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Abstract

ROBUST AND REUSABLE METHODS FOR SHEPHERDING AND VISIBILITY-BASED PUR-
SUIT

Christopher Vo, PhD

George Mason University, 2014

Dissertation Director: Dr. Jyh-Ming Lien

Algorithms for the control and monitoring of swarms of moving agents are important

in a wide variety of real and virtual applications such as crowd control, livestock herding,

and decentralized robot control architecture. In the presence of obstacles, these applications

can be quite difficult, especially with large swarms. This thesis presents reusable and robust

motion planning algorithms for the swarm control problem of shepherding, a task involving

using a small set of mobile robots interact with a larger set of swarm agents; and the swarm

monitoring problem of visibility-based pursuit, a task involving using a mobile robot to follow

and maintain visibility of a moving swarm. For both problems, we developed algorithms to

efficiently sample reusable geometric information in the environment to enable fast online

planning and replanning. For the shepherding problem, we discuss several representations

and abstractions for flocks to improve scalability and robustness to uncertainty. For the

visibility-based pursuit problem, we discuss several methods for space decomposition that

enable fast online planning to achieve visibility objectives. We validate our results with

multi-agent simulation software to understand the tradeoffs between different techniques

for these problems.



Chapter 1: Introduction

Swarms exist in many fascinating forms. In nature, swarms refer to clusters of moving,

interacting organisms. Emergent collective movement behaviors arise from the simple inter-

actions between agents in a swarm. In some cases, swarm behaviors can improve the success

of an organism in foraging for food or finding mates, or enhancing their defenses against

predators (as in the “selfish herd” theory by Hamilton [68,87]). Many birds fly collectively

in formation to improve aerodynamic efficiency [105]. Ants and termites lay chemical trails

or pheromones in their environment as they forage for food or build nests—a process of

indirect communication called stigmergy [65]. As humans, we also exhibit swarm-like be-

havior, as we tend to align in heading and walk behind our nearest neighbors [128]. Swarm

behaviors have caught the attention of roboticists because of their decentralized, robust, and

self-organizing properties.

The control and monitoring of swarms is important in a multitude of applications and

real life scenarios. For example, there has been much interest in how to use automated or

virtual barriers and fences to manage free-ranging animals such as cattle [3, 26, 132]; or

dynamically control the moment or placement of barriers, signs, or audio beacons to provide

subtle control of a large group of people [74,75], such as in a disaster response scenario [20].

A Penn State report in 2001 [85] highlighted the lack of research into effective strategies for

crowd control and the catastrophic consequences that may result from flawed strategies. To

harness the power of swarms in robotics, we need efficient motion planning algorithms for

controlling and monitoring swarms of robotic agents. This thesis is about how to do that in

a scalable and robust manner.

Motion planning is a fundamental area of robotics that involves using a robot’s knowl-

edge of its environment to make decisions about how it should move next through the
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domain of its possible configurations, or configuration space. The literature in robotic motion

planning is vast and impressive, with algorithms addressing a broad range of problems and

scenarios. Unfortunately, traditional motion planning algorithms perform poorly and scale

poorly in controlling and monitoring large swarms of interacting agents, especially due to

the high dimensionality and complexity of the configuration space. In this thesis, I will show

how we used geometric processing and space decomposition techniques to improve the

performance of motion planning for two relevant swarm problems: shepherding for swarm

control, and visibility-based pursuit for swarm monitoring.

1.1 Shepherding

The first motion planning problem we will examine in depth in this dissertation is shepherd-

ing. The shepherding task requires planning the motion for one or more moving shepherd

agents to interact with a potentially large flock of the sheep agents and influence their move-

ment. Here, a simple principle guides the interaction between each agent: shepherd agents

influence the movement of the flock by moving close to it, which creates tension. The sheep

react by moving away from the tension. Our goal is to come up with a sequence of move-

ments for a small number of shepherds to keep the large flock of sheep intact, and also move

it successfully from pasture to pasture.

There are a multitude of applications for shepherding, such as security (e.g., simulation

of disaster scenarios and responses [20,74,136]); civil crowd control (e.g., planning evac-

uation routes for sporting or spectator events [75]); pollution control (e.g., collecting oil

spills [52]); agriculture (e.g., sheep herding [132]); transportation safety (e.g., preventing

bird strikes [53]); education and training (e.g., providing immersive museum exhibits and

training systems); and entertainment (e.g., interactive games). The heterogeneous archi-

tecture of shepherding also enables a scalable architecture for controlling large swarms

of robots [147]. For example, instead of a planning architecture where a central planner

must monitor, coordinate, and command a large number of individual robots, we can use a
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distributed architecture based on shepherding. In this distributed architecture, each agent

in the swarm is equipped with simple shepherding behaviors, reducing the motion control

problem to controlling a much smaller set of shepherd agents.

How do we plan the motion for such robotic shepherds? Assuming an obstacle free en-

vironment, and that we know that the flock follows a basic potential field model, it can be

rather simple. In 2000, Vaughan et al. were successful in developing a “robotic sheepdog”

and control algorithm that could move live ducks from an initial configuration to a given

goal area [151]. However, these methods are not sufficient when the environment contains

obstacles. While many current manipulation planning methods make use of approximate

models of the geometry and dynamics of the world, their accuracy is unknown—that is,

subject to modeling uncertainty. The movement of the robot and objects it manipulates is

imperfect, introducing action uncertainty. This can also lead to uncertainty in the configura-

tion of the objects relative to the robot, or object pose uncertainty. Some planning methods

use information gathered from a sensor to decide what to do about unexpected situations

during execution of a movement, but even this information is susceptible to sensor uncer-

tainty. Sensors mounted onto robots such as cameras and laser rangefinders must deal with

the problems of limited range and occlusion.

There are other useful variants of the shepherding problem, such as escort or protec-

tion [163]. In the escorting problem, the task of an agent in a “parent” role is to maintain

or maximize a separation between its “children” agents and some “stranger” agents. In such

a problem, it is necessary for the parent to react quickly to a possibly adversarial agent. In

Chapter 5, I will discuss other possible variants such as manipulation of a rigid object.

1.2 Visibility-Based Pursuit

The second problem this dissertation will address in depth is visibility-based pursuit. The

objective of visibility-based pursuit is to plan motions for a “supervisor” agent to follow

and maintain visibility of a coherent flock of constantly-moving “target” agents that have
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unknown trajectories. In this problem, it is necessary for the supervisor agent to predict

occlusion risks and plan quickly to cover them so that it can maintain visibility of as many

target agents as possible.

Our initial goal was to develop a way to monitor swarms of collaborating robots, but

we found that visibility-based pursuit is useful in many real and virtual world applications.

For example, several works have explored the use of autonomous unmanned aerial vehicles

(UAVs) with camera sensors to follow and monitor endangered species populations in poach-

ing prevention efforts [117]. In computer gaming, visibility-based pursuit can be used to plan

motions for the player’s camera to follow an army of virtual characters in an obstacle-filled

battlefield. In crowd control, visibility-based pursuit could be used by automated surveil-

lance cameras to track a crowd of protesters as they march through an urban environment.

In robotics, visibility-based pursuit algorithms could enable an automated camera attached

to robotic manipulators to observe live performers in a concert, monitor assembly of a me-

chanical system, or maintain task visibility during teleoperated surgical procedures. For an

overview of the broad applications and studies on the topic of visibility-based pursuit, see

the survey by Christie et al. [37].

Figure 1.1: An illustration of visibility-based pursuit in a city-like environment.
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Building a camera to pursue moving targets can be viewed as an online motion planning

problem in which the camera must be able to predict the motion of the targets, and proac-

tively move to ensure visibility of those targets in the future. In Chapter 4 of this dissertation,

I will discuss the methods we developed to address this problem.

1.3 Methodology and Contributions

The main thread of this dissertation is the use of geometric methods to extract information

from the environment and express it in such a way that helps us improve the robustness

and effectiveness of shepherding and tracking among obstacles. In particular, I studied the

shepherding and visibility-based pursuit problems. I used a simulator and ran numerous

experiments to test design ideas. This thesis offers an analysis of these design choices and

methodologies for the control and monitoring of swarms of agents.

For the shepherding problem, I developed motion planning methods for the shepherd

robots that compute and reuse geometric information about the workspace to improve the

efficiency of planning, replanning, and processing similar environments; and are more robust

than current methods to uncertainties in the environment model, the localization of the flock,

and their movements. While this research focused narrowly on the shepherding problem,

an examination of these design decisions paved the way towards a better understanding

of how to deal with uncertainty in other real-world manipulation contexts, and provided

insight about how to develop efficient, reusable methods for robotic motion planning.

For the visibility-based pursuit problem, it is important for the robot to be able to quickly

identify areas of the free space that represent occlusion risks so that the supervisory agent

can quickly react to cover those risks. Therefore, in visibility-based pursuit I also applied a

similar methodology as in shepherding: I compute reusable information about the environ-

ment model and partition the free space in a form that is less sensitive to small discontinu-

ities or noise than previous space partitioning methods, creating a roadmap that accurately

represents the visibility relationships between different areas of the space. Through this
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method, it was possible to classify areas of the space that share similar visibility characteris-

tics and determine a space decomposition and topology that is more coherent and robust for

making decisions involving visibility than previous approaches. Since we are interested in

approaches that improve the success rate, or the number of times the planner was success-

ful in in generating a collision-free path, I evaluated the performance of the planner over

repeated queries on the same or similar environments.

1.4 Organization

In Chapter 2, I provide a survey of the current literature related to shepherding and visibility-

based pursuit as background material to understand the context, applicability, and founda-

tions for the rest of the dissertation. Chapter 3 discusses the shepherding problem in depth

and the strategies that we used in this research to create efficient algorithms for shepherd-

ing, from a simple PRM and RRT based planner to the use of geometric shapes to shepherd

swarms of agents as an aggregate. Chapter 4 discusses the visibility-based pursuit problem

in depth and the various strategies used in the pursuit problem. The final chapter synthesizes

my contribution to the community of swarm motion planning and provides several examples

of how the lessons learned in my analysis may be applied to many other areas and future

avenues of research.
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Chapter 2: Background

This chapter provides basic background material to give the reader context for understanding

the analysis discussed later. By the end of this chapter, the reader should have a broader

conception of the field of swarm motion planning, shepherding, and visibility-based pursuit,

and the work that has been done to understand those fields. The next chapter will describe

the specifics of the framework upon which I have centered my analysis and experiments in

shepherding and visibility-based pursuit.

2.1 Overview of Related Motion Planning Problems

The literature in motion planning is vast, covering a broad range of problems and scenarios.

At the highest level, motion planning problems involve modeling the environment and the

robots or moving objects within it, and then using this model to compute a sequence of

admissible motions for the moving objects to reach a goal state. In this section, we will

discuss the basic motion planning algorithms that form the basis for the analysis in Chapter

3 and Chapter 4, and relevant extensions that have been studied for achieving robustness,

dealing with uncertainty, and manipulating objects.

2.1.1 Probabilistic Motion Planning

Probabilistic motion planning algorithms and data structures such as Rapidly Exploring Ran-

dom Trees (RRTs) [98], Expansive-Spaces Trees (ESTs) [73], and Probabilistic Roadmaps

(PRMs) [84] have proven to be elegant and powerful ways to find paths in high-dimensional

configuration spaces. The general idea of these approaches is to create a topological repre-

sentation of the connectivity of the free space. In the case of RRT and EST, this representation
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takes the form of a tree-like data structure. These methods construct a tree with its root

representing the initial configuration of the moving objects. The tree is expanded iteratively

until a path is found. In the case of PRM, this representation takes the form of a graph, where

any two configurations are connected if there is a feasible path between those configurations.

Practitioners have extended these baseline probabilistic motion planning algorithms to cover

a wide variety of complex scenarios including robots with various kinematic, dynamic, or

non-holonomic constraints [91]; manipulation planning [110,144]; and multi-agent plan-

ning [82,83,111]. Later in this dissertation, we will show how we extend these basic RRT,

EST, and PRM motion planning algorithms to perform shepherding of swarms of robots in a

robust and scalable manner.

2.1.2 Achieving Robustness in Motion Planning

One of the focuses of this dissertation work is to improve the robustness of motion planning

for swarms. There exist many techniques for developing more robust plans in traditional

motion planning. A common approach for dealing with uncertainty is to reduce the planning

horizon so that it is possible to perform replanning quickly during execution of a plan. Along

the same lines, some researchers have focused on implicitly dealing with uncertainty of

future states through using a concept known as feedback motion planning [96,164]. Unlike

traditional motion planners, which typically generate a path and execute it in an open-loop

fashion, feedback planners use information about the state space to generate a navigation

function that maps every state of the system to an action. These mappings often resemble

vector fields, compositions of funnels, or gradient maps. To execute a task, the robot must

repeatedly estimate the state of the system, and execute the action that the navigation

function prescribes for that state. By covering all possible states, feedback planners implicitly

offer a recovery plan for unexpected situations that may arise in the motion of the robot.

Another popular approach to handling uncertainty in motion planning is to model the

problems as Partially Observable Markov Decision Processes (POMDPs). POMDPs model the

problem as one of an agent moving through a state space by taking actions. The uncertainty
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of the end state of actions, and the uncertainty of observation are explicitly modeled using

conditional probability functions. At each step, the agent receives a reward. The solution

of these POMDPs is an optimal policy that maximizes the expected total reward. Due to

the “curse of dimensionality” and the general difficulty in representing such probability

distributions, POMDPs are notoriously difficult to solve exactly. However, over the years,

many approximation algorithms [70] and point-based algorithms such as HSVI2 [137] and

SARSOP [93] have been shown to handle up to 100,000 states in reasonable time [92].

Another general approach to handle uncertainty is to use a hybrid (or “hierarchical”)

motion planning approach, such as in [34,80]. This approach is similar to three-layer archi-

tectures [130], where control is separated into layers, each with a different level of precision

and planning horizon. For example, it is typical to construct a planner that uses local re-

active control to handle immediate geometric constraints, and a global symbolic planner

that handles high-level task specifications. One class of methods that uses this technique is

temporal logic motion planning [49]. In this technique, the planner obtains a discrete, topo-

logical abstraction using a projection—for example, through a cell decomposition method.

The planner then computes a high-level plan in this discrete space using automata theory,

and implements each step of the plan in the continuous space using local feedback control.

The hierarchy of using a high-level planner with low-level controls allows such a planner to

handle complicated high-level temporal logic constraints while also providing more robust

local feedback control for the robot to move safely between space partitions.

Parker et al. [51, 71] handled this issue by adopting a heterogeneous approach i.e., by

partitioning different roles to three distinct classes of robots. A similar heterogeneous robot

architecture is also seen in in several other works. For example, Chaimowicz and Kumar [27]

developed a system called “Aerial Shepherds” which employs a small number of unmanned

aerial vehicles (UAVs) to escort groups of unmanned ground vehicles (UGVs). In Chaimowicz

and Kumar’s work, the “shepherds” do not interact with the ground vehicles through motion;

instead “shepherding” simply refers to the relationship between UAVs and UGVs within this

command and control architecture.
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2.1.3 Dealing with Uncertainty in Motion Planning

Recently, probabilistic reasoning has been introduced for sensor-based grasping, such as

the use of particle filters to estimate the changing probability distributions of the pose of

the object and find reliable grasps [94]. In related work, Feiten et al. in [50] presented

how to use a convex combination of Projected Gaussians in lieu of multivariate Gaussian

distributions to represent the probability density function (pdf) of a 6D pose consisting of a

3D translation component and an orientation. Such a representation permits more efficient

calculation of compositions of rigid motions from the pdfs of individual rigid motions.

Some planning methods handle uncertainty by explicitly modeling or taking advantage

of a priori knowledge of the sensors and controller that will be used to execute the task. This

kind of modeling typically allows the planner to measure the quality of a path, and select a

path from a set of candidate paths with respect to that measure. For example, in [148,149]

Jur van den Berg, Pieter Abbeel, and Ken Goldberg presented an approach for assessing the

quality of a path by assuming a linear-quadratic controller and Gaussian models of motion

planning and sensing uncertainty (LQG-MP). This can be used to determine the probability

that collisions will be avoided, or the probability that the robot will arrive at the goal.

Another relevant representation for uncertainty in motion planning is the use of uncer-

tainty roadmaps, which are graph data structures for capturing the probability of successfully

transitioning from one valid configuration (or set of configurations) to another. With this in-

formation stored in a roadmap, it is possible to query paths that balance cost and uncertainty

using discrete path finding algorithms such as A* [25].

2.1.4 Manipulation Planning

We can also view the control of groups of agents as a robotic manipulation problem. For

example, manipulation planning researchers have attempted to use multiple robots to co-

operatively manipulate or move passive objects, such as pushing a disc [150], a box [162],

or kicking a ball [139]. A passive object moves only if external force is applied to it. On the

10



other hand, swarm control sometimes attempts to manipulate the motion of active objects

which may have some ability to move on their own. This combined with the amorphous na-

ture of a swarm generally makes active objects more difficult to control. So far, few methods

have focused on the idea of manipulating multiple active objects using multiple robots.

