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ABSTRACT 

PEELING AWAY UNCERTAINTY: A PROBABILISTIC APPROACH TO DNA 

MIXTURE DECONVOLUTION 

Hajara S. Chaudhry, M.S. 

George Mason University, 2020 

Thesis Director: Dr. Mark R. Wilson 

 

Mixture deconvolution involves the ability to reliably decipher and separate component 

genotypes of individual contributors at each tested genetic marker. The ultimate objective 

of this study is to develop an understanding of the integrated framework for attesting the 

value of using known samples when appropriate to decrease uncertainty in mixture 

deconvolution by leveraging more of the available genotyping data and observing the 

impact genotype conditioning has on multiple-contributor mixtures and resulting LRs. In 

this study known mixtures containing two, three, four, and five contributors were 

separated in iterative analyses through the assumption of contributors using provided 

known reference samples, a process referred to as genotype peeling or genotype 

conditioning. To direct the order of genotype conditioning, contributor mixture weights 

were estimated as all contributors to the mixture were assumed by mixture weight. 

Conditioning by match statistic was directed without genotype assumptions, where all 



x 

 

contributor genotypes were inferred solely on STR peak height data. Subsequent analyses 

of each mixture item were conducted, in which, the order of contributors was assumed 

from highest to lowest based on mixture weight as well as match statistics by utilizing a 

probabilistic program, TrueAllele®, developed by Cybergenetics. The study demonstrates 

how genotype conditioning effects mixture deconvolution and resulting match statistics 

by also considering mixture weight and the number of contributors to a mixture. The 

results of this study demonstrate that it is possible to generate more informative statistics 

by refocusing probability distributions for each contributor to the original mixture, 

leading to refined LRs and reduced uncertainty. 

 

Keywords: forensic science, genotype conditioning, DNA mixture deconvolution, 

probabilistic genotyping, likelihood ratio, Bayesian framework
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INTRODUCTION 

The capabilities of individual forensic laboratories across the nation vary in their 

ability to process complex mixtures, ranging from manual and probabilistic approaches. 

Complex mixtures overpower interpretation procedures in forensic laboratories using 

traditional manual approaches simply because the technology falls short due to the high 

levels of uncertainty present, affecting the reliability in determining contributor 

genotypes. The prevalence of uncertainty can yield an inconclusive result, since it is the 

only scientifically responsible conclusion to circumvent the chance of inappropriately 

including or excluding a potential contributor, leading to perpetrators that remain 

unidentified. Moreover, recent studies demonstrate continuous models that incorporate a 

Bayesian framework overcome this issue by comparing experimental data against random 

expectations, where minor contributors with less pronounced profiles can be distinctly 

and properly accounted for. To further refine match statistics for each contributor, 

mixture deconvolution performed in subsequent analyses of the same data can be 

conducted using provided known reference samples in a process referred to as genotype 

peeling or genotype conditioning. As contributors are assumed in iteration, the sensitivity 

of residual contributors improves since the genotyping system can more accurately detect 

true contributors to a mixture. The genotype conditioning interpretation technique has the 

potential to satisfy this need by maximizing the information obtained from complex 
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mixtures while maintaining a high standard of reliability and reproducibility. Such an 

initiative is crucial as DNA samples are often mixed and contributors may be present in 

such low quantities that the reliability of typing under these conditions is often 

compromised, limiting the ability to draw informative conclusions that generate essential 

investigative leads. Genotype conditioning serves as a valuable advantage in these 

instances by improving sensitivity as layers of uncertainty are peeled away based on 

mixture weight and match statistics, allowing for full use of the available experimental 

data.  

Mixture Deconvolution 

Current Methods 

Short tandem repeats (STRs) are small stretches of DNA sequences of three to 

five nucleotides in length that are repeated numerous times in tandem with the number of 

repeats varying among individuals, making STRs effective for human identification 

purposes. Forensic DNA analysis targets a core set of STR markers located in non-coding 

regions of the human genome permitting genetic information at respective loci to be 

compared. The evaluation of STRs has been conducted routinely through capillary 

electrophoresis (CE) and is currently the gold standard in the forensic DNA community. 

DNA templates are amplified with polymerase chain reaction (PCR) in multiplex, where 

primers contain a fluorescent label that is incorporated into all PCR products during 

amplification. The PCR products become size-separated by traveling through the 

capillary array in the CE platform, in which, smaller molecules migrate faster than larger 

molecules. Upon reaching the detection window of the capillary array, molecules are 
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detected as a laser strikes the fluorescent label located on each PCR amplicon. CE 

translates machine measured DNA-molecule migration times into DNA fragment lengths, 

which are visualized in an electropherogram where peak heights correspond to 

fluorescent intensities measured in relative fluorescence units (RFUs) representing each 

fragment length. Evidentiary data is loaded into the genotyping software along with an 

allelic ladder supplied with a forensic commercial kit, both containing the same internal 

size standard to enable the correlation of typing results. The allelic ladder is a collection 

of the common alleles present in the population for each individual STR marker, serving 

as a standard for allele designation. It is constructed by combining locus-specific PCR 

products from individuals within the population, representing the variation of alleles for 

each locus used in STR profiling. Kit-specific bins and panels define the allele repeat 

number for each STR locus and define the STR loci present in the kit, respectively. When 

combined with the allelic ladder data file, bins and panels provide genotyping software 

the capability to transform DNA size information into an STR allele repeat number for 

each observed peak. By comparison to an allelic ladder, length variant STR alleles are 

then cumulated into pairs as genotypes at each tested genetic marker to form a contributor 

profile. 

