
Conditional Classification: A Solution for
Computational Energy Reduction

Ali Mirzaeian∗, Sai Manoj∗, Ashkan Vakil∗, Houman Homayoun†, Avesta Sasan∗
∗Department of ECE, George Mason University, e-mail: {amirzaei, spudukot,avakil, asasan}@gmu.edu

†Department of ECE, University of California, Davis, e-mail: hhomayoun@ucdavis.edu

Abstract—Deep convolutional neural networks have shown
high efficiency in computer visions and other applications.
However, with the increase in the depth of the networks,
the computational complexity is growing exponentially. In this
paper, we propose a novel solution to reduce the computational
complexity of convolutional neural network models used for many
class image classification. Our proposed technique breaks the
classification task into two steps: 1) coarse-grain classification,
in which the input samples are classified among a set of hyper-
classes, 2) fine-grain classification, in which the final labels are
predicted among those hyper-classes detected at the first step.
We illustrate that our proposed classifier can reach the level of
accuracy reported by the best in class classification models with
less computational complexity (Flop Count) by only activating
parts of the model that are needed for the image classification.

Index Terms—Hierarchical clustering, convolutional neural
network, computational complexity reduction

I. INTRODUCTION

The research and development of Deep Neural Networks
(DNNs) combined with the availability of massively parallel
processing units for training and executing them, have sig-
nificantly improved their applicability, performance, modeling
capability, and accuracy. Many of the recent publications
and products affirm that the state-of-the-art DNN solutions
achieves superior accuracy in a wide range of applications
compared to the outcome of the same task that is performed
by other naı̈ve techniques [1–5]. DNN models are specially
powerful for solving problems that either have no closed-form
solution or are too complex for developing a programmable
solution.

The trend of development, deployment, and usage of DNN
is energized by the rapid development of massively parallel
processing hardware (and their supporting software) such as
Graphical Processing Unit (GPU) [6], Tensor Processing Units
(TPUs) [7], Field Programmable Gate Arrays (FPGAs), Neural
Processing Units (NPUs) [8–17], and many-core solutions for
parallel processing of these complex, yet massively paralleliz-
able models.

The ability to train and execute deeper models, in turn, has
resulted in significant improvement in the modeling capability
and accuracy of CNNs, a trend that could be tracked from early
CNN solutions such as 5-layer Lenet-5 [18] for handwritten
digit detection, to much deeper, complex, and fairly sophis-
ticated 152 layer ResNet-152 [5] used for 1000-class image
classification with an accuracy that significantly surpasses that
of human capability. Generally, going deeper (or wider) in
CNNs improves their accuracy at the expense of increased
computational complexity. Increasing the model complexity
reduces the range of hardware that could execute the model
within an acceptable time and could justify the extra energy

consumed for executing a deeper yet more accurate model
[19]. Hence, many researchers in the past few years have
visited the problem of reducing the computational complexity
of CNNs [19–25] for widening their use and applicability.

In this paper, we propose an efficient solution to reduce the
computational complexity of CNNs used for many-class image
classification. Our proposed model breaks the classification
task into two stages of 1) Clustering, and 2) Conditional
Classification. More precisely we transform a difficult K-class
classification problem into a K1-group clustering and in which
each cluster contains Ci classes i.e., K =

∑K1

i=1 Ci. The K1

group (a.k.a Hyper-Class) clustering problem is solved by a
convolutional encoder (first-stage of our proposed model). In
this model, each Hyper-class is composed of a set of classes
with shared features that are closely related to one another. The
decision of which classes are grouped into the same cluster
is made by applying the spectral clustering algorithm [26] on
the similarity matrix obtained from the K-Nearest Neighbour
algorithm (KNN) [27] on the latent spaces corresponding to
the input samples. After validating the membership of an input
image to a cluster, the output of the encoder is pushed to
a corresponding class classifier that is specifically tuned for
the classification of that hyper-class. By knowing the hyper-
plane (cluster-plane), the complexity of detecting the exact
class is reduced as we can train and use a smaller CNN when
classification space (the number of classes) is reduced.

