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EFFECTS OF WOOD HARVESTING ON FOREST BIOMASS AND CARBON 

SEQUESTRATION IN WEST VIRGINIA 

 
Sean B. Donahoe, PhD 
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Dissertation Director:  Dr. Barry Kronenfeld  

 

 

The objective of this research is to evaluate the long-term effects of wood harvesting and 

sustainable forest timbering practices on forest biomass and carbon sequestration in West 

Virginia. Although several forest management and carbon models have been coupled for scenario 

analysis, this integrated modeling approach is novel as it predicts timbering events, disturbance 

events, and forest stand growth as endogenous processes operating at multiple scales (tree, stand, 

region, and state).  This approach allowed for simulating a number of key micro-scale, cross-scale 

feedback mechanisms, including the long-term interaction between forest stand volume 

dynamics, growth, timbering event frequency, and disturbance event frequency at multiple scales.  

The results of the logistic regression analyses indicated that timber stand value density, tree 

prices, and plot ownership were key drivers in predicting timber stand and tree selection for 

commercial timber removal events.  Beyond the direct effect of timbering events (i.e., removal of 

forest biomass), timbering events in West Virginia did not have a statistically significant indirect 

effect on net annual forest stand growth rates, landscape level disturbances, regeneration rates, 



 

nor mortality rates.  Overall, the integrated model estimated that the average net annual growth 

rate for West Virginia in 2000 for the validation dataset was 1.38% (1.33% was the 5 year 

average), which was within 1% of the observed rate of 1.40%. From 2000 to 2050, aboveground 

biomass and carbon stocks in West Virginia forests are projected to continue to increase, despite 

increased timbering activity, with nearly half of the state forest acreage being classified in an 

advanced stage of recovery from past timbering by 2050 (up from 28% in 2000). However, the 

rate of annual increase in forest carbon and biomass decelerates over time.  This deceleration is 

due to a projected doubling of the timber removal rates toward mid-century (due to increases in 

timber prices and stand density), increases in landscape scale disturbances, and declining stand 

net annual growth, which are all due to increases in stand density. Forest stands with steeper 

slopes, lower annual average precipitation, and greater stand volume density were more likely to 

experience a landscape disturbance event, resulting in a net negative growth rate for the stand.  

Overall, these disturbance events are projected to increase in frequency by approximately 50% 

from 2000 to 2050, as forest stands increase in stand biomass density.  Application of sustainable 

timbering techniques was found to significantly enhance long-term projections of biomass, 

carbon, net annual growth (50% higher than status quo), and system carrying capacity.  
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1. Introduction 
 

 

 
The objective of this research is to evaluate the effects of wood harvesting and sustainable forest 

timbering practices on forest biomass and carbon sequestration at multiple scales using an 

integrated modeling approach.  The principal novel aspect of this research is the synthesis of 

many areas of research (e.g., land use change, silviculture, socioeconomics, quantitative ecology, 

carbon sequestration, and public policy) using an integrated modeling approach to address the 

cumulative effect of timbering, market conditions, land use change, and key environmental 

processes on forest resources at multiple scales. Essentially, the integrated modeling approach 

will focus on evaluating alternative timbering scenarios using a positive modeling approach 

(Parker et al. 2002) to determine potential long-term changes in forest resources, forest 

management, sustainability, and carbon sequestration potential through management of a state-

wide forest system.   

There is a significant body of research that addresses the anthropogenic adverse effect of 

timbering, sustainable silviculture techniques, and land use change on forest resources. Much of 

this research focuses on a very specific aspect of forest management or ecological processes in 

order to address a discipline-specific research question and hypothesis.  However, focusing on 

just one element of the system (e.g., the effect of timber removal on stand biomass) cannot be 

used to evaluate large-scale cumulative effects associated with the myriad of human and 

environmental interactions affecting the entire forest system, as well as the effect of new and 

unmeasured forces that may affect the forest system in the future (e.g., climate change or new 
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policies).  There are some examples of complex modeling projects that address the cumulative 

effects of human and environmental interactions, land use change, and related policy questions at 

different scales (e.g.,  Bousquet and Le Page 2004, Carpentier et al. 2000, Kerr et al. 2003, Lewis 

and Plantinga 2007, Mahapatra and Kant 2005, Mathevet et al. 2003, Muller and Zeller 2002, 

Sohngen and Brown 2006, Sohngen and Sedjo 2006, Verburg et al. 2002, Verburg and Veldkamp 

2001, Walsh et al. 2006), including research funded by the National Science Foundation (NSF) in 

the area of Dynamics of Coupled Natural Human Systems (CNH) (NSF 2010).  This body of 

human and environmental interaction modeling research; however, has not addressed the 

cumulative effect of timber markets, timbering events, forest ecosystem recovery, and carbon 

sequestration effects at multiple scales all within the same model, with market interactions 

modeled as a micro-scale, endogenous process. Furthermore, much of this human and 

environmental interaction modeling research focuses on smaller scale studies that only allow for 

qualitative assessment of policy issues at a larger regional scale. For this research, a multi-scale 

modeling approach will be tested that will simulate human and environmental interactions (e.g., 

decisions and effects for specific trees and plots, which impact state-level outcomes), which will 

enable a quantitative assessment of outcomes at both a micro-scale and large landscape scale.  

The effects will be influenced by many variables that operate at multiple scales, including 

regional climate, national and regional timber markets and prices, state policy, localized timber 

plot selection and transportation networks, plot-specific conditions, and tree-level variables 

(biomass, board-feet [BF], and market price) as further discussed in Section 3.  Sensitivity 

analysis will also be applied to evaluate the relative effect of integrated model input variables on 

model outcomes.  In this context, an integrated model is defined as a computer model that 

incorporates many sub-models (i.e., logistic regression models, multiple regression models, 

probability models) into one system in order to simulate processes and interactions over time. 
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Since the plots are based on a stratified random sampling design across West Virginia, it is 

possible then to extrapolate the micro-scale effects at the tree and plot-level to the regional level 

in order to inform state- and national-level policy development.      

Below are four general questions to be addressed by this research effort:  

1.  What are the factors affecting timbering rates, timber stand selection, and tree selection 

in West Virginia?   

2. What is the cumulative effect of timbering and other key processes on net annual forest 

growth in West Virginia, including the indirect effect of timbering on forest growth, tree 

mortality, forest regeneration, and other disturbances?   

3. What long-term effect will status quo and sustainable timbering scenarios, under varying 

timber market conditions, have on forest ecosystem and timber resource indicator 

metrics in West Virginia?     

4. What long-term effect will status quo and sustainable timbering scenarios, under varying 

timber market conditions, have on forest carbon sequestration in West Virginia?  

For this research, the status quo scenario is defined as the continuation of the relationships 

between potential future forest market conditions and timber removal event activities that satisfy 

market demand.  Sustainable timbering in this context is defined narrowly to be low impact 

timbering performed according to an array of site-specific restrictions (further defined in Section 

2) to preserve forest resources for future generations, and for the production of ecological 

services at multiple scales.   
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Addressing questions 1 and 2 are necessary in order to understand current and future timbering 

and the long-term impact on forest resources under status quo timbering and most-likely timber 

market conditions.  Question 1 focuses on understanding the underlying economic and site 

conditions that drive timber stand and tree selection, and removal rates.  Question 2 focuses on 

understanding how timbering affects key growth processes that impact forest resources, as well as 

how the cumulative effect of these processes impact net annual growth of the forest system.  Net 

annual growth of the forest includes the cumulative effect of annual biomass removals from 

timbering, incremental positive tree growth in a year, incremental negative tree growth in a year 

(i.e., partial loss of the tree in a given year), annual tree mortality rates, landscape scale 

disturbances (which impact mortality and growth rates), and annual tree regeneration rates.  By 

accurately evaluating and modeling the cumulative effect of these processes on the forest system, 

it is then possible to address questions 3 and 4 by simulating long-term biomass and carbon 

effects under status quo conditions, as well as test other timbering and market scenarios (as 

further discussed in Sections 4 through 7).  

The dissertation is organized around these four research questions, with each question explored in 

detail in Sections 4, 5, 6, and 7, respectively.  The order of this presentation is important because 

the models and results presented in each section are used in the subsequent section to address the 

next research question, culminating with estimation of carbon impacts in Section 7.  One or more 

of these four sections of the dissertation (Sections 4 through 7) may eventually form the basis of a 

separate publication(s) beyond this dissertation effort. To that end, Sections 4 through 7 are 

mainly written to be stand alone reports with introductions, methods, results, and discussions that 

pertain to each research question. This approach was also used because of the complexity of the 
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topics and the need to discuss the detailed methods, results, and discussion in an integrated 

manner for each of the four research questions.  

As an introduction to all of the research topics, Section 2 of this dissertation provides introductory 

discussion pertaining to all of the hypotheses being tested (which is largely reiterated and 

expanded upon in Sections 4 through 7). Section 3 also provides an overview of the technical 

approach, which includes a general discussion of the conceptual model (see Section 3.1) and a 

detailed description of Forest Inventory and Analysis (FIA) data management and filtering 

techniques that supports all aspects of this research (see Section 3.2).  The detailed methods, 

results, and discussion that relate to each of the research questions and hypotheses being tested 

are presented in Sections 4 through 7.  A summary of the dissertation results are provided in 

Section 8.             

1.1 Significance of Research 

In 2008, Senators Lieberman (Connecticut) and Warner (Virginia) co-sponsored the Climate 

Security Act, which would have created a carbon market and a series of policies directly and 

indirectly affecting land use in the United States, particularly forest conservation and 

afforestation/reforestation projects (e.g., creation of carbon credits, government sponsored habitat 

afforestation/reforestation projects, purchase of conservation easements and forest sustainability 

measures, and fund private/public conservation subsidies).  Although the legislation was not 

passed by Congress, new climate change legislation is under development by the Obama 

administration, and eventually some form of a national climate change legislation may pass in the 

future. Although near-term climate policies under consideration could have a significant impact 
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on land use and forest management, there was no detailed comprehensive study done for this 

specific piece of legislation that would address its impact or effectiveness related to forest system 

change and sequestration potential (according to Senator Warner’s Senior Legislative Assistant 

[personal communication 2008]).  Given the potential for more comprehensive legislation to pass 

in some form in the future, it is important to research carbon sequestration and related forest 

management issues.  

Utilizing forest systems as carbon sinks has been put forward as one of many viable policy 

solutions for mitigating climate change and achieving carbon sequestration goals (United States 

Forest Service [USFS] 2006). Land use change (LUC) and forest systems have not been the 

principal means for creating carbon credits due to concerns over long-term management, 

monitoring, release of carbon in the future, and effectiveness (Stavins and Richards 2005). To 

address these concerns, certifiable carbon credits created through forest regeneration and 

afforestation projects require costly land use controls (e.g., purchase of long-term easements) and 

long-term management and monitoring, which reduces their cost effectiveness relative to 

alternative carbon credit methods (e.g., energy efficiency solutions) (Stavins and Richards 2005). 

These certifiable credits will also create easement controls and other restrictions that make them 

less attractive for large-scale adoption as compared to energy efficiency measures. On the other 

hand, management and natural recovery of large-scale forest systems could provide an alternative 

means for enhancing carbon sequestration and credits at a much lower cost than forestry-based 

certified carbon credits created through forest regeneration, easements, and afforestation projects. 

For example, by the end of the 20
th
 century, land use changes, including natural recovery of forest 

systems and abandonment of agricultural lands, resulted in the creation of significant carbon sinks 

in the United States (Brown et al. 1997, Houghton et al. 1999, Houghton 2003, United States 
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Department of Agriculture [USDA] 2008).  Although there has been small declines in the spatial 

extent of forestlands in West Virginia (Drummond and Loveland 2010, USFS 2008), the annual 

regrowth of forest biomass across West Virginia currently exceeds the losses due to timbering 

and land use conversion, which has created a large carbon sink (see Section 5 for further 

discussion). Even with continued timbering, it may be possible to implement forest management 

strategies that allow for accelerated recovery of forest ecosystems and increased carrying capacity 

for timbering, as well as additional net carbon sequestration benefits.  Such improvements may 

increase ecosystem biodiversity and provide expanded habitat for flora and fauna supported by 

these systems. Given that most of the timber resources in the eastern U.S. occur on private lands, 

it is also important to carefully consider policy solutions that enhance carbon sequestration and 

forest recovery while still ensuring private property rights; thereby increasing the potential for 

policy acceptance and success.   

In parallel to climate change legislation being considered by policy-makers, forest systems are 

simultaneously undergoing land use conversion, active forest management, natural and 

anthropogenic-related disturbances, as well as system-wide climate change. The cumulative effect 

of these forces can create synergistic and antagonistic effects, which can potentially eclipse the 

benefits gained through natural regeneration, as well as afforestation/reforestation projects and 

easements.  For example, several recent research studies have shown that recovering forest 

systems with increasing biomass have become increasingly vulnerable to large-scale disturbance 

regimes that may eclipse expected carbon sequestration benefits of these recovering systems 

(United States Global Change Research Program [USGCRP] 2008). Although West Virginia is 

not a fire-prone area, large-scale disturbances may occur from local drought conditions, insect 

infestation, and disease (which have generated carbon sources in Canadian forests, which were 
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once carbon sinks [USGCRP 2008]). As such, it is important that a more holistic systems 

approach be used to evaluate the net cumulative effect of all forest and carbon processes that 

occur in the entire system, including:  natural regeneration and recovery of forest climax 

communities in the east, landscape scale disturbance regimes, forest sustainability policies that 

could conserve and potentially accelerate recovery on private and public lands, ongoing 

timbering, timber market fluctuations and trends, and timber product lifecycles.  Given the 

complexity of such a task, this research focuses on developing a baseline forest model that will 

allow for testing status quo and forest management scenarios that may enhance forest ecosystem 

recovery and sustainability metrics (discussed further below) and carbon sequestration.  The 

motivation is to identify approaches for improving forest system recovery, in consideration of 

current and future U.S. timber market demand for forest products from West Virginia.  
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2. Research Project Overview 
 

 

 

This section outlines the specific hypotheses to be tested and their relationships to the basic 

research questions outlined in the introduction. The hypotheses are then related to the general 

methodology requirements (e.g., model elements), which are then discussed further in subsequent 

sections. The four subsections (2.1 through 2.4) essentially relate to the four major research 

questions, which are developed as separate major sections in this dissertation, as previously 

discussed.  A portion of this discussion in Section 2 is reiterated and expanded upon in Sections 4 

through 7 in order that the information pertinent to each research question is presented together, 

along with the methods, results, and discussion.  

2.1 Timbering Drivers and Removal Rates 

With respect to timbering effects in West Virginia, the first basic research question is:   What are 

the factors affecting timbering rates, timber stand selection, and tree selection in West Virginia?  

For example, in any given year, why are certain timber stands selected for commercial timber 

removal (i.e., clear cuts, select cuts) and not others?  To what extent do economic drivers impact 

stand selection and removal methods, including stand value density, stand volume density, stand 

accessibility, ownership, and/or proximity to a mill for processing?  If timber firms operate in a 

system with full knowledge of the timber resources and full access to these resources, it was 

deduced that timber stand selection and removal methods would be based in large part on 
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economic drivers in order to maximize the objectives of the firm. Thus, it was hypothesized that 

timber stand and tree selection for commercial timbering operations are driven by underlying 

economic drivers. Inferred relationships between specific economic drivers and timber stand 

selection for commercial timber removals are presented in Table 2-1 and are discussed further in 

Section 4. Given that these are only inferred relationships, the null hypothesis that timber stand 

and tree selection for commercial timbering are not driven by economic processes, with no 

emerging pattern, was also tested.   

 

Table 2-1  Econometric Drivers of Timber Stand and Tree 

Selection for Commercial Timber Removals 

 

 

 

 

Although these tests are sufficient for understanding the selection of forest stands and trees for 

timbering events in West Virginia, they do not necessarily test the underlying human motivation 

and preferences of timber firms.  Testing this hypothesis would require the use of a survey 

instrument. For example, it would be theoretically possible for the null hypothesis discussed 

above to be accepted, even if timber firm decision-making were motivated foremost to increase 

economic profit, as imperfect knowledge of the resource and/or access restrictions may inhibit 

their actions, thereby masking their underlying motivation.  On the other hand, if the null 

Econometric Independent Variables  Effect 

Stand/tree value + 

Stand/tree volume + 

Distance to mill - 

Slope - 

Private ownership + 

Public ownership (for profit timbering allowed) - 

Population density + 

Income + 

Elevation - 
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hypothesis is rejected for each economic variable, it does not necessarily mean that economic 

factors explain all stand and tree selection processes, as a portion of the variance may be 

explained by non-economic factors and decision-making processes that are not captured in this 

study. For example, firms may have imperfect knowledge of the resource and as a result cannot 

fully make optimal financial decisions; they may have limited access to the resource when private 

owners are unwilling to sell them timber resources that would be most profitable for them to 

harvest; there may be limited access to high value stands or trees; or firms may self impose forest 

management policies that are not solely driven by short-term profit. Other study methods and 

models would be required to delve deeper into these micro-scale processes, as further discussed 

in Section 4.  

General Methods:  To address the hypothesis for timber stand selection for commercial 

removals discussed above, it was necessary to build a model that relates the dependent variables 

(stand and tree selection) to economic independent variables (discussed in Table 2-1 and 

presented in detail in Section 4) using an available dataset that represents timber resources and 

removals across West Virginia. To that end, the FIA database (USFS 2009a, 2010a) for West 

Virginia was used to build multivariate models, including logistic regression models, to test 

hypotheses related to timber stand and tree selection, as further discussed in Sections 3 and 4.   

2.2 Cumulative Effect of Timbering and Other Key Processes on Net Annual Forest 

Growth in West Virginia 

The second research question is:   What is the combined effect of timbering and other key 

processes on net annual forest growth in West Virginia, including the indirect effect of timbering 

on forest growth, tree mortality, forest regeneration, and other disturbances?  In this context, net 
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annual forest growth is defined as the net change in aboveground total tree volume per hectare 

(m
3
/ha) of the live portion of poletimber trees (>5‖ and < 11‖ diameter at breast height [DBH]) 

and sawtimber trees (>11‖ DBH) between consecutive years, factoring in changes in live volume 

due to timbering, growth (positive and negative), mortality, and regeneration (see Section 7 for a 

discussion of how smaller trees and understory are evaluated). Using the FIA database, it was 

necessary to test these relationships based on changes in live growing stock tree volume because 

all of the field measured growth estimates stored in FIA used for model validation are based on 

volumetric measures. Furthermore, economic variables of stand and tree value were derived from 

stumpage prices per unit tree volume; therefore, measures of stand and tree volume were more 

relevant to the hypotheses being tested than measures of tree and stand biomass. For certain 

analyses, the net annual growth in commercial timber volume was also evaluated in the study.  

Commercial timber volume was defined in this context as the BF volume per hectare (m
3
/ha) 

using the International ¼-inch rule (i.e., standard rule used by USFS for measuring board-feet in 

the sawlog portion of lumber, allowing for ¼ inch saw cut, ½ inch tapering per 4’ of length, and 

shrinkage of boards following drying) in the sawlog portion of the central stem for hardwood 

trees with DBH greater than 11‖, the minimum DBH for hardwood commercial sawlog trees.  

Forest and BF volumes were estimated at the tree-, forest plot-, and state-level. These metrics 

were then simulated over time under different economic and silviculture scenarios and then 

integrated with other conversion regression models to assess near and long-term impacts of 

timbering practices on aboveground biomass density (AGBD) (g/m
2
) and BF (see Section 6 for 

more details), as well as carbon sequestration (Section 7).     

The primary factors that may significantly alter forest volume and BF metrics include: forest 

growth (both positive and negative), tree mortality rates, regeneration, and timbering rates and 
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intensity.  Timbering events have the potential to impact forest growth, mortality rates, other 

disturbances, and stand regeneration of saplings and poletimber on the plot; thereby impacting 

forest and BF volumes at the stand- and tree-level. For example, forest stands that have recently 

been timbered will have more open canopies, which may stimulate increased annual growth rates 

for the trees that remain, as compared to trees located on forest stands where the canopy is closed 

and undisturbed. Opening up the canopy may also provide opportunity for saplings to grow and 

regenerate at a higher rate, thereby increasing the survival and growth rates of saplings (DBH < 

1‖) and poletimber (DBH between 1‖ and 5‖) leading to higher stand regeneration. Timbering 

event disturbances could also increase the mortality rates for the trees that remain on the plot due 

to direct injury, soil and surface water flow disturbances, and/or increased potential for natural 

disturbances (fire/pest infestations). On the other hand, timbering may lower potential mortality 

rates by reducing inter- and intra-species competition. In any event, if timbering affects tree-

growth rates, mortality rates, disturbances, or regeneration rates, then it may have an indirect 

effect on the change in live tree volume estimates, beyond the direct effect of volume removals. 

As these are inferred relationships, the null hypothesis was tested that timbering has no effect on 

growth rates, mortality rates, other disturbances, or regeneration rates.  

General Methods:  Since timber events may have an indirect impact on forest growth, mortality, 

disturbances, and regeneration at a plot or tree-level, it was necessary to test these relationships 

and incorporate these findings into an integrated model for timbering effects. The logistic and 

multiple regression models developed in this portion of the study for evaluating disturbances, 

mortality, and regeneration, as well as regional tree growth models developed by the USFS 

(2010b,c), were utilized for simulating these processes in the integrated model. To address fine-

scale tree-level silviculture impacts, an integrated model was developed that tracks the life history 
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of approximately 60,000 trees across 1,500 forest plots in West Virginia.  Tree- and plot-level 

dynamics were simulated using an integrated modeling approach to evaluate the cumulative 

impact of these processes on net annual growth rates, which were validated against field 

measured data.  These results along with other models were then used to estimate other tree-, 

plot-, and state-level metrics to assess impacts to stand structure, BF, biomass, carbon dynamics, 

and other metrics, as further discussed in Sections 5, 6, and 7. 

2.3 Long-Term Effects of Status Quo and Sustainable Timbering Scenarios and Timber 

Market Scenarios on Forest Biomass and Forest Resource Metrics using an 

Integrated, Multi-Scale Model 

The third principal research question is:   What long-term effect will status quo and sustainable 

timbering scenarios, under varying timber market conditions, have on forest ecosystem and 

timber resource indicator metrics in West Virginia?   To address this question, specific forest 

ecosystem indicator metrics were defined and changes in these metrics were simulated to evaluate 

changes in forest resources over time. Forest ecosystem indicator metrics are defined and 

discussed in Section 6.2.4.  These metrics were estimated for the status quo timbering scenario 

under varying timber market economic conditions in order to evaluate potential outcomes under 

status quo conditions, as discussed in Section 6.1.1. To address the sustainable forestry research 

question, sustainable forest management requirements (e.g., limiting removals to < 30% of forest 

stand biomass, 20 year rotation cycles, conservation of large trees [Buehler et al. 2007, Register 

and Islam 2008, Brown et al. 1997, U.S. Fish and Wildlife (USFWS) 2009, Wood et al. 2005]) 

were imposed on the system to evaluate potential impacts to selected metrics, as compared to the 

status quo timbering scenario. The analysis makes no prediction of specific policy outcomes, but 

only an assessment of theoretical maximum outcomes (i.e., long-term forest indicator metrics) 

that could be achieved by implementing sustainable forest management strategies across the state. 
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The development and testing of specific policy instruments (e.g., a regulation versus a subsidy) 

was beyond the scope of this research.   

Addressing this research question at a state scale involved modeling the effect of timbering at the 

forest stand level across an array of plots that were statistically representative of the state.  AGBD 

(g/m
2
) (state and stand-level measures) and density of standing commercial timber (i.e., state and 

stand-level measures of net BF volume [International ¼-inch rule] in the sawlog portion of the 

central stem for hardwood trees with a DBH > 11‖) were estimated at the forest stand level and 

aggregated to the state level for evaluating the impact of timbering on biomass and timber 

resources.  These metrics were then simulated over time under varying economic conditions to 

assess near and long-term impacts of timbering practices on AGBD.  An overview of these 

elements, along with hypotheses to be tested and methodology requirements are discussed in 

Section 6.   

2.3.1 Status Quo Timbering Scenario 

Several status quo timbering scenarios were simulated to evaluate how, and the degree to which, 

forest ecosystem indicator metrics would change from 2000 to 2050.  These metrics were 

estimated for the status quo scenario under different timber market economic scenarios in order to 

evaluate potential future outcomes. Due to the uncertainty associated with future timber market 

conditions, a range of market scenarios were tested including a most-likely market scenario 

(which is a 0.24% annual increase in timber prices as projected based on national economic 

modeling by USDA [2003]) and a high timber market scenario (1% annual increase in timber 

prices, which has occurred over the past 2 decades), as further discussed in Section 6.2.5.  
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USDA reported that natural growth and regeneration of forest stocks in West Virginia appear to 

have resulted in a net annual growth rate of about 0.5% per year of sequestered carbon and 

biomass in West Virginia from 1990 to 2005 (USDA 2008), which factors in the cumulative 

effect of timbering, growth (positive and negative), mortality, disturbances, and regeneration. 

Thus, the annual net growth of forest biomass in West Virginia is currently greater than the loss 

in biomass due to timbering.  Based on these recent trends, it was hypothesized that under most-

likely timber market conditions forest ecosystem indicator metrics and forest stand recovery will 

continue to improve to 2050. However, if timber prices continue to increase as they have in the 

past two decades (~1% per year), then it is hypothesized that forest ecosystem indicator metrics 

and forest stand recovery will diminish relative to most-likely timber market conditions to 2050 

(i.e., 0.24% annual price increases), assuming rising timber prices increase timber removal 

events as hypothesized previously.  Table 2-2 presents inferred relationships between these 

scenarios and the indicator metrics, which are defined in Section 6.2.4. As these are inferred 

relationships, the null hypothesis that these market scenarios have no impact on forest ecosystem 

indicator metrics was also evaluated. 

2.3.2 Sustainable Timbering Scenario 

Currently, all timber removals are not conducted in a manner that would be considered 

sustainable. In some cases, forest plots may be over-harvested and become depleted. Also, 

removal of the largest and commercially valuable trees (e.g., diameter limited cuts) reduces stand 

structure and complexity, which are important for biodiversity.  Implementing sustainable 

timbering measures would constrain the amount of biomass and short-term economic return that 

can be harvested from a forest stand, thereby conserving much of the trees for future growth and 

production of ecological services. Based on several sustainability research studies and metrics  
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Table 2-2  Hypothesized Long-term Annual Trends in Forest Ecosystem Indicator Metrics 

Over Time for the Status Quo Timber Scenario Under Most-Likely and High Timber 

Market Conditions 

Forest Indicator Metrics 

Most-Likely Timber 

Market Scenario 

Relative to Conditions 

in 2000  

High Timber Market 

Scenario Relative to 

Most-Likely Conditions 

in 2050 

State Forest AGB (teragrams [tg])  + — 

Average AGBD (g/m
2
) + — 

Average % of State Timber Harvest to 

Net Growth in AGB  
— + 

State Commercial Timber Volume (10
6
 

m
3
)  

+ — 

State Forest AGB (tg) of Black Cherry 

and Red Oak AGB (tg)  
+ — 

Average State Frequency of Low 

Intensity Timbering Events (< 30% 

AGBD removals) 

+ + 

Average State Frequency of 

Medium/High Intensity Timbering 

Events (> 30% AGBD removals) 

+ + 

% of Biomass in Large Trees (>70 cm)  + — 

% of Advanced Recovery Plots (AGBD 

> 15,000 g/m
2
)  

+ — 

% of Old Growth Plots (AGBD > 

25,000 g/m
2
, 30% of AGBD in Large 

Trees > 70 cm)  

+ — 

―+‖  =  Increase in the long-term average metric from previous years;  ―—“  =  decrease in 

average metric from previous years;  ―blank‖  =  no major change in metric 

 

discussed further in Section 6, the following constraints were placed on timber removals to 

replicate a ―sustainable forest management‖ approach to timber removals:   

 No more than 30% of the AGBD can be removed from a plot; 

 Timber rotations cannot be less than 20 years; 

 The largest tree on a 0.1 hectare area grid must be preserved; and 
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 Trees larger than 70 cm in diameter must be preserved. 

These measures will significantly constrain the amount of biomass and short-term economic 

return from a given forest stand that may have been timbered more extensively under status quo 

timbering conditions (as the average removal was over 60% under status quo timbering 

conditions, rather than under 30%). To make up for the loss in opportunity for removals from a 

given forest stand, timber firms  may spread the removals across more acreage of land in order to 

meet annual market demand for timber.  The end result may be that more area across the state is 

timbered in a given year in order to meet annual market demand for timber. As such, the 

cumulative effect of implementing sustainability practices at the state level will be addressed, 

including shifts in timber impacts (as further discussed in Section 6).  

It was deduced that application of sustainable silviculture methods would enable forest stands to 

recover more quickly following timber removal events (e.g., retaining ample forest resources on 

the stand for regrowth and through increased rotation cycles) as compared to clear cuts and other 

higher intensity timbering events.  Furthermore, sustainable timbering methods would help 

conserve the larger trees on the forest stand for enhancing stand structure.  Table 2-3 presents 

inferred relationships between the sustainable timbering scenario and indicator metrics under 

status quo timber market conditions, which are further discussed in Section 6 (the high market 

scenario was not tested). Overall, it was hypothesized that if sustainable silviculture practices are 

applied across West Virginia (while still achieving the same annual timber production as under 

status quo timber scenario), then forest ecosystem indicator metrics and forest stand recovery 

will be significantly enhanced. As the relationships presented in Table 2-3 are inferred, the null 

hypothesis was also evaluated. 
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General Methods:  Results of the modeling effort previously described in Sections 2.1 and 2.2 

were used to evaluate the status quo timbering scenario. In order to conduct this analysis, forest 

removals were simulated not only at the state- and plot-level, but also at the individual tree-level 

in order to properly simulate tree removals and more accurately track forest ecosystem indicator 

metrics (which include measures of stand structure diversity and old growth metrics). To address 

the sustainable timbering scenario, forest removals were simulated with the sustainability rules 

previously discussed. 

 

Table 2-3  Hypothesized Annual Trend in Forest Ecosystem Indicator Metrics  Over Time 

for the Sustainability Scenario Under Most-Likely Economic Conditions Relative to 

Status Quo Timbering Scenario 

Forest Indicator Metrics 

Net Annual Change in Metric 

for the Sustainability Scenario 

Relative to Status Quo 

Timbering Scenario 

State Forest AGB (tg)  + 

Average AGBD (g/m
2
) + 

Average % of State Timber Harvest to Net Growth in 

AGB  
— 

State Commercial Timber Volume (10
6
 m

3
)  + 

State Forest AGB (tg) of Black Cherry and Red Oak 

AGB (tg)  
+ 

Average State Frequency of Low Intensity Timbering 

Events (< 30% AGBD removals) 
+ 

Average State Frequency of Medium/High Intensity 

Timbering Events (> 30% AGBD removals) 
— 

% of Biomass in Large Trees (>70 cm)  + 

% of Advanced Recovery Plots (AGBD > 15,000 g/m
2
)  + 

% of Old Growth Plots (AGBD > 25,000 g/m
2
, 30% of 

AGBD in Large Trees > 70 cm)  
+ 

―+‖  =  Increase in metric from the previous year;  ―—“  =  decrease in metric from the 

previous year;  ―blank‖  =  no major change in metric 
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2.4 Long-Term Effect of Status Quo and Sustainable Timbering Scenarios on Forest 

Carbon Sequestration 

The fourth research question is:   What long-term effect will status quo and sustainable timbering 

scenarios, under varying timber market conditions, have on forest carbon sequestration in West 

Virginia?  To address this question, the same timbering and market scenarios previously 

discussed in Section 2.3 will be applied to the system in order to assess changes in carbon 

sequestration. Carbon sequestration includes not only the increase in AGBD, but also estimates of 

carbon fluxes in various pools of above- and belowground biomass to include carbon in soil, 

roots, litter, understory brush, saplings, standing deadwood, and down deadwood.   Table 2-4 

presents inferred relationships between the timbering scenarios and market conditions on carbon 

sequestration. Based on current carbon sequestration rates and market conditions, it was 

hypothesized that West Virginia forests will continue to operate as a carbon sink through 2050, 

with a reduction in the carbon sink under the High Timber Market Scenario (1% annual increase 

in timber prices).  It was further hypothesized that sustainable timbering practices will increase 

carbon sequestration relative to status quo timbering practices under most-likely timber market 

conditions.  As these are inferred relationships, the null hypotheses that these scenarios have no 

impact on carbon sequestration were also evaluated. 

General Methods:  Carbon regression models developed by the USFS and USEPA (2009) and 

carbon data provided in FIA (USFS 2010a) were integrated with the timber removal and forest 

growth models discussed in Sections 2.2 and 2.3 to estimate carbon sequestration metrics.  This 

fully integrated model simulates the change in carbon sequestration potential for the forest 

system.  The carbon model estimated fluxes in various pools of above- and belowground biomass 
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to include carbon live trees (roots, stump, central stem, tree tops), soil, litter, understory brush, 

saplings, standing deadwood, down deadwood, timber removals, and wood products.  Forest 

carbon sequestration metrics included average net change in carbon sequestration over time and 

total carbon sequestration for the forest system at the stand and state level.  The conceptual 

framework of the carbon model and methodology are further discussed in Sections 3, 4.1, and 7.   

 

 

Table 2-4  Hypothesized Net Change in Carbon Sequestration for the West Virginia Over 

Time Under Timbering and Market Condition Scenarios 

 

  

Timbering and Market Scenarios  

Carbon Sequestration 

Short-Term 

 

Long-Term 

(2050)  

Most-Likely Timber Market Conditions (projected 0.24% 

annual growth [USDA 2003]), using Status Quo 

Timbering Practices  

+ 

Relative to 

2000 

+ 

Relative to 

2000 

High Timber Market Conditions (1% Annual Growth in 

Timber Prices), using Status Quo Timbering Practices 

— 

Relative to 

Most-likely 

Market 

Conditions 

—  

Relative to 

Most-likely 

Market 

Conditions 

Sustainable Timbering Practices (using the Most-Likely 

Timber Market Conditions)  

+ 

Relative to 

Status Quo 

Scenario 

+  

Relative to 

Status Quo 

Scenario 
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3. Technical Approach Overview 
 

 

 

This section introduces the study framework and data compilation methods that are common to 

all four research questions introduced in Section 1.  The specific technical approach and methods 

used for addressing each of the four research questions and hypotheses are detailed in the 

methods section of the last four major sections of this dissertation (i.e., Sections 4.2, 5.2, 6.2 and 

7.2).  The conceptual framework of the model is presented in Section 3.1. The technical approach 

to data compilation that pertains to all of the research questions is presented in Section 3.2. 

3.1 Conceptual Modeling Framework and Coupling 

The integrated model, referred to as the Carbon and Forest Management (CFM) Model, estimates 

forest system dynamics over time at multiple scales, including tree-, stand-, and state-level.  CFM 

was developed using statistical modeling, probability analysis, and mathematical modeling 

techniques (Parker et al. 2002, 2003, 2008; Grimm 2007; Bousquet and LePage 2004) and 

programmed in a Visual Basic 2007 platform, using data from FIA (USFS 2010a, 2009a). Overall 

the Visual Basic model consists of over 2,300 lines of code, with over 30 graphic displays of 

model output. The modeling approach was based in part on methods and concepts presented in 

Parker et al. (2008) and a National Science Foundation Grant proposal (0414565). This grant 

proposed to develop a model for simulating timber markets and carbon in forest systems over 

time. The grant team consisted of Drs. Parker, Davis, Hessl, Peterjohn, and Thomas.  The 
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conceptual model of key system processes are presented in Figure 3-1, which includes three key 

components:  forest carbon and biomass growth; forest management; and ecological services.  

 

 
  Figure 3-1 Conceptual Model of the System Being Modeled 

 

Based on this conceptual model, a detailed modeling framework was developed for CFM, which 

is presented in Figure 3-2.   All endogenous processes and their associated scale are shown in the 

boxes labeled:  T  –  timbering; G  –  growth;  and  C  – carbon and biomass.  These endogenous 

components of CFM, i.e.,  T,  G, and C, are further discussed in Sections 4, 5, and 6/7, 

respectively.  More detailed flow diagrams depicting timbering and growth processes are 

presented in Sections 4 and 5, respectively. All exogenous processes are show in the white boxes. 

Timbering processes (T) are initially influenced by national/international scale timber markets, 

which impact regional stumpage prices for individual tree species within 5 market zones of West 
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Virginia.  Annual changes in these regional prices along with changes in stand and tree growth, 

ultimately change the value of individual trees and stands across West Virginia.  The economic 

value of trees and stands, as well as other site conditions, lead to the selection of forest stands for 

timbering events, and the selection of individual trees for removal.  Timbering events then 

remove biomass from forest stands and add biomass to the wood products pool at the state level.  

Biomass removal then impacts the stands growth the following year due to changes in remaining 

tree volumes, stems, and stand density/competition.  As part of the growth module (G), changes 

in stand biomass also occur as a result of disturbance events, mortality events, tree regeneration, 

and tree growth (both positive and negative), which in turn impact estimates of live tree and stand 

biomass/carbon, volume, BF, and value.  Tree growth is also influenced by stand competition 

factors, site characteristics, and tree size. As part of the carbon/biomass module (C), estimated 

changes in live tree aboveground biomass allows the model to estimate changes in other forest 

carbon pools, including understory, standing deadwood, and down deadwood; which are then 

added to exogenous estimates of soil carbon and litter (soil carbon and litter could not be modeled 

on an annual time step, as further discussed in Section 7). The net annual change in carbon fluxes 

at multiple scales associated with photosynthesis, respiration, and decomposition are modeled 

collectively, not as separate fluxes. Ultimately, these modules enable the calculation of forest 

ecosystem indicator metrics and carbon fluxes at the stand- and state-level, including carbon 

fluxes, offsets (relative to state anthropogenic emissions), and carbon stocks.  Several cross-scale 

feedback loops are addressed in this analysis including the effect of changing tree and stand value 

(due to growth, disturbance, timbering, and stumpage prices) on future stand and tree timbering 

rates.  The effect of these feedback loops and other endogenous processes are discussed in more 

detailed in Sections 6 and 7, respectively. 
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Figure 3-2  Flow Diagram of Endogenous Timbering Processes (T), Growth Processes (G), 

and Carbon/Biomass Processes (C), and Exogenous Processes (white boxes) at Multiple 

Scales Modeled in CFM 
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3.2 Data Compilation 

3.2.1 Data Sources 

The entire FIA database for West Virginia for sampling year 2000 were compiled and evaluated 

for this study (USFS 2009a, 2010a). These data were generated as part of a nationwide USFS 

program to monitor forest conditions and practices across the forested states (USFS 2009a). For 

this study, field monitoring data collected from approximately 2000 forested plots located 

randomly across West Virginia were used to conduct the analysis. In general, the USFS FIA data 

collection is based on a fixed plot design consisting of 4 subplots, with smaller micro-plots that 

are used to measure trees below 1‖ DBH.  Plot-specific weighting factors are included in the 

database to extrapolate tree data collected on subplots and micro-plots to density measures (e.g., 

volume per acre), as well as to the state-level using extrapolation factors.  The FIA database for 

West Virginia is a complex relational database with over 200,000 records and hundreds of 

variables that describe plot conditions, ownership regimes, tree species, tree volumes, commercial 

BF estimates, biomass, timber removals, and management approaches across West Virginia. The 

pertinent data (further described below and in Sections 4.2, 5.2, 6.2, and 7.2) were obtained from 

the FIA website and loaded into Microsoft Access 2007.      

It should be noted that although the coordinates for FIA plots are provided in the FIA data, 20% 

of the plot locations are swapped with other plots within the same county.  In addition, plot 

coordinates are modified (called fuzzing) to be within 1 mile of the actual location, in order to 

protect private landowner information, as required under the Food Security Act of 1985 (USFS 

2009, 2010a). Thus, the exact location of the plots is not fully known. 
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In 2010, USFS significantly expanded the FIA database to include tree and plot-level carbon 

estimates for soils, litter, down dead trees, standing dead trees, and understory for all of the 2000 

sampling plot data (USFS 2010).  The 2009 released data already included tree-level estimates of 

aboveground and belowground carbon. These updated FIA data released in 2010 for the sampling 

year 2000 dataset were used for this study to initialize CFM for these specific carbon pools.   

In addition to the 2000 FIA dataset, tree data collected during the 2004, 2005, and 2006 sampling 

periods were also evaluated for inclusion in this study.  However, there were several problems 

encountered with the 2004, 2005, and 2006 data, and as such only the 2000 data were used for 

statistical analysis.  For example, only a limited number of plots were sampled in any given year 

after 2000 (ranging from ~6 to 22% of the plots that were sampled in 2000). Therefore, the 2004, 

2005, and 2006 datasets are relatively small and provide limited added value to the analysis.  