In general, the difficulty in estimating the configuration of the system in manipulation

planning has led some researchers towards methods that attempt to greatly restrict the way

the robot interacts with the obstacles. For example, to reduce the burden of estimating an

object’s state to move it, some algorithms require a robot system to grasp an object before

moving it. Planning grasps is a difficult problem in itself, and there are some works that

have considered manipulation via grasping. For example, Lozano-Pérez, Mason, and Taylor

have developed the preimage planning framework for performing manipulation planning

under uncertainty [47,106]. A preimage is defined as a region in space such that if the robot

executes a motion within that region, it is always guaranteed to reach a given goal region

regardless of any source of uncertainty. This leads to the approach of preimage backchaining,

where the planner begins by finding preimages of the goal, then preimages of those preim-

ages, and so on recursively, until the initial region is covered. There are also other variations

of the grasping problem. For example, Platt et al. considered the problem of Simultaneous

Localization and Grasping, where the robot must attempt to estimate the position of the

object while a grasp is occurring [124].

While grasping is a popular way to manipulate objects, it is also very restrictive, and

in fact may not be possible for particularly heavy or unwieldy objects. There are other

natural ways to manipulate objects, such as by pushing, shaking, sliding, or throwing them.

Therefore, it is also of interest to consider nonprehensile manipulation, or manipulation

without grasping. Recently, Dogar and Srinivasa introduced a framework for planning in

clutter using a library of actions derived analytically from the mechanics of pushing [42].

A frequently cited planner for pushing manipulation is the work of Akella and Mason [1],

who consider pushing a polygon using a flat edge (called the “fence”). To do so, they derive

a Push Stability Diagram (PSD) for the polygon to be manipulated. This table describes
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the stable edges of the polygon and the maximum angle that a fence can use for each

edge to stably reorient it. There have also been works focused on estimation of state via

manipulation despite the lack of reliable sensor information. For example, Erdmann and

Mason have explored sensorless manipulation [48], where by dropping an object into a

tray and performing a sequence of tilting operations, the number of possible orientations is

reduced; sometimes leaving the orientation of the object completely determined. Similarly,

Goldberg and Mason [58–60] have explored manipulation of objects by squeezing. That is,

because of the way that the object complies to the squeezing operations, it may be possible

to design a sequence of squeezing operations that leads to a known orientation of the

object. Another relevant example is the work of Nieuwenhuisen et al. [41] who consider

the problem of pushing a disc through an obstacle-filled environment while making use of

compliance—that is, allowing the object to slide along the boundaries of the environment.

2.2 Shepherding

2.2.1 Multi-Agent Simulation and Modeling

We are interested in controlling large groups of active agents by providing external stimuli.

Several works exist along the vein of understanding the emergent behavior of simulated

crowds when significant changes are made to the environment, such as adding movement

barriers or additional agents. For example, the effect of adding barriers into disaster scenario

environments was studied in [20]. Schubert and Suzić [131] used a genetic algorithm with

agent simulation to determine optimal barrier deployments for controlling rioting crowds.

Other works have modeled the effect of adding agents with attractive or repulsive social

forces [88] and agents with different roles (such as the presence of “leader” agents [6]). Yeh

et al. experimented with composite agents [163] which can exhibit different behaviors such

as “guidance”, using proxy agents as temporary obstacles.

There have been several experiments to understand how to control living organisms

using robotic agents. For example, Halloy et al. [66] showed that robotic agents can influence

12



the collective behavior of a group of cockroaches through local interactions. Ogawa et

al. [116] demonstrated the ability to track and manipulate Paramecium caudatum cells in

a chamber using an electrical field. Some experiments have involved herding cows using

“smart collars” which act as virtual fences [3,26]. When a cow approaches a virtual fence,

the collar produces a noise which influences the cow’s movement away from the fence. In

the study of telerobotic systems, Wilson and Neal [161] performed a case study where with

varying degrees of autonomy, a human carries out the task of controlling a robotic sheepdog

to direct robotic sheep. The results of the study imply that there is a diminishing return in

the reduction of human effort to control the sheep in relation to a given investment in the

engineering effort to produce more autonomous control. A biological study in the modeling

of shepherding behavior and the movement trajectories of a live Austrian sheepdog and

merino sheep by King et al. [87] illuminated a few properties of herding sheep. For example,

their observations found that sheep exhibit a strong attraction towards the center of the

flock under threat, an example of the “selfish herd” theory by Hamilton [68].

Several works in robotics and computer animation are related to modeling behaviors

such as shepherding. For example, Schultz et al. [133] applied a genetic algorithm to learn

rules for a shepherd robot. Its objective was to control the movement of other robots (sheep)

that react by moving away from the shepherd. Vaughan et al. [151] simulated and con-

structed a robot that shepherds a flock of live geese in a circular, obstacle-free environment.

In computer animation, Funge et al. [55] simulated a shepherding behavior in which a Tyran-

nosaurus rex chases raptors out of its territory. Potter et al. [125] studied a herding behavior

using three shepherds and a single sheep in a simple environment. Many other models have

been considered, such as cellular automata [18], behavior-based modeling [21,55,126,146]

and flow-dynamics-based simulation [33,74,141,145]. Most recently, Strömbom et al. [140]

developed an algorithm for shepherding based on real data collected from sheep-dog inter-

actions. While some of these approaches have swarm control in mind, most of the existing

simulations [90,122,159] have only considered simple scenarios, and none of the aforemen-

tioned methods have shown the ability to guide flocks through environments with obstacles.
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Scalable group simulation is an important application of computer graphics, particularly

in simulating crowds and pedestrians [5, 18,108,129]. A critical requirement of a natural

looking simulation is to populate the environment with large sets of interacting agents.

This requirement raises several scalability issues in behavior computation, trajectory control,

rendering, and authoring. Several methods have been proposed to deal with the computa-

tional scalability issues using topological data structures [95], hierarchical structures [135],

k-d trees, quad-trees [138], and the concept of “region of interest” [111]. Computational

scalability can also be tackled using top-down approaches based on the observation that

the dynamics of a crowd share many common properties with flow dynamics. Rather than

simulating individual agents, the flow of a crowd is computed [33,74,141,145].

Multi-robot systems may also move in formation [7] to accomplish a given task. For

example, Lien et al. [102] observed that formations can be used effectively to control the

motion of a flock of agents. Similar observations have also been found in sociological studies

of crowd control where similar formations are used by police and military personnel to dis-

perse, contain, or block crowds and prevent riots [4]. More recently, Shell and Matarić [136]

have used multiple robots to deploy and assist with the evacuation of pedestrians.

In many existing approaches to shepherding, a bounding circle is used to model the

flock. This is sufficient for relatively sparse workspaces, but is excessively restrictive in

environments with many obstacles or narrow corridors, or when the flock size is large. On

the other hand, some researchers have looked at how to use deformable shapes. Notably,

Kamphuis and Overmars [82,83] have considered the problem of finding paths for coherent

groups. They used a hinged-box to represent a group of agents navigating through an

obstacle-filled environment.

The general problem of planning the motion for one or more robots in dynamic environ-

ments is also relevant to our study. There are many previous approaches in this area which

vary from speed optimizations in RRT, to algorithms that update roadmap data in real-time,

to gradient descent methods [28]. For example, Bruce and Veloso [23] developed a planning

algorithm called ERRT which uses optimizations such as a waypoint cache and an adaptive
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bias schedule to increase the performance of RRT so that it can be used in real-time naviga-

tion. Sud et al. [143] use an adaptive roadmap that continuously updates in real-time to

plan motions for multiple agents in a dynamic environment. Fulgenzi et al. [54] developed

a navigation algorithm based on RRT which incorporates an estimation of the likelihood of

obstacle trajectory, and probability of collision. These estimates are updated in real-time

to handle dynamic obstacles. It is important to note that most work in multi-agent motion

planning is focused on direct control of a group of agents, whereas we are interested in

control via agent-agent interactions.

2.2.2 Cooperative Multi-Agent Systems

Swarm control is also a problem that involves multi-agent cooperation. A survey from

Parker [119] provides an overview of multi-robot systems. From the perspective of multi

robot systems, the task of group control requires inherent cooperation, in which the success of

a robot in the team depends on the actions of the other robots. Inherent tasks (such as swarm

control) are distinguished from non-inherent tasks (such as covering) in that they cannot

easily be decomposed into independent sub-tasks and thus are generally more difficult.

In Hrolenok et al. [72], we looked at the foraging problem, a collaborative multi-agent

problem wherein the goal is for a set of robots to collaboratively find food in one location

and deliver it to another location. The approach we used mimics the stigmergic use of

pheromone trails by ants, but with a twist: the stigmergic information is stored in a sparse set

of beacons distributed through the space, rather than storing the pheromones continuously in

the environment or on a dense grid. These beacons can be placed by robots, moved around

freely, and their value can be updated by the robots continuously. An illustration of the

approach appears in Figure 2.1. The approach is stigmergic, meaning that the agents store

information in the environment and act only locally. This feature allows the approach to be

fully distributed, and also allows for quick response to dynamic changes in the environment

despite using only local information. While the model we used explicitly placed physical

beacons in the environment, these desirable properties also lent themselves to methods
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(a) (b) (c)

Figure 2.1: An example of collaborative foraging with beacons. Figure 2.1(a) shows the
problem, with the home position (square) and the food source (diamond). Figure 2.1(b)
shows the environment after a few iterations, with beacons emitting pheromones pointing
towards home (green half-circles) and emitting pheromones towards the food (blue half-
circles). An initial path is found. Figure 2.1(c) shows the environment after the path and
beacon placement has been optimized through collaborative foraging.

involving virtual trails of beacons. In the future, we believe that the advantages of this

approach could improve the work in this dissertation. Using similar update rules, it may be

possible to possible to continuously optimize paths and roadmaps, and account for dynamic

obstacles by relocating and updating simple stigmergic information.

Swarm control is also related to competitive activities such as pursuit and evasion be-

haviors, and sports such as soccer. A simplified version of the pursuit and evasion problem

that considers only one pursuer and one evader has been studied for decades using methods

such as game theory [77], co-evolutionary algorithms [127], and neural networks [38] (see

survey in [109] for details).

2.3 Visibility-Based Pursuit

2.3.1 Pursuing Targets with Known Trajectory

There are methods for pursuing a target with a known trajectory, such as work done by

LaValle et al. [97] using dynamic programming, and by Goemans and Overmars [57] using
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probabilistic motion planning. LaValle et al. [97] used dynamic programming to find optimal

camera trajectories that maintain the visibility of a target whose trajectory is known. They

use a regular grid for each target location and identify all cells in the grid where the target

is visible. While their method can consider different objective functions and constraints

easily (e.g., shortest path, view range, target speed), it is slow and not scalable especially in

higher dimensions than 2D. In [97], they also consider partially-known paths. Goemans and

Overmars [57] also proposed a probabilistic motion planner to follow an object with known

path. They consider smoothness of the camera and apply the method on both 2D and 3D

problems.

2.3.2 Pursuing Unknown Target Trajectories in Known Environments

There exists work considering the pursuit of targets with unknown trajectories in a known

environment [14, 112, 113]. The general idea is to partition the space into non-critical

regions in which the camera can follow the target without complex compliant motion—that

is, rotating the line of visibility between the camera and the target around a vertex of an

obstacle. The main benefit of this line of work is the ability to determine the decidability of

the visibility-based pursuit problem [16]. Unfortunately, the decomposition usually results

in many small components even for a very simple environment. The brute-force approach

for computing a visibility graph, visibility polygons of all vertices, and the visible regions of

all finely discretized grid cells, is not scalable enough for real-world environments.

Recently, Li et al. [100,101] have proposed a real-time planner that tracks a target with

unknown trajectory. Their main ideas include a budgeted roadmap method with lazy evalua-

tion and a simple linear extrapolation to predict the target’s motion. However, their method

has no guarantees on the performance and quality of the camera path. Oskam et al. [118]

developed a visibility transition planning method which exhaustively precomputes visibility

on a roadmap of overlapping spheres in the free space. This visibility roadmap enables

quick prediction of spheres that represent high risk of occlusion so that the pursuer can

take proactive motion to prevent this occlusion. However, this grid-based sphere generation
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step has difficulty in narrow passages, and exhaustive visibility computation is inefficient.

Geraerts [46] proposed the idea of using a corridor map to track a single target. The corridor

map is a decomposition of the environment computed by sampling the Generalized Voronoi

Diagram of the free area of the workspace, and local motions are controlled by potential

fields inside a corridor.

2.3.3 Pursuing Unknown Target Trajectories in Unknown Environments

Many researchers have also considered the case that both trajectory and environment are

unknown. For example, Becker et al. [12] proposed a very simple planner to follow a target

with unknown trajectory in an environment with landmarks. The idea is to predict the tar-

get’s next position and place the camera at the position that can see most of the predicted

target positions. Later, González-Baños et al. [62, 99] proposed the idea of greedily mini-

mizing the escaping risk or maximizing the shortest escaping distance of the target. Recently,

Bandyopadhyay et al. [8–10] improved the definition of escaping risk by introducing the

idea of vantage zone and showed that this definition can improve the camera’s ability to

pursue the targets. All of these methods focus on pursuing a single target. There are also

extensive studies on pursuing multiple objects, e.g., [134], in which the goal is to maintain

a belief of where the target(s) are by using particle filters.

2.3.4 Methods Based on Constraint Satisfaction

In computer graphics, camera planning is often viewed as a constraint satisfaction problem,

and so there have been attempts to represent the problem so that it can be solved efficiently

with constraint satisfaction techniques. For example, some works use the idea of screen space

or image space constraints, e.g., Blinn [17] and Gleicher and Witkin [56]. Given desired

screen locations of observed points, these methods compute the necessary camera location

and orientation. Gleicher and Witkin [56] also proposed an improved method based on image

space constraints that involves tracking one or more static or dynamic points, or maintaining
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a certain area constant within the image. This method relies heavily on control theory, and

also requires information about the object’s trajectory. Occlusion of the target is also not

considered. There are a number of works which involve the use of metaheuristics to compute

optimal positions or trajectories for the camera. For example, Drucker and Zeltzer [43] used

an A* planner to compute a camera path. Along the path, the orientation of the camera

is then solved frame-by-frame to satisfy given constraints. Burelli et al. [24] used particle

swarm optimization to compute positions of the camera that satisfy certain constraints while

optimizing other objective functions. However, this work generates only camera positions,

not paths.

We can also represent constraints geometrically. For example, Bares et al. [11] proposed

a method to find camera positions (rather than a path) to meet given constraints. In this

method, the constraints are represented as convex objects. The solutions are in the inter-

section of these convex objects. Using the idea of relaxation (satisfying only a subset of the

constraints), and decomposition (returning multiple camera positions that jointly satisfy the

constraints), they describe fallback procedures in case no single position can be found to

satisfy all constraints. Jardillier and Languénou [78] proposed an offline planner (assuming

known object geometry and trajectory), where constraints are specified using a declarative

model. The constraints are then solved using interval mathematics. Their method allows

users to specify desired image locations using frames (rectangles). That is, objects can be

fully or partially included, or fully excluded. Covering area of the target is also considered

(otherwise, camera can be so far away that objects become points and still satisfy constraints).

They solve constraints using interval arithmetics. Later, Christie and Languénou [35] pro-

posed another declarative model approach, this time to describe trajectories of cameras as

sequences of parameterized elementary movements called hypertubes. However, this method

was designed for offline purpose, taking 3 to 6 seconds to solve for a single given trajectory.

The aim is to determine the path of a camera to satisfy various declarative properties on the

desired image, such as location or orientation of objects on the screen at a given time. Their
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method uses an incremental solving process: (1) interval-based filterings on the first hyper-

tube to remove areas without solutions, (2) choice of a solution among the set of remaining

areas with respect to an optimization criterion to determine starting conditions for the next

hypertube, and (3) backtracking for inconsistent hypertubes. Christie and Normand [36]

used this idea to partition the space so that in each partition, the cinematographic properties

remain the same. However, their method is designed to produce a camera view that satisfies

certain criteria—not to follow targets. Recent surveys on camera planning in the area of

computer graphics are also available from [36,37].

Coleman et al. [39] presented two solutions to the camera interpolation problem. The

first uses linear matrix interpolation to interpolate camera pose matrices. The interpolation

can be a linear interpolation, a spline-weighted blend, or an interpolating blend. The second

approach performs interpolation in image-space. Image-space interpolation was found to

provide additional control over the trajectories and sizes of selected objects in screen space.

This allows the user to use far fewer key frames.

2.3.5 Reactive and Real-time Behaviors

Some studies have focused on developing reactive behaviors for real-time camera motion.