To generalize the solution, we formulate a systematic trans-
formation flow for converting the state of the art CNNs (origi-
nal model) into a 2-stage Clustering-Classification model with
significantly reduced computational complexity and negligible
impact on the classification accuracy of the overall classifier.

II. RELATED WORK

The problem of model complexity reduction has also been
visited by many scholars. A group of related previous stud-
ies has addressed the problem of reducing the average-case
computational complexity by breaking the CNN models into
multiple stages and giving the option of an early exit using
deploying mid-model classifiers [19, 28, 29]. For example,
in [19, 30, 31] it was shown that the average computational
complexity of the model (over many input samples) could
be reduced by breaking a large CNN model into a set of
smaller CNNs that are executed sequentially. In this model,
each smaller CNN (uCNN) can classify and terminate the
classification if an identified class has reached a desired and
predefined confidence threshold. Similarly, in [28], a Condi-
tional Deep Learning Network (CDLN) is proposed in which,
fully connected (FC) layers are added to the intermediate
layers to produce early classification results. The forward pass



of CDLN starts with the first layer and monitors the confidence
to decide whether a sample can be classified early, skipping the
computation in the proceeding layers. While CDLN only uses
FC layers at each exit point, BranchyNet [29] proposes using
additional CONV layers at each exit point (branch) to enhance
the performance. Unfortunately, this group of solutions suffers
from 2 general problems: 1) although, they reduce the average-
case computational complexity, their worst-case complexity
(when all uCNN or additional FC and CONV layers are
executed) is worse than the state of the art’s non-branchable
solutions. 2) Introducing many additional Fully Connected
(FC) layers makes them suffer from a parameter-size explo-
sion as FC layers require a far large number of parameters
than CONV layers, worsening their memory footprint. Our
proposed solution addresses the shortcomings of these models
by making the execution time uniform across different input
samples, keeping the FC layer memory footprint in check,
while reducing the computational complexity of the model.

On the other hand, utilizing hierarchical structures for
training and inference phase of Convolutional Neural Net-
works for improving their classification accuracy has been
studied and addressed in many previous works [19, 20, 22–24].
However, the focus of most of these studies was on improving
the accuracy rather than addressing its complexity problem.
Notably, in some of these studies, it is shown that employing
hierarchical structures could degrade the model’s efficiency.
For example, in [32], the authors reported an increase in
both memory footprint and classification delay (computational
complexity) as noticeable side effects of deploying hierarchical
classification for improving the model’s accuracy. Similar to
this group of studies, we explore the hierarchical staging
of CNN models, but with a different design objective: We
propose a systematic solution for converting a CNN model into
a hierarchical 2-stage model that reduces the computational
complexity and model’s memory footprint with negligible
impact on its accuracy.
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Fig. 1: A) Employing the proposed method for training a hierarchical
architecture. B) An example of functionality the hierarchical cluster method
for classifying an input sample shown with orange square. SW0 to SWN are
N switches that controls which path should connect, and the Hyper-class1
to Hyper-classN, shown with H1 to HN , are the clusters in which trained
separately and attached together.

III. PROPOSED METHOD

A CNN model is composed of several Convolution (CONV)
layers and usually one or more Fully Connected (FC) layer
for final classification. Each CONV layer extracts a set of
features from its input feature map (ifmap) and generates a
more discriminative output feature map (ofmap). The ofmap of
a CONV layer is the ifmap to its proceeding CONV layer. The
CONV layers close to image input will become specialized
in extracting generic (class-independent) features. But, as we
move deeper into the CNN, the CONV layers extract more
abstract (higher-level representation) features of the input
image from their ifmap. The CONV layers close to the output
(softmax layer) become specialized in extracting the most
abstract and class-specific features. This allows the last layer
(i.e. FC and softmax layer) to identify and assign a probability
to each class based on the activation of neurons in the last
CONV layer. In short, earlier CONV layers extract low-level
features needed for the classification of all input images, while
the later CONV layers are specialized for extracting abstract
features for the classification of specific classes.