Furthermore, after 2000, the sampling plots were renumbered to hide their identity and thereby 

their relevance to previous sampling efforts.  In addition, it was evident that large blocks of 

records from the sampling rounds after 2000 contained duplicate records for the same tree and 

plot.  Due to these problems, this study utilized only the 2000 FIA dataset.    

With respect to timber price data, baseline plot value data in the year 2000 were based on regional 

timber price data (1/4‖ International Scale $/thousand board-feet [MBF]) for commercially 

important tree species (see Section 3.2.2) that are compiled by the West Virginia Appalachian 

Hardwood Center (AHC) (2010) (see Table 3-1). Defined tree species category codes were used 

to link the FIA tree species codes (shown in FIA’s TREE database) with West Virginia AHC 

codes and price data.  Note that the table shows only average statewide stumpage price data for 

the year 2000 for illustration purposes only.  Average regional prices for each year from 1988 to 

2009 were actually used in the analysis, as discussed further in Sections 4, 5, and 6 (AHC 2010).  
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Table 3-1  International Scale ($/MBF) 2000 Tree Prices and Species Categories Applied 

to the TREE FIA Database 
Common name Category FIA SPCD Genus species WVAHC $/MBF

black cherry BC 762 Prunus serotina black cherry $703
northern red oak RO 833 Quercus rubra red oak $335
sugar maple HM 318 Acer saccharum hard maple $287
black maple HM 314 Acer nigrum hard maple $287
Norway maple HM 320 Acer platinoides hard maple $287
black walnut WN 602 Juglans nigra walnut $282
ash spp. AS 540 Fraxinus spp. ash $189
blue ash AS 546 Fraxinus quadrangulata ash $189
American mountain-ash AS 935 Sorbus americana ash $189
green ash AS 544 Fraxinus pennsylvanica ash $189
black ash AS 543 Fraxinus nigra ash $189
white ash AS 541 Fraxinus americana ash $189
pumpkin ash AS 545 Fraxinus profunda ash $189
white oak WO 802 Quercus alba white oak $165
red maple SM 316 Acer rubrum soft maple $157
striped maple SM 315 Acer pensylvanicum soft maple $157
maple spp SM 310 Acer spp. soft maple $157
silver maple SM 317 Acer saccharinum soft maple $157
boxelder SM 313 Acer negundo soft maple $157
post oak MO 835 Quercus stellata mixed oak $152
oak spp. -- deciduous MO 800 Quercus spp. mixed oak $152
swamp white oak MO 804 Quercus bicolor mixed oak $152
scarlet oak MO 806 Quercus coccinea mixed oak $152
southern red oak MO 812 Quercus falcata mixed oak $152
bear oak, scrub oak MO 816 Quercus ilicifolia mixed oak $152
overcup oak MO 822 Quercus lyrata mixed oak $152
black oak MO 837 Quercus velutina mixed oak $152
chestnut oak MO 832 Quercus prinus mixed oak $152
bur oak MO 823 Quercus macrocarpa mixed oak $152
blackjack oak MO 824 Quercus marilandica mixed oak $152
swamp chestnut oak MO 825 Quercus michauxii mixed oak $152
chinkapin oak MO 826 Quercus muehlenbergii mixed oak $152
pin oak MO 830 Quercus palustris mixed oak $152
shingle oak MO 817 Quercus imbricaria mixed oak $152
willow oak MO 831 Quercus phellos mixed oak $152
yellow-poplar YP 621 Liriodendron tulipifera yellow poplar $136
hickory spp. HK 400 Carya spp. hickory $67
bitternut hickory HK 402 Carya cordiformis hickory $67
pignut hickory HK 403 Carya glabra hickory $67
shellbark hickory HK 405 Carya laciniosa hickory $67
shagbark hickory HK 407 Carya ovata hickory $67
mockernut hickory HK 409 Carya tomentosa hickory $67
other species O other $71  
 

Species-specific pricing data were obtained for all commonly harvested tree species, and 

categorical price data used by AHC were applied for less commonly harvested species (AHC 
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2009) (see Table 3-1). Data queries were conducted to ensure that all trees in the FIA TREE 

database could be identified to ensure pricing was applied appropriately.  

Much of the other data necessary for the research project has been compiled through past efforts 

by other members of the research team, including:  biophysical and stand-specific data needed for 

the carbon sequestration model runs (i.e., PnET-CN model), climate data, timber mill travel time 

data, and socioeconomic statistics for counties of West Virginia. 

3.2.2 Data Management and Analysis 

Data from FIA were managed using Microsoft Access 2007 and analyzed using models built 

using STAT11 and Visual Basic 2007. Univariate and multivariate statistical techniques, 

probability analysis, and Monte Carlo stochastic model simulation methods are discussed in 

Sections 4.2, 5.2, 6.2, and 7.2. An overview of data filtering and management techniques applied 

to the FIA data that pertains to all analyses are outlined below: 

 Data records from the entire West Virginia data structure for the year 2000 were 

downloaded from the USFS FIA website (http://www.fia.fs.fed.us/) and imported into 

Microsoft 2007 Access (Vista Platform). A relational database was created, which 

includes imported data compiled by other researchers to be discussed further below.   

 Although, each plot can be split into subplots, conditions (1 to 3 different condition types 

that cut across the plot network), and micro-plots, USFS has developed expansion factors 

to allow for the calculation of density metrics at the plot-level. As the plots are randomly 

selected locations across the state and the FIA data and state-wide expansion factors are 

all structured for plot-level analysis, it was appropriate to pool the four subplots to 

represent the conditions of a plot location when conducting stand level analysis (e.g., 
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estimating AGBD). It should also be noted that the subplots are not independent of each 

other, but are collected in a systematic manner around the center of the plot; therefore, it 

was appropriate to use all four subplots to represent the condition of the plot. 

Furthermore, most of the data that were integrated with the forest stand data, such as 

carbon in the soil, litter, standing dead trees, and understory were all collected only at the 

plot-level; therefore, all carbon statistics needed to be compiled at this level.  In addition, 

certain field data were not collected for all subplots (removals, mortality, and growth 

estimates).  Therefore, stand-level variables were estimated at the plot level, by pooling 

subplot data when available. For 2/3rds of the plots, site conditions provided in the 

COND database were the same across all subplots for a given plot. In the event that two 

or more site conditions were recorded in the COND database (e.g., two different slope 

estimates across the 4 plot network) for a plot, then the predominate condition specified 

for the plot based on area weighting was used to represent the condition for the plot.    

 Just over 2,000 forested plots were sampled during the 2000 sampling event. Of those, 70 

percent were randomly selected for detailed analysis (1473 forest plots), while the 

remaining 30 percent (626 forest plots) were retained as an out of sample dataset for 

model validation purposes. 

 A series of standard query language (SQL) programs were written in Access 2007 to 

compile data primarily from TREE, PLOT, and COND datasets to generate files to be 

used for statistical analysis. Key parameters used from the FIA database are presented in 

Table 3-2 (see USFS 2010a for a detailed listing of variables and definitions; 

http://www.fia.fs.fed.us/).  Note that the parameters listed in Table 3-2 are not 
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independent variables, but are variables from FIA that were important in deriving certain 

independent variables that are discussed in detail in the sections to follow.   

 

Table 3-2   Key Variables from the FIA Database 

FIA Parameter Value Description 

PLT_CN number FIA plot number 

DIA in Diameter at breast height 

SPCD code FIA species code 

REMVCFGS cft/year Tree removal volume for growing stock trees (> 5‖ DBH), 

between sampling periods. Tree removals for stands were 

calculated using FIA variables and the equation below.  

Removal (cft/ac-yr) =REMVCFGS*TPAREMV_UNADJ 

TPAREMV_UNADJ is an adjustment metric for 

converting REMVCFGS to volume per acre.  

VOLCFGRS  cft Tree volume (cft) of the central stem for growing stock 

trees (> 5‖ DBH). 

RMVBSFSL  cft/year Removed tree commercial BF (International ¼‖ rule) 

between sampling periods. 

VOLBFNET  cft Tree commercial net BF volume (International ¼‖ rule) 

for commercial sawtimber trees > 11‖ of the sawlog 

portion of the tree central stem. 

DRYBIO_BOLE 

DRYBIO_TOP 

DRYBIO_STUMP 

DRYBIO_SAPLING 

lbs Oven dry biomass of the bole, top, stump, samplings (> 1‖ 

DBH) of the tree. 

CARBON_AG  lbs Tree (> 1‖ DBH) aboveground carbon mass, which is 

based on estimated tree biomass estimates above (50%) 

GROWCFGS cft/year Positive and negative net annual merchantable volume of 

growth for growing stock trees (> 5‖ DBH) (only available 

for certain subplots) between sampling periods. 

GROWBFSL cft/year Positive and negative growth of net annual MBF 

(International ¼‖ rule) of commercial sawtimber trees 

(>11‖ DBH) between sampling periods. 

MORTCFGS cft/year Field measured tree mortality volume between sampling 

periods, used to calculate tree mortality volumes and 

annual rates for growing stock trees (> 5‖ DBH). 

MORTBFSL cft/year Field measured commercial BF loss between sampling 

periods, used to calculate tree mortality BF volumes and 

annual rates for sawtimber trees (> 11‖ DBH). 

STANDING_DEAD_CD 0 or 1 Identifies trees that are dead, which includes trees that died 

since 1989 as shown in MORTCFGS and MORTBFSL 

variables, as well as trees that died prior to 1989. 
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FIA Parameter Value Description 

TPAMORT_UNADJ 

TPAGROW_UNADJ 

TPA_UNADJ 

 acres
-1

 Plot-level expansion factors to convert TREE volume, 

biomass, and carbon statistics to density estimates.  

COND_STATUS_CD 1 or 2 binary variable based on COND_STATUS_CD from the 

COND database that identifies plots as either forestland 

(plots with at least 50% coverage of timberland and as 

defined by FIA, i.e., COND_STATUS_CD = 1 was the 

predominant land use condition of the plot [USFS 2009a]) 

or other types (plots with less than 50% coverage of 

timberland as defined by FIA, i.e., COND_STATUS_CD 

= 2 was the predominant land use condition on the plot). 

ELEV ft Derived from FIA 2000 Plot Data 
http://www.fia.fs.fed.us/, supplemented by USGS National 

Elevation Dataset (NED) and Global Elevation Data 

(SRTM). USGS. 2009 

http://www.latlontoelevation.com/dem_consume.aspx 

LAT 

LONG 

degrees Latitude and longitude recorded in decimal degrees based 

on NAD 83 datum. 

SLOPE % slope Predominant slope on plot obtained from FIA 2000 

database http://www.fia.fs.fed.us/ 

OWNCD Code Ownership regime code (identifies private and public 

lands). 

FORTYPCD Code FIA forest type code.   

  

http://www.fia.fs.fed.us/
http://www.fia.fs.fed.us/
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4. Multi-scale Modeling of Timbering Events using Logistic 

and Multilevel Random Effects Logistic Regression 

Analysis 
 

 

 

4.1 Introduction 

Over the past several decades, forest resources throughout the northeast, including West Virginia, 

have continued to increase in biomass, stand size, and commercial value following large timber 

production that occurred in the first half of the 20
th
 century (WV Division of Forestry 1990, 

USFS 1977, USDA 2008, Brown et al. 1997).  Towards the end of the 20
th
 century natural 

recovery of forest resources in the state, along with timber market conditions, gave rise to 

significantly higher timber removal rates, as shown in Figure 4-1. During this same period, 

average timber stumpage prices at the end of the 20
th
 century more than doubled from 1990 to 

2000 in West Virginia (see Figure 4-2), consistent with U.S. price trends, indicating the potential 

for a causal relationship between timber prices and timber removal rates.  As forest resources 

continue to increase in commercial volume in the 21
st
 century and stumpage prices change (e.g., 

rates have now leveled-off or declined since 2000, but long-term rates may rise again), it is 

uncertain how these changes will alter timber removal rates and patterns in the future.  Also, there 

are significant differences in species-specific stumpage price trends, which may alter timber 

removal patterns and tree selection (see Figure 4-2).  For example, black cherry stumpage prices 

doubled from 1989 to 2009 (when adjusted for inflation), while recent red oak stumpage prices 

have nearly fallen to their 1989 levels due to lower demand for this species.  It is unclear to what  
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Figure 4-1  Forest Volume Removed in West Virginia 

from Timbering between 1979 to 2000 (millions m
3
, 

lumber production in 1979 equaled 464 MMBF) 

(USFS/Hansen et al. 2005) 

 

 

 

 
Figure 4-2  West Virginia Stumpage Prices from 1989 to 2000 ($/MBF) (AHC 2010) 
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extent these price trends impact long-term sustainable use of these species and alter species 

composition and forest community structure.  Given the volume of timber removed in the 

northeast, it is important to better understand how national and international timber markets, 

coupled with continued regrowth of forest resources, impact micro-scale and statewide timber 

patterns, removal rates, forest condition, sustainability, and carbon sinks into the 21
st
 century.   

This portion of the research project focuses specifically on better understanding the relationships 

between timber market prices and stand characteristics on timber removal rates, stand selection, 

and tree selection. By modeling these relationships, it will then be possible to couple these results 

into an integrated modeling framework that will allow for more detailed analysis of the impact of 

market and policy scenarios on tree-, stand-, and state-level forest resources and carbon sink 

implications for long-term forecasting (as developed in Sections 5, 6, and 7).  

Although several forest management and carbon models have been coupled for scenario analysis 

(e.g., numerous applications of the USFS Prognosis Model/Forest Vegetation Simulator [FSV] 

Model [USFS 2010b,c], Sohngen and Brown 2006, Sohngen and Sedjo 2006), this proposed 

approach is novel as it applies a micro-scale approach to simulate timber stand- and tree-selection 

as an endogenous process based on economic and site characteristic drivers, with cross-scale 

feedback mechanisms (i.e., impact of continued timbering, increased forest growth, and changing 

markets on future forest resource conditions, which in turn changes future timbering intensity and 

tree selection patterns).  Thus, timbering events are modeled as an endogenous process, rather 

than as an exogenous process where the modeler typically imposes user-defined forest 

management constraints and timber removal estimates on the system. For example, the USFS 

Prognosis Model/FVS (as well as other growth models discussed in Section 5) requires the user to 

specify timber removal volumes and events as an exogenous variable, while micro-scale growth 
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dynamics are modeled at the tree- and stand-level as an endogenous process.  On the other hand, 

other large-scale economic models (Sohngen and Brown 2006, Sohngen and Sedjo 2006) 

simulate larger scale timber removals as an endogenous process based on economic models, but 

these models focus on evaluating land use change and conversions (between agriculture and other 

uses) at a multi-state regional-level or country-level.  These economic models do not simulate 

micro-scale growth dynamics or selection processes at the tree-level, which allow for evaluating 

tree-and stand-level effects.        

Application of forest management models, such as Prognosis/FVS, are well suited for addressing 

scenario analysis on public lands where foresters evaluate and carefully plan the extent of forest 

volume that will be removed, stand selection, frequency and rotation cycles, and specific timber 

techniques for tree selection. However, on private lands such factors are driven more by timber 

market conditions, forest resource conditions, and decisions by timber firms and/or private 

landowners as part of negotiations (i.e., depending on whether or not the timber firm owns the 

land rights). As timber market and forest resource conditions change over time and interact 

through cross-scale feedback mechanisms, it is important to evaluate these processes 

endogenously at a finer scale, as over 80% of the forest resources reside on private lands in West 

Virginia.  Coupling these micro-scale economic processes into a multi-scale forest growth and 

carbon model, then allows for a more complete understanding of the long-term effects of 

timbering, continued forest growth, market conditions, and policy on forest biomass, resource 

sustainability, stand structure, biodiversity, and carbon at multiple scales.  

To accurately model forest loss, it is important to understand the proximate causes and underlying 

forces driving these systems. Anthropogenic loss of forest resources is most often driven by local 

to regional proximate and underlying driving forces and conditions, and indirectly influenced by 
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regional, national, and global drivers (Geist and Lambin 2002, Angelsen and Kaimowitz 1999). 

As indicated in a comprehensive study of driving factors of forest cover change conducted by 

Geist and Lambin (2002), the conditions influencing forest cover are diverse and location-

specific. These driving forces cut across an array of policy, socioeconomic, and natural processes 

at multiple scales, including biophysical local conditions, national/global policies and regulations, 

corporate globalization, culture, history, human behavior, social decision-making at several levels 

(household, networks at different scales and types, governments), crop suitability and yields, 

technology applications, education, economics at several scales (land use, rent, export potential, 

prices), politics, infrastructure access, enforcement, natural succession forces, and other factors 

(Geist and Lambin 2002, Angelsen and Kaimowitz 1999). Most often a combination of factors 

will drive forest system change in certain locations.  Their influence can vary over temporal, 

causal and spatial scales. Furthermore, these factors can also operate within complex temporal 

and cross-scale feedback mechanisms that can impact long-term outcomes.   

In West Virginia, loss of live forest biomass can be attributed to a number of anthropogenic 

proximate causes including timbering and land use pressure associated with mining, agriculture, 

development, creation of open space, and other land uses (Hansen et al. 2005, USDA 2008, 

Drummond and Loveland 2010).  From 1990 to 2005, the USFS estimates that forest cover in 

West Virginia declined nearly 0.6 percent over a 15 year period due to timbering and land use 

conversion (USDA 2008).  This is consistent with recent findings by Drummond and Loveland 

(2010) that land-use pressure has resulted in declines in forest extent from 0.9% to 3.3% over a 

nearly 30 year period (early 1970s to 2000) in the Western Allegheny Plateau, Central 

Appalachians, and Ridge and Valley ecosystems of West Virginia, principally due to expanded 

mining, mechanical disturbances, and development.  However, the loss of forest biomass due to 
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land use change was still minor compared to the losses due to commercial timbering operations.  

From 1989 to 2000, estimated state-level forest volume removal rates due to commercial 

timbering events on forestland were approximately 20 times greater than the volume of timber 

removed from land clearing activities (i.e., clear cuts, which may or may not result in actual land 

use conversions, and forests removed from lands designated as other land use types) (USFS 

2010a). Thus, commercial timbering continues to have a far greater impact on forest biomass and 

forest resources in West Virginia as compared to land use conversion. Therefore, it is important 

to understand the proximate causes behind timbering removal rates and selection processes in 

order to more accurately model long-term forest biomass and carbon pools. Timber harvesting 

was also found to be the key dynamic for projecting forest carbon cycling in the Pacific 

Northwest (Song and Woodcock 2003). As many other states in the northeast are experiencing 

similar land use pressures and timbering activities (Drummond and Loveland 2010; USDA 2008, 

2010; Brown et al. 1997), the results of this analysis may provide further insights into the long-

term cumulative effect of timbering and other processes on forest resources and carbon stocks. 

Although timber events are the most important anthropogenic activity that results in loss of forest 

biomass in West Virginia, forest recovery during the 20
th
 century and continued biomass growth 

exceeds forest biomass losses due to timbering. Altogether, the cumulative effect of timbering 

and land use pressure has not resulted in a net annual loss in forest biomass at the state scale. 

From 1990 to 2005 forest biomass in West Virginia was estimated to increase by 9% at a net 

annual rate of 0.5% / year (USDA 2008, USFS 2010a), despite the slight reduction in the spatial 

extent of forestlands and timbering in West Virginia.  As timbering reduces biomass by about 

0.44% / year and the rate of timbering significantly increased from 1990 to 2000, it is unclear 

whether forest resources in West Virginia will continue to increase at the current rate in 
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consideration of future timber market conditions and long-term growth rates.  As forests continue 

to mature following recovery during the 20
th
 century after significant losses that occurred at the 

turn of the 19
th
 century, it is possible that long-term growth rates will decline into the 21

st
 century 

as these systems fully mature.  Even slight changes in annual timbering and regrowth rates could 

alter the long-term balance and sustainable use of forest resources in West Virginia and 

potentially reverse current recovery trends. Thus, it is important to properly evaluate and model 

these processes in greater detail when conducting long-term projections of timber resources, 

forest biomass, and ecosystem recovery.    

To explore timbering processes in West Virginia further, the first basic research question is:   

What are the factors affecting timbering rates and stand and tree selection?  For example, in any 

given year, why are certain timber stands selected for commercial timber removal and not others?  

To what extent do economic drivers impact stand selection, removal volumes, and removal 

methods, including species composition, age class, biomass, plot/tree accessibility, ownership, 

and/or proximity to a mill for processing?  If timber firms operate in a system with full 

knowledge of the timber resources and full access to these resources, it stands to reason that 

timber stand selection and removal methods would be based in large part on economic drivers in 

order to maximize the objectives of the firm to maximize profit. Thus, it is hypothesized that 

timber stand and tree selection for commercial timbering operations and removal volumes are 

driven by underlying economic drivers.  

Given the complexity of the system under investigation, it is important to identify and evaluate 

the unique principal drivers that may influence timbering processes in West Virginia and 

carefully consider how the system will respond to change over time. Understanding these 

elements is important for LUC model development and conceptualization. Some of the key issues 
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and observations regarding West Virginia’s forest resources and related industry are outlined in 

several publications (Parker et al. 2008, USFS 2003, and analysis of FIA and National Woodland 

Ownership Survey (NWOS) data [USFS 2009a,b]). These publications provide a conceptual 

framework of the overall timber market in West Virginia, which is highly dependent on 

interactions between timber firms and non-industrial private forest landowners (NIPFs).  Nearly 

80% of the forestlands in West Virginia are privately held and over 70% of those lands are owned 

by NIPFs who may or may not be willing to sell timber rights in any given year.  NIPF surveys 

(NWOS 2009a,b) indicate that 19% of NIPFs in West Virginia would be willing to sell 

commercial timber on their lands in the next five years (USFS 2009b).  Given that the frequency 

of annual timber events on forest stands is low in West Virginia (0.5 % of all forest stands are 

timbered per year [USFS 2010a]), the NWOS results suggest that timber firms may have 

sufficient access to timber resources in West Virginia for commercial timbering.  

If it is assumed that timber firms operate in a system with full knowledge of the timber resources 

and full access to these resources, it was deduced that timber stand selection and removal 

methods would be based in large part on economic drivers in order to maximize the objectives of 

the firm to maximize profit. Thus, it was hypothesized that economic drivers that increase the 

market value will increase the frequency and volume of timber removals. Forest stands and trees 

of higher total value (species with higher stumpage value per volume and stands with higher BF 

density) would be more likely to be selected for timbering. Forest stand ownership was also 

considered to have an indirect effect on forest stand selection, tree selection, and removal rates, as 

stands owned and managed by public agencies may be less likely to allow large-scale commercial 

removals. Forest stands located on steeper slopes may also be less likely to be timbered due to 

reduced access. Other socioeconomic variables, such as population density change, income within 

the county in which the forest stand was located, and other land use types (i.e., other than 
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forestland, such as agriculture or developed land) may also have an indirect effect on timbering 

frequencies.  Essentially, population density change, income, lower elevation, and other land uses 

are measures of human occupation of the landscape and development, and such areas may be 

more likely to be timbered in order to maintain open areas or convert land uses from forests to 

open or developed areas.  Population density change and income also serve as proxy variables of 

infrastructure (processing mills, trucking) and access (e.g., road networks), which impacts 

removal costs. Similarly, timber removals may occur closer to production mills in order to reduce 

costs. Thus, forest stands located near timber mills would be more likely to be timbered, all other 

factors being equal. Inferred hypothesized relationships between specific economic drivers and 

timber stand selection for commercial timber removals are presented in Table 4-1.  

 

Table 4-1  Economic Drivers of Timber Stand and Tree Selection 

for Commercial Timber Removals 

 

 

 

  

Economic Independent Variables  Effect 

Stand/tree value + 

Stand/tree volume + 

Distance to mill - 

Slope - 

Private ownership + 

Public ownership (for profit timbering allowed) - 

Population density + 

Income + 

Elevation - 
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4.2 Methods 

4.2.1 Overview of Multilevel Modeling Approach 

As detailed in Figure 3-2, selection of forest stands and specific trees on those stands were 

modeled as two separate events, which considered both stand and tree characteristics.  A flow 

diagram outlining the basic timbering modeling approach is presented in Figure 4-3. To identify 

key drivers of timber stand selection, independent variables that reflect the economic factors 

outlined in Table 4-1 and Figure 4-3 were evaluated and tested using multivariate logistic 

regression and multilevel random effects logistic regression techniques. Independent variables 

included:  total stand volume density, total stand value density (log transformed), slope, elevation, 

average income, population density growth, ownership (binary variable: public/private), travel 

time to the nearest mill, and ecoregional province (2 categories). This model was then used for 

selecting timber stands using Monte Carlo analysis as part of an integrated model presented in 

Figure 3-2 (see boxes labeled with T) and discussed further in Sections 5 and 6.  

Since the dependent variables were binary and the independent variables were continuous and 

binary, multivariate logistic regression modeling was applied using STAT11 for predicting stand 

and tree selection probabilities (Johnson and Wichern 2007, Xiao et al. 2010, Greene 2008). For 

modeling tree-selection, there is a hierarchical structure to the data, which required alternative 

statistical techniques.  In this hierarchical structured data set, each tree observation is not 

statistically independent of other tree observations within the same stand, precluding simple 

pooling of the data and ignoring stand-level interactions and effects. Therefore, a multilevel  
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Figure 4-3  Flow Diagram of Multiple Scale Commercial Timber Selection Models and 

Processes 
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random effects logistic regression model was also tested in order to determine if the hierarchical 

structure contributed a significant amount to the observed variance. The stand effect variance is 

modeled either as a fixed effect that varies for each sample location (which can be logistically 

difficult to apply when modeling probabilities) or as a random effect depending on model 

diagnostics (Greene 2008, Xiao et al. 2010). This modeling approach provides an appropriate way 

for statistically analyzing tree-level data collected at the forest stand level, which are similar in 

structure to data often encountered in the fields of microeconomic behavior, social science, and 

education research.  

The multilevel model included all the independent variables previously discussed, as well as tree-

level variables (price of the commercial tree, volume of the sawlog, and DBH for non-

commercial trees). Multilevel random effects logistic regression models were applied to all large 

trees above 5‖ DBH, trees with commercial value as sawlog timber (i.e., trees with BF in the 

central stem), and non-commercial trees (i.e., large trees above 5‖ DBH that lacked commercial 

value as sawlog timber).  The model results were used to identify any key economic drivers of 

tree selection and to develop models for simulating stand and tree selection as part of the 

integrated model using Monte Carlo analysis (as shown in Figures 3-2 and 4-3).           

In addition to the methods discussed above, alternative modeling approaches were also tested for 

simulating forest stand selection and forest removal intensity.  Instead of using binary dependent 

variables and logistic regression, an ordinal variable was tested using ordered probit regression 

and ordered logistic regression for modeling defined categories of timber events.  For this 

analysis, three ordinal categories of timbering intensity were defined based on heuristic 

techniques further discussed in Section 4.3.1. Preliminary results indicated that the binary/logistic 

and multilevel modeling approaches were able to generate favorable model fit statistics (as 
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further detailed in Section 4.3) unlike the ordered discrete statistical models (p > 0.7, with R
2
 = 

0.03). Therefore, use of ordered discrete statistical modeling methods were no longer pursued.     

Stumpage prices were based on the state regional timber prices for each of the five regions 

(International Scale $/MBF) for commercially important tree species that are compiled by AHC 

(2010).  Since timbering events occurred between the 1989 and 2000 sampling events and the 

actual year of the removal was unknown, a weighted average tree price was derived for each 

species category and region using timber production trends in West Virginia (Hansen et al. 2005, 

see Figure 4-1) with adjustments for inflation to 2000 prices based on the Producer Price Index 

(PPI) (BLS 2009). This weighting approach was necessary because stumpage prices steadily 

increased between the two sampling period from 1989 to 2000 (nearly doubling), and it is not 

known in which year the actual timbering event occurred.  To properly model the relationship 

between timber price and timbering events it was therefore necessary to estimate the value of the 

timber when it was actually removed from the stand.  If the 2000 price data were used to fit the 

logistic regression model when stumpage prices were highest, then the constant term for the 

model equation would not be calculated properly and would underestimate timber removals (as 

most removals occurred when prices were lower than levels recorded in 2000, see Figures 4-1 and 

4-2). On the other hand, if average prices between 1989 and 2000 were used, then the logistic 

regression equation could overestimate timber removals (as most removals occurred toward the 

end of this time period when prices were much higher than the average, see Figures 4-1 and 4-2). 

Thus, a weighted average approach was used to estimate the average stumpage prices for timber 

that was actually removed.  To approximate the stumpage prices when timber was removed, 

timber production records for West Virginia compiled by the USFS were used to estimate the 

volume of timber removed each year from 1989 to 2000 (using interpolation, see Figure 4-1). 
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These data, along with PPI adjustments, were then used to develop annual weighting factors for 

timber stumpage prices at the regional level.   

4.2.2 Timber Stand and Tree Selection Variable Selection and Analysis Methods 

An overview of the dependent and independent variables for the timber stand and tree selection 

analyses are presented in Table 4-2. All the independent variables were evaluated in the stand and 

tree selection models, with the exception of tree value and tree volume, which were only 

evaluated for the tree selection model (as footnoted in Table 4-2).  Stand-level independent 

variables were still evaluated when modeling tree selection, because such variables could impact 

tree selection probabilities (e.g., a tree may be more likely to be removed if the overall stand has 

higher value and/or lower removal costs).  Stand and tree price distributions were highly skewed 

and exhibited lognormal distribution characteristics, thus log transformations were applied to 

these variables to enhance normality. The relationships between dependent and independent 

variables were also evaluated to verify that none exhibited a unimodal or bimodal distribution 

pattern.    

Multivariate logistic and multilevel random effects logistic regression models were fit using the 

original independent variables as presented in Table 4-2, as well as principal component analysis 

(PCA).  Initially, PCA and correlation analysis were performed to evaluate the dimensions and 

intercorrelations of independent variables so as to create a full explanatory model, but without 

over fitting the data. In order to identify the key PCs, the eigenvalues with the largest explanatory 

power were selected based on the recommended criteria specified for the Latent Root test, where 

PCs with eigenvalues above 1 are selected for further analysis (McGarigal et al. 2000). Since 

PCA variables include only continuous independent variables, all binary independent variables 
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that were statistically significant (p < 0.1) in contributing to the model fit were also included in 

the model.   

 

Table 4-2   Plot and Tree Selection and Removal Variables 

Model Parameter Value Derivation and Source Information 

Dependent Variables 

Stand Commercial Timber  

Event   

1 or 0 Commercial timber removal with > 30% of stand 

volume removed (USFS 2010a) 

Tree Removal Event  1 or 0 Tree removal event (USFS 2010a) 

Independent Variables 

Stand Value ($) Density  $/ha  

2000$ 

Price density based on species-specific BF and WV 

1989 to 2000 price data, using a weighted average 

across years based on timber production (Hansen et 

al. 2005), PPI, and regional price data (AHC 2010) 

Tree Value ($)
2
 $/stem Same methods as above 

Stand Volume Density  m
3
/ha USFS 2010a 

Tree Volume
2
 m

3   
 Central stem tree volume (USFS 2010a) 

Stand Travel time 
1 
 minutes GIS network analysis of the travel time from stand 

(USFS 2010a) to nearest production mills 

Stand Slope 
1
 %  slope Predominant slope on plot (USFS 2010a) 

Stand Elevation FIA stand 

value (m) 

USFS 2010a  and USGS National Elevation Dataset 

and Global Elevation Data (2009) 

Stand Ownership 1 or 0 Public or private lands (USFS 2010a) 

Population Density Change 

of County  

% County population density change (U.S. Census 

Bureau 2005) 

Average Income of County  $/person 2005 U.S. Census Bureau  

Ecoregional Province 1 or 0 Bailey’s Ecoregional Provinces: Eastern Broadleaf 

Forest (Oceanic) Province or Central Appalachian 

Broadleaf Forest Province (March 1995)  
1 
proxy for removal costs    

2 
tree selection model only 

 

In order to develop a model that could be readily applied in CFM and other models, such as FVS, 

simpler and more practical statistical models that required only the key independent variables 

impacting stand and tree selection were also developed.  Similar model reduction measures have 
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been applied by USFS in developing simpler forest growth models that were integrated into FVS 

(Teck and Hilt 1991; USFS 2010b,c).  This is important for broader application and technology 

transfer, as the simpler models may yield similar results to the models fit using PCA, but require 

far fewer variables and reduced data collection effort.  For example, the distance to the nearest 

mill is a labor intensive variable to compute, requiring GIS-based network analysis to estimate 

travel times between each stand and the nearest mill for processing.  If it is found that this 

variable does not statistically contribute to the overall model fit and that applying a simpler model 

without this variable yields commensurate results to the PCA approach, then this simpler model 

may be sufficient for predicting stand and tree selection patterns.   

To develop these simpler models, multivariate logistic regression and multilevel models were 

developed using all independent variables presented in Table 4-2, as a first step.  Independent 

variables that did not contribute significantly to model fit were removed individually. The 

independent variable least likely to contribute to the model fit was removed initially, and then the 

remaining variables were refit.  Next a statistical significance test was run to determine whether 

the fit of the first and second logistic regression models were significantly different from one 

another using the likelihood ratio chi-squared test (p < 0.1) as computed in STAT11 (Xiao et al. 

2010).  If the model coefficients were statistically different between the two models (p < 0.1), 

then the fuller model was selected and no additional variables were removed, otherwise the 

variable was removed and these steps were repeated.  This higher statistical threshold of p < 0.1 

was utilized for variable selection (as opposed to 0.05 or 0.025) in order to reduce the concern of 

dropping important independent variables from the analysis.  

The final models were then verified by comparing estimated and observed stand and tree 

selection for the 70% dataset within ten quantile partitions of the data. The quantiles were 
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categorized based on a rank order of the estimated probabilities of an event using the logistic 

regression model; and then the data were split into ten equal partitions. For model validation, the 

final models were then applied to the 30% out of sample dataset and observed and estimated 

stand and tree removals were compared for model fit.    
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4.3 Results and Discussion 

4.3.1 Overview of Timber and Tree Stand Selection Patterns 

Overall, forest stands were timbered at a frequency of 0.5% annually between 1989 and 2000. Of 

those stands that were timbered, 64% of the stand value was removed on average, which 

consisted of over 50% of the tree stem volume for those stands that were timbered.  At the state-

level, approximately 0.8% of commercial timber value was removed each year from West 

Virginia forests, while only 0.44% of the total tree stem volume was removed on average. These 

results suggested that tree selection was being targeted to the most valuable tree species on the 

stand (e.g., black cherry, red oak, and hard maples).  

Commercial timbering events were defined as a timbering event where at least one commercial 

sawlog tree was removed from a stand (accounts for 96% of all timber removal events by 

volume). Commercial timbering events that occurred in West Virginia from 1989 to 2000 were 

classified into three levels of timbering event intensities, which exhibited different relationships 

to the explanatory variables: 

1. High intensity events were defined as timbering events where 60% or more of the total 

central stem volume was removed from the plot for trees > 5‖ DBH.  Tree selection 

patterns typically involved removal of the largest commercially valuable trees from the 

stand (e.g., diameter limited cuts, where trees above a specific DBH were removed, e.g., 

> 11‖ DBH), with a small portion consisting of clear cuts (where 95% to 100% of all tree 

stem volume for trees above 5‖ DBH were removed). Clear cuts were relatively 

infrequent (only 6% of all timber removal events); therefore, it was not evaluated 

separately.      
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2. Medium intensity timbering events were defined as timbering events where 30% to 60% 

of the total central stem volume was removed from the plot for trees > 5‖ DBH.  Tree 

selection patterns typically involved removal of a select portion of the larger 

commercially valuable trees from the stand, as well as thinning practices, which include 

mixed aged tree removals.  

 

3. Low intensity timbering events were defined as timbering events where less than 30% of 

the total central stem volume was removed from the plot for trees > 5‖ DBH. 

One-third of all timber removal events in West Virginia were high intensity and they generated 

47% of total state timber removals by volume.  Over half (54%) of all timber removal events 

were medium intensity and they generated 47% of total state timber removals by volume (similar 

to the high intensity events).  About 13% of all commercial timber removal events were low 

intensity and they generated only about 6% of total state timber removal volume.   

In evaluating stand and tree selection patterns in the raw data, it was evident that stand selection 

and tree removal patterns in the low intensity category were clearly different than the type of 

commercial timbering practices seen in the medium and high category. The medium and high 

intensity events involved diameter limited cuts of the highest valued timber, select cuts of the 

highest valued timber, and clear cut events. Based on the results of the heuristic analysis, stand 

and tree selection patterns appeared to be similar for both the medium and high intensity events; 

therefore, there was no justification for splitting the dataset using the defined categories discussed 

above. However, distinct differences were seen between the low intensity category and the higher 

intensity categories.  For example, as shown in Figure 4-4, as the stand value density increases, 
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the probability of the stand being selected for medium/high intensity removals in West Virginia 

steadily increased. In contrast, stand selection for low intensity removals did not exhibit any 

apparent economic trend, as tree selection appeared to be driven by other factors not evident in 

the data.  For example, low intensity events may involve removal of diseased trees, firewood 

collection, high grading, thinning, clearing, or removals for other purposes, other than the 

selection of high value trees.  Similar results were seen for individual tree selection patterns 

(Figure 4-5).  The probability of tree selection generally increased with increased stumpage value 

for medium/high removal events, while no such pattern was seen with the low intensity events or 

with other explanatory variables. Given the differences in stand and tree selection patterns 

between medium/high versus low intensity timbered plots, the low intensity timber removal 

events were modeled separately. For the purposes of this project, the medium/high timber 

removal events were classified as ―commercial timbering events‖, to distinguish them from the 

low intensity removal events. The logistic regression modeling effort was focused on analyzing 

timber removal dynamics for these commercial timbering events, as they accounted for 91% of 

all timber removals statewide.    

Spatial patterns in stand removal rates, intensity, and stand value were also evaluated across West 

Virginia using data compiled at the regional level, based on the WV AHC (2010) regional 

categories used for reporting timber production and stumpage prices at the state level.  As shown 

in Figure 4-6, the highest average stand value density ($3,300/ha) were found in the West 

Virginia Highlands area (particularly the northern counties of Region 3), which also had the  
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Figure 4-4 Stand Selection Patterns for Medium and High Commercial Timbering Events 

Versus Low Intensity Timbering Events 

 

 

 

 
Figure 4-5 Commercial Tree Removal Patterns for Stands with Medium/High Commercial 

Timbering Events Versus Low Intensity Timbering Events 
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Figure 4-6 Commercial Stand Selection Patterns Across West Virginia 
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highest incidence of medium/high timber removals in the state, while the eastern panhandle had   

the lowest average stand value density ($1,300/ha) as well the lowest incidence of timber      

removals. The incidence of medium/high intensity timber removals appeared to generally 

increase across the state with higher stand value density, while no such patterns were evident for 

the low intensity events.  At the county level, the spatial differences in timber value appears to be 

an artifact of spatial differences in biophysical characteristics of the stands (e.g., higher rainfall), 

which promote the greatest growth potential for high valued species, such as black cherry and 

hard maples, which are prevalent in the West Virginia highlands area (Region 3), and highest 

potential for annual growth rates (increased precipitation, higher elevations, lower average 

maximum temperature). The effects of biophysical characteristics, species composition, and 

regional cost differences are incorporated into the independent variables used for modeling timber 

removals discussed further below, as well as for forest growth discussed in Section 5.  However, 

there may still be other stand characteristics, such as historic disturbance effects, terrain 

classification, slope orientation, access, regional industrial networks, and other factors that may 

create spatial patterns and explain some of the variance in stand and tree selection not captured in 

this analysis. Further studies and research are needed to determine whether some of these other 

factors are important and whether other spatial patterns exist in the West Virginia data.  Modeled 

estimates of timber removals by region versus observed data are discussed in Section 4.3.4.         

4.3.2 Principal Component and Correlation Analysis of Independent Variables of Stand 

Selection 

As discussed in Section 4.2, PCA was conducted on the independent variables that were used to 

predict timber removal events. Using the Latent Root criterion test, there were 4 principal 

component vectors with eigenvalues of nearly 1 or more (McGarigal et al. 2000). These four 
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vectors explained 83% of the variance in the independent variables presented in Table 4-3. The 

four key vectors in the principal component analysis and factor loadings are presented in Table 4-

4 and discussed below:  

PC1.  Human Development:  Change in population density and income were both highly 

correlated with this vector, and with each other (+0.67), as shown in Tables 4-4 and 4-5.  This 

vector explained 33% of the total variance.  

PC2.  Sawtimber Value:  Value and volume of timber on the stand were both highly 

correlated with this vector, and with each other (+0.71), as shown in Tables 4-4 and 4-5. This 

vector explained 22% of the total variance.  