For example, Courty and Marchand [40] used visual servoing along with obstacle and occlu-

sion avoidance. Prediction of a target’s movement is also relevant for developing real-time

camera behaviors. For example, Halper et al. [67] introduced a camera planner that predicts

state based on the past trajectory and acceleration. They also proposed the idea of PVR

(potential visibility region) for visibility computation, and a pipelined constraint solver.

Hughes and Lewis [76] also conducted a study on the performance of camera control on

a mobile robot, using three control models: coupled camera controls, independent control

(the camera and robot can move independently), and multi-camera control (one coupled

camera and one independent camera). They found that using independent control provides

better performance in finding unknown objects, and that human observation, supervision,

and judgment remain critical element of robotic activity.
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2.3.6 Other Related Problems

Some studies have focused on the problem of estimating the position of targets despite

uncertainty in the sensor and frequent occlusions. In many such works, the approach is to

assume a motion model for the targets, and then use that motion model (perhaps along

with a probabilistic filter) to make plausible hypotheses for future locations of the targets.

Recently, Gong et al. [61] have proposed a motion model for object tracking that is based

on enumerating the most likely homotopy classes of trajectories (sets of trajectories that can

be smoothly deformed into one another without intersecting obstacles).

Several works study novel ways to find and pursue relevant areas of the workspace. For

example, Andujar et al. [64] proposed a method for looking at “interesting” spots in the

environment. They define “interestingness” from the idea of entropy. They also proposed

simple methods using 2D distance fields to decompose a given environment into rooms

and passages. Morbidi, Freeman, and Lynch [89] developed a distributed control strategy

for UAVs via nonlinear gradient decent to match a discrete set of particles that describe

the occurrence of “events of interest” to monitor. The goal of their work is to match the

geometric moments of the swarm with those of the ensemble of the particles.

Luke et al. [107] have applied methods using hill-climbing/k-means clustering and hy-

brid to the problem of CMOMMT (a NP-hard problem by Lynne Parker [120]). This problem

has multiple moving targets (more targets than observers), but no obstacles. Nieuwenhuisen

and Overmars [115] considered the first person view using motion planning with a focus

on path smoothness and naturalness. Multi-objective planning is achieved by combining

weights (penalties) and encoding them in the graph edges. Bhattacharya et al. [14, 15]

studied the decidability problem for both 2D and 3D environments, which determines if the

camera can always maintain visibility or will eventually will lose track of the target for a

given environment. This work is relevant, but when the target has escaped, the camera has

no way to regain visibility.
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Chapter 3: Shepherding

In the shepherding problem, there are two types of agents: a set S of shepherd agents, and

a set F of flock agents, moving about workspace W filled with obstacles. A shepherd agent

has the ability to influence the movement of flock agents. The flock agents that form F move

together with some level of cohesion through the environment and away from shepherds.

The task of the shepherds is to steer the flock to a desired location. The configuration of an

agent is represented by its position and velocity—e.g. we specify the state of a shepherd

s ∈ S as (xs, vs). Therefore, a shepherding problem with n flock members and m shepherds

in a 2D workspace will have a configuration space in 4(n+m) dimensions. We refer to the

joint configuration of the shepherds S at time step t as SC(t) and the F as FC(t). A valid

configuration is one in which no agents are in collision with obstacles or other agents.

Each flock member in F adheres to a set of simple rules, similar to the Boids program

developed by Craig Reynolds in 1986 to simulate the flocking behavior of birds [126].

In the Boids model, we assume each flock member steers itself according to three basic

rules: separation, steering to avoid collision with nearby flock members; alignment, steering

towards the average heading of nearby flock members; and cohesion, steering towards the

center of mass of nearby flock members. On top of the basic Boids model, we add the

following rules to determine the motion of the flock: avoidance, steering away from nearby

shepherd agents; damping, reducing speed over time when other forces are absent (so that

the agents come to a stop when there is no outside stimulus), and entropy, adjusting direction

randomly. There also exist other models that we could use to model F , such as pedestrian

dynamics [5,79], but generally we seek methods for shepherding that are independent of

F ’s precise behavior.
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Problem Statement The basic shepherding problem as follows: Given the initial state

{SC(0), FC(0)}, find a sequence of feasible movements for the shepherds SC(t) for 0 < t ≤ 1

such that the flock ends up in one of the goal states, i.e. FC(1) ∈ GS, where GS is a set of

user-specified goal states.

(a)

(b)

(c)

Figure 3.1: (a) An environment and associated terminology. Steering the flock using (b) a
straight line (c) a side-to-side motion.

We use the term steering point to denote any position to which the shepherd moves itself

to influence the movement of the flock, and the term milestone to denote any intermediate

position that the shepherd attempts to steer the flock toward. A roadmap is an abstract

topological representation of the feasible configuration space in a given environment, given

as a directed graph G = (V,E), where each node in V represents a valid configuration of

the flock, and each directed edge (p, q) ∈ E denotes that it is possible for the shepherds to

move the flock from configuration p to configuration q. I will discuss various methods for

building such a roadmap in the later sections. Figure 3.1(a) shows a visual representation

of roadmaps, milestones, and steering points.

We also define a shepherd’s locomotion as the manner in which a shepherd moves to
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control the movement of a flock. The shepherd’s locomotion remains an invariant in differ-

ent shepherding behaviors and dramatically affects the quality of simulation. We divide the

shepherd’s locomotion into two sub-problems: approaching and steering. In an approaching

locomotion, the shepherd attempts to get close to the flock. In a steering locomotion, the

shepherd attempts to push the flock forward. Two examples of a shepherd’s steering locomo-

tion appear in Figures 3.1(b) and (c). We will describe the shepherd’s locomotion in more

depth in the following sections.

It is also possible for a flock to separate into multiple flocks due to repulsive forces

exerted by obstacles or shepherds. Therefore, to improve chances for success, the shepherd

is interested in not only steering the flock, but also keeping the flock in a cohesive group, i.e.

where each member is within visible range of at least one other member of the flock.

3.1 Medial Axis Graph-Based Strategies

In this section, I present a framework of methods we developed called Medial Axis Graph-

Based methods, or MAGB [152]. In traditional probabilistic motion planning methods, we

use a local planner to connect pairs of nearby configurations. Examples of traditional local

planners include: the straight-line planner (which simply connects configurations through

direct interpolation); the rotate-at-s planner [2]; and the A∗ planner. In MAGB, the local

planner we used was a simulation defined by the set of shepherding behavior rules [102].

Our planner generally consists of two stages. In the first stage, a planner computes a

high level global roadmap representing the workspace. For our experiments, we adopt the

medial axis of the workspace as our high level roadmap. Figure 3.9 shows examples of

these generated medial axes in several workspaces. We compute a path along the global

roadmap from the center of the initial flock position to the goal position. In the second phase,

the shepherd pushes the flock along the path by performing a sequence of locomotions

determined by the current state of the flock. As with most traditional local planners, the

shepherding local planner may fail to lead the flock to a given milestone. For example, the
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shepherds may not have enough room to push the flock, or a passage may be too narrow for

the flock to pass through.

We tested these algorithms on a variety of obstacle-filled environments, and compared

them to a “simulation-only” approach which uses only simple behaviors with the help of

the medial axis of the workspace. In general, we found that the exploration offered by

motion planning sometimes improved the success rate versus a simulation-only approach,

particularly in environments where the medial axis passes through narrow passages.

3.2 Tree-based Planners

The tree-based approaches we first experimented with extended the classic RRT [98] and

EST [73] approaches through the use of shepherding behaviors [102] as a local planner to

connect configurations and incrementally build a roadmap.

3.2.1 RRT-based planners

We began by developing a RRT-based planner (see Algorithm 1 and 2) which constructs the

roadmap G by repeatedly extending G towards new randomly generated configurations in

W . For RRT, SELECT-INTERMEDIATE GOAL chooses a random configuration q ∈ W , and the

procedure SELECT-NODE-TO-EXPAND chooses the node p ∈ G that is closest to q.

Algorithm 1 RRT-Based Planner
procedure TREE-BUILD(qinit)

G.init(qinit)
for k = 1 to K do

q ← SELECT-INTERMEDIATE-GOAL
p← SELECT-NODE-TO-EXPAND
r ← SIMULATE(G,p,q,simsteps)
if r = Success then

G.add edge(p, q)
end if

end for
return G

end procedure
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Algorithm 2 Local Planner (SIMULATE Procedure)

procedure SIMULATE(G,p,q,simsteps)
for i = 1 to simsteps do

for shepherd s in S do
Use workspace roadmap to find a path to q
Select a milestone m on the path.
Calculate new target tnew for s
Move s towards tnew

end for
if flock is close to q then

return Success
end if

end for
end procedure

3.2.2 EST-based planners

Our EST planner is similar to the RRT planner presented in Algorithm 1, with a few key

differences. Instead of expanding the tree towards a randomly generated configuration,

EST operates by first choosing an existing node p ∈ G to expand based on a probability

distribution πG (in the procedure SELECT-NODE-TO-EXPAND). Then, within a neighborhood

of p, it selects an intermediate milestone q to expand to (SELECT-INTERMEDIATE-GOAL). A

key design decision in the implementation of EST algorithms is the choice of πG to prevent

excessively dense sampling of configurations in the workspace. We implemented several

variations of the EST method which vary only in the selection of πG:

• BASICEST—The node to expand is selected randomly; that is, the distribution πG is

uniformly distributed.

• NAIVEEST—The distribution πG is weighted so that nodes with fewer neighbors are

more likely to be selected over nodes with more neighbors.

• MINEST—The node with the fewest neighbors is chosen every time.
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3.3 Meta-Graph

The PRM [84] method generates the roadmap by repeatedly picking random free configura-

tions and connecting them to the roadmap graph. For our PRM based approach, we took a

similar approach, building a meta graph that represents the set of possible navigation routes

in a fuzzy way. Each node in a meta graph defines a set of flock configurations (excluding

the shepherd positions) that are conforming to the properties of the node. As in the other

methods, edges in the meta graph approach are directed. The weight of an edge in a meta

graph presents the probability of successful herding from the start node to the end node of

the directed edge. In a similar fashion to fuzzy or lazy PRM approaches [19,114], paths from

the meta graph are extracted and evaluated until a path is found, or until no path can be

found to connect the start and the goal configurations in the meta graph.

Each node in a meta graph represents a meta configuration. Each meta configuration C

is as an oriented disc in a four dimensional space, and is composed of four values: position

(pC = (xC , yC)), orientation (θC) and radius (rC). Each meta configuration intuitively

defines a set of conforming flocks. We say a flock is conforming to a meta configuration C if

the minimum enclosing circle of the flock is enclosed by C and the angle between the mean

velocity of the flock and θC is less than a user defined threshold.

We say that a meta configuration is free if the disc does not intersect an obstacle. To

generate one free meta configuration, we first assign a random position and orientation,

whose ranges are fixed.

To assign a random radius, we compute the smallest enclosing disc as follows: First, we

consider a group containing Nf flock members where each individual member is enclosed

in a radius Rf circle. The compact area of a group is the smallest circle that one can put

all group members into. Ideally, shepherds should control the flock so that all members are

inside its compact area.

This is an inverse version of the computationally difficult packing circles in a circle prob-

lem [63]. The objective of this problem is to find the maximum radius of K equally-sized
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smaller circles that can be packed into a unit circle. Since we do not have to compute the

exact value of the radius Rc of the compact area, we approximate it by considering a bound-

ing square of Nf flock members. In this case, the compact area will be the minimum circle

enclosing that square. That is, we approximate Rc as:

Rc = Rf
√

2Nf (3.1)

The radius of our meta configuration is set to be a random value between Rc and 3Rc.

The weight of an edge that connects meta configurations C1 and C2 represents the

probability that a flock conforming to C1 can be guided by the shepherds so that the flock is

conforming to C2. This can be estimated in several ways. For example, we can estimate this

probability by generating a set of random flocks conforming to C1, and, for each flock, we

find a path to pC2 using one of the tree-based planners described above. While this approach

is accurate, it is inefficient due to the requirement of running many (usually thousands or

even tens of thousands) of simulations. The approach we use estimates the probability by

using the differences in position and orientation between C1 and C2. The distance is defined

as the follows:

dist(C1, C2) =


∞ if θC1,V ≥ τ ,

∞ if θC2,V ≥ τ ,

|θC1
−θC2

|
π +

dist(pC1
,pC2

)

D otherwise,

where θCi,V is the angle between V and Ci’s facing direction, V = pC2−pC1 , dist(pC1 , pC2) is

the Euclidean distance between pC1 and pC2 and D is the diagonal distance of the bounding

box. In each iteration of the query phase, a path is extracted from the meta graph. To check

the feasibility of a consecutive pair of meta configurations in the path, we use simulation to

determine if the final configuration of the flock conforms to the end meta configuration.
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Note that this meta graph planner is not probabilistically complete. That is, there are

some situations where our planner cannot find the answer even if the path exists—such

as in problems that require the flock to form a long line. This is because we confine our

radius of our meta configurations and disallow the discs from the meta configurations from

intersecting workspace obstacles.

3.3.1 Experiments with MAGB

We tested the Medial Axis Graph-based motion planners on some of the environments

shown in Figure 3.2. In the Spiral environment (Fig. 3.2(c)), the start configuration is at

the center and the goal is outside the outer most wall of a spiral-shaped obstacle. In the S

environment (Fig. 3.2(a)), the start and end configurations are at the ends of a S-shaped

passage. In the Broken T environment (Fig. 3.2(b)), the free space is separated by three

bars, with the middle bar equidistant to the bars on the side. This particular environment is

intended to test the algorithm’s ability to shepherd a flock through a narrow passage. We

also tested the planners on two maze environments. The first maze (Fig. 3.2(d)) is similar

to the S environment with additional road blocks in the S-shaped passage. The second maze

(Fig. 3.2(e)) is composed of several cylinders—a larger cluster at the upper-right corner and

a smaller cluster at the lower-left corner.

We compared our planners to a simulation-only approach (SIMONLY), which only uses

the simulator to steer the flock with the help from the medial axis of the workspace. This

simulation-only approach is the same method used in [102,103]. In our test suite, we have

12 variants of EST-based planners: MINEST, NAIVEEST, and BASICEST with neighborhood

sizes of 3, 5, 7 and 9. In our test suite we also have one RRT-based planner, and one fuzzy

meta graph planner.

In Table 3.1, we show success rates for each of the algorithms. Each success rate in

the table is an average over 50 runs, and all comparisons are statistically significant at

the 95% confidence level. We found that planners do well in the Broken T, S and Spiral

environments. We also found that planners do poorly on the maze environments. This
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(a) S Env. (b) Broken T. (c) Spiral Env.

(d) Maze 1 Env. (e) Maze 2 Env.

Figure 3.2: Environments used for MAGB experiments. The workspace medial axes are shown
in all figures. We use these medial axes as the workspace roadmap for local planning.

is because the planners cannot search sufficiently long enough. For example, the fuzzy

meta graph planner will need to exhaustively check all the shorter but more difficult paths

before it can try the longer path with larger clearance. This is clearly shown in the S and

maze 1 environments. The main difference between maze 1 and S environment are the

introduction of islands in the S shaped passage. In the S environment, the fuzzy meta graph

planner clearly out-performs simulation-only. In the maze 1 environment, the performance

of simulation methods degraded only slightly, whereas the success rate of the fuzzy meta

graph planner drops significantly.

One important observation we had is that the motion planning in MAGB helps improve

the success rate, albeit slowly. In Figures 3.3, 3.4, and 3.5, we show the success rate of the

planning approaches on a sample of initial configurations. This plot confirms the hypothesis
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that while simulation-only approaches often get stuck, the MAGB planning approaches help

explore other path options and eventually find solutions given a sufficient simstep budget.

This is particularly clear in the S and spiral environments as shown in Figure 3.3 and

Figure 3.4. The planners have lower success rates before 80K simulation steps but end at

much a higher success rate (60% vs. 18%). Even in the maze environments, in which the

planners perform poorly, based on the plot shown in Fig. 3.5, we can still see the continuing

improvement throughout the entire experiment.

3.4 Group Control as Deformable Shape Manipulation

It is impractical to handle each flock member individually, even when controlling a small

flock. In most existing methods for swarm control, a simplified shape is often used as a high

level representation to model the flock, such as an axis aligned bounding box, or a bounding

circle. This model works well if the workspace is relatively sparse or has few obstacles.

However, in environments with many obstacles or narrow corridors or for very large flock

sizes, a bounding circle is excessively restrictive.

Therefore, we improved on the MAGB methods by developing a deformable object rep-

resentation for the flock, which can split and merge [69]. During steering, the shepherd is

viewed as a “deformer”, continuously reshaping the contour of the flock to a target shape.

The shepherds can represent the contour of the flock using α-shapes [44, 45], which are

updated as the flock moves. An example of α-shapes is shown in Fig. 3.6(b). To prevent the

shepherd from disturbing the flock unnecessarily, the value of α can be determined from

the flock’s sensing range. In this paper, the shepherds represent the flock using “pixel blobs”

(see Section 3.4.2 for details) that represent the flock’s deforming contour.