Motivated by this view of CONV layers’ functionality, we
present a simple yet efficient and systematic solution to re-
architect the state-of-the-art CNN models into a hierarchical
CNN model such that any given input image activates only
the part of the model that is needed for the classification. Our
proposed (target) model architecture, as illustrated in Fig. 1-A
bottom, is composed of three main modules: (1) S: Shared
Clustering layer(s), (2) M: Mid cluster classifier(s) (a.k.a.
clustifier), and (3) H: a set of Hyper-class specific micro CNN
models. The S layer is used to extract low-level features from
an input image, while the M layer is used for classifying the
input image into one of K1 clusters (hyper-classes). Based on
the result of clustifierM, the associated cluster-specific model
H is activated to classify the image to one of its possible K2

classes. Considering that K1 << K and K2 << K, clustering
and classification could be performed by a much shallower
CNN. Also, note that we can have clusters of different sizes.
In this model, we divide the K-class clustering problem into
K1 clustering problem, each containing Ci classes such that
K =

∑K1

i=1 Ci, while still honoring the K1 << K and for
each i, Ci << K. Finally note that, as illustrated in Fig. 1-A,
by using additional S and M layers, we can hierarchically
break a large cluster into smaller clusters and use a dedicated
H for each of the smaller clusters, while allowing many of
the clusters to share a larger set of shared (S) CONV layers.

A. Proposed Architecture
To build our proposed model, we designed (1) a mechanism

to break and translate a state of the art CNN into a trainable
3-stage model that preserves the model accuracy, and (2)
developed an effective solution for clustering classes with
shared features into the same cluster. Details of our systematic
solutions for constructing the model and its training are
discussed next.

Shared Classifier S: At this stage by sweeping all the
design spaces, we specify which layers of the original model
lay in the shared part of the hyper classes. For example, Fig.
1 shows a scenario that for the hyper class one, H1, only
the parameters of the first layer of the original model has
been transferred, whereas, for the hyper class two, H2, the



parameters of the first two layers of the original model has
been employed. A detailed case study on Resnet18 has been
shown in Fig. 3.

Mid Clustifier M: The implementation of clustifier M is
more involved, as the performance of clustifierM significantly
impacts the accuracy of the overall solution. For a given input
X , ifM(X) actives an incorrect hyper-class classifier, the in-
put is miss-classified. To improve the accuracy of the proposed
solution, we propose a confidence-thresholding mechanism in
which the clustifierM could activate a minimum set of hyper-
class classifiers, such that the confidence of the clustifier M
in the inclusion of the correct hyper-class classifier in the
minimum activation set is above a given threshold.

To achieve this objective, the clustifier M considers the
cluster probabilities (confidence) suggested by the clustifier
along with the data in the confusion matrix (CM) of the
clustifierM to activate the related hyper-classes for each input
sample X . The confidence of the clustifier is the probability
suggested by the softmax layer of the Clustifier M for the
input label. The confusion matrix of the clustifier is a two-
dimensional table that contains the confusion score of each
class with other classes and is obtained by benchmarking the
clustifier M using a set (i.e. test set) of labeled inputs. In
this paper, Pij is the value of ith unit of the confusion matrix
when jth label is predicted. We also use the notation CCi(X)
to refer to the ith highest score class that is confused with the
class of input X as suggested by the confusion matrix, where
i determine the ranking of confused class in the matrix i.e.,
i = 1 represents the class that is mostly confused with the
class of X .

