1)| = max
(
f
(1)
1,:

))
, . . . , I

(
f
(1)

Ns,|Z(1)| = max
(
f
(1)
Ns,:

))

f (1) ≡Conv(x)

SSM1

(
x, z

(1)
1

)
, . . . ,SSM1

(
x, z

(1)

|Z(1)|

)

...

SSMNs

(
x, z

(Ns)
1

)
, . . . ,SSMNs

(
x, z

(Ns)

|Z(Ns)|

)

Table 7.2: The table above describes the composition of each layer in the Subsequence
Network and gives an expression for the Jacobian with respect to the layer's input. The

values of each layer are given by the vector f (h) for hidden layer h. The Jacobian of the �rst
layer (Conv) with respect to the input is not used during inference.

f (4) def
= f (4)

(
f (3)

(
f (2)

(
f (1) (xn)

)))
def
= Lin (Tanh (Max (Conv (xn)))) (7.5)

where Conv is a convolutional layer containing multiple convolutional units, Max computes

the maximum over the responses of each convolutional unit, Tanh is the hyperbolic tangent

function and maps values in the range (−∞,∞) to (−1, 1), Lin is a linear layer. As in

Section 7.1.1, we denote the output from hidden layer h as f (h). Table 7.2 gives the full form

of each layer of the network, and Table 7.1 gives a description of network parameters.

If the number of hidden states for each SSM, |Z(i)|, across an individual network is the

same (|Z(i)| = |Z(j)| ∀i, j) layer f (1) becomes a matrix of size Ns × |Z|, where Ns is the

number of SSMs in the convolutional layer. In the L-SSM and Pair-SSMs, |Z| is exponential

in the size of the input sequence. We make the feed-forward and backpropagation steps

for the network tractable by computing the composition Max(Conv(x)) directly using the

127

Viterbi algorithm [2]. The locations of the non-zero indicator functions in the Jacobian of

the Max layer are then given by the Viterbi path [2] through the SSM.

Our Subsequence Network incorporates the hyperbolic tangent squashing function, tanh (x) =

e−2x+1
e−2x−1

. We denote the derivative of this function with respect to the hyperbolic tangent

input as d tanh (x) = 1 − tanh2 (x). In the Max layer, the function max (~v) returns the

largest scalar element of the vector ~v.

7.2.5 Training Subsequence Networks

Training is performed using stochastic gradient descent (SGD). In SGD, the gradient of the

objective is evaluated for each training example. The gradient is then scaled by a learning

rate and subtracted from the current set of parameters to obtain a new set of parameters.

This procedure contrasts with batch gradient learning where the gradient is computed for the

entire set of training examples. We compute gradients using the backpropagation procedure

[102]. Our model includes a locally non-smooth Max function, causing the the gradient of

the objective to be unde�ned at the non-smooth points. To deal with this potential issue,

we skip the gradient update in these non-smooth areas [39].

SGD updates take the form

wall
t ← wall

t−1 − ηt
∂F (xn)

∂wall
(7.6)

where F (xn) = `
(
xn, yn;wall

)
+ λ

2

∣∣∣∣wall
∣∣∣∣2 is the objective for a single sequence, t indicates

the iteration number in the SGD algorithm, wall
t indicates the value of the weights at the

tth iteration, and ηt is the learning rate at iteration t and has the form ηt = η0 (1 + λη0t)
−1,

where λ is the regularization parameter.

The gradient with respect to the linear weights is given by

128

∂F (xn)

∂w
(lin)
yi

= −∂`
(
xn, yn;wall

)

∂f
(4)
y

f
(3)
i (7.7)

This leads to an update where wyi (the linear weight associated with the ith SSM and

category y) is increased if the current training example matches the weight's category and

decreased otherwise. The change in the weight's value is proportional to, f
(3)
i , the squashed

response of the ith SSM. The expression for
∂`(xn,yn;wall)

∂f
(4)
y

is given in Table 7.2.

The gradient with respect to the SSM weights is given by

∂F (xn)

∂w(i)
=

∂` (xn, yn)

∂f
(3)
i

∂f
(3)
i

∂w(i)
(7.8)

where

∂`

∂f
(3)
i

=

∑

y∈Y

exp
(∑Ns

i=1w
(lin)
yi f

(3)
i

)
w

(lin)
yi

∑
y′∈Y exp

(∑Ns
i=1w

(lin)
y′i f

(3)
i

) − w(lin)
yni

 (7.9)

The gradient of f
(3)
i with respect to the SSM weights, w(i), is given by

∂f
(3)
i

∂w(i)
= dtanh (SSMi (xn))n

(i)
zmax (7.10)

where n
(i)
zmax is a vector of counts of emissions and transitions associated with the set of

hidden states that maximizes the value of SSMi (xn, z) and dtanh is the derivative of the

tanh function with respect to its input. As in the HMM, zmax for the SSM can be computed

e�ciently with the Viterbi algorithm [2]. Gradient steps therefore change w(i) in proportion

129

Dataset # Train # Test # Categories

SF 2948 1366 54

FD 2196 2155 23

EC 379 110 7

GO 115 57 23

Table 7.3: Datasets Sizes - # Train indicates the average number of sequences in the training
set over all categories, # Test indicates the average number of test set sequences, and #
Categories indicates the number of one-versus-rest classi�cation problems de�ned by the
dataset.

to the counts of emissions and transitions in the highest-scoring set of hidden states.

7.3 Experiments

We perform classi�cation experiments on four protein datasets. Of these datasets, two are

derived from the Structural Classi�cation of Proteins (SCOP) [75] version 1.53 (see Section

2.4). The �rst structural dataset [96], denoted by SF, de�nes 54 �xed superfamily partitions.

The second dataset [16], FD, consists of 23 prede�ned partitions at the fold level. Both of

the SCOP datasets were constructed so that no overlap between lower levels in the hierarchy

occurs between training and test sets.

The other protein datasets divide sequences into functional, rather than structural, cate-

gories. The enzyme classi�cation dataset [103], which we refer to as EC, contains sequences

from six enzyme categories and a set of non-enzymes for a total of 7 one-versus-rest datasets.

The fourth dataset [103] categorizes proteins by Gene Ontology. We refer to this dataset as

GO. Information about the protein datasets is given in Table 7.3.

7.3.1 Comparative Classi�ers

We compared the three SVM string kernels to our Subsequence Network. The BLAST

kernel was computed by performing a BLAST [59] database search on each sequence. If

another sequence from the training set was returned by the BLAST search, then we set the

corresponding Kernel value to the returned E-value. The mismatch kernel was described in

130

Section 2.2 and has two parameters. We denote a mismatch evaluation by Mismatch(k,m),

where k is the subsequence length and m is the number of allowable mismatches. The LA-

Kernel was also described in Section 2.2. For all experiments, the LA-Kernel's temperature

parameter, β, was set to 0.2.

7.3.2 Models and Parameters

We compared three variations of our Subsequence Network. In the �rst variation, �Pair-

SSM,� the convolutional layer consisted of Pair-SSMs associated with each training sequence

in the model. Similarly, the �L-SSM� and �SL-SSM� variations use L-SSMs and SL-SSMs in

the convolutional layer respectively.

For the Pair-SSM network, we initialized pairwise weights using a scaled version of the

BLOSUM62 matrix [15] and ran inference for 5 epochs on the FD dataset and 10 epochs

on the EC and GO datasets. We set the precision parameter associated with the Gaussian

regularizer to λ = .005. We set multiplicative factor in the learning rate (Section 7.2.5)

η0 = .1 for the linear weights. For the Pair-SSM parameters, we set η0 = .1
10×(#Train)

,

where # Train is the number of training set sequences. To allow training of the Pair-SSM

model to take place in a reasonable amount of time, we distributed gradient computations

of SSMs in the convolutional layer within each backpropagation step over 50 machines1.

Choices of parameters were the same for the L-SSM and SL-SSM networks: We used 96

SSMs in the convolutional layer and set K (the number of states for each SSM) to 11. We

set the precision parameter to λ = .005 for both SSM weights and linear weights, and we

set η0 = .1. For each experiment, we ran inference for 30 epochs.

The weight vector for these models were set by generating subsequences, x, of length K

uniformly and at random. For position k in the subsequence, weight wkxk was set to
1
K and

weights wkm, m 6= xk was set to − 1
K .

1Training the (S)L-SSM networks was signi�cantly faster than the Pair-SSM network. To give a rough
comparison, SL-SSM network training with the parameters described was faster than computing the Mis-
match(5,2) kernel.

131

To compensate for unbalanced numbers of positive and negative examples, we oversam-

pled the positive training set so that the same number of positive and negative examples

were presented to the SGD trainer during each epoch. In the (S)L-SSM networks, we found

that initializing the linear weights so that half of the SSMs were associated with the positive

class and the other half associated with the negative class improved performance of our

algorithm.

7.3.3 Evaluation Metrics

We measured the performance of our algorithm by computing the average area under the

ROC curve (AUC) for each of the one-versus-rest classi�cation problems de�ned by our

datasets and either AUC50 or AUC10% scores depending on the dataset. To compare the

performance of di�erent models, we performed the Wilcoxson signed rank tests at a 5%

signi�cance level using each one-versus-rest category. We report AUC results based on the

algorithm's scoring of sequences on the test sets.

7.3.4 Synthetic Experiments

We constructed a synthetic dataset to verify that our network can detect the relevant sub-

sequence features that we propose will lead to good protein sequence classi�cation perfor-

mance. Speci�cally, we generated 1000 sequences with lengths generated from a Poisson

distribution with a mean of 50 symbols. Each sequence contained between one and three

�xed relevant subsequences, with the positive class containing all three subsequences and

the negative class containing either one or two sequences of any type. The relevant subse-

quences were arranged in random order within the sequence. After placement of the relevant

sequences, noise was added - we replaced each every relevant subsequence amino acid with a

random amino acid with 10% probability. Amino acids outside relevant subsequences were

generated from a uniform multinomial distribution.

Figure 7.3 shows responses of the lowest layer in the SL-SSM network on two example

sequences from the synthetic dataset. Strong responses in portions of the sequences that

132

0 10 20 30 40 50
Amino Acids

0

10

20

30

40

SL
-S

SM
 s

co
re

s

Positive Category Sequence

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
Amino Acids

0

10

20

30

40

SL
-S

SM
 s

co
re

s

Negative Category Sequence

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 7.3: The �gures above show responses from each of the 48 unnormalized SL-SSMs
over each length 7 subsequence for a sequence generated from the positive class (a) and the
negative class (b). The positive example contains all three relevant subsequences while the
negative example contains only one relevant sequence. The �rst 24 SL-SSMs (top half both
�gures) were constrained to be associated with the positive category, while the last 24 were
constrained to be associated with the negative category. The heat maps show that sets of
positive SL-SSMs have adapted to each of the three relevant subsequences in the synthetic
dataset - both the three relevant subsequences in the positive example and the one relevant
subsequence in the negative example were detected by subsets of the �rst 24 SL-SSMs. In
contrast, SL-SSMs associated with the negative category learn a background distributions
of symbols.

contain relevant subsequences indicate that our model is able to e�ectively learn features

that discriminate well for a dataset where categories are determined based on the presence of

subsequences. The SL-SSM achieves an AUC of .9998 and AUC50 of .997 on the test portion

of the synthetic dataset, showing that after detecting relevant subsequences, our model has

the ability to e�ectively classify sequences generated according to a relevant subsequences

assumption on the dataset.