To efficiently create the flock model, we designed a new algorithm to efficiently update

the α-shapes [30–32] of moving points by exploiting the temporal and spatial coherence.

A shepherd needs to have a model to represent other shepherds. This model affects

how we solve the task allocation problem that assigns steering positions to shepherds. In
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Figure 3.3: Plots showing the proportion of successful runs so far versus the number of
simulation steps in MAGB, S environment.
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Figure 3.4: Plots showing the proportion of successful runs so far versus the number of
simulation steps in MAGB, Spiral environment.
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Figure 3.5: Plots showing the proportion of successful runs so far versus the number of
simulation steps in MAGB, Maze 1 environment.

Table 3.1: MAGB Proportion of Successful Runs

Method S Broken T Spiral Maze 1 Maze 2
Simulation Only 0.72 0.58 0.22 0.58 0.82

MinEST (nhood=3) 0.44 0.48 0.44 0.66 0.68
MinEST (nhood=5) 0.48 0.64 0.12 0.38 0.52
MinEST (nhood=7) 0.5 0.56 0.08 0.22 0.4
MinEST (nhood=9) 0.6 0.48 0 0.2 0.3

NaiveEST (nhood=3) 0.26 0.46 0 0 0.18
NaiveEST (nhood=5) 0.4 0.58 0 0.02 0.12
NaiveEST (nhood=7) 0.44 0.82 0 0.02 0.28
NaiveEST (nhood=9) 0.56 0.84 0 0.02 0.32
BasicEST (nhood=3) 0.24 0.36 0 0.02 0.22
BasicEST (nhood=5) 0.46 0.62 0 0.04 0.32
BasicEST (nhood=7) 0.48 0.84 0 0.02 0.24
BasicEST (nhood=9) 0.7 0.84 0 0.08 0.28

rbrmRRT 0.72 0.3 0 0.02 0.06
dbrmRRT 0.74 0.56 0 0.06 0.22

Fuzzy Meta Graph 0.96 0.68 0.68 0.1 0.24
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obstacle

(a) (b) (c)

Figure 3.6: (a) An environment with a global roadmap, two obstacles, a shepherd (larger
disc) and two sub-flocks. Each flock member is shown as a small disc enclosed in a dashed
circle, which represents its visibility. (b) The shepherd’s flock model is shown as two α-shapes
for the two sub-flocks. (c) A local roadmap is built around the flock nearest the shepherd.

this framework, we use a centralized system that knows the locations of all the shepherds.

This is analogous to a large robot arm with many fingers (i.e. shepherds) manipulating a

deformable object (i.e. flock). All these fingers are connected to and only communicate with

a central command center, which coordinates the shepherds. Therefore, we reduce the task

assignment problem to a bipartite matching problem between the steering points and the

shepherds. Then, the edge weight of the bipartite graph is the geodesic distance (estimated

using the global roadmap) between a shepherd and a steering point.

3.4.1 Overview of the DEFORM Method

By representing the flock as a deformable object, the shepherding problem becomes a de-

formable object manipulation problem. Given a desired shape, the shepherds’ task is to move

close to important contact points near the deformable object to change its shape. A solution

to the problem is likewise reduced to determining a sequence of intermediate target shapes

that will eventually lead the flock to the final goal. DEFORM, shown in Algorithm 3, outlines

the steps necessary to achieve the goal.

More precisely, DEFORM regards the flock as a deformable object with an area conserva-

tive constraint. That is, DEFORM will find a sequence of continuously deforming polygons

PF (t), t ∈ [0, . . . , 1], so that PF (1) is near a goal. For each PF (t), the shepherds can tightly
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Algorithm 3 DEFORM(F , S, g)
Input: F (flock), S (shepherds), and g (goal)
while g is not reached do

Compute the contour polygon PF (t) of F at time t
Determine the next target polygon PT (t+ δt)
Find ssteer to morph PF to PT
Move S to ssteer

end while

pack all flock members in PF (t). Because DEFORM may not consider shepherd positions

when building PF (t), additional soft constraints or heuristics on PF (t) should be imposed to

increase the chance of finding a successful control plan. For example, the shepherds should

try to keep each polygon PF (t) as “fat” as possible and keep the medial or the principal axis

of PF (t) close to the edges along the global roadmap. The fatness increases the controllabil-

ity of the flock and the centeredness reserves room to maneuver. There are many ways to

compute the target polygons PT (t). For example, we can grow a search tree along the edges

of the global (workspace) roadmap. Instead, we adopted the approach of simply extracting

a path with maximal clearance and building a sequence of area-conserving polygons along

the path. Details of this approach are discussed in the next section.

Next, DEFORM computes the movements for the shepherds so that the flock can assume

the shape of polygon PF (t) at each time step t. More specifically, given the desired shape

PT (t + 4t) in the next time step and the current flock model PF (t), the behavior will

determine the necessary deformation and transformation to morph PF (t) to PT (t + 4t)

using, for example, the Iterative Closest Point (ICP) algorithm [13] when α-shape is used

to compute the contour. Here, we use boolean operators between pixel blobs to determine

the necessary deformation. Finally, DEFORM calculates a steering state ssteer ∈ SC for the

shepherds (recall that SC is the state space of the shepherds). To plan shepherd’s motion,

a search tree in SC is iteratively expanded by randomly selecting a feasible behavior until

starget is reached (and therefore G is ‘shaped’ like Ply(t+4t)).
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a potential steering point

PT

PG − PT

(a) (b)

Figure 3.7: (a) Target shape, current flock blob, and a potential steering point. (b) Finding
steering points using a radial partitioning.

3.4.2 DEFORM Implementation Detail

In this section, we flesh out the framework discussed in the previous sections. In particular,

we discuss in detail how a flock is represented as a deformable shape, how the target shape

is determined, and how the steering points are chosen.

An important feature of our framework is that it can be implemented in many different

ways. While using α-shapes can provide high accuracy in flock contour representation, a

new algorithm to efficiently update the α-shapes [30–32] is required to efficiently create

the flock model. This method will need to exploit the temporal and spatial coherence of the

flock’s movement.

To avoid this difficulty, we discretize the workspace into a regular grid and represent the

contour of the flock using pixel blobs (described below). Each cell in the grid is classified

as a free cell if a flock member in the cell is free of collision from the workspace obstacle.

Otherwise, the cell is marked as an in-collision cell. The size of the cell in the grid is defined by

the geometric size of an individual flock member. Therefore, each cell can only be occupied
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by a single flock member. This approximation is very easy to implement and is very efficient

(linear to the flock size). As we will see later in our experiments, this representation is also

accurate enough to model and handle large flocks.

Flock Blobs

The pixel blob of a single member g ∈ F is simply the set of pixels that are within the distance

r − ε of g, where r is the sensor range of g and ε is an arbitrarily small number. The pixel

blob of a flock (called flock blob) is therefore the union of all pixel blobs of its members. The

flock blob may have several connected components if the flock has separated into sub-flocks.

Target Blobs

Given the current flock blob, the target shape is defined as another pixel blob, called a target

blob, that includes all flock members at the next time step. It is straightforward to compute

the target blob. First, we pick a pixel that is occupied by the closest flock member to the final

goal position. The closeness to the goal is measured by geodesic distance. Once the center

pixel o is determined, we grow the blob using free pixels, starting with the 8-connected

set and expanding in concentric rings around o. We stop when the blob contains the same

number of pixels as the number of flock members. This ensures that the blob is large enough

to contain all flock members and also conserve the area of the target blobs throughout the

entire control behavior. We say a flock configuration conforms to a target blob if the target

blob includes all flock members. Note that the target blob could be grown in many different

ways. For example, one could make it grow away from obstacles or toward the medial axis.

The version we used in this paper makes the blob grow as fat as possible.

Shepherds’ Steering Points

Given a flock blob PF and a target blob PT , we compute the set of steering points ssteer. To

compute ssteer, we first compute the differences between PF and PT . This is simply done by
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performing the boolean difference PF − PT pixel by pixel.

Next, we determine a set of potential steering points, s′steer. We say a pixel p is in s′steer

if (1) p is neighboring (using 8-connectivity) to a pixel c ∈ PF − PT , (2) p 6∈ (PF ∪ PT ),

and (3) p is on the opposite side of the pixel in PT closest to c. An example of p is shown in

Fig. 3.7(a).

Once the points in s′steer are identified, the last step is to choose n points from s′steer,

where n is the number of shepherds. If there are fewer than n points in s′steer, we are finished.

In this case, some shepherds may not have steering points assigned and will stay stationary.

If there are more points in s′steer than there are shepherds, then we partition s′steer into n

pie wedges whose apex is at the center of PT (the flock member closest to the global goal).

In each pie wedge, the point in s′steer farthest from the global goal is selected as a steering

point (see an example in Fig. 3.7(b)).

After ssteer is computed, the steering points are assigned to the shepherds by forming a

bipartite graph whose nodes are the points in ssteer and the shepherd positions, and whose

edge weights are geodesic distances between them. The steering point assignment is then

solved using a bipartite matching algorithm.

Screen shots our simulation running DEFORM can be found in Fig. 3.8.

3.4.3 Behavior-based Motion Planners with DEFORM

DEFORM can theoretically be used as a local planner in higher-level planners such as PRM,

RRT, and EST. Based on our results here and in [152], planning is not generally helpful.

However, theoretically speaking, the proposed control behavior may not always successfully

control the flock. For example, in some rare cases, the deformable polygon may block paths

needed by shepherds to reach their steering points. For the sake of completeness, we will

discuss two high-level planners: RRT and meta graph integrated with the DEFORM.
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PG − PT PTpotential steering points

Figure 3.8: Screen shots of DEFORM planner in action.

Distance Metrics

In both RRT and meta graph planners, distance metrics are important for estimating the prob-

ability of successfully herding from one flock state to another flock state. Using Euclidean

distance is usually not enough to reflect this probability. In addition, we use the idea of defor-

mation energy which defines the amount of effort needed to deform one polygon to another

polygon. Again, deformation energy can be implemented in many ways depending on the

representation of the deformable object. By representing the polygon as a pixel blob, we

have the advantage of efficiently computing the overlay of two deformable polygons. More

specifically, given two pixel blobs, P and Q, we translate P so that their centers coincide,

then count the number of pixels in the boolean difference P −Q. This value approximates

the number of pushes needed to deform P to Q. The final distance between P and Q is

simply a weighted sum of the Euclidean distance between their centers and the deformation

energy estimated by boolean difference P − Q. In our implementation, we use the same

weights for Euclidean distance and deformation energy.
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RRT

Our RRT-based DEFORM planner proceeds as described before in Section 3.2.1 and Algorithm

1, constructing the roadmap G by repeatedly attempting to extend G using a local planner

towards new randomly generated configurations in W . However, in this case, the local

planner is the DEFORM behavior described in Section 3.4.2.

Meta Graph

Although meta graph as described in 3.3 was originally designed for directed circles, it was

adapted for use with the DEFORM behavior. Each node in a meta graph represents a meta

configuration. A meta configuration defines a set of group configurations (excluding the

shepherd positions) that are conforming to the properties of the node. More specifically,

each meta configuration C is as a pixel blob that has twice as many pixels as the number

of flock members. Each meta configuration intuitively defines a set of conforming flocks. We

say a flock is conforming to a meta configuration C if x% flock members overlap with the

pixels of C. In our implementation, we let x = 85.

A meta configuration is generated in the same way as the target blob is generated (in

Section 3.4.2). We first pick a random point p in workspace and use p two grow a blob level

by level. These meta configurations are then connected to their k-nearest neighbors to form

a meta graph. In a similar fashion to lazy PRM approaches [114], paths from the meta graph

are extracted and evaluated using the proposed control behavior until a path is found, or

until no path can be found that connect the start and the goal configurations.

3.4.4 DEFORM Results

We evaluated our DEFORM behavior against the earlier MAGB behavior across 6 different

test environments shown in Figure 3.9. The next sections explain our experimental method.

We evaluated its performance against MAGB specifically in terms of scalability (the ability

to successfully herd large flocks to the goal within the given simulation time budget) and
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robustness (the ability to herd agents despite random and unpredictable behavior). Each

experimental sample consisted of 30 runs, and claims of statistical significance were based

on 95% confidence.

Scalability

We presume that increasing the size of the flock should impact both the effectiveness and

performance of the shepherding algorithm, and that more shepherds will be needed to move

larger flocks to the goals in a timely manner. The scalability of these behaviors is defined by

the ability for them to effectively herd increasingly large flocks to the goal within the given

simulation time budget.

To test our hypotheses, we ran experiments with varying numbers of shepherds (1, 2, 3,

and 4) and varying flock sizes (5, 10, 15, 20, and 25) on each of the 6 test environments. We

computed success rates as the proportions of sample runs where the algorithm successfully

moved the flock to the goal. Table 3.2 shows example results for the “broken-t” environment.

For small flock sizes, DEFORM and MAGB perform similarly. However, as the size of the flock

increases, MAGB shows significant decay in performance - it is clear that more shepherds

are needed to control larger flocks using the MAGB behavior. On the other hand, DEFORM

manages to achieve excellent results throughout (above 90% success rate) with no negative

trend in performance up to 100 flock members.

We also ran experiments to test larger shepherd and flock sizes on the “s” environment.

The results, shown in Fig. 3.10, show that DEFORM once again outperforms MAGB across

the board, but especially with larger flock sizes.

Robustness

We define robustness as the ability for the shepherds to control the flock in spite of unpre-

dictable flock behavior. We modeled the unpredictable behavior by linearly mixing each

flock agent’s behavior with a random vector. We control this randomness by increasing and

decreasing the magnitude of the random vector. Figures 3.11 and 3.12 illustrate the results
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(a) “empty” (b) “s”

(c) “spiral” (d) “broken-t”

(e) “pillars” (f) “env-6”

Figure 3.9: Environments used in DEFORM experiments.
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Figure 3.10: Success rate vs. Shepherd/Flock Ratio on s Environment.

Table 3.2: Success Rates for DEFORM and MAGB with Varying Shepherd and Flock Sizes
(Broken-T Environment)

DEFORM MAGB

# Shepherds # Shepherds
1 2 3 4 1 2 3 4

Fl
oc

k
Si

ze

5 0.93 1.00 0.90 0.83 0.90 1.00 0.93 0.97
10 1.00 0.93 0.93 0.93 0.56 0.97 1.00 0.97
15 1.00 1.00 1.00 0.93 0.47 0.80 0.77 0.83
20 1.00 0.97 1.00 0.90 0.07 0.67 0.43 0.83
25 1.00 1.00 0.97 0.97 0.00 0.40 0.33 0.43
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(with 95% confidence bars) of success rate versus increasing randomness. In these figures,

randomness is shown as a ratio from 0.0 to 1.0 where 0.0 represents fully deterministic be-

havior and 1.0 represents fully random behavior. In general, DEFORM performs significantly

better than MAGB with increasing flock randomness. A notable effect is shown in Figure

3.11, where there is a bump in performance with increasing flock randomness for the MAGB

behavior. We believe that this is because the random oscillation of the flock members helps

the shepherds push them through narrow corridors in the broken-t environment similar to

how salt granules pass through the openings of a salt shaker.

High-Level Planning and DEFORM

With MAGB we found that in many cases, the planning methods we applied did not yield

significant enough improvements to justify the additional computational expense. Indeed,

our tests showed that with a fixed budget of simulation steps, planning-based approaches

using these techniques were often unable to even match the performance of our behavior-

only method. However, in almost all environments, planners using the DEFORM behavior

performed significantly better than planners using the MAGB behavior.

Table 3.3: Success Rates for DEFORM and MAGB With Various High-Level Planners and
Environments

DEFORM MAGB

Planner Planner
None Graph Tree None Graph Tree

En
vi

ro
n

m
en

t broken-t 0.97 0.13 1.00 0.86 0.00 0.07
empty 1.00 0.00 0.77 1.00 0.00 0.33
env6 1.00 0.30 0.97 0.10 0.00 0.00

pillars 0.97 0.96 1.00 0.93 0.00 0.00
s 0.97 1.00 0.83 0.70 0.00 0.00

spiral 0.83 0.70 0.53 0.00 0.00 0.00
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Figure 3.11: Success Rate vs. Randomness Ratio on the broken-t Environment.
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3.5 Conclusion

In this chapter introduced several methods that I have applied to the problem of shepherding.

We began by combining traditional motion planning techniques such as RRT, EST, and PRM

with shepherding behaviors, and showed that these extensions were beneficial in exploring

the space of solutions. Based on the success of this method, we developed yet another

abstraction called DEFORM where we represent the flock configuration as a discretized

deformable object, and showed that shepherding could be done more effectively in the face

of uncertainty without relying on the medial axis to be computed in advance. This makes

DEFORM applicable to scenarios where perhaps only a partial map is available.
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Chapter 4: Visibility-Based Pursuit

Visibility-Based Pursuit is the problem of controlling a moving camera C to pursue and maxi-

mize visibility of a group T of target agents as they move coherently through an environment

filled with obstacles. An illustration of the group tracking problem is shown in Fig. 4.1(a).