To increase the likelihood of including the correct hyper-
class classifier in the activation set, we first define a confidence
threshold τCS (i.e. 90%) and a variable CS for holding the
confidence summation results which is initially set the highest
cluster probability suggested by M(X). If the clustifier’s
confidence (suggested probability) for the selected hyper-class
is below the confidence threshold, we refer to the confusion
matrix of the clustifier M(X), and select the hyper-class
CCi(X) (i.e. i = 1, for the class most confused with the
selected class). Then we find the suggested confidence of
the selected hyper-class from M(X), and add the suggested
confidence to the CS. This process is repeated until the
CS > τCS . The exit condition is expressed in Eq. (1). At
this point, the clustifer activates all selected classes in the set
contributing to the CS. This procedure is outlined in the Alg.
1.

CS = argmin
K

i=k∑
i=1

(V(A(i))) > τCS (1)

Fig. 2 shows an example of this algorithm when three
hyper-classes are activated. In this example the clustifier has
predicted the label N for the input sample X , however, its
confidence, VN , doesn’t pass the defined threshold τCS . So
the CC1(X) and CC2(X) that respectively have probability
V1 and V2 (as suggested by H(x)) are added to activation set.

The next challenge for training a clustifier is identifying
which classes could be grouped to improve the accuracy of
the clustifier. We propose that grouping similar classes in a
cluster is an efficient solution for achieving high accuracy

Algorithm 1 Hyper-class activation policy
procedure ACTIVATOR(Clustifier M , Input X , Confidence threshold τCS ,
Hyperclass pool HPool, Confusion Matric CM )

V = M(X)
for (l = 1; size of HPool ; l ++) do

if l == 1 then
index = argmax(V)
if V[index] > τCS then

activate HPool[index]
Exit.

actives = argNmax(N=l, CM[:,index])
temp = Nmax(N=l, CM[:,index])
cmVal = temp/sum(temp)
if sum(V[actives]) > τCS then

activate (HPool[actives]*cmVal)
Exit.

Fig. 2: A example of Hyper-class Selection policy. X is the sample input,
Vi is the output of the clustifier’s softmax layer, Si(X) is the output of the
shared layer related to ith hyper class, Pij is the value of ith unit of the
confusion matrix when jth label is predicted and finally Hi(Si(X)) is the
dedicated part of the ith hyper class.

while keeping the computational and model complexity of
the clustifier in check. Note that this approach, improves
the accuracy of the mid-clustifier at the expense of posing
a harder the task to the hyper-class classifier. Nevertheless,
because the hyper-class classifier is a deeper network than
the mid-classifier, it should be more capable in descriminating
between classes that are grouped in the same cluster for higher
similarity. To achieve our objective of grouping similar classes
in the same cluster, we employed the unnormalized spectral
clustering introduced in [26], [27]. Note that the cluster sizes
in this approach are not uniform, suggesting that the size
of the hyper-class classifiers could also be different. Our
implementation of spectral clustering is discussed next:

Given a set of points S = {S1, ..., Sn} ∈ Rl, they can be
clustered into k coarse classes following the algorithm 2. First
step of using spectral clustering is to define a similarity matrix
between different classes. For obtaining the similarity matrix,
we first obtain the probability of each class on a (labeled)
evaluation set. Further, we compute the average probability
vector of each class across all input images available for that
class in the evaluation set. This vector of probabilities is known
as indicator vector, denoted by Vi, and computed using Eq. (2).

Vi = (1/M)

M∑
j=1

(prob[j] ∗ (i == gtj)) (2)

In this equation, gtj is the ground truth label for image j,
and the prob[j] is the vector of probabilities generated for
image j. The next step is to apply the K-Nearest Neigh-



bour(KNN) clustering on the indicator vectors to build a
similarity matrix. Connectivity parameter of KNN algorithm
indicates the number of the nearest neighbors, has been set
to the first value at the range [1, N] which leads to a
connected graph and that is because the spectral clustering
algorithm, has its best functionality when the similarity matrix
represents a connected graph. The similarity matrix feeds to
the unnormalized Spectral Clustering algorithm and using the
eigengap heuristic [33] the number of suitable coarse classes
are selected. For example, when following algorithm 2, the
obtained number of hyper-classes for CIFAR100 dataset is 6,
and the number of members at each hyper-class are 9, 28, 23,
15, 14, 11 regards to c0, c1, c2, c3, c4, c5, respectively (see
Table. I in the result section).

