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ABSTRACT 

A COMPARISON OF RECLASSIFICATION METHODS TO IMPROVE AN NDVI 

BASED FLOOD MAP 

Jessica V. Fayne, MS 

George Mason University, 2015 

Thesis Director: Dr. Sven Fuhrmann 

 

In Cambodia and Vietnam, low-lying terrain is particularly susceptible to flooding 

during the monsoon season between May and November. To monitor flooding in the 

region, a near-real time NDVI percent decrease based Flood Extent Product was 

developed to be hosted on an online Flood Dashboard by the NASA DEVELOP team. 

The product was designed to be updated twice per day with 250-meter resolution from 

MODIS on the Aqua and Terra satellites. To increase the usage and usability of this 

product, the classification intervals were compared with other commonly used 

classification schemes to monitor flooding.  

The use of substantiated flood classification methods is essential to ensure 

understanding and usefulness of mapped flood products. Classification schemes can 

influence the usability and usefulness of these products, e.g. inappropriate flood mapping 

classification intervals and color selections may incorrectly classify flooded areas and 

distract from the interpretation of the phenomenon of interest.   
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The percent change method proved to be very helpful in delineating flood 

boundaries compared to standard deviation and differencing methods. However, only the 

100% decrease interval class had the highest accuracy ratings compared to three 

reference data sets, with an average producer’s accuracy of 67.8% and an average user’s 

accuracy of 74%. The results of the accuracy assessments indicate that only the 100% 

interval class can be reclassified to into a descriptive ‘flood’ classification. The use of an 

additional ‘wet’ category with 75% decrease will be useful to support the flooded area 

description and allow users to monitor changes in regions that are not currently flooded, 

but are more susceptible to flooding. The use of a descriptive two-class product 

eliminates confusion from understanding input data while removing extra information 

from lower interval change classes. 
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RESEARCH PROBLEM 

Introduction 
As part of the Committee on Earth Observing Satellites (CEOS) Working Group 

on Disasters Flood Pilot Program, the NASA DEVELOP Disasters team at Goddard 

Space Flight Center created a satellite-based flood extent product for the Lower Mekong 

River Basin (LMB) in Southeast Asia. The goals of the CEOS Working Group on 

Disasters Flood Pilot are to demonstrate that value of earth observing satellites by 

integrating data from flood modeling and monitoring systems and at global and regional 

scales (CEOS WGDisasters 2015).  Running through China, Laos, Thailand, Cambodia 

and Vietnam, the flooding of the Mekong River is an issue of international importance, 

with potential to earn the area millions of dollars in crop revenue, or cost millions more 

in from possible loss of life and damage to villages. The costs can be mitigated by 

governing and planning organizations by such as the Mekong River Commission (MRC), 

and local leadership for disaster planning and the ability to locate defined areas affected 

by flooding.  

The NASA DEVELOP team created the Flood Extent Product by using NDVI 

calculated from red and infrared surface reflectance from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor from the Terra and Aqua satellites, which 

have a sun-synchronous orbit. The use of the two satellites allows two observations per 

day for a higher temporal resolution while avoiding cloud effects.  MODIS scans the 
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earth using visible reflectance (short) and thermal emittance (long) wavelengths. The data 

generated for the Flood Product was created using visible Red and Infrared wavelengths 

at a 250-meter spatial resolution as inputs to the Normalized Difference Vegetation Index 

(NDVI). The Normalized Difference Vegetation Index is a spectral index that commonly 

used to calculate the health of vegetation; in this instance, NDVI is used to monitor 

decrease in vegetation during the flood season to infer additional water presence. The 

NDVI anomaly method was suggested to the develop team by DEVELOP advisor Joseph 

Spruce, who used a similar method for deforestation caused by gypsy moth infestation 

(Spruce, et al. 2011), additional authors similarly use vegetation and other related spectral 

indices to determine flooding (Boshetti, et al. 2014). The Flood Extent Product 

categorizes the percent NDVI decrease into seven classes (0%, 4%, 15%, 30%, 50%, 

75%, and 100%), ranging in color from blue to red (0% is no or positive change-

transparent, 4% is blue, and 100% is red). 

The seven class structure is somewhat biased in the assumption that all NDVI 

decreases correspond with increased water presence. The first six classes correspond 

directly with the actual values derived from the calculation, but the 100% decrease value 

encompasses decreases of 100% and more. This truncation may be confusing as the 

baseline NDVI values are not referenced in the final product, and therefore the amount of 

change over 100% will have varying implications based on the original pixel value.  

Positive NDVI values generally correspond to the health of vegetation; however, 

negative NDVI values may be caused by a variety of factors such as a complete lack of 

vegetation, burned areas, snow, water, minerals, sediment, and many other non-
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vegetation land covers. Because of the diversity of land cover represented by negative 

NDVI or by decreases in NDVI, it is problematic to infer that the area is flooded due to 

the decrease in NDVI values. The NDVI anomaly method is particularly challenging 

during the dry season, when decreased values are often associated with drought and 

drying vegetation.  

Research Questions 
 

This study asks a few questions to form a more comprehensive understanding of the 

baseline NDVI values: 

 How does the land cover help distinguish between NDVI change caused by 
flooding or other factors?  

o How could NDVI values be classified into meaningful qualitative 

categories to improve interpretation?  

 Would existing literature on the visualization of flood mapping products help to 
explain how the Flood Extent Product would be used and understood? 

o What are the design requirements for a flood-mapping product? How does 

literature on flood mapping provide guidelines for color use and 

classification?  

 Can understanding the baseline NDVI values and associated NDVI change values 
explain how the product works and the implications of the NDVI change values? 

o How will understanding the NDVI change values make the product usable 

with additional datasets and maps?  

Scope of Work 
 

A known limitation of the Flood Extent Product stems from the lack of 

knowledge about the baseline NDVI. The percent decrease at each pixel will be a 

function of the original NDVI number—smaller numbers will exhibit a larger decrease,  

such as an original NDVI of 0.04-0.2 will yield a 400% decrease, although an NDVI of 

-0.2 would not necessarily mean there is water on the ground. In contrast, a 4% decrease 

in NDVI is difficult to attribute to water presence. This uncertainty in the product is not 
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currently addressed; however, researchers have developed several methods to associate 

uncertainty information with the visualized product.  

The role of spectral indices is very significant to this research, as the meaning and 

the assumptions made by the indices have the capacity to bias any product that employs 

indices without an assessment of the implications of limitations of the index calculation. 

A review of spectral indices created specifically for flood mapping as well as non-

traditional indices that can be incorporated into flood maps will help to direct the research 

on the effects of the NDVI percent decrease method.  

A review of other flood mapping products used by organizations in South East 

Asia, as well as other flood products may support or reject the visualization and format of 

the Flood Extent Product. As the product was created with the intention to be passed 

along to the Mekong River Commission, it is important that the product conform to the 

standards of the target audiences, as well as cartographic convention for flood mapping.  
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LITERATURE REVIEW 

The classification of spectral indices, particularly NDVI anomaly is at the core of 

this research, as understanding what negative NDVI means for flooding is important to 

the classification of flooded areas. Related spectral indices targeted towards flood and 

water delineation techniques guide the use of NDVI as a flood product where areas that 

exhibit NDVI decrease, but not flooding, can be considered in the product. Finally, a 

review of the use of color schemes and mapping products—online and static are 

considered for the purpose of visually associating higher decreases in NDVI with more 

water. 

NDVI Anomaly 
 

A known limitation of the Flood Extent Product stems from the lack of 

knowledge about the baseline NDVI. The percent decrease at each pixel will be a 

function of the original NDVI number—smaller numbers will exhibit a larger decrease,  

such as an original NDVI of 0.04 -0.2 will yield a 400% decrease, although an NDVI 

of -0.2 would not necessarily mean there is water on the ground. Similarly, a small 4% 

decrease in NDVI is difficult to attribute to water presence.   

The Normalized Difference Vegetation Index (NDVI) and other vegetation 

spectral indices were created with the purpose of monitoring the health of vegetation and 

crop yields (Rouse Jr., et al. 1973, Tucker 1979, Colwell 1974). The creation of these 

vegetation spectral indices gave rise to new developments in phenology, drought 

monitoring and the creation of land cover products. Vegetation indices use the visible red 
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and near infrared wavelengths to determine the health of vegetation as a function of the 

brightness of photo synthetically active vegetation to the background soil observation 

(Colwell 1974). Many authors have used vegetation indices to monitor vegetation and 

changes in the environment over time, as the index outputs only give a static view of the 

current state of the physical environment. To understand change over time, basic image 

subtraction (Sarp 2011) and percent change methods (Murad and Saiful Islam 2011) can 

be used to see how much an area has changed.  In addition to changes between a few 

images, several projects looked at many images over several decades for a long-term 

trend analysis of the physical environment to aid with modeling and climate analysis 

(Nash, et al. 2014, Jönsson, et al. 2010). Others (Gopinath, et al. 2014) created a web-

based monitoring system to monitor decrease in NDVI as a measure of drought.  

In (Nash, et al. 2014), researchers studied the change in greenness over New 

Mexico, USA, with 1-km NDVI pixels derived from the AVHRR (Advanced Very High 

Resolution Radiometer) satellite from 1989-2006. The study utilized a univariate and 

multivariate method (without and with climate as an additional variable) to the 

relationship of NDVI over time. The AVHRR sensor series was the predecessor to the 

MODIS sensor with the first AVHRR launched in 1978 with subsequent modifications 

and launches in 1989 and 1998 (NOAA SIS 2013), which allows researchers to conduct 

times series studies using a longer data record.  Using NDVI from AVHRR helped to 

create a baseline of seasonal variation that is evident in NDVI scenes throughout the year 

to understand the actual increase or decrease in NDVI for that date. Nash et al. identifies 
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four local features that contribute to the change in NDVI outside the realm of variation in 

climate: 

 Agricultural changes from farming and irrigation at select times of the year for 

select crops 

 Prolonged fires in selected pixels showed decreases in NDVI as well as a 

steady decrease in the post-fire period as the mortality increased for effected 

vegetation 

 The manifestation of invasive vegetation species over a recently burned area 

contributed to a rapid increase in NDVI 

o Human use of the region around the Rio Grande contributed to the 

reduction of water and lowering the water table in the area, 

compounding the impact of droughts 

 Several forested areas in the study region were vulnerable to defoliation 

caused by the bark beetle insect infestation 

 

In contrast to a longitudinal study of NDVI over time, authors used higher 

temporal resolution images from TERRA MODIS and AVHRR to develop drought-

monitoring maps over the study area (Gopinath, et al. 2014, Murad and Saiful Islam, 

Drough Assessment using remote sensing and GIS in North-West region of Bangladesh 

2011, Song, et al. 2004).  Gopinath et al. used the 16-day Terra MODIS 250 meter NDVI 

composite to create a 13 year mean from which to derive a daily anomaly for drought risk 

areas. The negative anomaly indicates ‘below normal vegetation condition’ which is an 
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indicator of drought, however, it is important to note that low NDVI does not always 

correspond to drought. The NDVI anomaly was classified based on a qualitative scheme 

by (Murad and Saiful Islam 2011).  The addition of a Land Use/Land Cover map aided 

localized assessment of drought risk by crop type. 