PC3.  Plot Access:  Elevation and slope were both significantly correlated to this vector, as 

shown in Table 4-4. This vector explained 16% of the total variance.  

PC4.  Travel Costs:  Travel distance to the nearest mill was highly correlated with this vector, 

while slightly negatively correlated with increases in population density and income as 

expected (-0.19 and -0.25, respectively), as shown in Tables 4-4 and 4-5.  This vector 

explained 13% of the total variance.        
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Table 4-3   Principal Component Proportions and Cumulative Variance for 

Independent Variables 

Component EigenValue 

Variance 

Proportion Cumulative 

1 2.29 0.33 0.33 

2 1.52 0.22 0.54 

3 1.11 0.16 0.70 

4 0.89 0.13 0.83 

5 0.61 0.09 0.92 

6 0.32 0.05 0.96 

7 0.26 0.04 1.00 

 

 

 

 

 

Table 4-4   Principal Components and Factor Loadings 

Variable 
Comp 

1 
Comp 

2 
Comp 

3 
Comp 

4 
Comp 

5 
Comp 

6 
Comp 

7 

Slope 0.29 -0.03 -0.62 0.46 0.57 0.00 0.03 

Stand  Vol  Density 0.41 0.55 0.04 -0.12 -0.07 -0.07 0.71 

Log Stand $ Density 0.38 0.58 -0.08 -0.08 -0.13 0.05 -0.69 

Income -0.47 0.41 0.05 0.28 0.09 0.72 0.09 

Population Density -0.44 0.40 0.18 0.34 0.18 -0.68 -0.05 

Elevation 0.29 -0.07 0.70 -0.02 0.63 0.12 -0.09 

Travel Distance 0.31 -0.16 0.29 0.76 -0.47 0.03 0.01 

 

 

 

 

 

Table 4-5   Correlation Matrix for Independent Variables 

Variables Slope Vol/ha $/ha Income Pop 
Density 

Elevation Travel 
Distance Slope 1       

Stand  Vol  Density 0.14 1      

Log Stand $ Density 0.17 0.72 1     

Income -0.22 -0.13 -0.08 1    

Population Density -0.24 -0.12 -0.09 0.67 1   

Elevation -0.08 0.21 0.11 -0.26 -0.15 1  

Travel Distance 0.17 0.12 0.09 -0.25 -0.19 0.26 1 
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4.3.3 Drivers of Timbering and Forest Stand Selection 

4.3.3.1 Results of Modeling Commercial Timbering Events 

Modeling Commercial Timbering Events Using PCA.  The logistic regression model fit using the 

principal components (defined and discussed in Section 4.3.2) for predicting commercial 

timbering events is presented below:   

𝑇𝑖𝑚𝑏𝑒𝑟 𝐸𝑣𝑒𝑛𝑡 = 0.49 𝑃𝐶1 + 0.72 𝑃𝐶2 + 0.06 𝑃𝐶3 − 0.25 𝑃𝐶4 +  0.74 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 − 3.99  {1} 

 
 

The logistic regression analysis of the principal components indicated that the incidence of stand 

selection increased with increasing human development (PC1) (p < 0.001), stand value (PC2) (p 

< 0.001), closer proximity to mills (PC4) (p = 0.051), and private ownership (p = 0.065) (the only 

statistically significant binary variable).  Of the principal components, stand value was the 

primary variable that drove the incidence of a timbering event, followed by human development 

and proximity to the mill. The plot access principal component (PC3) did not appear to be 

significant (p = 0.59).   

In terms of model fit, the principal component model was highly statistically significant 

(Likelihood Ratio test was highly significant at p < 0.0001). The estimated R
2
 was quite low, 

0.12, due to the inability of the model to accurately predict infrequent removals at a fine spatial 

and temporal resolution. The Hosmer and Lemeshow Goodness-of-Fit Test, which is routinely 

used for evaluating logistic regression model performance, was applied to test model outcomes 

(Hosmer and Lemeshow 2000).  The Hosmer and Lemeshow Goodness-of-Fit statistic indicated 

that the null hypothesis (i.e., predicted events estimated using the model for dataset partitions are 



59 
 

 

 

 

 

 

statistically the same as the observed data) cannot be rejected (p = 0.76) indicating good model fit 

for the ten quantile partitions (or deciles) of the data (Xiao et al. 2010). The Partition of the 

Hosmer and Lemeshow Test (see Table 4-6 and Figure 4-7) indicated that the model performed 

well at modeling the overall pattern in the data for the ten quantile partitions of the dataset.  The 

use of ten quantile partitions is a standard method applied in the Hosmer and Lemeshow Test 

(Hosmer and Lemeshow 2000), and is the default setting in SAS and STAT11 for evaluating 

logistic regression model performance. The ten quantile partitions were based on rank ordering 

the stands by probability of being selected for a timbering event and comparing the total number 

of observed timbering events versus most-likely expected number of events within each quantile 

partition.  Overall, there was a 1.5% error rate in the classification of timbered plots estimated  

 

Table 4-6   Partitions of the Hosmer and Lemeshow Test for Modeling 

Timber Removals at the Plot Level Using Principal Components 

Quantile Total 

Plots Not Timbered Timbered Plots 

Observed Expected Observed Expected 

1 149 149 148.5 0 0.5 

2 149 148 147.1 1 1.9 

3 149 149 146.0 0 3.0 

4 148 144 144.0 4 4.0 

5 149 141 144.0 8 5.0 

6 149 141 142.7 8 6.3 

7 148 140 140.1 8 7.9 

8 149 140 138.8 9 10.2 

9 149 134 134.6 15 14.4 

10 148 119 119.1 29 28.9 
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Figure 4-7 Timber Removal Model Fit: Estimated Versus Observed Number of Plots 

Selected for Timber Removals by Quantile from 1989 to 2000 using Principal Component 

Variables 

 

within each of the quantile partitions shown in Table 4-6.  The apparent error is calculated as the 

total number of misclassifications divided by the total sample size, which is a standard measure of 

calculating error for logistic regression (Johnson and Wichern 2007).  Figure 4-7 shows that the 

expected number of timber removals within each quantile partition was highly correlated with the 

observed number of timbering events (R
2
 = 0.96). These results indicated that the logistic 

regression model performs well at describing the overall pattern of stand selection (e.g., number 

of timbering events within each quantile partition) as shown in Table 4-6 and Figure 4-7, but it 

cannot predict the exact plot in which a timbering event occurred (as evident by the low estimated 

R² = 0.96
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R
2
 of 0.12 derived at the plot level). This model scale issue is due in part to the very low 

frequency of annual occurrences (the probability of a plot being timbered is only 0.5% annually).    

Modeling Commercial Timbering Events Using Independent Variables. The logistic regression 

analysis of the selected independent variables indicated that only stand value density (log 

transformed $/ha) (p < 0.001) and plot ownership (p = 0.08) were statistically significant in 

predicting stand selection for commercial timbering events.  Other independent variables, 

including stand volume density (p = 0.49), travel time (p = 0.84), slope (p = 0.20), elevation (p = 

0.50), population density (p = 0.67), ecoregion (p = 0.22), and income (p = 0.75), were not 

statistically significant in improving model performance based on a likelihood ratio chi-squared 

test (using a threshold of p < 0.1) (Xiao et al 2010).  Therefore, these variables were removed 

from the model. The logistic regression model fit using the original independent variables for 

predicting commercial timbering events is presented below:   

𝑇𝑖𝑚𝑏𝑒𝑟 𝐸𝑣𝑒𝑛𝑡  1 = 1.17(𝑙𝑛 𝑇𝑂𝑇$/2.47) + 0.66 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 − 11.32   {2} 

where: 

TOT$ = total value density of sawtimber commercial tree > 11‖ on the plot ($/ha); and 

Ownership = private ownership is 1 and public ownership is 0. 

In terms of model performance, the results of the model fit using the original independent 

variables are shown in Table 4-7 and Figure 4-8. The Hosmer and Lemeshow Goodness-of-Fit 

statistic (p = 0.88) and the R
2
 (0.13) for the independent variable model were slightly higher than 

the results obtained for the principal component model (p = 0.76 and R
2
 = 0.12).  The apparent 
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error rate for the quantile partition level classification was slightly higher for the independent 

variable model (i.e., 1.9% versus 1.5% error), as compared to the PCA model.              

Table 4-7   Partitions of the Hosmer and Lemeshow Test for Modeling 

Timber Removals at the Plot Level Using Independent Variables 

Quantile Total 

Plots Not Timbered Timbered Plots 

Observed Expected Observed Expected 

1 149 149 148.9 0 0.1 

2 149 147 148.0 2 1.0 

3 149 147 146.7 2 2.3 

4 148 146 144.3 2 3.7 

5 149 144 143.9 5 5.1 

6 149 139 142.3 10 6.7 

7 148 141 139.4 7 8.6 

8 149 140 138.0 9 11.0 

9 149 135 133.7 14 15.3 

10 148 117 119.8 31 28.2 

 

 

 

 
Figure 4-8 Timber Removal Model Fit: Estimated Versus Observed Number of Plots 

Selected for Timber Removals by Quantile from 1989 to 2000 using Models fit Using 

Independent Variables 

R² = 0.96
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4.3.3.2 Discussion of Commercial Timbering Event Models 

Given the small difference in the error rate (1.9% for the PCA model versus 1.5% for the 

independent variable model) and the similarity in quantile partitions, the results suggest that the 

simpler independent variable model based only on stand value and ownership regime performed 

reasonable well, in comparison to the full model based on PCA.  Applying simpler regression 

models that provide reasonable results and focus only on the key variables is a modeling 

technique that has been applied by the USFS for modeling and simulating forest management 

(e.g., Prognosis/FVS models) in order to increase the computational efficiency and reduce data 

collection and analysis requirements (Teck and Hilt 1991; USFS 2010b,c). As such, the simpler 

model, based on the original independent variables, was used for conducting long-term timbering 

event simulations to 2050 in the integrated model, which is further discussed in Sections 5 and 6.  

These results also indicate that existing variables in the FIA database could be used for 

developing similar models for other states and regions that are similar (e.g., in the northeast), 

without the need to conduct more labor intensive GIS-based network analysis for calculating 

distances to mills, although further research is needed to test this for other regions. 

4.3.3.3 Modeling Annual Incidence of Timbering Events 

The logistic regression model based on the original independent variables was used to derive 

individual plot probabilities for a timbering event between 1989 and 2000.  Using the FIA 

database, it is not known when an actual timbering event occurred; therefore, it was necessary to 

fit the logistic regression model for all events that occurred between sampling periods (i.e., 1989 

and 2000) and then utilize probability theory to derive annual probability estimates.  To that end, 
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the first step is to convert the logistic regression model (Equation 2) for predicting timber 

removal events into a probability model.  

The above logistic regression equation can be used to calculate the probability of a timbering 

event for the time period between 1989 and 2000, as shown below (Greene 2008, Johnson and 

Wichern 2007). 

ln⁡ 
𝑝

1−𝑝
 = 1.17(ln 𝑇𝑂𝑇$/2.47) + 0.66 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 − 11.32                {3} 

 
Equation 3 is then solved for p, which represents the probability that at least one timbering event 

occurred between 1989 and 2000.      

 

𝑝 =
1

 1+e−(1.17(ln  𝑇𝑂𝑇 $/2.47 +0.66 𝑂𝑤𝑛𝑒𝑟𝑠 ℎ𝑖𝑝  −11.32) 
                      {4} 

The probability that no timbering event occurred between 1989 and 2000 then can be calculated 

as:  q = (1 – p). Bernoulli’s equation can then be applied to derive the annual probability that a 

plot is not timbered from 1989 to 2000 (q) (actual time interval was approximately 12.6 years), as  

𝑞 =   12.6
0

 𝑞𝑎
0𝑝𝑎

12.6  =   𝑝𝑎
12.6; thus, the annual probability   𝑝𝑎 =   𝑞1/12.6   =   (1 − 𝑝)1/12.6.   

Substituting Equation 4 into this last equation yields the following formula for calculating the 

annual probability of a timbering event.    

Annual Probability of Stand Selection for Commercial Timbering Events  

𝑝𝑎 =  𝟏 −
𝟏

(𝟏 + 𝒆−(−𝟏.𝟏𝟕(𝒍𝒏 𝑻𝑶𝑻$/𝟐.𝟒𝟕) −𝟎.𝟔𝟔(𝑶𝒘𝒏𝒆𝒓𝒔𝒉𝒊𝒑)+𝟏𝟏.𝟑𝟐))

𝟏𝟐.𝟔

       5  
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This equation can be simplified to: 

𝑝𝑎 =
𝟏

 𝟏+𝒆(𝟏.𝟏𝟕(𝒍𝒏 𝑻𝑶𝑻$/ 𝟐 .𝟒𝟕 +𝟎.𝟔𝟔 𝑶𝒘𝒏𝒆𝒓𝒔𝒉𝒊𝒑 −𝟏𝟏.𝟑𝟐)
𝟏𝟐.𝟔                    6                    

 

Timber Stand Selection Model Validation.  To validate the above model, the 30% sample dataset 

and models above were used to evaluate model performance by comparing observed versus 

predicted timbering events.  When the data are evaluated by quantile (Table 4-8 and Figure 4-9), 

there was a 4.8% apparent error rate in the classification of stands for the 30% validation dataset 

for the quantile partitions in the dataset. These results indicate that the model performed 

reasonably well at predicting the general pattern of removals, although stands with the highest 

probability for timber events (particularly the upper two deciles) were not timbered to the same  

 

Table 4-8   Logistic Regression Model Fit for 30% Validation Sample Set 

Group 

Plot Not Timbered Plot Timbered 

Observed Expected Observed Expected 

1  63 63 0 0 

2  62 63 1 0  

3  62 62 1 1  

4  62 62 1  1  

5  63 61 0  2  

6  61 60 2 3  

7  62 59 1  4  

8  59 58 4 5 

9  59 56 4 7  

10  53 49 10  14  
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Figure 4-9 Timber Removal Model Fit: Validation of Estimated Versus Observed 

Number of Plots Selected for Timber Removals by Quantile from 1989 to 2000 using 

the 30% Out of Sample Dataset 

 

intensity as predicted by the model.  It is unclear why the model overestimated the number of 

timbering events for stands with higher probabilities for selection.  Figure 4-9 presents predicted 

versus actual timbering events derived for each quantile partition (derived by rank ordering the 

stands by estimated probability of an event).  The results show that the model did reasonably well 

in predicting timbering patterns relative to the probability of plot selection at the quantile partition 

level (R
2
 = 0.91) (with group 1 having the lowest probability of a timber event, while group 10 

has the highest probability of a timbering event).     
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Low Intensity and Noncommercial Timbering Events.  In addition to the selection of forest stands 

for medium/high intensity commercial timber events, plots were also selected for low intensity 

removals and noncommercial timbering events (i.e., stands where no commercial sized trees were 

removed [DBH < 11‖]). A logistic regression model could not be developed for predicting the 

selection of these low intensity commercial events, which represents only 6% of the forest stand 

removals by volume.  Furthermore, a model could not be developed for predicting 

noncommercial timbering events, which represents only 3.8% of the total forest stand removals 

across the state by volume.  Given that these timbering events represent a small proportion of the 

forest biomass removals, these events were predicted using Monte Carlo analysis using 

probability estimates from heuristic analysis of the FIA data, as further discussed in Section 6. 

4.3.4 Tree Selection 

4.3.4.1 Results of Modeling Commercial Tree Removal Events 

Modeling Commercial Tree Removal Events Using PCA.  The addition of the tree-level variables 

did not appreciably change the interpretation of the principal component analysis previously 

discussed in Section 4.3.2 as these tree variables were mostly correlated with the stand value 

principal component (although the order of the components and minor variable assignments 

changed). Using the Latent Root criterion test, there were 4 principal component vectors with 

eigenvalues above 1. These four vectors explained 75% of the variance in the independent 

variables presented in Table 4-9. The four key vectors in the principal component analysis and the 

factor loadings are presented in Table 4-10 and discussed below:  
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Table 4-9   Principal Component Proportions and Cumulative 

Variance for Tree Selection Independent Variables 

Component EigenValue 

Variance 

Proportion Cumulative 

1 2.63 0.29 0.29 

2 1.82 0.20 0.49 

3 1.24 0.14 0.63 

4 1.06 0.12 0.75 

5 0.97 0.11 0.86 

6 0.50 0.06 0.91 

7 0.38 0.04 0.96 

8 0.28 0.03 0.99 

9 0.12 0.01 1.00 

 

 

 
Table 4-10   Principal Component and Factor Loadings for Tree Selection Independent 

Variables 

Variable 
Comp 

1 
Comp 

2 
Comp 

3 
Comp 

4 
Comp 

5 
Comp 

6 
Comp 

7 
Comp 

8 
Comp 

9 

Slope -0.03 -0.31 -0.37 0.72 -0.03 0.41 -0.24 0.17 0.00 

Stand  Vol  
Density 

0.46 -0.17 0.02 0.10 -0.51 -0.20 0.37 0.26 0.49 

Log Stand $ 
Density 

0.53 0.01 0.06 0.17 -0.33 -0.10 -0.11 -0.45 -0.60 

Income -0.04 0.62 0.09 0.25 -0.07 0.49 0.46 -0.27 0.12 

Population 
Density 

0.04 0.61 0.22 0.27 -0.10 -0.27 -0.42 0.49 -0.05 

Elevation 0.23 -0.22 0.65 -0.20 -0.01 0.59 -0.21 0.21 0.00 

Travel Distance 0.00 -0.21 0.52 0.51 0.48 -0.34 0.26 -0.11 0.02 

Log Tree $ 0.49 0.15 -0.16 -0.04 0.41 0.02 -0.40 -0.34 0.51 

Tree Vol 0.45 0.10 -0.28 -0.11 0.47 0.10 0.36 0.47 -0.34 

 

PC1.  Sawtimber Value:  Value and volume of timber in the stand, as well as tree value 

and volume, were all correlated with this vector, and correlated with each other (see 

Tables 4-5 and 4-10). This vector explained 29% of the total variance.  
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PC2.  Human Development: Change in population density and income were highly 

correlated with this vector, and with each other (+0.67) (Tables 4-5 and 4-10). This 

vector explained 20% of the total variance. 

PC3.  Elevation:  Elevation was significantly correlated to this vector (travel distance to 

the nearest mill was highly correlated with this vector, as well as PC4 below) (Table 4-

10). This vector explained 14% of the total variance.      

PC4.  Plot Access: Slope and travel distance were highly correlated to this vector (Table 4-10). 

This vector explained 13% of the total variance.The results of the multilevel model indicated that 

the rho statistic for the random-effects model was not significant (rho = 0.11, sigma = 0.63, p = 

0.094) indicating that the model results were not statistically different from analyzing the data as 

a pooled dataset using standard logistic regression (Johnson and Wichern 2007, Xiao et al. 2010, 

Greene 2008). The Hausman test was also conducted to evaluate the heterogeneity of the 

hierarchical data and to determine whether a fixed effects model would be more appropriate in 

the event of lack of heterogeneity. The Hausman test was insignificant (p = 0.20) indicating 

sufficient heterogeneity of the hierarchical data at the plot level for applying the random effects 

model.  In any event, given that the random effects model yielded an insignificant rho statistic, 

the principal component data were analyzed as a pooled data set using standard logistic 

regression.   

The logistic regression model fit using the principal components for predicting commercial 

timbering events is presented below:   

𝑇𝑖𝑚𝑏𝑒𝑟 𝐸𝑣𝑒𝑛𝑡 = 0.13 𝑃𝐶1 + 0.25 𝑃𝐶2 − 0.11 𝑃𝐶3 − 0.10 𝑃𝐶4 − 2.26 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 − 2.70  {7} 

where:      Ownership = private ownership is 1 and public ownership is 0. 
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The logistic regression analysis of the principal components indicated that the incidence of 

commercial tree removal during a timbering event increased with increased human development 

(PC2) (p = 0.02) and increased stand value (PC1), although the latter PC was not statistically 

significant (p = 0.16), which was not expected.  Also surprisingly, the probability of tree removal 

also declined on privately owned land versus public land (p = 0.004).  Although publically owned 

land was less likely to be initially selected for timbering (which may be due to policy constraints 

that may limit the frequency and rotation cycles of timbering events on public lands), once timber 

rights are granted on public lands for a particular stand, timbering firms appear to remove higher 

volumes of trees as compared to private lands, all other factors being equal. This may be due in 

part to a lack of ownership and vested interest in the long-term yield of public forest lands, or 

limited potential for future access to public forest stands as a result of ecological sustainable 

timbering policies (e.g., increased rotation cycles).  The plot elevation and access principal 

components (PC3 and PC4) did not appear to be significant (p = 0.40 and p = 0.51, respectively).   

In terms of model fit, the principal component model was highly statistically significant 

(Likelihood Ratio test was highly significant at p <0.0001). Furthermore, the Hosmer and 

Lemeshow Goodness-of-Fit Test indicated that the null hypothesis (i.e., predicted events 

estimated using the model for dataset partitions are statistically the same as the observed data) 

cannot be rejected (p = 0.99) indicating excellent model fit. On the other hand, the estimated R
2
 

was quite low, 0.06, due to the inability of the model to accurately predict infrequent removals at 

a finer spatial and temporal resolution. The Partition of the Hosmer and Lemeshow Test (see 

Table 4-11 and Figure 4-10) indicated that the model performed well at modeling the overall 

pattern in the data for quantile partitions of the dataset.  Overall, there was a 9% error rate in the 

classification of tree removals estimated within each of the quantile partitions shown in Table 4-
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11.  Figure 4-10 shows that the expected number of timber removals within each quantile 

partition was highly correlated with the observed number of tree removal events (R
2
 = 0.83).  

Table 4-11   Partitions of the Hosmer and Lemeshow Test for Modeling Tree Removals 

During Timbering Events Using Principal Components 

Quantile Total 

Trees Timbered Trees Not Timbered 

Observed Expected Observed Expected 

1 23 20 20.3 2 1.7 

2 23 17 18.3 6 4.7 

3 23 18 16.1 5 6.9 

4 23 17 15.4 6 7.6 

5 23 16 14.6 7 8.4 

6 23 13 14.0 10 9.0 

7 23 12 13.5 11 9.5 

8 23 12 12.9 11 10.1 

9 23 12 12.0 11 11.0 

10 22 10 10.1 13 12.9 

 

 

 

 
Figure 4-10 Tree Removal Model Fit: Estimated Versus Observed Number of Trees 

Selected for Removal by Quantile from 1989 to 2000 using Models fit Using 

Principal Component Variables 

R² = 0.83
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Collectively, these results indicated that the logistic regression model performs well at describing 

the overall pattern of tree removals (e.g., number of timbering events within each quantile 

partition). 

Modeling Commercial Tree Removal Events Using Independent Variables.  For the independent 

variable model, results of multilevel modeling indicated that a statistically significant portion of 

the variation in the data (approximately 20%) was attributed to the hierarchical structure of the 

data (rho = 0.19, p = 0.026).  These results indicate that this stand effect would have a statistically 

significant impact on estimated model coefficients, as compared to using a pooled dataset and 

ignoring the hierarchical structure of the data. As such, the multilevel modeling approach was 

selected over pooling the data. The Hausman test was also conducted to evaluate the 

heterogeneity of the hierarchical data and to determine whether a fixed effects model would be 

more appropriate in the event of lack of heterogeneity. The Hausman test was insignificant (p = 

0.71) indicating that it would be appropriate to apply the more efficient random effects model.     

Statistically significant independent variables for predicting tree removals during a commercial 

timbering event included:  tree value (p < 0.001), stand value density (p < 0.001), and plot 

ownership (p < 0.001).  Other independent variables were not statistically significant in 

improving model performance based on a likelihood ratio chi-squared test, including: stand 

volume density (p = 0.50), travel time (p = 0.46), slope (p = 0.98), elevation (p = 0.60), 

population density (p = 0.84), ecoregion (p = 0.99), tree volume (p = 0.40), and income (p = 0.12) 

(Xiao et al 2010).  Therefore, these other independent variables were removed from the model. 
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The following multilevel random effects logistic regression model was derived for predicting tree 

removal events when a stand has been selected for timbering:    

𝑇𝑟𝑒𝑒 𝑅𝑒𝑚𝑜𝑣𝑎𝑙  1 = 1.79 ln 𝑇𝑟𝑒𝑒$  − 1.61 𝑙𝑛 𝑇𝑂𝑇$/2.47  − 3.27 𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 + 10.81  {7} 

where: 

Tree$ = the value of a commercial tree > 11‖ ($) 

TOT$ = the total value density of commercial tree > 11‖ on the plot ($/ha); and 

Ownership = binary where private ownership is 1 and public ownership is 0. 

The model coefficients indicate that as the tree value increases, so does the probability of the tree 

being removed.  However, when the value of the stand increases the probability that an individual 

tree being removed decreases, as the timber firm may have more valuable trees to choose from.  

This multi-scale effect was not seen in the principal component analysis as tree- and stand-level 

price variables were both significantly correlated to the first principal component (i.e., stand 

value).         

In terms of model fit, the independent variable model was highly statistically significant using the 

likelihood ratio test (p < 0.0001). The Hosmer and Lemeshow Goodness-of-Fit Test is not 

appropriate for a multilevel model; therefore it was not applied.  Overall, there was a 21% error 

rate in the classification of tree removals within each of the quantile partitions shown in Table 4-

12.  However, Figure 4-11 shows that the expected number of timber removals within quantile 

partitions was highly correlated with the observed number of timbering events (R
2
 = 0.79).  
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Table 4-12   Multilevel Random Effects Logistic Model Fit for Tree Removals 

During a Timbering Event 

Quantile Total 

Tree Timbered Tree Not Timbered 

Observed Expected Observed Expected 

1 23 21 22.3 2 0.1 

2 23 21 21.3 2 1.7 

3 23 23 20.4 0 2.6 

4 23 21 18.7 2 4.3 

5 23 14 17.0 9 6.0 

6 23 12 15.0 11 8.0 

7 23 10 13.4 13 9.6 

8 23 8 11.3 15 11.7 

9 23 12 8.2 11 14.8 

10 22 5 3.7 17 18.3 

 

 

 

 
Figure 4-11 Tree Removal Model Fit: Estimated Versus Observed Number of 

Trees Selected for Removal by Quantile from 1989 to 2000 using Models fit Using 

Independent Variables 
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4.3.4.2 Discussion of Commercial Tree Removal Event Models 

In terms of model performance metrics, the tree selection model fit using the principal component 

variables appeared to perform better that the model using a subset of the independent variables, 

but the results were similar.  The R
2
 for the independent variable model (R

2  
= 0.79, see Figure 4-

11) for the ten quantile partitions were similar to results obtained for the PC model (R
2  

= 0.83).  

The error rate based on classification of tree removals at the quantile partition level was higher 

for the independent variable model (21%), as compared to the PC model (9%).  However, there 

was a marked difference in how variability in tree selection patterns was modeled between the 

two models, which could bias the comparison of this error estimate. As shown in Tables 4-11 and 

4-12, the PC model estimated a smaller range of tree removal events (10 to 20), as compared to 

the independent variable model (4 to 22).  Theoretically, the error rate calculated at the quantile 

level could be smaller, when the variance decreases.  Another important difference seen was that 

the model fit using principal components did not address the interaction seen between tree price 

and stand price, as previously discussed. For the independent variable model, stand value and tree 

price were found to have opposite, and highly statistically significant (p < 0.001) affects on tree 

selection probabilities. However, this effect was masked in the principal component analysis, as 

both were highly correlated with the first principal component. In fact, this negative interaction 

between tree price and stand price may have resulted in the higher than expected  p value (p = 

0.16) for the first PC, which appeared to suggest that tree price may not have been significant in 

determining tree selection patterns, which was counterintuitive and inconsistent with pattern seen 

in Figure 4-5.  Overall, it could be argued that the model fit using the PC analysis may be 

mathematically better, but the simpler model using the independent variables yielded results that 

were similar and appeared to better characterize tree removal patterns (relative to tree and stand 
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price interactions and removal distribution patterns).  Furthermore, the independent variable 

model yielded an average prediction error of only 1% for estimating stand removal volumes (see 

Tree Value Removal Verification and Validation section below), as discussed in the section to 

follow.  Thus, the simpler independent variable model performed reasonable well for predicting 

stand removal volumes for the purposes of this project.  Therefore, the tree selection model based 

on the original independent variables was used for simulating tree removals during commercial 

timbering events in the integrated model, which is further discussed in Sections 5 and 6. 

4.3.4.3 Modeling Annual Incidence of Tree Removal Events 

Estimating Tree Selection Probabilities.  Using methods previously discussed for deriving the 

stand selection probability model, the equation below was derived for estimating the probability 

of individual tree selection for timbering events.  To simplify this analysis, it was assumed that if 

a timbering event occurred, then all removals occurred during a single year between 1989 and 

2000. This assumption has the potential to slightly overestimate removal volumes as there is a 

small probability that two or more timbering events could have occurred between 1989 and 2000.  

However, simulations using the stand and tree models indicated that the probability of a stand 

being selected more than once during a 12 year interval was 1%, and the removals represented 

only 0.1% of total removals during a 12 year interval, as stand volume was significantly reduced 

following the first removal event. Therefore, this assumption was considered to not have a 

significant impact on the results. Since tree removals occur only when a timbering event occurs 

and this was assumed to occur only once during the 12 year sampling interval, it was not 

necessary to adjust the probability model further as was done for the stand selection model.  
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The following equation was derived for estimating the probability of tree removals using 

Equation 7 above.  

Tree Selection for Timbering Events 

𝑝 𝑒𝑣𝑒𝑛𝑡 =
1

(1+𝑒−(1.79(𝑙𝑛  𝑇𝑟𝑒𝑒 $ )−1.61 𝑙𝑛 (𝑇𝑂𝑇 $/2.47 )−3.27 𝑂𝑤𝑛𝑒𝑟𝑠 ℎ𝑖𝑝  +10.81))
          8     

Tree Selection Model Validation. For validation purposes, the 30% out of sample dataset and tree 

selection model were used to evaluate model performance by comparing observed versus 

predicted tree removal events.  The partitioning results presented in Table 4-13 and Figure 4-12 

below indicates the level of model fit for predicting individual tree removals. Due to the low 

number of commercial tree removal events in the 30% validation data set (i.e., 41 commercial 

tree removals on 24 plots), five partitions were established for comparing model performance 

rather than ten. Overall, 80% of the trees were correctly classified within the 5 partition groups 

(R
2
 of 0.79).      

Tree Value Removal Verification and Validation.  To evaluate the value of timber removed for 

verification purposes, the most-likely estimated value of timber removed per plot was estimated 

and compared to the actual value of timber removed from plots that were commercially timbered 

between 1989 and 2000.  Predicted versus observed results for the 70% dataset (which was used 

to parameterize the model) are presented in Figure 4-13 below. Overall, the predicted values of 

timber value removed per hectare were highly correlated to observed values, with a model R
2
 of 

0.88.  The model estimated that on average $3,364/ha was removed from these plots, while the 

predicted value was $3,324/ha, which was 1% lower.  As demonstrated in Figure 4-14, the model 

was able to replicate regional differences in timber removal patterns to some extent, but further 

research in this area is recommended. 
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Table 4-13   Multilevel Random Effects Logistic Model Fit for Tree Removals During a 

Timbering Event for the 30% Data Set 

Partition Total 

Tree Not Timbered Tree Timbered 

Observed Expected Observed Expected 

1 12 3 1 9 11 

2 12 1 2 11 10 

3 12 1 3 11 9 

4 12 6 6 6 6 

5 12 8 9 4 3 

 

 

 

 

 

 
Figure 4-12 Tree Removal Model Fit: Validation of Estimated Versus 

Observed Number of Trees Selected for Removal by 5 Partitions from 

1989 to 2000 using the 30% Out of Sample Dataset 
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Figure 4-13 Timber Removal Model Fit: Actual Versus 

Observed Values for the 70% Data Set for Model Verification 

 

 

 
Figure 4-14 Timber Removal Model Fit by West Virginia Region 

(See Figure 4-8 for locations) 
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The commercial tree removal model was also applied to the 30% out of sample data for the 

purposes of model validation. Overall, the predicted values of timber value removed per hectare 

were highly correlated to observed values, with a model R
2
 of 0.81 (see Figure 4-15).  The model 

estimated that on average $3,920/ha was removed from these plots, while the observed value was 

$3,253/ha, which was 17% lower. The difference was principally associated with a single outlier 

event where only a small amount of timber was removed from the forest stand with highest 

timber value in the 30% dataset (because of the much higher value, the model predicted much 

higher tree removals than actually occurred).  If this outlier is removed, then the model estimated 

that on average $3,017/ha was removed from these plots, while the observed value was 

$3,166/ha, which was 4.7% higher than the predicted value.  Overall, the results of the validation 

indicate that the model does reasonably well at predicting the total value of timber removed. 

 
Figure 4-15 Timber Removal Model Fit: Validation of Actual Versus 

Observed Values using the 30% Out of Sample Dataset 
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Poletimber Tree Selection. Patterns of non-commercial tree removals (i.e., poletimber with DBH 

< 11‖) appear to differ from commercial removal events, as shown in Figure 4-16. Poletimber 

removals were not correlated (< 0.3) to commercial tree removals. Furthermore, none of the 

independent variables were able to predict poletimber tree selection. In general, poletimber 

removals represented only 14% of the total volume of timber removed from a stand.   For the 

purposes of the integrated model, poletimber tree removals were estimated using Monte Carlo 

simulation using an estimated frequency of poletimber removals during timbering events based 

on FIA data (USFS 2010a).   

 

Figure 4-16 Non-Commercial Tree Removals by Tree Size Class (10 Quantiles) 
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Tree Selection for Low Intensity Timbering Events.  For low intensity timbering events, a small 

portion of commercial trees were selected for removal. A logistic regression model could not be 

developed for predicting the selection of commercial trees during low intensity events, which 

represent only 6% of the forest stand removals.  As shown in Figure 4-5, no clear relationship 

between tree value and selection frequencies could be seen with the low intensity timbering 

events. For the purposes of the integrated model, commercial tree removals on low intensity plots 

were estimated using Monte Carlo simulation using an estimated annual frequency of low 

intensity timbering events based on FIA data (USFS 2010a). 
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4.4 Conclusions 

The logistic and multilevel models developed in this section provide an important and novel way 

of simulating timbering events at the tree and stand scale as an endogenous process, that will 

allow for simulating cross-scale feedbacks and other processes for evaluating the long-term 

impact of timbering on forest stand metrics, biomass, and carbon at multiple scales, as further 

discussed in Sections 6 and 7.  These models also provide a means for simulating stand and tree 

selection processes reflective of different timber market conditions and price levels for scenario 

analysis. In addition, the multilevel random effects logistic regression approach used for tree 

selection provides an appropriate way for statistically analyzing forest stand data, which are 

similar in structure to hierarchical data often encountered in the fields of microeconomic 

behavior, social science, and education research.  

Overall, the results of the timber stand and tree selection analysis indicated that timber stand 

value density, tree prices, and plot ownership were key drivers in predicting timber stand and tree 

selection for removal events. The models predicted timbering practices and tree selection patterns 

reflective of observed data for quantile partitions of the dataset.  Increased tree stumpage prices, 

which increased overall stand value, significantly increased the probability of a stand being 

selected, on both private and public lands.  Private lands were much more likely to be selected for 

timbering than public lands, as expected.  At the tree-level, increased value of the commercial 

tree (based on stumpage price and BF) significantly increased the probability of the tree being 

selected.  The model also indicated that forest stand conditions also impacted individual tree 

selection probabilities, as tree selection probabilities increased on public lands (which was not 

expected) and stands of higher value decreased individual tree selection probabilities (presumably 

due to increased competition for selection when conducting select cuts).   
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Although both the plot and tree-selection models were able to predict observed patterns in the 

data for quantile partitions of the data set, there was variability in stand and tree selections that 

the models could not explain. Furthermore, the highest valued stands and trees were not always 

selected for timbering in any given year.  Thus, there are other factors not captured by these 

models that contribute to timber and stand selection.  Such factors may include: incomplete 

knowledge of the value of forest resources on forest stands across West Virginia, real estate 

ownership class (fee title held by timber firms versus private landowners), real estate market 

transactions, the inability for timber firms to gain timber contracts on private and public lands 

with higher stand value, corporate regional networks and infrastructure, access problems, and/or 

self imposed sustainable forest management.  Detailed surveys, participatory modeling, and 

spatial agent-based modeling techniques may help capture some of these micro-scale processes 

that cannot be addressed through statistical analysis of FIA data (Parker et al. 2003, Bousquet and 

Le Page 2004).         

By developing and comparing logistic regression models developed using principal component 

variables and the original independent variables, it was possible to determine the predictive power 

of multiple variables.  In addition to the effect of stand value and ownership regime, the principal 

component analysis indicated that timber events increased with increased human development 

and closer proximity to production mills, which both serve as proxy variables for reducing 

removal costs.  However, reasonable model performance was also achieved when these variables 

were excluded using a simpler model that only included stand value and ownership regime. In 

addition, the independent variable modeling approach provided additional insights that would 

have been difficult to ascertain with the principal component analysis approach at the tree-level, 

as stand value and tree price were found to have opposite effects on tree selection probabilities. 
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This effect was masked in the principal component analysis, as both were highly correlated with 

the first principal component.  In any event, overall model performance for predicting stand and 

tree selection were similar using either the principal components or the significant subset of 

independent variables, which yields a simpler model. Since the statistically significant 

independent variables are all currently available in the FIA database, it suggests that this 

modeling approach may be applicable for other states and regions for simulating timber and tree 

selection events as an endogenous process, which enables a finer-scale analysis with cross-scale 

feedback mechanisms for predicting the long-term impact of timber removals on forest biomass, 

stand structure, and carbon (as discussed in Sections 5, 6, and 7). Additional research would be 

required to confirm that this approach is appropriate for other geographical regions.                 

There are limitations with the stand and tree modeling approaches, which could be further refined 

through additional research.  For example, there may still be other stand characteristics, such as 

terrain classification, slope orientation, access, regional industrial networks, and other factors that 

may create spatial patterns and explain some of the variance in stand and tree selection patterns 

not captured in this analysis. Furthermore, more detailed ownership regime and timber history 

data would be helpful for evaluating stand and tree selection patterns.  Evaluation of many of 

these variables would be difficult to analyze with the FIA dataset, as the exact plot locations and 

ownership regimes are not publically available.  Working with the privately-held data managed 

by USFS, would enable a more robust analysis of these factors.  Further studies and research are 

needed to determine whether some of these other factors are important and whether spatial 

patterns exist in the data.   

Since West Virginia stumpage prices are highly correlated with U.S. hardwood timber markets 

(as further discussed in Sections 5 and 6), the linkage between timber prices and removal events 



86 
 

 

 

 

 

 

suggests that U.S. hardwood prices may be a good environmental indicator of timber removals in 

West Virginia, and perhaps other states. Furthermore, the results suggest that tree species with 

higher value and higher demand (e.g., black cherry) may undergo significant timber pressure, 

relative to less valuable species thereby impacting species composition and dominance in decades 

to come. The impact of these processes will be further explored when the stand and tree models 

are coupled with forest growth, mortality, disturbance, and regeneration models for estimating 

system level dynamics and feedback mechanisms over a half century of continued timbering 

under different timber market and forest management scenarios. 
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5. Cumulative Effect of Timbering and Other Key Processes 

on Net Annual Forest Growth at Multiple Scales in West 

Virginia 
 

 

 

5.1 Introduction 

Towards the end of the 20
th
 century, the increase in timber prices and growth of forest resources 

in West Virginia gave rise to significant increases in commercial timber removals (see Figure 4-

1).  This timbering activity not only directly impacts forest biomass, but indirectly, timbering 

could also potentially affect the rate of other key processes that impact long-term estimates of 

forest biomass and carbon, such as mortality rates, forest growth rates, landscape disturbance 

rates, and regeneration rates.  Thus, it is important to evaluate the indirect effect of timbering on 

these processes, thereby creating the means to model cross-scale feedbacks, as well as to assess 

the cumulative effect of all these processes on long-term AGBD fluxes. This portion of the study 

focuses on analyzing the indirect effect of timber removals on forest growth, mortality rates, 

disturbances, and regeneration, and integrating these results with the direct biomass removal 

effects (discussed in Section 4) to evaluate the cumulative effects of timbering on net annual 

growth in forest volume across West Virginia in 2000. These results will then be used to develop 

an integrated, multi-scale model to simulate the long-term effect of timbering on forest ecosystem 

indicators and timber resources from 2000 to 2050 (discussed in Section 6), as well as carbon 

sequestration to 2050 (discussed in Section 7).   
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Overall the research question is:   What is the cumulative effect of timbering and other key 

processes on net annual forest growth in West Virginia? The primary processes (i.e., model 

compartments) that may significantly alter forest volume and BF metrics include: forest growth 

(both positive and negative), tree mortality rates, regeneration, and timbering rates and intensity.  