Algorithm 2 Cluster Membership Assigment
procedure EXTRACTORE(S1, S2, ..., Sn)

1) Constructing similarity matrix A using K-Nearest Neighbor(KNN):
A = KNN(S1, S2, ..., Sn).

2) Define Degree matrix D:
Dii =

∑
j Aij , Dij = 0 ifi 6= j.

3) Constructing unnormalized Laplacian matrix L:
L = D −A.

4) solving the generalized eigenproblem:
Lx = λDu.

5) X = [x1x2...xk] ∈ Rn×k related to the lowest k eigenvalues of L
6) Construct the matrix Y as:
Yij = Xij/(

∑
j X

2
ij)

1/2.
7) Apply K-means on each row of Y as a data point in RK .
8) datapoint Si ∈ cluster j, if and only if Yi ∈ j.

Hyper-Class classifier H: The hyper-class classifiers are
micro CNNs that are trained from scratch and become special-
ized in classifying each cluster. Considering that the size of
clusters may be different, the size of the hyper-class classifiers
may also vary. To design the hyper class classifiers we need
to solve two issues: 1) considering that more than one H may
be activated at a time, we need to find a solution to select
or sort the suggested classes by different Hs; 2) we need a
mechanism to transform the non-shared portion of the original
CNN to these smaller and hyper-class specific micro CNNs.
Each of these is discussed next:

For solving the first problem of simultaneous activation of
multuple H, we propose sorting the weighted confidence of H
classifiers’ prediction and choose the top (i.e. top 1 or top 5)
as the prediction of the overall model. We propose using the
scores obtained from the confusion matrix (which was used for
activation of hyper-class classifiers) to compute the weighted
class probabilities and then sort the weighted probabilities to
determine the top 1 or top 5 classes. The Eq. (3) illustrates
how the class probabilities are weighted for the example given
in Fig. 2.

argmax
f∈1,2,N

(PfN/(P1N + P2N + PNN )×Hf (X)) (3)

The next problem is designing the micro-CNNs that act
as hyper-class classifiers. For this purpose, we propose a
solution to automate the transformation of non-shared layers
of the original model to micro CNN models. For this purpose,
we propose reducing the size of non-shared CONV layers
by replacing some of the CONV layers with a combina-

tion of two CONV layer configurations

 1× 1, x
3× 3, y
1× 1, z

 and 3× 3, x
1× 1, y
3× 3, z

, in which f×f, x shows a kernel size f×f with

x channels. The first block is known as a bottleneck block, and
we denote the second block as bottleneck-compression block.

Our model compression flow is as following: 1) Starting
from the last CONV layer of the original model, we identify
target blocks that could be replaced with bottleneck layers.
Let’s assume the ifmap to the first CONV layer an identified
block is x1, y1, c1 and the ofmap of the last CONV layer in the
identified block is x2, y2, c2, in which x and y are the width
and height of each channel, and c is the number of channels. In
this case the targeted block could be replaced by a bottleneck
block if x1 = x2 and y1 = y2 or x1/2 = x2 and y1/2 = y2.
In the first case, the stride of the bottleneck block is set to 1,
and in the second case, the stride is set to 2. In addition, for
each targeted block if c1 = c2 an skip connection is added.
The compression could be pushed further by identifying two
consecutive bottleneck blocks and replacing it with a bottle-
neck compression block. This translation process is illustrated
in Fig. 4. Depending on how many bottlenecks or bottleneck-
compression blocks are inserted, we can have a wide range of
compressed CNNs.