The anomaly NDVI is calculated by the equation presented in (Murad and Saiful Islam 

2011): 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑁𝐷𝑉𝐼 𝑖 =
𝑁𝐷𝑉𝐼 max 𝑖 − 𝑚𝑒𝑎𝑛 𝑁𝐷𝑉𝐼 𝑚𝑎𝑥

𝑚𝑒𝑎𝑛 𝑁𝐷𝑉𝐼 𝑚𝑎𝑥
∗ 100 

This will yield values on a ±100% scale, when 0 to -10% is slight drought, -10 to -20% is 

moderately drought, -20 to -30% is severe drought, and above 30% is considered very 

severe drought (Murad and Saiful Islam, Drough Assessment using remote sensing and 

GIS in North-West region of Bangladesh 2011). While the percent anomaly values were 

given qualitative classification, there is no explanation for how these classes were created 

or accuracy assessment based on the classification scheme. Fortunately, Murad and 

Islam’s project also included the use of meteorological data in the form of the 

Standardized Precipitation Index over the study area, where the SPI drought forecast was 

combined with the NDVI based drought classification for a final drought risk map; the 

domain specific classification was balanced by meteorological assessment.  

The combination of supporting datasets is a commonly used practice in remote 

sensing to develop a more comprehensive product with higher accuracy and information. 

Researchers in (Gopinath, et al. 2014) modeled their drought risk product after (Abbas, et 

al. 2014) where the Normalized Vegetation Supply Water Index (NVSWI) was developed 

by normalizing the VSWI—given by the ratio of NDVI/Land Surface Temperature, 
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giving meaning and comparable values to the region and over the longitudinal study 

period. The subsequent value ranges specific to the years observed, 0-100 present a scale 

where zero is the driest pixel during the study period and 100 is the wettest. The NVSWI 

was then combined with land use/land cover maps and climate data to determine relative 

drought risk over time.   

Another method to determine NDVI change in the region was used over East Asia 

in (Song, et al. 2004) by differencing the up-to-date NDVI with the standard image, 

which yielded local pixel values in line with the NDVI scale. The associated legend 

displays values below -0.25 in red (where drought risk is implied, but not explicitly 

stated), -0.1 to -0.25 in yellow, 0.1 to -0.1 in grey (within normal range), 0.1 to 0.25 in 

light blue, while pixels over 0.25 are green. While there is limited qualitative 

nomenclature in the mapped product, the assumptions for the user are reduced by keeping 

values in the original units of measurement using evenly spaced classes on either side of 

zero.  

In contrast to using the percent change method, the NDVI amount of decline used 

in (Song, et al. 2004), has clearer implications for varying rates of change throughout the 

image. Specifically, because NDVI’s values range between -1 and 1, the amount of 

decrease can only be 2 at the most extreme case using NDVI values, however percent 

change values can exceed 200% change, which can be difficult to interpret into 

meaningful information, as classified in (Murad and Saiful Islam 2011). A possible 

answer to this problem is seen in (Abbas, et al. 2014), when the NVSWI was classified 

into 5 equal interval classes (on a scale of 0-100: severe drought <20, moderate drought 
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20-40, slight drought 40-60, normal 60-80, and wet >80), assuming a normal distribution 

of values which supports the indication of extreme dry and wet conditions. Similarly, 

(Cai, Du and Liu 2010) implement a density slice classification for extreme, severe, 

moderate, and slight drought, and normal dryness.  

Spatial Resolution refers to how clear and sharp the sensor can view the land. 

Imaging spatial resolution is measured in pixel sizes—the size of the image cells that make 

up the image, and the amount of land those cells represent. For example, ‘1-kilometer 

resolution’ means that the pixels in the image average everything in one square kilometer 

segments. Generally, the satellite spatial resolution is related to the temporal resolution: 

sensors that physically closer to Earth may have a higher spatial resolution because it can 

view the object more clearly. However, because the sensor is close Earth, or the swath of 

the image is small, the amount of time it takes to orbit the entire earth and come back to 

the same location will be much longer than another satellite, which is viewing from farther 

away, but has a lower spatial resolution and large swath. 

Some drawbacks to the use of NDVI relate to data processing and collection 

errors, as well as errors caused by spatial resolution and registration (Pettorelli, et al. 

2009). NDVI is subject to noise errors caused by a multitude of factors such as cloud 

cover, scan angle, snow, shadows, or water (Pettorelli, et al. 2009). These errors can 

create false high or low NDVI values, which are disruptive to analysis tracking positive 

or negative trends in NDVI. While many studies mentioned here used pixel based 

analysis to monitor NDVI change values, (Pettorelli, et al. 2009) lists several factors that 
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can contribute to pixel variation over time, these effects may not be critical in certain 

spatial resolution studies: 

 Plant Architectural 

Arrangement 

 Interactions With Canopy 

Cover  

 Height 

 Composition Of Species  

 Vegetation Vigor 

 Leaf Properties  

 Vegetation Stress 

 Topography 

 Altitude

In addition to the possible errors listed above, the most common error comes from 

the presence of cloud cover (Anderson, et al. 2007, Pettorelli, et al. 2009, Holben 2007), 

which obscures the surface reflectance and causes irregularities with masking and 

compositing images. Smoothing techniques such as the Best Index Slope Extraction 

(BISE), maximum-value and curve fitting from (Holben 2007, van Dijk, et al. 1987), and 

regression based techniques (Zhang, et al. 2003, Swets, et al. 1999) present methods to 

isolate anomalies based on predicted values.  
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Figure 1. NDVI time series smoothing explanation: cloudy NDVI pixels are shown in green, clear day 

observations are shown in blue, and transmission errors are shown in red. The black line presents smoothing 

over the clear day observations. (Pettorelli, et al. 2009) 

 

 

 

In (van Dijk, et al. 1987), researchers note that the swath size and therefore the 

incident angle over the terrain relative nadir is an important feature to note where larger 

swaths sizes evident in AVHRR have a larger scan angle of 56°, compared to the 7.5° 

angle of Landsat TM.  

Flood Mapping from Space 
 

The meaning and the assumptions made by the indices have the capacity to bias 

any product that employs indices without an assessment of the implications of limitations 

of the index calculation. A review of spectral indices created specifically for flood 

mapping as well as non-traditional indices and interpretation methods that can be 

incorporated into flood maps will help to direct the research on the effects of the NDVI 

percent decrease method.  

Visual interpretation is a commonly used and simple method for classification of 

visual ground features. It is important to note that while it is generally agreed that data 
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from the Landsat series has a more ideal spatial resolution than most earth observing 

satellites, Landsat’s observation rate is every 16 days, compared to daily images from 

more coarse resolution sensors such as MODIS and AVHRR. The Landsat name refers to 

a collection of satellites that have a data record going back to 1972, with spatial 

resolution from visible bands varying between 60-15 meters over seven generations 

(USGS 2015). One example of the use of daily observations is seen in (Rasid and 

Pramanik 1990) where flooding in Bangladesh was observed from AVHRR during the 

study period. The researchers identified essential ancillary data sources to support this 

task, which is conventional to the inputs of other flood-mapping studies (Ali, Quadir and 

Huh 1989, Brakenridge and Anderson 2006):  

 Physiographic and contour maps 

 River system perennial water maps 

 Previous flood maps (in (Rasid and Pramanik 1990), maps from 1954 and 1955) 

 Supporting reports from local news papers 

 

The color composite technique to determine water heights in (Rasid and Pramanik 

1990) was supported by the use of a similar method in (Ali, Quadir and Huh 1989) 

combining brightness temperature and albedo to demarcate between the less turbid, lower 

albedo river water, and the coastal water with higher turbidity and albedo.  

Visual interpretation similarly supports a commonly used method of density slicing or 

thresholding to find areas with water using a single-band approach (Frazier and Page 

2000), by identifying reflectance bands with clear land-water separation and using a 
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threshold value that suits the scene or dataset. Like the previously mentioned use of the 

RED and NIR reflectance bands from MODIS and AVHRR, (Rasid and Pramanik 1990) 

used a color composite technique of the RED and NIR reflectance from AVHRR to 

classify the image (water bodies/deep flood, moderate flood, shallow flood, cloud cover, 

and land). As mentioned in (Ali, Quadir and Huh 1989), the red reflective bands are more 

useful for determining water turbidity, while the near-infrared wavelengths are more 

suitable for land-water boundaries, which makes combinations of red and near-infrared 

reflective wavelengths useful for mapping flooded areas. A method similar to the NDVI 

algorithm to detect healthy vegetation, there  are two Normalized Difference Water 

Indexes (NDWI) that use the same formula as NDVI, yet instead use NIR and the short 

wave infrared (SWIR) bands (Gao 1996), and GREEN and NIR in (McFeeters 1996) as 

follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
             𝑁𝐷𝑊𝐼𝑔𝑎𝑜 =

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
                

𝑁𝐷𝑊𝐼𝑚𝑐𝑓𝑒𝑒𝑡𝑒𝑟𝑠 =
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
  

 

Where the absorption of water in both SWIR and NIR bands are negligible, (Gao 1996) 

originally created the index to sense changes in vegetation canopy water; in contrast, 

(McFeeters 1996) used the green reflectance band particularly for the measurement of 

open water and turbidity studies. While the band combinations differ for both NDWI 

studies, both have proven to be useful to sense the presence of open water (Chen, et al. 

2013, Guerschman, et al. 2011). A criticism of McFeeter’s method to delineate water 
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effectively in urban areas due to urban areas having spectral brightness decreases from 

green to the NIR wavelengths, thus yielding similar NDWI values motivated the creation 

of the Modified Normalized Difference Water Index (MNDWI) (Xu 2006). The modified 

method solves the problem of background noise and urban areas by replacing the NIR 

band with a mid-wave infrared band MIR (band 5 on Landsat TM-4/5) at with the range 

1.55-1.75µm. The development of the modified water index focused on the spectral 

differences in between water, built-up areas, and vegetation in MIR. As reflectance in 

built-up and vegetative areas increase in MIR, reflection in MIR decreases for water.   