7.3.5 Parameter Adjustment

We adjusted the parameters of (S)L-SSM models by comparing both the number of

SSMs in each network and the number of hidden states for the SSMs (we used the same

133

Hidden States AUC AUC50

7 .801 .146

9 .813 .145

11 .815 .153

13 .815 .153

15 .807 .163

SL-SSMs AUC AUC50

64 .812 .144

80 .812 .156

96 .814 .153

112 .816 .145

128 .816 .147

(a) (b)

Table 7.4: Average ROC results for di�erent settings of the SL-SSM network on the FD
dataset. ROCs were averaged over ten independent trials initialized with random pattern
weights. When varying the number of SL-SSM hidden states in (a), 96 SL-SSMs were used in
the network. In (b), 11 hidden states were used for each SL-SSM when varying the number
of SL-SSMs.

number of hidden states for all SSMs) in experiments on the FD dataset. Table 7.4 shows

results from these comparisons. Within a relatively wide range of parameter settings, the

performance of the model stays roughly the same, showing that, although our method may

require some adjustment using cross validation, micromanagement of parameter settings is

not critical to maintaining acceptable performance. For the results shown in Table 7.5, we

selected parameter settings for the other experiments (K = 11 with 96 convolutional units)

that performed best on FD.

7.3.6 Protein Classi�cation Experiments

We compared four subsequence models used in the convolutional layer of our Subsequence

Network. The lower rows of Table 7.5a and b show results for the L-SSM and the SL-

SSM. These indicate that the simpler model, the SL-SSM outperforms the L-SSM. Superior

performance of the SL-SSM results from unstable inference in the L-SSM when attempting

to learn insert transition weights. If these weights grow above zero for the positive class, then

the model tends to explain every protein sequence using long sequences of insert states. For

this reason, we �x the insert transition weights in the L-SSM to small negative values (− 1
2K

where K is the number of Match states in the L-SSM), but this �x a�ects the �exibility of

the model. On the FD dataset, the Pair-SSM outperforms our other models in both AUC

134

and AUC50. However, on the functional datasets, both L-SSM and SL-SSM outperform

the Pair-SSM. These results indicate that the simpler (S)L-SSM assumptions may be better

models of protein structure in certain cases.

Table 7.5 also compares our subsequence networks to SVM/kernel methods from the

literature. Compared to the LA-kernel on the FD dataset, the Pair-SSMmodel is statistically

equivalent in both AUC and AUC50 measurements. Compared to the Mismatch kernel on

the FD dataset, the Pair-SSM model performs better in AUC but is equivalent for AUC50.

We note, however, that the β parameter used for the LA-kernel is the best of many settings

on both the SF and FD training/test set split. Due to this extensive adjustment on the FD

dataset, it is likely that the LA-kernel over�ts. In contrast, Pair-SSM network performance

is only weakly dependent on parameter settings (the regularization parameter) and we did

not perform extensive adjustment of these values, so over�tting likely to be less problematic

for our Pair-SSM on the FD test set. The Pair-SSM is equivalent to both the LA-kernel and

Mismatch kernel on the EC dataset in both AUC and AUC10%. On the GO dataset, the the

Pair-SSM is outperformed by the LA-kernel in both AUC and AUC10% but is equivalent to

the Mismatch kernel.

In AUC, the LA-kernel outperforms the L-SSM and SL-SSM models on the SF and GO

datasets but is statistically equivalent for the FD and EC datasets. In AUC50, the LA-kernel

outperforms the L-SSM and SL-SSM on both the SF and FD datasets at a 5% signi�cance

level. In AUC10%, both of our methods outperform the LA-kernel on the EC dataset. On

the GO dataset, the LA-kernel's performance is statistically equivalent to the SL-SSM but

outperforms the L-SSM. Compared to the Mismatch(5,2) kernel, both the L-SSM and SL-

SSM models have equivalent performance in SF and FD in both AUC and AUC50. Our

algorithms outperform the Mismatch kernel in AUC10% on both of the functional datasets.

For the EC dataset, none of the algorithms perform particularly well. It is possible

that both the size of the dataset and weak correlations between sequence and function

cause subsequence-based approaches to fail. A class of methods based on a di�erent set of

assumptions may be necessary to achieve strong functional classi�cation performance.

135

Dataset SF FD

Method AUC AUC50 AUC AUC50

BLAST .756 .341 .603 .100

Mismatch (5,1) .872 .403 .802 .146

Mismatch (5,2) .888 .479 .782 .188

LA-Kernel(β = .2) .926 .663 .805 .216

Pair-SSM - - 0.826 0.168
L-SSM 0.901± 0.003 0.456± 0.013 0.804± 0.006 0.141± 0.010
SL-SSM 0.903± 0.003 0.503± 0.012 0.815± 0.009 0.153± 0.008

(a)
Dataset EC GO

Method AUC AUC10% AUC AUC10%

Mismatch (4,1) .580 .007 .740 .238

Mismatch (5,2) .581 .008 .747 .245

LA-Kernel(β = .2) .574 .004 .801 .339

Pair-SSM .544 .021 .737 .264

L-SSM 0.587± 0.018 0.081± 0.011 0.736± 0.004 0.280± 0.010
SL-SSM 0.583± 0.017 0.092± 0.024 0.731± 0.011 0.306± 0.018

(b)

Table 7.5: AUC results for the FD and SF datasets (a) and the EC and GO datasets (b).
Because our model is non-convex, we report means and standard deviations of AUCs from
multiple starting points in the SSM weight space. Ten trials were averaged for both the
L-SSM and SL-SSM models for both structural and functional datasets. Due to the length
of Pair-SSM network's runtime, we report results from only a single trial.

7.4 Conclusions

The empirical kernel map applied in conjunction with SVM classi�ers is strongly related

to feed-forward models like convolutional neural networks. Based on this relationship, we

show how to construct a family of models, which we call Subsequence Networks, where

kernel parameters can be learned in conjunction with linear classi�cation boundaries. Our

Subsequence Networks operate di�erently from state-of-the-art protein sequence classi�ca-

tion models yet can achieve comparable performance. We hope that Subsequence Networks

can shift the focus in biological sequence classi�cation from increasingly �ne-tuned kernel

methods toward developing structures with self-tuning abilities.

Our networks also contribute to existing neural network literature by extending the

convolutional layer to a maximization over latent parameter spaces in standard sequence

models. The e�ectiveness of this framework for protein sequence classi�cation shows that it

has potential in other classi�cation domains.

136

Chapter 8: Conclusions and Future Work

In this thesis, I have shown that incorporating structure into models over sequences can aid

in tasks like classi�cation and motif �nding.

The Hidden Markov Model Variant incorporates structure in the form of the common

pairwise dependency assumption between sequence elements. The structure of the HMM

Variant strategically replicates the single transition probability distribution that would be

used to by the standard HMM model a set of sequences. This structure allows it to ex-

tract �xed length representations of variable length sequences which can then be used for

classi�cation or other tasks.

The Pro�le HMM also incorporates a characteristic structure that is well suited toward

modeling protein sequences. Our in�nite extension of this model relies on a procedure that

transforms the Pro�le HMM into a standard HMM. We can then exploit this transformed

structure to de�ne a beam method that both makes approximate inference possible in the

in�nite model and speeds inference in the �nite model.

The local Pro�le HMM models described in Chapter 5 combine structure from multiple

Pro�le HMMs. We show how the latent space from multiple SL-pHMMs can be merged

to produce a single uni�ed probabilistic model over sequences. The latent structure from

these models can then be attached to discriminative machinery, producing a model over

both sequences and labels. This combined model can be applied in sequence classi�cation

tasks.

A relaxation of the Factorial SL-pHMM latent space gives rise to the Relevant Subse-

quence Sparse Dictionary Learning (RS-DL) model. By allowing this latent space to take

on continuous values subject to a sparse regularizer, the RS-DL model generates sequence

elements through linear combinations of dictionary vectors. The relevant subsequences dis-

covered by the model are often well correlated with human-recognizable motifs and can also

137

be used e�ectively to classify sequences.

Our family of feed forward networks take advantage of Hidden Markov Model structure

to extract features from sequence data. In this case, HMM structure is incorporated into the

lower level of a neural network. These networks are highly e�ective for classifying protein

sequences, achieving results competitive with state-of-the-art Kernel methods on canonical

datasets.

Postulating a latent generating structure can be a powerful tool for �nding pertinent

information in sequence datasets. The work described in this thesis demonstrates how

structure from HMMs can be incorporated into a diverse set of models over sequences and

further shows that this structure can aid in solving problems of classi�cation and discovery.

8.1 Future Directions

An unanswered question in much of the work in this thesis is �Why do these models work?�.

In general, although we have shown experimentally how our models behave when trained

and tested on certain datasets, we would like to know more exactly what conditions must

be satis�ed to achieve a certain level of operation. For instance, if we assume that in a set

of sequences with discrete elements, each sequence contains a certain number of relevant

subsequences, what level of noise prevents exact recovery of this set? Bayesian formulations

of probabilistic models and well-de�ned optimization problems allow us to specify structure

and solve for parameters but leave these types of questions unanswered.

Another interesting area of future research involves developing methods to evaluate as-

sumptions about a given dataset. We may hypothesize, for instance, that protein sequences

can be separated into structural categories by extracting features that measure to what de-

gree a small subset of subsequences is present within a sequence. In this work, our method

of validating this type of assumption involved building a model that made the assumption

and evaluating the performance of the model on our original dataset. However, it seems pos-

sible that more e�ective methods for evaluating these structural assumptions exist. Faster

methods would speed the search for structural assumptions that work well, allowing better

138

models to be developed more quickly.

Finally, there is much room for developing better models of sequences across many

domains. In the domain of biological sequences, an interesting direction pursued by a num-

ber of authors involves methods that incorporate information about long-range interactions

within protein sequences [104, 105]. However, this type of approach seems useful primar-

ily on a small set of protein structural categories. It would be interesting to extend these

approaches to infer correlations between subsequences, rather than assuming that these cor-

relations are given beforehand, and to use this information for either classi�cation or for

identifying properties of individual amino acids.

139

Appendix A: Variational Algorithm for the HMM Variant

Parameter Description

N the number of sequences

Tn the length of sequence n

K the number of hidden symbols

M the number of observed symbols

ai start state probabilities, where i is the value of the �rst hidden state

Anij transition probabilities, where n indicates the sequence, i the
originating hidden state, and j the destination hidden state

Bim emission probabilities, where i indicates the hidden state, and m the
observed symbol associated with the hidden state

znt the hidden state at position t in sequence n

xnt the observed state at position t in sequence n

γ Dirichlet prior parameter for a

α Dirichlet prior parameter for A

β Dirichlet prior parameter for B

hnti Variational parameter that approximates the mean of znti

γ̃ Variational parameter that approximates the Dirichlet prior for a

α̃ni Variational parameter that approximates the Dirichlet prior for Ani

β̃i Variational parameter that approximates the Dirichlet prior for Bi

Figure A.1: Parameters used in the mean �eld variational algorithm

140

A.1 HMM Variant Probability

p(x, z, a, A,B|γ, α, β)

=

(
Γ(
∑

i γi)∏
i Γ(γi)

∏

i

aγi−1
i

)
∏

ni

Γ(
∑

j αnij)∏
j Γ(αnij)

∏

j

A
αnij−1
nij

 (A.1)

(∏

i

Γ(
∑

m βim)∏
m Γ(β)im

∏

m

Bβim−1
im

)∏

n

az1

Tn∏

t=2

Anzt−1zt

∏

t

Bztxt

=

(
Γ(
∑

i γi)∏
i Γ(γi)

∏

i

aγ−1
i

)
∏

ni

Γ(
∑

j αnij)∏
j Γ(αnij)

∏

j

Aα−1
nij

(∏

i

Γ(
∑

m βim)∏
m Γ(β)im

∏

m

Bβ−1
im

)∏

i

anii
∏

nij

A
nnij
nij

∏

im

Bnim
im

=

(
Γ(
∑

i γi)∏
i Γ(γi)

∏

i

aγi−1+ni
i

)
∏

ni

Γ(
∑

j αnij)∏
j Γ(αnij)

∏

j

A
αnij−1+nnij
nij

(∏

i

Γ(
∑

m βim)∏
m Γ(β)im

∏

m

Bβim−1+nim
im

)

A.1.1 Mean Field Variational Approximation

q(z, a,A,B) =q(a)
N∏

n=1

K∏

i=1

q(Ani)
K∏

i=1

q(Bi)
∏

nt

q(znt) (A.2)

=

(
Γ(
∑

i γ̃i)∏
i Γ(γ̃i)