IV. EXPERIMENTAL RESULTS

A. Evaluating the Model Compression Solution
We first illustrate the effectiveness of our propose com-

pression process in terms of its impact on model complexity
and accuracy. For this purpose, we apply our solution to
compress the Resnet18. We also used the algorithm 2 to divide
the CIFAR100 data set into different clusters. The algorithm
suggested 6 clusters with 9, 28, 23, 15, 14, 11 classes in each
hyper-class. These hyper classes are respectively denoted as
c0, c1, c2, c3, c4, c5.

The first section of the Table. I captures some of the possible
configurations, showed in Fig. 3, from the application of
bottleneck and bottleneck-compression blocks on Resent18.
As illustrated, the compression solution generates a wide range
of compressed micro CNN. The second section of the table
captures the accuracy of the compressed network for each
cluster and each compressed network configuration, while the
third section captures the reduction in the complexity for each
compressed model (compared to the L0 -original- case). As
illustrated, the compressed networks are still able to achieve
very high accuracy with a significant reduction (up to 79%)
in their computational complexity.

B. Accuracy and Complexity Evaluation
In section IV-A only the accuracy of a model composed of

the shared S CONV layer (green blocks in Fig. 3) and hyper-
class specific compressed layers Hs (blue blocks in Fig. 3)
was evaluated. However, the overall accuracy of the model is
also impacted by the accuracy of the Mix Clustifier M and
the combined accuracy of selected Hyper-class classifiers (i.e.
Hs). To evaluate the overall accuracy of the resulted model we
selected the following configurations for building the hyper-
class classifiers for each of the 6 clusters that we previously
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Fig. 3: Generated micro CNNs after applying Bottleneck surgery for Resnet18. The green blocks in the first section of the table indicate CONV layers
borrowed (not changed) from the original Resnet18 (and froze during the training). The blue blocks are the sections that are replaced with a bottleneck or
bottleneck-compression blocks and are trained.

TABLE I: L1, L2, L3, L4, L22, L33, L44 are some of the compressed micro CNNs that could be generated from the application of our proposed model
compression flow on Resnet18. The top table presents the top1 accuracy for different clusters when different compressed CNN configurations are used for
classification, while the bottom section captures the associated flop count (computational complexity). Units marked with * shows one of the possible mapping
of each cluster to the corresponding structure, accordingly the selected configuration is {C0:L44, C1:L1, C2:L1, C3:L1, C4:L44, C5:L44, Clustifier:L44} in
which X:Y means cluster X is mapped to the structure Y.

Top1 Accuracy
L-Name O-Size L0 L1 L2 L22 L3 L33 L4 L44

C0 9 0.83 0.9 0.898 0.892 0.869 0.869 0.843 0.843*
C1 28 0.671 0.769* 0.726 0.705 0.687 0.666 0.660 0.601
C2 23 0.623 0.748* 0.716 0.691 0.708 0.689 0.673 0.667
C3 15 0.800 0.810* 0.791 0.755 0.75 0.707 0.753 0.650
C4 14 0.832 0.921 0.886 0.900 0.876 0.894 0.871 0.841*
C5 11 0.757 0.855 0.861 0.853 0.845 0.816 0.841 0.832*

Clustifier 6 0.869 0.953 0.876 0.957 0.941 0.919 0.931 0.923*
Computational Complexity (Flops) Reduction

C0 9 1823527936 (0%) ∼ 14.7% ∼28.7% ∼42.8% ∼60.5% ∼39.7% ∼53.8% ∼79.3%
C1 28 1823531008 (0%) ∼14.7% ∼28.7% ∼42.8% ∼60.5% ∼39.7% ∼53.8% ∼79.3%
C2 23 1823550464 (0%) ∼14.7% ∼28.7% ∼42.8% ∼60.5% ∼39.7% ∼53.8% ∼79.3%
C3 15 1823545344 (0%) ∼14.7% ∼28.7% ∼42.8% ∼60.5% ∼39.7% ∼53.8% ∼79.3%
C4 14 1823537152 (0%) ∼14.7% ∼28.7% ∼42.8% ∼60.5% ∼39.7% ∼53.8% ∼79.3%
C5 11 1823536128 (0%) ∼14.7% ∼28.7% ∼42.8% ∼60.5% ∼39.7% ∼53.8% ∼79.3%