 

 

 

 
 
Figure 2- Reflectance for water/built up/vegetation -modified from (Xu 2006) 

 

 

 

It is generally agreed upon that satellite imagery can be useful for flood detection, 

disaster response and mitigation, and prevention and warning (Brakenridge and Anderson 

2006, Gao 1996, McFeeters 1996). However, the coarse spatial resolution can create 

issues related to classification where different land cover within close proximity within 
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the image pixel can create mixed pixels. In response to this problem, (Guerschman, et al. 

2011) developed the Open Water Likelihood algorithm to quantify the fraction of the 

coarse pixels with standing water by combining the properties of NDVI, NDWI, and 

SWIR with an elevation model using the Multi-resolution index of Valley Bottom 

Flatness (MrVBF) (Gallant and Dowling 2003). Researchers in (Chen, et al. 2013) 

conducted a study that evaluated MODIS daily and 8-day products for floodplain and 

wetland inundation mapping, and used a specific index to detect water, the modified 

Normalized Difference Water Index, mNDWI and the Open Water Likelihood (OWL). 

MODIS 8-day composites are useful to alternatives to daily imagery that might have 

heavy cloud cover during rainy seasons; however, daily images have higher temporal 

resolution that is necessary for many analyses requiring high temporal resolution. The 

study concluded that there are negligible differences in the spatial and spectral accuracy 

daily and 8-day composite imagery for flood mapping and the composite imagery can 

serve as a replacement for daily imagery when cloud cover will regularly obscure the 

flood extent (Chen, et al. 2013).  

While not the focus of the current study, the use of radar products has also 

become prominent in monitoring flood inundation and extent due to the ability for radar 

products to penetrate cloud cover. In (Töyrä, et al. 2002), researchers present the case that 

while satellite imagery in the visible and near infrared wavelengths are useful for 

mapping water extents, problems such as canopy cover and emergent vegetation can 

obscure and mix pixels, respectively, causing misclassifications errors. As (Töyrä, et al. 

2002) used the satellite radar sensor RADARSAT and multispectral imaging sensor 
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SPOT data to create a composite to identify flood boundaries, (Ramsey III, et al. 2012) 

compared the usefulness of visible imagery from Landsat thematic mapper (TM) and 

Envisat advanced synthetic aperture radar (ASAR) system. Acquiring flood depth 

information can also be difficult to using visible imagery varying vegetation types or 

regularly flooded marsh areas (Rasid and Pramanik 1990, Ramsey III, et al. 2012). One 

solution to this was a comparison of cloud penetrating SAR and ASAR sensors in 

(Ramsey III, et al. 2012), which provided relative water penetration depths in different 

marsh areas in Louisiana. 

Cartography of Flood Mapping 
 

The cartography of flood mapping varies culturally around the world as well as by 

industry and domain. As scientists and planners in South East Asia, with limited 

communication with the product developers, will use the flood product in this study, it is 

important that the style and content display of the flood mapping product be consistent 

with cartographic standards in hydrology and flood mapping. A review of design 

methods and cartographic products for flood mapping and other real time disaster 

information from satellites is included in this section to help guide the use of color 

scheme in the final mapping product.  

While there are many articles that explain flood mapping principles of 

cartography, many recent articles focus on the use of the internet to disseminate map 

information in an easily accessible way that is also user friendly (Carlson & Burgan, 

2003; Gopinath, Ambili, Gregory, & Anusha, 2014), which applicable to flood mapping 

as well as other disasters such as fires and droughts. 
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In 2003, authors Carlson and Burgan reviewed users’ needs in operational fire 

products (Carlson and Burgan 2003). Similar to the Flood Impact Product, the primary 

product in this article focuses on a MODIS 250 meter dataset to estimate daily fire 

danger. While the ‘user needs’ section of the article was dominated by the model input 

information, the authors strongly emphasized the need for high temporal resolution data 

to monitor the rapid change potential of fires. In most cases, easily accessible and user 

friendly information is disseminated through the internet (Carlson and Burgan 2003). 

In (Roth, et al. 2014), researchers focused on the end-user to develop the NOAA 

Lake Level Viewer by first identifying user groups and creating user profiles for nine 

different user types. The nine profiles could be grouped into similar sectors for 

government interests, university/research, and industry users and by how the data would 

be implemented by end users. The Lake Viewer project tests six categories of 

symbolization by water level, with supporting categories of uncertainty and base maps. 

However, the product legend of low and high confidence used in conjunction with lake 

level proved to be difficult to interpret, as the majority of participants 14/18 indicated that 

the confidence legend needed to be explained more thoroughly (Roth, et al. 2014).  

As mapping products are transforming from static representations to dynamic 

updatable formats on online databases, the cartographic expectations for mapping 

products shift based on user needs and the viewing capabilities of the website (Gopinath, 

et al. 2014, Carlson and Burgan 2003, Roth, et al. 2014). In the case of literature of flood 

mapping products and capabilities, the use of false color imagery (Chen, et al. 2013, 

Brakenridge and Anderson 2006) is prevalent, with separate depictions of flooded areas 
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without any backgrounds used to show extent. The false color imagery generally presents 

water as various shades of blue and black, where the darker color blue is deeper water 

(Brakenridge and Anderson 2006, Rasid and Pramanik 1990). Similarly, flood maps may 

use a natural color imagery with the delineated water bodies with a brighter blue color 

scheme to stand out from the imagery (e-GEOS 2011).  

Flood maps created by Eastern researchers give insight into the cartographic style 

commonly seen in flood mapping in the east and Asia, and help to understand what the 

difference is, if any between eastern and western flood mapping conventions.  

In the analysis of the accuracy of 8-day and daily surface reflectance for mapping 

areas in Australia, (Chen, et al. 2013) used a false color composite to begin the visual 

assessment of flooded areas, and stated that the darkness of the color blue in the scene 

was indicative of inundation and water extent.  

 

 

 

 
Figure 3- False Color Composite (Chen, et al. 2013) 

  

 

 

Using the Open Water Likelihood (OWL) algorithm, OWL reports values from 

zero to 100, as the percentage of the pixel that has water. Using this technique, (Chen, et 
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al. 2013) suggested that all OWL values greater than zero were effected pixels, and 

therefore were classified as water. The color ramp presented depicts the percentage of the 

pixel inundated as shades of blue in four categories as follows:  

2-10 11-50 51-99 100 

 

Asia Insurance Review, a website dedicated to Asia’s insurance industry featured 

a map illustrating river deltas in southeast Asia that are vulnerable to flooding, where the 

ocean bodies are white, the vulnerable areas are shown in blue, and the landmasses have 

natural color with topographic relief (Asia Insurance Review 2014). Because this map is 

targeted towards insurance specialists, and not necessarily scientists, the map focuses on 

labeling and highlighting the effected deltas, in a uniform color.  

 

 

 

 
 
Figure 4—Asia Insurance Review Flood Prone Areas in Asia 
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In the Rapid Response Inundation Map Series by the Dartmouth Flood 

Observatory, (Brakenridge, Anderson and Caquard 2004) previously flooded extent 

pixels are shades of blue, while the newer effected areas are bright red. This pattern is 

also seen in a related project for global mapping in near real time (Nigro, et al. 2014), and 

is similar to the DEVELOP Flood Product, where the highest NDVI change pixels are 

orange and red. 

 

 

 

 
Figure 5—Flood Observatory (Brakenridge, Anderson and Caquard 2004) and DEVELOP Flood Product 3D 

Visualization (Doyle et al 2014) use red color scheme 

 

 

 

Conclusion:  
The Normalized Difference Vegetation Index (NDVI) is popular with many 

authors because of its ease of use by having a defined range of expected values falling 

between ± 1 (Sarp 2011, Wang and Qu 2007), and because the index presents less 

problems with scaling and noise than the Red/IR ratio method as observed by (Tucker 

1979). The positive NDVI values generally correspond with healthy vegetation and 

values approaching 0.2 and below are generally considered unhealthy vegetation and 
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other non-vegetative materials (Myneni, et al. 1995, Pettorelli, et al. 2009). However, 

very few articles describe the implications of negative NDVI values outside the realm of 

drought monitoring as a primary study. Because NDVI is a vegetation index, and 

although NDVI scales between ± 1, the negative values that might imply features other 

than vegetation often go undocumented. However, negative NDVI values might answer 

questions to other environmental phenomena such as the presence of water, fire, 

minerals, or urban growth, yet these features are only explanations to the areas of low 

NDVI in otherwise highly vegetative areas. Put simply, values such as 0.2 through 0.9 are 

confidently referred to as the healthiness of vegetation, however, values such as -0.2 

through -0.9 are not simply denoted as ‘unhealthy vegetation’ because while positive 

values all refer to vegetation, negative values refer to many different features. The 

assumption of subtly changing reflectance values due to physical change over time 

advocates the use of a range of acceptable values of NDVI outside of the mean before 

being classified as meaningful physical change. 

Indices used to detect flooded areas are useful to the understanding of NDVI 

decrease values where there may not be flooding. While the current research focuses on 

using NDVI as an exclusive method to determine flood extent, future studies including 

additional algorithms such as OWL (Guerschman, et al. 2011) to determine how much of 

the pixel is inundated would be a useful addition to MODIS based flood mapping at 

coarse resolutions. Further, because flooding can occur in urban areas, the mNDWI index 

(Xu 2006) can support the delineation of NDVI decrease due to urbanization and the 

influx of water into the city.  
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As many authors support the use of layer stacking to product natural color and 

false color imagery, the use of such methods would be useful in the integration of the 

online web-based product, as the basemap imagery does not have the same temporal 

resolution of the new datasets that are used as overlays. Natural color imagery can 

support the flood extent product by providing a visual basis for users to compare area 

product with what the sensor is observing in true RGB color. While some studies use red 

and warm color schemes to symbolize the flood products (Brakenridge, Anderson and 

Caquard 2004, Nigro, et al. 2014), many flood maps use varying shades of blue for water, 

green for vegetation, and browns for bare soils.  
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RESEARCH METHODS 

End-users to scientific products might not have the background knowledge to 

understand how the product was created, and therefore might not understand the limitations 

and capabilities of the product. Associating meaningful information and commonly used 

language in image classification is important to helping users navigate, and to get the most 

benefit from the product. To do this, a comparison study of the NDVI values relative to 

their respective land cover classification for each of the input scenes for the baseline image 

will be completed. This understanding of the expected NDVI values at each land cover 

class and each pixel location will guide the implications for anomalies at those locations 

similar to the method in (Gopinath, et al. 2014). The land cover dataset will come from the 

most recent (2012) MODIS product MCD12Q1, the Land Cover Type Yearly 500-meter 

grid.  