In this figure, a coherent group of targets is shown entering a passage, such that some of the

targets have become occluded from the camera’s view. A more intelligent behavior is shown

in Fig. 4.1(b), in which the camera has moved so that it can still see the entire group of

targets and prepare itself better for the case that the targets move into the narrow corridor.

(a) (b)

Figure 4.1: (a) An illustration of the behavior of a pursuer agent using a reactive behavior.
(b) An illustration of a pursuer using the sampling-based IO planner.

In our investigation of this problem, we assumed the environment to be known, but

the trajectory of the targets to be unknown. This can be the case especially in virtual

environments such as video games, where the geometric data may be available in advance.

This can also be the case in many real world environments where floor plans or GIS data

are available in advance. Given this information about the environment, it is possible for

the planner to perform deeper lookahead in the search space of possible trajectories, and
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therefore provide better real-time visibility-based pursuit strategies even when the motion

of the targets is unknown.

Our investigation also focused on pursuing a coherent group of targets (such as a crowd

or a flock) using a single camera. Can we apply existing single-target pursuit techniques to

solve the visibility-based pursuit problem? Unfortunately, as I will explain, our preliminary

results found that direct application of existing single-target pursuit strategies to track a

coherent group usually performs poorly. We speculate that these strategies perform poorly

because of the fundamental differences between single-target pursuit and group pursuit. For

example, while maintaining the visibility of a coherent group in some aspects is easier than

pursuing a single target since there is more than one target that the camera can pursue,

pursuing a group can be more difficult if the objective of the camera is to maximize the

number of visible targets over time. A group of targets can assume many forms; for example

it could compress into a long, dense line within a narrow corridor, and then spread out into

a sparse blob when it reaches an open area. Groups of targets could also engulf obstacles, or

split into multiple sub-groups for a short period of time. Furthermore, since the trajectory of

the targets is unknown, the trajectory of the camera must also be computed online to react

to the movement of the targets.

The work presented in this chapter attempts to address these issues. First, I present

three new strategies (in Section 4.2) extended from the existing single-target techniques—

the reactive, sampling-based [12] (called IO), and escaping-risk-based [118] (called VAR)

methods. I also present a method to preprocess the given environment offline to generate a

data structure called monotonic tracking regions (MTRs) (defined later in Section 4.3) that

can be used to assist real-time planning. I also present some optimizations to these methods

including caching and incremental construction to allow these methods to perform well in

larger environments or perhaps when the environment model is incomplete.
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4.1 Problem Description

In visibility-based pursuit, we assume that the workspace is populated with known obstacles

represented by polygons. These polygons are the projection of 3D objects that can potentially

block the camera’s view. This projection essentially reduces our problem to a 2D workspace.

We refer to a group of target agents as T , and we assume that, in the initial state, the group

T is visible by the camera C. While the future movement of the targets is unknown, the

maximum (linear) velocity of a target, vmaxT , is known. The current position at time t of the

target xT (t) is also known if T is in C ’s viewing range. Likewise, the camera C has bounded

linear velocity vmaxC . The cameraC ’s view range VC is defined as a tuple: VC = (θ, rnear, rfar),

where θ is the view angle, and rnear and rfar define the near and far view range. The exact

configuration of this view range at time t, denoted as VC(t), is defined by the tuple and the

camera’s location xC(t) as well as the maximum angular velocity wC . The position xC of the

camera is simply governed by the following linear equation:

xC(t+4t) = xC(t) +4t · vC(t) .

The targets are either controlled by the user or by another program, so the trajectories

of the targets are not known in advance to the camera. We modeled the target group as

non-adversarial, and constantly moving toward a common goal waypoint. When a waypoint

is reached, a new goal (unknown to the camera) is randomly selected, and the group will

plan a path toward this new goal. When the target group is moving to a goal, each member

in the group keeps itself close to other members (similar to the flocking behavior used in

shepherding in Chapter 1.1 and in [126]). More specifically, at every time step, the coherence

of the group is maintained by filling the space around a leader in the group. However, when

one or more obstacles are nearby, the group may separate into multiple sub-groups.

Given the positions of the (visible) targets and the position of the camera, one can

compute the camera’s view direction so that the number of targets inside the view range
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is maximized. Therefore, the problem of visibility-based pursuit then is reduced to find a

sequence of velocities vC(t):

arg max
vC(t)

(∑
t

card({T ′ ⊂ T | XT ′(t) ⊂ VC(t)})
)
, (4.1)

subject to the constraints that, for all t, vC(t) ≤ vmaxC , and xC(t) is collision free.

When the positions of T are not known, the camera will be in the search mode. In

general, searching is difficult even when the environment is known. In Section 4.3.5, we will

briefly show that this problem can be significantly simplified when we consider the problem

of finding the large crowd.

4.2 Overview of Pursuit Strategies

We developed four baseline visibility-based pursuit strategies. The first three strategies are

extensions of the existing methods which are originally designed to track a single target. The

fourth motion strategy is based on the idea of monotonic tracking region (MTR). Since there

is no prior work on visibility-based pursuit, we will also compare these strategies against

each other in Section 4.4.

The baseline strategy is called reactive camera. It simply determines its next configuration

by placing the visible targets as centered in the view as possible based only on the targets’

current positions. The motivation is that by placing the visible targets at the center of its

view, the camera will have better chance to find invisible targets.

4.2.1 IO Camera

IO camera is a sampling-based method extended from [12]. At each time step, given the

visible targets T , the planner first creates k point sets PT , where k is a parameter. Each point

set contains |T | predicted target positions. The predicted position of each target τ is sampled
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Figure 4.2: Illustration of the stages in IO camera

from the region visible from τ , and is at most (vmaxT · 4t) away from τ . The planner then

creates a set PC of camera configurations (including position and view direction) at most

(vmaxC · 4t) away from C. To decide the next camera configuration, we determine

arg max
x∈PC

(
∑
X∈PT

vis(x,X)) ,

where vis(x,X) is the number of points in X visible by x. These steps are illustrated in

Fig. 4.2. To simplify our discussion, we will use the notation IO-k to denote an IO camera that

samples k point sets for target prediction. It’s important to remember that the IO cameras

usually cannot be used as an online planner for tracking a large group (e.g., more than

50 targets) because of the large number of visibility checks between the sampled target

positions and camera configurations in every time step.
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4.2.2 VAR Camera

VAR camera is loosely based on [118]. Here, we preprocess the environment to obtain

information about the environment in the form of a roadmap and visibility graph. Then, we

use this pre-computed information to make proactive movement decisions in real-time.

Figure 4.3: Illustration of VAR camera

This is done by first sampling a grid of discs D in Cfree. To do this, a grid resolution

∆grid is specified by the user to correspond to the size of the environment and obstacles. For

each grid point, a disc d is created with minimum radius is rmin, and expanded to its largest

collision-free size, up to maximum radius rmax. If d meets such requirements, it is added to

D. The user selection of the resolution ∆grid, rmin, and rmax is critical for ensuring sampling

coverage inside narrow passages.

This grid-based sampling method produces many overlapping discs in D. The area of
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overlap between a pair of discs is referred to a portal. To reduce number of portals and discs,

we first remove discs whose aggregate overlap with other discs is very small. Second, an

iterative pruning algorithm is used to remove the unnecessary discs. This algorithm works

in a greedy fashion. Starting at a random disc, selecting neighboring discs with maximal

overlap are selected, and adjacent unselected discs are pruned. This process is repeated until

there remain no unselected discs.

With this reduced set of discs D, we construct a roadmap R = (V,E) such that V

contains the portals formed by intersections of discs in D, and E contains edges between

two portals if they are are connected by a disc. Additionally, for each pair of discs, a visibility

metric is computed using a method similar to Monte-Carlo raytracing. This process involves

repeatedly drawing line segments between a random point inside one disc to a random

point inside another, and checking if that line segment collides (hits) an obstacle. This ratio

of misses to hits is stored for each pair as the visibility metric.

This visibility data structure, along the portal roadmap R, can be used in a variety of

ways. Our VAR method is a hybrid approach that uses the constructed visibility information

in a reactive behavior when the camera has good visibility of the targets (more than 20%

of the targets are currently visible by the camera), and uses visibility-aware path planning

from [118] to plan short, alternative paths to reach predicted locations of targets when the

camera has poor visibility.

The reactive behavior in VAR works by computing a waypoint for the camera on each

frame, and attempting to move towards it. First, we find a disc dc ∈ D that is closest to

C, and a disc dr ∈ D that represents an imminent occlusion risk. That is, the disc dr is

selected as one that is in the direction of the visible targets’ velocity, closest to the location

of the visible targets, and whose visibility from the closest disc to C is less than 100%. An

example of computing dr, a risk zone, is shown in Fig. 4.2.2. Once dr is computed, two

waypoints are selected along the ray extending from dr and passing through dc. The first

waypoint leads the group of targets (it is on the side of the group that is in the direction of

the group’s aggregate motion), and the second waypoint is selected trailing the group. The
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camera attempts to move to the closest of these two waypoints. Using two waypoints in this

way prevents C from having to move to the other side of the group to chase a waypoint if

the target group suddenly changes direction, allowing the camera to take advantage of risk

prediction regardless of whether it is in front or behind the group.

The visibility-aware path planner, which is used to reconnect with the group of targets

when the visibility is low, is the same as described in [118]. It uses an A* algorithm on the pre-

computed roadmap with a heuristic function to compute a path to the dr that simultaneously

minimizes distance traveled and maximizes visibility of the targets.

4.3 Monotonic Tracking Regions (MTRs)

The main idea of MTR [153, 156, 157] is to (1) partition the free space into regions with

a simple (monotonic) topological feature so that the planner can reuse use the same data

structure and strategy to follow the target group efficiently, and (2) utilize the fact the targets

form a coherent group.

The first step of this method decomposes the environment into a set of monotonic tracking

regions (MTRs). These regions usually look like tunnels and may overlap with each other.

Intuitively, in these tunnel-like regions, the camera can monotonically maintain the visibility

by moving forward or backward along a trajectory that supports the tunnel. More specifically,

the main property MTR is that each MTR is topologically a linear subdivision so that the

problem of visibility-based pursuit in a MTR can be represented as a linear programming

problem. Two examples of MTR and their support paths are shown in Fig. 4.4.

Note that such a MTR needs not to be convex or star shaped, and, in fact, it can have

an arbitrary number of turns (like a sinuous tunnel). Moreover, MTR decomposition usually

creates much fewer components than convex or star-shaped decompositions but, as we will

see later, still provide similar functionality in visibility-based pursuit. However, one can draw

similarities between the support path of a MTR and the kernel of a star-shaped object S. The

kernel of S is a set of points that can see every point in S, thus by placing the camera in the
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kernel we can always track the targets. Similarly, with more relaxed restriction, the points

along support path of a MTR can collectively see every point in the MTR, thus, by moving the

camera along the path, we can always track the targets.

Obstacl
e

Obstacle

Obstacle

(a)

Obstacl
e

Obstacle

Obstacle

(b)

Figure 4.4: Two examples of MTRs (the shaded areas) and their support paths.

Once all the MTRs are extracted from the given environment, the online real-time planner

will (implicitly) construct a global graph, called a transition graph, whose nodes are the

subregions of MTRs. The nodes are connected if their subregions overlap. Since the graph is

constructed upon the MTRs, the size of the graph is rather small even for a complex, realistic

scene. Initially, the planner uses the transition graph to construct a breadth-first search (BFS)

tree rooted at the MTR that the camera and the target reside in. The depth of the tree is

proportional to h, a user-specified time horizon. During the online planning, the planner

will update the BFS tree when the camera and target move to different regions.

In addition, we identify the intersections of MTRs. These intersections can help us to

form critical areas in which the camera can regain visibility if the target has escaped. We call

these intersections kernels in the sense similar to the kernel of a star-shaped polygon that

can significantly increase the chance of seeing every point in the polygon. When the camera
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is in the kernel of two MTRs, the camera can see (and follow) the target regardless which

region the target is in.

Our planners also take advantage of the fact that the camera is pursuing a group of

somewhat coherent targets. When the number of the targets visible by the camera is smaller

than the total number of the targets, the planner will generate a set of ghost targets in the

invisible regions of the workspace nearby the visible targets. Fig. 4.5 shows two examples

of ghost targets. Note that the planner does not distinguish if a target is visible or is a

ghost. Therefore, the planning strategy described in the previous sections remains the same.

The positions of the ghost targets are estimated based on the following assumptions: (1)

targets tend to stay together as a group, and (2) invisible targets are in Cfree outside the

visibility region of the camera. Therefore, even if targets are invisible, they must be in some

occluded regions nearby. Our experiments (in Section 4.4) show that the idea of ghost

targets significantly increases the visibility.

Obstacle

Obstacle

Obstacl
e

(a)
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Figure 4.5: Two examples of ghost targets in MTR camera. The invisible targets are shown as
dark (red) circles, and the ghost targets are shown as small dots near the invisible targets.
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We first provide a more precise definition of MTR and then we describe the process of

computing these regions in Section 4.3.1. In Sections 4.3.2 and 4.3.3, we will discuss how

to track the target in a single MTR and then in multiple MTRs.

4.3.1 Building Monotonic Tracking Regions (MTRs)

We let a 2D region Mπ be a 2D generalized cylinder defined with respect to a supporting

path π. We say π is a supporting path ofMπ if every point x ∈ Mπ can see a subset of π.

Because of this property,Mπ can essentially be viewed as a linear object and the camera

can see every point inMπ by moving along π.

Definition 4.3.1. Mπ ⊂ Cfree is a region supported by a path π ifMπ = {x | ∃y ∈ π s.t. xy ⊂

Cfree}, where xy is an open line segment between x and y, and Cfree is the free space (i.e., the

area without obstacles).

Furthermore, we define the subset of π visible by x as: Vπ(x) = {y ∈ π | xy ⊂ Cfree} .

Note that Vπ(x) can have one or multiple connected components. Finally, we define MTR:

Definition 4.3.2. A regionMπ ∈ F is a MTR supported by π if |Vπ(x)| = 1, ∀x ∈Mπ, where

|X | is the number of connected components in a set X .

Because each x ∈ Mπ can see only an interval of π, we can compactly represent the

visible region (called visibility interval) of x as a tuple Vπ(x) = (s, t), 0 ≤ s ≤ t ≤ 1, if we

parameterize π from 0 to 1. Fig. 4.6 shows an example of MTR and its supporting path π.

π
x

Vπ(x)

Figure 4.6: An example of monotonic tracking regions defined by π
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With the definition in hand, our task here is to first find a set of supporting paths whose

MTRs will cover Cfree, and, next, from a given path π, we compute the associated MTR and

the visibility interval Vπ(x) for every point x in the MTR. We will describe these two steps in

detail next.

Constructing supporting paths. Our strategy here is to find the homotopy groups G of

the Cfree. We propose to use the medial axis (MA) of the Cfree to capture G because of its

several relationships with MTRs. First of all, we can show that the retraction region of every

edge π on the MA forms a MTR (supported by π).

Lemma 4.3.3. The retraction region R ⊂ Cfree of an edge on the MA forms a MTR.

Proof. Let π be an edge on the medial axis MA of Cfree. The retraction region R ⊂ Cfree of

π is simply a set of points that can be continuously retracted to π by a retraction function

r : R→ π [160]. By definition, given an arbitrary point x ∈ R, the largest circle c centered

at the point r(x) with x on c’s boundary must be empty. Therefore, it follows naturally that

each point in R must be able to see at least a point on π.

Now we briefly show that each point x can only see a consecutive region of π. We prove

this by contradiction. Assuming that x can see multiple intervals of π. This means that

there must be an obstacle between x and π. However, this contradicts the fact that x can be

retracted to π in a straight line. Thus, we conclude that R forms a MTR.

The supporting paths are simply constructed by extracting the edges from the MA of a

given environment. These paths only intersect at vertices, i.e., no paths share any common

edges. More specifically, we extract the paths by iteratively finding the shortest path from the

MA that does not overlap with the previous extracted path. This can be done by constructing

the short path trees rooted at every vertex using Floyd-Warshall algorithm.

Constructing MTRs. Given an edge π of MA, its retraction region R forms a MTR sup-

ported by π. However, simply using R as π’s MTR can be overly conservative. The set of

points that satisfy Eq. 4.3.1 and 4.3.2 is usually larger than R. To address this issue, we

iteratively expand R by considering the points adjacent to R until no points can be included
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without violating the definition of MTR. Next, we compute the visibility interval for every

point in a MTR. The brute force method for computing the visibility interval for each point

time consuming. To speed it up, we use the following observation.

Observation 4.3.4. If x and x′ are (topological) neighbors, and x is further away from π than

x′ is, then Vπ(x) ⊂ Vπ(x′).