By following a set of interpretation rules called match criteria, the DNA profile 

interpretation process is conducted to determine the source of the genetic information. An 

overview of the steps in the DNA interpretation process is described in Figure 1. The 

questioned evidence sample (Q) and the known reference sample (K) are both processed 

from peak to profile. DNA profiles produced can then be compared in the interpretation 
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process and conclusions can be made based on this comparison. An analyst must make 

decisions based on electropherogram data to differentiate between allele peaks, noise, or 

artifacts as well as whether alleles can be confidently paired to form genotypes, which are 

combined to create a contributor profile from each locus. Additionally, it must be 

determined whether the data are too weak or too complex to be reliably interpreted and if 

overall data quality is appropriate for obtaining reliable results (Butler, 2015). If a match 

between the evidence sample and the known reference sample is determined, the match 

probability is calculated to assess the strength of the match or the weight of evidence, 

which can be statistically expressed as a Likelihood Ratio (LR). The match statistic 

provides a comparison of the probabilities of the evidence under two mutually exclusive 

hypotheses, representing how probable the link between the evidence and the suspect is 

than coincidence. A strong DNA typing result is denoted by large LR values, indicating 

that the comparison between the Q and K samples provides support for inclusion. 

Whereas LR values less than one denote that the comparison provides support for 

exclusion. 

 

 

 

 

Figure 1. DNA Interpretation Process. The questioned evidence sample (Q) and 

the known reference sample (K) are processed from peak to profile and then 

compared. The match probability is calculated to assess the weight of evidence and a 

report is written describing the results obtained. A technical peer-review is conducted 

before the report is finalized and released by the laboratory. (Butler, 2015) 
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STR data analysis is typically conducted by implementing interpretation 

thresholds that are intended to cut out baseline noise and other PCR artifacts to facilitate 

and streamline analysis. An analyst reviews electropherogram data containing peak 

height information subjectively by abiding by these thresholds to manually designate 

alleles. Interpretation methods that use thresholds to make decisions are referred to as 

binary and instill an all-or-nothing approach, in which alleles and their cumulative 

genotypes as pairs are either included (probability of one) or excluded (probability of 

zero). Threshold-based analysis methods are based on qualitative peak height information 

and introduces subjectivity when applied to the data. By only reviewing a subset of the 

evidentiary data, all genotyping information is not put to full use and valuable genotyping 

data below established thresholds are consequently discarded. Therefore, there is a 

danger that contextual bias can yield a DNA interpretation that is not objective. Data 

selection can overstate the probative value of a match, leading to potentially inaccurate 

results that mislead juries.  

In forensic DNA laboratories, many evidence samples are mixtures often 

containing low-template DNA and consist of more than three contributors, termed 

complex mixtures. Mixture interpretation involves the designation of alleles and possible 

genotypes from each contributor followed by an assessment of the statistical weight of 

evidence after the comparison between the questioned evidence profile and a known 

profile can be made. As more contributors are present, the number of possible allele 

combinations increase. While there are numerous possible alleles at each STR locus, 

some alleles are more common than others, thus are more likely to be present and hence 
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shared between two or more individuals. Figure 2 illustrates the potential allele overlap 

between contributors leading to stacking of signal, making it challenging to 

unambiguously distinguish contributor genotypes because an analyst cannot state with 

absolute certainty that a particular peak belongs to a particular contributor or not. 

 

 

 

 

 

 

 

Figure 2. Allele Stacking. (a) Hypothetically observed data from a 

complex mixture at a single STR locus, exhibiting alleles 10, 11, and 

12. (b) A depiction of allele stacking from a set of contributor 

genotypes present in a 1:1:1:2 mixture weight ratio. (Butler, 2015) 

Stochastic effects, such as allelic dropout and heterozygote peak height 

imbalance, are referred to as characteristics that occur during PCR amplification as a 

result of the variation in random sampling. Stochastic effects are characteristic of low-

template DNA and regarded as non-reproducible since they manifest as a fluctuation of 

results between replicate analyses of the amplified data. Since PCR is a random 

enzymatic process, competition for DNA polymerase favors alleles present in greater 

amounts. Some PCR primers may fail to amplify a particular allele due to possible 

variation in the STR flanking regions where PCR primers are designed to anneal. Less 
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amplified alleles tend to correlate with low-template contributors and are prone to 

stochastic effects such as allelic dropout, where one or more alleles are absent from a 

locus or falls below threshold limits, further complicating allele designation. There is a 

general trend between DNA template amounts and its effect on heterozygote peak height 

imbalance, leading to allelic dropout as described in Figure 3. As DNA template levels 

decrease, the peak height imbalance of heterozygous alleles increases until one of the 

alleles fails to be amplified, resulting in severe peak height imbalance where an allele 

drops out. PCR reactions are often performed with 1ng or less of total DNA, thus 

complex mixtures are likely to contain low-template DNA for one or more contributors. 

Each additional contributor to a mixture signifies a dilution of one or more contributors 

into the stochastic zone, where allelic dropout is evident. This phenomenon becomes 

problematic especially in the interpretation of complex mixtures, where multiple peaks 

are exhibited at each locus and results in uncertainty in the designation of allele pairs 

corresponding to contributor genotypes. 

 

 

 

 

 

 

Figure 3. Peak Height Imbalance Leading to 

Allelic Dropout. 

A display of hypothetical heterozygous alleles 

showing a general trend that peak height 

imbalance increases as DNA template amounts 

decrease, eventually leading to allelic dropout. 