∏

i

aγ̃i−1
i

)
∏

ni

Γ(
∑

j α̃nij)∏
j Γ(α̃nij)

∏

j

A
α̃nij−1
nij

(∏

i

Γ(
∑

m β̃im)∏
m Γ(β̃im)

∏

m

Bβ̃im−1
im

)∏

nti

hzntinti (A.3)

Using the standard variational formulation [31], we construct F(q) by applying Jensen's

141

inequality to create a lower bound on the marginal likelihood:

F(q) =

ˆ
da

ˆ
dA

ˆ
dB
∑

~z

q(z, a,A,B) log
p(x, z, a, A,B|α, β)

q(z, a,A,B)
(A.4)

=Eq [log p(x, z, a, A,B|α, β)]− Eq [log q(z, a,A,B)]

F(q) = log Γ(
∑

i

γi)−
∑

i

log Γ(γi) +
∑

i

(γi − 1)Eq [log ai] (A.5)

∑

ni

log Γ(

∑

j

αnij)−
∑

j

log Γ(αnij)

+

∑

nij

(αnij − 1)Eq [logAnij]

∑

i

(
log Γ(

∑

m

βim)−
∑

m

log Γ(βim)

)
+
∑

im

(βim − 1)Eq [logBim]

∑

i

Eq [ni log ai] +
∑

nij

Eq [nnij logAnij] +
∑

im

Eq [nim logBim]

− log Γ(
∑

i

γ̃i) +
∑

i

log Γ(γ̃i)−
∑

i

(γ̃i − 1)Eq [log ai]

−
∑

ni

log Γ(
∑

j

α̃nij) +
∑

nij

log Γ(α̃nij)−
∑

nij

(α̃nij − 1)Eq [logAnij]

−
∑

i

log Γ(
∑

m

β̃im) +
∑

im

log Γ(β̃im)−
∑

im

(β̃im − 1)Eq [logBim]

−
∑

nti

Eq [znti] log hnti

A.1.2 Expectations

The expectations of log a, logA, and logB are given by the formula for expectations of the

log of the parameters under the Dirichlet distribution [46].

142

Eq [log ai] = Ψ(γ̃i)−Ψ(
∑

i′

γ̃i′) (A.6)

Eq [logAnij] = Ψ(α̃nij)−Ψ(
∑

j′

α̃nij′) (A.7)

Eq [logBim] = Ψ(β̃im)−Ψ(
∑

m′

β̃im′) (A.8)

Eq [ni] =
∑

n

hn1i (A.9)

Eq [nnij] =
∑

Z

nnij
∏

nti′

h
znti′
nti′ (A.10)

=
∑

Z

(
Tn∑

t=2

I(znt−1i)I(zntj)

)∏

nti′

h
znti′
nti′

=
∑

Z

(
Tn∑

t=2

I(znt−1i)I(zntj)
∏

nti′

h
znti′
nti′

)

=

Tn∑

t=2

(∑

Z

I(znt−1i)I(zntj)
∏

nti′

h
znti′
nti′

)

=

Tn∑

t=2

(
hnt−1ihntj

∑

Z¬znt−1znt

∏

nti′

h
znti′
nti′

)

=

Tn∑

t=2

hnt−1ihntj

143

Eq [nim] =
∑

nt:xnt=m

hnti (A.11)

Eq [znti] = hnti (A.12)

A.1.3 Maximize F (q) with respect to γ̃i

Here we use a Dirichlet prior on a with uniform parameters γ.

L(γ̃i) =(γ − 1)
∑

i

(
Ψ(γ̃i)−Ψ(

∑

i′

γ̃i′)

)
(A.13)

+
∑

i

∑

n

hn1i

(
Ψ(γ̃i)−Ψ(

∑

i′

γ̃i′)

)
(A.14)

− log Γ(
∑

i

γ̃i) +
∑

i

log Γ(γ̃i)

−
∑

i

(γ̃i − 1)

(
Ψ(γ̃i)−Ψ(

∑

i′

γ̃i′)

)
(A.15)

=
∑

i

(
Ψ(γ̃i)−Ψ(

∑

i′

γ̃i′)

)(∑

n

hn1i + γ − γ̃i
)

− log Γ(
∑

i

γ̃i) +
∑

i

log Γ(γ̃i)

∂L(γ̃i)

∂γ̃i
=
∑

i

Ψ′(
∑

i′

γ̃i′)

(∑

n

hn1i + γ − γ̃i
)

(A.16)

−Ψ′(γ̃i)

(∑

n

hn1i + γ − γ̃i
)

(A.17)

144

Setting the partial derivative to 0, we �nd the update that maximizes γ̃i below:

γ̃i =
∑

n

hn1i + γ (A.18)

A.1.3.1 Maximize F (q) with respect to α̃nij

Here we use a Dirichlet prior on A with uniform parameters α.

L(α̃nij) =(α− 1)
∑

nij

Ψ(α̃nij)−Ψ(

∑

j′

α̃nij′)

 (A.19)

+
∑

nij

∑

t

hnt−1ihntj

Ψ(α̃nij)−Ψ(

∑

j′

α̃nij′)

 (A.20)

−
∑

ni

log Γ(
∑

j

α̃nij) +
∑

nij

log Γ(α̃nij)

−
∑

nij

(α̃nij − 1)

Ψ(α̃nij)−Ψ(

∑

j′

α̃nij′)

 (A.21)

=
∑

nij

(∑

t

hnt−1ihntj + α− α̃nij
)
Ψ(α̃nij)−Ψ(

∑

j′

α̃nij′)

−
∑

ni

log Γ(
∑

j

α̃nij) +
∑

nij

log Γ(α̃nij) (A.22)

∂L(α̃nij)

∂α̃nij
=Ψ′(α̃nij)

(∑

t

hnt−1ihntj + α− α̃nij
)

(A.23)

−
∑

j

Ψ′(
∑

j′

α̃nij′)

(∑

t

hnt−1ihntj + α− α̃nij
)

(A.24)

145

Setting the partial derivative to 0, we �nd the update that maximizes α̃nij below:

α̃nij =
∑

t

hnt−1ihntj + α (A.25)

A.1.3.2 Maximize F (q) with respect to β̃im

Here we use a Dirichlet prior on B with uniform parameters β

L(β̃im) =(β − 1)
∑

im

(
Ψ(β̃im)−Ψ(

∑

m′

β̃im′)

)
+ (A.26)

∑

im

(∑

nt:xt=m

hnti

)(
Ψ(β̃im)−Ψ(

∑

m′

β̃im′)

)
−
∑

i

log Γ(
∑

m

β̃im)+

∑

im

log Γ(β̃im)−
∑

im

(β̃im − 1)

(
Ψ(β̃im)−Ψ(

∑

m′

β̃im′)

)

=
∑

im

(∑

nt:xt=m

htni + β − β̃im
)(

Ψ(β̃im)−Ψ(
∑

m′

β̃im′)

)
−

∑

i

log Γ(
∑

m

β̃im) +
∑

im

log Γ(β̃im)

Setting the partial derivative to 0, we �nd the update that maximizes β̃im below:

β̃im =
∑

nt:xt=m

hnti + β (A.27)

146

A.1.3.3 Maximize F (q) with respect to hnti

L(hnti) =
∑

i

(∑

n

hn1i

)(
Ψ(γ̃i)−Ψ(

∑

i′

γ̃i′)

)
+ (A.28)

∑

nij

(
Tn∑

t=2

hnt−1ihntj

)
Ψ(α̃nij)−Ψ(

∑

j′

α̃nij′)

+

∑

im

(
Tn∑

t=1

I(xt = m)hnti

)(
Ψ(β̃im)−Ψ(

∑

m′

β̃im′)

)

−
∑

nti

hnti log hnti − λ
(∑

i

hnti − 1

)

∂L(hnti)

∂hn′t′i′
=

(Ψ(γ̃i′)−Ψ(
∑

i′′ γ̃i′′)) +

∑
j hn′2j

(
Ψ(α̃n′i′j)−Ψ(

∑
j′ α̃n′i′j′)

)
+

(
Ψ(β̃ixn′1)−Ψ(

∑
m′ β̃im′)

)
−

1− log hn′t′i′ − λ t′ = 1

∑
i hn′t′−1i

(
Ψ(α̃n′ii′)−Ψ(

∑
j′ α̃n′ij′)

)
+

∑
j hn′t′+1j

(
Ψ(α̃n′i′j)−Ψ(

∑
j′ α̃n′i′j′)

)
+

(
Ψ(β̃ixn′t′)−Ψ(

∑
m′ β̃im′)

)
−

1− log hn′t′i′ − λ 1 < t′ < T ′

∑
i hn′Tn′−1i

(
Ψ(α̃n′ii′)−Ψ(

∑
j′ α̃n′ij′)

)
+

(
Ψ(β̃ixn′Tn′−1

)−Ψ(
∑

m′ β̃im′)
)
−

1− log hn′t′i′ − λ t′ = T ′

(A.29)

Setting ∂L(hnti)
∂hn′t′i′

to zero, we �nd the expression for hnti below:

147

hn′t′i′ ∝

exp (Ψ(γ̃i′)−Ψ(
∑

i′′ γ̃i′′))

+
∑

j hn′2j

(
Ψ(α̃n′i′j)−Ψ(

∑
j′ α̃n′i′j′)

)

+
(

Ψ(β̃ixn′1)−Ψ(
∑

m′ β̃im′)
)

t′ = 1

exp
∑

i hn′t′−1i

(
Ψ(α̃n′ii′)−Ψ(

∑
j′ α̃n′ij′)

)

+
∑

j hn′t′+1j

(
Ψ(α̃n′i′j)−Ψ(

∑
j′ α̃n′i′j′)

)

+
(

Ψ(β̃ixn′t′)−Ψ(
∑

m′ β̃im′)
)

1 < t′ < T
′
n′

exp
∑

i hn′t′−1i

(
Ψ(α̃n′ii′)−Ψ(

∑
j′ α̃n′ij′)

)

+
(

Ψ(β̃ixn′Tn′−1
)−Ψ(

∑
m′ β̃im′)

)
t′ = T

′
n′

(A.30)

148

Appendix B: In�nite pHMM Derivations

B.1 Variational Bound

We bound the marginal likelihood of the In�nite pHMM using the following variational

distribution:

log p(x1:T |α, β) = log

ˆ
A

ˆ
B

∑

~z

p(A|α)p(B|β)p(x1:T , ~z|A,B) (B.1)

≥
ˆ
A

ˆ
B

∑

~z

q(~z,A,B) log
p(A|α)p(B|β)p(x1:T , ~z|A,B)

q(~z,A,B)

=

ˆ
A

ˆ
B

∑

~z

q(~z)

∏

(s,k)

q(A(s,k))

∏

(s,k)

q(B(s,k))

log
p(A|α)p(B|β)p(x1:T , ~z|A,B)

q(~z)
(∏

(s,k) q(A(s,k))
)(∏

(s,k) q(B(s,k))
)

After maximizing with respect to q(A) and q(B),
(∏

(s,k) q(A(s,k))
)(∏

(s,k) q(B(s,k))
)

=

p(A|α)p(B|β)p(x1:T , ~z|A,B). We then compute the variational bound for the truncated

model as follows:

log p(x1:T |α, β) ≥
∑

~z

q(~z) log q(~z) (B.2)

=
∑

(s,k),s′

Eq(~z)
[
n(s,k),s′

]
Eq(A(s,k),:)

[
logA(s,k),s′

]

+
∑

(s,k),m

Eq(~z)
[
n(s,k),m

]
Eq(B(s,k),:)

[
logB(s,k),m

]

149

B.2 Auxiliary Variable Beam Method

B.2.1 Maximum with respect to q(ut)

The variational free energy can be written as

F(q(ut)) = Eq(ut)

[
log

expEq(zt−1) [log p(ut|zt, zt−1)p(zt|zt−1)p(zt−1, x1:t−1)]

q(ut)

]
(B.3)

+H (q(zt−1))

By Gibb's inequality, the maximum with respect to q(ut) is therefore

q(ut) ∝ exp
(
Eq(zt−1) [log p(ut|zt, zt−1)p(zt|zt−1)p(zt−1, x1:t−1)]

)
(B.4)

with expectations computed as follows:

E [log p(ut|zt, zt−1)] =
∑

zt−1

q(zt−1) log p(ut|zt, zt−1) (B.5)

=
∑

zt−1

q(zt−1) log I (ut < p(zt|zt−1))−
∑

zt−1

q(zt−1) log p(zt|zt−1)

=

−∞

∃zt−1 : (ut ≥ p(zt|zt−1)) ∧ (q(zt−1) > 0)

−∑zt−1
I (q(zt−1) > 0) q(zt−1) log p(zt|zt−1) o.w.