For example, in Fig. 4.6, imagining a point x′ below x, x′ can see a larger interval of π

than x does. That is if we can compute the visibility intervals Vπ(x′) for all the points x′ on

π, then we should be able to obtain the visibility intervals for x that are 4d away from x′ by

searching inside Vπ(x′).

Dominated MTRs. The exact MA of a given environment can contain small (and in many

cases unnecessary) features and result in many small MTRs. In many cases, these MTRs are

unnecessary and should be removed. This is when a MTR is dominated by another MTR. We

say MTR M ′ is dominated by another MTR M if M ′ ⊂M . In our implementation, we use an

approximate MA [160] to avoid small features, and identify and remove dominated MTRs.

4.3.2 Pursuing the Targets in a MTR

The motivating idea behind decomposing the environment into a set of MTRs is that the

visibility-based pursuit problem in MTR can be solved much easily than that in the original

environment. In fact, as we will see in this section, the camera can solve a long time horizon

plan in MTR using linear programming.

Follow a single target. To simplify our discussion, we will first describe how a single

target can be tracked in MTR. Let xτ (t) be the current position of the target τ at time t. Since

we know the current speed of the target, we can estimate the positions xτ (t +4t) in the

next time step, i.e., the intersection of F and a disc with radius4t · vmaxT . To keep the target

in the view, the camera’s next position xC(t+4t) must be:

xC(t+4t) ∈ Vπ (xτ (t+4t)) =
⋂

x∈xτ (t+4t)

Vπ(x) .
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Note that this estimation can be applied to an arbitrary value of 4t. However, when 4t is

bigger, the position of the target becomes less accurate. Let Ii = Vπ(xτ (t+ i · 4t)) = (si, ti).

Here i is an integer from 1 to h, where h is the user-defined time horizon. Recall that both

si and ti are parameters on the path π. In order to follow the target for h steps, the planner

needs to find a sequence of camera locations xi from a sequence of parameterized intervals

such that every point xi is in its corresponding interval Ii without violating the constraint

on the camera’s max speed i.e., |xi − xi−1| ≤ vmaxC . In addition, one may desire to minimize

the distance traveled by the camera. Taking all of these into consideration, this problem can

be formulated as an h-dimensional linear programming (LP) problem:

min th − xh
s.t. si ≤ xi ≤ ti

0 ≤ (xi+1 − xi) ≤ vmaxC
|π| ,∀xi ,

(4.2)

where vmaxC /|π| is the maximum normalized distance that the camera can travel on π. Finally,

the camera’s future locations are simply xC(t+4t · i) = π(xi).

Note that the rationale behind the minimization of (th−xh) is that when the target moves

further away beyond h steps in the future, the camera will have better chance of keeping the

target in the view when it is located closer to th along the path π. We call the above linear

programming problem the canonical pursuit problem. Solving a canonical pursuit problem

can be done efficiently since h is usually not large (h = 20 is used in our experiments) given

that modern linear programming solvers can handle thousands of variables efficiently. It is

possible that the linear programming problem has no feasible solution, in which case we

reduce the plan horizon iteratively until a solution is found.

Follow multiple targets. Now, we will extend this canonical pursuit problem to handle

multiple targets T . Let xT (t) be the current positions of the targets T . Similar to the case of

a single target, we estimate the positions xT (t+4t) in the next time step. In order to see a
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least one target, the camera must move so that

xC(t+4t) ∈
⋃
τ∈T
Vπ(xτ (t+4t)) =

⋃
τ∈T

 ⋂
x∈xτ (t+4t)

Vπ(x)

 .

To simplify our notation, let Ii =
⋃
τ∈T Vπ(xτ (t) + i · 4t) = (si, ti). By placing the camera in

Ii, we can guarantee that at least one target is visible. However, our goal is to maximize the

number of visible targets, at least over the planning horizon. To do so, we segment Ii into j

sub-intervals Iji , each of which can see nji targets. Fig. 4.7(a) shows an example of Ii defined

as the union the all the visibility intervals Vπ(xτ ) of the targets τ . Note that Ii may contain

multiple connected components. Fig. 4.7(b) shows the subdivision of Ii (i.e., subintervals

Iji ) bounded by the end points of Vπ(xτ ). Each Iji is associated with the number of visible

targets nji . When the velocity of the camera is unlimited, then the optimal strategy is to

pick the subinterval Iji with the largest nji in each Ii, i.e., Ii is shrunk to Iji . Thus, instead of

solving the pursuit problem using Ii, the subintervals Iji will be used. See Fig. 4.8.

From Fig. 4.8, one can also see that the distance that the camera has to travel from x2

to x3 is quite long, thus the camera will need to move very fast to maintain the maximum

visibility. When the camera speed is bounded, this may not always be possible. Therefore,

we need a way to select a subinterval from each Ii so that the total number of visible targets

is maximized while still maintaining the constraint that the minimum distance between

Iji ⊂ Ii and Iki+1 ⊂ Ii+1 is smaller than 4t · vmaxT . More specifically, we would like to find a

solution to the following problem:

arg max
{ji}

(
h∑
i=1

njii

)
s.t. dist(Ijii , I

ji+1

i+1 ) ≤ 4t · vmaxT ,∀i ,

where ji is the index of the ji-th subinterval in interval Ii, and dist(x, y) is the closest distance
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Figure 4.7: (a) The interval Ii = (si, ti) = ∪τ∈TVπ(xτ ). (b) The interval Ii is segmented into
9 subintervals, each of which is a set of points in π that can see the same number of targets,
which is shown below each interval.

between two subintervals x and y. Although, at the first glance, this problem seems to be

another LP problem, fortunately, Lemma 4.3.5 shows that the optimal subintervals can be

found in O(hn2) time, where n is the number of targets and h is the time horizon.

Lemma 4.3.5. Finding all Ijii takes O(hn2) time for n targets and h planning time horizon.

Proof. The main idea is to construct a directed graph from these subintervals and the current

position of the camera, and show that this graph must be a DAG with O(hn) vertices and

O(hn2) edges. Then the problem of finding a sequence of optimal subintervals become the

longest path search problem in the DAG, which can be solved in time linear to the size of

the graph.

To construct such a graph, we first define the idea of reachability. Given two subintervals
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Figure 4.8: Making predictions for the next h = 4 future steps.

u and v from two consecutive intervals, the reachable interval r(u, v) ∈ v is a set of points

in v that the camera can reach from u in one step without violating the speed constraint.

If r(u, v) is not empty, then we say v is reachable from u. Note that the reachability can

be nested, i.e., given three subintervals u, v, and w, we say that w is reachable from u if

r(u,w) = r(r(u, v), w) is not empty. In the graph that we will construct, we ensure that every

node in the graph is reachable from the current position xC of the camera. Finally, we say

that a subinterval v is reachable by the camera if r(xC , v) is not empty.

Specifically, we let the current position xC of the camera be the source of the graph and

let the subintervals be the rest of the nodes in the graph. The source are then connected to

the subintervals in I1 that are reachable by the camera. The each reachable subinterval in I1

are connected to the subintervals in I2 that are reachable by the camera. The process repeats

until the reachable intervals in Ih are connected by those in Ih−1. Note that since we only

need to pick one subinterval from each interval, the subintervals within each interval are not

connected. Finally, we let the edge weight be the number of visible targets in the destination

node. The graph constructed this way must be a DAG since there is no back edge. Any path

the connects the source to a sink will contain a sequence of valid subintervals. Thus, finding

the maximize number of targets visible from these subintervals is equivalent to finding the

longest path in the DAG, which can be solved in linear time using topological sort. Since

each interval will have Θ(2n) subintervals and two consecutive intervals will have 4n2 edges,

this DAG has O(hn) vertices and O(hn2) edges.

Regaining visibility of an escaped target. Since the topology of the MTR is linear,

regaining the visibility of the escaped target in a MTR is straight forward. When the target

63



escapes the camera’s view, the camera can move along the supporting trajectory of the MTR

toward target’s last visible point in its maximum speed. Note that this strategy has two

benefits. First, it allows the camera to gain visibility faster than moving the camera to the

target’s last visible position (due to the triangular inequality). Second, staying on defining

trajectory allows the camera to maintain larger view range to prevent the target to escape

from one blind spot to another blind spot. This simple idea works well when the escaped

target remains in the MTR. The more difficult situation is when the target has potential of

escaping to the other MTR. This leads us to the strategies for following the target across

MTRs.

4.3.3 Following the Target Between MTRs

In this section, we will discuss strategies to follow the targets across MTRs. Without loss of

generality, we only consider the case with two MTRs. The same approach can be naturally

extended to handle three or more intersecting MTRs by decomposing the problem into pairs.

M

M �

x0

xh

xh

xh
xi

obstacle

obstacleobstacle

obstacle

Figure 4.9: Tracking in multiple MTRs

Given two MTRs, M and M ′, we let X = M ∩M ′. The intersection X of two MTRs plays

two critical roles. On the one hand, when the target enters X, the possibility for the target
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to escape increases. On the other hand, when the camera enters X, the possibility of seeing

the target increases.

Recall that we plan the camera’s location by predicting the targets’ future locations

xT (t +4t) and by computing the visible intervals I(4t) of xT (t +4t). When xT (t +4t)

reaches X, each xT (t + 4t) can have two intervals, one in M and the other one in M ′.

To compute the future locations of the camera, we solve at most four canonical following

problems. Two of these are in M and the other two are in M ′. Fig. 4.3.3 shows an example,

in which the targets may move from M to M ′ after time step i. Therefore, the camera will

solve one canonical following from step 0 to i and three canonical following problems from

step i to h. Finally, the best solution that maximizes the visibility will be used to move the

camera.

To generalize the case described above, we consider the case that the time horizon is

long enough so that xT (t + 4t) cross more than two MTRs. It is natural to maintain our

plans in a planning tree. The root of the tree is camera’s current location and has exactly two

children, which define two sub-trees: one for x+(t+4t) and the other one for x−(t+4t).

The internal nodes in the tree are critical points in X and the edges are visible intervals in

the corresponding MTR. The degree of the node is at most two times the number of MTRs

intersecting at X. The number of canonical following problems is therefore equal to the

number of edges in the tree. As the camera moves but stays in the same MTR, the tree will be

updated in a way similar to Section 4.3.2, but updates are applied to the leaves of the tree.

When the camera enters the intersection zone X in one time step, the root of the tree moves

between a child node n of the root and n’s child, i.e., the structure of the tree changes. The

canonical problems corresponding to the new edges created near the root will need to be

solved.

Regaining visibility of the target. When the target has escaped “near” the intersections

of MTRs, regaining the visibility of the target is not as easily as the case we described in

Section 4.3.2. There are two difficulties here. First, when should we decide when the target

may escape (and try to prevent that) and what we should do after the target has escaped.
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To address the first issue, our idea is similar to escape risk estimation [9, 62], which

computes the possibility of the target escapes around a corner. We estimate the risk of the

target escapes to another MTR. More specifically, we compute the minimum escape time (MET)

from each point in MTR. We first define the MET for each point x in M w.r.t M ′ as:

τ(x ∈M,M ′) = min
y∈M′

dist(x, y)/VT ,

where M′ ⊂ M ′ is a set of points in M ′ that cannot see the supporting trajectory of M .

Finally, we define the (MET) in M as:

τ(x) = min(τ(x,M ′)),∀M ′,M ′ ∩M 6= ∅ .

To prevent the target escaping into other MTRs, the strategy for the camera is to reach

the safe zone before the MET of the target becomes zero. We define the safe zone in M as:

safe-zone(X) = {x ∈M | d(x,X) ≤ τ(x) · vmaxC } .

From the definition, it is clear that when τ(x) is zero, the camera must be in X. It is also

obvious that this estimation of the safe zone is conservative. That is, some points with zero

MET are visible outside the safe zone. Therefore, we only encourage the camera to stay in

the safe zone if τ(x) is smaller than ε, a user define value. When target has escaped, the best

strategy for the camera is to enter the safe zone at max speed.

4.3.4 MTR Architecture

Offline computation. Instead of a continuous space, our implementation is built on a regular

grid which uniformly discretizes the workspace. The dimension of the (square) grid cell is

the size of a target. We first approximate the workspace’s medial axis MA using [160] and

compute a MTR for each MA edge. Each MTR is a collection of cells that can see part of its
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supporting path π. Each cell in the grid stores (1) a boolean variable which indicates if it

is in Cfree, and (2) a list of linked MTR cells, denoted as σM . Each σM belongs to the MTR,

M and stores the visibility interval Vπ(σM ) = (si, ti). An illustration in Fig. 4.10 illustrates

this. Advantages of using grid-based representation also include efficiency and applicability

to video games and mobile robots, which often store the environmental data in bitmaps.

Although we choose regular grid as our main data structure, other representations, such as

topological graphs, can also be used, for example, when memory is strictly limited.

σM1

σM2

∅

in M1

in M2

workspace pixel
σ

Figure 4.10: Data structure used in implementation.

Online computation. This is where the actual visibility-based pursuit takes place. In

every time step, the camera obtains a list of visible targets, and computes the ghost targets

accordingly (see below). To update the existing plan, the positions of the visible and ghost

targets are used to retrieve occupied MTRs and visibility intervals from the pre-computed

grid, which acts like an open hash table. Then, the canonical following problems, if any,

associated with the new MTRs are solved. The camera then simply follows the trajectory that

maximize the visibility.
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4.3.5 Finding the Group in MTRs

In this section, we briefly show that finding a group of coherent targets with unknown

trajectories is easier in general and can be done asymptotically more efficiently than finding

a single target. The main idea in our analysis is that by considering the minimum area

occupied by the group, we can reduce (sometimes drastically) the difficulty of the searching

problem, both geometrically and topologically.

x T y

(a) indoor: local concavity

a

b
c

de

T

(b) tunnel: global concavity

m

n
T
n′

m′

(c) city blocks: topology simplifica-
tion

Figure 4.11: Three cases showing that searching a group of coherent targets can be done
asymptotically more efficiently. See text in Section 4.3.5 for more details.

Consider the two environments shown in Fig. 4.11. Each environment presents a scenario

in which searching for a group can be done more efficiently than a single target. First, in an

indoor-like environment, there can be a long corridor with many rooms (offices or cubicles),

which we call local concavity. Small local concavity can also appear quite often in modeling

errors in workspace geometry (due to numerical, sensor or human errors). In the case of a

single target, the camera needs to go into every local concavity in order to ensure that the

target is not hiding inside the concavity (e.g., x in Fig. 4.11(a)). Moreover, without multiple

collaborative cameras, it may be impossible to exhaustively search the entire workspace

in Fig. 4.11(a) because when the camera enters one of the rooms, other rooms may be

(re-)contaminated. However, when we consider a coherent group T that is large enough to

compactly occupy the local concavity such as T in Fig. 4.11 (a), the entire workspace can

be cleared by simply placing the camera at y looking toward its left.
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Second, we see a similar scenario in an environment with sinuous tunnel(s). For example,

Fig. 4.11(b) requires the camera to move from a to d in order to search the entire tunnel for

a single target; while in the case of a group T , the camera may only needs to move to b. We

call this situation global concavity, in which a single camera can always clear the workspace

for a single target but might take more time in doing so than looking for a target group.

Third, in the city-blocks-like environment shown Fig. 4.11(b), we can see another exam-

ple where no algorithms can guarantee to find a single target since the environment has

many cycles. Therefore, a target can always hide behind an obstacle. In the case of multiple

targets, if the group T is large enough to span over two (horizontal) Homotopy classes (as

shown in Fig. 4.11(b)), the camera can clear the environment by traversing any vertical or

horizontal corridor, from one end to the other. The reason why the camera does not need

to walk around each obstacle can be shown easily. By placing the camera at n and then at

m, if the camera cannot see any targets to its right in both places, e.g., at n′ and m′, (within

a certain time) this indicates that there cannot be any targets between n′ and m′ because

there is not enough space to fit the entire group T .

The above mentioned strategies reduce the search complexity to constant and to O(n)

for Figs. 4.11(a) and (b), respectively, where n is the complexity of the environment. Both

scenarios can be efficiently identified offline since we assume that the environment and the

size of the targets are known. More specifically, in every MTR in the environment, we place

the group at the end points of its supporting path and determine if the (either local or global)

cavities are filled by the group, or if MTR is connected with the neighboring MTRs.

4.4 Experiments with IO, VAR, and MTR

In our experiments, the target group is constantly moving toward a random goal, which is

not known by the camera. If all targets are invisible, the camera will stay still. Throughout

the experiments, we measure the performance of the cameras by computing the normal-

ized visibility, or the ratio of visible targets during the entire simulation. Every data point
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presented in this section is an average over 32 runs, each of which is a 10000 time-step

simulation. The planning horizon is h = 20 for all MTR cameras.

(a) disc (b) bars (c) islands (d) tunnel

Figure 4.12: Environments used in MTR experiments

We performed our experiments in the four workspaces shown in Fig. 4.12. These workspaces

are designed to test the performance of the cameras in various conditions, such as large

open space (disc), open space with narrow gaps (bars), small irregular obstacles with many

narrow gaps (islands) and long sinuous narrow passages (RSS). Both islands and tunnel en-

vironments are considered difficult as the targets tend to separate around the small obstacles

or hide behind a bend in the passage.
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Figure 4.13: Visibility results for pursuing 50 targets in four environments using reactive, IO,
and MTR approaches.