When allelic dropout occurs, a false 

homozygote is observed. Hence, an analyst 

may not be able to accurately determine a 

contributor genotype. Peak height ratios are 

shown as a percent of the shorter allele to the 

taller allele. The concentrations of DNA 

templates and respective peak height ratios are 

displayed in descending order, from top to 

bottom.  (Butler, 2015) 
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Furthermore, threshold-based methods tend to work best with pristine samples 

such as profiles containing a single contributor, termed single-source profiles, or simple 

two-contributor mixtures in which stochastic effects are minimal and DNA is present in 

optimal amounts. As uncertainty arises due to an indication of multiple contributors 

especially with low-template DNA amounts, the robustness of the threshold-based 

method is inadequate because, consequently, peaks from low-template contributors often 

do not meet desired thresholds and therefore become completely disregarded. Hence, 

manual interpretation methods originally developed for pristine samples are not as 

effective on mixture data and interpretation errors are more likely to occur by simplifying 

complex data from mixed evidentiary samples (Perlin et al., 2015). The variation in 

random sampling during PCR amplification introduces uncertainty in the interpretation of 

complex mixtures largely because of the characteristics and nature of such mixtures, 

affecting reliable interpretation. Since more uncertainty in the data exists near a threshold 

boundary than further from it, an advantage in probabilistic methods is that the results 

reflect interpretation uncertainty. 

The Mixture Issue 

As DNA typing technologies and STR multiplex chemistries become more 

sensitive, laboratories are becoming increasingly overwhelmed with low-quantity and 

low-quality samples as well as complex mixtures involving more than two contributors. 

In 2013, the National Institute of Standards and Technology (NIST) conducted an inter-

laboratory study involving the interpretation of complex mixtures by sending mixture 

data to various labs (Butler et al., 2018). Results of the study concluded that a high level 
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of variation is present in complex mixture deconvolution across different laboratories as 

well as within a particular laboratory, specifically, the results indicated variation in the 

inclusion and exclusion of contributors. In the study, 100 participants examined a three-

contributor mixture that did not contain a particular suspect. Seventy groups falsely 

included this suspect, whose DNA was not present in the mixture, representing a 70% 

false match rate and provided irrelevant DNA match statistics that ranged from 9 to 

344,000 (Perlin, 2016). Twenty-four labs found the comparison inconclusive and only six 

groups correctly excluded the suspect contributing to a 6% accuracy rate, with one of the 

groups using Cybergenetics TrueAllele method (Perlin, 2016). These results were showed 

as evidence of the dangers of misinterpreting mixtures, initiating the involvement of the 

International Society for Forensic Genetics (ISFG) to concur recommendations for the 

interpretation of complex mixtures.  

Scientists feared that the inaccurate interpretation of complex mixtures would 

wrongfully include or exclude an individual, which would result in wrongful convictions. 

Therefore, many forensic laboratories halted the interpretation of complex mixtures 

containing three or more contributors due to the variation associated in subjectively 

interpreting profiles. Because of this, some laboratories only separate two-person 

mixtures if a profile subtraction can be conducted, where the profile for one contributor is 

known and is subtracted from the evidentiary mixture to simplify the interpretation of the 

genotypes present. Upon the encounter of a mixture involving three contributors or more, 

the evidentiary sample is often reported as inconclusive without any evaluation 

whatsoever, hence any individual within such mixtures evades identification. By omitting 
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informative genotyping data, an inconclusive result can hinder investigative leads that 

could implicate the guilty or exonerate the innocent. 

TrueAllele 

Bayesian Framework 

Probabilistic genotyping refers to the use of biological modeling and statistical 

theory to infer genotypes and then calculate resulting LRs for each contributor to a 

mixture. TrueAllele is a probabilistic genotyping program developed by Cybergenetics to 

mitigate stochastic effects and capture the uncertainty of DNA profile interpretation using 

probabilities. Foundationally, continuous models are designed to address stochastic 

effects by modeling the sources of variation, eliminating the subjectivity and 

inconsistency that can result from the manual designation of alleles. Continuous models 

treat data as varying continuously by modeling uncertainty and measuring parameter 

values based on their means and variances. The Bayesian framework incorporates data 

models and handles the inherent uncertainty using a conditional approach. This 

mathematical framework involves three interrelated components: posterior probabilities 

representing the outcome, prior probabilities serving as the context, and centering around 

a likelihood function that separates each outcome when applied to the data. A 

representation of these components and their interrelationships are illustrated in Figure 4.  

Prior probabilities are calculated using a particular population’s allele frequencies 

and express the probability of each genotype within that population. A likelihood 

function is applied to the data and is combined with prior probabilities to assign a 

likelihood to each possible genotype. Posterior probabilities arise as the output from a 
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likelihood function acting on the priors. Using the data and a likelihood function, priors 

then become transformed into posteriors and are redistributed into all the possible 

genotype outcomes as probabilities of each possible genotype. An LR is the match 

statistic that is calculated as a ratio of the posterior and prior probabilities.  

 

In terms of mixture deconvolution, a posterior probability is calculated for each 

genotype and contributor at each locus as the likelihood function is updated with data. By 

utilizing statistical sampling, the experimental data transitions from an initial state of 

knowledge to a modified state and hypotheses are either accepted or rejected based on 

Figure 4. Bayesian Framework.  