Once values for the baseline image are understood, the NDVI anomaly can be 

classified into meaningful, qualitative classes. Based on initial visual assessment, the scale 

might be streamlined into four sections: Cloud/No Data, Not Flood-Dry, Not Flood-Wet, 

and Flood-Standing Water (Rasid and Pramanik 1990), or into sections that have implied 

meaning based on the color ramp used (Gopinath, et al. 2014, Song, et al. 2004). The 

classifications schemes focus on the segmentation of data into categories, but do not change 

the data itself. A comparison of the classification methods (the original classification, 

standard deviation, equal interval, NDVI decrease) proposed in the reviewed literature 

might suggest an ideal classification scheme for this type of temporal study. While the 
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classification schemes used the in the literature were used to describe changes in NDVI for 

drought, deforestation, or land reclamation, the schemes are not necessarily indicative of 

those phenomena. Rather, the classification schemes are used as a visual aid to assess 

change in a quantity that is visually understandable and can be associated with other data. 

This study seeks to find which classification scheme or interval best defines area effected 

by flooding.  

 

Baseline Image and Anomaly 
 

For the completeness of the study, the baseline image will be regenerated in order 

to capture individual NDVI values from each scene, which is not available with the current 

composite image. The original baseline was produced from 8-day MODIS composites by 

using the MATLAB Time Series Product Tool to take the maximum NDVI value from to 

create 32 day composites, and additional smoothing and filtering to remove remaining 

clouds and noise to average the Terra and Aqua data sets. This product was provided to the 

DEVELOP team by Joseph Spruce, a science advisor for the team, and the producer of the 

original baseline. The baseline image will need to be recreated to calculate the standard 

deviation from the mean at each pixel for the standard deviation classification. The baseline 

will be recreated on this basis, however, the use of the Time Series Product Tool is 

unavailable for this study and therefore results from the other classification types are 

expected to be different than when compared to the original baseline. 
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Figure 6. Original baseline 

 

 

 

 

MODIS daily images (MOD09GQ-Terra/MYD09GQ-Aqua) will be used for the 

daily anomaly study, while 8-day image sets (MOD09Q1-Terra/MYD09Q1-Aqua) will be 

collected for each January in years (2003-2011) to create the baseline composite. The 8-

day images will come from the MODIS sensor on the Aqua and Terra satellites.  The 

MODIS images are downloaded from USGS Earth Explorer. Both Terra and Aqua 

satellites acquire local observations daily, at 10:30 am and 12:10pm respectively (National 

Snow and Ice Data Center; 2015). The baseline composite will be created using the 8-day 

composite imagery with the surface reflectance bands for the near infrared and red 

wavelengths. The 8-day image sets are derived from atmospherically corrected daily 
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images from the Aqua and Terra satellites to Level-2 processed quality. Masking errors 

from scan angles and poor observation coverage, the 8-day composite contains pixels from 

the best L2 (daily) observation within an 8-day period. These pixels are chosen based on 

absence of clouds, high coverage, low view angle, and aerosol loading. While these 8-day 

images have less obvious errors, the surface reflectance dataset provides band reflectance 

for the NIR and RED wavelengths, as well as the supporting quality information to identify 

remaining errors (U.S. Geological Survey; U.S. Department of the Interior; 2014). In 

addition to the removal of pixels identified as poor quality by the QA dataset, the pixels 

containing clouds will also be removed by taking abnormally high values in the RED 

wavelength. Most of the landmasses with the exception of inland water are free from errors 

represented by the quality band.  The 8-day scenes form Aqua and Terra will be averaged 

into a final baseline product, while omitting pixel observations of poor quality.  
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Figure 7.  Quality Band example MOD09Q1- January 1, 2001 

 

 

 

Original Classification—Percent change (Murad and Saiful Islam, Drough Assessment 

using remote sensing and GIS in North-West region of Bangladesh 2011): As described in 

the literature on NDVI anomaly, the NDVI percent change classification calculated by 

subtracting the new image from the old image, dividing by the values of the old image, and 

multiplying that value by 100: (
(𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑤 – 𝐼𝑚𝑎𝑔𝑒𝑂𝑙𝑑)

𝐼𝑚𝑎𝑔𝑒𝑂𝑙𝑑
) ∗ 100. 

While the classification scheme will remain from (Doyle, et al. 2014): 

0 4 15 30 50 75 100+ 
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Standard Deviation Classification: The standard deviation of the pixel values from the 

images that created the baseline will be attributed to an additional image. The use of the 

standard deviation information assumes a normal distribution of observations, and allows 

the observed daily images more flexibility in variance from the mean before being 

classified as wet. The daily images will be compared to the baseline image via the 

associated standard deviation image. By the following logic: 

 If DAILYNDVI <MEAN+SD and DAILY>MEAN-SD If the daily image pixel is 
within one standard deviation of the mean 

o Pixel= 1 Standard Deviation (called 1) OR 

 If DAILYNDVI>MEAN+SD and DAILY<MEAN+(SD*2) If the daily image pixel is 

greater than one standard deviation but less than the max of two standard deviations. 

o Pixel= 2 SD pos (called 2) OR 

 If DAILYNDVI<MEAN-SD and DAILY>MEAN-(SD*2) If the daily image pixel is 
less than one standard deviation but more than the min of two standard deviations. 

o Pixel= 2 SD neg (called -2) OR 

 If DAILYNDVI>MEAN+(SD*2) If the daily image pixel is greater than two standard 
deviations 

o Pixel= 3 SD pos (called 3) OR 

 If DAILYNDVI<MEAN+(SD*2) If the daily image pixel is less than two standard 
deviations 

o Pixel= 3 SD neg  (called -3) 

The classification scheme therefore will have five classes, although the positive SD values 

are unnecessary for flood mapping, the positive values can be made translucent:  

3 SD neg or less 2 SD neg 1 Standard 

Deviation 

2 SD pos 3 SD pos or more 

 

Equal Interval Classification using Percent Decrease (Abbas, et al. 2014, Murad and Saiful 

Islam 2011): Using the percent decrease method, the new classification scheme can be split 

into five equal interval classes to represent how much of the area has changed. However, 

because the data is dynamic, an equal interval classification would have to be based on 

scale to 100% change, but may have to change based on the range of observed values.  
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<20 21-40 41-60 61-80 81-100 

 

NDVI Decrease (Song, et al. 2004): Similar to the Percent decrease method, the scale 

values may require dynamic changes based on the predicted and observed values. The scale 

used in (Song, et al. 2004) will serve as a foundation. 

< -0.25 -0.25 to -0.1 -0.1 to +0.1 +0.1 to +0.25 +0.25 

 

The presented classification schemes from NDVI decrease and equal interval guided the 

use of 5-class system. 

The Daily L2 Product 
 

The daily images are also downloaded from Earth Explorer and processed using the 

change methods described above. However, the current web-based product runs on a server 

that searches for new data from Aqua and Terra and processes it in real time, twice per day 

as it becomes available. The L2 product similarly has quality assurance information to help 

distinguish poor quality pixel observations due to cloud cover and oblique scan angles. The 

DEVELOP real-time product currently does not integrate the quality assurance information 

into the product focusing on the removal of cloud cover, and therefore may have erroneous 

pixels affecting the outcome of the NDVI change analysis. Using a pixel based threshold 

technique, areas with pixels that reflect very highly in the red wavelength (derived from 

the 250-meter MYD/MOD daily product) are removed from the NDVI percent change 

product, and the data from the previous eight observation(s) from Aqua/Terra is used to 

back fill the removed pixels. This method has proved to be successful in the integration of 
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MODIS data at a high temporal speed of twice daily, while removing clouds and providing 

up-to-date information. 

As the baseline image uses the information from the QA band, the daily 

observations will also integrate the use of the QA band as well as the iterative cloud 

masking composite technique.  

 

Supporting data for anomaly detection  
Because NDVI change can be a reflection of many factors as presented in (Nash, 

et al. 2014, Pettorelli, et al. 2009), supporting datasets from the Aqua and Terra MODIS 

daily 1-km fire product (MOD14A1) can contribute to the Flood Extent Product to filter 

out low pixel values associated with high and nominal confidence fires. 

The 2012 land cover dataset will aid in making distinctions on NDVI decrease 

based on flooding or based on vegetation health (Gopinath, et al. 2014). The MCD12Q1 

dataset (U.S. Geological Survey; U.S. Department of the Interior; 2014) provides five 

different land cover classifications for analysis of products with supporting land cover. The 

land cover classification scheme chosen for this analysis was the International Geosphere–

Biosphere Programme (IGBP) classification (18 types) due to the complexity of the land 

cover types in the region. Using this classification is useful in determining NDVI decline 

due to urban reflectance changes. In addition, an association of land cover types with NDVI 

change will help guide future studies on NDVI decrease for those land cover types during 

the flood season. This study will take the mean change values for each anomaly date within 

the land cover class and compare them with the baseline mean and standard deviation 
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values to understand the difference between observed and expected values (eg. The mean 

value in urban areas shows 80% decrease from the mean value in the baseline for August 

1, 2014). 

Permanent Water Mask 
A new, local water mask will be created from the NIR inputs to the 8-day composite 

baseline image. It has been identified (Doyle, et al. 2014) that the currently used water 

mask (Carroll, et al. 2009) MOD44W could have affected the previous accuracy 

assessment since the permanent water has shifted in the past few years, and the supporting 

data from the SRTM that was used to create the product was acquired much earlier in 2001. 

To create the water mask from the composited imagery, the dark pixel values from the NIR 

band will be extracted as permanent water by at each scene and composited into a final 

water mask product. The extracted areas will each be output to new files with binary 

classification that will be added together into one scene. The resulting image will have 

pixel value ranging from 0, where none of the scene contributed to the image report dark 

values at that location, to 40, where all of the 40 input images report pixels having met the 

dark value criteria. Pixel values over with 66% of dark value observations will be 

considered permanent water in the final product. For example, where pixels for all 40 

scenes are rated best quality by their corresponding QA band, if at least 27 scenes have the 

dark value observations, those pixels will comprise the final product. However, not all 

pixels will be rated with an acceptable quality rating for each scene, and therefore they will 

be omitted from the calculation. Future studies will discuss the temporal relevance of 

elevation models and hydrological modeling input variables.  