Clustifier 6 1823533056 (0%) ∼14.7% ∼28.7% ∼42.8% ∼60.5% ∼39.7% ∼53.8% ∼79.3%

identified: {C0:L44, C1:L1, C2:L1, C3:L1, C4:L44, C5:L44,
Clustifier:L44}. These configurations are highlighted with an
* in Table I. We report the accuracy and complexity result of
our model that we evaluated for 10,000 images of CIFAR100
in our test set.

Table II captures the number of activated Hyper-Classes
(HC) when the confidence summation, τCS , varies in the
range (0.5, 0.95). As illustrated in Table II, increasing the
value of τCS also increases the number of activated hyper-
classes. This is expected, because according to the Eq. (1),
in order to meet the τCS , a larger number of hyper-class

classifiers should be activated. Fig. 5 captures the change in
the accuracy and increase in the computational complexity
(Flop count) when the τCS varies in that range. Figure 5-
top shows that increasing the τCS beyond 0.7 results in no
gain in the accuracy. Increasing the τCS beyond 0.7 results
in the activation of a larger number of hyper classifiers and
an increase in computational complexity without any gain in
accuracy. This implies that at this particular scenario the best
τCS is 0.7.

Fig. 5.(bottom) also captures the breakdown of the total
computational complexity for different values of τCS as it



Fig. 4: Left: compression flow for a hypothetical target block. Right: replacing
two consecutive bottle-neck with a bottle-neck compression block. At the
configuration (X, Y, Z), X is the channel number, Y and Z are width and
height of the image shape.

TABLE II: Number of the activated hyper-classes when TCS varies in the
range 0.5 to 0.95. CC-ideal shows the hypothetical ideal scenario that only
one hyper-class activated per each input sample. Noted the summation of
activated hyper-classes at each row is 10000.

τCS #1 #2 #3 #4 #5 #6 Acc. Gain CC. Save
0.5 9379 619 2 0 0 0 -0.0638 0.3392
0.6 8545 1434 21 0 0 0 -0.0274 0.2996
0.7 7683 2166 150 1 0 0 0.0021 0.2575
0.8 6641 2789 546 24 0 0 0.0023 0.2000
0.9 5198 3294 1228 263 17 0 0.0023 0.1137

0.95 4044 3372 1783 684 115 2 0.0023 0.0368
CC-ideal 10000 0 0 0 0 0 -0.2365 0.3781

varies at the range (0.5, 0.95). Considering that in the evalua-
tion set, we had an equal number of images from each class,
it was expected that clusters with a higher number of member
classes contribute to a lager FLOP count.
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Fig. 5: Depicting the impact of changing τCS on accuracy and computational
complexity (CC). τCS indicates the confusion sum threshold and the CC
metric has been calculated in FLOPS.
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VI. CONCLUSION

In this paper, we proposed conditional classification as an
hierarchical CNN model that reaches a level of accuracy in the
range of the state of the art solutions, with a significantly lower
computational complexity. Our method uses a first stage CNN
block (S) to extract class independent features, utilizes a Mid-
level Clustifier ((M) to identify the membership of the input
image to one or few of the possible clusters, and then activates
small and hyper-class specific classifier(s) to classify the input
image. We illustrate how an existing model, such as ResNet
18, could be translated into our method. We reported up to
37% reduction in overall computational complexity (compare
to the original model) when ResNET was translated to its
reduced counterpart with negligible loss in accuracy.
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