Negative growth (i.e., large portion of the tree dies in a given year which exceeds the annual 

increase in biomass due to positive growth) and increased tree mortality may be associated with a 

number of anthropogenic and natural disturbance regimes. In West Virginia, the principal 

disturbances to trees identified in the FIA database (USFS 2010), other than timbering, included: 

vegetation (suppression, vines) (28%), extreme weather events (principally ice storm damage) 

(27% of identified disturbances), animal damage (principally animal grazing) (16%), insect 

infestations (9%), diseases (8%), other human disturbances (8%), and fire (3%).  These results are 

based on an analysis of FIA plots from 2004 through 2007, as disturbances were not recorded for 

the 2000 sampling period.  

Although disturbances were identified for many West Virginia plots in 2004 through 2007, only 

20% of the plots that experienced a negative net growth were identified as being disturbed by a 

visible disturbance agent.  Disturbances for the other 80% of the plots were not known or 

recorded. On the other hand, 15% of the plots with net positive growth were also identified to 

have experienced these same visible disturbance agents.  These results suggest that the factors 

driving net negative growth at the plot level in West Virginia are not being captured by the 

disturbance metrics recorded in FIA (USFS 2010a).  If specific disturbance vectors were not 

apparent, then other environmental attributes (e.g., variations in microclimatic conditions 

including precipitation and temperature) may be impacting West Virginia forest growth, which is 

further explored in this section.   
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With respect to timbering disturbances, there is the potential that such events may indirectly 

impact net annual forest growth, mortality rates, other disturbances, and stand regeneration of 

saplings and poletimber on the plot; thus it is important to further explore these processes.  

Timbering in West Virginia principally involves the removal of large size class trees 

(approximately 60% of the forest stand volume on average), which reduces the basal area of 

forest stands. Reduction in basal area of the forest stand decreases crown cover, increases light 

penetration, and reduces competition, thereby increasing the basal area growth (BAG) of trees 

that remain in the forest stand (USFS 2010b,c). Individual-tree diameter growth models are based 

on the principle that BAG declines in a negative exponential manner as basal area competition 

increases (i.e., basal area for all trees of larger basal area size than the tree in question, which is 

referred to as the basal area large [BAL] variable) (Holdaway 1964; Teck and Hilt 1991; USFS 

2010b,c).  As timbering events reduce basal area competition, timbering events would therefore 

increase the potential growth rate of trees that remain, which is the principle behind forest 

thinning.  Opening up the canopy as a result of timbering may also provide opportunities for 

saplings to grow and regenerate; thereby, increasing the survival and growth rates of saplings 

(DBH < 1‖) and poletimber (DBH between 1‖ and 5‖) leading to increased stand regeneration 

rates. Timbering event disturbances could also increase the mortality rates for the trees that 

remain on the plot due to direct injury, soil and surface water flow disturbances, and/or increased 

potential for natural disturbances (fire/pest infestations). On the other hand, timbering may lower 

the potential for mortality by reducing species competition. Studies have shown that reduced tree 

competition through thinning can reduce tree mortality rates and reduce stand susceptibility to 

drought (Cotillas et al. 2009, Powers et al. 2010). Thus, if timbering affects tree-growth rates, 

mortality rates, other disturbances, or regeneration rates, then it may have an indirect effect on 

live tree volume estimates, beyond the direct effect of volume removals. Since these are largely 
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inferred relationships, four null hypotheses will be tested that timbering has no effect on growth 

rates, mortality rates, disturbances, or regeneration rates.   

To evaluate the cumulative effect of timbering on forest system dynamics as discussed above, it 

was necessary to also model net forest growth processes, independent of timbering activities. 

Specifically, it was necessary to select a model that would accurately estimate the growth (both 

positive and negative) in aboveground wood volume and biomass over time. This was important 

because measures of aboveground timber volume and growth directly impact the economic value 

of plots and individual trees and therefore timber stand selection and removal decision 

probabilities in a given year (as detailed in Section 4), which are simulated using CFM on an 

annual time step. CFM predicts plot-level timbering events and tree-specific removals based on 

changes in stand value density ($/ha) and tree value ($/stem), which change annually (due to 

timber price market fluctuations and timber growth).  This modeling effort therefore requires 

accurate estimates of plot- and tree-specific BF and tree-specific aboveground growth in terms of 

volume (m
3
/ha) and biomass (g/m

2
) (both positive and negative growth). This objective to 

accurately model the live aboveground wood pool volume/biomass is important for properly 

simulating human-environmental interactions, which is the focus of this study.   

To accomplish this objective two forest growth modeling approaches were evaluated:  1) an 

empirically-based forest growth modeling approach, and 2) a process-based modeling approach.  

In this context, empirical approaches involve developing statistical models that relate forest 

growth to independent variables that characterize conditions of the tree, stand, and climatic 

conditions. Process-based models can be used to estimate forest growth based on simulating tree 

physiological response to environmental conditions and biogeochemical cycling processes. In 

general, empirical modeling approaches provide the means to capture observed patterns, but if 
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future environmental conditions change enough to alter underlying modeled relationships, then 

future projections may be suspect.  Process-based modeling approaches can help overcome the 

limitations of empirical modeling methods, so long as these key processes and growth responses 

are sufficiently incorporated into the model and calibrated to the conditions under study.   

For this study, readily available empirical models and field data from FIA were utilized to model 

net forest growth processes at the tree- and stand-level, using incremental tree growth models 

utilized in the FVS program; and mortality rates, regeneration rates, and disturbance patterns 

statistically modeled from FIA data. The empirical growth models developed by USFS have been 

validated for the Northeast Region using field measured tree growth FIA data, as further 

discussed in Section 5.2.2.2 (Teck and Hilt 1991; USDA 2010a,b).   

For the process-based model, the PnET-CN model, which has been successfully applied in the 

Fernald Experimental Forest (FEF) in West Virginia, was selected and tested (Aber and Federer 

1992; Aber et al. 1995, 1996, 1997). PnET-CN includes feedback mechanisms for assessing 

forest growth response in relation to nitrogen and carbon cycling mechanisms, which would also 

allow for estimates of carbon dynamics in soil and other important carbon pools that are difficult 

to address through empirical methods. Although the PnET-CN model has been validated for NPP 

and NEP at a local scale in the FEF in West Virginia (Aber and Federer 1992; Aber et al. 1995, 

1997; Aber and Goulden 1996; Davis et al. 2008, 2009; Stange et al. 2000), the model has not 

been validated for a state, across multiple ecosystems, disturbance regimes, for the live 

aboveground wood pool, which is important for estimating timber removal probabilities that were 

discussed in Section 4.   
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PnET-CN is based on established relationships between net photosynthetic rate and percent 

nitrogen in leaf matter, and vapor pressure deficit in the air that regulates transpiration and 

photosynthetic rates (Aber and Federer 1992; Aber et al. 1995, 1996, 1997). These relationships 

are built into PnET-CN to calculate net photosynthetic rates per leaf surface area (amount of CO2 

per m
2 
per second).  Essentially, PnET-CN is a model of the net photosynthetic engine aggregated 

at the stand or plot level.  Since its introduction in the early 1990s, the PnET-CN model has 

undergone significant enhancements. A modified version of this model, PnET-CNsat (Davis et al. 

2008, 2009), was also tested for simulating AGBD and growth for forest stands, which are likely 

to have nitrogen saturated soils. 
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5.2 Methods 

5.2.1 Conceptual Modeling Approach 

To estimate changes in forest volume and BF over time, a multi-scale integrated model was 

developed (i.e., CFM model) (see Figure 3-2 and Section 3.1 for a description of the conceptual 

model). The models developed in this portion of the study were used for estimating tree growth, 

mortality, disturbance, and regeneration rates for CFM shown in Figure 3-2 (boxes labeled - G). 

Several cross-scale feedback loops are addressed in this analysis including the effect of changing 

tree and stand value (due to growth, disturbance, timbering, and stumpage prices) on future stand 

and tree timbering rates.  Figure 5-1 provides further details on the specific modeling processes 

addressed in this section, including forest growth (both positive and negative), disturbance, 

mortality, and regeneration. 

To address fine-scale tree-level silviculture impacts, the model tracks the life history of 

approximately 60,000 trees across 1,500 forest stand plots in West Virginia including:  forest 

type, species, AGB, total biomass (root, stump, bole, tree top), aboveground volume, BF, annual 

growth (positive or negative) in AGB, annual growth in BF (positive or negative), and birth and 

mortality. Tree- and plot-level dynamics are simulated on an annual time-step, with summary 

statistics derived at the tree-, plot-, and state-level to assess impacts to tree volume, BF, and other 

metrics. Since timber events may have an indirect impact on forest growth, mortality, 

disturbances, and regeneration at a plot or tree-level, it was necessary to test these relationships 

and incorporate these findings into the integrated model, as appropriate.  The sources of field data 

used in the analysis were discussed in Section 3.2. 
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Figure 5-1  Flow Diagram of Forest Growth Modeling Compartments 
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5.2.2 Modeling Forest Growth and Timber Effects 

5.2.2.1 Modeling Timbering Effects on Forest Stand Net Annual Growth 

The first part of this study was to assess the indirect effect of timbering on the net annual growth 

rates of forest stands across West Virginia.  Net annual incremental growth estimates are 

provided for only about 1/3
rd

 of the FIA plots (583 plots) and only for the center subplot, which 

were sampled in the field during the 1989 and 2000 field sampling events. Field measured 

incremental annual growth in volume of live poletimber and sawtimber trees located on these 583 

forest subplots were obtained and analyzed from the FIA database. The net growth (either 

negative or positive) of the remaining live trees (not including timber removals) was analyzed and 

summed for each plot. The percent annual change in forest volume was derived for each plot and 

live tree by dividing the FIA field measured growth per unit area estimates by the total tree 

volume per unit area for plots for which field data were collected (a subsample of approximately 

40% of the plots in West Virginia). Multiple regression and logistic regression techniques were 

then used to analyze the effect of timbering events (intensity of removal [i.e., percent volume of 

poletimber and sawtimber trees removed]) and other forest stand independent variables (see Table 

5-1) on net annual growth of the plots, as further discussed below.     
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Table 5-1   Plot and Tree Growth, Mortality, and Regeneration Variables 

Model Parameter Value Field Data Source/Derivation 

DEPENDENT VARIABLES 

% Net Growth in Tree 

Volume and BF  

% FIA 2000 Plot Data 

Disturbed Plots (Plots with 

Net Negative Growth)  

1 or 0 FIA 2000 Plot Data  

Plot-Level Mortality Rate:  

Volume of Dead Trees 

stems 

m
3
/ha 

FIA 2000 Plot Data 

Plot-Level Regeneration 

Rate: Total Poletimber  

m
3
/ha FIA 2000 Plot Data 

INDEPENDENT VARIABLES 

% Timber Removal % FIA 2000 Plot Data  

Tree Volume Density  m
3
/ha FIA 2000 Plot Data  

Latitude degrees FIA 2000 Plot Data  

Forest Stand Elevation FIA 

stand 

value 

(m) 

FIA 2000 Plot Data, supplemented by USGS National 

Elevation Dataset and Global Elevation Data  2009 

http://www.latlontoelevation.com/dem_consume.aspx 

Forest Stand Slope % slope Predominant slope on plot FIA 2000 database  

Average Minimum Annual 

Temperature 

o
C NOAA National Climate Data Center, Weather Station 

nearest the plot that is located within the same climatic 

zone as the plot (16 weather stations). Plot-specific 

weather data were not available.  

http://www.ncdc.noaa.gov/oa/ncdc.html 

Average Maximum 

Annual Temperature 

o
C NOAA National Climate Data Center, Weather Station  

(see further explanation above).   

Average Annual 

Precipitation 

cm/year NOAA National Climate Data Center, Weather Station 

(see further explanation above).   

Ecoregional Province 1 or 0 Bailey’s Ecoregional Provinces: Eastern Broadleaf Forest 

(Oceanic) Province or Central Appalachian Broadleaf 

Forest Province (March 1995) 

http://www.fs.fed.us/land/ecosysmgmt/index.html 

 

5.2.2.2 Modeling Forest Growth 

Many types of forest growth models have been developed for a wide range of applications, 

including: stand-level distance dependent and independent models; tree-level distance dependent 

and independent models; and gap models (Porte and Bartelink 2001).  These models include 

http://www.ncdc.noaa.gov/oa/ncdc.html
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empirical models, process-based models, and hybrid models. In a comparative analysis of these 

models, research by Porte and Bartelink (2001) suggests that the empirically-based stand models 

appeared to perform better than tree-level models at predicting stand-level growth, although 

detailed comparative measures of accuracy for each model were not provided.  Furthermore, the 

empirical models performed better than process-based models at predicting growth for the region 

being modeled, although this applied only when the empirical models were applied to the area in 

which it was parameterized (Porte and Bartelink 2001). In any event, empirical and process-based 

models should not be applied to locations beyond their model domain where they were 

developed, calibrated, and validated, until they can be re-tested and evaluated.   

Overall, forest managers and researchers generally prefer tree-level models over stand-level 

models for assessing the effect of tree competition, species growth dynamics, forest management, 

and disturbance impacts (timbering/insect hosts) on the stand and larger scales (USFS 2010 b,c; 

Porte and Bartelink 2001). The distance-dependent and gap tree-level  models provide an added 

benefit over distance-independent models for simulating the growth of a specific tree in a stand, 

as they evaluate tree-specific competition for light and resources that directly impact growth 

potential for a specific tree. However, this requires more rigorous computation and tracking of 

two- or three-dimensional stand structures.  If the objective of the analysis is focused on stand-

level yields and effects, rather than individual-tree effects, then simpler distance independent tree 

models are commonly used for evaluating forest stand growth (Colbert et al 2004; Jogiste 1997; 

Kolbe et al 1999; Porte and Bartelink 2001; Schuler et al. 1993; Teck and Hilt 1991; USFS 

2010b,c; Zhao et al. 2004). Such models routinely incorporate DBH, basal area [BA], site index 

factors, and stand-level competition factors (e.g., basal area large tree competition factor, which is 

the total stand BA for trees of greater BA than the tree being modeled) for addressing both tree-
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specific growth potential (based on DBH, species, and site conditions), and stand competition 

factors.  Such models provide a simpler approach for addressing tree-specific distance and 

competition variables, which can impact long-term growth and yields.  Validation of the Teck and 

Hilt (1991) tree growth model that was ultimately incorporated into the USFS FVS model for 

simulating tree growth for the entire northeastern United States indicated that the mean annual 

growth diameter prediction error was 0.013 inches for over 16,000 observations, representing 28 

species from the FIA database.  As the observed mean annual growth was 0.113 inches, this 

prediction error represented an 11% difference in the mean growth rate. Overall, the Tech and 

Hilt model (1991) over predicted incremental growth for 16 species, while it under predicted 

growth for 12 species. Based on these results, the USFS has incorporated this model into their 

FVS model as the principle means for simulating tree growth and conducting forest management 

planning at the northeast regional level, including forests of West Virginia.  Thus, tree-specific, 

distance independent models provided an adequate means for addressing forest growth, when 

forest prescriptions or disturbance processes (e.g., timber removals, mortalities) are being 

modeled at the tree-level.   

Tree-level, distance independent models are routinely used by the USFS (e.g., as part of FVS) to 

evaluate stand and larger scale forest growth and forest management simulations. Furthermore, 

the FIA database is structured for the use of such models, as tree-specific coordinates are not 

available for applying tree-level, distance dependent and gap models.  The USFS has applied tree-

level, distance-independent models for all regions in the United States, including 

parameterization and validation of individual-tree diameter growth models for predominant tree-

species in the northeast (USFS 2010a,b; Teck and Hilt 1991). The model is based on a sigmoidal 

growth model routinely applied for tree growth applications, which also includes parameters for 
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tree size (DBH, BA), site condition, and stand-level competition (BAL).  The model was 

developed based on previous research on forest growth modeling in the United States, with 

extensive calibration and validation of test results using FIA data (USFS 2010a,b,c; Teck and Hilt 

1991). These models were used in this study for simulating incremental tree diameter growth to 

2050. The FVS diameter growth models were also linked to field-measured West Virginia tree 

volume growth estimates measured in the field between 1989 and 2000 to calibrate and convert 

the DBH growth estimates to field-based volume growth estimates provided in FIA for West 

Virginia. User defined disturbances and mortality also can be added to FVS growth simulations to 

better simulate landscape conditions. Thus, it is necessary to develop user-defined disturbances 

and related effects when applying the FVS, which was also done for CFM.         

For modeling tree and stand growth for this project, two specific models were tested for 

estimating individual tree growth and forest stand growth, as discussed in Section 5.1.  The 

empirically-based model discussed above (FVS) was utilized for modeling tree-specific and stand 

growth (through compiling tree-specific growth).  Also, a process-based model, PnET-CN, was 

also tested for estimating stand growth. The methods used for estimating forest growth using FVS 

and PnET-CN are presented in the sections below.       

Modeling Forest Stand and Tree Growth using FVS.  As previously discussed, the individual tree 

diameter growth model developed by Teck and Hilt (1991) which is utilized in the Northeast 

Variant of the FVS model was used for modeling tree BA growth in CFM.  The individual-tree 

diameter growth model estimates species specific annual growth in DBH based on site and tree 

attributes included in the FIA database, including species, site index, DBH, and a tree competition 

factor (basal area large [BAL]).  The BAL statistic is a tree-specific competition metric that is the 

total basal area of all trees in the stand that are larger in DBH than the tree in question.  USFS 
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researchers found the BAL statistic to be the best measure of tree competition for deriving annual 

DBH growth measures. The model was developed specifically for modeling forest growth in the 

northeast and was integrated in both the Northeast TWIGS model (NE-TWIGS) and FVS (USFS 

2010b,c). The model is customized to 28 species groups and 30 forest cover types based on an 

analysis of incremental growth of over 50,000 trees in the northeast, which includes the species 

categories and forest cover types found in this West Virginia study.  Validation performance was 

discussed in Section 5.2.2.2. The growth equations and parameters for the species groups used for 

the entire northeast region that are pertinent to this study are presented in Table 5-2.  

 

 
 

Table 5-2   Individual Tree Diameter Growth Models for the Northeastern 

United States (Teck and Hilt 1991) 

Species Group Basal Area Growth
1
 

Ash BAG = 0.00090*SI*(1- e
(- 0.093 * DBH)

 )* e
(- 0.015 * BAL)

 

Black Cherry BAG = 0.00079*SI*(1- e
(- 0.157 * DBH)

 )* e
(- 0.017 * BAL)

 

Hickory BAG = 0.00080*SI*(1- e
(- 0.078 * DBH)

 )* e
(- 0.016 * BAL)

 

Hard Maples BAG = 0.00074*SI*(1- e
(- 0.071 * DBH)

 )* e
(- 0.016 * BAL)

 

Mixed Oaks BAG = 0.00082*SI*(1- e
(- 0.079 * DBH)

 )* e
(- 0.014 * BAL)

 

Other Species BAG = 0.00096*SI*(1- e
(- 0.093 * DBH)

 )* e
(- 0.021 * BAL)

 

Soft Maples BAG = 0.00079*SI*(1- e
(- 0.065 * DBH)

 )* e
(- 0.016 * BAL)

 

Red Oak BAG = 0.00089*SI*(1- e
(- 0.098 * DBH)

 )* e
(- 0.018 * BAL)

 

Walnut BAG = 0.00096*SI*(1- e
(- 0.093 * DBH)

 )* e
(- 0.015 * BAL)

 

White Oak BAG = 0.00074*SI*(1- e
(- 0.087 * DBH)

 )* e
(- 0.014 * BAL)

 

Yellow Poplar BAG = 0.00088*SI*(1- e
(- 0.142 * DBH)

 )* e
(- 0.020 * BAL)

 
1
 BAG = Basal area growth (ft3/acre), DBH = diameter at breast height (inches), SI = 

Site index (USFS 2010a), BAL = total BA for trees larger than the subject tree (tree 

competition factor) 
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Modeling Forest Stand Net Growth using PnET-CN.   In addition to the FVS modeling approach, 

an analysis was conducted to determine whether the PnET-CN model could be integrated with 

CFM in order to predict net annual growth of the plot over time under various disturbance 

regimes. If the results of this analysis indicated that plot-level AGBD and growth from FIA could 

be replicated using PnET-CN, then it would be theoretically possible to integrate the Visual Basic 

code of the two models (PnET-CN and CFM) and use PnET-CN to govern plot-level growth and 

carbon pool estimates across West Virginia. The key advantage of using PnET-CN for this 

analysis is the ability of this model to simulate carbon and biomass dynamics in the forest system, 

including soil organic carbon (SOC) and other pools, which are important for estimating total 

carbon stocks and annual carbon fluxes. PnET-CN is also a process-based model, as previously 

discussed, which enables the user to simulate forest growth and carbon fluxes in response to 

changes in carbon and nitrogen cycling and anthropogenic disturbance regimes, which may not be 

reflected in the empirical data. 

The key metric that must link PnET-CN and this CFM model is measures of live AGBD (g/m
2
) at 

the plot level and the annual net growth in AGBD.  Since the FIA database provides measures of 

AGBD and annual growth and PnET-CN also provides measures of AGBD, it was possible to 

compare the PnET-CN output with not only actual measures of current AGBD, but also net 

growth measured in the field from the FIA database.  These results were also compared to 

modeled growth of total wood pool biomass using FVS/CFM.  Specific performance criteria were 

developed to evaluate the viability of the approach.   

1. Plot Baseline AGBD g/m2.  Since PnET-CN cannot simply be initialized with 2000 field 

data, it was necessary to determine whether plot-level AGBD could be replicated using 

PnET-CN.  PnET-CN must be run for about two hundred years (starting in 1700) prior to 
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the year 2000, to ensure that the historic disturbance regimes and nitrogen cycling are 

properly simulated in order to achieve current AGBD estimates in 2000.  As a 

performance criterion, plot-level AGBD estimates from PnET-CN should be within +/-

10% of field measured data. Since FVS is an empirical model it can be initialized with 

the current data, and therefore it already meets this criterion.   

2. Plot Growth Rates.  Estimates of average plot-level growth using PnET-CN should be 

commensurate with field measured growth using FIA data and within the mean error of 

FVS (average within +/- 11%) (e.g., differences in annual growth of a plot from 0.5% to 

2% will significantly impact long-term forest condition and conclusions, as current 

timber removal rates approach 0.5% annually).   

Both performance criteria related to live AGBD system dynamics are important because each 

factor will significantly impact system level estimates of timbering and forest resources (carbon, 

biomass, BF, stand value) over time.  If these criteria are not met, then PnET-CN cannot be 

effectively integrated with CFM for estimating AGBD and growth across West Virginia at this 

time. 

The specific methods for conducting the PnET-CN analysis are presented below. 

 All of the FIA plots from two counties were analyzed, namely Boone and Tucker 

Counties.  Boone County, which is located in southwestern West Virginia, was selected 

because it is an area which is unlikely to have nitrogen saturated soils (NADP 2009).  

Forests in Boone County are fairly typical of the predominant oak-hickory association 

forest-type found throughout West Virginia. Tucker County was selected because:  1) it is 

known to contain nitrogen saturated forests and is located in the northern high elevation 
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areas of West Virginia with known high nitrogen deposition rates (Davis et al. 2008, 

2009; NADP 2009); 2) the forest types are typical of the highlands area of West Virginia 

(the second most common forest type in West Virginia, i.e., the maple/beech/birch 

group); and 3) it includes FEF where the previous studies had been conducted using 

PnET-CN and PnET-CNsat (Davis et al. 2008, 2009).  Overall, about 50 plots were 

analyzed for different model runs.  About half of these plots included field measured 

growth estimates from FIA.  

 Nearby weather station data collected from these counties were used for each of the 

model runs (NOAA National Climate Data Center data collected near Madison, WV for 

Boone County; and FEF climate data for Tucker County, WV). Sampling data collected 

from the state-wide study were used in part to parameterize the PnET-CN/sat models. 

The FolNCon and SWLmax parameters were derived for each plot by calculating a 

weighted average based on the total aboveground biomass of each of the principal tree 

species on the plot.  Both the PnET-CN (used for Boone County) and PnET-CNsat (used 

for Tucker County) models provided from the PnET website and Dr. Davis, respectively, 

were used in the analysis. 

 For plot-level disturbance regimes, USFS/FIA record only near-term timber removals 

from 1988 to 2000 for each plot, as well as other disturbance impacts that occurred 

sometime during this time interval (e.g., mortality, negative growth from ice storms, fire, 

pests, etc.). Prior to 1988 when FIA data became available, no site-specific disturbance 

profile data exists for individual FIA plots. At the state level, timber production statistics 

are available which indicates that at the turn of the century there was significant 

timbering activity, followed by peaks around 1935 (WV Division of Forestry 1990, USFS 
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1977), and lastly a significant peak in the 1990s (see Figure 4-1).  Between 1935 to 1988, 

estimates of timber removals were based on known removal rates in the 1990s (~5% of 

plots timbered per decade, with 63% average removal rates per plot) with the relative 

difference in timber production at the state level from 1935 to the present day.  Overall, 

timbering rates between 1935 and 1990 were about half of the rate experienced in the 

1990s and at the beginning of the 20
th
 century.  These trends are consistent with the 

assumptions presented in Davis et al. (2009).  Similar assumptions were adopted in this 

analysis for estimating long-term historic timber removal for plots across the state. 

Initially, it was assumed that all plots were essentially clear cut at the turn of the 20
th
 

century (95% mortality with 70% removal of biomass) and that all plots experienced a 

smaller removal of 25% associated with the chestnut blight in the mid-1930s (with 25% 

removal of biomass) (Davis et al. 2009).  During the 1990s, the average removal from all 

timbered plots was 63% of the timber resources. This same rate was assumed for events 

that occurred from 1935 to 1988 to estimate typical removals that would have occurred in 

that period.   

 To address the performance criteria previously discussed, PnET-CN was run for different 

scenarios and conditions.  A multi-tier strategy was tested for all plots in Boone and 

Tucker Counties with available growth estimates.  As a first step, all plots were simulated 

using average disturbance regimes for all plots in Boone and Tucker Counties, as outlined 

in Table 5-3. Parameter values were based in part on statistics gleaned from Davis et al. 

(2009) and timber frequency data analyzed from FIA (2010a), as previously discussed. 

 

 



105 
 

 

 

 

 

 

Table 5-3   First Tier Timber Removal Disturbance Profiles for Plots in Boone and Tucker 

Counties, WV 

Agriculture 

Disturbance 

(nitrogen 

Removal) 
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0 or 0.1 0.95 0.70 0.25 0.25 0.25 0.25 
FIA % 

Removals 

FIA % 

Removals 

 

For those plots where the estimated AGBD was either below or above 10% of the field 

measured AGBD in year 2000, plausible adjustments (within the ranges discussed below) 

were made to the disturbance regimes in order to calibrate PnET-CN to observed AGBD 

in 2000. Ranges of values used to calibrate PnET-CN are outlined below.  Specific 

adjustments are detailed in Appendix A. 

 Agriculture removals between 1750 to 1850:  0 to 0.1; 

 Turn of the 20
th
 century timber removals at the peak removal year of 1915:  0 to 0.95 

mortality (with approximately 3/4
ths 

of the biomass removed and 1/4
th
 remaining on 

plot); 

 Chestnut blight impacts and removal peaks in the mid 30s:  0 to 0.25 

(mortality/removal); and 

 Removal scenarios between 1935 to 1988:  0 to 0.8 removals.  Based on state removal 

records and timbering frequencies in the 1990s, it was estimated that only 13% of the 

plots were likely to be timbered between 1935 and 1988.  It was assumed that plots 

with the lower AGBD in 2000 were timbered at higher rates (0.5 and 0.8 removal 

rates), while plots with higher biomass were timbered at lower rates (0 to 0.25).     
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5.2.3 Modeling Plot-Level Disturbances 

Exploratory analysis of plot-level and tree-level growth rates on the FIA plots indicated that 

landscape level disturbances were impacting the growth and mortality rates of multiple trees on 

the same plot, resulting in about 1/5
th
 of the plots having a net negative growth rate (i.e., a net 

decline in the live volume of large trees > 5‖ DBH from 1989 to 2000). At the tree-level, higher 

tree mortality rates, higher incidence of tree negative growth rates, and lower positive growth 

rates were seen for multiple trees on the same plot, indicating that the stand was collectively 

experiencing the adverse effect of a disturbance of some type.  The nature of these disturbances 

were not recorded in the FIA database, as previously discussed, but may have been due to local 

drought conditions or other micro-scale climatic conditions, disease and pest infestations that 

were not recorded or readily apparent.  These disturbances caused greater habitat variability in 

stand conditions across West Virginia, as it altered future growth and habitat conditions for these 

stands (positive and negative growth appeared to be a continuous unimodal distribution). Overall, 

approximately 17% of the forest stands in West Virginia experienced a net negative growth rate 

at the stand level from 1989 and 2000, which was indicative of stands where higher tree-level 

mortality rates, negative growth rates, and reduced positive growth rates were found.  To more 

accurately model such occurrences, plots with net negative growth rates per unit area were 

flagged using a binary variable (either 0 or 1) and the incidence of these events were modeled 

separately using logistic regression, as the dependent variable was binary and independent 

variables were both continuous and binary, as presented in Table 5-1. It was important to separate 

and model these disturbance events separately as they represent different processes from those 

that result in positive growth, and to ignore such effects could potentially result in overestimating 

growth and/or under-representing the variability of stand conditions across the landscape.  A plot 

with a net negative growth was defined as a plot where the sum of the individual tree negative 
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growth per unit area (either partial tree loss or mortality) exceeded the sum of the individual tree 

positive growth per unit area on the same plot. This approach identifies only large disturbances 

that are significant enough to yield overall net negative growth rates at the stand level. Smaller 

disturbance events that may impact only a few trees on the stand would not be identified using 

this approach, as the positive growth rates of other trees would still yield a net positive growth for 

the overall stand.   

A multivariate logistic regression model was developed to predict the incidence of plot level 

disturbances (binary dependent variable) using the independent variables presented in Table 5-1, 

as well as new variables derived from these same independent variables using principal 

component analysis. A multivariate logistic regression was developed using all principal 

component variables that contributed to a significant portion of the variability in the data 

(discussed further in Section 5.3).  For use in the integrated model CFM, a simpler model using 

only statistically significant independent variables was also developed. The methods for variable 

selection and model validation were the same as discussed in Section 4.2.   

5.2.4 Tree Mortality and Timbering Effects 

To evaluate the indirect effect of timbering on tree mortality, the total volume of tree mortalities 

per area (ha) for poletimber and sawtimber trees that died between 1989 and 2000 were compiled 

as the dependent variable.  Mortalities were recorded on 1 of the 4 subplots from 583 forest plots 

located across West Virginia, and only on a subsample of plots across the state. The FIA database 

includes separate fields for identifying trees that died versus trees that were cut during a 

timbering event during this time period.  The nature of the disturbance that may have caused the 

tree mortalities was generally not known, as previously discussed.  As the dependent variable was 
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continuous, multiple regression was used to analyze the effect of timbering events (intensity of 

removal based on the percent volume of poletimber and sawtimber trees removed) and other 

forest stand independent variables (see Table 5-1) on plot-level mortality rates. In addition, an 

analysis of variance (ANOVA) test was conducted to evaluate whether there was a statistically 

significant difference in the volume of tree mortalities on plots that were timbered in West 

Virginia versus those that were not timbered between 1989 and 2000.   

For modeling mortality rates in CFM, a heuristic analysis was conducted to analyze the annual 

incidence and volume of tree mortalities that were generated between 1989 and 2000 on the 583 

plots that were included in the 2000 field sampling event. As tree mortality rates were much 

higher on plots that were predicted to experience a plot-level disturbance (i.e., net negative 

growth rate), the probability distributions for tree mortality events were estimated separately for 

plots with net negative growth rates and net positive growth rates. 

5.2.5 Tree Regeneration and Timbering Effects 

As previously discussed, CFM models tree-level dynamics and life history for each poletimber 

(5‖ to 11‖ DBH) and sawtimber (>11‖ DBH) tree on the plot, and not individual saplings. The 

total of all individual saplings on a plot represents less than 5% of the biomass on average; 

therefore, sapling biomass was not modeled as individual stems in CFM (see Sections 6 and 7 for 

a discussion of modeling methods for sapling biomass and carbon).  Regeneration of individual 

trees occurs when a sapling grows large enough to be considered a poletimber tree, i.e., it exceeds 

5‖ DBH.  Thus, the effect of timbering on poletimber tree regeneration rates is analyzed, rather 

than each individual sapling.   
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A heuristic analysis was conducted to analyze the annual incidence and volume of new 

poletimber trees that were generated between 1989 and 2000 on approximately 1,500 FIA plots 

that were sampled in the field during the 2000 field sampling event. Annual incremental growth 

statistics were used to determine the approximate DBH range of new poletimber trees in 2000 

that would have been below 5‖ prior to 1989.  These statistics were used to identify trees that 

became poletimber trees between 1989 and 2000, and to calculate the total volume that was 

generated per plot on an annual basis. The total volume of tree regeneration per area (ha) for 

poletimber and sawtimber from 1989 and 2000 were then derived for each plot using the FIA 

data. Since the dependent variable was continuous, multiple regression was used to analyze the 

effect of timbering events (intensity of removal based on the percent volume of poletimber and 

sawtimber trees removed) and other forest stand independent variables (see Table 5-1) on plot-

level regeneration rates. In addition, an ANOVA test was conducted to evaluate whether there 

was a statistically significant difference in the volume of tree regeneration on plots that were 

timbered in West Virginia versus those that were not timbered between 1989 and 2000.   

5.2.6 Model Integration 

Results of the timber models discussed in Section 4 were integrated with the models developed 

for growth, disturbance, mortality, and regeneration in order to simulate net changes in forest 

volume. The models were applied to the entire plot- and tree-level datasets for the 70% sample to 

predict near-term net annual growth in forest volume.  State-level metrics were compiled based 

on the plot- and tree-level simulations to predict state-level outcomes and changes in forest 

volume.  The actual changes in forest volume at the state level in 2000 for the 70% sample set 

were then compared to the simulated changes of forest volume to verify the results. Similar 

analyses were performed on the 30% out of sample dataset for model validation.  Sensitivity 
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analysis, Monte Carlo uncertainty analysis, and long-term model simulations are presented in 

Section 6.       
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5.3 Results and Discussion 

5.3.1 Forest Stand and Tree Growth 

5.3.1.1 Effects of Timbering on Forest Stand and Tree Growth 

As a result of the multiple regression analysis, several variables were found to be significant in 

explaining the variation in net annual percent growth rates across plots in West Virginia, 

including stand volume (p < 0.001), slope (p = 0.003), latitude (p = 0.006), elevation (p = 0.018), 

and average annual precipitation (p < 0.001). Lower net growth rates were found on plots that 

were timbered between 1989 and 2000 than on plots that were not timbered (38% lower growth 

on average), but this difference was not statistically significant (p = 0.24). Thus, timbering events 

did not have a statistically significant impact on net annual percent growth for trees that remained 

following a timbering event at the stand level.  Rather, percent annual growth rates declined when 

stand volume increased, precipitation decreased, elevation increased, slopes increased, and for 

stands at higher latitudes. Higher precipitation and lower slopes would tend to increase infiltration 

and reduce the potential for drought stress, which may explain their effects on higher growth 

rates.   

With respect to stand volume, increased stand volume did decrease net annual percent growth 

rates, which was consistent with a sigmoid growth response curve (Colbert et al 2004; USFS 

2010a,b; Teck and Hilt 1991).  Although the percent change in annual growth declined with 

increased stand volume, the total stand volume still grew more on stands with higher stand 

volumes (as the dependent variable analyzed above is based on the percent growth in tree volume, 

rather than total growth in volume).  As shown in Figures 5-2 and 5-3, the highest growth in stand  
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Figure 5-2 FIA Field Measured Forest Stand Growth (m

3
/ha-year) by Forest Stand Volume 

(m
3
/ha) Quantiles (squares: only net positive growth plots; triangles: all plots) 

 

 
Figure 5-3 FIA Field Measured Forest Stand Growth (m

3
/ha-year) by Forest Stand Volume 

(m
3
/ha) for All Positive Growth Plots (increased variation with increased volume [similar 

results seen for increased biomass]) 
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volume was still found on stands with the highest overall volume of timber, even though their 

annual percent growth rates were decelerating.  There was a positive correlation (0.94) between 

stand volume and net annual growth rate in total volume for aggregated quantiles of forest stand 

volume (Figure 5-2). In fact, the net growth rate in total volume for forest stands with the highest 

10% of forest volume (6.7 m
3
/ha-year, for stands with AGBD typically above 25,000 g/m

2
) 

exhibited net growth rates approximately two times higher than the average forest stand in West 

Virginia (3.4 m
3
/ha-year), with a AGBD of approximately 13,000 g/m

2
.  Although the growth rate 

measured as a percentage of total biomass was lower for these older stands, the gross net increase 

in biomass was still greater for stands in advanced stages of recovery. Forest stands from the top 

quantile of forest stand volume have AGBD above 25,000 g/m
2
 and total biomass commensurate 

with old growth forests (although they lack other stand structure characteristics of old growth 

forests, such as having > 30% of their biomass in large trees [Brown et al. 1997]). These results 

indicate that forestlands in West Virginia are continuing to recover and gain in volume and 

biomass, although their growth rate is decelerating as the stands continue to mature. These results 

are consistent with current trends and analysis by Brown et al. (1997).   

Although several independent variables were significant in predicting stand-level net annual 

percent growth, the overall model fit was poor (R
2
 = 0.25), and better results were achieved by 

modeling forest growth at the tree-level as further described in Section 5.3.1.2.  The poor model 

performance was due in part to differences in tree-level variables, such as differences in species-

specific growth rates, stand structure, and environmental settings between plots, which can result 

in large variability in growth response (Teck and Hilt 1991, USFS 2010c).  Thus, forest growth 

was more appropriately modeled at the tree-level in order to more accurately model these micro-

scale processes, as well as to analyze forest management effects at the tree-level.  
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5.3.1.2 Tree-Level Model Estimating Forest Growth 

As previously discussed, the tree-level model used for the Northeast Variant of the FVS software 

were used to model tree- and stand-level growth rates in West Virginia. This model estimates 

annual incremental growth of trees based on the DBH, basal area, site index, and species (Tech 

and Hilt 1991).  Although this model has already undergone significant calibration and validation 

in the northeast region, the model results obtained for West Virginia trees were compared to those 

reported by Teck and Hilt (1991) to verify that similar results were obtained.  As this study only 

reported mean incremental growth rates for each of the tree species in the northeast, a similar 

statistic was derived for the major species groups evaluated for the West Virginia study (estimates 

are not reported in the FIA database).  Applying this model yielded mean DBH annual growth 

measures that were very similar (within 10%) to observed annual growth for data collected for 

tree species groups on FIA plots located across the northeast for all major species categories 

when the mean DBH was similar, including hickories (within 8% of observed data), soft maples 

(within 9% of observed data), northern red oak (within 6% of observed data), white oak (within 

9% of observed data), and yellow poplar (within 0.4% of observed data). Average black cherry 

and hard maple growth increment estimates in 2000 were not comparable to the observed field 

data reported by Teck and Hilt (1991) from the 1970s and 1980s. As expected, the average 

growth rate estimates for black cherry and hard maple for West Virginia in 2000 were higher than 

the rates reported by Teck and Hilt, because the average tree sizes in West Virginia in 2000 were 

much larger than those found in the 1970s and 1980s (Teck and Hilt 1991).   

Annual increases in DBH for each tree were then converted to increased annual growth volume 

using species specific conversion equations that convert BAG and BA to tree volume growth in 

the central stem.  These equations which converted BAG to volume growth measures were based 
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on volume growth estimates for nearly 3,000 trees measured in the field in West Virginia as 

reported in the FIA database (USFS 2010a).  These models were statistical significant (p < 

0.0001) in predicting annual growth in tree volume for each tree species group and the models 

yielded R
2
 ranging from 0.54 to 0.72; indicating good model fits (models are shown in Table 5-

4). Aggregated quantile partitions of this data for each tree species yielded R
2
 of 0.99, indicating 

excellent model fit for predicting the overall pattern in growth response. The annual incremental 

volume growth was then added to the previous year’s tree volume to estimate the volume of the 

tree in the following year. These results indicate that the models performed well at replicating the 

overall pattern in positive growth observed in the field for the ten size classes of trees for each of 

the species groups across West Virginia.  Plot-level volume density metrics were then estimated 

based on compiling tree-level growth estimates and area expansion factors included in the FIA 

database.  To estimate annual growth in BF volume for each tree, a simple regression model was 

developed to predict annual growth in BF volume based on estimated annual incremental volume 

growth in the central stem.  Annual incremental growth in tree volume was statistically 

significant in predicting annual growth in BF volume (p < 0.0001) and the model yielded an R
2
 = 

0.68; indicating a good model fit.  