33 

 

 

 

 

 
Figure 8. Pixel Threshold Based Water Mask 

 

 

 

 

 
 

Figure 9.  MODIS Water Mask Creation with NIR 

 

Date 1 Date 2 

Combined 
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Final changes to the product legend will be determined based on the 

reclassification comparison and accuracy assessment with Landsat imagery. The 

assessment of the four classification schemes will be completed by dividing the NDVI 

anomaly classes into distinct files to be compared with Landsat imagery for the same 

date. 

This research will not interfere with the existing Flood Dashboard products and 

data acquisition scripts, and data will be acquired manually over a subsection of the study 

region, primarily in Cambodia and Vietnam, with only one MODIS tile. The product 

featured on the website may be modified with successful results of this research.  
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ANALYSIS 

New NDVI Baseline and Water Mask 
 

To complete the study, the baseline NDVI scene was recreated. However, because 

of limitations of available software and programming abilities, the baseline was created 

with the same data inputs, and with slightly less processing. The original baseline NDVI 

was produced from four 8-day composites from Aqua and Terra for each January from 

2003 to 2011. The composite scenes were combined using the MATLAB Time Series 

Product Tool (TSPT), where the QA band and other inputs were used to remove sensor 

data irregularities. The TSPT interpolates between the omitted observations to create a 

smoothed distribution of NDVI for each pixel. The maximum NDVI for each pixel is 

assigned from the 8-day smoothed NDVI inputs to create a 32-day composite. The 32-

day composites are averaged into the final baseline with additional noise smoothing.  

The new baseline also uses 8-day composites from Aqua/Terra MODIS, and is 

processed using the R Statistical Programming Language. The near infrared, red, and 

quality bands from each of the 8-day images from Aqua or Terra is read into R and 

transformed into matrices to calculate NDVI. The “best” quality, value 4096 is compared 

with each of the dates, where pixels that do not meet the quality standard are not included 

in the overall calculation. In addition, the red band is used as an extra step to remove 

clouds that are still present after the initial surface reflectance processing to L2 quality. In 

the clouds area considered visible in the red wavelength at reflectance values above 2500 

for the purpose of this study, this value was applied at the same stage as the quality 
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assessment. To take the mean NDVI over all pixels excluding the poor quality and cloud 

observations, three additional matrices were created to count the values of each useable 

observation in the red and infrared bands, and the amount of times a value that location 

has been accepted into the baseline. After all of the images from Aqua and Terra are 

combined into red and infrared totals, the mean NDVI was calculated as the fraction of 

each band over the total of observations at that pixel location. In few rare cases, the 

denominator will be zero, as there may be no ideal observations for that pixel, making the 

division by zero yield a NULL value. Those pixels will be converted into “-2”, as a value 

clearly outside of the possible NDVI range, and therefore easily identifiable to be ignored 

in the processing of anomaly data.  

Because of differences in how the baseline images are processed, it was expected 

that there would be differences between the baseline products. Specifically, because of 

additional processing of no data interpolation and noise reduction in the original (Spruce) 

baseline, the baseline was expected to have a more narrow range of NDVI values than the 

new baseline, which was created solely by masking out potential clouds using the red 

band, and pixels with low QA assessments. The new baseline does not use any 

interpolation between missing data, and therefore some pixels have more usable 

observations than other pixels. Having variable numbers of observations across the scene 

introduces a sample bias, which may be apparent in the product. The anomaly 

classifications used in this study have been created with the Spruce baseline, and the new 

baseline. The new baseline was created primarily for the purpose of using the standard 

deviation classification method, and therefore the Spruce baseline is not available for that 
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classification. The figures in the body of the text refer to the new baseline. Figure 10 and 

Table 1 below explain the geographic differences between the baseline products, as well 

as the cumulative differences between the products.   

 

 

 

 
 
Figure 10 Left Top: Original Baseline Right Top New Baseline. Bottom Center is the difference. 
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Table 1. Baseline Image Statistics 

 

 

 

 

Updating the water mask for use in this study was important for the temporal 

relevance of the flood anomaly products. As has been discussed (Nigro, et al. 2014, 

Doyle, et al. 2014), the MOD44W product is becoming outdated, which can influence the 

accuracy of mapping floods relative to the permanent water bodies. As the MOD44W 

flood product was published in 2009, years of flooding over time can cause terrain 

changes and the addition of new inland water bodies (Carroll, et al. 2009). In this study, 

six years have passed since the creation of the MOD44W and the increase of flooding in 

recent years has made new water bodies, evidenced in the new water mask. 
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Figure 11 water mask comparison.  

 

 

 

The original water mask MOD44W product is a global raster dataset at 250-meter 

resolution. The product came in response to the lack of available water raster datasets for 

use in remote sensing applications at a fine scale; the authors cite eight vector and raster 

datasets with resolution spanning 90 meters to 110 kilometers (Carroll, et al. 2009). The 

majority of the available datasets for mapping inland water have a resolution of 1 

kilometer, with the exception of the Shuttle Radar Topography Mission (SRTM) Water 

Body Detection (SWBD) product at 90 meters. In addition, the authors cite the temporal 

relevance of products having been produced from 1999-2005. The global raster water 
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body dataset MOD44W was created by combining optical data from MODIS, SWBD, 

and the Mosaic of Antarctica (MOA). These datasets were combined in three sections of 

latitude based on the product availability and clarity, as the SWBD product does not 

extend to the poles, and the extent of MOA is 60° to 90° S (Carroll, et al. 2009). Within 

the study area of South East Asia, the MOD44W product relies heavily on the SWBD as 

a base, with MODIS 250 reflectance data to fill in gaps. The SWBD was chosen to create 

the MOD44W water mask from 54°S to 60°N because of its fine spatial resolution and 

the ability for the radar product to penetrate clouds and have a clear view of surface 

properties (Carroll, et al. 2009).  

The new water mask proposed for this specific study area is not in response to 

errors in the original dataset or how MOD44W was created. Instead, the new dataset 

focuses on the temporal accuracy in order to determine flooded areas in recently acquired 

imagery fairly, and is only created for the one MODIS tile in the study area, unlike the 

global MOD44W product. The MOD44W MODIS input information was derived similar 

to the new water dataset, where the number of pixel observations and a percent of those 

observations being considered water are assumed water. Although the anomaly dates are 

current, the new water mask and the baseline NDVI product are not fully up-to-date as 

they are both created with the same years as the original NDVI product from Spruce with 

data MODIS surface reflectance for 2003-2011.  

There are 72 input images from Aqua and Terra during this study period used for 

the baseline NDVI and the water mask. The new water mask was created solely with the 

dark reflectance values from the infrared band, where water is assumed to have a 
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reflectance of 1000 and darker. Similar to the baseline NDVI creation method, the red 

and infrared reflectance images are read into the R Statistical Programming Language as 

matrices and the pixels matching the reflectance criteria are added into one composite 

matrix. Initially, water had to be observed 66% of cases to be considered in the final 

water mask; however, that requirement proved to be too restrictive and eliminated many 

water bodies and river segments due to poor quality by the QA band or by cloud 

interference. Instead of enforcing the 66% criteria, the method required only 24 

observations per pixel to be accepted in the final mask.  This change also proves useful 

where new water bodies have formed in the past few years, when 24 observations 

between Aqua and Terra means 12 observations per sensor and 4 observations per year 

requires that the water only be present for 3 years at the very least.  

Because the new water mask is based on reflectance and no additional datasets, it 

is likely to miss some areas of rivers due to areas where rivers narrow or have small 

islands or islets, and the spatial aggregation can transform the entire pixel into ‘land’. 

While this might be viewed as a drawback, the possible flooding of these areas during the 

wet season may fill the gaps in missing pixels to show a more pronounced river. The 

water masks are shown overlapping in figure 11 above, where the MOD44W is stacked 

above the new water mask, and there is a newly identified water body shown in the image 

subset in the upper right corner of figure 11. 

Figure 12 highlights the areas that are dissimilar between the two datasets. The 

green areas are new water areas, and the red areas are from the MOD44W dataset, which 

are not included in the new dataset. It is visually apparent that the new water body dataset 
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is particularly suited for larger water bodies due to the coarse resolution, while the 

MOD44W water mask uses a 90-meter input, which can detect smaller water bodies 

particularly where smaller rivers feed into the Mekong River. Of the number of pixels in 

the area, 74,777 pixels differ; concluding a .3245% difference between datasets, and an 

overall ‘water’ pixel increase of 1899 pixels at 250-meter resolution means a 474.75 

kilometer2 increase in surface water. 

 

 

 

 
Figure 12 water mask difference 
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Daily Composites 
 

The method used to create the twice-daily composites came from the original 

DEVELOP project, where the author of the present study created a method to combine 

observations from the Aqua and Terra satellites into ‘moving window’-type products. 

The method was created after weeks of experimentation with moving window algorithms, 

averaging, and value prediction to increase the temporal resolution of the DEVELOP 

Flood Extent Product. Previously, the flood extent product utilized an average from Aqua 

and Terra 8-day observations. This was clearly a problem for the ‘near real-time’ nature 

of the flood product, because the product would update after every 8-days. The 

perception of ‘near real-time’ also gave the expectation that the map would update near 

the same temporal rate as the flooding occurs. The 8-day observation time was an 

obvious improvement to static flood maps that are created in emergencies, but rapid 

changes in surface processes could not be viewed, and in the event of sudden increase in 

flooding, the map became obsolete within two days of updating.  

The end-users for the DEVELOP Flood Extent Product are primarily the Mekong 

River Commission (MRC), who manage and maintain the river and the river basin. 

Currently, the MRC utilizes a Near Real-Time River Monitoring Map that updates the 

status of gauge stations along the Mekong River and its tributaries every 15 minutes. To 

complement the water level information from the River Monitoring Map, it was proposed 

that the latency of the product be shortened from eight days to two days or less. 
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The 8-day product was originally used because of cloud cover in the scene 

obscuring the view of flooded areas. The figure below shows four days of consistent 

cloud cover over the study area from Terra during the month of August in the middle of 

monsoon season. These four days, as well as the same four days for the Aqua are 

composited into a ‘current’ scene. This same process was completed for four days at the 

end of May, the beginning of the monsoon season, and four days at the end of November, 

the end of monsoon season.  