E [log p(zt|zt−1)] =
∑

zt−1:q(zt−1)>0

q(zt−1) log p(zt|zt−1) (B.6)

The reduced expression for q(ut) becomes

150

q(ut) ∝

0

∃zt−1 : (ut ≥ p(zt|zt−1)) ∧ (q(zt−1) > 0)

Eq(zt−1) [log p(zt|zt−1)p(zt−1, x1:t−1)] o.w.

(B.7)

This �nal expression gives us the form of q(ut), but the threshold above which q(ut) = 0

depends on the values where q(zt−1) = 0. We can therefore choose an initial q(ut) either by

truncating q(zt−1), or by providing q(ut) with an explicit threshold. We choose to use the

latter scheme: q(ut) =
I(ut<θ̃t)

θ̃t
with an initial variational threshold parameter θ̃t.

B.2.2 Maximum with respect to q(zt−1)

The variational free energy can be written as

F(q(zt−1)) = Eq(zt−1)

[
log

exp
(
Eq(ut) [log p(ut|zt, zt−1)]

)
p(zt|zt−1)p(zt−1, x1:t−1)

q(zt−1)

]
(B.8)

+H (q(ut))

By Gibb's inequality, the maximum with respect to q(zt−1) is

q(zt−1) ∝ exp (E [log p(ut|zt, zt−1)]) p(zt|zt−1)p(zt−1, x1:t−1) (B.9)

E [log p(ut|zt, zt−1)] is computed as follows:

151

E [log p(ut|zt, zt−1)] =

ˆ 1

0
q(ut) log p(ut|zt, zt−1)dut

=

ˆ θ̃t

0
q(ut) log I (ut < p(zt|zt−1)) dut − log p(zt|zt−1)

=

−∞ θ̃t ≥ p(zt|zt−1)

− log p(zt|zt−1) o.w.

(B.10)

with

Eq(ut) [log I (ut < p(zt|zt−1))] (B.11)

=

ˆ θ̃t

0
q(ut) log I (ut < p(zt|zt−1)) dut

=

´ θ̃t
0 q(ut) log (1) dut θ̃t < p(zt|zt−1)

´ p(zt|zt−1)
0 q(ut) log (1) dut +

´ θ̃t
p(zt|zt−1) q(ut) log (0) dut θ̃t ≥ p(zt|zt−1)

=

0 θ̃t < p(zt|zt−1)

−∞ θ̃t ≥ p(zt|zt−1)

The expression for q(zt−1) therefore becomes

q(zt−1) ∝

0 θ̃t ≥ p(zt|zt−1)

p(zt−1, x1:t−1) o.w.

(B.12)

152

The form of q(zt−1) shows us that a speci�c value of θ̃t will act as a cuto�, forcing values

of q(zt−1) with associated p(zt|zt−1) to zero. This setting of q(zt−1), in turn, adjusts q(ut)

so that θ̃t moves to the smallest value of p(zt|zt−1) greater than the initial θ̃t. After this

second maximization step, no further changes occur in either variational distribution.

153

Appendix C: Variational Inference for the Joint SL-pHMM

Models

C.1 Switching Model

Using the Switching Model, the joint probability of the set of sequences, x1:N , set of la-

bels, y1:N , switching variables, s1:N , and SL-pHMM hidden states, t1:N,1:C is given by the

expression in Equation C.1. We also include priors over the emissions distributions, B, the

switching transition distributions, A(s), and the Sigmoid Belief Network parameters, v, but

rather than attempt to approximate posterior distributions with respect to these variables,

we compute maximum-a-posteriori solutions.

p(y1:N ,x1:N , s1:N , t1:N,1:C , B,A
(s),v|A,B0, α, β, λv)

= p(v|λv)p(B|β)p(A(s)|α)
∏
n

p(xn|sn, t1:C,n, B,B0)p(sn|A(s))

(∏
c

p(tn,c|A)

)

p(yn|xn, e1:C,n,v
(2))

∏
c

p(ec,n|xn, tc,n,v(1)) (C.1)

In the Switching model, the probability of the observed sequence given hidden variables

is given as follows:

p(xn|sn, tn,1:C , B,B0) =

Tn∏
t=1

B
I(t<tsn,t,n∨t≥tsn,t,n+K)
0,xn,t

B
I(tsn,t,n≤t<tsn,t,n+K)
sn,t,tsn,t,n−t+1,xn,t

(C.2)

=

Tn∏
t=1

(∏
s

B
I(s=sn,t)I(t<ts,n∨t≥ts,n+K)
0,xn,t

)∏
s,k

B
I(s=sn,t)I(k=ts,n−t+1)
s,k,xn,t

 (C.3)

The variational bound, excluding the prior distributions on A(s), B, and v is given by

154

Parameter De�nition

General Notation

xn the nth observed sequence

yn the binary response variable associated with the nth sequence,
yn ∈ {−1, 1}

q(. . .) indicates a variational distribution over the parameters inside
the parentheses

SL-pHMM Variables

tn,c start of the relevant subsequence of the cth SL-pHMM

zn,c the set of hidden variables associated with the cth pHMM used
to generate the nth observed sequence. zn,c can be fully

reconstructed given only tn,c, the position of the �rst Match

hidden state

A �xed transition matrix for all SL-pHMMs

Switching Model Variables

sn the nth sequence of switching variables

A(s) transition matrix on the switching variables p(s′|s) = A
(s)
s,s′

B an emissions matrix. Bc,k,m is the probability of observed
symbol m given that the symbol is generated from the cth

SL-pHMM's kth relevant subsequence position

B0 a �xed background distribution

α Dirichlet prior parameter on A(s), A
(s)
s,: ∼ Dirichlet(α) ∀s

β Dirichlet prior parameter on B, Bc,k,: ∼ Dirichlet(β) ∀c, k
Factorial Model Variables

w weights used to compute emission probabilities given the
SL-pHMM hidden states

λw regularization parameter on w. i.e. w ∼ N
(
0, λ−1w

)

Sigmoid Belief Network Variables

en,c variables in the Sigmoid Belief Network's hidden layer,
en,c ∈ {0, 1}

v Sigmoid Belief Network weights. v(1) are the weights for the

lower level of the network, with v
(1)
c and v

(1)
c,0 (bias term)

associated with the cth SL-pHMM. v(2) and v
(2)
0 are associated

with the top layer of the network.

λv regularization parameter on v. i.e. v ∼ N
(
0, λ−1v

)

Table C.1: Parameter de�nitions

155

log p(y1:N ,x1:N ,v|A,B0, A
(s), B, λ) (C.4)

= log
∑
s,t

p(y1:N ,x1:N , s1:N , t1:N,1:C ,v|B,A(s), A,B0, λ)

≥ Eq
[
log p(y1:N ,x1:N , s1:N , t1:N,1:C ,v|B,A(s), A,B0, λ)

]
+H (q)

=
∑
n

Eq(sn)
∏

c q(tn,c) [log p(xn|sn, tn,1:C , B,B0)] +

∑
n,c

Eq(en,c)q(tn,c)

[
log p(en,c|xn, tn,c,v(1)

c)
]

+

∑
n

E∏
c q(en,c)

[
log p(yn|en,1:C ,v

(1))
]

+

∑
n

Eq(sn)

[
log p(sn|A(s))

]
+

∑
n,c

Eq(tn,c) [log p(tn,c|A)]

+H(q)

where H(q) indicates the entropy over all of the variational distributions.

C.1.1 Variational EM algorithm (Training Phase)

• Repeat until the variational bound converges:

1. Maximize with respect to q(sn) for all n - Equation C.6

2. Maximize with respect to q(tn,c) for all n, c - Equation C.8

3. Maximize with respect to q(en,c) for all n, c - Equation C.37

4. Maximize with respect to A
(s)
c for all c - Equation C.9

5. Maximize with respect to Bc,k for all c, k - Equation C.10

6. Maximize with respect to v(1) using L-BFGS [80] - gradients given in Equation

C.45 and C.46

156

7. Maximize with respect to the variational parameter,ζn, for all n

(a) set ζn = yn

(
v

(2)
0 +

∑
c en,cv

(2)
c

)

8. Maximize with respect to v(2) - Equation C.49

C.1.2 Variational EM algorithm (Prediction Phase)

• Repeat until the variational bound converges:

1. Maximize with respect to q(sn) for all n - Equation C.6

2. Maximize with respect to q(tn,c) for all n, c - Equation C.8

3. Maximize with respect to q(en,c) for all n, c - Equation C.43

• Predict yn = sign

(
v(2)

)>

ēn,1:C

1

 (this choice of yn corresponds to maximizing

the variational bound with respect to yn)

157

C.1.3 Compute the maximum with respect to q(sn)

F (q(sn)) (C.5)

= Eq(sn)
∏

c q(tc,n)

[
log

p(xn|sn, tn,1:C , B,B0)p(sn|A(s))

q(sn)

]

= Eq(sn)

[
E∏

c q(tc,n)

[
log

Tn∏
t=1

A(s)
sn,t−1,sn,t

×

B
I(t<tsn,t,n∨t≥tsn,t,n+K)
0,xn,t

×

B
I(tsn,t,n≤t<tsn,t,n+K)
sn,t,tsn,t,n−t+1,xn,t

]
− log q(sn)

]

= Eq(sn)

[
log

(
Tn∏
t=1

A(s)
sn,t−1,sn,t

×

B
Eq(tsn,t,n)[I(t<tsn,t,n∨t≥tc,n+K)]
0,xn,t

×

∏
k

B
Eq(tsn,t,n)[I(k=tsn,t,n−t+1)]
sn,t,k,xn,t

− log q(sn)

]

q(sn) ∝
Tn∏
t=1

A(s)
sn,t−1,sn,t

× (C.6)

B
Eq(tsn,t,n)[I(t<tsn,t,n∨t≥tc,n+K)]
0,xn,t

×

∏
k

B
Eq(tsn,t,n)[I(k=tsn,t,n−t+1)]
sn,t,k,xn,t

158

C.1.4 Compute the maximum with respect to q(tn,c)

F (q(tc,n)) (C.7)

= Eq(sn)
∏

c q(tc,n)

[
log

p(xn|sn, tn,1:C , B,B0)p(tc,n|A)p(en,c|xn, tn,c,v)

q(tc,n)

]

= Eq(tc,n)

[
Eq(sn)

∏
c′ 6=c q(tc,n)

[
log

(
ωTn−K−2 (1− ω)2 ×

exp

(
Eq(en,c)

[
−en,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)
− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

))])
×

Tn∏
t=1

B
I(t<tsn,t,n∨t≥tsn,t,n+K)
0,xn,t

B
I(tsn,t,n≤t<tsn,t,n+K)
sn,t,tsn,t,n−t+1,xn,t

)]

− log q(tn,c)

]

= const +

Eq(tc,n)

[
log

((
−ēn,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)
− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

)))
×

Tn∏
t=1

B
Eq(sn)

[
I(c=sn,t)I(t<tc,n∨t≥tc,n+K)+

∑
c′ 6=c I(c′=sn,t)Eq(t

c′,n)[I(t<tc′,n∨t≥tc′,n+K)]
]

0,xn,t
×

B
Eq(sn)

[
I(c=sn,t)I(k=tc,n−t+1)+

∑
c′ 6=c I(c′=sn,t)Eq(t

c′,n)[I(k=tc′,n−t+1)]
]

c,k,xn,t

)
− log q(tc,n)