 

Table 5-4   Regression Equations for Converting Annual Incremental DBH Growth to 

Annual Growth in the Volume of the Central Stem and BF (Teck and Hilt 1991) 

Species Group Basal Area Growth to Central Stem Volume Conversion Equation
1
 

Oak Group VOL Growth = 5.010 * BAG + 0.5092 * BA + 0.0297  R
2
 = 0.64 MSE = 0.30 

Maple Group VOL Growth  = 4.4172* BAG +0.7187 * BA -0.00563 R
2
 = 0.54 MSE = 0.32 

Yellow Poplar VOL Growth = 2.3643* BAG +0.9598 * BA + 0.01455 R
2
 = 0.72 MSE =0.41 

Other Species Group VOL Growth = 1.411* BAG +0.7001 * BA +0.0012     R
2
 = 0.59 MSE = 0.36 

All Species BF  Growth = 4.245 * VOL Growth + 1.615                  R
2
 = 0.68 MSE = 2.24 

1
 VOL Growth = annual volume growth of the central stem (cft

3
); BAG (ft

2
/acre) = estimated basal area 

growth of the tree (USFS 2010b,c); BA (ft
2
/acre) = basal area of the tree (USFS 2010a) ; BF Growth = 

board foot growth of the tree (USFS 2010a) 
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5.3.1.3 Modeling Forest Stand Net Growth using PnET-CN 

Overall, the results of the process-based modeling indicated that PnET-CN produced reasonable 

estimates of AGBD for many plots using plausible historic disturbance regimes; however, the net 

annual growth estimates for the wood pool were inconsistent with observed FIA measured growth 

across West Virginia plots.  In addition, there were insufficient data at the state-level for properly 

parameterizing, adjusting, and validating the model to more adequately fit the model to the 1500 

West Virginia plots, as was done for the more detailed site-specific study at FEF (Davis et al. 

2009). The results of the comparison between the FIA plot data and PnET-CN output are 

presented below.   

1. Plot Baseline ABGD (g/m2).  State average historic disturbance profiles yielded plot-

level AGBD estimates from PnET-CN for the live wood pool that were significantly above or 

below field measured AGBD for approximately 60% of the plots (see Appendix A for detailed 

results), depending on the assumptions applied for 1750 to 1850 agriculture disturbances and 

timber removals in the 20th century.  By adjusting the historic disturbance profiles, it was 

possible to replicate AGBD using PnET-CN and PnET-CNsat that were within 10% of the field 

measured data for 85% of the plots tested.  The specific adjustments to historic disturbance 

profiles that were made in order to achieve the field measured AGBD for each plot location are 

presented in Appendix A. The implication of these adjustments indicates that the model is 

sensitive to these historic disturbance regimes and unfortunately data are lacking to sufficiently 

parameterize the model across West Virginia. Arbitrarily adjusting model parameters to improve 

model performance, even if the values are ―plausible‖ is not a viable modeling strategy.  This is 

not to suggest that the model results are wrong or that PnET-CN is inaccurate, but simply that 

average statewide historic disturbance profiles are insufficient to parameterize this model, and 
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plot-specific data are necessary, but unavailable.  Specifically, information on historic agricultural 

practices (soil disturbing activities) and disturbance from timber removals over the past two 

centuries prior to 1987 are needed at the plot level.  Even if statewide data were readily available, 

it would be difficult to apply the data to the specific FIA plot locations due to the fuzzing and 

swapping of plot locations that USFS utilizes to hide the exact location of their plots, as discussed 

in Section 3. Further research is needed to evaluate strategies for developing historic disturbance 

profiles (agriculture soil disturbance and timber history) across large geographical areas in order 

to properly parameterize the PnET-CN model.     

2. Plot Growth Rates.  Overall, average net annual growth rates and plot-specific growth 

rates derived from PnET-CN were not commensurate with field measured growth rates derived 

from FIA data for these same plots. In general, plots that were not recently timbered had 

significantly higher growth rates as measured in the field than predicted by PnET-CN, as shown 

in Figure 5-4.  For plots that were not recently timbered, the mean net annual growth as estimated 

by PnET-CN was 64% below field measured FIA observed data, which was statistically 

significant (p = 0.004 using a paired t-test), while the FVS estimate was 21% below FIA observed 

data, which was not statistically different (p = 0.28).  In contrast, plots that were recently 

timbered had significantly lower observed growth rates than what were predicted using PnET-CN 

(p = 0.02), as shown in Figure 5-5.  For plots that were recently timbered, the mean net annual 

growth as estimated by PnET-CN for plots was 101% higher than field measured FIA observed 

data, which was statistically significant (p = 0.02), while the FVS estimate was 16% above FIA 

observed data, which was not statistically significant (p = 0.72).  When combining all plots from 

Tucker and Boone Counties, the mean net annual growth rate estimated by PnET-CN was 27% 

below the FIA observed data, while FVS was 11% below the FIA observed data.   Since only a 
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very small percentage of plots are timbered in any given year, use of PnET-CN growth rates 

would have significantly underestimated field measured values of net annual growth in the live 

wood pool for West Virginia plots.  Further research is needed to validate growth estimates and 

modeling processes within PnET-CN across larger geographical areas with diverse ecosystem 

communities and historic disturbance profiles.   

The results of several PnET-CN modeling tests also indicated that long-term plot net annual 

growth was significantly impacted by historic disturbance regime assumptions, which resulted in 

very different maximum long-term AGBD potential for a plot.  Although different locations may 

have significantly different maximum AGBD potential based on the environmental and climatic 

conditions that are specific to the location, this upper bound potential can be significantly altered 

by 18
th
 and 19

th
 century historic anthropogenic activities that disturb soil nitrogen cycling 

processes, such as agricultural crop production.  As nitrogen and carbon are endogenous 

 
Figure 5-4 Comparison of Observed versus Estimated Stand Volume Growth 

(Aboveground Biomass in the Wood Pool) using PnET-CN/sat and FVS/CFM for Plots Not 

Timbered Since 1989 in Boone and Tucker Counties 
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Figure 5-5 Comparison of Observed versus Estimated Stand Volume Growth 

(Aboveground Biomass in the Wood Pool) using PnET-CN/sat and FVS/CFM for Plots 

Timbered Between 1989 and 2000 in Boone and Tucker Counties 

 

processes that are modeled iteratively over long time periods and achieve their own equilibriums, 

model parameters that affect nitrogen removal and cycle disturbance in the soil are particularly 

important in how the model derives these long-term upper-bound biomass equilibrium levels. 

These levels are not as affected by timber removal events, which do not disturb or remove 

nitrogen from the soil; however, they are significantly impacted by agricultural nitrogen removal 

practices that are typically assumed for PnET-CN model runs for the eastern U.S. from 1750 to 

1850.  Essentially, applying this disturbance regime in a PnET-CN model run reduces the upper 

bound AGBD and restoration potential of a plot by half, which is very significant (see Figure 5-

6).  Although this assumption may be reasonable for the many populated areas in the eastern 

coastal plain that experienced intensive agriculture practices during the 18
th
 and 19

th
 century, this 
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assumption may not be appropriate for many mountainous parts of West Virginia.  When nitrogen 

removals due to agriculture disturbances are assumed, then AGBD estimates predicted using 

PnET-CN were significantly below field observed values for most plots.  However, when it is 

assumed that no agricultural disturbances occurred, the PnET-CN model was able to replicate 

upper-bound AGBD values on certain plots, but then it overestimated AGBD for other plots 

where AGBD values are much lower. In certain cases, there may be a number of land use factors 

that would explain the disparity in the results (e.g., forests without closed-canopies).  In any 

event, the impact of this colonial period disturbance factor alone has a significant impact on the 

long-term future outcome, restoration potential, and growth of the forests to 2050; therefore, it is 

important that this undergo further study. For future research in this area, it is recommended that 

 

 
Figure 5-6 Long-term AGBD Potential Following a Hypothetical Removal in 1987 for an 

Average Plot (Boone County) 
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detailed field data necessary to fully parameterize PnET-CN be collected across a much larger 

regional area (e.g., ecoregion or province) and detailed historical profiles for FIA sample plots be 

developed to test PnET-CN estimates of biomass density in the aboveground wood pool against 

field measured growth and biomass estimates, stratified across an array of current and historic 

anthropogenic disturbance regimes (e.g., timbering, agricultural). Although such a study could be 

costly, it would enable the model to be properly tested, modified (if appropriate), and validated to 

ensure that it can be properly applied for larger regional areas.  

As a result of the findings noted above, the PnET-CN was not used for simulating plot growth 

and biomass for this modeling project. Although FVS provides reasonable growth estimates that 

are commensurate with FIA, the inability to use PnET-CN on this project principally means that it 

cannot be used to model carbon cycling in Section 7.  Although other empirical models are used 

to lieu of this model, SOC and many feedback mechanisms that are incorporated into PnET-CN 

cannot be modeled as endogenous processes. Perhaps with additional research, PnET-CN could 

be integrated into the model in the future as originally intended (as further discussed in Section 

8).       

5.3.2 Estimating Stand-Level Disturbance Effects and Net Negative Stand Growth 

Nearly 1/5
th
 (17%) of the plots in West Virginia experienced a net negative growth in live tree 

volume from 1988 to 2000. The negative growth and mortalities on these plots represented a total 

loss of 0.34% of live tree biomass annually and 4% of live biomass from 1989 and 2000.  This 

landscape disturbance was similar in magnitude to all of the timbering losses that occurred during 

this same period; therefore, this landscape disturbance is a significant dynamic that impacts forest 

system volume, biomass, and carbon.  On these plots, both significantly higher tree-level 
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mortalities and negative growth rates were found, as compared to plots that experienced a net 

positive growth rate, as shown in Table 5-5. Overall, tree mortality rates were three times higher 

on plots with negative net growth, and nearly 20 times higher for large tree classes.  In addition, 

the trees were two times more likely to experience negative growth on these same negative net 

growth plots, than on positive growth plots. In addition, the positive growth rate of trees on these 

disturbed plots was also reduced by about a 1/3
rd

, as compared to positive growth rates for trees 

located on other plots (i.e., plots where the net growth rate was positive).  Thus, there appeared to 

be plot-level disturbances impacting multiple trees located on net negative growth plots, as 

mortality rates were higher, negative growth was more frequent, and positive growth was 

reduced.  

To investigate the environmental conditions that may have resulted in this disturbance, 

independent principal component variables were analyzed using logistic regression to evaluate 

their effect on the incidence of net negative growth plots. Results of the principal component 

analysis are presented in Tables 5-6 and 5-7. Using the Latent Root criterion test there were 5 

eigenvalue factors, which had nearly a value of 1 or more, which explained 87% of the variance 

in the independent variables presented in Table 5-1. The five key vectors in the principal 

component analysis are presented below:  
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Table 5-5   Comparison of Tree-level Mortality and Negative Growth Rate Frequencies on 

Forest Stands With Net Negative Versus Net Positive Growth Rates 

Growth Rates 

Tree 
Volume 

(cft) 

Annual Frequency of a Tree Event 

Ratio  

Landscape 
Disturbance: 
Net Negative 
Growth Plots  

No Landscape 
Disturbance: Net 

Positive Growth Plots 

Tree Negative 
Growth 

Rates 

<3 6.6 % 9.1 % 0.7 

3 – 7 14.5 % 7.3 % 2.0 

7 – 14 21.4 % 9.4 % 2.3 

> 14 23.6 % 5.7 % 4.1 

Tree 
Mortality 

Rates 

<3 0.28 % 0.21 % 1.3 

3 – 7 0.67 % 0.25 % 2.7 

7 – 14 1.5 % 0.36 % 4.2 

> 14 2.9 % 0.17 % 17.1 

 
 

Table 5-6   Principal Component Proportions and 

Cumulative Variance for Independent Variables 

Component EigenValue 

Variance 

Proportion Cumulative 

1 2.53 0.33 0.32 

2 1.46 0.18 0.50 

3 1.26 0.16 0.66 

4 0.95 0.12 0.77 

5 0.79 0.10 0.87 

6 0.64 0.08 0.95 

7 0.28 0.03 0.99 

8 0.10 0.01 1.00 

 

 
Table 5-7   Principal Component and Factor Loadings 

Variable 
Comp 

1 
Comp 

2 
Comp 

3 
Comp 

4 
Comp 

5 
Comp 

6 
Comp 

7 
Comp 

8 

Slope 0.11 -0.48 0.39 0.21 0.58 0.48 0.07 0.03 

% Timbered -0.03 0.32 0.57 -0.40 -0.40 0.50 0.01 0.004 

Latitude 0.11 0.70 -0.17 0.05 0.47 0.17 0.10 0.46 

Elevation -0.56 -0.09 -0.02 0.02 -0.06 -0.009 0.80 0.17 

Average Min Temp 0.53 -0.26 0.18 -0.05 -0.26 -0.26 0.18 0.67 

Average Precipitation -0.002 0.25 0.34 0.86 -0.26 -0.08 0.01 -0.06 

Average Max Temp 0.56 0.17 0.06 -0.09 0.11 -0.13 0.55 -0.56 

Stand Volume -0.24 0.13 0.58 -0.21 0.37 -0.63 -0.11 -0.006 
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PC1.  Temperature:  Average minimum temperature, average maximum temperature, and 

elevation were highly correlated with this vector. This vector explained 33% of the total 

variance. 

PC2.  Latitude:  Latitude was most highly correlated with this vector and is an important 

variable included in PnET-CN for simulating growth.  This vector explained 18% of the 

total variance.  

PC3.  Forest Stand Volume:  Both total forest stand volume and the percent of timber 

removed during timbering events were both highly correlated to this vector. This vector 

explained 16% of the total variance.  

PC4.  Rainfall:  Average annual precipitation was highly correlated with this vector. This 

vector explained 12% of the total variance.      

PC5.  Slope:  Slope was most highly correlated with this vector. This vector explained 

10% of the total variance.         

Stand-Level Disturbance Events.   The logistic regression model fit using the principal 

components for predicting stand-level disturbance events is presented below:   

𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 𝐸𝑣𝑒𝑛𝑡 = −0.13 𝑃𝐶1 − 0.11 𝑃𝐶2 + 0.20 𝑃𝐶3 − 0.42 𝑃𝐶4 +  0.67 𝑃𝐶5 − 1.71  {1} 
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The logistic regression analysis of the principal components indicated that timber resources (PC3) 

(p = 0.044), precipitation (PC4) (p < 0.001), and slope (PC5) (p < 0.001) were all statistically 

significant in predicting the incidence of a landscape scale disturbance.  The incidence of a stand-

level disturbance increased with increasing stand volume (PC3), lower precipitation (PC4), and 

higher slopes (PC5).  These results suggest that disturbance events may be related to increased 

stand competition and drought stress, as areas with lower precipitation and greater slopes would 

reduce long-term infiltration and soil moisture content (Cotillas et al. 2009, Powers et al. 2010), 

while increasing soil erosion and sun exposure.   

In terms of model fit, the principal component model was highly statistically significant based on 

the Likelihood Ratio test (p <0.0001).  However, the estimated R
2
 was quite low, 0.09, due to the 

inability of the model to accurately predict landscape disturbances at a fine spatial and temporal 

resolution. The Hosmer and Lemeshow (2000) Goodness-of-Fit statistic, which follows a chi-

squared distribution, indicated that the null hypothesis (i.e., predicted events estimated using the 

model for dataset partitions are statistically the same as the observed data) cannot be rejected (p = 

0.94) indicating excellent model fit. The Partition of the Hosmer and Lemeshow Test (see Table 

5-8 and Figure 5-7) indicated that the model performed well at modeling the overall pattern in the 

data for the ten quantile partitions of the dataset.  Overall, there was a 4.7% apparent error rate 

(i.e., total number of misclassifications divided by the total sample size, used for measuring 

logistic regression error) in the number of disturbance events estimated within each of the 

quantile partitions shown in Table 5-8 (Johnson and Wichern 2007).  Figure 5-7 shows that the 

expected number of disturbance events within each quantile partition was highly correlated with 

the observed number of disturbance events (R
2
 = 0.91). These results indicated that the logistic 

regression model performs well at describing the overall pattern of disturbance events as shown  
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Table 5-8   Partitions of the Hosmer and Lemeshow Test for 

Modeling Disturbance Events at the Plot Level Using Principal 

Components 

Quantile Total 

Undisturbed Plots Disturbed Plots 

Observed Expected Observed Expected 

1 59 57 56.4 2 2.6 

2 59 53 54.5 6 4.5 

3 59 54 52.4 4 5.6 

4 59 52 52.0 7 7.0 

5 59 50 49.7 8 8.3 

6 59 48 49.1 11 9.9 

7 59 47 47.7 12 11.3 

8 59 41 44.6 17 13.4 

9 59 46 41.9 13 17.1 

10 58 33 32.7 25 25.3 
 

 

 

 
Figure 5-7 Disturbance Model Fit: Estimated Versus Observed Number of 

Disturbance Events by Quantile from 1989 to 2000 using Models fit Using 

Principal Component Variables 

R² = 0.91

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Es
ti

m
at

ed
 N

u
m

b
er

 o
f D

is
tu

rb
an

ce
 E

ve
nt

s 
b

y 
Q

u
an

ti
le

Actual Observed Number of Disturbance Events by Quantile



127 
 

 

 

 

 

 

in Table 5-8 and Figure 5-7, but it cannot predict the exact location of a disturbance event at the 

finer resolution of an individual plot (as evident by the low estimated R
2
 of 0.09 derived at the 

plot level). This model scale issue is due in part to the low frequency of occurrences (the 

percentage plots experiencing a disturbance event was 17% annually).    

The logistic regression analysis of the selected independent variables indicated that only stand 

volume (m
3
/ha) (p < 0.001), average annual precipitation (p < 0.001), and slope (p = 0.01) were 

statistically significant in predicting disturbance events across West Virginia as estimated using 

STAT11.  Variables were removed from the model only if their inclusion did not significantly 

enhance the overall model fit based on a likelihood ratio chi-squared test (p < 0.1) (Xiao et al 

2010). Other independent variables that were not statistically significant in improving model fit 

included: latitude (p = 0.14), elevation (p = 0.72), timber intensity (p = 0.50), ecoregion (p = 

0.65), average minimum temperature (p = 0.36), and average maximum temperature (p = 0.99) 

based on the results of the likelihood ratio chi-squared test (Xiao et al. 2010). The logistic 

regression model fit using the original independent variables for predicting disturbance events is 

presented below:   

𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 1 = 0.00042 𝑉𝑂𝐿 2.47  − 0.046 𝑃𝑅𝐸𝐶 +  0.015 𝑆𝐿𝑂𝑃𝐸 + 1.82        {2} 
 

where: 

VOL = the total stand volume of the central stems for all trees >5‖ DBH (m
2
/ha); 

PREC = Annual average precipitation (cm/year); and 

SLOPE = percent slope (%). 
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Based on the logistic regression analysis, the following equation was derived using approaches 

discussed in Section 4 for estimating the probability of a plot experiencing a landscape scale 

disturbance that results in a net negative growth rate for the entire plot.   

 𝑃 𝑒𝑣𝑒𝑛𝑡 = 1 − 1/(1 + 𝑒(−1∗ −0.006∗𝑉𝑂𝐿+0.0462∗𝑃𝑅𝐸𝐶−0.0153∗𝑆𝐿𝑂𝑃𝐸−1.82) ) {3} 

 

In terms of model performance, the model fit using the original independent variables performed 

nearly the same as the model fit using the principal components. The Hosmer and Lemeshow 

Goodness-of-Fit statistic (p = 0.95) and the R
2
 (0.08) for the independent variable model were 

very similar to the results obtained for the principal component model.  The apparent error rate 

(i.e., total number of misclassifications divided by the total sample size) for the quantile partition 

level classification of 5.1% was very similar to the independent variable model of 4.7% (Johnson 

and Wichern 2007).  The ten quantile partitions of the Hosmer Lemeshow test are shown in Table 

5-9 and Figure 5-8.  These results indicate that the simpler independent variable model yielded 

similar results to the principal component model.  In order to improve computational efficiency, 

the simpler model based on the original independent variables, was used for conducting long-term 

disturbance event simulations to 2050 in the integrated model.   
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Table 5-9   Partition of the Hosmer and Lemeshow Test for Modeling Disturbance 

Events at the Plot Level Using Original Independent Variables 

Quintile Total 

Undisturbed Plots Disturbed Plots 

Observed Expected Observed Expected 

1 59 57 56.3 2 2.7 

2 59 56 54.2 3 4.8 

3 59 52 52.1 6 5.8 

4 59 50 51.9 9 7.1 

5 59 51 49.8 7 8.2 

6 59 49 49.2 10 9.8 

7 59 46 47.4 13 11.6 

8 59 41 44.8 17 13.2 

9 59 44 42.2 15 16.8 

10 58 35 33.0 23 25.0 

 

 

 

           
Figure 5-8 Disturbance Model Fit: Estimated Versus Observed 

Number of Disturbance Events by Quantile from 1989 to 2000 using 

Models fit Using Independent Variables 
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For conducting a long-term simulation to 2050, it was also important to determine if forest stand 

biomass projected in the long-term would fall within the model domain of the regression analyses 

discussed in Section 5.  For example, if the integrated model were to predict forest stands with 

biomass in excess of those currently observed in West Virginia, then these empirical regression 

models may not adequately capture the relationships between forest biomass and disturbance 

frequencies for stands that exceed the bounds of this analysis. Based on CFM simulations 

discussed further in Section 6, it was estimated that at least 97% of the plots still had projected 

forest stand volumes in 2050 that were within the bounds of stand volumes seen in West Virginia 

in 2000 (albeit that a higher percentage of stands were in a higher state of recovery).  Therefore, 

the empirically modeled relationship between stand volume and probability of disturbance 

modeled using current data was considered adequate for simulating long-term disturbances to 

2050.        

The results of the logistic regression analysis indicated that past timber removals did not 

significantly affect the probability of whether a plot would experience a net negative growth rate 

(p = 0.5), based on a likelihood ratio chi-squared test. Therefore, timbering events do not appear 

to affect this important disturbance dynamic. Furthermore, differences in ecoregional province 

location were not statistically significant in impacting disturbance potential (p = 0.65).  Slope (p = 

0.01), average annual precipitation rate (p < 0.0001), and estimated stand volume (p < 0.0001) 

were the only statistically significant variables that explained the incidence of plot-level 

disturbances. Overall, plots with steeper slopes, lower annual precipitation, and greater stand 

volume were more likely to experience a net negative growth rate, than other forest plots.  Plots 

with steeper slopes and lower average annual precipitation would more likely receive lower water 

infiltration (due to higher runoff rates due to the slope, and lower potential for precipitation), 
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which may stress the trees resulting in higher tree mortality, negative growth, and reduced 

positive growth observed in the data.  Trees on steeper slope may also be more susceptible to 

erosion impacts and sun exposure. 

The results also show that higher stand volume increased the incidence of landscape disturbances, 

which could be due to the added effect of competition, particularly during periods of stressed 

environmental and/or climatic conditions (e.g., reduced rainfall, higher or lower temperatures), 

and/or increased susceptibility to disease or infestation. Increased incidence of landscape scale 

disturbances has also been seen in other forest research in maturing forests in North America as a 

result of an array of disturbances, including drought stress, pest infestation, and fire (USGCRP 

2008, Bouchard et al. 2008, Cotillas et al. 2009, Powers et al. 2010).    

The increased incidence of disturbance for stands with higher volumes/biomass would inevitably 

create higher variability in net growth for forest stands in advanced stages of recovery, which is 

seen in Figure 5-3. Although net growth increases as tree volume increases at the tree-level, there 

appears to be factors that occur at the plot-level that may inhibit positive growth, and induce 

increased mortality and negative growth rates for stands with higher stand volume.  This 

landscape-level dynamic would create a cross-scale negative feedback mechanism that would 

result in more variability in plot-level net growth as stand volume increases, which is indeed 

observed in the FIA data (shown in Figure 5-3).  Thus, addressing this plot-level disturbance 

dynamic is important when considering long-term biomass and carbon dynamics, as the impact of 

disturbances and stressors operating at larger scales (e.g., microscale climatic conditions or insect 

infestation) may increase as stand volume increases.  
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This plot-level disturbance dynamic underscores a limitation in projecting increased landscape 

level growth, biomass, and carbon due to restoration and recovery using only tree-level growth 

regression models and ignoring larger scale disturbance effects, which ultimately impacts 

statewide biomass and carbon predictions. For example, ignoring such processes could lead to 

significantly over estimating long-term biomass and carbon sequestration potential of maturing 

forest stands, as maturing forest stands become more vulnerable to losing a portion of their 

biomass due to landscape scale disturbances. Even if tree-level models are calibrated to average 

growth rates across a large landscape (which would include some disturbance effects), such an 

approach would not adequately address long-term stand growth and carbon sequestration 

potential as landscape scale disturbances may increase in frequency and severity as stands mature 

in the future (such increased rates would not be reflective in the empirical analysis of current 

growth and disturbance effects). Furthermore, ignoring these types of disturbances could 

significantly reduce estimated stand level variability estimates across a larger landscape, as the 

tree-growth models would typically predict net stand growth for all plots, while in actuality 1/5
th
 

of the stands in West Virginia lost live biomass and acted as carbon sources due to landscape 

level disturbances. Although these processes can be modeled through user-defined scenarios in 

both FVS and PnET-CN, this analysis underscores the importance of addressing these landscape 

scale disturbances when conducting long-term projections of biomass and carbon sequestration 

across a large landscape.   

Other landscape-level forest research has also shown the importance of addressing large-scale 

disturbance regimes when estimating long-term biomass and carbon dynamics across a region 

(USGCRP 2008). The cause and effect of landscape disturbances on forest resources is a complex 

process that requires detailed analysis of site-specific and landscape-level conditions and 
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processes that are often species and forest-type specific (USGCRP 2008). Anthropogenic 

disturbances and forest management practices can often alter these relationships, creating new 

cumulative effects. Studies have shown that significant disturbance events are cyclical and 

spatially clustered in nature, with many fire and insect related disturbance events increasing in 

frequency and severity due to increased stand density or age, competition, and adverse climatic 

conditions (e.g., drought), as well as species composition (e.g., host species) (Alfaro et al. 2001, 

Bouchard et al. 2008, Chen et al. 2008, Hanson and Weltzin 2000, Harvey et al. 2002, Porte and 

Bartelink 2002, Yu et al. 2009). Furthermore, USFS stand density related mortality models 

estimate increased tree mortality rates, when stand density approaches the maximum basal area 

estimated for a stand (USFS 2010b,c).  Drought has also been shown to increase the rate of 

mortality in tree species, which can also increase the vulnerability of stands to other disturbance 

regimes (fire and insect infestation) (Bouchard et al. 2008, USGCRP 2008). Stand thinning has 

also been shown to reduce mortality rates and soil moisture content during drought conditions, 

indicating that droughts may increase competition for remaining resources and increase mortality 

rates for stands with higher stand density (Cotillas et al. 2009, Powers et al. 2010). To date, 

modeling disturbance regimes has been recognized as an important dynamic for more accurately 

addressing long-term stand biomass and carbon projections, in considering the complex and 

region-specific disturbance interactions and cyclical characteristics that impact many forest 

systems (USFS 2010b,c; Schelhaas et al. 2002; Seidl et al. in press; Sturtevant et al. 2004). 

5.3.3 Tree-Level Mortality and Regeneration 

The results of an ANOVA test indicated that timbering events did not have a statistically 

significant effect on the volume of mortalities (p = 0.26) or regeneration rates (p = 0.08) on forest 

stands across West Virginia.  In addition, the results of the multiple regression analyses indicated 
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that timber removal intensity did not significantly impact total mortality rates (p = 0.26) or 

poletimber regeneration rates (p = 0.17) at the plot level. Based on these results, status quo 

timbering methods used in West Virginia do not appear to be having a measurable statistically 

significant effect on mortality and regeneration rates (either positive or negative).    

To estimate tree mortality rates for the integrated model, a heuristic analysis of the FIA data was 

initially conducted to identify key variables that may impact tree mortality rates. This analysis 

was also informed by evaluating other tree mortality models and key parameters utilized by USFS 

for estimating tree-specific mortality probabilities, which are based on tree size classes (USFS 

2010b,c). Overall, much higher mortality rates were seen on plots with net negative growth rates; 

therefore, tree mortality probabilities were developed separately for each tree size class and 

disturbance regime. For plots that experienced a disturbance, the incidence of tree mortality 

significantly increased (17 times) for the largest sized trees.  For plots that didn’t have a net 

negative growth rate, the incidence of tree mortality was actually lowest for the largest size tree 

class.  The probabilities developed from this heuristic analysis were then used in a Monte Carlo 

simulation analysis to predict the incidence of these events as seen in the FIA database for the 

2000 sampling period.   

For tree regeneration, the CFM model tracks only poletimber and sawtimber tree dynamics over 

time (and not saplings < 5‖); therefore, it was necessary to predict the number of new poletimber 

trees that will be added to a plot in the future from continued growth of saplings. On average, 

approximately 0.13% of the biomass that is added to the total tree biomass pool for the stand (for 

all trees above 5‖ DBH) is the result of annual regeneration (i.e., growth of new poletimber trees 

added to the stand).  This added volume is approximately 30% of the tree volume removed from 
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timbering actions; therefore, it represents a smaller, but still significant dynamic that impacts tree 

volume and biomass, which was modeled in CFM.   

5.3.4 Integrated Model Verification and Validation 

The timber models presented in Section 4 were integrated with the models and methods discussed 

above for estimating volume growth, disturbances, mortality, regeneration in order to simulate net 

change in live forest volume (m
3
/ha) from 2000 to 2050. The models were applied to the plot-

level dataset (representing nearly 1,500 forested plots located randomly across West Virginia) 

and tree-level dataset (representing 60,000 trees) for the 70% sample to predict near-term annual 

changes in forest volume.  Overall, the integrated CFM model estimated average net annual live 

forest volume growth of 1.33% in 2000 (five year average of 1.34%), which includes positive 

growth, negative growth, mortalities, timbering, and landscape disturbances, while FIA field 

measured value was very similar at 1.32% (within 1% of the observed value).      

Figure 5-9 presents a graphical comparison of the CFM modeled net growth and the FIA field 

measured growth by quantile of forest stand density for stands that were not timbered between 

1988 and 2000 and experienced positive net growth, which includes over 80 percent of the forest 

stands. The modeling results indicate that CFM was able to replicate forest plot-level net annual 

growth rates measured in the field using FIA for each of the quantiles.  Currently, forest stands 

with higher aboveground tree volume continued to grow at a higher rate as compared to stands of 

lower volume, as shown in Figure 5-9, which is evident of a system that is still in a state of 

recovery.  Figure 5-10 provides the same comparison using the original data, prior to aggregation  
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Figure 5-9 Comparison of Plot-Level CFM Modeled Net Growth and FIA Field 

Measured Net Growth by Forest Stand Density Quantiles 

 

 

 

 
Figure 5-10 FIA Observed Versus CFM Modeled Net Annual Growth (m

3
/ha) 

(without Monte Carlo analysis of natural variation) by Forest Stand Volume Density 
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into quantiles.  Note that the predicted data presented in Figure 5-10 is not based on a Monte 

Carlo simulation of natural variability in the growth response; thus, there is less variability in the 

predicted estimates which fall mainly along the average trend line.     

For model verification purposes, Figure 5-11 presents FIA field measured net annual growth rates 

(observed values) versus predicted CFM modeled net annual growth rates for quantile partitions 

of the data (R
2
 = 0.94 for the average quantile values).  The results presented in these figures 

indicate that CFM was able to replicate the magnitude and pattern in growth response for forest 

stands of different size classes. 

 
Figure 5-11 FIA Observed Versus CFM Modeled Net Annual 

Growth (m
3
/ha) by Forest Stand Volume Quantiles 
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An analysis of the annual net growth for the 30% out of sample dataset was also performed for 

model validation purposes.  The average annual net growth for the 30% out of sample dataset 

based on FIA field measured net annual growth was 1.40%, which includes positive growth, 

negative growth, mortalities, timbering, and landscape disturbances. CFM modeled average 

annual net growth for the 30% out of sample dataset was 1.38% in 2000 (5 year average growth 

of 1.33%), which was within 1% of the observed value. Overall, the results of the verification and 

validation study indicated that CFM generated reasonable estimates of net growth (factoring in 

growth, disturbances, and timber removals) that were commensurate with FIA field measured 

growth and timbering rates for West Virginia.       
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5.4 Conclusions 

Beyond the direct impact of a timbering event, which removes forest biomass and future growth 

potential, timbering activities did not have a significant indirect effect on net growth rates, 

landscape level disturbances, regeneration rates, or mortality rates for the trees that remain on the 

plot. Rather, other plot condition variables were much more important in predicting growth, 

mortality, and regeneration, including tree volume, stand volume, annual precipitation, and slope.   

Forest stands with the highest tree volumes still continued to grow more in volume than stands 

with lower volumes, but their growth rates appeared to be decelerating commensurate with a 

sigmoid growth response. This continued growth may be due to the fact that many forest stands in 

West Virginia are still in a state of recovery (Brown et al. 1997). The cumulative effects of 

timbering, positive growth, negative growth, mortality, and regeneration simulated using CFM 

replicated timbering patterns and net growth reasonably well.  CFM estimated the net live forest 

volume growth rate of forests in West Virginia in 2000 to be 1.38% (5 year average was 1.33) 

(factoring in removals, mortality, positive growth, negative growth, and regeneration) for the 30% 

out of sample validation dataset, while the estimated FIA observed net live forest volume growth 

rate in 2000 was 1.40%.  Thus, CFM was able to replicate the cumulative effect of these factors 

on net annual growth rates reasonably well, i.e., within 1% of field measured value. 

Stands with large volumes appeared to be more susceptible to landscape level disturbances and 

exhibited greater variability in terms of annual growth response, than forest stands with smaller 

volumes. Landscape level disturbances, resulting in net negative growth rates observed on about 

1/5
th
 of the plots from 1989 to 2000, occurred on plots with lower average annual precipitation, 

higher slopes, and higher stand volumes. Although forest stands with higher tree volumes had 
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higher growth rates, their apparent increased vulnerability to landscape level disturbances creates 

a negative cross-scale feedback mechanism that diminishes growth for some plots and creates 

greater stand growth response variability for higher stocked stands. Timbering events did not 

increase the frequency of these landscape level disturbances. These landscape disturbances 

reduced live tree volumes on plots nearly to the same extent as total timbering activities across 

the state, indicating that disturbance regimes operating at larger scales (e.g., climate shifts 

resulting in localized droughts) may significantly impact landscape level growth, biomass, and 

carbon sequestration.  The results of this study indicate that ignoring such processes could lead to 

significantly over estimating long-term biomass and carbon sequestration potential of maturing 

forest stands, as maturing forest stands become more vulnerable to losing a portion of their 

biomass due to landscape scale disturbances. This result assumes that climatic conditions and 

drought potential remains the same for West Virginia over the next half century.  If the incidence 

of severe climatic events increases over time, then this may exacerbate this problem and increase 

vulnerability of the forest systems to these types of disturbance regimes. Furthermore, ignoring 

these types of disturbances could significantly reduce estimated stand level variability estimates 

across a larger landscape, as the tree-growth models would typically predict net stand growth for 

all plots, while in actuality 1/5
th
 of the stands in West Virginia lost live biomass and acted as 

carbon sources due to landscape level disturbances. Although these processes can be modeled 

through user-defined scenarios in both FVS and PnET-CN, this analysis underscores the 

importance of addressing these landscape scale disturbances when conducting long-term 

projections of biomass and carbon sequestration across a large landscape. 

There are limitations with the disturbance modeling approach, which could be further refined 

through additional research.  For example, there are other biophysical characteristics, such as 
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historic disturbance effects, climatic patterns, longitude, micro-scale drought patterns, terrain 

classification, slope orientation, and other factors that may create spatial patterns and explain 

some of the variance in disturbance events not captured in this analysis. Evaluation of many of 

these variables would be difficult to analyze with the FIA dataset, as the exact locations are not 

publically available.  Through working with the USFS, it may be possible to utilize the actual 

coordinates of the FIA plots and obtain higher resolution drought, terrain classification, and other 

biophysical data that could refine this analysis.  Further studies and research are needed to 

determine whether some of these other factors are important and whether spatial and regional 

patterns exist in the data.   

Overall, the empirical modeling approach performed better than the process-based modeling 

approach in estimating forest growth across West Virginia.  By adjusting key historic disturbance 

variables, the PnET-CN/sat model runs were able to replicate estimates of AGBD in the wood 

pool for baseline conditions that were within 10% of observed values for 85% of the plots in 

Boone and Tucker Counties. However, several concerns were raised:  1) site-specific data were 

not available to properly parameterize the model and regional average statistics were not 

sufficient to fit the model for about 60% of the plots; 2) the model was very sensitive to the 

agriculture disturbance assumption (1750 to 1850) for which little data were available; and 3) the 

key area of concern was that the growth response profiles for the AGBD wood pool did not match 

observed data from FIA regardless of how the disturbance regimes were manipulated. Further 

research is recommended for parameterizing and validating wood pool fluxes in PnET-CN across 

a broader array of disturbance regimes and stands for larger geographical areas.   
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6. Long-Term Effects of Timbering on Forest Resources using 

an Integrated, Multi-Scale Model 
 

 

 

6.1 Introduction 

Over the past several decades, forest resources throughout the northeast, including West Virginia, 

have continued to increase in biomass (USDA 2008, Brown et al. 1997).  It is uncertain how 

recent and future timbering will impact forest biomass and continued recovery of West Virginia 

forests into the 21
st
 century.  Furthermore, increased emphasis on sustainable forestry practices 

and state sustainable policy development may have benefits to the overall state forest ecosystem, 

but it is unclear to what degree such measures will improve forest ecosystem indicator metrics 

and timber resources, as well as alter timbering effects at a landscape scale. To address these 

issues, this portion of the study analyzes the long-term effects of timbering on forest ecosystem 

and timber resource indicator metrics at multiple scales across West Virginia from 2000 to 2050 

under different timber market and silviculture scenarios.      

The overall research question addressed by this portion of the study is:   What long-term effect 

will status quo and sustainable timbering scenarios, under varying timber market conditions, 

have on forest ecosystem and timber resource indicator metrics in West Virginia?   To address 

this question, a status quo scenario and one sustainable timbering scenario were analyzed in this 

study.  Specific forest ecosystem indicator metrics were defined and simulated for each scenario 

in order to evaluate changes in forest resources over time. In this context, an indicator metric is a 
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specific measured parameter that can be readily analyzed and obtained (e.g., AGBD from FIA) 

that serves as a surrogate measure of a particular criterion that describes a forest process or issue 

of interest (e.g., biological diversity conservation) (Montreal Process 2009). For this research, 

indicator metrics were developed that describe habitat conservation and important elements of 

sustainable forest management. Forest ecosystem indicator metrics are further defined and 

discussed in Section 6.2.3.  These metrics were estimated for the status quo timbering scenario 

under varying timber market economic conditions in order to evaluate potential outcomes under 

status quo timbering conditions (i.e., continuation of current timbering practices as modeled in 

Section 4), as discussed in Section 6.1.1.  

To address the sustainable forestry research question, sustainable forest management 

requirements were imposed on the system to evaluate potential outcomes as compared to the 

status quo timbering scenario.  These restraints consisted of limiting timber removals to no more 

than 30% of the timber volume, conserving the largest trees in the stand to improve stand 

structure, conserving all trees which are important features of old growth forests (>  70 cm in 

DBH), and ensuring that timber rotations are not less than 20 years (Buehler et al. 2007, Register 

and Islam 2008, Brown et al. 1997, USFWS 2009, Wood et al. 2005).  Using this approach, it was 

possible to test how this sustainable timbering scenario has the potential to affect system level 

dynamics, including tree-, stand-, and state-level forest indicator metrics and timbering practices. 

The specific timbering constraints, methods, and background information pertaining to the 

sustainable timbering scenario are discussed in Sections 6.2.4 and 6.2.6.  

Developing a sustainable timbering policy may involve testing a range of specific regulatory 

controls and prescriptions, subsidies, certifications, market-based carbon credits, taxes, and other 

instruments to achieve the desired objective of the policy. The development and testing of 
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specific policy instruments is beyond the scope of this research.  To do so would require targeted 

surveys and participatory modeling techniques to simulate the change in human behavior from 

implementation of a specific policy (Parker et al. 2003, Bousquet and Le Page 2004). Only with 

such carefully designed surveys and methods would it be possible to utilize CFM to test the 

effectiveness of a specific policy instrument. But as a first step in this process, it is important to 

first understand the theoretical benefits and limitations of implementing a policy if it were put 

into place. To that end, this analysis is only a visioning exercise to assess certain theoretical 

outcomes (both potential positive and negative) that may occur by implementing sustainable 

forest management strategies across the state assuming the goals of the policy were achieved.  