 

 

 

 
 

Figure 13 August composite scenes (from left, August 22August 25) 
 

 

 

 

Because of missing data stripes and persistent cloud cover, the use of daily images 

and image averaging was impossible. Instead, the images were stacked in order from 

newest to oldest, with the newest image taking the most precedence. The processing for 

these images was conducted in R Statistical Programming Language. For the Online 

Flood Dashboard, Aqua and Terra images are downloaded from the Land Atmosphere 

Near real-time Capability for EOS (LANCE) NDVI is calculated over each scene. The 

daily NDVI images along with associated red-band reflectance is then processed to into a 

“for-loop” logic, where the red-band reflectance values over 2500 are used to mask out 
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clouds in the corresponding NDVI scene. Areas with no data values are also removed in 

favor of the image preceding the most current image. The values are assigned in each 

image by transforming no data zones into a -300 fill value, and no data for NDVI are 

filled with -2. For each new composite, each row and column are selected to identify 

exact pixel locations. For each location, if the red band pixel reports a less than 2500 and 

greater than -100, and the NDVI pixel reports a value greater than -1.5, and the quality 

band pixel reports a good quality value of 4096, then that the NDVI pixel is considered 

acceptable, and can be incorporated into the twice daily update. If not, the previous 

observation at the same location is searched.  This loop continues for each pixel in the 

scene for a maximum of eight observations, four days. If after the end of the four days the 

pixel has not found an appropriate match the pixel is given a ‘no data’ or cloud fill value, 

shown in the top layer of figure 14. 

 

 

 

 

Figure 14 pixel stacking method 
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The process continues twice every day, as the R-script looks for new data on the 

LANCE server, and processes it into a new image twice every day. For this study, the 

images are downloaded manually from EarthExplorer, and only one image in May, 

August, and November are demonstrated. Figure 15 below shows the NDVI composite 

for the mid-monsoon season observation, with data from August 22-25.  

 

 

  

Figure 15 August NDVI: Note the area to the east of the Tonle Sap Lake appears slightly fuzzy or smeared. This 

is due to haze and thin clouds that are not fully masked. Future updates to the compositing system will 

incorporate the MOD35 Cloud mask. 

 

 

 

 

Change Methods 
 

To monitor change over time, two methods are particularly common: monitoring 

the rate of change in percentages, as well as computing the difference between the images 
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keeping the units of measurement from the original datasets. The percent change method 

is particularly popular because rate of change is generally understood; however, 

identifying a particular threshold for an alert to signal a major change, or the presence of 

the phenomena being measured is particularly difficult. Because setting a threshold for 

values of interest can be difficult, the meaning of the percent change values associated 

with the product are meaningless. The subtraction method is also widely used for in 

change detection in remote sensing. 

In (Spruce, et al. 2011), a minimum 4% NDVI decrease threshold value was used 

to determine areas that were defoliated by moth infestation. The 4% threshold is unique 

to the study in order to apply coarse resolution MODIS imagery to physical changes that 

occur as much finer scales. The 4% threshold in (Spruce, et al. 2011) might otherwise 

translate into a 20% change or greater when using a finer spatial resolution product. Due 

to mixed pixels over large forested areas, the 4% threshold is useful for monitoring slight 

changes in defoliation. 

On the other hand, (Murad and Saiful Islam, Drough Assessment using remote 

sensing and GIS in North-West region of Bangladesh 2011) used a minimum 1% NDVI 

decrease threshold to monitor drought, although the highest decrease classification 

stopped at 30% due to the predicted risk of the observations at the NDVI decrease 

locations in relation to meteorological values from Standard Precipitation Index.  The 

most severe drought assumes an NDVI decrease of 30% in the Bangladesh study area.  

In the literature search, there were very few articles that define an NDVI change 

value or NDVI range associated the with phenomena to be mapped. Using NDVI percent 
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change for mapping floods poses a particularly interesting challenge because of the 

assumptions that are introduced based on the physical characteristics of NDVI as well as 

the surface characteristics of IR and red reflectance. Presenting the equal interval 

classification of expected values from (Abbas, et al. 2014), and the original flood 

mapping product are shown below. These images contain the exact same values, but are 

symbolized differently based on flood mapping convention, and varying intervals.  
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Figure 16 Top: Original DEVELOP classification Bottom: Equal Interval 

 

 

 

What is immediately striking about the two is the color scheme used is the 

DEVELOP product’s uses of unrelated colors to create distinctly different classes at each 

interval, while the Abbas classification uses a light to dark blue color ramp, which blurs 

the boundaries of each interval. In contrast, the use of distinct colors through the scene 

may be useful to distinguish between intervals, yet might still be confusing halfway 

through the color ramp when the values switch to yellow.  
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To create the percent change images, the composite images created in an earlier 

step are processed in R with the baseline NDVI with the percent change formula. 

The application of the differencing method used in (Song, et al. 2004) depicts 

exactly how much change occurred at each pixel with the same units of measurement, 

which can be more simple to explain to users than unit changes and expectations for 

percent variations. This is also useful in the case previously mentioned, where low 

baseline values such as 0.02 can yield very high rates of change. The difference is also 

the easiest to compute where the baseline image matrix is subtracted from the anomaly 

matrix, and the product is converted back into a raster. 

 While the differencing method is useful for determining change, and finding 

decrease in NDVI, the problem of choosing an appropriate threshold still exists, and is 

domain specific. This study used the color ramp and interval classifications from (Song, 

et al. 2004), which was originally created to monitor drought areas. The classification 

shows that the interval ramp used in (Song, et al. 2004) is over saturated, and specific 

areas of change are difficult to distinguish.  
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Figure 17. Song Interval Color Scheme 

 

 

 

 

Another common statistical method to describe the deviation from an expected 

value is by calculating the standard deviation of the mean of observations. Using standard 

deviation produces an expected a range of values in relation to the mean observation. 

Tracking the increase of vegetation in a former mining area (Sarp 2011) visualized 

change from 1989 to 2000 ± one standard deviation. Using the standard deviation would 

be applicable in this case to reduce noise caused by slight variations from a mean value.  

The standard deviation classification allows greater movement within each standard 

deviation without the area automatically being flagged as ‘changed’.  This is important to 

consider when there are eight years of observations to create the baseline, and the terrain 
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may change slightly over time within each January—it is possible to detect percent 

change and NDVI decrease in the January twice-daily observations of the current year. 

Slight changes have the potential to overestimate flooding when all decreases in NDVI 

are considered flooded.  

The Standard Deviation classification required more processing than the simple 

percent change formula or the simple subtraction, as this classification requires an 

additional dataset, a raster representing the geographic standard deviation of NDVI in the 

study area. While R Statistical Programming Language is primarily for calculating 

statistics, certain functions such as calculations of a group of raster images can take hours 

or days to complete, depending on the number of pixels in each image. There is a 

function to calculate the standard deviation of a raster stack, but because of time 

constraints, the standard deviation was calculated manually. The baseline image is used 

as the mean to compute the variance from each of the 72 8-day baseline input. After all of 

the images are converted to matrices and computed into the variance matrix, the square 

root of the variance matrix is taken to create the standard deviation matrix, which is 

converted into a raster.  
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Figure 18.  Standard Deviation Raster 

 

 

 

Processing the daily images with the standard deviation classification required a 

logical formula to calculate which standard deviation class the pixels belonged. To 

process this classification, the daily image, baseline mean, and standard deviation from 

the mean rasters are read into R and transformed into matrices. For example, in each cell 

in the daily image matrix, if the value of the cell was less than the mean plus one standard 

deviation, and more than the mean minus one standard deviation, the value of the 

anomaly classification would be given 1, for one standard deviation. This process 

continues throughout the scene for ±3 standard deviations.  
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Figure 19.  1-3 Standard Deviation Anomaly Classification 

 

 

 

Using one standard deviation from the mean unsurprisingly did not present any 

real evidence of flooding, particularly because it merely reports values similar to the 

baseline image. Therefore, three or more standard deviations from the mean, which is far 

beyond the expected values for January, were calculated using the same logic. 
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Figure 20 3, 6, 9 Standard Deviation Classification 

 

 

 

The idea of using more than three standard deviations is confusing to most 

because generally standard deviations are referred to in terms of 1,2, or 3 standard 

deviations from the mean, or in cases with minor changes, half and quarter standard 

deviations can be used, and is a standard classification option in ArcMap. When three 

standard deviations encompass 99% of expected values for the January baseline, values 

falling within three standard deviations could have occurred in the month of January, and 

to observe values falling within the norm is not worth nothing. Using more than three 

standard deviations looks for values that are abnormal for January, reducing effects of 

small amounts of variation that is possible within the dry season. Using more than three 

standard deviations requires that the data bear very little resemblance to the original 
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dataset, as it is expected that the surface properties of land in August would not resemble 

the surface properties of January. Using this method should eliminate reports due to small 

variations of land surface due to seasonal effects, and focus on areas that are highly 

dissimilar from the January baseline image. This idea can be explained in a calendar 

format, where we expect a certain range of NDVI values from each month. If the a 

‘baseline’ were calculated for each of the 12 months, there would be a frequency 

distribution for each month; August values might be several standard deviations away 

from the January values. Values deviating from one month might better characterize 

another month, as extremely low NDVI values are completely probable for August, but 

unlikely for January.  

 

 

 

 

Figure 21 Bell Curve (modified from Mathisfun.com) 
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Land Cover IGBP and Fires Product 
 

Land cover datasets are commonly used as supporting information or a principal 

analysis datasets in remote sensing of land surface processes (Gopinath, et al. 2014, 

Murad and Saiful Islam, Drough Assessment using remote sensing and GIS in North-

West region of Bangladesh 2011). The analysis of land cover can vary relative to the type 

of study and the importance land cover has relative to the datasets. In addition, because 

land cover can be characterized in many ways, and derived from various datasets, the 

type of land cover classification product and temporal relevance is important to relate 

surface characteristics to the principal data of the study.  

For this study, a MODIS georeferenced 500-meter land cover classification 

product was used. In order to ensure that appropriate pixel registration would not 

introduce error into the study, the MODIS land cover product was chosen over other land 

cover datasets.  The Aqua/Terra combined MCD12Q1 has five land cover types data 

subsets from the International Geosphere Biosphere Program (IGBP), the University of 

Maryland, MODIS LAI/fPAR, MODIS Net Primary Production (NPP), and Plant 

Functional Type (PFT). These land cover types can be useful for specific applications and 

areas, and have different of classes and vegetation types. See table 2 for a listing of land 

cover classes with each classification scheme. 
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Table 2. MCD12Q1 Land Cover Classes 

 

 

 

 

 

The scheme used in this project was the IGBP primary land cover classification 

from 2012. This product was chosen based on its temporal relevance and increased 

spatial resolution compared to other land cover datasets such as the Global Land Cover 

Characterization GLCC, which was a 1km global product created in 2000. In addition, 
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the increased number of classes from the IGBP over there four classification schemes in 

the MODIS product is more useful to understand the variations of NDVI within each land 

cover type in the varying topography of the landscape. The IGBP has 17 land cover 

classifications as shown below and in table 2. The IGBP dataset is used in this study to 

identify NDVI characteristics of each land cover type within the baseline, explained in 

the next sections. 