]

= const +

Eq(tc,n)

[
log

(
exp

(
−ē>n,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)
− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

)))
×

Tn∏
t=1

B
Eq(sn)[I(c=sn,t)]I(t<tc,n∨t≥tc,n+K)
0,xn,t

×

B
Eq(sn)[I(c=sn,t)]I(k=tc,n−t+1)
c,k,xn,t

)
− log q(tc,n)

]

159

q(tn,c) ∝ exp

(
−ēn,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

))−1

×(C.8)

Tn∏
t=1

B
Eq(sn)[I(c=sn,t)]I(t<tc,n∨t≥tc,n+K)
0,xn,t

×

B
Eq(sn)[I(c=sn,t)]I(k=tc,n−t+1)
c,k,xn,t

C.1.4.1 Compute the maximum with respect to the switching transition dis-

tributions, A
(s)
c

The portion of the variational bound that depends on A
(s)
c is given as follows:

F
(
A(s)
c

)
=

∑
n

Eq(sn)

[
log p(xn|sn, tn,1:C , B,B0)p(A(s)|α)

]

s.t.
∑
c′
A

(a)

c,c′ = 1

This gives the following Lagrangian:

L
(
A(s)
c

)
=

∑
n,c′

(
Eq(sn)

[
I(sn,t−1 = c, sn,t = c′)

]
+ α− 1

)
log

(
A

(s)

c,c′

)
− λ

(∑
c′
A

(a)

c,c′ − 1

)

∂L
(
A

(s)
c

)
∂A

(s)

c,c′
=

∑
nEq(sn) [I(sn,t−1 = c, sn,t = c′)] + α− 1

A
(s)

c,c′
− λ

First order optimality conditions give

A
(s)

c,c′ ∝ Eq(sn)

[
I(sn,t−1 = c, sn,t = c′)

]
+ α− 1 (C.9)

160

.

The expectation, Eq(sn) [I(sn,t−1 = c, sn,t = c′)], is computed using the Forward-Backward

algorithm [44] in conjunction with the variational distribution, q(sn).

C.1.4.2 Compute the maximum with respect to the emissions, Bc,k

The portion of the variational bound that depends on Bc,k is given as follows:

F (Bc,k) = Eq(sn)
∏

c q(tc,n) [log p(xn|sn, tn,1:C , B,B0)] + log p(Bc,k|β)

s.t.
∑
m

Bc,k,m = 1

L(Bc,k) =
∑
n

∑
t

(
Eq(sn) [I (c = sn,t)]Eq(tc,n) [I (tc,n − t+ 1 = k)] I (xn,t = m) + β − 1

)
logBc,k,m

−λ

((∑
m

Bc,k,m

)
− 1

)

∂L(Bc,k)

∂Bc,k,m
=

∑
n

∑
tEq(sn) [I (c = sn,t)]Eq(tc,n) [I (tc,n − t+ 1 = k)] I (xn,t = m) + β − 1

Bc,k,m
− λ

First order optimality conditions give

Bc,k,m ∝
∑
n

∑
t

Eq(sn) [I (c = sn,t)]Eq(tc,n) [I (tc,n − t+ 1 = k)] I (xn,t = m) + β − 1 (C.10)

The expectation, Eq(sn) [I(sn,t = c)], is computed using the Forward-Backward algorithm

[44] in conjunction with the variational distribution, q(sn).

161

C.2 Factorial Model

Using the Factorial Model, the joint probability of the set of sequences, x1:N , set of labels,

y1:N , and SL-pHMM hidden states, t1:N,1:C is given by the expression in Equation C.11.

We also include priors over the factorial weights, w, and the Sigmoid Belief Network pa-

rameters, v, but, as for the Switching Model, rather than attempt to approximate posterior

distributions with respect to these variables, we compute maximum-a-posteriori solutions.

p(y1:N ,x1:N , t1:C,1:N ,w,v|A, λw, λv)

= p(w|λw)p(v|λv)
∏
n

p(xn|tn,1:C ,w)

(∏
c

p(tn,c|A)

)
p(yn|xn, e1:C,n,v

(2))
∏
c

p(ec,n|xn, tc,n,v(1)) (C.11)

For the Factorial Model, the following expression gives the probability of the observed

sequence given the SL-pHMM variables, tn,1:C , and the model weights, w:

p(xn|tn,1:C ,w) (C.12)

=

Tn∏
t=1

exp
(∑

c wc,0,xn,tI (t < tn,c ∨ t ≥ tn,c +K) +
∑
c,k wc,k,xn,tI (k = tn,c − t+ 1)

)
∑
m exp

(∑
c wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +

∑
c,k wc,k,mI (k = tn,c − t+ 1)

)

The variational bound for the Factorial Model, excluding prior distributions over w and

v, is given as follows:

162

log p(y1:N ,x1:N |w,v, A, λ) (C.13)

= log
∑
e,t

p(y1:N ,x1:N , e1:N,1:C , t1:N,1:C |w,v, A)

≥ Eq [log p(y1:N ,x1:N , e1:N,1:C , t1:N,1:C |w,v, A)] +H (q)

=
∑
n

E∏
c q(tn,c) [log p(xn|tn,1:C ,w)] +

∑
n,c

Eq(en,c)q(tn,c)

[
log p(en,c|xn, tn,c,v(1)

c)
]

+

∑
n

E∏
c q(en,c)

[
log p(yn|en,1:C ,v

(2))
]

+

∑
n,c

Eq(tn,c) [log p(tn,c|A)]

+H(q)

C.2.1 Variational EM algorithm (Training)

• Repeat until the variational bound converges:

1. Maximize with respect to the variational parameters αn,t and ξn,t,m for all n, c,m

(a) Section C.2.3

2. Maximize with respect to q(tn,c) for all n, c

(a) Equation C.20

3. Maximize with respect to q(en,c) for all n, c

(a) Equation C.41

4. Maximize with respect to w using L-BFGS

(a) gradients are given in Equations C.25, C.26, and (depending on parameter

tying) C.27

5. Maximize with respect to v(1) using L-BFGS (depending on parameter tying)

163

(a) gradients given in Equations C.45 and C.46

6. Maximize with respect to the variational parameter,ζn, for all n

(a) set ζn = yn

(
v

(2)
0 +

∑
c en,cv

(2)
c

)

7. Maximize with respect to v(2)

(a) Equation C.49

C.2.2 Variational EM algorithm (Training)

• Repeat until the variational bound converges:

1. Maximize with respect to the variational parameters αn,t and ξn,t,m for all n, c,m

(a) Section C.2.3

2. Maximize with respect to q(tn,c) for all n, c

(a) Equation C.20

3. Maximize with respect to q(en,c) for all n, c

(a) Equation C.43

• Predict yn = sign

(
v(2)

)>

ēn,1:C

1

 (this choice of yn corresponds to maximizing

the variational bound with respect to yn)

C.2.3 Compute the maximum with respect to q(tn,c)

To compute the maximum with respect to q(tn,c) for the Factorial model, we �rst write the

expression for the variational bound including all of the terms that depend on tn,c.

To clarify our presentation, we have also de�ned zn,t,m as follows for use in the new

bound:

164

zn,t,m
def
=

∑
c

wc,0,xn,tI (t < tn,c ∨ t ≥ tn,c +K) +
∑
c,k

wc,k,xn,tI (k = tn,c − t+ 1) (C.14)

F (q(tc,n)) = Eq(en,c)
∏

c q(tn,c)

[
log

p(xn|tn,1:C ,w)p(tn,c|A)p(en,c|xn, tn,c,v(1))

q(tn,c)

]
(C.15)

= Eq(tc,n)

[
E∏

c′ 6=c q(tc,n)

[
log

(
ωTn−K−2 (1− ω)2 ×

exp

(
Eq(en,c)

[
− en,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)

− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

))])
×

Tn∏
t=1

exp (zn,t,m)∑
m exp (zn,t,m)

)]

− log q(tn,c)

]

165

= Eq(tc,n)

[
− ē>n,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)

− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

)))
+

Tn∑
t=1

wc,0,xn,t I (t < tn,c ∨ t ≥ tn,c +K) +
∑
k

wc,k,xn,t I (k = tn,c − t+ 1) +

Tn∑
t=1

∑
c′ 6=c

wc′,0,xn,t
Eq(tn,c′)

[
I
(
t < tn,c′ ∨ t ≥ tn,c′ +K

)]
+

∑
c′ 6=c,k

wc′,k,xn,t
Eq(tn,c′)

[
I
(
k = tn,c′ − t+ 1

)]

−E∏
c′ 6=c q(tn,c′)

[
log
∑
m

exp (zn,t,m)

]

)
− log q(tc,n)

]

To allow tractable computation of expectations over the softmax function in the Factorial

Model, we apply the following bound [106]:

− log
∑
k

exk ≥ −α−
∑
k

log
(

1 + e−(α−xk)
)

(C.16)

≥ −α+
∑
k

(
− log

(
1 + e−ξk

)
+
α− xk − ξk

2
− τ (ξk)

(
(xk − α)2 − ξ2

k

))

The bound requires that we include the variational parameters, αn,t (for each sequence,

n, and each element, t), and ξn,t,m (for each sequence, n, element, t, and alphabet symbol,

m). Here, we de�ne τ(ξ)
def
= 1

4ξ tanh
(
ξ
2

)
.

To maximize with respect to the variational parameters of the bound, we �rst maximize

with respect to each αn,c. Noting that Equation C.16 is concave in α, we set α = − logK +

166

log
∑
exk , which is near the maximum, then run several iterations of Newton's method.

Note that this �rst bound (line 1 of Equation C.16) is not tight in general. With respect to

each ξn,t,m, the bound has a positive maximum at ξk = α− xk. Because the second bound

(line 2 of Equation C.16) is tight, this two step procedure is valid, i.e., the maximum of the

�rst bound with respect to α is the best possible lower bound with respect to both α and

all ξk's.

F (q(tc,n)) (C.17)

≥ F̃ (q(tc,n))

= Eq(tc,n)

[
− ē>n,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)
− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

)))
+

Tn∑
t=1

wc,0,xn,tI (t < tn,c ∨ t ≥ tn,c +K) +
∑
k

wc,k,xn,tI (k = tn,c − t+ 1)

+

Tn∑
t=1

E∏
c′ 6=c q(tn,c′)

[
− αn,t +

∑
m

(
log σ (ξn,t,m)

+
αn,t − zn,t,m − ξn,t,m

2
− τ (ξn,t,m)

(
(αn,t − zn,t,m)2 − ξ2

n,t,m

))]
(C.18)

)
− log q(tc,n)

]

167

F̃ (q(tc,n)) (C.19)

= Eq(tc,n)

[
− ē>n,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)
− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

)))
+

Tn∑
t=1

(
wc,0,xn,tI (t < tn,c ∨ t ≥ tn,c +K) +

∑
k

wc,k,xn,tI (k = tn,c − t+ 1)

)

+

Tn∑
t=1

∑
m

((
αn,t2τ (ξn,t,m)− 1

2

)(
wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +

∑
k

wc,k,mI (k = tn,c − t+ 1)

))

−
Tn∑
t=1

∑
m

τ (ξn,t,m)E∏
c′ 6=c q(tn,c′)

[
z2
n,t,m

]
)
− log q(tc,n)

]

Applying Gibbs' inequality to F̃ (q(tn,c)) above gives a maximum at

q(tn,c) (C.20)

∝ exp

(
− ē>n,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

)
− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

)))
+

Tn∑
t=1

(
wc,0,xn,tI (t < tn,c ∨ t ≥ tn,c +K) +

∑
k

wc,k,xn,tI (k = tn,c − t+ 1)

)

+

Tn∑
t=1

∑
m

((
αn,t2τ (ξn,t,m)− 1

2

)(
wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +

∑
k

wc,k,mI (k = tn,c − t+ 1)

))

−
Tn∑
t=1

∑
m

τ (ξn,t,m)E∏
c′ 6=c q(tn,c′)

[
z2
n,t,m

])

We provide expressions to compute the expectations over the zn,t,m's below. To save on

computation, we compute the expectation excluding the cth SL-pHMM, E∏
c′ 6=c q(tn,c′)

[zn,t,m],

by adding and subtracting terms from the full variational expectation, E∏
c′ q(tn,c′)

[zn,t,m]:

168

E∏
c′ q(tn,c′) [zn,t,m] (C.21)

=
∑
c′
wc′,0,mEq(tn,c′) [I (t < tn,c′ ∨ t ≥ tn,c′ +K)] +

∑
c′,k

wc′,k,mEq(tn,c′) [I (k = tn,c′ − t+ 1)]

E∏
c′ 6=c q(tn,c′) [zn,t,m] (C.22)

= E∏
c′ q(tn,c′) [zn,t,m]

−wc,0,mEq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)]−
∑
k

wc,k,mEq(tn,c) [I (k = tn,c − t+ 1)]

+wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +
∑
k

wc,k,mI (k = tn,c − t+ 1)

= const + wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +
∑
k

wc,k,mI (k = tn,c − t+ 1)

Above, we have excluded terms that do not include tn,c because these do not contribute

to the maximum with respect to q(tn,c).