This analysis makes no prediction of specific policy outcomes or probability of success. The 

sustainable timbering scenario to be evaluated and hypotheses to be tested are outlined in Section 

6.1.2. 

6.1.1 Status Quo Timbering Scenario 

The status quo timbering scenario assumes that basic timbering practices will continue to occur 

into the future as modeled in Section 4, i.e., the range of timber practices will occur and the 

intensity will fluctuate in response to timber prices.  CFM was used to simulate the status quo 

timbering scenario in order to evaluate how, and the degree to which, forest ecosystem indicator 

metrics would change from 2000 to 2050, assuming current timbering practices occur.  These 

metrics were estimated for the status quo scenario under two different timber market economic 

conditions: 1) a most-likely timber market scenario, i.e., 0.24% annual increase in timber prices 

with inflationary effects removed, as projected as the most-likely long-term average growth based 

on national economic modeling by USDA (2003); and 2) a high timber market scenario, i.e., a 1% 

annual increase in timber prices with inflationary effects removed, which has occurred over the 
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past 2 decades. Based on recent trends in forest biomass growth in West Virginia reported by 

USDA (2008) from 1990 to 2005, it is hypothesized that under most-likely market conditions (i.e., 

0.24% long-term average annual increase in timber prices) forest ecosystem indicator metrics 

and forest stand recovery will continue to improve to 2050. However, if timber prices continue to 

increase as they have in the past two decades (~1% per year), then it is hypothesized that forest 

ecosystem indicator metrics and forest stand recovery will diminish relative to most-likely 

scenario market conditions to 2050.  Table 6-1 presents the inferred relationships between these 

scenarios and the indicator metrics. As these are inferred relationships, the null hypothesis that 

these market scenarios have no impact on forest ecosystem indicator metrics was also evaluated. 

 

Table 6-1  Hypothesized Long-term Annual Trends in Forest Ecosystem Indicator Metrics 

Over Time for the Most-Likely and High Timber Market Scenarios 

Forest Indicator Metrics 

Most-Likely 

Timber Market 

Scenario 

Relative to 2000  

High Timber 

Market 

Scenario 

Relative to 

Most-Likely in 

2050 

State Forest AGB (tg)  + — 

Average AGBD (g/m
2
) + — 

Average % of State Timber Harvest to Net Growth in AGB  — + 

State Commercial Timber Volume (10
6
 m

3
)  + — 

State Forest AGB (tg) of Black Cherry and Red Oak AGB (tg)  + — 

Average State Frequency of Low Intensity Timbering Events  + + 

Average State Frequency of Medium/High Intensity Timbering 

Events (> 30% AGBD removals) 
+ + 

% of Biomass in Large Trees (>70 cm)  + — 

% of Advanced Recovery Plots (AGBD > 15,000 g/m
2
)  + — 

% of Old Growth Plots  + — 

―+‖  =  Increase in metric from the previous year;  ―—“  =  decrease in metric from the previous year;  

―blank‖  =  no major change in metric 
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6.1.2 Sustainable Timbering Scenario 

Currently, many timber removals are not conducted in a manner that would be considered 

sustainable. As discussed in Section 4, only 13% of timber removals across West Virginia were 

considered low intensity timber removals (i.e., below 30% biomass removal), while over 87% of 

the timber removals were medium or high intensity removals, with 6% consisting of clear cuts. In 

some cases, forest plots have been over-harvested. Also, removal of the largest and commercially 

valuable trees (e.g., diameter limited cuts) reduces stand structure and complexity, which are 

important for biodiversity. Implementing sustainable timbering measures discussed previously 

(i.e., restricting removals to < 30% of stand volume, conserving the largest trees, and lengthening 

rotation cycles to > 20 years) would constrain the amount of biomass and short-term economic 

return that can be harvested from a forest stand, thereby conserving much of the trees for future 

growth and production of ecological services (including forest resources for future timber 

removals). However, the end result of constraining timber removals may be that more plots are 

timbered across the state in a given year in order to meet annual market demand for timber, due to 

a shifting of timber removal activity. As such, the cumulative effect of implementing 

sustainability practices at a state level will be addressed, including shifts in timber impact and 

potential increases in low intensity disturbances that may result.  For this scenario it is assumed 

that any timber removal would occur in accordance with sustainable timbering practices and such 

removals may occur at any location across the state; therefore, the principal adverse effect that is 

evaluated in this analysis is the potential increase in timber frequency across forest stands of the 

state to make up for the loss of timber revenue due to the sustainable timbering restriction. 

Using CFM it was possible to test how various sustainable forestry silviculture techniques affect 

forest ecosystem indicator metrics and timber resources relative to status quo timbering methods. 
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Overall, it is hypothesized that if sustainable silviculture practices are applied across West 

Virginia (while still achieving the same annual total timber production across the state), then 

forest ecosystem indicator metrics and forest stand recovery will be significantly enhanced. Table 

6-2 presents the inferred relationships between the sustainable timbering scenario and indicator 

metrics relative to status quo conditions. As the relationships presented in Table 6-2 are inferred, 

the null hypothesis that the sustainability timbering scenario has no impact on forest ecosystem 

indicator metrics was also evaluated. 

 

Table 6-2  Hypothesized Annual Trend in Forest Ecosystem Indicator Metrics  Over Time 

for the Sustainability Scenario Relative to the Status Quo Timbering Scenario (under Most-

Likely Timber Market Conditions) 

Forest Indicator Metrics 

Change in Metric for the 

Sustainability Scenario 

Relative to Status Quo 

Timbering  

State Forest AGB (tg)  + 

Average AGBD (g/m
2
) + 

Average % of State Timber Harvest to Net Growth in AGB  — 

Average State Frequency of Low Intensity Timbering Events  + 

Average State Frequency of Medium/High Intensity Timbering Events  — 

% of Biomass in Large Trees (>70 cm)  + 

% of Advanced Recovery Plots (AGBD > 15,000 g/m
2
)  + 

% of Old Growth Plots  + 
―+‖  =  Increase in metric from the previous year;  ―—“  =  decrease in metric from the previous year;  ―blank‖  =  

no major change in metric 
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6.2 Methods 

6.2.1 Modeling Approach 

To simulate changes in forest ecosystem and timber resource indicator metrics, a multi-scale 

integrated model, CFM, was developed and tested as part of this study (see Section 3.1 and 

Figure 3-2 for a description of the conceptual model). The models developed in Sections 4 and 5 

were combined with a timber price model (discussed in Section 6.2.5) to simulate indicator 

metrics of ecological services under different timber scenarios and market conditions.  To address 

fine-scale effects, CFM was used to conduct future simulations of timbering events and forest 

growth for each tree (60,000 trees across West Virginia) and plot (1,500 plots forested plots 

randomly located across West Virginia) on an annual time step, for a 50 year duration (2000 to 

2050).  For each annual iteration, the model estimated endogenous variables using Monte Carlo 

simulation and randomization of estimates using the models discussed in Sections 4 and 5 and 

exogenous variables presented in Table 6-3. CFM was initialized based on field measured tree 

and plot data (see Table 6-3) from 70% of the FIA plots located randomly across West Virginia 

for the 2000 sampling period.   

To model AGBD at the tree-, plot-, and state-level, the logistic and multiple regression equations 

discussed in Section 5 were used to estimate changes in the central stem volume for each tree and 

plot on an annual time step in CFM based on the multiple factors impacting live tree volume 

including growth, mortality, regeneration, and landscape disturbances. Total tree biomass was 

then estimated for each poletimber and sawtimber tree using simple regression models, which 

relate estimated central stem volume to the total biomass of the tree (which includes the roots, 
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Table 6-3   CFM Endogenous and Exogenous Variables 

Model Parameter Units Field Data Source/Derivation 

ENDOGENOUS VARIABLES 

State-Level Indicator 

Metrics 

Forest ecosystem and timber resource metrics are discussed in Tables 

6-1 and 6-2. 

Regional-Level Timber 

Prices in 2006 to 2050  

$/MBF Simulated timber prices based on trends analysis of 

market price fluctuations and USDA 2003. 

Plot-Level Disturbance 

that Impacts Growth and 

Mortality Rates 

boolean Probability based on logistic regression analysis 

(Section 5) that relates stand volume, annual 

precipitation, latitude, elevation, and slope to the 

probability of a landscape level disturbance. 

Plot-Level Tree and BF 

Volume 

m
3
/ha Derived by compiling tree-level volumes and growth, 

which are derived on an annual basis. 

Plot-Level Tree and BF 

Volume for  RO and BC  

m
3
/ha Derived by compiling RO and BC tree-level volumes 

and growth, which are derived on an annual basis. 

Plot-Level AGBD for  

Live Trees > 5” DBH 

g/m
2
 Derived by compiling tree-level biomass values, 

derived using models presented in Section 6.2.2. 

Plot-Level Timber Value  $/ha Total tree-level values derived on an annual basis. 

Plot-Level Removals of 

Timber (BF) and Biomass   

g/m
2
 

m
3
/ha 

Removals derived by compiling tree-level volumes and 

biomass removed during timbering events.  

Plot-Level Timbering 

Disturbance 

unitless The frequency and intensity of removals are tracked at 

for each plot. 

Tree-Level +/- Growth 

for Gross Volume and BF  

m
3
 Derived growth using regression models from Section 

5 and landscape level disturbance probabilities. 

Tree-Level Mortality boolean Derived tree mortality event probability 

Tree-Level Regeneration 

of a Poletimber Trees 

m
3
 Derived using probabilities based on forest stand total 

volume. Tree species assigned randomly based on 

relative volume of different species for the forest type.  

Tree-Level tree biomass  kg Derived using regression models in Figure 6-1. 

Tree-Level  value  $ Derived using BF and regional stumpage prices ($/BF). 

Tree-Level  removals  unitless Derived probability of tree removal based on value, 

stand value density, and ownership regime. 

EXOGENOUS VARIABLES 

Plot-Level Initial Timber 

Stand Stump Value  

Total  $ 

value/ha  

Based on FIA 2000 Plot Data providing BF and 

Regional Species-Specific Stumpage Prices in WV 

using 2000 regional price data obtained from 
http://ahc.caf.wvu.edu/ 

Plot-level Forest Type Unitless  FIA 2000 Plot Data 

Tree-Level AGB and total 

tree biomass in 2000 

kg FIA 2000 Plot Data 

Tree-Level Volume 

(Gross and BF) in 2000 

kg FIA 2000 Plot Data 

Tree Species Category Unitless FIA 2000 Plot Data http://www.fia.fs.fed.us/. Tree 

species categories are presented in Table 3-1. 

http://ahc.caf.wvu.edu/
http://www.fia.fs.fed.us/
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stump, central stem, and tree tops).  These regression models, presented in Figure 6-1, were 

derived using FIA data which includes data on the estimated central stem volume of each tree and 

the estimated total tree biomass for the tree (USFS 2010a). Excellent model fits were obtained for 

these simple regression equations with R
2
 ranging from 0.89 to 0.99 for each of the species 

categories. Other non-linear regression methods also may be appropriate for certain species, as 

some of the relationships shown in Figure 6-1 indicate a slight curvature for certain data points. 

For example, a non-linear polynomial model was applied for white oak, which yielded an 

excellent model fit (R
2 
=0.985), although these results were not substantially different from the 

linear model (i.e., R
2 
= 0.982). Thus, the linear regression model fits were considered to be 

sufficient for converting tree volume to biomass for the purposes of this study.  

6.2.2 Sensitivity and Uncertainty Analysis Using Monte Carlo Simulation 

CFM underwent both a sensitivity analysis and uncertainty analysis using Monte Carlo 

simulation to assess the range of possible outcomes given the complexity of the integrated, multi-

scale model.  The purpose of the sensitivity analysis was only to evaluate the relative sensitivity 

of the integrated model output to different input model parameter values, as well as the relative 

importance of these variable values in predicting biomass estimates. As integrating several 

models and variables may compound model errors, the sensitivity analysis was important to 

identify the specific model variables that had the largest impact on long-term model estimates of 

biomass in 2050. The sensitivity analysis, however, was not used for predicting long-term 

biomass estimates, which was the focus of the uncertainty analysis discussed further below.   
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Figure 6-1 Models for Predicting Total Tree Biomass Based on Central Stem Volume for 

Key Species (BC, MO, RO, SM, WO, and YP) 
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The sensitivity analysis involved varying the principal variables that drive forest biomass, growth, 

and timber frequencies and intensity by +/-25% of their most-likely value.  The same value was 

applied for all variables included in the sensitivity analysis in order to compare their impact on 

forest biomass estimates over time.  The magnitude of this variation was chosen because of the 

high variability of some of the input parameters which could potentially mask the effect of the 

change, if a smaller factor was applied. For example, the average percent change in annual prices 

was 12% (with a standard deviation of 9%); therefore, it was more appropriate to use a larger 

sensitivity factor [well above 5 or 10%] to assess the impact of price changes on biomass. The 

following variables were included in the sensitivity analysis: probability of timber removal, 

timber prices, mortality rates, landscape disturbance rates, negative growth rates, positive growth 

rates, and generation of new poletimber tree rates.  Key model output metrics that were tested in 

the sensitivity analysis were average AGBD (g/m
2
) removed by timbering from 2000 to 2050 and 

average plot AGBD (g/m
2
) in 2050.   

In addition to the sensitivity analysis, a stochastic uncertainty analysis using Monte Carlo 

simulation was conducted for all key variables in CFM. The uncertainty analysis utilized Monte 

Carlo simulation techniques to estimate forest biomass from 2000 to 2050.  This Monte Carlo 

simulation included a full randomization of parameter distributions for input variables in order to 

evaluate the long-term variation in scenario outcomes to 2050.  The results of the uncertainty 

analysis were used to derive confidence intervals around long-term estimates generated by the 

integrated model.  When distribution statistics were available for these variables, then the values 

were generated by selecting randomly from these distributions. When ranges and most-likely 

values were only available, then a triangular probability distribution was used to generate values 

used in the analysis. When the range was unknown, then the value was varied by a reasonable 
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degree using a triangular distribution (e.g., +/-25%).  For regression models, the most-likely 

estimated value and the mean square error were used to generate probable values for individual 

calculations. Many variables and modeling processes were included in the Monte Carlo 

simulation, with up to 3 tiers of nested simulations.  The metrics that describe these distributions 

for these variables are presented in Table 6-4.   

 

6.2.3 Forest Ecosystem and Timber Resource Indicator Metrics 

This section describes specific forest ecosystem indicator metrics that were used as indicators of 

forest resource condition and recovery for the entire state.  For this research, indicator metrics 

were developed that describe habitat conservation and important elements of sustainable forest 

management.  In this context, sustainable forest management refers to the ability of the forest 

system to produce ecological services for the environment (e.g., wildlife habitat, food), as well as 

consumptive and non-consumptive services for human use (e.g., timbering, recreational use) that 

do not compromise the needs of future generations (USFS 2000).  Although there are many 

factors (e.g., health metrics for disease, infestation, fire hazards) that can affect the ability of the 

forest system to produce ecological services, the context of the anthropogenic effects being 

considered in this research project (i.e., timber removals) focuses on elements of forest resource 

condition that pertain to conservation, restoration, and biodiversity (USFS 2000). 
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Table 6-4  Monte Carlo Simulation Distribution Metrics and Processes Modeled in the 

Uncertainty Analysis 

Type Key 

Variables 

Distribution Metrics and Probabilities 

Regional 
Timber 
Market 
Prices 

Long-term Annual 
Change in Timber 
Prices 

Triangular Distribution: Range: 0 to 1%, Midpoint: 2.4%  
(Sources: USDA 2003 for most-likely long-term average, analysis of 20 year 
trends for range [AHC 2010], See Section 6.2.4 for further discussion). 

Timber Price 
Market Oscillation 
Cycles 

Market cycle duration in years when prices are either continuously above or 
below predicted average price trends: 1 year (43%), 2 years (32%), 3 years 
(20%), 4 years (3%), 5 years (2%), and 6 years (1%) (Sources:  AHC 2010). 

Tree-specific 
Market Price 
Fluctuations 

Modeled tree-specific amplitude fluctuations around the long-term predicted 
average price. Normal Distribution:  Mean: 9%  Standard Deviation: 11% 
(Source:  AHC 2010). 

Consistency 
Between Tree and 
WV Market 
Trends   

Probability that a tree-specific price fluctuation trend modeled above 
coincides with the overall average national market trend in a given year:  
68% (Source:  AHC 2010). 

Multi-Level 
Timbering 

Plot-Level Timber 
Stand Selection 

Monte Carlo analysis of plot-level data using probability model (see Section 
4). For the uncertainty analysis, the annual probability was adjusted using a 
triangular distribution with a range of +/-25%. 

Multi-Level Tree 
Selection for 
Timbering Events 

Monte Carlo analysis of plot-level and tree-level data using probability 
model derived using multi-level logistic regression analysis discussed in 
Section 4.   

Tree-Level 
Regeneration 

Poletimber 
Regeneration 
Rate 

Monte Carlo analysis of probability estimates that a new poletimber tree 
regenerates in a year, based on 9 plot level stand density classes (Source: 
analysis of FIA data [USFS 2010a]).  For the uncertainty analysis, the 
annual probability was adjusted using a triangular distribution with a range 
of +/-25%. Species type was assigned based on a Monte Carlo simulation 
of relative species abundance for the specific forest type (USFS 2010a).  

Commercial Tree 
Regeneration of 
BF 

When poletimber grows are large enough to become commercial sawtimber 
(> 11”), then BF is estimated for the new commercial sized tree based on 
the distribution of BF for trees of that size. All BF are based on a normal 
distribution with the means and standard deviations by species group.  
(Source:  analysis of FIA data [USFS 2010a]) 

Plot-Level 
Disturbance  

Plot-level 
Disturbance 

Monte Carlo analysis of disturbance events using plot-level data and 
probability model, and a triangular distribution with a range of +/-25%. 

Tree-Level 
Negative 
Growth 

Tree Negative 
Growth Probability 
Rates 

Probability that a tree on a plot will experience negative growth, based on 
tree volume and stand disturbance condition (Source: heuristic analysis of 
FIA data [USDA 2010a]). 

Tree-Level Annual 
Negative Growth 
Rates 

A Monte Carlo analysis was performed for simulating annual negative 
growth rates for trees identified as having negative growth in the 12 year 
growth cycle (based on the West Virginia sampling cycle) by tree volume 
(Source: heuristic analysis of FIA data [USFS 2010a]): 

Tree-Level 
Mortality 

Tree-Level 
Mortality 
Probability Rates 

A Monte Carlo analysis of tree mortality was performed using derived 
annual probabilities that a tree on a plot will die, based on tree volume and 
stand disturbance condition (Source:  statistical analysis of FIA data [USDA 
2010]).  For the uncertainty analysis, the annual probability was adjusted 
using a triangular distribution with a range of +/-25%.  

Tree-Level 
Positive 
Growth 

Tree-Level Annual 
Positive Growth 
Rates 

Incremental BAG for each live tree was estimated using the methods 
outlined in Section 5. BAG was then converted to annual central stem 
volume growth and BF growth using regression equations and root mean 
square error for each species group which were presented in Section 5. 
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Forest ecosystem indicator metrics used for this research were developed in consideration of 

international and national forest sustainability initiatives that apply to temperate forests in the 

northeast (Buehler et al. 2007, Brown et al. 1997, Montreal Process 2007, Register and Islam 

2008, USFS 2000, USFWS 2009, Wood et al. 2005).  In 2007, the United States participated in 

the development of a set of criteria and measurement indicators for the conservation and 

sustainable management of temperate forests as part of the Montreal Process (2007).  This effort 

was initiated in 1994, when 12 countries that manage 90 percent of the worlds temperate forests 

agreed to work in cooperation to develop sustainable management indicators in response to the 

Rio Forest Principals initiated by the United Nations Conference on Environment and 

Development in 1992.  As the lead Federal agency for ensuring adherence to the Montreal 

Process, the USFS has co-developed and adopted these forest indicators and applied them to 

forest systems in the northeastern United States as part of their USDA Forest Service Strategic 

Plan (USFS 2000).  Key indicator metrics from the 2007 Montreal Process include: forest 

ecosystem diversity metrics (1.1) (e.g., ecosystem type, age class, size class, biomass, structure, 

stocking, ownership), species diversity (1.2), growing stock and incremental growth (2.b), annual 

harvests as a percent of net growth (2.d), and net change in forest and wood products pools and 

fluxes (5.a and 5.b).    

These and other forest metrics were considered for the purpose of tracking and evaluating forest 

resources and sustainability.  Since the focus of this research is on the effect of timbering on 

forest biomass, it was important to evaluate sustainability in terms of the ability of the forest 

system to sustain future timber removals (i.e., annual harvests as a percent of net annual growth, 

changes in timbering intensity) and the impact of timber removals on AGBD and BF resources 

over time, including impacts to specific commercially important species (e.g., AGBD and BF 
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metrics for black cherry and red oak).  Thus, indicator metrics that measure these aspects of 

sustainability were selected and defined as ―forest ecosystem indicator metrics‖ for use in this 

research, including: distribution of forest stand AGBD, distribution of tree biomass by size class, 

the ratio of AGB harvested to net growth in AGB, net annual change in ABGD and BF pools 

(including black cherry and red oak), and frequency and intensity of timber disturbances across 

forest stands in the state.             

With respect to forest system recovery metrics, Brown et al. (1997) conducted research on the 

distribution of AGBD and old growth forest metrics for the eastern United States deciduous forest 

systems (Brown et al. 1997). This research tested and validated methods for categorizing eastern 

deciduous forest stands as to their recovery stage based on AGBD and large tree metrics (portion 

of AGBD in large trees > 70 cm) and several studies of old growth forest conditions. Using 

metrics presented in Brown et al. (1997), forest stands dominated by larger commercial 

sawtimber (majority of AGBD in sawtimber trees with DBH >11‖, with AGBD > 15,000 g/m
2
) 

were considered to be in an advanced stage of recovery, while forest stands dominated by 

poletimber (majority of AGBD in trees with DBH between 5‖ to 11‖ DBH, which are not 

commercially used as sawtimber) were classified as young secondary growth stands (Brown et al. 

1997).  Forest stands classified as being in advanced stages of recovery generally had AGBD 

above 15,000 g/m
2
 or higher, while young secondary growth stands had AGBD between 5,000 

and 15,000 g/m
2
. Seedling/sapling stands (dominated by trees less than 5‖ DBH) had AGBD 

generally below 5,000 g/m
2
.  Old growth forests were defined as stands with AGBD over 25,000 

g/m
2
, and with over 30% of this biomass in trees that exceeded 70 cm DBH (Brown et al. 1997). 

These old growth forest metrics presented in Brown et al. (1997) were based on commensurate 
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hardwood forests of the eastern United States, and may not be representative of old growth 

conditions in other forest systems.   

These AGBD thresholds and large tree criteria for old growth forests were used to classify and 

track West Virginia forest stand recovery for each timber and market scenario from 2000 to 2050. 

Although old growth forests can be characterized by additional stand metrics (e.g., distribution of 

biomass among different tree age cohorts, indicating regeneration potential), for this state-level 

study, the classification criteria follows definitions provided in Brown et al. (1997), which 

provides a reasonable indicator of forest stand recovery in the northeastern United States. 

Additional analysis of tree size cohorts was also conducted for advanced recovery and old growth 

stands, to assess the distribution and change of forest stand structure across the state from 2000 to 

2050.  

In consideration of competing goals and interests for forest management, the USFS and USFWS 

have moved to restore more forest habitat to conditions that more closely resemble mature forest 

stands, with greater stand complexity, and old growth characteristics that favor forest species that 

once thrived in pre-colonial, old growth forest systems.  The USFS and USFWS have selected a 

small number of species of interest for the purpose of developing detailed indicator metrics for 

specific forest ecosystems across the country as part of the national forest sustainability initiative 

(USFS 2000).  In addition to the temperate forest sustainability measures discussed in the 

paragraph above, the USFS is developing detailed forest sustainability metrics, prescriptions, 

management recommendations, and indicator metrics for the northeast temperate forest system 

based on the habitat requirements of their selected indicator species.  For mature deciduous 

forests found throughout West Virginia, as well as in many states in the northeast, the USFS 

selected the cerulean warbler (Dendroica ceruleaas) (CERW) as a key management indicator 
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species (MIS) on which to base the development of detailed forest sustainable metrics (USFS 

2000).  The USFS selected the CERW due to its dependence on mature intact temperate forests, 

vulnerability, loss of habitat, declining population, and species of concern listing status.  As such, 

forest indicator metrics that directly benefit CERW recovery are being researched and integrated 

into regional forest management plans in the northeast by Federal agencies.  

The USFS believes that restoring forest habitat conditions for MIS will benefit most forest 

species that prefer intact, mature forests and help restore the entire system (USFS 2000). Thus, 

the approach is not focused on benefiting a single species, but rather a group of species that have 

been most adversely impacted by post-colonial anthropogenic activity within the eastern 

deciduous forest ecosystem. In many cases, the loss of the original habitat has resulted in serious 

population declines for forest species that were found in these locations, including CERW (a 

listed SOC).  Therefore, certain adverse impacts that would occur from the MIS management 

approach are considered reasonable trade-offs that seek to restore habitats to a condition that 

more closely resembles their natural pre-colonial settlement state.  To that end, CERW habitat 

requirements that favor restoration of fully mature forest systems, with a much greater percentage 

of forest biomass in larger trees would support that goal.  

Although enhancement of forest recovery metrics defined above may indicate a higher percentage 

of forest stands in advanced stages of recovery, this does not necessarily indicate that biodiversity 

and resilience to disturbance regimes are improved. As discussed later, higher biomass may 

actually increase a forest stands vulnerability to disturbance regimes. Changes in forest systems, 

even to more natural pristine conditions, will result in both positive and negative effects to forest 

species depending on their unique habitat requirements, which will either be enhanced or 

diminished through landscape manipulation.  Ultimately such a strategy, may reduce habitat 
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diversity across the landscape, and reduce habitat that may be more favorable to other species that 

do not prefer mature, intact forest systems. Such a strategy may ultimately lower certain metrics 

of biodiversity as measured by the number of species inhabiting the landscape per unit area, as 

well as potential vulnerability of the system to certain disturbance regimes. The preferred strategy 

for forest management would ultimately depend on the priorities and value system of 

policymakers, to either restore habitat that is threatened and lost, or maintain greater habitat 

variability across the landscape for a greater variety of species. Establishing such goals is 

principally a question of personal value and policy, rather than a scientific question. For this 

assessment, management approaches and policies that seek to restore habitat most severely 

impacted by anthropogenic activities over the past two centuries (i.e., loss of mature, old growth 

forests) and to restore conditions to more closely resemble their natural state, was selected as the 

preferred approach for this project from a conservation standpoint.                  

As it pertains to this research, key forest habitat indicator metrics that could be measured from the 

FIA data that relate to the habitat preferences of CERW and other species that prefer mature 

forest systems include:  increased percentage of forest biomass in the larger trees, stand diversity 

(range of tree size classes), and increased percentage of stands in advanced stages of recovery (as 

defined above) (Buehler et al. 2007, Brown et al. 1997, Register and Islam 2008, USFWS 2009, 

Wood et al. 2005). In addition, research has shown that low intensity timbering events that 

slightly opened up the canopy (e.g., thinning, select tree cuts) had higher CERW population 

densities than untreated plots (Buehler et al. 2007, USFWS 2009). Therefore, low intensity select 

cuts that remove a smaller volume of trees with varying age class, while preserving the largest 

stand trees, may provide the best habitat for CERWs, and also allow for low intensity sustainable 

timber harvests.  Also, population studies have been done that indicate that plots with high 
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biomass to tree count ratios (indicating a higher percentage of biomass in larger trees) provide 

better habitat than plots with larger numbers of smaller trees (regardless of biomass) (USFWS 

2009). To address these factors, the distribution of biomass in different tree size classes will be 

tracked.  Overall, specific metrics that will be evaluated in this study that relate to improving 

habitat for CERWs and other species that prefer mature forest systems, consist of:  increased 

percentage of forest stands in advanced stages of recovery and old growth status (Brown et al 

1997); increased percentage of biomass in larger tree size classes; and distribution of biomass in a 

range of tree size classes.  

In summary, the specific forest ecosystem indicator metrics to be evaluated as part of this 

dissertation for evaluating timber resources, forest sustainability, and forest ecosystem habitat 

restoration for MIS, include:   

 Annual distribution of forest stand AGBD over time to 2050; 

 Annual percentage of forest plots that are classified as advanced recovery plots or old 

growth forests over time to 2050; 

 Distribution of the percent of stand AGBD classes in 2000 versus 2050;  

 Distribution of stand classifications (i.e., seedling/sapling stands, young secondary 

growth stands, advanced recovery stands, or old growth stands) across West Virginia in 

2000 versus 2050;  

 Net annual change in ABGD and BF pools to 2050; 
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 Annual ratio of AGB harvested to net growth in AGB to 2050; 

 Annual change in red oak and black cherry biomass over time to 2050;   

 Distribution of tree biomass by size classes in 2000 versus 2050;  

 Percent of stand AGB in large trees (>70 cm DBH) over time to 2050; and 

 Annual frequency and intensity of timber disturbances across forest stands in the state 

(annual frequency of low intensity [<= 30%] and higher intensity removals [>= 30%]) to 

2050. 

During the CFM model simulation, forest ecosystem indicator metrics were derived for each plot 

and up-scaled to estimate state-level impacts for each year using expansion factors provided in 

FIA.  These metrics were estimated for average plot conditions and for West Virginia for each 

scenario. The metrics for status quo conditions and sustainable forest management scenarios were 

then plotted over time.  

6.2.4 Timber Market Scenarios 

To simulate timbering activity to 2050 using CFM, it is necessary to estimate how stumpage 

prices will change over time. The USDA/USFS conducted a detailed economic study and analysis 

of timber stumpage prices from 1950 to 2050 and forecasted the timber price changes in the 

northeast for hardwoods (USDA 2003).  Due to increased availability of hardwoods to 2050 (due 

to continued re-growth of these forests above removal rates, as seen in West Virginia), timber 

prices are not expected to increase significantly to 2050. USDA/USFS utilized an integrated 
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economic forecasting model (TAMN/NAPAP/ATLAS [USDA 2003]) to simulate prices and 

timber markets from 2000 to 2050 in consideration of national and international market forces, 

regional timber product prices, and timber production supply. The results of this modeling effort 

indicated that timber stumpage prices are expected to only increase at an average annual rate of 

0.24% (with inflationary effects removed) to 2050 for the northeastern hardwoods market (USDA 

2003).  

A statistical  analysis of West Virginia stumpage prices as surveyed and tracked by the AHC 

indicated that West Virginia prices are highly correlated (r = 0.92) with U.S. hardwood prices. 

Therefore, the national and regional results obtained from the USDA/FS model are reasonable 

measures of how average timber prices will likely change in the future to 2050 in West Virginia.   

To evaluate the uncertainty and variability in timber prices, a trends analysis was conducted on 

average state prices in West Virginia by species group over the past 20 years from 1989 to 2009.  

The results of this analysis indicated that average West Virginia prices increased at a rate of 

approximately 1% annually (with inflationary effects removed). Although this rate of increase is 

comparable to the national average, USDA/FS model results indicate that such a rate of increase 

will not be sustained to 2050.  Rather, prices would only increase at an average annual rate of 

0.24% from 2000 to 2050, as previously discussed. The USDA/FS model results are supported by 

more recent trends since 2000, which have shown significant declines in West Virginia stumpage 

prices due in part to the economy, imports, and reduced demand for woods with highly visible 

grains such as red oak, which is one of the primary wood products of West Virginia.  It is 

possible that decreased demand for red oak could change in the future, as grain preference could 

be a transient preference. In any event, stumpage prices have dropped by approximately 25% 

from 2000 to 2009.  Thus, the significant growth in timber prices and production that occurred 
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from 1989 to 2000 is unlikely to continue to 2050, as evident by the recent downturn in the 

timber market after 2000, which is in keeping with the USDA/USFS model results.  Therefore, a 

1% increase in stumpage prices is considered a reasonable upper-bound market scenario for the 

purposes of model simulation, which is defined as the high timber market scenario.  The 0.24% 

increase in stumpage prices, which the USDA/USFS projects as the most likely long-term change 

in hardwood prices in the northeast to 2050 was defined as the most-likely timber market 

scenario.  

The trends analysis also revealed that there were significant fluctuations in timber prices from 

year to year, with particular cyclical patterns that were evident in long-term changes in U.S. 

prices from the 1950s to the present. An analysis of West Virginia market fluctuations from 1989 

to 2009 were used to develop market cycle probabilities and durations, as well as species-specific 

variations around that average market cycle to simulate reasonable fluctuations in prices that 

replicated patterns over the past two decades (see specific results presented in Table 6-4). For this 

analysis, a distribution of the amplitude and period of market cycles (averages and standard 

deviations) around the overall average long-term trend were derived over the past two decades.  

These statistics were used in a Monte Carlo simulation to estimate similar fluctuation patterns 

around the average mean price trend, which was based on national/international market price 

projections for northeast hardwoods (TAMN/NAPAP/ATLAS integrated timber market and price 

model) (USDA 2003).  The Monte Carlo analysis was designed to allow prices to fluctuate, but to 

ensure that the long-term average price increase would be maintained over the 2000 to 2050 time 

period for each model iteration.   

The trends analysis also indicated that there were definite patterns and shifts in prices for specific 

species groups. For example, even though average West Virginia market prices were increasing, 
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certain species increased at a much greater rate, e.g., black cherry and hard maple prices, while 

other species actually declined, e.g., red oak prices have significantly declined since 2000. Given 

the results presented in Section 4, these price trends will have a significant impact on tree 

selection and potential sustainability of micro-scale resources in a given year.  For example, 

significant increases in black cherry prices may increase removal rates, and black cherry 

availability and sustainability for both future timbering and ecosystem services across West 

Virginia. Therefore, to simulate price changes, species-specific prices were simulated, in 

consideration of species-specific trends, micro-scale market fluctuations, and long-term macro-

scale increases. The approach allowed for estimating individual species prices that demonstrated 

a collective long-term average increase commensurate with the overall timber market scenario 

under investigation (i.e., 0.24% or 1% increase), species specific growth trends (relative to other 

species), and micro-scale market trends (both national market fluctuations, and species specific 

variation around the national market trend).  The variability in prices and market fluctuations 

were built into multiple Monte Carlo simulations that allowed for the calculation of distribution 

bands for long-term projections of timbering, AGBD, and other forest ecosystem metric 

indicators.            

6.2.5 Sustainable Forestry Scenario Constraints 

The status quo and sustainable timbering scenarios were simulated using the same methods 

outlined in the previous sections with the exception that for the sustainable timbering scenario, 

specific limitations to timbering activity were artificially imposed on the system to test the impact 

of this change relative to status quo conditions. Specifically, the sustainable timbering scenario 

constrains timbering activities on selected plots with respect to the percent of forest biomass that 

can be removed, timber rotation cycles, and removal of the largest trees. As discussed in Section 
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6.2.3, these constraints are important for ensuring high quality habitat for MIS species (low 

intensity removals, e.g., < 30%), maintaining stand structure and diversity, mixed-age stands, and 

retention of biomass to support ecological services (Buehler et al. 2007, Brown et al. 1997, 

Register and Islam 2008, USFWS 2009, Wood et al. 2005).  Furthermore, these silviculture 

practices may conserve mature forest habitat and may enhance metrics indicative of old growth 

forest stand conditions, as previously defined.   

Based on an analysis of several sustainability research studies and MIS forest metrics discussed in 

Section 6.2.3, the following specific constraints were placed on timber removals to replicate a 

―sustainable forest management‖ approach to timber removals, as outlined below:   

 No more than 30% of the AGBD can be removed from a plot (Buehler et al. 2007, 

USFWS 2009); 

 Timber rotations cannot be less than 20 years (Register and Islam 2008); 

 The largest tree on a 0.1 ha area grid must be preserved (i.e., the largest tree on the FIA 

plot) (Buehler et al. 2007, Register and Islam 2008, Brown et al. 1997, USFWS 2009); 

and 

 Trees larger than 70 cm in diameter must be preserved (Brown et al. 1997).  

These measures will significantly constrain the amount of biomass and short-term economic 

return from a given forest stand that may have been timbered more extensively under status quo 

conditions (as the average biomass removal was over 60% under status quo timbering conditions, 

rather than under 30%). To make up for the loss in opportunity for removals from a given forest 

stand, it was assumed that timber firms will shift the unrealized portion of this timbering activity 

to additional lands in West Virginia in order to meet annual market demand for timber. In reality, 
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such a restriction may reduce timbering in state, with a portion of the timbering activity shifted 

out of state.  For example, adoption of ecological sustainable timbering practices on public lands 

over the past two decades has resulted in a shift of timber burden to private lands and Canada, 

according the former Assistant Director of Forest Management for USFS (MacCleery 1999), 

as per capita demand for forest products rose during this same period.  Since the purpose of this 

analysis is to demonstrate the potential effect of sustainable timbering practices, it was necessary 

to assume that there would not be any policy leakage or shifting of timber burden outside of the 

system.  Otherwise benefits realized from the sustainable timbering scenario may only be 

attributed to the scale of the analysis, due to shifting of timber burden outside of the system.  So 

to control for such leakage effects, it was assumed that the same total value of timber would be 

removed at the state level under the sustainable timbering scenario as was calculated for the status 

quo timbering scenario, in order to ensure that the differences that are seen are solely due to 

differences in silviculture practices, and stand and tree selection patterns.   

This requirement was achieved by monitoring total state timber removals for the sustainable 

timbering scenario and ensuring that the timber stand selection Monte Carlo analysis was 

repeated until simulated status quo statewide totals were achieved (i.e., plots were re-evaluated 

for selection using the same models previously discussed).  Essentially, this model algorithm 

simulated the potential shift in timber burden to more plots that may occur if removals on any 

plot were restricted to the point that timber firms could not extract timber volumes that the market 

would typically generate in that year (as measured by the status quo scenario at the state-level). 

Beyond these measures, all other aspects of the CFM model were the same for the status quo and 

sustainable timbering scenarios. The increased costs associated with removing timber from 

additional plots; however, was not factored into the model. Overall, the purpose of this simulation 
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is a first step in testing potential solutions that attempt to reconcile human and environmental 

problems, which consider both the direct and indirect consequences (positive and negative) of 

forest management decisions at multiple scales.  
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6.3 Results and Discussion 

6.3.1 Sensitivity Analysis 

The results of the sensitivity analysis are presented in Table 6-5.  Of the key variables that impact 

timber removals, tree stumpage price and positive growth rates had the most significant impact on 

CFM predictions of timber removals. When these variables were varied by +/- 25%, the average 

timber removal across West Virginia changed by +/- 16 to 21%.  Changes in tree regeneration 

rates had a negligible effect on removals within this 50 year simulation (as most regenerated trees 

were still too small for harvesting by 2050) , while other disturbance measures (i.e., plot level 

disturbance rates, tree mortality rates, and negative growth rates) had minor to moderate effects (2 

to 13%) on timber removal rates. Overall, the results indicate that the model’s estimation of 

timber removals appear to be most sensitive to changes in timber price and positive tree growth, 

followed by changes in plot-level disturbance rates.  