 

 

 

Figure 22 Map with land cover and 17-class legend 

 

 

 

Ancillary datasets to support the understanding and limitations of data products 

are especially important to this study, as NDVI decrease can by associated with many 

variables, regardless of the season. For instance, fires can cause a drastic decline in 
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NDVI, and post fire areas experience declining NDVI for weeks following the fire event 

(Goetz, Fiske and Bunn 2006, Peckham, et al. 2008). Because fires and other factors 

other than flooding can contribute to decreasing NDVI, it is important to integrate many 

datasets to remove bias associated with the assumption that flooding is the cause of 

NDVI decrease. This will also support the NDVI decrease-flood assumption, as the size 

of the area affected from flooding during the flood season is much larger and more 

noticeable from space than fires in this region. As an example for how additional datasets 

can support the NDVI decrease from flooding assumption in the area, the addition of fire 

data from the Aqua and Terra MODIS daily 1-km fire product (MOD14A1) was added to 

the final classification scheme. Future work on the product visualization and 

classification should also incorporate more relevant datasets as they become available.  

The IGBP classification scheme is used in this study to understand the 

relationship between NDVI of the baseline image and land cover at each NDVI location. 

This association will guide future research towards creating masks based on expected 

flooding of particular land cover classes as well as finding trends in NDVI before, during, 

and after the flood season. The association of the 2012 IGBP land cover dataset was 

completed in the R statistical programming language, where the mean and standard 

deviation values of the baseline NDVI were calculated for each land cover class as 

follows: 
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Figure 23. Script to calculate the mean baseline NDVI at each land cover class 

 

 

 

With the following result:  

 

 

 

 

Figure 24. The mean and standard deviation values of Baseline NDVI at each land cover class 
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The means and standard deviations for each land cover show the expected values 

for each class. It is generally agreed that classes such as urban areas, water, snow/ice, and 

barren land will have very low NDVI values. One of the limitations of this chart is 

uncharacteristically high values for urban areas, which may be due to mixed pixels and 

the proximity of urban areas to healthy vegetative areas near water bodies. The mean 

NDVI for each land cover calculation was used again for each daily observation.  

 

 

 

Figure 25. The NDVI for each daily observation for land cover 

 

 

 
  

The NDVI for water bodies are characteristically low, the only land cover class 

with a consistently negative NDVI in this study, which supports the idea that water has a 

low NDVI value. Specifically, the means for all observations suggested that water has a 
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consistently negative NDVI value. More statistical tests are needed to understand the 

relevance of the change within each land cover class during the observations dates.   

 

 

 

 
Figure 26. Spectral Signatures of Water and Vegetation 

 

 

 

Negative values for NDVI in the water land cover classification suggest that water 

has a negative NDVI, which is further supported by the spectral signatures figure above, 

and therefore areas outside the permanent water land cover could be considered flooded 

when the NDVI decreases to negative values. Based on a review of different spectra that 

are common in the area and are visible at the 250-meter resolution, water is the only 

likely negative NDVI value, although at finer spatial resolution other features such as 

barren soils, concrete, or snow might have a negative NDVI value. Without comparing 

the daily data to the baseline date, only negative values are selected in each of the 

observations. 
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Figure 27. Negative NDVI from Composite Dates May 26-29, August 22-25, November 25-28 
 

 

 

Validation of Classifications 
 

The classification intervals attempted to describe the amount of the change from 

the baseline in terms of the percent difference, the difference in NDVI values, and the 

amount of standard deviations from the mean. In each case, the minimum value to report 

a difference is noted in table 3 below.  
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Table 3. Classification values  

 
Scheme Minimum Values to Detect 

Flood 

Maximum Values 

Percent Change (Doyle) 4% Decrease 100% Decrease 

Equal Interval (Abbas) 20% Decrease 100% Decrease 

Differencing (Song) Difference -0.1 and Less Difference -0.25 and Less 

Standard Deviation (Sarp) 2 Standard Deviations Below the 

Mean 

9 Standard Deviations Below 

the Mean 

 

 

 

The classifications are compared with the negative NDVI map from figure 26, as 

one measure to validate the classifications against the areas of likely flooding. A 

limitation of this accuracy assessment and the following accuracy assessment of the 

proposed classification is the lack of ground truthing in the area. As the negative NDVI 

values are all assumed to be water based on the previous section, this serves as a useful 

first test to determining which classification is more closely related to flood water, and 

which intervals are more useful for matching with the negative NDVI flood region. 

Figure 28 below shows a chart of the accuracy results compared to the classification, as 

well as the maps of the negative NDVI overlap with three classifications with the highest 

Producer’s and User’s accuracy.  

The accuracy assessment was completed in R and compared the entire pixel 

population of the classifications to the entire pixel population of the reference dataset. 

The accuracy assessment was conducted by converting the negative NDVI values and the 

classification values of interest into new binary matrices of ‘flood=1’ or ‘not flood=0’. A 

new ‘match’ matrix is created where both matrices are added to create values ranging 

from 0-2, and 2=match. Producer’s accuracy is defined as the ratio of matches or true 
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positives to the number of actual observations from the reference dataset; User’s accuracy 

is defined at the ratio of true positives within the classification.  

 

 

Figure 28. Accuracy Assessment R Script 

 

 

 

 

Figure 29. Accuracy by Classification Scheme 
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The accuracy from the 100% and more decrease levels are more closely 

associated with flooding based on the negative NDVI reference data. The 100% change is 

much more narrowly confined to the floodplain in contrast to the -0.25 decrease method 

from (Song, et al. 2004) and the standard deviation method from (Sarp 2011), where the 

flooded areas are accurately, but not precisely defined compared to the negative NDVI 

‘flood’ areas. Further, the 4-100% decrease range matched less than 1% of the flooded 

areas, and therefore are not useful classes for this purpose and spatial resolution. 

 

Final Proposed Classification 
 

Because this ground truthing is not available, the classification validation is 

limited to the data sources available for that location, proximal to the time of acquisition 

to the dataset to be validated. The nature of the composite dataset poses a special problem 

for validation because of cloud cover in the area. The composite dataset was created by 

removing the clouds and backfilling the dataset with data from previous dates. This is a 

useful method for monitoring floods in near-real time, but poses difficulty when 

comparing it with imagery from a single date.  

Based on the accuracy assessment from the previous section, it is clear that the 

100% decrease interval is the best for classifying floods in the region, while the 4-100% 

is not useful for mapping visible flooding. This assessment suggests the creation of a new 

classification scheme with only two classes: ‘wet’ and ‘flooded’, where the ‘wet’ areas 

are defined from the 75% interval class as it is approaching the 100% interval, but does 
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not fully meet the criteria for visually flooded areas. Using the 75% interval is useful 

where mixed pixels or canopy cover can underestimate the amount of water on the 

ground, and provides an alert to areas that may become flooded. The 100% interval range 

can be classified as confidently flooded based on the assessment with the MODIS 

negative NDVI data. As values can far exceed the 100% interval into 200% and 300% 

decrease, future work may help to determine what larger decreases in NDVI mean for the 

relationship with flooding. At the same time, an analysis of the 4-50% classes should be 

assessed for evidence of flooding in subpixel areas or change due to natural variation, this 

might be done using the Open Water Likelihood method previously mentioned in the 

literature to determine what percent of the pixel is likely to have water. 

The interval classification was created for all processed data with QGIS and 

ArcMap software, with the exception of the standard deviation classification. The new 

classification does not require any additional processing because it is the same data that 

was used in the Doyle and Abbas classification, but with fewer intervals. For integration 

into the Online Dashboard the data can be binned and reprocessed into two distinct 

categories for ease of viewing and downloading the product. Similarly, an earlier iteration 

of the DEVELOP product used the actual percent change values but were classified 

according to the six interval categories. Using the actual decrease values significantly 

slowed drawing time on the website, which was a major problem when panning and 

zooming in on features in the image, which lead the team to transform the values in the 

image to match the distinct interval categories. Additionally, further simplification of the 
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flood extent product will increase the drawing and loading time improve the use of the 

product on the website.  

 

 

Figure 30. 75/100% Flood Product with imagery from ArcMap ‘Imagery with labels’ basemap. The Online 

Product will appear with a choice between labeled Google Earth Imagery, or Google Maps vector features 

 

 

 

While this product is a departure from the original classifications suggested, the 

use of two classes allows the viewer to more easily interpret the differences between two 

colors of the same family rather than a spectrum of colors, or a color ramp with 

indistinguishable differences between intervals. In addition, the descriptive naming 

eliminates the need for the user to have any knowledge of the scientific process that 

served to create the data, simply answering the question of whether or not an area is 

flooded, as expected with a flood product.  
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Validation against MODIS and Landsat 8 
 

The August 25 observation 100% decrease product was validated against the 

MODIS Negative NDVI again, as well as dark pixel values from MODIS surface 

reflectance band 2 infrared composite, and a Landsat 8 observation. Because of persistent 

cloud cover during this time, and 16-day revisit cycles of the Landsat 8 sensor, it was 

difficult to find an appropriate date to compare the classification for the August 25 

observation. The closest date to the August 25 observation from Landsat 8 is September 

9, 2014, which has been characterized as having 37.42% cloud cover in the scene. 

Because of the existing cloud cover in the reference dataset, the validation results were 

expected to be lower than if the full scene was clear. The ideal Landsat scene date for 

August 24 reports 60.94% cloud cover, where the clouds completely obscure flooding in 

the area.  
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Figure 31. Landsat Scene with the Proposed Classification  

 

 

 

The validation process for the MODIS Negative NDVI (composite), MODIS IR 

Surface Reflectance (composite), and Landsat 8 IR (not atmospherically corrected) was a 

similar process as explained when each of the classification intervals were compared to 

the Negative NDVI.  The percent change image was read into R and converted into a 

matrix of 1s where the decrease was 100% or more, and 0s for everything else. The dark 

pixel threshold value for the MODIS IR Surface Reflectance was less than 1,000, and the 

dark pixel threshold value for Landsat 8 IR was less than 11,500. In both IR bands, zero 

values were ignored as background values. This method is effective for matching all of 

the pixels in the scene reducing bias in selecting how many pixels are counted and 

assessed, or selecting the sample region. With the exception of the Landsat 8 scene, 

which is a spatial subset of the overall study area, all classified pixels were compared 

with their counterparts in the reference datasets. The Landsat 8 scene however has a 

spatial bias as the Landsat pixels were down sampled to the MODIS 250 meter resolution 

for pixel comparison, and the extent—pixels with no data—were added to match the full 

extent of the MODIS tile.  
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Figure 32. Accuracy Assessment Graph 

 

 

 
Table 4. Error Matrix   
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Because of the real-time nature of this dataset, very few opportunities exist to 

validate against other datasets. The Landsat 8 data is most commonly used for this 

purpose due to its relatively high resolution and frequent revisit times, however persistent 

cloud cover remains a problem for comparison. One solution for future validation 

attempts would mask out areas with clouds and only compare areas where the surface is 

exposed in both datasets. Future validation efforts will involve comparing the 100% 

decrease threshold with the Near Real-Time Global Flood Mapping Product (Nigro, et al. 