When evidentiary data is subjected to a 

likelihood function, a posterior probability is 

formed (blue). The prior data from population 

allele frequencies is transformed into a 

probability (brown) when normalized by a 

likelihood function for a genotype. The 

likelihood function is applied to data to separate 

each outcome such that all possible outcomes 

are considered and is then used to convert 

probabilities. An LR arises when the posterior 

and prior probabilities are compared. 
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how well they explain the experimental data. Since all possible genotypes are considered 

objectively, the framework obviates the need for data thresholds as used in manual 

interpretation methods. By expressing all possible genotype outcomes as distinct 

probabilities, continuous methodologies leverage more of the available genotyping data 

and have proven to produce more informative statistics with respect to contributors and 

non-contributors to the DNA evidence (Wilson, 2018). In doing so, probabilistic 

genotyping software allows for better interpretation of profiles and provides substantial 

advantages for interpreting complex DNA mixtures.   

Markov Chain Monte Carlo 

TrueAllele uses a hierarchical Bayesian probability model that combines 

genotype alleles, accounts for artifacts, measures variance to explain STR data, and 

derive parameter values and their uncertainty (Perlin, 2011). To accommodate these 

factors, TrueAllele is constructed using continuous models and employs statistical 

sampling to explore the probability space. TrueAllele’s statistical sampling method, 

Markov Chain Monte Carlo (MCMC), is a probability tool used to determine the best 

possible explanation of the experimental data out of all possibilities by searching through 

a hierarchical alignment of all the relevant variables. MCMC samples from a posterior 

probability distribution and explores explanatory patterns in a high-dimensional 

probability space, where all variables are visited in each sampling cycle. Upon entering 

probability space, Markov chains begin in an initial state and then move to other states 

using probability calculations. Transitions to other states are either accepted or rejected 

and occur based on the ratio between the probability of the next state and the current 
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state, referred to as the transition probability. If this probability is higher in the next state, 

the computer moves to that region of total space. Since MCMC explores all possible 

patterns that explain the data based on relative probabilities, Markov chains may still 

transition if the probability of the next state is less than the current state in some 

instances.  

TrueAllele determines the path that best explains the data as a whole and 

collectively applies that pattern to each locus. Local probability choices lead to a global 

solution that saturates the entire probability space resulting in a joint probability 

distribution, where all the variables visited are contained in a high-dimensional space. To 

solve for these variables, the dimensionality is reduced through marginalization to 

separate out each variable. This is done by summing up each variable across all 

dimensions over all the other variables, resulting in a reduction to a single dimension. By 

marginalizing the joint probability distribution, a probability distribution is obtained, 

where TrueAllele separates the data into its component variables including each 

objectively inferred genotype for every locus from each separated contributor.   

Computing Likelihood Ratios 

After genotype inference, a match statistic is calculated between a separated 

evidence genotype and a reference genotype, relative to a population. To assess the 

TrueAllele genotype separation, electropherogram data can be viewed in conjunction 

with the genotype information and match statistics at each locus, as shown in Figure 5. 

The Data View pane displays the original STR electropherogram data of the sample of 

interest at a particular locus. Allele peaks are depicted by fragment size in base pairs (bp) 
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and their corresponding RFUs. The original STR data is inspected to ensure that the 

necessary interpretation requests were performed and may provide an explanation of any 

possible source of ambiguity in the inferred genotypes. Genotype probability 

distributions and match statistics can be viewed when a questioned evidence sample (Q), 

subject reference (S), and a random population database (R) are selected.  

 

 
Figure 5. Genotype Inference and Computing LRs. Data View (left): Original electropherogram data of a two-

contributor mixture with a 1:1 mixture weight ratio displayed as size (bp) vs. RFU. Alleles 17, 19, 20, 21, and 22 

are exhibited at a peak height cutoff of 100 RFU. Genotype View (top, right): The evidence (blue), reference 

(green), and population (brown) genotypes for one contributor are shown. The evidence (cyan) depicts the 

improved probability of the reference genotype (17, 20) after one contributor was assumed by genotype 

conditioning. Match View (bottom, right): Subject reference (S1) has a log(LR) value of 1.0635 when matched 

against the inferred contributor (Q1) shown in blue. Subject reference (S1) displays an improved log(LR) of 

1.4566 when matched against the inferred contributor (Q4) after one contributor was assumed in genotype peeling, 

shown in cyan. 

 

  



15 

 

 

In the Genotype View pane genotyping information is displayed as a histogram at 

each locus, where the x-axis shows all possible allele pairs for the genotype probability 

distribution and the y-axis represents the probability associated with each possible allele 

pair. In the histogram, blue bars represent posterior probabilities of Q genotypes inferred 

by TrueAllele and brown bars represent the prior probabilities of each possible genotype 

defined by the selected population. The green bar indicates the genotype probability 

distribution of the subject reference. Posterior probabilities are divided by the prior 

probabilities for each possible allele pair to form a ratio of probabilities and a locus LR is 

calculated. Since LR values can be rather large, it is often preferable to report them in 

terms of their logarithm (log) value, in which, a single log(LR) unit is referred to as ban. 

In the Match View pane, the x-axis shows the relative match statistics that can be 

viewed on a logarithmic or linear scale. The y-axis exhibits the specific combinations of 

Q, S, and R used in each LR calculation and refers to the selected genotypes. A blue bar 

extended to the right indicates a positive match score displaying log(LR) values greater 

than zero, which equates to LR values greater than one. A red bar extended to the left 

indicates a negative match score displaying log(LR) values less than zero and equate to 

LR values less than one. For a particular contributor, the calculated log(LR) values at 

each locus are summed together to form the genotype log(LR). This calculation is 

conducted for each contributor to the mixture, in which genotype LRs from different 

individuals can then be compared and considered as inclusionary or exclusionary. The 

comparison between posterior and prior probabilities establishes the weight of evidence 

for statistical assessment and represents the amount of information present. Positive 
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log(LR) values provide support for inclusion and display a gain in information as the 

experimental data transitions from an initial state of knowledge (prior) to a modified state 

(posterior). Likewise, negative log(LR) values provide support for exclusion and display 

no information gain. Additionally, log(LR) values closer to zero can be considered as 

inconclusive. Identification information is summarized as a single number, which 

facilitates comparisons and courtroom presentations. The objectivity derived from the 

automated process ensures consistency, leading to more reliable and enhanced LRs.  