With respect to long-term predictions of AGBD, the model was most sensitive to changes in 

positive tree growth rates (+/- 9 to 11%), which was similar to the finding above. However, 

timber prices had far less impact on standing timber AGBD, as compared to timber removal rates, 

as might be expected.  Changes in disturbance rates, tree mortality rates, and tree regeneration 

rates also had an impact on standing timber AGBD. Overall, the results indicated that positive 

growth and landscape-scale disturbance regimes are the most important dynamics to be modeled 

accurately when estimating ABGD and ultimately carbon sequestration.   
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Table 6-5   CFM Sensitivity Analysis Results 

Parameter  

% Change Based on +/-25%       

Change in Parameter 

Average AGBD Removed by Timbering (g/m
2
) 

Regional Timber Prices -16% 19% 

Plot Level Disturbance Rates 12% -13% 

Tree Mortality Rates 5% -7% 

Tree Negative Growth Rates 2%  -3% 

Tree Positive Growth Rates -19% 21% 

Tree Regeneration negligible negligible 

Average Plot AGBD (g/m
2
) 

Regional Timber Prices 5% -5% 

Plot Level Timber Rates 6% -5% 

Plot Level Disturbance Rates 8% -6% 

Tree Mortality Rates 5% -4% 

Tree Negative Growth Rates negligible negligible 

Tree Positive Growth Rates -11% 9% 

Tree Regeneration Rates -4% 2% 

 

6.3.2 Timber Removal and Disturbance Metrics under Status Quo Timbering 

Under status quo timbering, annual removal of forest biomass is projected to nearly double from 

2.9 tg/year in 2000 to 5.4 tg/year by 2050 based on CFM model results (see Figure 6-2).  This 

projected increase in removals was mainly due to projected growth in forest biomass, rather than 

timber price changes (as discussed further in Section 6.3.3).  Timber removals were projected to 

increase in frequency and intensity as shown in Figures 6-2 and 6-3, which is consistent with the 

hypothesized trends shown in Table 6-1. The frequency of annual commercial timbering events 

for a forest stand increased from about 0.5% to 0.7%, which was due to an increase in forest stand 

value, resulting from continued growth of timber resources and to a lesser extent price.       
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Figure 6-2 Annual Statewide Harvest of AGB from West Virginia Forests (tg/yr) (smooth 

trend lines based on Monte Carlo analysis depicting typical and 95
th

 upper and lower 

bounds) 

 

 

 
 

 
Figure 6-3  Percent of Stands Commercially Harvested Annually (smooth trend lines based 

on Monte Carlo analysis depicting typical and 95
th

 upper and lower bounds) 
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As a measure of forest sustainability, forest removals consisted of only 33% of the annual net 

growth in forest resources in 2000, indicating that timbering events were removing far less 

biomass than was generated in a given year (as shown in Figure 6-4). However, due to increases 

in the amount of commercial BF volume and timber stumpage prices, as well as reduced annual 

growth rates (due to increased stand density), over 60% of the net growth will likely be removed 

annually by timbering in 2050. Furthermore, under higher timber market conditions, the 

percentage may exceed 100% of the net annual growing capacity of the forest system after 2040 

during certain years.  Note that this trend line in Figure 6-4 is influenced by annual fluctuations in 

the market and harvesting rates. Overall, these results indicate that the West Virginia forest 

system may be nearing its carrying capacity for timber removals by mid-century.  Under these 

market conditions, unsustainable removals of timber that exceed annual net growth beyond 2040 

would result in future declines in forest resources and ecosystem metrics, as well as creation of a 

carbon source (rather than a sink) in West Virginia after mid-century (as further discussed in 

Section 7).  

6.3.3 AGBD Metrics under Status Quo Timbering 

Trends in AGB growth in West Virginia are projected to continue to 2050 under the most-likely 

timber market scenario (Table 6-6), consistent with hypothesized trends presented in Table 6-1.  

AGB of West Virginia’s forests is projected to grow from just over 500 tg in 2000 to over 680 tg 

in 2050 (see Figure 6-5).  Similarly, the average AGBD on forest stands is projected to increase 

from 11,600 gC/m2 to over 15,000 gC/m2 (see Figure 6-6), which is above the threshold of forest 

stands that are considered in a state of advanced recovery (Brown et al. 1997). As shown in  
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Figure 6-4  Percent of Harvested AGBD to Net Annual Growth under Most-Likely 

and High Timber Market Conditions for the Status Quo Scenario 

 

 

 

 
Figure 6-5  Statewide Forest AGB (tg) (smooth trend lines based on Monte Carlo analysis 

depicting typical and 95
th

 upper and lower bounds) 
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Figure 6-6  Average Forest Stand AGBD (g/m

2
) (smooth trend lines based on Monte Carlo 

analysis depicting typical and 95
th

 upper and lower bounds) 

 

 
 

Table 6-6  Predicted Long-term Forest Ecosystem Indicator Metrics for the Status Quo 

and High Timber Market Scenario under Status Quo Timbering Conditions 

Forest Indicator Metrics 

Current 

Conditions 

(2000) 

Most Likely 

Timber Market 

Conditions in 2050   

High Timber 

Market Conditions 

in 2050 

State Forest AGB (tg) in 2050 511 688 658 

Average AGBD (g/m2) in 2050 11,600 15,700 15,000 
Average % of State Timber Harvest 

to Net Growth in AGB from 2040 to 

2050 
33% 61% 102% 

State Commercial Timber BF 

Volume (106 m3 BF) in 2050 
144 224 210 

State Forest AGB (tg) of Black 

Cherry and Red Oak AGB (tg) in 

2050 
BC: 16   RO: 42 BC: 19   RO: 50 BC: 17     RO: 44 

Average State Frequency of Low 

Intensity Timbering Events (< 30% 

AGBD removals) 
< 0.02% < 0.02% < 0.02% 

Average State Frequency of 

Medium/High Intensity Timbering 

Events (> 30% AGBD removals) 
0.5% 0.7% 0.8% 

% of Biomass in Large Trees (>70 

cm) in 2050 
5% 12% 11% 

% of Advanced Recovery Plots 

(AGBD > 15,000 g/m2) in 2050 
28% 49% 45% 

% of Old Growth Plots (AGBD > 

25,000 g/m2, 30% of AGBD in 

Large Trees > 70 cm) in 2050 
0.7% 4.5% 3.6% 
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Figures 6-5 and 6-6, AGB and AGBD continue to increase to 2050, but the rate of annual 

increase decelerates to 2050.  This deceleration is due to increased timber removal rates, increases 

in landscape scale disturbances, and decreased annual growth rates. These, in turn, are all due in 

part to increased stand density, which represents a negative cross-scale feedback mechanism.  

The results of the simulation analysis indicated that landscape-scale disturbances are projected to 

increase by approximately 50% from 2000 to 2050, as forest stands continue to increase in 

biomass.  By 2050, approximately 1/4
th
 of the state forest acreage is projected to experience 

landscape scale disturbances (as opposed to 17% in 2000) due to increased forest stand density 

(resulting in increased competition), resulting in net negative growth, particularly for locations 

with higher forest biomass, lower annual precipitation, and greater slopes. Additional research is 

needed to better understand and predict these landscape disturbance events. If drought and other 

disturbance events increase in frequency, then the frequency and severity of these events could 

increase beyond the estimates projected using CFM.  

To better adapt to these disturbances, it may be possible to use monitoring and predictive tools to 

identify the locations that are most vulnerable to these disturbances and apply sustainable 

silviculture techniques to preempt these events, reduce stand vulnerability to these events, and 

shift timber production burden to locations that are likely to have mass tree mortalities. This 

approach would improve the overall health of the forest system across the entire state, in part 

because timber burden would be shifted away from healthy stands.  Similar concepts have been 

suggested for adapting to cyclical and large-scale disturbance events in forests of Canada 

(Bouchard et al. 2008, Cotillas et al. 2009, Powers et al. 2010). By mimicking larger-scale 

disturbance events, it may be possible to reduce the incidence and impact of climatic disturbance 

events on the West Virginia forest system, while increasing growth potential, accelerate recovery, 
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and increase the carrying capacity of the forests for timber production and improve ecological 

services relative to status quo conditions.  Further research is needed to study the potential merits 

of this type of forest management technique for adapting to climate and other disturbance 

regimes, in order to increase system carrying capacity and recovery potential of the entire system 

across the landscape. 

As shown in Figure 6-7, AGBD on forest stands in 2050 will significantly increase, with 

approximately half of the forests in a stage of advanced recovery, and approximately 16% of the 

forests achieving total AGBD commensurate with old-growth forests (i.e., > 25,000 g/m
2
). 

However, these plots lack the large percentage of biomass in very large trees (> 30% in trees > 

70cm); and therefore would not be classified as ―old growth forests‖ based on this definition. The 

percentage of AGB in larger trees (see Figures 6-8 and 6-9) would also significantly increase by 

2050, with over 10% of West Virginia forest AGB in the largest trees (> 70 cm). Furthermore, the 

percentage of forest stands that can be classified as old growth forests, as defined as having 

AGBD greater than 25,000 g/m
2
 and greater than 30% of forest AGBD in large trees (> 70 cm), 

will increase from 0.7% in 2000 to nearly 5% in 2050 under status quo timbering.   

As shown in Figures 6-8 and 6-9, the distribution of trees size classes in 2050 on advanced 

recovery and old growth forest stands indicates the potential for multiple size classes and 

developed understory, with a well developed large tree size class upper canopy.  The recovery of 

tree stands at the plot-level (Figure 6-7) and the tree size class distributions indicate significantly 

improved stand conditions, which will likely favor forest species (such as CERW) that rely on 

mature forests with well developed stand structure (Buehler et al. 2007, Brown et al. 1997, 

Register and Islam 2008, USFWS 2009, Wood et al. 2005). These results are consistent with the 

hypothesized trends of increased percentage of forest stands in advanced stages of recovery and 
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increases in stands classified as old growth forests (as shown in Table 6-6) for the status quo 

scenario.  However, forest biomass in large trees (>70 cm) was similar for both timber market 

scenarios. 

 
Figure 6-7  Distribution of Plot AGBD under Status Quo Timbering in 2000 and 2050 

 

 
Figure 6-8  Distribution of Tree Biomass by Tree Size Class for Advanced Recovery Stands 

under Status Quo Timbering in 2000 and 2050 
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Figure 6-9  Distribution of Tree Biomass by Tree Size Class for Old Growth Stands under 

Status Quo Timbering in 2000 and 2050 

 

With the West Virginia forests continuing to mature and grow, the value of this timber will 

significantly increase, as previously discussed.  If market growth conditions experienced over the 

past 20 years were to continue, resulting in a long-term average annual market increases in 

stumpage prices of 1%, then the projected increase in timbering activity would result in a leveling 

off and eventual decline in forest AGB after 2050, as shown in Figure 6-10. The increase in 

timbering intensity and frequency and reductions in statewide AGB, AGBD, and commercial 

timber volumes are consistent with hypothesized trends presented in Table 6-1 (and summarized 

in Table 6-6). The decrease in statewide AGB also reduced other biomass ecosystem indicator 
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growth forests (as shown in Table 6-6). 
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Figure 6-10  Statewide AGB (tg) under the Most-Likely and High Timber Market 

Scenarios (1% annual growth in timber prices) (smooth trend lines based on Monte Carlo 

analysis depicting typical and 95
th

 upper and lower bounds) 

 

6.3.4 Timber Resource Metrics under Status Quo Timbering 

Just as with AGBD, commercial timber resources (i.e., BF volume [m
3
]) in West Virginia are 

projected to continue to increase in the coming decades under most-likely market conditions, as 

shown in Table 6-6 and Figure 6-11, consistent with hypothesized trends presented in Table 6-1.  

Commercial timber volume is projected to grow from just over 140 million m
3
 in 2000 to over 

220 million m
3
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3
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3
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increase in timbering activity would result in long-term leveling off of commercial timber 

resources, which would eventually decline after 2050, as shown in Figure 6-12. This increased 

market pressure would ultimately result in declines in commercial BF available for future 

timbering, which would not be sustainable in the long-term. 

 
Figure 6-11  Statewide Commercial BF (International scale, million m

3
) under Status Quo 

Timbering (smooth trend lines based on Monte Carlo analysis depicting typical and 95
th

 

upper and lower bounds) 
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higher rate than other commercial species.  In addition, black cherry is significantly more 

valuable than all other commercial species (see Table 3-1 and Figure 4-2). In 2000, the stumpage 
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Figure 6-12  Statewide Commercial BF (International scale, million m

3
) under the Most-

Likely and High Timber Market Scenarios (1% annual growth in timber prices) (smooth 

trend lines based on Monte Carlo analysis) 

 

 
 

  

 
Figure 6-13  Red Oak and Black Cherry AGB under Status Quo Timbering Conditions 
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evaluate how market changes and timbering events may also impact the availability of black 

cherry for future timbering, along with red oak.  As shown in Figure 6-13, despite the increase in 

market prices, both black cherry and red oak biomass were projected to most-likely increase, 

albeit at a much slower rate, to 2050.  Although black cherry is highly sought after, the resilience 

of this species to increased timber pressure may be due in part to its higher relative growth rate. 

Even when the long-term average annual timber prices increased at higher rates, the long-term 

biomass levels of black cherry and red oak did not decline as compared to current conditions (see 

Table 6-6).  However, the relative percentage of black cherry biomass to other tree species did 

drop from 3.1% in 2000 to 2.5% in 2050, while red oak declined from 8.2% in 2000 to 6.7% in 

2050 relative to other tree species.  Thus, the relative decline in black cherry and red oak biomass 

to other tree species indicates a shift in species abundance at the stand level.         

6.3.5 Comparative Analysis of Status Quo and Sustainable Timbering Scenario Ecosystem 

Metrics 

A comparison of long-term forest ecosystem indicator metrics for the status quo timbering 

scenario and the sustainability timbering scenario are presented in Table 6-7. With respect to 

AGB, the sustainable timbering scenario enhanced forest biomass by approximately 5.4% over 

the status quo timbering scenario, which is consistent with hypothesized trends presented in Table 

6-2. This difference is fairly significant as this projected increase in biomass is approximately 

equal to over 10 years of statewide total timber removals conducted at current timber removal 

rates.  In addition, this sustainable timbering approach increased statewide carrying capacity for 

timbering, and enhanced long-term sustainability of the system. As shown in Figure 6-14, AGB 

growth appeared to continue at relatively the same pace through 2050 under the sustainability 

scenario, while net annual growth began to clearly decelerate at a higher rate under the status quo 
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timbering scenario. Similar results were found for trends in commercial timber volume (m
3
) to 

2050, as shown in Figure 6-15. In fact, the increase in commercial timber volume for the 

sustainable timbering scenario resulted in a net increase in economic value of standing timber in 

West Virginia forests of $0.8B in 2050, above the value under status quo conditions, even though 

the value of timber removed was the same for both scenarios. 

 

 

Table 6-7  Predicted Long-term Forest Ecosystem Indicator Metrics for the Status Quo and 

Sustainable Timbering Scenarios 

Forest Indicator Metrics 

Current 

Conditions 

(2000) 

Status Quo 

Timbering   

Sustainable 

Timbering  

State Forest AGB (tg) in 2050 511 688 724 

Average AGBD (g/m
2
) in 2050 11,600 15,700 16,500 

Average % of State Timber Harvest to Net 

Growth in AGB from 2040 to 2050 
33% 61% 56% 

State Commercial Timber BF Volume (10
9
  BF) 

in 2050 
144 224 239 

State Forest AGB (tg) of Black Cherry and Red 

Oak AGB (tg) in 2050 
BC: 16   RO: 42 BC: 19   RO: 50 

BC: 20   

RO: 48 

Average State Frequency of Low Intensity 

Timbering Events (< 30% AGBD removals) 
< 0.02% < 0.02% 2.0% 

Average State Frequency of Medium/High 

Intensity Timbering Events (> 30% AGBD 

removals) 

0.5% 0.7% 0% 

% of Biomass in Large Trees (>70 cm) in 2050 5% 12% 12% 

% of Advanced Recovery Plots (AGBD > 15,000 

g/m
2
) in 2050 

28% 49% 56% 

% of Old Growth Plots (AGBD > 25,000 g/m
2
, 

30% of AGBD in Large Trees > 70 cm) in 2050 
0.7% 4.5% 2.9% 
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Figure 6-14  Statewide Forest AGB for the Status Quo and Sustainable Timbering 

Scenarios 

 

 
Figure 6-15  Statewide Commercial BF Resources for the Status Quo and Sustainable 

Timbering Scenarios (million m
3
) 
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Although the total value of timber being extracted from the state is the same for both scenarios, 

the total AGB extracted is significantly lower for the sustainability scenario. Under this scenario, 

6% less biomass is removed statewide principally due to the manner in which trees and plots are 

selected across the state. Of the 30% of AGBD that firms may remove under the sustainability 

constraint, tree selection would be driven by economic value and as a result removals would be 

focused on the most valuable species that could be extracted from each plot. As a result, smaller 

less valuable trees and low value trees are left on the plot under the sustainability scenario, which 

reserves more of the 30% biomass restriction to higher value commercially important species. 

Another indirect effect of a sustainable timbering requirement is that timber firms are projected to 

remove a smaller amount of timber per unit area, but over a much larger area across the state. In 

fact, it was simulated that twice the area of forestland would be timbered under the sustainability 

scenario, albeit at a significantly reduced intensity, than under the status quo timbering scenario. 

As timber firms will access more land for removal events, they will be able to select from a larger 

number of trees on which to conduct removals. Essentially, the logistic regression models derived 

for stand and tree selection are ―cherry picking‖ algorithms that select the best stands and trees 

for removal. By restraining removals on individual forest stands, firms applied their cherry 

picking selection criteria to a much larger area, which has the indirect effect of enhancing the 

average value of volume removed.  As such, timbering firms may select from a much greater 

sample of forest stands and remove much more valuable timber, such as red oak and black cherry 

that they find on twice the number of stands timbered each year.  This would indirectly cause 

greater timber pressure on higher value stands and species, like red oak and black cherry.  

Sustainable timbering was also shown to enhance long-term forest biomass and net annual growth 

rates across the state, which was a significant finding.  Overall, the statewide average annual net 
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growth rate for all forest stands under the sustainable timbering scenario was 50% higher than for 

the status quo timbering scenario in 2050. This significant difference in net annual growth rate in 

2050 across the state was due to several processes, including:  the effect of low intensity removals 

and thinning on more mature stands (where growth was decelerating), which increased stand 

growth relative to status quo conditions; elimination of medium and high intensity timber 

pressure (including clear cuts) on recovering stands; longer rotation cycles that allowed stands to 

recover; and reduced biomass removals due to the extraction of higher value timber across more 

stands (i.e., cherry picking effect across more acreage of forest stands), as previously discussed.  

Therefore, the sustainable timbering scenario provided an opportunity for the entire system to 

more fully recover, while at the same time producing the same value of timber for the entire state.  

Although access to individual trees may result in some collateral damage to less desirable trees, 

studies have shown that sustainable timbering and low intensity removals (< 30%) are feasible 

(FAO 2001) and have limited impact on CERW (Buehler et al. 2007, USFWS 2009). For 

example, extensive research has been done on the benefits of low impact or reduced impact 

logging (RIL) (FAO 2001, Putz et al. 2008), which has indicated that significant increases in 

forests yields can be achieved while maintaining carrying capacity, including reduced collateral 

damage from timbering. Reduced impacts can be achieved through several improved silviculture 

practices, which include carefully planning tree selection and removals, and utilizing smaller-

scale extraction techniques to surgically remove the selected trees to minimize stand damage. 

Some studies indicate that RIL increase operational costs, while other research has shown lower 

operational costs to timber firms over conventional logging practices.  The reduced costs were 

achieved in part from lower operational and equipment costs, and lower infrastructure (e.g., 

roads) and maintenance costs (FAO 2001, Putz et al. 2008).        
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With the 20 year rotation cycle restriction for the sustainable timbering scenario, timber firms 

would need to seek out additional areas for timbering.  Over the long-term, CFM model predicts 

that the sustainability scenario would result in timbering about 40% of all forestland across the 

state within a 20 year rotational cycle (on average from 2000 to 2050) in order to meet most-

likely timber market demand, while only about 15% of the forestland would be timbered within 

the same 20 year period under the status quo timbering scenario. From 2000 to 2050, CFM 

predicted that the sustainability scenario would result in timbering on approximately 60% of 

forestland across the state, while only about 30% of the forestland would be timbered within this 

same period under the status quo timbering scenario. Within the 20 year rotation cycle restriction, 

it is uncertain whether timber firms would be able to gain access to over 40% of forestland across 

West Virginia to conduct low intensity removals as this frequency is more than double current 

conditions. Furthermore, nearly 80% of the forestlands are privately held and over 70% of those 

lands are owned by NIPFs, who may not be willing to participate in a sustainable forest 

management effort. Some surveys of NIPFs have been conducted to determine their willingness 

to allow timbering on their lands, although not specifically regarding long-term participation in a 

sustainable forest management program. NWOS, conducted by USFS, indicates that 19% of 

NIPFs in West Virginia would be willing to sell commercial timber on their lands in the next five 

years (USFS 2009b). In another survey, researchers demonstrated that 24% of NIPFs in one 

county in West Virginia would also be willing to enter into long-term timbering contracts (McGill 

et al. 2008).  Therefore, there is evidence to suggest a large-scale sustainable forest management 

policy would be plausible.     

Figures 6-16 through 6-21 compare stand and tree-level distribution metrics for the sustainability 

and status quo timbering scenarios. With respect to AGB distributions across the state, the 

sustainable timbering scenario enhanced the conservation of long-term forest stand recovery 
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metrics in 2050 over the status quo timbering scenario, which was consistent with hypothesized 

trends (see Tables 6-2 and 6-7), as shown in Figure 6-16.  By 2050, a higher percentage (56%) of 

forest stands was classified as being in an advanced recovery stage under the sustainable 

timbering scenario, as compared to the status quo scenario (49%).     

 

 
Figure 6-16  Distribution of Forest Stand AGBD across West Virginia in 2050 for the 

Status Quo and Sustainable Timbering Scenarios 
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Figure 6-17  Percent of Forest Stands Exhibiting Old Growth Characteristics 

 

 

 
Figure 6-18  Distribution of Tree Biomass by Size Class across West Virginia in 2050 for 

the Status Quo and Sustainable Timbering Scenarios 
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Figure 6-19  Distribution of Tree Biomass by Size Classes for Advanced Recovery Stands 

under Status Quo and Sustainable Timbering Scenarios in 2050 

 

 

 

 

 

 

 
Figure 6-20  Distribution of Tree Biomass by Size Classes for Old Growth Stands under 

Status Quo and Sustainable Timbering Scenarios in 2050 
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Figure 6-21  Red Oak and Black Cherry AGB under Status Quo and Sustainable 

Timbering 

 

 

Although most aspects of sustainability and recovery were enhanced under the sustainability 

scenario, there were certain forest ecosystem indicator metrics that were actually more improved 

or similar under the status quo scenario at the landscape scale. Although it is clear that a low 

intensity sustainable timber removal would improve forest stand metrics as opposed to an 

unsustainable timber removal (e.g., 80% removal of all timber) on the same plot (plot-scale), 

differences are seen when comparing the benefits and effects at the landscape scale, as outlined 

below: 

 Under the sustainability scenario the frequency of timber removal events doubled as 

compared to the status quo scenario, due to the shift in timber burden. 
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 The status quo scenario yielded a higher percentage of stands that would achieve ―old 

growth forests‖ conditions. The status quo scenario yielded 4.5% of plots classified as old 

growth forests versus 2.9% for the sustainability scenario, as shown in Figure 6-17. 

Similarly, the status quo scenario generated a higher percentage (16%) of acreage across 

the state with AGBD above 25,000 g/m
2 
(see Figure 6-16) (commensurate with old 

growth forests, but many lacking higher biomass in large trees above 70 cm) as compared 

to the sustainability scenario (11%). These results were due to a higher frequency of 

timbering (albeit at a lower intensity level) on plots with higher biomass under the 

sustainability scenario, resulting in fewer plots achieving the highest biomass levels.  

 The status quo scenario yielded a similar percentage of biomass in trees greater than 70 

cm across the state (12% for both scenarios) (see Figure 6-18). Although there was a 

restriction to preserve trees greater than 70 cm under the sustainability scenario, the 

increased ―cherry picking‖ effect on twice the acreage being timbered across the state 

resulted in timbering of more valuable large trees that were just below 70 cm (and 

therefore would not grow into future trees above 70 cm).   Thus, there was little 

difference in the conservation of large trees between both scenarios (see Table 6-7 and 

Figures 6-19 and 6-20).   

For the status quo scenario, the same economic drivers were generating stand and tree selection, 

but the lower acreage of forest resources being timbered each year, and the ability to re-timber 

plots, allowed many high value trees and plots to go untouched and/or unnoticed under the status 

quo scenario.  Although higher value plots and trees are more likely to be timbered in a given 

year, the logistic regression models for stand and tree selection (used for both timbering 

scenarios) do not select the highest valued plots and trees for timbering in any given year, rather it 

simply increases their probability of selection. As discussed in Section 4, the results of the 
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statistical analysis indicated that some of the variability in plot and tree selection for timbering 

events could not be explained by economic and other variables. For example, in any given year, 

many of the highest valued forest stands and the highest valued trees are not selected for removal. 

Thus, there appears to be other factors that prevent purely profit-based decision-making for 

ranking and selecting stands and trees, which allows some high valued plots to go untouched or 

unnoticed for a half century. These factors may include imperfect knowledge of timber resources 

across the state (due to lack of access and surveys on private property), inability for timber firms 

to obtain timbering contracts on more valuable forest stands due to private ownership controls, 

physical access limitations, and/or self imposed sustainable timbering procedures.        

As a result of the processes occurring at multiple scales, i.e., the net timbering effects at a forest 

stand scale versus net effects at the landscape scale, sustainable and status quo timbering 

scenarios appear to create very different forest habit quality distributions across the landscape. In 

very general terms, status quo timbering tends to create greater differences and polarization of 

habitat quality across the state, including increased habitat fragmentation due to some clear 

cutting and large scale removals (although specific spatial fragmentation metrics were not tracked 

in this study). For example, higher intensity removals create significant disturbances to individual 

forest stands, but at a larger landscape scale there are unintended, indirect effects in that certain 

plots may remain undisturbed for a greater period of time. On the other hand, the sustainable 

timbering scenario created more of an averaging effect that reduced the polarization of habitat 

quality across the landscape, which also reduced the occurrence of the extremes of habitat quality 

across a landscape (i.e., reducing both the lowest and highest quality stands across the state). This 

would reduce overall habitat variability across the state, but also an increase in the percentage of 

stands in advanced stages of recovery (approximately 7% more than status quo by 2050) (see 

Table 6-7).  With respect to the distribution of tree size classes on advanced recovery stands and 
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old growth stands, little difference was seen between the results of the status quo and sustainable 

timbering scenarios (as shown in Figures 6-19 and 20) at the state scale. Thus, the results were 

mixed between the two scenarios relative to the forest indicator metrics tested at the state scale.   

At the plot-level, sustainable timbering generates many benefits to a forest stand in that less 

biomass would be removed, large trees would be preserved, and the stand could recover over a 

longer rotational cycle. At the state-level, sustainable timbering significantly increased the growth 

potential of forest system, increased the carrying capacity for future timbering, and significantly 

increased the acreage of forests that will reach an advanced stage of recovery by 2050.  On the 

other hand, the sustainable timbering scenario was less effective at creating old growth forest 

stands and conserving large-trees important for re-establishing old growth forests, even when a 

specific policy was imposed on the system to create such habitat.  Certainly, more plots achieved 

higher biomass under the sustainable timbering scenario, but there were some positive and 

negative, indirect and unintended consequences of both status quo and sustainable timbering that 

were only seen when evaluating conditions at the landscape scale. As such, the results underscore 

the importance of addressing both the positive and negative implications of forest management 

policy at multiple scales for the entire system.        
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6.4 Conclusions 

AGB and AGBD are projected to continue to grow from just over 500 tg in 2000 to over 680 tg in 

2050, with nearly half of the state acreage being classified as being in advanced stages of 

recovery by 2050 (> 15,000 gC/m2). Although, biomass will continue to increase to 2050, the 

rate of annual increase decelerates.  This deceleration is due to a projected doubling of the timber 

removal rates toward mid-century, increases in landscape scale disturbances, and decelerating net 

annual growth rates, which are all due in part to increases in stand density.  

The results of the logistic regression analysis indicated that landscape-scale disturbances are 

projected to increase by approximately 50% from 2000 to 2050, as forest stands continue to 

increase in biomass.  By 2050, approximately 1/4
th
 of the state forest acreage is projected to 

experience landscape scale disturbances (as opposed to 17% in 2000), resulting in net negative 

growth, particularly for locations with higher forest biomass, lower annual precipitation, and 

greater slopes. 

Overall, the results of this study indicated that under status quo timbering and most-likely timber 

market conditions, forest ecosystem indicator metrics and forest stand recovery will continue to 

improve to 2050. However, if timber prices increase as they did in the past two decades (~1% / 

year), then forest ecosystem indicator metrics and forest stand recovery will level off and begin to 

decline by mid-century.  Sustainable timbering techniques enhanced certain forest ecosystem 

indicator metrics, particularly AGB (increased by 5%), the percentage of forest stands that 

achieve an advanced recovery stage across the state, and the economic value of standing timber 

($0.8B in 2050).  However, it had little effect on large tree conservation at the landscape scale, 

statewide tree stand structure diversity, and achievement of old growth forest conditions at the 
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landscape scale. The doubling of low intensity timbering events across the state under the 

sustainable timbering scenario reduced the number of forest stands predicted to achieve very high 

AGBD exceeding 25,000 g/m
2
 and AGB in the largest trees (> 70 cm) at the landscape scale.  

Although the frequency of timbering events increased under the sustainable timbering scenario, it 

does not follow that the cumulative effect of more low intensity timber removals is greater than 

lower frequency, high intensity removals. On the contrary, studies have shown that timber 

removals less than 30% have enhanced habitat for certain species (e.g., the cerulean warbler, 

which is the MIS for northeastern forests systems [USFS 2000]). In any event, the results of this 

study point to one of many trade-offs that should be considered in the development of state-level 

sustainable forestry plans and finer-scale plans.  In addition, this study demonstrates the 

importance of modeling anthropogenic and natural disturbance agents at multiple scales, in order 

to evaluate conservation habitat scenarios and strategies.  Further research would be required 

using participatory methods (Parker et al. 2003, Bousquet and Le Page 2004) and targeted 

surveys to determine whether sufficient landowners would be willing to participate in a 

sustainable forestry management program that would involve low intensity removals. Such 

participatory modeling techniques are also recommended for properly modeling, designing, and 

testing the acceptance and potential success of such a program if it were to be considered. 
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7. Long-Term Effects of Timbering on Carbon Sequestration 

using an Integrated, Multi-Scale Model 
 

 

 

7.1 Introduction 

Over the past century, forest resources in West Virginia have continued to significantly increase 

in carbon content, acting as a sink to offset West Virginia anthropogenic carbon emissions. 

Natural growth and regeneration of forest stocks in West Virginia are estimated to have resulted 

in an average annual carbon flux of 13.1 teragrams (tg) CO2 eq/year from 1989 to 2000 (USFS 

2010a), which factors in the total annual loss in forest biomass from timbering and land use 

conversions and growth from all live growing stock trees. It is uncertain how future timbering 

will impact continued carbon sequestration and whether West Virginia’s forests will continue to 

act as a sink or potentially a source throughout this century.  Towards the end of the 20
th
 century 

the restoration of forest resources in the state, along with increased timber market prices, gave 

rise to significantly higher timber removals. Using CFM, this portion of the study evaluates the 

long-term implication of timbering on carbon sequestration for two timbering scenarios under 

varying timber market conditions from 2000 to 2050.  

Using forest systems as carbon sinks has been put forward as one of many viable policy solutions 

for mitigating climate change and achieving carbon sequestration goals (USFS 2006). Economic 

research conducted by the Pew Research Center finds that forest-based carbon sinks are one 

viable approach for creating carbon credits (Stavins and Richards 2005).  
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In parallel to the consideration of climate change legislation, forest systems are simultaneously 

undergoing land use conversion, active forest management, natural and anthropogenic-related 

disturbances, as well as system-wide climate change. The cumulative effect of these forces can 

create synergistic and antagonistic effects, which can potentially eclipse the benefits gained 

through natural regeneration, as well as more costly certifiable carbon credits created through 

afforestation/reforestation projects and easements.  As such, it is important that a more holistic 

systems approach be used to evaluate the net cumulative effect of all the principal forest and 

carbon processes that occur in the entire system.   

The overall research question addressed by this portion of the study is:   What long-term effect 

will status quo and sustainable timbering scenarios, under varying timber market conditions, 

have on forest carbon sequestration in West Virginia?  Table 7-1 presents the specific 

hypothesized relationships between the timbering scenarios and market conditions on carbon 

sequestration. Based on current carbon sequestration rates and market conditions, it is 

hypothesized that West Virginia forests will continue to operate as a carbon sink through 2050, 

with a reduction in the carbon sink under the High Timber Market Scenario (1% annual increase 

in timber prices).  It is further hypothesized that sustainable timbering practices will increase 

carbon sequestration relative to status quo timbering practices under most-likely timber market 

conditions.  As these are inferred relationships, the null hypotheses that these scenarios have no 

impact on carbon sequestration were also evaluated. 

To address these hypotheses, the same timbering and market scenarios previously discussed in 

Section 6 were imposed on the system in order to assess changes in carbon sequestration. 

Estimates of carbon sequestration include not only the increase in aboveground portion of trees, 

but also estimates of carbon in various pools of above- and belowground biomass to include 
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carbon in soil, roots, litter, understory brush, saplings, standing deadwood, and down deadwood, 

and the wood products pool.  Available carbon models were added to CFM and the methods are 

discussed in Section 7.2.   

 

Table 7-1  Hypothesized Net Change in Carbon Sequestration for West Virginia Over Time 

Under Timbering and Market Condition Scenarios 

 

  

Timbering and Market Scenarios  

Carbon Sequestration 

Short-Term 

 

Long-Term 

(2050)  

Most-Likely Timber Market Conditions
 1
  +

  2
 +

  2
 

High Timber Market Conditions — 3 — 
3
 

Sustainable Timbering Practices
5
 + 

4
 + 

4
 

1 
Assuming status quo timbering practices 

2 
Relative to conditions in 2000 

3 
Relative to most-likely timber market conditions 

4 
Relative to status quo timbering practices 

5 
Assuming most-likely timber market conditions 
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7.2 Methods 

7.2.1 Modeling Approach 

The CFM model, discussed in detail in Section 6.2, was enhanced with several carbon models to 

simulate carbon dynamics at the tree-, plot-, and state-scale (see Section 4.1 and Figure 3-2, and 

Section 6.2.1 and Figure 6-1 for a description of the conceptual model). CFM was used to 

conduct future simulations of timbering events, forest growth, and carbon mass for each tree and 

plot on an annual time step from 2000 to 2050.  For each annual iteration, the model estimated 

endogenous variables discussed in Section 6.2, based on initial tree and plot conditions in 2000, 

which are based on FIA field sampling data and estimates (including estimates of DBH, volume, 

biomass, and carbon). Additional endogenous and exogenous variables added to CFM that pertain 

to carbon dynamics are presented in Table 7-2.  CFM was used to simulate carbon dynamics and 

fluxes at the tree-, plot-, and state-level for status quo timbering and sustainable timbering 

scenarios, under a range of timber price market conditions.  During the model simulation, carbon 

densities (gC/m
2
) were derived for each tree and plot, and up-scaled to estimate state-level carbon 

fluxes. USEPA published total carbon emissions for West Virginia (which includes estimates of 

anthropogenic point and mobile source emissions) were also compared to modeled carbon fluxes 

to determine the potential offsets associated with the forest sink in West Virginia (USEPA 2010). 

As discussed in Section 5.3.5 and 6.2.1, CFM estimated the total tree biomass (root, stump, 

central stem, tree tops) for each tree with a DBH > 5‖ on an annual time step.  For estimating 

carbon, the total tree biomass estimates were multiplied by the fraction of carbon mass in dry 

weight biomass of 0.5 (Smith et al. 2006, USEPA 2009, Aber and Federer 1992), which is the 
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Table 7-2   CFM Endogenous and Exogenous Variables 

Model Parameter Units Field Data Source/Derivation 

ENDOGENOUS VARIABLES 

State-Level Offset of 

State Carbon Emissions  

% Ratio of total annual flux in carbon for forestland divided 

by the total carbon emission for the state. 

State-Level Annual 

Carbon Sequestration 

Flux of State Forest Sink 

tg CO2 

eq/year 

Total annual flux in carbon per year. 

State-Level Carbon in 

Forestland 

tg CO2 

eq 

Derived by compiling carbon from plots and expansion 

factors to estimate state level carbon for all forestland. 

Plot-Level Carbon 

Density in Understory  

gC/m
2
 Derived using 8 forest type-specific regression models 

presented in USEPA (2009), based on total live large tree 

carbon density on the plot on an annual basis. 

Plot-Level Carbon 

Density in Standing Dead 

and Down Dead Trees  

gC/m
2
 Derived using 16 forest type-specific regression models 

presented in USEPA (2009), based on total live large tree 

carbon density on the plot on an annual basis. 

Plot-Level Carbon 

Density  

gC/m
2
 Derived by compiling carbon in trees [root, stump, stem, 

tree tops], soil carbon, litter, understory, saplings, down 

dead trees, and standing dead trees on an annual basis. 

Tree-Level Carbon (mt)  mt Derived using 11 species specific regression models 

discussed in Section 6 (Figure 6-1) that convert gross 

volume of the central stem for trees > 5‖ DBH to total tree 

mass using specifies specific data from FIA 2000. 

Regression models R
2
 ranged from 0.89 to 0.99.  

EXOGENOUS VARIABLES 

State-wide Carbon 

Emissions (All Sources) 

38.8 

tg/year 

West Virginia state emission estimate for 1999 (USEPA 

2010).  

State-wide Carbon 

Emission Growth Rate 

(All Sources) 

1% Annual CO2 emissions were assumed to grow at an annual 

rate of 1%/year, which is the estimated state gross domestic 

product (GDP) growth. To predict future emissions, the 

average growth in state GDP was applied to emissions in 

2005 as an indicator of anthropogenic growth. To be 

conservative, no discounts were applied for potential future 

conversion to energy efficient systems. 

http://www.epa.gov/climatechange/emissions/downloads/W

VInventorySummary_11-16b.pdf 

Plot-Level Forest Stand 

Forest Type 

Unitles

s  

FIA 2000 Plot Data (USFS 2010a).  Assumed to be 

unchanged through the model simulation to 2050 

Plot-Level Soil Carbon gC/m
2
 FIA 2000 Plot Data (USFS 2010a)  

Plot-Level Sapling 

Carbon Density 

gC/m
2
 FIA 2000 Plot Data (USFS 2010a)  

Tree-Level AGB and 

Tree Biomass in 2000 

kg FIA 2000 Plot Data (USFS 2010a) 

Tree-Level Species 

Category 

n/a FIA 2000 Plot Data (USFS 2010a).  Tree species categories 

are presented in Table 3-1.  

Tree-Level Portion of 

Biomass that is Carbon 

0.5 Smith et al. 2006, USEPA 2009  
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approach typically used by the USFS, USEPA, and internationally for estimating carbon based on 

biomass of the tree (IPCC 1997a).  Although no studies were found on the variability or error in 

the 0.5 conversion factor that would apply to the study area or region, it was confirmed that this 

same factor was applied in PnET for the wood carbon pool (while 0.45 was applied for estimating 

carbon in the fine roots and leaves), and by USFS and USEPA for estimating carbon in 

forestlands in West Virginia.  

Recently released USFS carbon data and regression models used for predicting regional and 

forest-type specific carbon pools for deadwood, soil, litter, and understory were incorporated into 

CFM for estimating carbon stocks in other carbon pools (USEPA 2009, USFS 2010a) (presented 

in Table 7-3). These models were developed by USFS to estimate carbon pools that are not 

already included in the FIA database.  Aboveground carbon in the tree tops, central stem, stumps, 

and roots for large trees is already provided in the FIA database for all trees located on study plots 

based on estimated biomass.  The total carbon in the live large tree pool was modeled for each 

tree on an annual time step using the models discussed in Section 6 and the 0.5 conversion factor.  

Carbon in down deadwood, standing deadwood, and understory were modeled annually as 

endogenous variables  by forest type for each forest stand in the CFM model using regression 

models developed by USFS and applied by USEPA for estimating regional carbon stocks for the 

United States (USEPA 2009) (see Table 7-3).     