2014). 
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DISCUSSION 

Several components of this study required an understanding of the physical 

principles of land surface processes, as well as remote sensing and specialized data types 

in order to streamline an existing flood detection product to be used by a wider user base.  

To do this research, basic programming was necessary to compute the relationships 

between large images sets, to extract information about image relationships, and to 

transform reflectance data into meaningful, descriptive information.  

Land Cover Information Integration with NDVI Decrease 

The use of land cover in this study was pivotal in the creation of the new flood 

classification product based on NDVI percent decrease. Land cover can be used as a 

mask for flooded areas that are highly unlikely to flood due to their proximity to rivers or 

waterbodies that are prone to overflow. In addition, while floods might occur in land 

cover types such as deciduous broadleaf, forest density and canopy cover may obscure 

the area to be detected by the sensor. This is particularly important at the coarse spatial 

resolution where forests boundaries and gaps are indistinguishable.  

This study used the IGBP land cover classification based on the amount of 

available classes to begin to have a clearer understanding of the expected NDVI, also 

known as a ‘greenness’ index. Future research on the use of land cover for flood mapping 

in this region might also integrate the Leaf Area Index, which is a measure of leaf 

density, to determine an appropriate threshold where the sensor would be able to detect 

floods in forests. Incorporating an index such as the leaf area index as well as ground 
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observations can help to determine the how mixed pixels can be categorized for flooding, 

as this principal study seeks to find very clearly defined flood boundaries at 250 meter 

resolution. NDVI decrease due to mixed pixels might be due to flooding underneath 

sparse canopy, while NDVI decrease in dense vegetation at a coarse spatial resolution is 

unlikely to indicate flooding, but an actual change in vegetation health. Focusing more on 

the sensor parameters, the Aqua and Terra satellites have opposite orbital paths, which 

can allow the sensors to see physical features from an opposing perspective.  

Three land cover classes have been identified as having a mean NDVI value of 

below 0.2: Snow/Ice and Barren Land generally have low NDVI, but also have variability 

even during the dry season observations, although the results from the standard deviation 

calculation might be skewed by cloud contamination. In this study area, water is the only 

land cover class with a mean negative NDVI value, which indicate that negative values 

might be a characteristic for water overall. During the summer months, the snow and ice 

classification dropped just slightly for as a possible indicator for melt or increased surface 

water from rainfall.  

Further study on these variations based on ground observations more very high 

resolution imagery are necessary to understand the differences between seasonal trends 

and changes in land cover and major events such as flooding in the region. Because the 

NDVI baseline consists of January only observations for peak greenness, NDVI values 

are expected to decline through the year, and it is important not to confuse small rates of 

change from seasonality with flood events. Preliminary steps in the future study would 

take the weekly mean of the land cover classes to track variation over time. Sudden, 
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persistent drops in NDVI for the land cover during the monsoon season, and a recovery at 

the beginning of the year might indicate the presence of flooding, which will appear 

spectrally different for each land cover type.  

The use of negative NDVI to support the percent change classification might 

seem redundant. If negative NDVI explains the presence of water, then perhaps the 

percent change classification is not necessary. Particularly in this case, the 75% decrease 

class is outside of the scope of negative NDVI, signaling a large amount of change in the 

greenness of an area, while not fully asserting that the area is flooded. More broadly, the 

use of percent change lends itself to being able to capture change in mixed pixels, instead 

of an exact value. Many anomaly studies are used in cases where the physical phenomena 

are not visually apparent such as drought. Where the canopy cover is minimal in crop 

fields commonly found in the area, flooding is easily observable from space using surface 

reflectance bands, however areas that may flood in the near future are less noticeable and 

require additional processing as seen with the NDVI change method.  

Furthermore, the area of interest consists primarily of cropland that is 

intentionally flooded as part of regular farming practice. A more thorough understanding 

of crop types and associated farming schedule will help to separate areas that are 

intentionally flooded from living spaces and towns in close proximity to farmlands.   

The classification examples in this text depict information from the same three 

dates in a variety of different ways to demonstrate how visualization and categorization 

of a product can drastically change user perception of the product utility. All of the 

classification examples remained quantitative, explaining ‘how much’ but not ‘why’. No 
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color change or grouping could provide enough meaningful data for users to understand 

the same information in the same way. Because this product used NDVI as the only 

variable, it is particularly susceptible to error during dry seasons, when drought is 

common, which will then be assumed flooded in a flood related product.  

The percent change product is particularly useful in this case, as the change 

calculation brings uniformity to the whole study region. The NDVI decrease value of 100 

and more very closely match water categorized from surface reflectance and negative 

NDVI values without comparison to a baseline.  

Flood Mapping Literature for the Visualization of the Percent Change Product 

Many of the flood maps reviewed focus less on the input data and more on the 

purpose of the product to explain where floods exist. In doing so, flood maps often have 

binary classifications of flooded/not flooded areas, or incorporate a second component 

entirely such as flood depth (Lant 2013), or previous flood extent (Brakenridge, 

Anderson and Caquard 2004).  

Users might be confused with the variable interval boundary lines and what that 

means for the status of water in a six-interval classification product when they are used to 

using only one class. Further, while the subtle changes in blue shading are also 

undesirable, the use of two separate color ramps—dark blue to green, then yellow to red 

might also pose a challenge to users. Conversations with two domain experts in the field 

of remote sensing and spectral indices revealed that because of the amount of features 

classified in the study area, it was difficult to distinguish background from mapped 

features, and which areas were actually flooded. However, because the original 
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classification used very distinct color intervals, classes were much easier to distinct, and 

patterns could be found in the image. One expert noted that there was no distinct pattern 

in the scene; flooding should occur very close to the water bodies, and that none of the 

classifications were usable because they all mapped features in all regions of the study 

area. Because the proposed product eliminates many decrease classes, formal testing on 

user perception of color use is less necessary, as only two distinct colors will be used to 

define flooded areas and areas that might soon become flooded. When asked about the 

final classification, both reviewers noted that while the descriptive classification based on 

two of the percent decrease intervals was visually more appealing. It was also noted that 

the small regions of still classified pixels very far from the Mekong River and Tonle Sap 

Lake were ‘noise’ and it was suggested that a filter over the scene be used to remove very 

small classified areas.  

Flood maps generally have a narrowly defined purpose which dictate their use and 

input data such as current information emergency response or historical data for flood 

risk mapping or land use planning. Flood depths (Lant 2013) provide a useful dynamic to 

flood maps to give the user specific information about the inundation level and the type 

of risks that exist in that area. However, mapping flood depth can be difficult when the 

elevation model in use is outdated or has a much more coarse spatial resolution than the 

extend product. Future efforts will involve the integration of flood depth information for 

the 75%-‘wet-not flooded’ and 100%-‘flooded’ classifications to calibrate the product to 

reduce over or under detecting flooded area in deep or shallow terrain.  
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Understanding Baseline NDVI values 
 

The difference from the baseline method described in (Song, et al. 2004) was 

expected to yield a product that closely matched flooded areas, based on the amount if 

decline experienced from the baseline date. However, as the observations dates showed a 

uniform decline throughout the scene, the differencing method was not precise enough to 

explain flooding as threshold difference from the mean values. This finding was also 

consistent with the standard deviation, where there is a uniform decline in the baseline, 

but the intervals defined did not clearly explain any flooding in the region. The percent 

change method might have been an exception in this case due to the many intervals, 

which explained the amount of change at each level.  The baseline NDVI values ranged 

from -0.3 to 1 during peak greenness; the recalculation of the baseline mean values was 

not beneficial without the additional grouping by land cover classes. Flooding due to 

deviations from the base values cannot be assumed without additional comparison with 

land cover classes and reference datasets. While the differencing and standard deviation 

methods failed to accuracy classify flooding, only one class of the percent change 

intervals was able to classify flooded areas accurately and precisely.  

Creating the new descriptive classification will help users to incorporate the new 

mapping product with other datasets such as historical flood maps, precipitation 

monitoring, hydraulic models and other information of interest. 
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CONCLUSION 

To monitor flooding in the lower Mekong River Basin, a near-real time NDVI 

percent decrease based Flood Extent Product was developed to be hosted on an online 

Flood Dashboard by the NASA DEVELOP team. The real-time product was designed to 

update twice per day with 250-meter resolution from MODIS on the Aqua and Terra 

satellites with classification intervals of 4, 15, 30, 50, 75, and 100% change from a mean 

baseline value from years of January observations. Low NDVI values are commonly 

associated with unhealthy vegetation, barren land, snow and water, which makes NDVI 

decrease an alternative to measuring flooding directly. However, using NDVI presents an 

additional problem for users who have little or no understand of the implications of NDVI 

or associated change from a baseline. Further, the interval classifications presented in the 

original product explains all features in the image, and not an exact event. To increase the 

usage and understand of this product, the classification intervals were compared with other 

commonly used classification schemes to monitor flooding.  

While NDVI decrease can be associated with many factors, studies involving NDVI 

change generally focus on narrower amounts of change. Small amounts such as 4% change 

for defoliation due to moth infestation (Spruce, et al. 2011) and 30% maximum observed 

decrease from drought (Murad and Saiful Islam, Drought Assessment using remote sensing 

and GIS in North-West region of Bangladesh 2011), -0.25 difference for drought mapping 

(Song, et al. 2004) are common, but not universally applicable. This study is unique in 

focusing on higher rates of change as seasonal minor variations are expected. 
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This study concluded that by land cover type, water consistently has a negative 

NDVI unlike any other land cover class, and higher rates of NDVI change can be associated 

with the presence of water in areas that regularly have healthy vegetation, particularly 

during the flood season. This study also provides opportunities for future studies in flood 

mapping in the region using additional land cover datasets such as LAI, and using elevation 

models to derive flood depth.  
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