Below, we compute E∏
c′ 6=c q(tn,c′)

[
z2
n,t,m

]
using E∏

c′ q(tn,c′)
[zn,t,m]. Note that we have

added terms Eq(tn,c) [I (ω(tn,c))] and substracted terms with
(
Eq(tn,c) [I (ω(tn,c))]

)2
because

Eq(tn,c)

[
I (ω(tn,c))

2
]

= Eq(tn,c) [I (ω(tn,c))]. Simply squaring E∏
c′ q(tn,c′)

[zn,t,m] would com-

pute the expectation incorrectly.

169

E∏
c′ 6=c q(tn,c′)

[
z2
n,t,m

]
(C.23)

=

(∑
c′
wc′,0,mEq(tn,c′) [I (t < tn,c′ ∨ t ≥ tn,c′ +K)] +

∑
c′,k

wc′,k,mEq(tn,c′) [I (k = tn,c′ − t+ 1)]

−
(
wc,0,mEq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)]

)
−
∑
k

(
wc,k,mEq(tn,c) [I (k = tn,c − t+ 1)]

)

+wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +
∑
k

wc,k,mI (k = tn,c − t+ 1)

)2

−
∑
c′ 6=c

(
wc′,0,mEq(tn,c′) [I (t < tn,c′ ∨ t ≥ tn,c′ +K)]

)2

−
∑
c′ 6=c,k

(
wc′,k,mEq(tn,c′) [I (k = tn,c′ − t+ 1)]

)2

+
∑
c′ 6=c

w2
c′,0,mEq(tn,c′) [I (t < tn,c′ ∨ t ≥ tn,c′ +K)]−

∑
c′ 6=c,k

w2
c′,k,mEq(tn,c′) [I (k = tn,c′ − t+ 1)]

= const +

2

∑
c′ 6=c

wc′,0,mEq(tn,c′) [I (t < tn,c′ ∨ t ≥ tn,c′ +K)] +
∑
c′ 6=c,k

wc′,k,mEq(tn,c′) [I (k = tn,c′ − t+ 1)]

×
(
wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +

∑
k

wc,k,mI (k = tn,c − t+ 1)

)

+

(
wc,0,mI (t < tn,c ∨ t ≥ tn,c +K) +

∑
k

wc,k,mI (k = tn,c − t+ 1)

)2

C.2.4 Compute the maximum with respect to wc

We compute the the maximum with respect to wc using L-BFGS. This method requires

that we compute the gradients of the variational bound with respect to w. We derive

expressions for these gradients below. As before, we have de�ned τ(ξ)
def
= 1

4ξ tanh
(
ξ
2

)
and

zn,t,m
def
=
∑

cwc,0,xn,tI (t < tn,c ∨ t ≥ tn,c +K) +
∑

c,k wc,k,xn,tI (k = tn,c − t+ 1).

Below, we have also included terms from the lower level of the Sigmoid Belief Network

(SBN) (see Section C.3) in the variational bound. We do so because in one of our these

170

lower-level SBN weights were �xed to the same values as the weights in the Factorial Model,

i.e., wc
def
= v

(1)
c . The bias terms, v

(1)
c,0 and wc,0,m, however, are always treated separately.

F̃(wc) (C.24)

= −λw
2

w>c wc

−
∑
n

ēn,cEq(tn,c)

[
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

]
−
∑
n

Eq(tn,c)

[
log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

))]
+

Tn∑
t=1

E∏
c q(tn,c)

[
zn,t,xn,t

]
+

Tn∑
t=1

∑
m

(
2αn,tτ (ξn,t,m)− 1

2

)
E∏

c q(tn,c) [zn,t,m]−
∑
m

τ (ξn,t,m)E∏
c q(tn,c′)

[
z2
n,t,m

]

In the gradient computation below, we treat wc,k,m
def
= v

(1)
c,k,m, but the v

(1)
c,k,m term can be

excluded in a model where the Factorial Model weights and SBN weights are independent.

∂F̃(wc)

∂wc,k,m
(C.25)

= −
∑
n

ēn,cEq(tn,c)

[
I
(
m = xn,tn,c+k

)]

+
∑
n

Eq(tn,c)

[(
1 + exp

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))−1

I
(
m = xn,tn,c+k

)]
+

Tn∑
t=1

∂E∏
c q(tn,c)

[
zxn,t

]
∂wc,k,m

I (xn,t = m) +

Tn∑
t=1

(
2αn,tτ (ξn,t,m)− 1

2

)
∂E∏

c q(tn,c) [zn,t,m]

∂wc,k,m
− τ (ξn,t,m)

∂E∏
c q(tn,c)

[
z2
n,t,m

]
∂wc,k,m

−λwwc,k,m

171

∂F̃(wc)

∂wc,0,m
=

Tn∑
t=1

∂E∏
c q(tn,c)

[
zxn,t

]
∂wc,0,m

+ (C.26)

Tn∑
t=1

∑
m

(
2αn,tτ (ξn,t,m)− 1

2

)
∂E∏

c q(tn,c) [zn,t,m]

∂wc,0,m
−
∑
m

τ (ξn,t,m)
∂E∏

c q(tn,c)

[
z2
n,t,m

]
∂wc,0,m

−λwc,0,m

∂F̃(v
(1)
c,0)

∂v
(1)
c,0

(C.27)

= −
∑
n

ēn,c +
∑
n

Eq(tn,c)

[(
1 + exp

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))−1]
− λvv(1)

c,0 (C.28)

Computing the above gradients requires computing the gradients of expectations over

zn,t,m and z2
n,t,m, which we give below.

E∏
c q(tn,c) [zn,t,m] (C.29)

=
∑
c

wc,0,mEq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)] +
∑
c,k

wc,k,mEq(tn,c) [I (k = tn,c − t+ 1)]

∂E∏
c q(tn,c) [zn,t,m]

∂wc,k,m
= Eq(tn,c) [I (k = tn,c − t+ 1)] (C.30)

∂E∏
c q(tn,c) [zn,tm]

∂wc,0,m
= Eq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)] (C.31)

As mentioned in the previous section, when computing E∏
c q(tn,c)

[
z2
n,t,m

]
, we subtract

the squared of this expectation, Eq(tn,c) [I (k = tn,c − t+ 1)]2 and add in terms

Eq(tn,c) [I (k = tn,c − t+ 1)]. The complexity of this procedure is O(CK), lower than the

172

alternative of summing over the expectation of each individual term, which has a complex-

ity of O(C2K2).

E∏
c q(tn,c)

[
z2
n,t,m

]
(C.32)

=

∑
c

wc,0,mEq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)] +
∑
c,k

wc,k,mEq(tn,c) [I (k = tn,c − t+ 1)]

2

−
∑
c

(
wc,0,mEq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)]

)2 −∑
c,k

(
wc,k,mEq(tn,c) [I (k = tn,c − t+ 1)]

)2

+
∑
c

w2
c,0,mEq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)] +

∑
c,k

w2
c,k,mEq(tn,c) [I (k = tn,c − t+ 1)]

∂E∏
c q(tn,c)

[
z2
n,t,m

]
∂wc,k,m

(C.33)

= 2E∏
c q(tn,c) [zn,t,m]Eq(tn,c) [I (k = tn,c − t+ 1)]

−2wc,k,m
(
Eq(tn,c) [I (k = tn,c − t+ 1)]

)2
+2wc,k,mEq(tn,c) [I (k = tn,c − t+ 1)]

= 2Eq(tn,c) [I (k = tn,c − t+ 1)]
(
E∏

c q(tn,c) [zm] + wc,k,m
(
1− Eq(tn,c) [I (k = tn,c − t+ 1)]

))

∂E∏
c q(tn,c)

[
z2
n,t,m

]
∂wc,0,m

= 2E∏
c q(tn,c) [zn,t,m]Eq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)]

−2wc,0,m
(
Eq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)]

)2
+2wc,0,mEq(tn,c) [I (t < tn,c ∨ t ≥ tn,c +K)]

C.3 Sigmoid Belief Network

Both the Joint Factorial and Joint Switching SL-pHMMs use a variation of the Sigmoid Belief

Network to de�ne probabilties over sequence labels given relevant subsequences. Below we

give expressions for the probability of individual layers of the network.

173

We de�ne the sigmoid function as follows:

σ(z) = (1 + exp (−z))−1 (C.34)

The probability of a hidden variable, en,c ∈ {0, 1}, associated with the cth relevant

subsequence in the nth sequence in the �rst layer of the network is

p(en,c|xn, tc,n,v(1)) (C.35)

= σ

∑
k,m

v
(1)
c,k,mI

(
xn,tn,c+k = m

)1−en,c
1− σ

∑
k,m

v
(1)
c,k,mI

(
xn,tn,c+k = m

)en,c

The probability of the nth sequence label given the SBN's hidden variables, en,1:C is

given as follows:

p(yn|en,1:C ,v
(2)) = σ

(
yn

(
v

(2)
0 +

∑
c

v(2)
c en,c

))
(C.36)

C.3.1 Compute the maximum with respect to q(en,c)

Below, we use the fact that en,c ∈ {0, 1} implies e2
n,c = en,c.

F (q(en,c)) (C.37)

= Eq(tc,n)
∏

c′ q(en,c′)

[
log

p(yn|en,1:C ,v
(2))p(en,c|xn, tn,c,v(1))

q(en,c)

]

= E∏
c′ q(en,c′)

[
log σ(yne

>
n,1:Cv

(2))
]

+Eq(tn,c)q(en,c)

[
log
(
p(en,c|xn, tn,c,v(1))

)]
− log q(en,c)

Similar to the Factorial portion of the Joint SL-pHMM, we need an additional bound

to allow the expectations over
∏
c q(en,c) to decompose. This bound [38] is similar to the

174

bound used in the Factorial Model over softmax.

log σ (z) ≥ log σ (ζ) +
z − ζ

2
− τ (ζ)

(
z2 − ζ2) (C.38)

where we have de�ned τ (ζ)
def
= 1

4ζ tanh
(
ζ
2

)
.