Genotype Conditioning. To further refine the LR from mixed evidentiary 

samples, subsequent analyses of the same data can be conducted using known reference 

samples in a process referred to as genotype peeling or conditioning. TrueAllele’s 

algorithm is set to assume that a known profile is present and genotype inference is 

repeated under these new conditions. Known genotypes serve as parameters that remain 

constant throughout a computer run, facilitating genotype inference for residual 

contributors. Therefore, uncertainty in mixture deconvolution is reduced with each 

iterative analysis since probability distributions become refocused on these residual 

contributors. In sequential genotype peeling, the initial run separates the mixture and 

component genotypes are inferred. Peeling is then performed iteratively in subsequent 

analyses to capture and peel away each layer of uncertainty by refocusing probability 

distributions. In the following run, TrueAllele assumes the first genotype and infers the 

remaining unknown genotypes. After separation and genotype inference, a second 

contributor is selected for conditioning based on the resulting data. The third run assumes 

the first and second contributor genotypes and TrueAllele infers the remaining unknown 
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genotypes. From the resulting data in the previous run, a third contributor can then be 

selected for conditioning. Genotype peeling can continue until all contributors are 

considered. An LR match statistic can then be calculated to determine the strength of the 

match, measured on a logarithmic scale. A contributor’s log(LR) plateaus at its maximum 

value when the evidence genotype probability reaches 100% (Bauer et al., 2020). In 

genotype peeling a log(LR) cutoff does not exist, thus an unhelpful genotype assumption 

may either depress a match statistic or leave it unchanged.  

Objectives 

This study assessed mixtures containing two, three, four, and five contributors 

using the TrueAllele program to address the effect of genotype peeling on mixture 

deconvolution and resulting LRs. Constructed using continuous models, probabilistic 

genotyping was incorporated to provide mixture deconvolution capabilities while 

enabling full use of the data. The study aims to attest the value of using known reference 

samples when appropriate to decrease uncertainty in mixture deconvolution by leveraging 

more of the available genotyping data, as well as to observe the impact that genotype 

conditioning has on multiple-contributor mixtures and resulting match statistics. The 

anticipated results include the generation of more informative statistics by refocusing 

probability distributions for each contributor to the original mixture, leading to refined 

LRs and reduced uncertainty. 

Variables including mixture weight and the number of contributors to a mixture 

were also considered and were assessed essentially due to their behavior and impact in 

mixture deconvolution. The relationship between the amount of match information and 
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the amount of contributor DNA, measured on logarithmic scales, is linear with a 

predictable slope (Bauer et al., 2020). Equal mixture proportions disrupt this relationship 

because peak height data becomes less helpful in separating genotypes. Thus, inferred 

genotype information is restricted resulting in depressed match statistics. Moreover, low-

template contributors behave differently than contributors present in optimal amounts. 

Alleles associated with low-template contributors are present in limited quantities and 

therefore are more susceptible to potential allelic dropout (Butler, 2015). Since the 

amount of contributor DNA is directly proportional to the amount of match information 

obtained, genotype information is limited for low-template contributors. As there are 

more contributors to a mixture, the amount of DNA becomes further divided for each 

additional contributor and the number of allele possibilities increase, resulting in more 

dispersed probability distributions. Evidently, mixture weight and the number of 

contributors must be considered to determine whether genotype conditioning can mitigate 

factors effecting mixture deconvolution and potentially improve resulting match 

statistics.  
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PRIOR LITERATURE 

Twenty years ago, TrueAllele was developed to address the mixture issue and has 

been used in forensic casework since 2009. Since its development, numerous peer-

reviewed validation studies have been conducted and published. Early studies addressed 

the comparison of manual DNA profile interpretation to computer-based interpretation, in 

which, computer-based analysis rapidly outpaced human interpretation analysis (Bauer et 

al., 2020). Additional validation studies were conducted to assess single-source DNA 

samples and mixtures containing up to two, three, four, or five contributors. In these 

studies, typical validation metrics such as sensitivity, specificity, and reproducibility were 

assessed. Sensitivity relates to how well the genotyping system detects true contributors 

to a mixture, specificity relates to how well the genotyping system rejects non-

contributors, and reproducibility measures the closeness of match values on replicate 

independent computer runs. Low-template DNA, joint data analysis, and contributor 

number were listed as other variables and features that were assessed. Both laboratory-

generated DNA mixture data and casework DNA mixture data were tested in these 

studies.  