For soil organic carbon, USFS estimates of SOC for the 1,500 FIA sampling plots in West 

Virginia were used in CFM for estimating carbon in this pool. This data were recently released as 

part of the Version 4 FIA database (USFS 2010a). The SOC estimates are based on geostatistical 

analysis of SOC field data collected from throughout the U.S. and compiled in the STATSGO  
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Table 7-3   Forest Carbon Pool Equations Developed by USFS (USEPA 2009, USFS 2010a) 

Forest Type Carbon Pool Equation
1
 

White, Red, 

Jackpine Group 

Understory (gC/m2) = ((Tree_Carbon) * e
(1 - 1.116 * ln(Tree_Carbon/100))

  

Standing Deadwood (gC/m2) = (2.841 * (Tree_Carbon/100)
0.134

)*100 

Down Deadwood (gC/m2) = 0.055 * Tree_Carbon 

Spruce, Fir Group 

 

Understory (gC/m2) = ((Tree_Carbon) * e
(0.825 - 1.21* ln(Tree_Carbon/100))

 

Standing Deadwood (gC/m2) = (5.89 * (Tree_Carbon/100)
0.191

)*100 

Down Deadwood (gC/m2) = 0.092 * Total Tree Carbon 

Oak, Pine Group 

 

Understory (gC/m2) = ((Tree_Carbon) * e
(2.149 - 1.268 * ln(Tree_Carbon/100))

  

Standing Deadwood (gC/m2) = (1.725 * (Tree_Carbon/100)
0.311

) * 100 

Down Deadwood (gC/m2) = 0.061 * Total Tree Carbon 

Oak, Hickory 

Group 

 

Understory (gC/m2) = ((Tree_Carbon) * e
(0.842 - 1.053* ln(Tree_Carbon/100))

 

Standing Deadwood (gC/m2) = (3.332 * (Tree_Carbon/100)
0.191

) * 100 

Down Deadwood (gC/m2) = 0.068 * Total Tree Carbon 

Elm, Ash,  

Cottonwood 

Group 

Understory (gC/m2) = ((Tree_Carbon) * e
(0.892 - 1.079* ln(Tree_Carbon/100))

  

Standing Deadwood (gC/m2) = (4.992 * (Tree_Carbon/100)
0.134

) * 100 

Down Deadwood (gC/m2) = 0.071 * Total Tree Carbon 

Maple, Beech, 

Birch Group 

 

Understory (gC/m2) = ((Tree_Carbon) * e
(0.892 - 1.079* ln(Tree_Carbon/100))

  

Standing Deadwood (gC/m2) = (3.041 * (Tree_Carbon/100)
0.306

) * 100 

Down Deadwood (gC/m2) = 0.071  * Total Tree Carbon 
1
 Tree_Carbon = Total tree carbon density for growing stock trees greater than 5‖ DBH (gC/m2) 

(which includes aboveground and belowground live carbon) 

 

database, with data gaps filled using comparable soil types. The USFS linked this data to the FIA 

databases based on location and forest type group (USEPA 2010). SOC estimated for each plot by 

USFS was exogenous to the model and was assumed to remain constant for each plot throughout 

the model duration and the potential effects of this assumption are discussed in Section 7.3. 

Although SOC may change over time, there was insufficient data to model SOC in West Virginia 

and how it would potentially change over time due to changes in AGBD.  These results were 

simply added to the plot level estimates in order to estimate stand- and state-level carbon pool 

density for forest resources for comparison purposes, as SOC is often included with AGBD for 

national reporting of carbon stocks (USEPA 2009, USDA 2008).  In these national reports, SOC 

was also assumed to remain constant within areas that remained forestlands, while the changes in 
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forest carbon stock were driven only by measured growth in tree volume and biomass (USEPA 

2009, USDA 2008), as assumed in CFM. The lack of soil carbon data was identified as an area of 

uncertainty in these national studies, which may significantly impact national and state-specific 

carbon budget estimates (USDA 2008).   

For saplings (non-growing stock trees < 5‖ DBH) and leaf litter, FIA data were used to estimate 

the total carbon content of all saplings and leaf litter on each of the plots in 2000. No statistical 

relationships were observed between sapling carbon pools and total AGBD, timbering history, or 

other site parameters; therefore, it was not practical to simulate saplings as an endogenous pool in 

the CFM model.  The sapling pool represents less than 5% of the carbon stocks of a plot; 

therefore, leaving the sapling pool as a site-specific measured exogenous variable (which remains 

constant) was considered reasonable for predicting total carbon density of plots. The litter pool is 

also relatively small; therefore, plot specific litter estimates reported for each plot by USFS were 

included as an exogenous variable in the model (USFS 2010a).   

With respect to the wood products pool, state-level estimates of current fluxes in this pool 

indicate that it is currently a sink and contributes less than 10% to the overall forest system sink 

for the state.  To properly address wood product pool dynamics in a given year, it is necessary to 

not only consider the fluxes associated with timber removals in a given year, but also the release 

of carbon in the same year for wood products harvested over the previous century and beyond, as 

well as the near-term lifecycle of wood products that were removed in that year (e.g., burning of 

waste products in the same year, burning of slash, fuel, etc.).  This is a significant historical 

research effort which has been done at the national level, with state-level wood product pools 

estimated based on a weighted average approach using historical state production estimates (i.e., a 

West Virginia specific wood products pool has not been modeled using the methodology applied 
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at the national level).  To replicate this national effort and methodology at the state level, and 

integrate these results with future projected production activity, would have required a great deal 

of effort.  Furthermore, the wood products pool for West Virginia is estimated to be less than 

10% of the total forest carbon pool annual flux.  Therefore, the effort necessary to only fine tune a 

very small part of the carbon cycle for the state, was not considered practical for this dissertation 

project, particularly given the focus of this project.  In any event, if long-term average removals 

continue to increase, as predicted (see Section 6), then it is possible that the wood products sink 

may continue to grow slightly in the future. However, the contribution of the wood products pool 

and this possible growth is relatively small (less than 10%) compared to the other carbon 

dynamics being modeled to estimate statewide fluxes, as previously discussed. Therefore, it was 

conservatively assumed that the current carbon flux in the wood products pool for West Virginia 

of 1.2 tg/year at the state-level would remain constant to 2050. Increases in future timber 

removals were assumed not to add to the overall size of the wood products pool sink to 2050.  

Since the status quo and sustainable timbering scenarios generate similar quantities of timber 

removed, this approach for addressing the wood products pool sink should not significantly 

change the comparative analysis of these scenarios. However, the total estimates of carbon 

sequestration may be underestimated using this approach, which could conceivably impact 

perceived outcomes with potential policy implications.               

7.2.2 Sensitivity and Uncertainty Analysis 

CFM underwent both a sensitivity analysis and uncertainty analysis using Monte Carlo 

simulation using the same methods discussed in Section 6.2.2.  The key metrics tested in this 

sensitivity analysis were the estimated total statewide sequestered carbon in 2050 (tg CO2 eq) and 

the average plot aboveground carbon density (gC/m
2
) in 2050.   
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7.3 Results and Discussion 

7.3.1 Sensitivity and Uncertainty Analysis 

An analysis was conducted to evaluate the sensitivity of the model estimates of carbon to changes 

in key input variables in CFM. For aboveground carbon density (gC/m
2
), the results are identical 

to those discussed previously in Section 6.3.2 for AGBD, because approximately half of the 

AGBD is carbon. For estimating statewide carbon pool estimates, the results of the sensitivity 

analysis are presented in Table 7-4. The impact of variable changes to statewide forest carbon 

estimates is lower than estimated change to AGBD (discussed in Section 6.3) because soil carbon, 

which makes up a large percentage of the forest carbon, was assumed to remain constant over 

time.     

Overall, changes in tree positive growth rates (+/- 25%) had the most significant impact on total 

statewide carbon predictions in 2050 (+/- 5 to 6%). Positive growth directly impacts carbon 

sequestration rates and was also the key driver in forest biomass estimates, as discussed in 

Section 6.3. Changes in landscape-scale disturbances also had a significant impact on carbon 

estimates (+/- 3 to 4%). These results support other studies, which indicate that large-scale 

disturbance regimes (e.g., extreme weather events including climate change, regional fire, pest 

infestation) are important dynamics that need to be evaluated when estimating annual carbon 

fluxes (USGCRP 2008). Timber removal rates, regional timber prices, tree mortality, and tree 

regeneration rates also had similar impacts on carbon estimates (+/- 1 to 3%), while negative tree 

growth rates had a negligible effect on carbon.        
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Table 7-4   CFM Carbon Prediction Sensitivity Analysis Results 

Parameter 

% Change Based on +/-25%       

Change in Parameter 

Average Plot Aboveground Carbon Density (gC/m
2
) in 2050 

Regional Timber Prices 5% -5% 

Plot Level Timber Rates 6% -5% 

Plot Level Disturbance Rates 8% -6% 

Tree Mortality Rates 5% -4% 

Tree Negative Growth Rates negligible negligible 

Tree Positive Growth Rates -11% 9% 

Tree Regeneration Rates -4% 2% 

Total Statewide Forest Carbon in 2050 (tg CO
2
eq) 

Regional Timber Prices 3% -3% 

Plot Level Timber Rates 3% -3% 

Plot Level Disturbance Rates 4% -3% 

Tree Mortality Rates 3% -2% 

Tree Negative Growth Rates negligible negligible 

Tree Positive Tree Growth Rates -6% 5% 

Tree Regeneration Rates -2% 1% 

 

7.3.2 Long-Term Timbering and Carbon Sequestration Dynamics 

Based on FIA, natural growth and recovery of forest stocks in West Virginia are estimated to 

have generated an average annual carbon flux of 13.1 tg CO2 eq/year from 1989 to 2000 (USFS 

2010a), which factors in the total annual loss in forest biomass from timbering and land use 

conversions and growth from all live growing stock trees greater than 5‖ DBH. The annual 

carbon flux in 2000 estimated using CFM is ten percent higher at 14.4 tg CO2 eq/year of 

sequestered carbon for the entire forest system, which includes not only growing stock trees but 

estimated growth in other carbon pools including understory, saplings, standing deadwood, and 

down deadwood.  The CFM estimates also include the most recent soil carbon data and carbon 

models used for estimating forest carbon pools (USFS 2010a, USEPA 2009), including models 
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that estimate increases in carbon pools for deadwood (standing and down), litter, and understory 

pools, which are derived from equations based on increases in live stock tree carbon density 

(USFS 2010a, USEPA 2009). Thus, the CFM results would be slightly higher than the total 

carbon flux estimated using the 2000 FIA data alone, which did not include fluxes from these 

smaller carbon pools.  Furthermore, the carbon flux estimated from FIA data of 13 tg CO2 eq/year 

is based on an average annual flux rate between a 12 year interval (1989 to 2000), which is not 

directly comparable to the CFM flux rate estimated for the last year, 2000. Since the forest system 

grew significantly between these time periods, the average annual flux rate estimated using FIA 

between 1989 and 2000 would be smaller than the flux that occurs in the very last year (2000), 

which also explains why the CFM model estimate is slightly higher.     

Overall, CFM estimates that carbon stocks in West Virginia forests are projected to continue to 

increase to 2050 under most-likely timber market conditions.  Carbon stocks are projected to 

grow from just over 2,500 tg CO2 eq in 2000 to just over 3,000 tg in 2050 (see Figure 7-1).  

Similarly, the average carbon in forest stands is projected to increase from over 15,000 gC/m
2
 to 

over 19,000 gC/m
2
 (see Figure 7-2). Thus, the forest system is projected to continue to remain a 

carbon sink to 2050, although the rate of growth is projected to decelerate. As shown in Figure 7-

3, the net flux in carbon sequestration is projected to decline from over 15 tg/year (which includes 

1.2 tg/year for the wood products pool) to around 6 tg/year by 2050. During this period of time, 

forest resources in West Virginia will offset approximately 40% of the state’s estimated annual 

emission of carbon in 2000, which will decline to 10% in 2050 (see Figure 7-4).  This projected 

decline is due to increases in timber removals brought on by increased commercial volume and 

stumpage prices, reduced net annual growth rates due to increased stand density,  
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Figure 7-1  Statewide Forest Carbon (tg CO2/eq) for the Status Quo Timbering Scenario 

(smooth trend lines based on Monte Carlo analysis depicting typical and 95
th

 upper and 

lower bounds) 

 

 

 

 

 
Figure 7-2  Average Forest Stand Carbon Density (gC/m2) for the Status Quo Timbering 

Scenario (smooth trend lines based on Monte Carlo analysis depicting typical and 95
th

 

upper and lower bounds) 
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Figure 7-3  Annual Net Carbon Sequestration of West Virginia Forests (Tg CO2 eq/yr) for 

the Most-Likely and High Timber Market Scenarios (trend line fluctuation due to 

oscillation in the timber market) 

 

 

 

 

 
Figure 7-4  Percent Offset of West Virginia Total Carbon Emissions by Total Forest Sink 

under Most-Likely and High Timber Market Scenarios (trend line fluctuation due to 

oscillation in the timber market) 
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increased incidence of landscape scale disturbances toward mid-century (also due to increased 

stand density), and increased anthropogenic emissions.  Overall, the results of the logistic 

regression analysis indicated that landscape scale disturbances are projected to increase by 

approximately 50% from 2000 to 2050, as forest stands continue to increase in biomass.  By 

2050, approximately 1/4
th
 of the state forest acreage is projected to experience landscape scale 

disturbances, resulting in net negative growth, particularly for locations with higher stand density, 

lower annual precipitation, and greater slopes.   

With respect to timber prices, if market growth conditions experienced over the past 20 years 

were to continue, resulting in a long-term average annual market increase in stumpage prices of 

1%, then the projected increase in timbering activity would result in a very significant decline in 

the carbon sink, ultimately resulting in the forest system nearly becoming a carbon source by 

2050, as shown in Figure 7-4.        

7.3.3 Comparative Analysis of the Effect of Status Quo and Sustainable Timbering Scenarios 

on Forest Carbon Sequestration 

The sustainable timbering scenario slightly enhanced forest carbon stocks by approximately 3% 

over the status quo timbering scenario (see Figure 7-5). Similar results were observed at the plot 

level (see Figure 7-6). More importantly, under the sustainable timbering scenario, carbon stock 

growth appeared to continue at the same pace through 2050, while growth decelerated slightly 

under the status quo timbering scenario in the last decade. As discussed in Section 6.3, the 

difference in carbon stocks and fluxes between the two scenarios is likely due to the decrease in 

AGBD that was removed during sustainable timbering events and differences in average stand 

growth rates (as net annual growth for the sustainable scenario was 50% higher than the status 
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quo scenario in 2050). Essentially, the sustainability restrictions resulted in timber removals with 

higher average value, as compared to the status quo timbering scenario, which resulted in less 

biomass being removed. Under the sustainable timbering scenario, 6% less carbon was removed 

statewide during timbering events, principally due to the manner in which trees and plots are 

selected across the state (as discussed in Section 6.3).  When comparing the annual fluxes in 

carbon sequestration between the two timbering scenarios, the sustainability scenario also 

maintained a larger carbon pool to 2050 than the status quo scenario, as shown in Figure 7-7. In 

any event, the overall size of the forest carbon pool declined for both timbering scenarios, as 

stand growth rates decelerated and landscape level disturbances increased under both scenarios 

due to increasing stand density.       

 

 
Figure 7-5  Statewide Forest Carbon Sequestration (tg CO2 eq) for the Status Quo and 

Sustainable Timbering Scenarios 
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Figure 7-6  Average Forest Stand Carbon Density (gC/m2) for the Status Quo and 

Sustainable Timbering Scenarios 

  

 
Figure 7-7  Annual Statewide Net Carbon Sequestration (tg CO2 eq/yr) for the Status Quo 

and Sustainable Timbering Scenarios (trend line fluctuation due to oscillation in the timber 

market) 
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7.4 Conclusions 

The results of this study indicated that forest carbon stocks in West Virginia will continue to 

increase to 2050 under status quo timbering and most-likely timber market conditions to about 

3,000 tg CO2 eq.  Under carbon accounting rules being considered internationally, this increase in 

carbon stocks is unlikely to have direct monetary value on the open market, as baseline forest 

growth can’t be used for creating carbon credits, particularly from developed countries.  In any 

event, the increase in forest carbon stocks of 380 tg CO2 eq, worth over $7B if it could be sold at 

current carbon prices, would offset carbon emissions reported by the State of West Virginia and 

the United States over the next 50 years using USEPA accounting methods (USEPA 2009).  In 

the future, if carbon legislation were established that required offset of anthropogenic emissions 

in the United States and there were provisions to offset these emissions with baseline growth of 

forest resources (as currently applied by USEPA [2009]), then this growth would have monetary 

benefits, even if the carbon credits could not be sold in the international market.    

If timber prices increase as they did in the past two decades (~1% / year), then annual carbon 

fluxes may significantly decline after 2040 and the forest system is projected to become a carbon 

source after 2050. This change is principally due to reduced forest stand growth and increased 

disturbances due to increased stand density, and projected long-term increases in timber prices 

and commercial timber volume and associated stand value. This outcome was projected to be the 

same for both status quo and sustainable timbering scenarios, although the effect was 

significantly diminished for the sustainability scenario. Variability in annual carbon fluxes was 

due principally to market fluctuations in timber prices.  
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In the long-term, implementing statewide sustainable timbering would increase carbon stocks 

above status quo timbering conditions, due to less AGB being extracted and higher net annual 

growth rates achieved for the sustainability scenario. If future carbon accounting rules allowed for 

the establishment and sale of certifiable carbon credits on the open market from implementing 

sustainable timber management plans (which is currently be considered for undeveloped 

countries), then the net increase in carbon stocks from implementing the plan could be sold as 

carbon credits (growth in carbon stocks under status quo conditions would likely be ineligible for 

carbon credits, as previously discussed).  At recent carbon prices of $16/Mt CO2 eq (World Bank 

2010), the increase in carbon stocks from 2000 to 2050 from implementing statewide sustainable 

timbering management are estimated to be worth $1.5B (without adjustments for inflation or 

market growth) relative to projected status quo conditions, with an annual average rate of 

$30M/year.  If carbon prices increase commensurate with modeled projections for establishing 

category III stabilization of CO2 levels at 550 ppm (i.e., $24 Mt CO2 eq  [IPCC 2007b]), then the 

value of carbon credits may be 1.5 times higher than these projections, or $2B with an annual 

average rate of about $50M/year. These projected annual returns from carbon credits ($30M/year 

to $50M/year) from increased forest growth were projected to be approximately 1/3
rd

 of the total 

value of all timber removed annually from West Virginia during this period (average of 

$130M/year between 2000 and 2050).  Therefore, the economic return from carbon credits from 

establishing a statewide sustainable forest management plan could significantly contribute to the 

revenue from forestry services in West Virginia.  As suggested by the IPCC, carbon prices in the 

$20 to $50 Mt CO2 eq range could achieve substantial cuts in carbon emissions as a result of the 

viability of alternative energy technologies and other market forces (IPCC 2007b).  If carbon 

prices increased to $50 Mt CO2 eq, then this would potentially triple the economic return to West 

Virginia (i.e., $5B from 2000 to 2050, $90M/year in 2050) (IPCC 1997b, World Bank 2010).  It 
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is unclear whether international and/or national policy initiatives will create market conditions 

that would generate such increases in carbon prices.  

Given the economic returns from increasing forest carrying capacity for sustaining future 

timbering levels (which increases standing timber value by $0.8B by 2050) and potential carbon 

credit sales from implementing sustainable timbering policy at the state-level, it may be possible 

to design policy instruments that could actually increase economic opportunities for West 

Virginia. Furthermore, it may be possible to design policy instruments that could be self-funded 

from partial use of carbon credit funds generated by the policy.  It should be noted that such 

results would require the implementation of new carbon accounting policy that would allow for 

the sale of carbon credits associated with implementing sustainable forest management in the 

United States, which currently does not exist. In any event, the increase in carbon stocks could be 

used to offset carbon emissions reported by the State of West Virginia and the United States, 

using USEPA (2009) accounting rules.    

Some of the limitations of the carbon modeling approach used to project long-term carbon stocks 

were the treatment of SOC and the wood products pool as exogenous processes in the analysis. 

Given the potential increase in forest biomass, timber removals, and disturbance events that are 

projected from this analysis, it is likely the SOC and wood products pools will increase over time, 

thereby resulting in a larger carbon sink than what is projected from this analysis. Further 

research is needed to evaluate the integration of PnET-CN, or other process-based models, to 

more accurately evaluate carbon cycling and dynamics for estimating SOC and the implications 

of these cycling processes on long-term growth of the system, and for evaluating the effects of 

climate change.  Furthermore, additional research and analysis is needed to more accurately and 

efficiently estimate changes in the wood products pool at a state-level.  Currently, estimating 
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changes in wood product pool fluxes is very labor intensive, as it requires simulating wood 

product usage and carbon releases not only for new timber production products into the future, 

but also all historic removals that occurred over the past century and beyond (Skog 2008).        
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8. Conclusions 
 

 

 

The logistic and multilevel models developed in this research demonstrate an important and novel 

way of simulating micro-scale timbering events as an endogenous process when conducting forest 

management planning and carbon modeling.  This approach allows for evaluating important 

cross-scale feedbacks and other processes for estimating the long-term impact of timbering and 

market scenarios on forest stand metrics, biomass, and carbon at multiple scales.  Since the 

statistically significant independent variables for simulating timbering events are all currently 

available in the FIA database, it suggests that this modeling approach could readily be applied for 

other states and regions for simulating timber and tree selection events as an endogenous process.  

This approach is particularly important for addressing timbering and long-term forest carbon 

stocks at a national, regional, and state-scale, when a significant portion of the timbering events 

are driven by timber market conditions involving private land holdings, which are typically not 

governed or restrained by a forest management plan (as in the case of public lands, where 

modeling timbering events as an exogenous process may be appropriate).      

The results of the timber stand and tree selection analysis indicated that timber stand value 

density, tree prices, and plot ownership were key drivers in predicting timber stand and tree 

selection for removal events. The models predicted timbering practices and tree selection patterns 

reflective of observed data.  Increased tree stumpage prices, which increased overall stand value, 

significantly increased the probability of a stand being selected, on both private and public lands.  

Private lands were much more likely to be selected for timbering than public lands, as expected.  
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At the tree-level, increased value of the commercial tree (based on stumpage price and BF) 

significantly increased the probability of the tree being selected.  The model also indicated that 

forest stand variables also impacted individual tree selection probabilities, as tree selection 

probabilities increased on public lands, and stands of higher value decreased individual tree 

selection probabilities (presumably due to increased competition for selection when conducting 

select cuts).  The increase in tree selection probabilities on public lands was an unexpected result, 

which could be the subject of further research. Participatory modeling and survey techniques 

could be used to better understand differences in tree selection and removal techniques on both 

public and private lands. Modeling changes in ownership regime over time would also provide 

more insights on differences in timbering practices and plot selection probabilities when 

industrial timber firms own fee title to the land they timber, versus obtaining timber rights from 

non-industrial private land owners. Using the results of participating modeling and simulating 

ownership regime changes using finer-scale spatial agent-based modeling techniques, may 

provide even further insights into the processes of stand and tree selection.  

Beyond the direct effect of timbering on tree and biomass removal, timbering events did not have 

a statistically significant effect on net annual forest stand growth rates, landscape level 

disturbances, regeneration rates, or mortality rates. Rather, other stand condition variables were 

much more important in predicting growth, mortality, and regeneration, including tree volume, 

stand volume, annual precipitation, and slope.  Forest stands with the highest tree volumes still 

continued to grow more in volume than stands with lower volumes, but their growth rates 

appeared to be decelerating commensurate with a sigmoid growth response. This continued 

growth may be due to the fact that many forest stands in West Virginia are still in a state of 

recovery (Brown et al. 1997), as the prevalence of advanced recovery and old growth forest 
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stands in West Virginia is low. Overall, stands with large volumes appeared to be more 

susceptible to landscape level disturbances and exhibited greater variability in terms of annual 

growth response, than forest stands with smaller volumes. These landscape disturbances reduced 

live tree volumes on plots nearly to the same extent as total timbering activities across the state, 

which underscores the need to address such disturbances in detail when modeling long-term 

changes in forest biomass and carbon.     

Overall, the cumulative effects of timbering, positive growth, disturbance events, negative 

growth, mortality, and regeneration simulated using the integrated model developed for this 

research (i.e., CFM) replicated timbering patterns and net growth reasonably well.  Model 

validation indicated that CFM estimated the average net live forest volume growth rate in West 

Virginia in 2000 of 1.38% (5 year average: 1.33%)  to be within 1% of the observed growth rate 

of 1.40% for the 30% out of sample validation dataset (factoring in removals, mortality, positive 

growth, negative growth, and regeneration).  Thus, CFM was able to replicate the cumulative 

effect of these factors on net annual growth rates reasonably well.        

Using the integrated model, AGB, AGBD, and carbon stocks in West Virginia forests are 

projected to continue to increase despite increased timbering activity to 2050, with nearly half of 

the state acreage being classified in an advanced stage of recovery by 2050 (> 15,000 gC/m
2
). 

Although, biomass and carbon density will continue to increase to 2050, the rate of annual 

increase decelerates.  This deceleration is due to a projected doubling of the timber removal rates 

toward mid-century (due to increases in timber prices and stand volume), increases in landscape 

scale disturbances, and declining stand net annual growth due to stand maturation. However, if 

timber prices increase as they did in the past two decades (~1% / year), then forest biomass and 
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carbon leveled off and began to decline around 2050 and the forest system was predicted to 

become a net carbon source in West Virginia after 2050. 

To improve the estimation of carbon stocks, further research and analysis is needed for more 

accurately assessing long-term impacts to SOC and the wood products pool, as these were 

evaluated as exogenous processes in the model. Given the potential increase in forest biomass, 

timber removals, and disturbance events that are projected from this analysis, it is likely that SOC 

and the wood products pool will increase over time, thereby resulting in a larger carbon sink than 

what is projected from this analysis. Further research is needed to evaluate the integration of 

PnET-CN, or other process-based models, to more accurately evaluate carbon cycling and 

dynamics for estimating SOC and the implications of these cycling processes on long-term 

growth of the forest system, and for evaluating the effects of climate change. By calibrating 

PnET-CN over a larger areas, it would be possible to more accurately capture SOC fluxes, which 

are very important for accurately estimating forest carbon stocks (USDA 2008; Aber and Federer 

1992; Aber et al. 1995, 1996, 1997).   

Additional research and analysis is also needed to more accurately and efficiently estimate 

changes in the wood products pool (i.e., lifecycle analysis of carbon releases from wood removed 

from forest stands) at a state-level, given the complexity and significant data demands of such an 

analysis. Accurately estimating carbon fluxes from this pool requires simulating wood product 

usage and carbon releases not only for new timber products into the future, but also all historic 

removals and releases that occurred over the past century and beyond at a state or large-scale 

(Skog 2008). By developing tools that automate or downscale existing wood products pool 

analysis at the state level, it would be possible to more accurately and efficiently evaluate and test 

the impact of policy changes and forest management scenarios on carbon fluxes at the state level.      
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As previously discussed, landscape-scale disturbances had a significant impact on future 

projections of biomass and carbon. Such events are projected to increase in frequency by 

approximately 50% from 2000 to 2050, as forest stands increase in stand density.  By 2050, 

approximately 1/4
th
 of the state forest acreage is projected to experience landscape scale 

disturbances (as opposed to 17% in 2000), resulting in net negative growth, particularly for 

locations with higher forest biomass density, lower annual precipitation, and greater slopes. These 

results suggest that forest growth projections and landscape level disturbance dynamics should be 

carefully considered and modeled when making long-term projections of biomass and carbon, 

which is consistent with the findings of other landscape-scale studies (as cited in USGCRP 2008). 

These findings also underscore the need to consider the impact of long-term climate change on 

key drivers of forest growth, such as annual precipitation and temperature, as well as the indirect 

effects associated with climate change on disturbance regimes (e.g., higher incidence of extreme 

weather events, drought, pest infestation, fire), which may adversely impact live forest biomass 

and carbon fluxes over the long-term. 

Additional research is needed to better understand and predict landscape disturbance events given 

their impact on forest biomass and carbon dynamics. If drought and other disturbance events 

increase in frequency, then the frequency and severity of these events could increase beyond the 

estimates projected using CFM. In any event, to better adapt to these disturbances, it may be 

possible to use monitoring and predictive tools to identify the locations that are most vulnerable 

to these disturbances and apply sustainable silviculture techniques to preempt these events, 

reduce stand vulnerability to these events, and shift timber production burden to locations that are 

more likely to have mass tree mortalities.  Such adaptive measures would improve the overall 

health of the forest system across the state, due in part to a shift in timber burden intensity away 
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from healthy stands.  Similar concepts have been suggested for adapting to cyclical and large-

scale disturbance events in forests of Canada, as well as potential for increased drought frequency 

due to climate change (Bouchard et al. 2008, Cotillas et al. 2009, Hanson and Weltzin 2000, 

Powers et al. 2010). 

Modeling disturbance events also requires additional research and refinement.  For example, there 

are other biophysical characteristics, such as historic disturbance effects, climatic patterns, 

longitude, micro-scale drought patterns, terrain classification, slope orientation, and other factors 

that may create spatial patterns and explain some of the variance in disturbance events not 

captured in this analysis. Working with the USFS, it may be possible to utilize the actual 

coordinates of the FIA plots and obtain higher resolution drought, terrain classification, and other 

biophysical data that could refine this analysis.  In addition, geospatial and regression tree 

analysis techniques may be helpful in conducting further analysis of disturbance events and 

spatial patterns.     

With respect to sustainable timbering, broad application of sustainable timbering techniques 

across the entire state significantly enhanced several forest ecosystem indicator metrics relative to 

status quo conditions, including biomass, carbon, annual growth, and carrying capacity.  In 

particular, broad application of sustainable timbering across West Virginia enabled net annual 

average forest growth for the state to remain much higher (50% higher than the average under the 

status quo scenario), even though the same value of timber was being extracted at the state level 

to satisfy market demand each year to 2050.  Thus, the sustainable timbering approach will 

significantly enhance long-term sustainable use of the forests for timbering and production of 

ecological services through the 21
st
 century, while still supplying needed timber market demand 

on an annual basis.  Furthermore, the sustainable timbering scenario increased standing timber 
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value by $0.8B in 2050 above the status quo scenario, even though the same value of timber was 

being extracted each year between 2000 and 2050.  

The sustainable timbering scenario had little effect on large tree conservation and achievement of 

old growth forest conditions at the state scale, which was unexpected. This effect was due to the 

doubling of the annual rate of low intensity sustainable timbering events across the state (relative 

to status quo timber event frequencies in order for timber firms to satisfy market demand), which 

removed more larger trees (just below the regulatory threshold) across the state than the status 

quo scenario. The results of this study points to one of many trade-offs that should be considered 

in the development of state-level sustainable forestry plans and finer-scale plans, as well as the 

need to evaluate the positive and negative effect of policy at multiple scales.   

Overall, implementation of a state-level sustainable timbering program could significantly 

increase the carrying capacity of the forest systems for future timbering, which would preserve 

commercial timber industry opportunities for future generations, increase the value of carbon 

stocks ($1.5B to $5B depending on carbon price in 2050), and increase overall forest recovery.  

The difficulty of implementing such a plan from a policy perspective would be how to design a 

policy that would gain a high level of participation, without restraining the property rights and 

flexibility that private landowners in West Virginia are accustomed to. Given that the program 

would likely increase the value of commercial standing timber ($0.8B in 2050) and carbon stocks 

($1.5B to $5B from 2000 to 2050, with annual average revenue of $30M to $90M/year at the 

state-level), it may be possible to design a voluntary cooperative program that would enable 

management of statewide forest resources on private land in exchange for revenue sharing. In 

certain respects, timber firms may resist adding restraints to their timbering activity and there 

would likely be additional operating and travel costs associated with lower intensity timber 
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removals.  On the other hand, anecdotal evidence suggests that timber firms have difficulty 

finding timber contracts, so such a cooperative program could reduce certain costs associated 

with identifying, marketing, and procuring timber rights.  Further research would be needed to 

test the viability of such a policy approach, and the potential for broader application in other 

forested states and regions. 

Overall, this study demonstrates the importance of modeling both anthropogenic and natural 

disturbance agents at multiple scales, when evaluating future forest resource conditions and 

alternative habitat conservation strategies.  Further research would be required using participatory 

methods (Parker et al. 2003, Bousquet and Le Page 2004) and targeted surveys to determine the 

viability of specific sustainable and conservation forest management policies, including 

willingness to participate in a statewide sustainable forestry management program. Such 

participatory modeling techniques are also recommended for properly modeling, designing, and 

testing the acceptance and potential success of such a program if it were to be considered.  
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Appendix  A:   PnET-CN Model Runs 
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PnET-CN Model 

Detailed results of the PnET-CN modeling analysis are presented below. Plot-level AGBD and 

net growth (which does not include timber removals, but includes tree-specific negative growth 

and mortalities) are presented in Table 1 below for the plots in Boone and Tucker Counties. 

AGBD and net annual growth are presented in the last two columns. By adjusting disturbance 

regime values for individual plots for about 60% of the stands, it was possible to generate 

estimates of AGBD in the wood pool that were within 10% of those observed in the field for 85% 

of the plots. These specific adjustments are presented in Tables 2 and 3.   
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            Table 1.  Boone and Tucker County Plots with Net Growth Estimates 
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Boone County, WV 

7518812010661 20 $1,864 0% 2.32 52 38 23,094 2.9% 

7518642010661 20 $2,095 0% 2.26 47 38 21,243 3.5% 

7516424010661 20 $1,774 0% 2.31 48 38 20,915 3.9% 

7516896010661 20 $1,367 0% 2.21 69 38 20,592 2.0% 

7518456010661 20 $1,466 0% 2.29 65 38 18,985 2.3% 

7518722010661 20 $960 0% 2.27 45 38 17,322 1.6% 

7517275010661 20 $849 0% 2.20 52 38 16,320 2.4% 

7517204010661 20 $279 0% 2.25 38 38 14,446 3.1% 

7516349010661 20 $686 0% 2.21 70 38 14,175 4.0% 

7519217010661 20 $746 0% 2.24 40 38 13,562 0.8% 

7519627010661 20 $336 0% 2.25 41 38 13,079 -3.4% 

7518032010661 20 $490 0% 2.30 46 38 12,280 2.9% 

7517450010661 20 $452 0% 2.22 52 38 10,786 1.0% 

7516984010661 20 $540 0% 2.21 48 38 9,791 7.7% 

7517385010661 20 $620 0% 2.24 47 38 8,449 1.0% 

7516501010661 20 $310 73% 2.27 47 38 7,762 1.1% 

7519031010661 20 $72 91% 2.21 61 38 6,158 5.3% 

7516728010661 20 $47 93% 2.19 85 38 6,659 7.3% 

7517766010661 20 $240 0% 2.15 72 38 5,644 5.6% 

Tucker County, WV 

7640442010661 40 $2,935 0% 2.28 39 39 30,131 3.4% 

7641325010661 40 $1,965 0% 2.58 35 39 23,064 4.3% 

7640129010661 40 $4,601 54% 2.33 72 39 22,459 3.2% 

7641474010661 40 $1,076 0% 2.17 61 39 19,355 1.2% 

7641238010661 40 $1,381 0% 2.49 45 39 16,421 3.2% 

7640555010661 40 $2,797 63% 2.35 60 39 16,116 1.5% 

7640851010661 40 $655 27% 2.20 51 39 15,209 0.2% 

7641652010661 40 $753 0% 2.36 46 39 14,820 5.9% 

7641572010661 40 $1,260 70% 2.29 42 39 10,027 -1.2% 

 

 



228 
 

 

  

Table 2. Comparison of Field and PnET-CN modeled AGBD for Boone and Tucker Counties  
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Boone County, WV 

7518812010661 0% 2.32 52 38 23,094 2.9% 19% 19465 22235 0.0 -2% 23611 25069 

7518642010661 0% 2.26 47 38 21,243 3.5% 22% 17457 19905 0.0 -2% 21732 23395 

7516424010661 0% 2.31 48 38 20,915 3.9% 17% 17916 20451 0.0 -6% 22158 23820 

7516896010661 0% 2.21 69 38 20,592 2.0% -1% 20722 22251 0.0 Fit During First Tier 

7518456010661 0% 2.29 65 38 18,985 2.3% -9% 20909 22803 0.0 Fit During First Tier 

7518722010661 0% 2.27 45 38 17,322 1.6% 5% 16525 18793 0.0 Fit During First Tier 

7517275010661 0% 2.20 52 38 16,320 2.4% -16% 19433 22192 0.0 -1% 16560 22117 

7517204010661 0% 2.25 38 38 14,446 3.1% 7% 13475 15249 0.0 Fit During First Tier 

7516349010661 0% 2.21 70 38 14,175 4.0% -14% 16465 19502 0.1 0% 14175 22240 

7519217010661 0% 2.24 40 38 13,562 0.8% -4% 14191 16088 0.0 Fit During First Tier 

7519627010661 0% 2.25 41 38 13,079 -3.4% -10% 14564 16528 0.0 Fit During First Tier 

7518032010661 0% 2.30 46 38 12,280 2.9% -28% 17054 19410 0.0 7% 11486 18461 

7517450010661 0% 2.22 52 38 10,786 1.0% 5% 10228 11716 0.1 Fit During First Tier 

7516984010661 0% 2.21 48 38 9,791 7.7% 3% 9481 10898 0.1 Fit During First Tier 

7517385010661 0% 2.24 47 38 8,449 1.0% -9% 9277 10673 0.1 Fit During First Tier 

7516501010661 73% 2.27 47 38 7,762 1.1% 135% 3309 11150 0.1 1% 7683 17101 

7519031010661 91% 2.21 61 38 6,158 5.3% 211% 1978 12657 0.1 6% 5800 18253 

7516728010661 93% 2.19 85 38 6,659 7.3% 272% 1791 12238 0.1 0% 6630 26570 

7517766010661 0% 2.15 72 38 5,644 5.6% -54% 12178 13708 0.1 -4% 5864 13573 

Tucker County, WV 

7640442010661 0% 2.28 39 39 30,131 3.4% 130% 1309
1 

13570 0.0 68% 17934 17212 

7641325010661 0% 2.58 35 39 23,064 4.3% 93% 1194
6 

12364 0.0 42% 16271 16271 

7640129010661 54% 2.33 72 39 22,459 3.2% 120% 1020
0 

20873 0.0 25% 17918 27844 

7641474010661 0% 2.17 61 39 19,355 1.2% 7% 1802
3 

19699 0.0 Fit During First Tier 

7641238010661 0% 2.49 45 39 16,421 3.2% 12% 1464
6 

15289 0.0 -2% 16790 17194 

7640555010661 63% 2.35 60 39 16,116 1.5% 112% 7589 17578 0.0 15% 13972 22851 

7640851010661 27% 2.20 51 39 15,209 0.2% 25% 1216
3 

16926 0.0 0% 15280 19002 

7641652010661 0% 2.36 46 39 14,820 5.9% -1% 1490
9 

15590 0.0 Fit During First Tier 

7641572010661 70% 2.29 42 39 10,027 -1.2% 104% 4914 12690 0.0 6% 9497 15826 
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Table 3. Comparison of Field and PnET-CN modeled AGBD for Boone and Tucker Counties  

FIA Plot 
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Boone County, WV 

7518812010661 23,094 0.0 0.50 0.50 0.25 0.25 0.00 0.00   

7518642010661 21,243 0.0 0.50 0.50 0.25 0.25 0.00 0.00   

7516424010661 20,915 0.0 0.50 0.50 0.25 0.25 0.25 0.20   

7516896010661 20,592 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7518456010661 18,985 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7518722010661 17,322 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7517275010661 16,320 0.0 0.95 0.70 0.25 0.25 0.25 0.20 Removal moved from 1950 to 1987 

7517204010661 14,446 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7516349010661 14,175 0.0 0.95 0.70 0.25 0.25 0.50 0.40 Removal moved from 1950 to 1987 

7519217010661 13,562 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7519627010661 13,079 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7518032010661 12,280 0.0 0.95 0.70 0.25 0.25 0.50 0.40 Removal moved from 1950 to 1987 

7517450010661 10,786 0.1 0.95 0.70 0.25 0.25 0.25 0.20   

7516984010661 9,791 0.1 0.95 0.70 0.25 0.25 0.25 0.20   

7517385010661 8,449 0.1 0.95 0.70 0.25 0.25 0.25 0.20   

7516501010661 7,762 0.0 0.95 0.70 0.25 0.25 0.00 0.00 Removal moved from 1997 to 1992 

7519031010661 6,158 0.0 0.95 0.70 0.25 0.25 0.00 0.00 Removal moved from 1997 to 1992 

7516728010661 6,659 0.0 0.95 0.70 0.25 0.25 0.00 0.00 Removal moved from 1997 to 1990 

7517766010661 5,644 0.1 0.95 0.70 0.25 0.25 0.80 0.60 Removal moved from 1950 to 1987 

Tucker County, WV 

7640442010661 30,131 0.0 0.00 0.00 0.00 0.00 0.00 0.00 SLWmax too low 

7641325010661 23,064 0.0 0.00 0.00 0.00 0.00 0.00 0.00 SLWmax too low 

7640129010661 22,459 0.0 0.00 0.00 0.00 0.00 0.00 0.00 Removal moved from 1997 to 1988 

7641474010661 19,355 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7641238010661 16,421 0.0 0.95 0.70 0.25 0.25 0.25 0.20   

7640555010661 16,116 0.0 0.00 0.00 0.00 0.00 0.00 0.00 Removal moved from 1997 to 1988 

7640851010661 15,209 0.0 0.95 0.70 0.25 0.25 0.25 0.20 
 

7641652010661 14,820 0.0
1 

0.95 0.70 0.25 0.25 0.25 0.20   

7641572010661 10,027 0.0 0.00 0.00 0.00 0.00 0.00 0.00 Removal moved from 1997 to 1988 
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