F (q(en,c)) (C.39)

= F̃ (q(en,c)) (C.40)

≥ E∏
c′ q(en,c′)

[
log σ (ζn) +

1

2
yn

(
v

(2)
0 +

∑
c′′

en,c′′v
(2)

c′′

)
− 1

2
ζn

−τ (ζn)

((
yn

(
v

(2)
0 +

∑
c′′

en,c′′v
(2)

c′′

))2

− ζ2
n

)

+Eq(tn,c) [log (p(en,c|xn, tn,c, w))]− log q(en,c)

]

= Eq(en,c)

[
1

2
ynen,cv

(2)
c − τ (ζn)

v(2)
0 +

∑
c′ 6=c

ēn,c′v
(2)

c′

+ en,cv
(2)
c

2

−en,cEq(tn,c)

[
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

]
− log q(en,c)

]

= Eq(en,c)

[
1

2
ynen,cv

(2)
c − en,cτ (ζn)

2v(2)
c

v(2)
0 +

∑
c′ 6=c

ēn,c′v
(2)

c′

+
(
v(2)
c

)2

−en,cEq(tn,c)

[
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

]
− log q(en,c)

]

Applying Gibbs' inequality to F̃ (q(en,c)) above gives a maximum at

175

q(en,c) (C.41)

∝ exp

(
en,c

(
1

2
ynv

(2)
c − τ (ζn)

2v(2)
c

v(2)
0 +

∑
c′ 6=c

ēn,c′v
(2)

c′

+
(
v(2)
c

)2

−
Tn−K∑
tn,c=1

q(tn,c)

(
v

(1)
c,0 +

K∑
k=1

v
(1)
c,k,xn,tn,c+k

)))

C.3.2 Compute the maximum with respect to q(en,c) on the test set

When performing inference on examples from the test set, the label information, yn, is not

available. Marginalizing over the possible labels (i.e., summing over yn ∈ {−1, 1} for each n)

eliminates the top level of the SBN, which gives a di�erent objective with respect to q(en,c):

F (q(en,c)) = Eq(tc,n)
∏

c′ q(en,c′)

[
log

p(en,c|xn, tn,c,v(1))

q(en,c)

]
(C.42)

Applying Gibbs' inequality gives a maximum at

q(en,c) ∝ exp

−en,c Tn−K∑
tn,c=1

q(tn,c)

(
v

(1)
c,0 +

K∑
k=1

v
(1)
c,k,xn,tn,c+k

) (C.43)

C.3.3 Maximize with respect to v(1)

We maximize with respect to v(1) using L-BFGS. L-BFGS requires only the gradients of the

variational bound, which we derive separately with respect to both the weights associated

with each element of the subsequence, v>c , and the bias terms, v>c,0.

176

F(vc) (C.44)

=
∑
n

Eq(en,c)q(tn,c)

[
log p(en,c|xn, tn,c,v(1)

c)
]

= −
∑
n

ēn,cEq(tn,c)

[
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

]
−
∑
n

Eq(tn,c)

[
log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

))]

−λ
2

(
v(1)
c

)> (
v(1)
c

)

=
∑
n

Tn−K∑
tn,c=1

q(tn,c)

(
−ēn,c

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))

+
∑
n

Tn−K∑
tn,c=1

q(tn,c)

(
− log

(
1 + exp

(
−v(1)

c,0 −
∑
k

v
(1)
c,k,xn,tn,c+k

)))

−λ
2

(
v(1)
c

)> (
v(1)
c

)

Below, in Equation C.45, we compute the gradient of the SBN variational bound with

respect to v
(1)
c , the lower level weights excluding the bias term.

∂F(v
(1)
c)

∂v
(1)
c,k,m

= −
∑
n

Tn−K∑
tn,c=1

q(tn,c)ēn,cI
(
xn,tn,c+k = m

)
(C.45)

+
∑
n

Tn−K∑
tn,c=1

q(tn,c)

(
1− σ

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))

−λv(1)
c,k,m

Below, in Equation C.46, we compute the gradient of the SBN variational bound with

respect to v
(1)
c,0 , the bias term associated with the lower level weights.

177

∂F(v
(1)
c,0)

∂v
(1)
c,0

(C.46)

=
∑
n

Tn−K∑
tn,c=1

q(tn,c)

(
1− σ

(
v

(1)
c,0 +

∑
k

v
(1)
c,k,xn,tn,c+k

))−∑
n

ēn,c − λv(1)
c,0

C.3.4 Maximize with respect to v(2)

Given the quadratic variational bound on the logistic function, the optimization problem

with respect to v(2) becomes a linear least-squares problem. We have de�ned τ (ζ)
def
=

1
4ζ tanh

(
ζ
2

)
as above.

F̃(v(2)) =
∑
n

1

2
yn
(
v

(2)
0 + ē>n,1:Cv

(2)
1:C

)
(C.47)

−
∑
n

τ (ζn)E∏
c q(en,c)

[(
yn
(
v

(2)
0 + e>n,1:Cv

(2)
1:C

))2
]

−λ
2

(
v(2)

)> (
v(2)

)

=
∑
n

1

2
yn
(
v(2)

)> ēn,1:C

1

−
∑
n

τ (ζn)
(
v(2)

)>
Qn
(
v(2)

)
− λ

2

(
v(2)

)> (
v(2)

)
(C.48)

where we have de�nedQn
def
= E∏

c q(en,c)

en,1:C

1

en,1:C

1

>
 and v(2) =

v
(2)
1:C

v
(2)
0

.

We also note that the y2
n term in Equation C.47 always evaluates to 1 because yn ∈ {−1, 1}.

Given the quadratic bound, a closed form solution for v(2) can be derived using the �rst-order

optimality conditions:

178

∂F(v(2))

∂v(2)
=

∑
n

1

2
yn

 ēn,1:C

1

−∑
n

τ (ζn)Qnv
(2) − λvv(2)

v(2) =

(
λvI +

∑
n

τ (ζn)Qn

)−1
∑

n

1

2
yn

 ēn,1:C

1

 (C.49)

179

Bibliography

180

Bibliography

[1] H. Rangwala and G. Karypis, �Pro�le-based direct kernels for remote homology de-
tection and fold recognition,� Bioinformatics, vol. 21, no. 23, p. 4239, 2005.

[2] L. Rabiner and B. Juang, �An introduction to hidden markov models,� ASSP Maga-
zine, IEEE, vol. 3, no. 1, pp. 4�16, 1986.

[3] T. Jaakkola, M. Diekhans, and D. Haussler, �Using the �sher kernel method to detect
remote protein homologies,� in Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology, 1999, pp. 149�158.

[4] S. J. Blasiak and H. Rangwala, �A hidden markov model variant for sequence classi�ca-
tion,� in Proceedings of the twenty-second International Joint Conference on Arti�cial
Intelligence, 2011.

[5] S. J. Blasiak, H. Rangwala, and K. B. Laskey, �Beam methods for the pro�le hidden
markov model,� in SDM, 2012, pp. 331�342.

[6] ��, �Relevant subsequence detection with sparse dictionary learning,� in European
Conference on Machine Learning, 2013.

[7] S. Blasiak, H. Rangwala, and K. B. Laskey, �A family of feed-forward models for protein
sequence classi�cation,� in Machine Learning and Knowledge Discovery in Databases.
Springer, 2012, pp. 419�434.

[8] F. Jelinek, Statistical methods for speech recognition. the MIT Press, 1997.

[9] S. R. Eddy, �Pro�le hidden markov models.� Bioinformatics, vol. 14, no. 9, p. 755,
1998.

[10] A. Smola and B. Schölkopf, Learning with kernels. Citeseer, 1998.

[11] C. Leslie, E. Eskin, and W. Noble, �The spectrum kernel: a string kernel for svm
protein classi�cation.� in Paci�c symposium on biocomputing, vol. 575. Hawaii, USA.,
2002, pp. 564�575.

[12] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble, �Mismatch string kernels
for discriminative protein classi�cation,� Bioinformatics, vol. 20, no. 4, p. 467, 2004.

[13] P. Kuksa, P. Huang, and V. Pavlovic, �Fast protein homology and fold detection
with sparse spatial sample kernels,� in Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on. IEEE, 2008, pp. 1�4.

181

[14] H. Saigo, J. P. Vert, N. Ueda, and T. Akutsu, �Protein homology detection using string
alignment kernels,� Bioinformatics, vol. 20, no. 11, pp. 1682�1689, 2004.

[15] R. Durbin, Biological sequence analysis: probabilistic models of proteins and nucleic
acids. Cambridge Univ Pr, 1998.

[16] H. Rangwala and G. Karypis, �Pro�le-based direct kernels for remote homology de-
tection and fold recognition,� Bioinformatics, vol. 21, no. 23, p. 4239, 2005.

[17] R. Kuang, E. Ie, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie, �Pro�le-based string
kernels for remote homology detection and motif extraction,� in Computational Sys-
tems Bioinformatics Conference, 2004. CSB 2004. Proceedings. 2004 IEEE, 2004, pp.
152�160.

[18] J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elissee�, and W. Noble, �Semi-supervised
protein classi�cation using cluster kernels,� Bioinformatics, vol. 21, no. 15, pp. 3241�
3247, 2005.

[19] G. Ifrim and C. Wiuf, �Bounded coordinate-descent for biological sequence classi�ca-
tion in high dimensional predictor space,� in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2011, pp.
708�716.

[20] C. Ding and I. Dubchak, �Multi-class protein fold recognition using support vector
machines and neural networks,� Bioinformatics, vol. 17, no. 4, pp. 349�358, 2001.

[21] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler, �Hidden markov models
in computational biology: Applications to protein modeling,� Journal of molecular
biology, vol. 235, no. 5, pp. 1501�1531, 1994.

[22] S. Eddy et al., �A new generation of homology search tools based on probabilistic
inference,� in Genome Inform, vol. 23, no. 1, 2009, pp. 205�211.

[23] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana, �The ucr time series classi�ca-
tion/clustering homepage,� 2011.

[24] C. M. Bishop et al., Pattern recognition and machine learning. springer New York,
2006, vol. 1.

[25] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, �The elements of statisti-
cal learning: data mining, inference and prediction,� The Mathematical Intelligencer,
vol. 27, no. 2, pp. 83�85, 2005.

[26] H. Sakoe and S. Chiba, �Dynamic programming algorithm optimization for spoken
word recognition,� Acoustics, Speech and Signal Processing, IEEE Transactions on,
vol. 26, no. 1, pp. 43�49, 1978.

[27] E. Keogh, �Exact indexing of dynamic time warping,� in Proceedings of the 28th in-
ternational conference on Very Large Data Bases. VLDB Endowment, 2002, pp.
406�417.

182

[28] D. Lemire, �Faster retrieval with a two-pass dynamic-time-warping lower bound,� Pat-
tern recognition, vol. 42, no. 9, pp. 2169�2180, 2009.

[29] M. J. Wainwright and M. I. Jordan, �Graphical models, exponential families, and
variational inference,� Foundations and Trends R© in Machine Learning, vol. 1, no. 1-2,
pp. 1�305, 2008.

[30] M. Opper, Advanced mean �eld methods: Theory and practice. MIT press, 2001.

[31] M. Beal and U. of London, Variational algorithms for approximate Bayesian inference.
Citeseer, 2003.

[32] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, An introduction to
variational methods for graphical models. Springer, 1998.

[33] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge
university press, 2003.

[34] A. P. Dempster, N. M. Laird, and D. B. Rubin, �Maximum likelihood from incom-
plete data via the em algorithm,� Journal of the Royal Statistical Society. Series B
(Methodological), pp. 1�38, 1977.

[35] R. M. Neal and G. E. Hinton, �A view of the em algorithm that justi�es incremental,
sparse, and other variants,� in Learning in graphical models. Springer, 1998, pp.
355�368.

[36] J. Winn and C. M. Bishop, �Variational message passing,� Journal of Machine Learn-
ing Research, vol. 6, no. 1, p. 661, 2006.

[37] Y. W. Teh, D. Newman, and M. Welling, �A collapsed variational bayesian inference
algorithm for latent dirichlet allocation,� Advances in neural information processing
systems, vol. 19, p. 1353, 2007.

[38] T. S. Jaakkola and M. I. Jordan, �Bayesian parameter estimation via variational meth-
ods,� Statistics and Computing, vol. 10, no. 1, pp. 25�37, 2000.

[39] L. Bottou, �Online algorithms and stochastic approximations,� Online Learning and
Neural Networks, 1998. [Online]. Available: http://leon.bottou.org/papers/bottou-98x

[40] L. Bottou and O. Bousquet, �The tradeo�s of large-scale learning,� Optimization for
Machine Learning, p. 351, 2011.