In a recent study, a ten-contributor mixture was analyzed to assess the reliability 

and validity of TrueAllele computer interpretation on complex mixtures, providing an 

extension to previous validation work by examining STR data from laboratory-generated 
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mixtures containing up to ten unknown contributors (Bauer et al., 2020). Validation 

metrics including sensitivity, specificity, and reproducibility were measured based on 

log(LR) match information as used in previous validation studies. Additionally, the 

influence of contributor number and the effect of MCMC statistical sampling duration 

were examined based on these metrics. Lastly, the impact of genotype conditioning and 

how the number of input data peaks affects match statistics was examined. In this study, 

mixture composition was constructed randomly and analyzed by two independent 

TrueAllele interpretation groups. The mixture was conditioned based on mixture weight 

and the results demonstrated a general increase in log(LR) values of minor contributors 

(Bauer et al., 2020). The average specificity of the inferred genotypes significantly 

improved and yielded more exclusionary log(LR) values regarding the non-contributor 

distribution, such that, the number of non-contributor positives reduced two-fold. It was 

found that earlier peeling rounds improved sensitivity and produced refined evidence 

genotypes for true contributors. However, residual data from minor contributors with 

mixture proportions below 5% showed less specificity and produced more log(LR) false 

positives over 3 ban units (Bauer et al., 2020). Once majority of the data was accounted 

for, additional rounds of peeling were less informative and produced less focused 

genotypes.  

This study focused on a single complex mixture containing ten-contributors. 

Contributors within the mixture consisted of varying mixture weights ranging from high-

template to low-template amounts. Genotype conditioning was conducted based on 

mixture weight, where a single method of peeling was employed for validation and 
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reliability purposes. There is still a critical need for a more comprehensive study that 

evaluates the effect of genotype conditioning on mixture deconvolution and resulting 

match statistics. To properly evaluate the effects of genotype conditioning, a larger 

sample size consisting of mixtures with varying compositions and contributor number 

must be assessed. This assessment advocates for the exploration of different routes of 

genotype conditioning such as mixture weight, as previously conducted, and other routes 

based on match statistics. 
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METHODS AND MATERIALS 

STR Data 

The STR mixture dataset was obtained from the Forensic DNA Laboratory in the 

Beaufort County Sheriff’s Office and were developed from known reference samples 

according to the experimental design (Table 1). DNA templates were amplified in 25μL 

reactions for 28 cycles using an Applied Biosystems® (Foster City, CA) GlobalFiler® 

PCR amplification kit at a DNA concentration of 1ng. PCR products were size-separated 

and detected using an Applied Biosystems® 3500xl Genetic Analyzer. The dataset 

consisted of four mixture groups corresponding to 2, 3, 4, and 5 contributors, and within 

each group five mixtures were composed randomly out of 26 total known reference 

samples. The four mixture groups each containing five items, yielded a total of 20 

randomized DNA mixture samples. Randomized mixture ratios were used in this study to 

realistically represent actual casework evidence. The contributors included in each 

mixture were determined by randomly selecting known references, and mixture weights 

of the contributors in each mixture were also randomly drawn.   

Genotype Conditioning 

Electronic data files were processed through TrueAllele® (Pittsburgh, PA), where 

interpretation requests were formed that assumed 0, 1, 2, 3, 4, or 5 contributors. Requests 

were processed with a burn-in and read-out time of 25,000 MCMC cycles and were run 
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Table 1. Experimental Design. 

 

 

 

 

 

 

 

 

 

 

 

in duplicate with additional replicates at higher cycles as needed for reproducibility. For 

two-contributor mixtures, the initial interpretation request was formed without the 

assumption of known reference samples and contributor genotypes were inferred solely 

based on the STR data. This initial request established the major contributor genotype, 

determined based on the highest mixture weight. In the next request the major contributor 

was assumed, and the genotype of the minor contributor was inferred by TrueAllele. This 

request was conducted again with the assumption of the minor contributor, in which, 

TrueAllele inferred the major contributor genotype. Lastly, an interpretation request was 

formed with the assumption of both the major and the minor contributor. This process of 

Mixture n  con Contributor IDs 1 2 3 4 5

A 2 75 25 0.54 0.46

B 2 29 71 0.73 0.27

C 2 73 72 0.84 0.16

D 2 24 27 0.91 0.09

E 2 26 36 0.98 0.02

F 3 22 37 25 0.48 0.46 0.06

G 3 34 23 21 0.51 0.28 0.21

H 3 40 24 35 0.67 0.22 0.11

I 3 29 58 74 0.79 0.13 0.08

J 3 30 31 72 0.91 0.07 0.02

K 4 38 35 71 37 0.34 0.26 0.21 0.19

L 4 30 28 38 29 0.46 0.36 0.11 0.07

M 4 32 58 72 40 0.53 0.25 0.19 0.03

N 4 26 31 74 25 0.61 0.26 0.09 0.04

O 4 22 36 34 23 0.79 0.14 0.06 0.01

P 5 25 26 58 30 34 0.31 0.21 0.20 0.15 0.13

Q 5 31 36 32 28 27 0.40 0.38 0.09 0.07 0.06

R 5 37 24 73 23 75 0.47 0.27 0.13 0.09 0.04

S 5 22 35 72 40 74 0.69 0.17 0.07 0.05 0.02

T 5 71 29 21 39 38 0.83 0.08 0.04 0.03 0.02

Expected Weight
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genotype conditioning was applied to all two-contributor mixtures, such that all 

combinations of contributors were peeled. For mixtures containing three or more 

contributors, two genotype conditioning approaches were employed when appropriate for 

comparison: one based on mixture weight and the other based on match statistics.  