MTR generally outperforms other strategies. Our first experiment in Fig. 4.13 shows
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strong evidence that MTR camera consistently achieves better normalized visibility than

the other cameras when following 50 targets in all environments. It is also clear that the

reactive camera has the worst performance. Note that we also include data called upper

bound obtained from a MTR camera that has no speed limitation, i.e., it can move to the best

configuration instantly. The strong performance of MTR is further supported by the small

difference between the MTR camera and the upper bound in all four environments.

In the simple disc environment, all of the algorithms perform similarly. However, as

the complexity of the environment increases in different ways, the difference between the

algorithms becomes clear. For example, it is clear that the reactive camera performs worst,

except in the disc environment. The VAR camera is the second worst, except in the RSS

environment. However, as we will see, the VAR camera seems to handle large groups and

faster moving targets better because of its enhanced ability to estimate risks. Furthermore,

although IO cameras perform well in some situations, IO-25 in the bar environment is more

than 200 times slower than VAR (≈2600 fps) and 12 times slower than MTR (≈157 fps),

and thus cannot be used in many applications, such as real-time task monitoring and video

game. There is no significant difference between IO-25 and IO-50.

Experiments with ghost targets. In the experimental results shown in Fig. 4.14, we

attempt to estimate quantitatively the performance gain due to the idea of ghost targets (GS).

Our result shows that the performance gain is more significant in more difficult environments.

If compared to the (very time consuming) IO cameras in Fig. 4.13, MTR without GS is only

slightly better in the island and RSS environments, but there are significant differences

between the IO cameras and MTR with GS.

Varying target group size and target speed. We also attempted to gain better under-

standing of the MTR camera in relation to the other camera methods by varying the size and

the maximum speed of the targets. In Fig. 4.16(a), we vary the sizes of the targets from 10

to 100, and can see that the size change has little effect on their performance, except in the

RSS environment. By further examining the simulations, we observed that this performance

drop is in fact inevitable (unless perhaps multiple cameras are used) because it is simply
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Figure 4.14: Comparing MTR cameras with and without ghost targets.

impossible for a single camera to see the entire group, e.g., when the group contour bends

with the environments.

In Figure 4.16(b), we vary the speed of the target from 1
2 (which is what used in the

previous experiments) to twice the camera speed. When the targets and camera have the

same maximum velocity, MTR keeps more than 70% visibility of the targets in all environ-

ments and is still significantly better than other cameras. However, when the targets are 1.5

times faster than the camera, the performance of MTRdrops quite significantly, especially in

the island and RSS environments. Again, we found that this performance drop is due to the

environmental constraints (e.g., when the targets escaped, the RSS environment provides no

shortcut for the camera to re-capture the targets), and is inevitable unless multiple cameras

are used.

4.5 Cached Intelligent Observers

In this section, we describe two methods for visibility-based pursuit we called cached in-

telligent observers: CIOg and CIOc. Both of these methods extend the Intelligent Observer

(IO) [12] (detailed in previous work [156]) by caching visibility information. The main
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structure of both CIOg and CIOc is to separate the method into two parts: pre-processing, exe-

cuted before the simulation starts to gather information about the environment and Cfree;

and behavior rule, which is executed at each time step to control the motion of the camera C.

The main difference between the CIOg and CIOc approaches is the data structure that is used

to store the information about visibility in the workspace. The CIOg camera uses uniform

grid while CIOc covers the workspace with overlapping discs.

In summary, the CIOg method begins by creating a two dimensional grid. For each grid

point, CIOg caches a certain amount of information about not only itself (such as its distance

from the nearest obstacle), but also about other grid points in the network (such as its

visibility to other points). Like its predecessor, IO, at each time step, CIOg uses prediction and

evaluation of camera and target positions to try and find an ideal location for the camera to

maintain visibility of as much of the flock as possible for the next time step.

In CIOc, a slightly different approach is taken to storing visibility information in the space.

First, using disc-like partitions, a roadmap is computed as well as a visibility graph among

overlapping partitions of the workspace. As with CIOg and its predecessor IO, these data

structures are used with successive cycles of prediction and evaluation of future target and

camera positions to make decisions about where to move next.

More details about these two methods are given in the next two sections.

4.5.1 Uniform Partitioning Method: CIOg Camera

Pre-processing. The pre-processing stage of the CIOg camera starts by first setting up a 2D

grid G in the workspace with user-specified grid resolution ∆G. Each grid point is checked

to determine whether it resides in an obstacle, and the visibility between every pair of grid

points in the workspace is computed and cached. This simple pre-processing is used so that

visibility can be quickly queried between areas of the space. To save time, it is possible to

incrementally compute this visibility data as-needed.

Behavior Rule. The behavior rule for CIOg attempts to locally determine the best grid
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point for the camera to move to. To do this, at each time step, given the targets T , the CIOg

method first creates k point sets PT , where k is a parameter set by the user. Each point

set in PT essentially represents |T | predictions, or forecasts for the targets. The predicted

position of each target τ is randomly sampled from the region visible from τ , and is at most

(vmaxT · 4t) away from τ .

At each time step, a set PC of candidate camera positions is selected. Initially, PC contains

all grid points within a user-specified distance r from the camera. Grid points that are either

in collision with the obstacles or not visible from the current camera position are removed

from PC . In a sense, the final set PC at each time step represents the candidate positions for

the camera to move to in the next time step. For each point p in PC , a score is computed by

counting the number of predicted target points in PT that are visible if the camera is placed

at p. An additional weight (a distance bias) is applied to the scores of each point in PC based

on its distance to the targets, to break ties in case two camera positions have a similar score

(this can happen frequently in open spaces, where many camera positions may have the

same visibility of the flock). The grid point in C with the highest score is selected as the

waypoint for the camera in the next time step. In other words, we select the next waypoint

for the camera based on the following formula:

arg max
x∈PC

((
∑
X∈PT

vis(x,X))− α‖X − x‖) ,

where vis(x,X) is the number of points in X visible by x, and α is a scaling factor for the

distance bias. The viewing direction of the camera is selected as the centroid of the visible

members of the targets.

4.5.2 Unstructured Partition Method: CIOc Camera

Pre-processing. The pre-processing stage of CIOc camera is based on the previous method

VAR [156], which is itself based on [118]. Here, rather than compute visibility on-the-fly, we
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preprocess the environment to obtain information about the free space of the environment

in the form of a roadmap and visibility graph. After pre-processing, we can use this pre-

computed information to make movement decisions. The main difference between CIOc and

its predecessor VAR, is in the behavior rule—whereas VAR uses this information to compute

occlusion risks, CIOc uses this information instead to evaluate future camera positions.

The pre-processing is done by first sampling a grid of discs D in Cfree. To do this, a grid

resolution ∆G is specified by the user to correspond to the size of the environment and its

obstacles. At each grid point, a disc-shaped partition d is created with minimum radius rmin,

and expanded to its largest collision-free size, up to maximum radius rmax. If d meets such

requirements, it is added to D. The user selection of the resolution ∆G, rmin, and rmax is

critical for ensuring sampling coverage inside narrow passages.

This grid-based sampling method produces many overlapping discs in D. The area of

overlap between a pair of these discs is referred to as a portal. To reduce the number of

portals and discs, we first remove discs whose aggregate overlap with other discs is very

small. Secondly, an iterative pruning algorithm is used to remove the unnecessary discs.

This algorithm works in a greedy fashion. First, a random disc dr is selected from D. While

there remain no unselected discs, a disc ds is selected with maximum overlap with dr (largest

portal size). All unselected discs that are adjacent to ds are removed. This process is repeated

until there remain no unselected discs.

With this reduced set of discs D, we construct a roadmap R = (V,E) such that V

contains the portals formed by intersections of discs in D, and E contains edges between

two portals if they are are connected by a disc. Additionally, for each pair of discs dp and

dq in D, a visibility metric PV (dp, dq) is computed which represents the average visibility

between points in dp with points dq. First, a basic test is performed by checking the visibility

between the centers and at the extents of the discs. If these are mutually visible, the areas

represented by the discs are assumed to be completely mutually visible and no further

checks are performed. However, if any of these checks pass, Monte-Carlo raytracing is used
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to determine the visibility metric. This process involves repeatedly drawing line segments

between a random point in dp to a random point in dq, and checking if that line segment

collides (hits) an obstacle. The simple ratio of misses to hits is stored for each pair of circles

as the VP (dp, dq).

As with the older VAR method, this visibility data structure along the portal roadmap

R can be used in a variety of ways. The CIOc method uses this information in a reactive

behavior when the camera has good visibility of the targets (more than 20% of the targets

are currently visible by the camera), and uses visibility-aware path planning as in [118] on

the roadmap to plan short, alternative paths to reach predicted locations of targets when the

camera has poor visibility. The next section describes the behavior rule used by CIOc when

the visibility is good.

Behavior Rule. The CIOc method uses a behavior rule that is similar to the previous

method IO. Just like the CIOg approach above, at each time step, given the visible targets

T , the CIOc method (based on [12]) first creates k point sets PT , where k is a parameter,

which represents a set of predicted target positions. Next, the planner creates a set PC of

camera configurations that are at most (vmaxC ·4t) away from PC . To decide the next camera

configuration, we simply determine

arg max
x∈PC

(
∑
X∈PT

vis(x,X)) ,

where vis(x,X) is the number of points in X visible by x.

4.5.3 Incremental Group Visibility: IGV

A major shortcoming of CIOg, CIOc and its predecessor VAR is that they require a significant

amount of offline pre-processing of the environment. We developed an incremental version

of CIOc and CIOg which allows us to build up and cache visibility data online rather than

offline. This visibility roadmap consists of a set of partitions connected to its nearby partitions

76



if it is at least partially visible from those partitions. At each time step, a query is made

to determine whether the roadmap contains all of the information needed to compute

visibility for candidate camera and target positions. If the roadmap does not contain sufficient

information, a new partition in the space is created and the visibility between that new

partition and the existing partitions in the roadmap is computed and stored in the edges of

the roadmap. This roadmap is used at each time step to quickly compute an approximate

visibility between candidate camera positions and predicted target positions.

Like CIOg camera, the IGV camera attempts to capture the visibility between areas of the

space by first setting up a 2D grid G in the workspace with user-specified grid resolution ∆G.

However, unlike CIOg, we do not compute the visibility between each grid point. Instead, we

propose a simple partitioning approach that allows us to aggregate sets of nearby and similar

grid cells into partitions. As we iterate through each grid cell, it is checked to determine

whether it resides in an obstacle, and if it is already associated with a partition. If not, a new

partition is created. Each partition is defined as a circular area in the space with radius that

is proportional to its distance to the closest obstacle. Therefore, near obstacles and narrow

passages, there will be many such partitions, and in open spaces, there will be fewer and

larger partitions. This follows the notion that a higher resolution of visibility is important

near occlusion risks, and a lower resolution is acceptable for open areas of the space where

there are fewer obstacles. After a new partition c is created, every grid cell inside c that is

not already associated with another partition is marked as associated with c. Finally, the

visibility between the new partition and nearby partitions is computed and stored in the

roadmap for future use.

4.6 Experiments with IO, CIOg, and IGV

In this section, we compare the results for the methods IO, CIOg, and IGV. In particular,

IGV is an improvement over the baseline methods because it is able to achieve similar

visibility performance to its predecessors while improving significantly on initialization time,
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Figure 4.15: Screenshots of IGV in a city environment.

particularly on larger environments. In our experiments, we ran our algorithms on several

simulated environments, shown in Figure 4.17. The maximum speed of the targets vmaxT

and the camera vmaxC remain the same for all of the experiments. In each scenario |T | = 30.

For the IO and CIOc algorithms, the number of samples for each target and the camera are

set to 25 and 50 respectively. The time spent in initialization and each application of the

behavior rule are presented as well as the average visibility of the targets after 10000 time

steps. Figure 4.15 shows screenshots of IGV operating in a city environment.

Table 4.1 shows the results for visibility, rule time, and initialization time for each of the

three algorithms on six different environments. What is particularly notable is the increase in

initialization time for the CIOg approach as the environments become larger or more complex.

In the city environment, initialization of the visibility data structure for CIOg takes nearly

two minutes. However, with IGV all of the initialization times are zero, with insignificant

difference in the rule time versus CIOg for most environments. In all environments, IGV

achieves a faster rule time than IO, with no insignificant difference in visibility performance

from IO. In these ways, IGV is naturally a replacement for both IO and CIOg approaches,

achieving the best speed and performance advantages of each.
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Table 4.1: Table of results for tracking 30 targets across several environments. Visibility score
is an average visibility of the targets after 10000-steps of simulation across 30 runs. Visibility
ranges from 0 (no visibility) to 1 (all targets visible). The initialization and rule times are
reported in seconds and milliseconds respectively.

Algorithm Visibility Rule (ms) Init (s)

bars
IO 0.900 10.8 —
CIOg 0.870 1.52 0.7577
IGV 0.889 1.47 —

filter
IO 0.769 13.4 —
CIOg 0.778 2.99 5.1199
IGV 0.770 3.59 —

tunnels
IO 0.541 12.8 —
CIOg 0.533 5.79 3.3247
IGV 0.550 5.96 —

column
IO 0.987 11.1 —
CIOg 0.987 1.45 0.5407
IGV 0.984 1.65 —

pachinko
IO 0.631 22.1 —
CIOg 0.622 9.55 28.5543
IGV 0.611 11.4 —

city
IO 0.749 6.38 —
CIOg 0.803 1.17 130.965
IGV 0.768 1.19 —

4.7 Conclusion

In this chapter, we presented robust and reusable camera planning techniques for visibility-

based pursuit designed around a similar principle to the shepherding work from Chapter 3—

namely, the pre-computation and caching of important geometric information about the

workspace. To evaluate our techniques, we first developed baseline methods IO (based on

the work from [12]) and VAR (based on the work by [118]). In our experiments, we found

that IO was effective, but quite slow due to a large amount of sampling performed online,

whereas VAR was efficient, but required a large amount of recompilation. We also developed

a method called MTR, which is based on pre-processing the known environment offline
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to obtain monotonic tracking regions which can be used the improve the efficiency of the

online planner. Along the way, we also developed several extensions to this work to improve

performance, such as the idea of ghost targets. We developed a class of methods called Cached

Intelligent Observers, which attempt to combine the pre-processing and cached nature of VAR

with the online behavior of IO. Finally, in IGV, we designed a camera system whose data

structure is incrementally generated. These improvements enable planners to tackle very

large workspaces, and provide a better balance between efficiency and performance than

existing methods for large workspaces.
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Figure 4.16: Camera performance with varying target sizes and maximum speeds.
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Figure 4.17: Images of the six environments used for the CIOc and IGV experiments. In
reading order from top left: bars, filter, tunnels, column, pachinko, and city. For the most
part, these environments are similar to those used in previous experiments except for city,
which demonstrates the utility of IGV.
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Chapter 5: Conclusions

The main thread of this dissertation was to explore several ways to achieve better robustness

and scalability for motion planning involving the control and monitoring of swarms by look-

ing at two related problems—shepherding and visibility-based pursuit. In the shepherding

scenario, we found that through geometric abstractions such as meta nodes, deformable

shapes, and space partitioning, it was possible to make more intelligent decisions and pro-

duce coherent plans despite significant uncertainty in the pose of agents. In the pursuit

scenario, we found ways to use offline computation on the geometry of the environment to

greatly increase the effectiveness of online planning decisions, despite uncertainty about the

future trajectory of agents.

5.1 Future Research

The work in this dissertation still has many open problems and concerns. Here, I discuss

future trajectories of work with this framework and some of the preliminary work that

I have done towards those trajectories. For example, meta graph techniques still require

significant amounts of additional sampling to determine edge costs. It is not yet understood

the relationship between the low-level planning techniques and the high-level planners, and

whether a high-level planner can be designed that makes better use of low-level planners.

Deformable pixel blobs to abstract large groups and space partitioning methods like VAR and

MTR are useful, but these methods still rely on the use of 2D grid representations instead

of other potentially more applicable representations such as polyhedra, α-shapes, or 3D

representations. All of the methods I have used in this work still do require significant offline

computation on the environment and for the environment to be at least partially known a
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priori. In most cases, this is justified by the ability to reuse computed data for many queries,

but does not gracefully lend itself towards dynamic environments, where much sampled

data may not necessarily be reusable.

5.1.1 Reusable Manipulation Planning Under Uncertainty

In Chapter 1.1, and in [69, 152], I described how meta graph techniques can be used to

improve the robustness of shepherding. In a sense, the same technique may be applied

towards the more general manipulation problem of posing rigid objects in the plane through

push interactions. The most robust approaches to this problem usually involve grasping [29,

94,124], caging, using special manipulators [22], or require the design of rigorous analytical

models for each new object [42]. Instead, I seek ways to perform this manipulation using

nonprehensile manipulation (only pushing), considering dynamics, and through sampling-

based methods rather than of analytical models. For simplicity, I consider a circular object,

but one with significant dynamics and drifts (for example, a hockey puck resting on ice).