[41] L. Bottou, �Large-scale machine learning with stochastic gradient descent,� in
Proceedings of the 19th International Conference on Computational Statistics
(COMPSTAT'2010), Y. Lechevallier and G. Saporta, Eds. Paris, France: Springer,
August 2010, pp. 177�187. [Online]. Available: http://leon.bottou.org/papers/bottou-
2010

[42] A. Murzin, S. Brenner, T. Hubbard, and C. Chothia, �SCOP: a structural classi�cation
of proteins database for the investigation of sequences and structures,� Journal of
molecular biology, vol. 247, no. 4, pp. 536�540, 1995.

183

[43] C. Leslie, E. Eskin, and W. S. Noble, �The spectrum kernel: A string kernel for svm
protein classi�cation,� Proceedings of the Paci�c Symposium on Biocomputing, pp.
564�575, 2002.

[44] L. Rabiner and B. Juang, �An introduction to hidden Markov models,� IEEE ASSp
Magazine, vol. 3, no. 1 Part 1, pp. 4�16, 1986.

[45] S. Eddy, �Pro�le hidden markov models,� Bioinformatics, vol. 14, no. 9, pp. 755�763,
1998.

[46] D. Blei, A. Ng, and M. Jordan, �Latent dirichlet allocation,� The Journal of Machine
Learning Research, vol. 3, pp. 993�1022, 2003.

[47] H. Rangwala and G. Karypis, �Building multiclass classi�ers for remote homology
detection and fold recognition.� BMC Bioinformatics, vol. 7, p. 455, 2006. [Online].
Available: http://dx.doi.org/10.1186/1471-2105-7-455

[48] P. Smyth, �Clustering sequences with hidden Markov models,� Advances in neural
information processing systems, pp. 648�654, 1997.

[49] T. Hofmann, �Probabilistic latent semantic indexing,� in Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development in informa-
tion retrieval. ACM, 1999, pp. 50�57.

[50] A. Gruber, M. Rosen-Zvi, and Y. Weiss, �Hidden topic Markov models,� Arti�cial
Intelligence and Statistics (AISTATS), 2007.

[51] J. Zhu and E. Xing, �Conditional Topic Random Fields,� in International Conference
on Machine Learning (To appear). Citeseer, 2010.

[52] S. Scott, �Bayesian methods for hidden Markov models: Recursive computing in the
21st century,� Journal of the American Statistical Association, vol. 97, no. 457, pp.
337�351, 2002.

[53] Z. Ghahramani and M. Jordan, �Factorial hidden Markov models,� Machine learning,
vol. 29, no. 2, pp. 245�273, 1997.

[54] Z. Ghahramani and G. Hinton, �Variational learning for switching state-space models,�
Neural Computation, vol. 12, no. 4, pp. 831�864, 2000.

[55] D. MacKay, �Ensemble learning for hidden Markov models,� 1997.

[56] T. Joachims, �SVMLight: Support Vector Machine,� SVM-Light Support Vector Ma-
chine http://svmlight. joachims. org/, University of Dortmund, 1999.

[57] K. Crammer and Y. Singer, �On the algorithmic implementation of multiclass kernel-
based vector machines,� The Journal of Machine Learning Research, vol. 2, pp. 265�
292, 2002.

[58] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie, �Pro�le-
based string kernels for remote homology detection and motif extraction,� Computa-
tional Systems Bioinformatics, pp. 152�160, 2004.

184

[59] S. Altschul, T. Madden, A. Schä�er, J. Zhang, Z. Zhang, W. Miller, and D. Lipman,
�Gapped blast and psi-blast: a new generation of protein database search programs,�
Nucleic acids research, vol. 25, no. 17, pp. 3389�3402, 1997.

[60] P. Moreno, P. Ho, and N. Vasconcelos, �A Kullback-Leibler divergence based kernel
for SVM classi�cation in multimedia applications,� Advances in Neural Information
Processing Systems, vol. 16, pp. 1385�1392, 2004.

[61] T. Jaakkola, M. Diekhans, and D. Haussler, �A discriminative framework for detecting
remote protein homologies,� Journal of Computational Biology, vol. 7, no. 1-2, pp. 95�
114, 2000.

[62] C. Leslie, E. Eskin, W. S. Noble, and J. Weston, �Mismatch string kernels for svm
protein classi�cation,� Advances in Neural Information Processing Systems, vol. 20,
no. 4, pp. 467�476, 2003.

[63] S. R. Eddy, �Multiple alignment using hidden markov models,� in Proceedings of the
Third International Conference on Intelligent Systems for Molecular Biology, vol. 3,
1995, pp. 114�120.

[64] C. Pal, C. Sutton, and A. McCallum, �Sparse forward-backward using minimum diver-
gence beams for fast training of conditional random �elds,� in Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Confer-
ence on, vol. 5, 2006, pp. V�V.

[65] J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani, �Beam sampling for the
in�nite hidden markov model,� in Proceedings of the 25th international conference on
Machine learning, 2008, pp. 1088�1095.

[66] D. J. MacKay, Ensemble learning for hidden Markov models. Technical report,
Cavendish Laboratory, University of Cambridge, 1997.

[67] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, �The in�nite hidden markov model,�
Advances in Neural Information Processing Systems, vol. 1, pp. 577�584, 2002.

[68] J. Paisley and L. Carin, �Hidden markov models with stick-breaking priors,� Signal
Processing, IEEE Transactions on, vol. 57, no. 10, pp. 3905�3917, 2009.

[69] T. S. Ferguson, �A bayesian analysis of some nonparametric problems,� The annals of
statistics, vol. 1, no. 2, pp. 209�230, 1973.

[70] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, �Hierarchical dirichlet processes,�
Journal of the American Statistical Association, vol. 101, no. 476, pp. 1566�1581, 2006.

[71] J. Sethuraman, �A constructive de�nition of dirichlet priors,� FLORIDA STATE UNIV
TALLAHASSEE DEPT OF STATISTICS, Tech. Rep., 1991.

[72] B. A. Frigyik, A. Kapila, and M. R. Gupta, �Introduction to the dirichlet distribution
and related processes,� Tech. Rep. 206, 2010.

[73] H. Ishwaran and L. F. James, �Gibbs sampling methods for stick-breaking priors,�
Journal of the American Statistical Association, vol. 96, no. 453, pp. 161�173, 2001.

185

[74] M. J. Beal and M. MA, �Variational algorithms for approximate bayesian inference,�
Unpublished doctoral dissertation, University College London, 2003.

[75] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, �SCOP: a structural
classi�cation of proteins database for the investigation of sequences and structures,�
Journal of molecular biology, vol. 247, no. 4, pp. 536�540, 1995.

[76] R. C. Edgar, �MUSCLE: multiple sequence alignment with high accuracy and high
throughput,� Nucleic acids research, vol. 32, no. 5, p. 1792, 2004.

[77] R. M. Neal, �Connectionist learning of belief networks,� Arti�cial intelligence, vol. 56,
no. 1, pp. 71�113, 1992.

[78] L. K. Saul, T. Jaakkola, and M. I. Jordan, �Mean �eld theory for sigmoid belief
networks,� arXiv preprint cs/9603102, 1996.

[79] C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.

[80] D. C. Liu and J. Nocedal, �On the limited memory bfgs method for large scale opti-
mization,� Mathematical programming, vol. 45, no. 1-3, pp. 503�528, 1989.

[81] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, �Discriminative learned
dictionaries for local image analysis,� in Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1�8.

[82] J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce, �Discriminative sparse
image models for class-speci�c edge detection and image interpretation,� in Proceedings
of the European Conference on Computer Vision (ECCV), 2008.

[83] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, �Online learning for matrix factorization
and sparse coding,� The Journal of Machine Learning Research, vol. 11, pp. 19�60,
2010.

[84] J. Yang, K. Yu, Y. Gong, and T. Huang, �Linear spatial pyramid matching using
sparse coding for image classi�cation,� in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1794�1801.

[85] H. Lee, A. Battle, R. Raina, and A. Y. Ng, �E�cient sparse coding algorithms,�
Advances in neural information processing systems, vol. 19, p. 801, 2007.

[86] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, �Learning mid-level features for recog-
nition,� in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on. IEEE, 2010, pp. 2559�2566.

[87] M. Aharon, M. Elad, and A. Bruckstein, �K-svd: Design of dictionaries for sparse
representation,� Signal Processing, IEEE Transactions on, vol. 54, no. 11, pp. 4311�
4322, 2006.

[88] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, �Least angle regression,� The
Annals of statistics, vol. 32, no. 2, pp. 407�499, 2004.

186

[89] J. Friedman, T. Hastie, H. Hö�ing, and R. Tibshirani, �Pathwise coordinate optimiza-
tion,� The Annals of Applied Statistics, vol. 1, no. 2, pp. 302�332, 2007.

[90] A. Beck and M. Teboulle, �A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,� SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183�202,
2009.

[91] B. Mailhé, S. Lesage, R. Gribonval, F. Bimbot, P. Vandergheynst et al., �Shift-invariant
dictionary learning for sparse representations: extending k-svd,� in 16th EUropean
SIgnal Processing COnference (EUSIPCO'08), 2008.

[92] T. L. Bailey and C. Elkan, �Fitting a mixture model by expectation maximization to
discover motifs in biopolymers,� vectors, vol. 1, p. 2.

[93] J. Buhler and M. Tompa, �Finding motifs using random projections,� Journal of com-
putational biology, vol. 9, no. 2, pp. 225�242, 2002.

[94] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, �Natu-
ral language processing (almost) from scratch,� Arxiv preprint arXiv:1103.0398, 2011.

[95] T. G. Dietterich, �Approximate statistical tests for comparing supervised classi�cation
learning algorithms,� Neural computation, vol. 10, no. 7, pp. 1895�1923, 1998.

[96] L. Liao and W. Noble, �Combining pairwise sequence similarity and support vector ma-
chines for detecting remote protein evolutionary and structural relationships,� Journal
of computational biology, vol. 10, no. 6, pp. 857�868, 2003.

[97] S. Blasiak and H. Rangwala, �A hidden markov model variant for sequence classi�ca-
tion,� in International Joint Conference on Arti�cial Intelligence, 2011.

[98] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner, �Gradient-based learning applied to
document recognition,� Proceedings of the IEEE, vol. 86, no. 11, pp. 2278�2324, 1998.

[99] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, �Phoneme recognition
using time-delay neural networks,� Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 37, no. 3, pp. 328�339, 1989.

[100] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis. Cam-
bridge university press Cambridge, UK:, 2002.

[101] B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K. Müller, G. Rätsch, and A. Smola,
�Input space versus feature space in kernel-based methods,� IEEE transactions on
neural networks, vol. 10, no. 5, pp. 1000�1017, 1999.

[102] D. Rumelhart, G. Hintont, and R. Williams, �Learning representations by back-
propagating errors,� Nature, vol. 323, no. 6088, pp. 533�536, 1986.

[103] J. Qiu, M. Hue, A. Ben-Hur, J. Vert, and W. Noble, �A structural alignment kernel
for protein structures,� Bioinformatics, vol. 23, no. 9, pp. 1090�1098, 2007.

187

[104] N. M. Daniels, R. Hosur, B. Berger, and L. J. Cowen, �Smur�ite: combining simpli�ed
markov random �elds with simulated evolution improves remote homology detection
for beta-structural proteins into the twilight zone,� Bioinformatics, vol. 28, no. 9, pp.
1216�1222, 2012.

[105] Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishnan, �Protein fold recognition us-
ing segmentation conditional random �elds (scrfs),� Journal of Computational Biology,
vol. 13, no. 2, pp. 394�406, 2006.

[106] G. Bouchard, �E�cient bounds for the softmax function, applications to inference in
hybrid models,� 2007.

188

Curriculum Vitae

Sam Blasiak earned a B.A. in English Literature from Colorado College in 2004 and an
M.A. in Computer Science from Brandeis University in 2006. Before and after these studies,
Sam was a paratrooper in the U.S. Army's 82nd Airborne Division and was deployed with
the North Dakota National Guard in Afghanistan. Following his deployment, in the Fall of
2009, Sam joined George Mason University's Computer Science PhD program.

189