Peeling by Mixture Weight 

Each contributor within a mixture had a corresponding mixture weight that was 

predetermined by the experimental design, as shown in Table 1. Since laboratory 

generated data is subject to variation in pipetting or during amplification, this may cause 

the observed mixture proportions to differ from the designed values. Because this study 

relates mixture weight to other variables, it was important to obtain accurate mixture 

weight estimates. Therefore, the observed mixture weight values obtained through 

empirical methods were used instead of the designed values. To accurately estimate 

mixture proportions of each contributor to the mixture, TrueAllele used the known 

contributor genotypes as provided input. Therefore, when conditioning based on mixture 

weight, the initial request was formed with zero unknowns. That is, all contributor 

genotypes were assumed but variables including mixture weight were estimated based on 

the STR data and given genotype knowledge. After processing, TrueAllele separated 

each contributor genotype and estimated component mixture proportions summing to 

one. Using the data resulting from the initial run, the contributors were ranked from 

highest to lowest in terms of mixture weight. In the following request, the contributor 

with the highest mixture weight was assumed by inputting the respective reference profile 

and TrueAllele then inferred genotypes for the remaining unknown contributors, which 
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demonstrated the first round of peeling for this path. For the second round of peeling, the 

contributor with the highest mixture weight used in the previous run, and the next highest 

mixture weight were both assumed and TrueAllele inferred the remaining unknown 

genotypes. Genotype conditioning continued until all contributors within the mixture 

were assumed in rank order based on mixture weight. 

Peeling by Match Statistic 

When conditioning based on match statistics, the initial interpretation request was 

formed without the assumption of contributor genotypes. Variables including mixture 

weight and contributor genotype were inferred solely from quantitative STR peak height 

data. After processing, TrueAllele separated each contributor genotype and calculated 

each contributor’s match statistic relative to a population. Based on the data resulting 

from this initial request, the contributor with the highest match statistic displayed as 

log(LR) values was assumed by inputting the respective reference profile. TrueAllele 

then inferred the remaining unknown contributor genotypes, which demonstrated the first 

round of peeling. For the second round of peeling, the contributor with the highest match 

statistic used in the previous run and the next highest match statistic were both assumed, 

and TrueAllele then inferred the remaining unknown genotypes. Genotype conditioning 

continued until all contributors were assumed in rank order based on match statistics. 
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DATA ANALYSIS AND INTERPRETATION 

Data Generation 

In TrueAllele, samples are processed on two parallel processing computers, where 

one server interprets the uploaded experimental data using MCMC statistical sampling to 

separate contributor genotypes based on probabilities by considering thousands of 

possible values for each variable. Results from this server are conveyed to a database 

server and the user can then view these results to work out match statistics through the 

Visual User Interface (VUIerTM Software). The software version numbers for the 

genotyping server were 3.25.5840.1 and 3.3.5926.1 for the VUIer client. Data generation 

included the processing of the prepared STR mixtures by uploading the experimental data 

to TrueAllele’s genotyping server to separate contributor genotypes and calculate 

respective match statistics, recorded in log(LR) ban units. These results were then 

conveyed to TrueAllele’s database server and accessed using the VUIer client, where 

interpretation requests were made. To calculate match statistics, inferred genotypes were 

compared with known reference genotypes relative to the NIST 1036 African American, 

Caucasian, and Hispanic ethnic populations (Hill et al., 2013). The co-ancestry 

coefficient was set to 1%. The system has no analytical threshold and signals were used 

above 10 RFU, a level within baseline noise.  
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Mixtures were conditioned in gradual iterations using provided known reference 

samples. To determine the relationship between genotype conditioning and resulting 

match statistics, the log(LR) values of residual contributors were compared before and 

after each round of peeling within a single mixture. To assess the impact of mixture 

weight on genotype conditioning, match statistic comparisons were made across mixtures 

containing the same number of contributors. Mixtures containing three or more 

contributors were conditioned both on mixture weight and match statistics when 

appropriate to determine which method produced more refined log(LR) values. The two 

approaches could only be compared when the order of contributors based on mixture 

weight and that of match statistics were different, diverging into two routes of peeling. If 

the order of contributors regarding these two factors were the same, the routes directly 

overlap therefore pursuing both routes is not necessary.  

In this study, reproducibility was assessed by examining the closeness of match 

values from replicate computer runs and the genotype concordance. The variation in the 

amount of information expressed as log(LR) values was documented, where genotypes 

derived from multiple independent computer runs were compared with the same 

corresponding reference genotype. Upon variation in the log(LR) values of greater than 3 

ban units between replicate computer runs occurred, an additional replicate was run to 

address such variation. If genotype concordance was not improved by the additional 

replicate, the sample was run with longer cycle runtimes. To assess sensitivity or how 

well the genotyping system detects true contributors to a mixture, the log(LR) 
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distribution of inferred genotype comparisons to true contributors were examined. The 

match statistic progression with successive peeling rounds were analyzed. 

Bayesian Metrics 

The Kullback-Leibler (KL) divergence is a mathematical statistic used to measure 

the similarity or difference between any two probability distributions. In the context of 

Bayesian inference, the KL divergence is a measure of data information gain from the 

prior probability distribution to the posterior probability distribution, in which the 

posterior distribution is updated with priors using Bayes’ theorem. The amount of 

information lost is expressed when the prior probability distribution is used to 

approximate the posterior. A common goal in the Bayesian experimental design is to 

maximize the expected KL divergence between the posterior and prior distributions.  

The statistic was used in this study to provide an estimate of how much more information 

is gained about the experimental data after computer inference (posterior) than before 

computer inference (prior). Higher KL values provide insight to how informative a 

genotype may be as measured by the difference between the posterior and prior 

(population) distributions, whereas lower KL values indicate less differences and hence a 

potentially less informative genotype. Low-template DNA profiles tend to have lower KL 

values due to the high levels of uncertainty present. TrueAllele calculates the KL after 

performing a Bayesian analysis on the dataset for each inferred contributor in a mixture. 