Furthermore, current planners for solving problems with kinodynamic constraints are

usually tree-based planners (e.g., RRT [98], EST [73], PDST [142], and DSLX [123]). The

general strategy behind such approaches is to grow an exploring tree rooted at an initial

state until one of the goal states is (approximately) reached. However, if the initial or an

intermediate state is inaccurate, or shifted a bit (e.g., due to various kinds of uncertainty

and simulation and model inaccuracies), then the plan usually becomes invalid and a new

tree will be built from scratch. Unlike these approaches, I seek to create an approach that is

able to reuse prior computation to enable fast replanning. In addition, I hope to be able to

reuse this data in pursuit problem (Section 5.1.2) so that pursuit and manipulation can be

performed simultaneously (such as in the Simultaneous Localization and Grasping work in

[124]) using the same data.

To achieve robust planning for this scenario, I have developed a graph-based planner

based on the meta graph approach from [152]. This kind of planner generates a reusable

uncertainty roadmap that can be used to perform multiple queries, for both short and long
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horizon planning. The meta graph approach prescribes encoding the configuration of the

target object in a fuzzy manner—that is, instead of a single configuration, each node of the

roadmap acts as a meta node, representing a set of configurations.

I began preliminary research to determine the feasibility of this approach. More specifi-

cally, I considered an instance of a similar polygon pushing problem. This problem poses the

question of how to plan the motion for a cylindrical robot R to move polygonal target object

P from a given initial pose to a given goal pose using only push interactions. The workspace

may be filled with known obstacles that the robot and the object are permitted to touch,

but not penetrate. We assume that R is a holonomic cylinder, and that P is a polygonal

shape. We also assume that a black-box kinodynamic simulator is provided, containing the

obstacles, the robot, and the object. The simulation provides the resulting trajectories of P

and R given control inputs for R.

A configuration of the robot R can be represented as point (x, y) ∈ R2. Likewise, a

configuration for P is represented as a point (x, y, θ) ∈ R2 × S1, and the set of all such

points forms the configuration space C of the polygonal target object. As such, the set of all

configurations where the object is colliding with an obstacle is referred to as Cobst, and the

free space is referred to as Cfree = C − Cobst.

(a) (b) (c)

Figure 5.1: An example pushing scene. The robot is depicted as a red cylinder, and the
target object is the gray bar. In 5.1(a), white circles depict the meta nodes sampled from the
configuration space after overlap reduction is performed. In 5.1(b), white lines depict the
connections in the roadmap between meta nodes. In 5.1(c), a safe corridor is computed for
the target object to move inside the room. The corridor is depicted by a series of connected
circles (meta nodes).
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My method consisted of several phases. First, we create a local planning function LP

that given a starting configuration for P (pstart), and a desired destination configuration

for P (pdest), outputs a push manipulation that supports moving P from Pstart to Pdest. To

do so, we sample information about how P will move when it is pushed by R from various

angles. We store this information as points in a KD-tree so that when we are given the inputs

pstart and pdest, we can quickly look up the closest sampled push manipulation that supports

pushing P to pdest. Furthermore, for each manipulation, we also sample many times with

random perturbations, to simulate uncertainty that may arise from imperfectly executing

pushes. This information will be used later in roadmap generation to compute probabilities.

Next, we build the roadmap using this data. In general, we first seek to generate meta

nodes which capture sets of states rather than single states, and then we connect them with

edges whose weights reflect the probability of successful transit from one meta node to the

next. We begin by sampling from the free space. Many sampling techniques can be used; we

use the sampling technique from Gaussian PRM [104], mixed with uniform sampling. We

convert each configuration s from the set of samples into a meta node by building a sphere,

centered at s, with pre-defined radius. Configurations that lie within the sphere defined for

a configuration s are thus considered to be conforming to the meta node for s. An example

environment with sampled meta nodes is shown in Figure 5.1(a). This sampling process

may lead to many overlapping meta nodes, so we also attempt reduce the number of meta

nodes in the roadmap by removing meta nodes that have significant overlap.

Finally, to complete the roadmap, we connect meta nodes that are in close proximity. The

edge between two nodes, sa and sb is given a weight that is computed based on sampling the

number of feasible, successful pushes between uniformly random configurations conforming

to sa, and any configuration conforming to sb. The number of successful pushes versus

the number of attempted pushes at an edge provides us with a metric that can be used

to estimate the probability of successfully pushing an object from some state conforming

to node sa to some state conforming to sb, in the presence of the obstacles. Other metrics

can be used, such as the average probability of success. Figure 5.1(b) shows our example
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environment with a constructed roadmap.

Given the weighted roadmap, we compute an all-pairs shortest path. This information is

stored so that upon any query, a sequence of meta nodes can be quickly obtained that has

the greatest probability of successful manipulation. We call this sequence of meta nodes a

corridor, representing many possible paths for pushing P . Figure 5.1(c) shows an example

corridor extracted from a query in the example scene. This corridor represents a robust

path and can be used online quickly and efficiently to generate a final trajectory. Since the

corridor is a significantly reduced subset of the free space, it can be used to focus search in

another simple planning algorithm such as A-star, PRM, or RRT. Another relevant possibility

is to apply the previous foraging work in [72] to continuously improve the meta graph.

Meta nodes in the graph take the place of beacons, and can be continually re-arranged and

assigned updated fitness as new paths through the space are sought and evaluated.

It is possible to develop a method that “learns” how to manipulate the target object by

sampling repeated pushing interactions. This is motivated first by the notion that caching

manipulation data may be useful if the same object may be manipulated many times by

the same robot, and secondly by the notion that sampling manipulation results from either

a simulated or real robot is easier and more generalizable than attempting to analytically

derive control laws for pushing objects. I have completed preliminary work where many

push interactions are sampled on a polygonal object and the collected data is used to build

a roadmap that is used for manipulation planning. Currently, I have implemented a baseline

approach which uses the sampled push data as a local planner for a simple high level

EST approach. However, because the sampled push data does not consider obstacles, this

approach sometimes fails to find successful plans. However, I have also implemented a

method that works by grouping potentially similar push results together (a meta graph style

approach), and developing a roadmap that captures the probability that an object can be

successfully manipulated from one set of configurations to another. By doing so it is possible

to compute the path with greatest probability of success, and focus sampling where it is

needed most to solve the problem efficiently.
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Such work can lead to the development of a framework for the Simultaneous Tracking

and Manipulation Problem, or STAMP. When manipulating an object, the movements used

by a shepherd to manipulate a flock may not take into consideration the fact that the robot

can lose sight of the flock. Likewise, the movements made by the robot to ensure visibility

of the flock may cause the robot to lose control of it. Our objective in STAMP would be to

find ways to balance these objectives so that all of the goals can be met simultaneously.

5.1.2 Robust Pursuit With Visibility and Uncertainty in 3D

As we have described in Chapter 1, to manipulate an object, it is important to be able

to track its position. Therefore, in [153–156], we previously experimented with several

different methods to solve an instance of the visibility-based pursuit problem. Our two most

successful techniques, VAR and MTR, involved partitioning the free space of the environment

into topologically connected regions which provide our planner a view of both the mobility

of agents in the space as well as the visibility between different regions of the free space.

Nevertheless, there is much room for improvement. For example, the roadmap in VAR is

constructed based on partitioning the free space into a network of overlapping hyperspheres,

and computing the visibility between those spheres. The sphere centers are selected by pick-

ing free configurations from a fixed grid, and the maximum radius of the spheres generated

from those configurations is given as input by the user. This method of partitioning the

environment has several limitations. First, to ensure coverage of narrow passages of the

space, it is required to have a fine resolution grid, which can greatly increase the number of

partitions and the sampling required to compute the roadmap. Furthermore, it is important

that each sphere in the roadmap accurately represents points of the space that have similar

visibility properties, so that clear decisions can be made about which areas of the space are

visible from other areas of the space. However, by sampling on a rigid grid, it is common to

end up with spheres containing points that have very different visibility characteristics. To

reduce these problems, we seek a space partitioning method that can be performed on 3D

environments, and is less sensitive to discontinuities or noise in the environment model.
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Fortunately, the VAR method is amenable to improvement in this area. Therefore, to

address the issues, it may be possible to compute the visibility-aware roadmap in VAR based

on a combination of sampling and clustering. That is, to produce a space partitioning such

that each node in the roadmap represents a set of points with similar visibility. This is done

by first sampling n points S from the 3D space. For each point p ∈ S, we determine two

types of connections: a visibility connection v(p, q) if two points p and q are visible from

each other, and a neighborhood connection n(p, q) if two points p and q are neighbors.

We then cluster the points. To do so, we must first define a relevant metric for clustering.

Here, we define the visibility integrity, which measures how accurately a set of points are

indeed visible by a cluster of points. We compute and update visibility integrity to estimate

the loss of visibility that occurs after merging two clusters. Let C be a cluster of points. If

C contains only a single point p, its visibility V (C) is simply all points visible from p. If C

contains multiple points, then V (C) is the union of all points visible from the points in C,

i.e., V (C) =
⋃
p∈C V (p). For each point q in V (C), we measure the visibility integrity of q

with respect to C. We denote this measure as a function vi(q, C) that maps a point q and a

cluster C to a scalar value between 0 and 1. When vi(q, C) is 1, then all points in C can see

q. Likewise, if vi(q, C) is 0, q is invisible from any point in C. Then, we define the visibility

integrity of C as the average of visibility integrity of all points in V (C), i.e.,

vi(C) =

∑
p∈V (C) vi(q, C)

|V (C)| .

Intuitively, when visibility integrity is low, that means there are regions that are visible by

some points in the cluster but are not visible from most of the points. Therefore, a cluster

with high visibility integrity is more desirable. Note that the visibility integrity is always 1

when C contains only one point.

Then, for each neighborhood connection e = {U, V }, we assign a weight to e by comput-

ing the visibility integrity vi(U ∪ V ). We cluster points based on the order of their visibility
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integrity. Our approach maintains neighborhood connections in a max-heap and iteratively

collapses neighborhood connections with the highest visibility integrity. This process repeats

until the highest visibility integrity is lower than a user specified value. We believe that this

value is intuitive enough to be specified by a näıve user.

Each point s in the original sample S now has the information about the clusters that

are likely to be visible from s. Moreover, the cluster that has the highest visibility integrity

to s is usually the cluster that contains s. When the camera is pursuing a single target

t, our planner simply finds the k closest points around t and identifies the clusters that

are commonly associated with these k points. The camera then determines its next target

configurations by selecting a cluster and a configuration in the cluster which minimizes the

travel distance and maximizes the visibility integrity. The motion of the camera is simply

determined by a smooth and collision free path that brings the camera to the target. When

the camera is pursuing multiple targets T , the planner will select K points that are closest

to T . From these K points in the roadmap, the camera decides its next position based on

the same strategy.

One way to make such decisions is to use the computed visibility meta graph computed

from the clustering approach to estimate which parts of the space represent risks not just

in loss-of-visibility but also loss-of-localization. This information permits our camera sensor

to localize objects in known environments without maintaining constant visibility, and po-

tentially reduce the amount of movement necessary by the sensor to keep track of a target.

These abilities are important for robustness because even if the visibility of the target is lost

(leading to pose uncertainty). It ensures that sensor still has retained enough information

to make decisions about where the mobile sensor can move, and optimize the probability of

rendezvous with the target and predict the likelihood of escape. The idea of finding areas of

the space that represent visibility risks is similar to the idea of finding relocalization zones,

a concept used in [121] to plan paths that reduce localization uncertainty by maximizing

visibility of important landmarks in the environment.
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5.1.3 Pursuit Without Constant Visibility

Another limitation of the basic pursuit problem is that existing methods require that the

mobile sensor maintains visibility of its target at all times. In reality, if the environment

model is partially known, it may be possible to localize a moving target without maintaining

constant visibility. If we are able to successfully localize the target without constant visibility,

then we may be able to move the robot more freely and reduce the effort required to meet

the combined objective of pursuing and manipulating the flock. For example, If a target is

observed entering a partition of the space which is known to have only a single exit, it is

not necessary to follow the target into the partition to localize the target. Instead, the robot

may be able to trap the target inside a partition by moving to a position near the exit of

the partition. Some examples of environments which illustrate these types of situations are

shown in Figure 5.2. To achieve this, it is possible to use the above space partitioning method

to discover areas that represent loss-of-localization risks and create paths that optimize the

probability of future visibility or rendezvous with the target.

(a) Aisles (b) Rooms (c) Columns

Figure 5.2: Examples of pursuit without constant visibility. The sensor is depicted by a green
circle, the target is depicted by a yellow star. The free space is the white area, and the
obstacles are dark gray. In Figure 5.2(a), the target must be either in an aisle, or behind an
obstacle. Determining which part of the space the target is in is only a matter of walking
back and forth along the bottom of the aisle. In Figure 5.2(b), it is not necessary for a target
to enter the room; the room is “covered” simply by waiting outside of it. In Figure 5.2(c),
the target is obstructed by the column. However, the camera still covers the area adequately.
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5.1.4 Combining UAVs and UGVs for Surveillance and Crowd Control

As mentioned in Section 2.1.2, there are several works [51,71] adopting a heterogeneous

approach to the multiagent control and monitoring problem. In particular, Chaimowicz

and Kumar [27] implement a hybrid UAV/UGV command and control architecture. One

very important feature importance of such an architecture is that UAV and UGV agents

have complimentary abilities. For example, UAVs have the advantage of sensing from high

perspectives and freedom to move around an environment in 3D. However, UAVs generally

have limitations such as: low sensor resolution/fidelity, severely limited computing resources,

short flight time, and inability to manipulate the environment. UGVs, on the other hand,

have the ability to carry heavier and more powerful sensor and computing payloads, and can

manipulate the environment, but lack the ability to see over obstructions and plan globally.

Lately, in [81,86,158], we have been exploring control architectures for a collaborative

robot system that can take advantage of the complimentary roles of UAVs and UGVs to

perform collaborative surveillance and crowd control. In particular, we developed a software

and hardware test bed involving a custom-built quadrotor helicopter and differential drive

UGV platform pictured in Figure 5.3. So far, we are in the process of developing an agent-

based hardware-in-the-loop simulation for the multi-vehicle system and have done some

preliminary data capture and communication tests.

Figure 5.3: UAV and UGV developed for Surveillance and Crowd Control
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[106] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-motion
strategies for robots. The International Journal of Robotics Research, 3(1):3–24, 1984.

100



[107] S. Luke, K. Sullivan, L. Panait, and G. Balan. Tunably decentralized algorithms for
cooperative target observation. In AAMAS ’05: Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 911–917, New
York, NY, USA, 2005. ACM.

[108] R. A. Metoyer and J. K. Hodgins. Reactive pedestrian path following from examples.
In CASA ’03: Proceedings of the 16th International Conference on Computer Anima-
tion and Social Agents (CASA 2003), page 149, Washington, DC, USA, 2003. IEEE
Computer Society.

[109] G. Miller and D. Cliff. Co-evolution of pursuit and evasion I: Biological and game-
theoretic foundations. Technical Report CSRP311, School of Cognitive and Computing
Sciences, University of Sussex, Brighton, UK, 1994.

[110] K. Miyazawa, Y. Maeda, and T. Arai. Planning of graspless manipulation based on
rapidly-exploring random trees. In (ISATP 2005) The 6th IEEE International Sympo-
sium on Assembly and Task Planning From Nano to Macro Assembly and Manufacturing
2005, page 7, 2005.

[111] F. Morini, B. Yersin, J. Maim, and D. Thalmann. Real-time scalable motion planning
for crowds. In Proceedings of the International Conference on Cyberworlds, pages 24–26,
Hannover, Germany, 2007.

[112] R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattacharya, and S. Hutchinson.
Surveillance strategies for a pursuer with finite sensor range. The International Jour-
nal of Robotics Research, 26(3):233–253, 2007.

[113] R. Murrieta-Cid, B. Tovar, and S. Hutchinson. A sampling-based motion planning
approach to maintain visibility of unpredictable targets. Autonomous Robotics,
19(3):285–300, 2005.

[114] C. Nielsen and E. Kavraki. A two level fuzzy prm for manipulation planning. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), volume 3, pages 1716–1721vol.3, 2000.

[115] D. Nieuwenhuisen and M. H. Overmars. Motion planning for camera movements.
In Proceedings of the International Conference on Robotics and Automation (ICRA),
volume 4, pages 3870–3876, 2004.

[116] N. Ogawa, H. Oku, K. Hashimoto, and M. Ishikawa. Microrobotic visual control
of motile cells using high-speed tracking system. IEEE Transactions on Robotics,
21(4):704–712, Aug. 2005.
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