The KL then estimates the match information present in a contributor’s probabilistic 

genotype. Thus, KL can be used to predict the match statistic and the potential 

informativeness of a separated profile in instances where a reference sample is not 
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available and allows for uploading profiles to a DNA database for comparison (Donahue 

& Perlin, 2019). 

The Gelman-Rubin statistic is used in MCMC algorithms and measures the 

convergence of Markov chains to a stationary distribution within an acceptable error, 

relative to the amount of statistical sampling cycles implemented. The statistic is a useful 

tool in monitoring Markov chains before inducing any specific decisions regarding the 

kinds of inferences that can be made from the model. Therefore, it can be used to reliably 

establish genotype concordance, a key factor in demonstrating the reproducibility of the 

genotype inference. Concordance is observed when multiple, independent computer runs 

produce similar posterior genotype probabilities for a contributor and allows for the 

reporting of those results. Since genotype inference is a random process and runs are 

independent from one another, some variation is expected between replicate computer 

runs due to Markov chains beginning in different areas of probability space. This statistic 

becomes important to show that the same result is inferred in a concordant manner and 

demonstrates the reproducibility of the process. Indications of concordance are observed 

when the similar probabilities are seen between independent computer runs. Due to the 

nature of the data, however, the inference process may not produce concordant 

genotypes.  

The need for improvement of concordance is indicated when genotype 

probabilities do not share similar amounts of probability and have different allele pair 

possibilities. The lack of concordance can be caused by several factors such as the need 

for additional sampling, degradation or low-template DNA amounts, or an incorrect 
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contributor assumption. To potentially improve genotype concordance, there are several 

options for additional processing that may help to resolve the issue. Additional replicates 

can be conducted if independent replicates produce different results. The additional 

replicate can be used to act as a tiebreaker if the new replicate is concordant with one of 

the initial runs. Complex mixture samples can be challenging to resolve, and dozens of 

variables must be considered. In such cases, a shorter cycle runtime may not provide 

enough time for the inference process to have fully explored the solution. Also, cases 

with very little data information, severe degradation, or rare alleles may require 

additional cycles to fully explore all possibilities.  
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RESULTS AND DISCUSSION  

Two-Contributor Mixtures 

The first mixture group containing five items labeled A through E, were each 

composed of two contributors and peeling results are displayed in Tables 2 through 5. 

Each mixture item was conditioned by conducting all combinations of peels, where 0, 1, 

or 2 contributors were assumed. As genotype assumptions were made throughout peeling 

rounds, the log(LR) values of assumed contributors were greyed out and match statistics 

for residual contributors were compared as peeling progressed. All interpretation requests 

were initially run at a burn-in and read-out time of 25,000 MCMC cycles. Within an 

interpretation request, TrueAllele separated the mixture into component genotypes, 

estimated the mixture weight and its standard deviation, measured the divergence as KL, 

and provided match statistics in log(LR) ban units relative to a population for each 

contributor in the mixture.  

 
Table 2. Two-Contributor Peeling Results: Mixture A 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 25 75 

Mix A 1 0.43 0.019 27.15 12.45  

 2 0.57 0.019 27.71  11.15 

Mix A+75 1 0.55 0.022 29.40  27.44 
 2 0.45 0.022 30.44 28.66  

Mix A+25 1 0.45 0.023 30.44 28.66  

 2 0.55 0.023 29.40  27.44 

Mix A+25+75 1 0.45 0.019 30.44 28.66  

 2 0.55 0.019 29.40  27.44 
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In Mixture A both contributors exhibited similar mixture weights, a factor that is 

known to depress match statistics since contributor genotypes are more difficult to 

separate (Bauer et al., 2020). By assuming a contributor, the log(LR) value for the 

remaining contributor increased significantly over two-fold as shown in Table 2. 

 

Table 3. Two-Contributor Peeling Results: Mixture B and C 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 29 71 

Mix B 1 0.76 0.021 28.54 26.40  

 2 0.24 0.021 27.84  23.13 

Mix B+29 1 0.76 0.021 28.54 26.59  

 2 0.24 0.021 28.37  23.21 

Mix B+71 1 0.22 0.014 30.86  28.38 

 2 0.78 0.014 30.46 26.37  

Mix B+29+71 1 0.76 0.018 28.54 26.59  

 2 0.24 0.018 30.86  28.38 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 72 73 

Mix C 1 0.17 0.027 25.24 23.83  

 2 0.83 0.027 29.01  27.52 

Mix C+73 1 0.83 0.020 29.02  27.52 

 2 0.17 0.020 26.68 23.37  

Mix C+72 1 0.17 0.017 30.29 28.49  

 2 0.83 0.017 29.02  27.52 

Mix C+72+73 1 0.17 0.019 30.29 28.49  

 2 0.83 0.019 29.02  27.52 

 

For Mixture B and Mixture C, the genotyping program had no issue resolving 

these mixtures without integrating known profile assumptions since contributor 

proportions largely differed at approximately 75/25 and 83/17, respectively. Therefore, 

the log(LR) values without genotype assumptions for each contributor were highly 

informative and remained consistent as contributors were peeled, displayed in Table 3.  
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Table 4. Two-Contributor Peeling Results: Mixture D 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 24 27 

Mix D 1 0.03 0.012 11.75  14.52 

 2 0.97 0.012 30.29 29.00  

Mix D+24 1 0.92 0.015 30.29 29.01  

 2 0.08 0.015 21.24  19.29 

Mix D+27 1 0.07 0.013 31.73  29.02 

 2 0.93 0.013 30.29 29.01  

Mix D+24+27 1 0.92 0.012 30.29 29.01  

 2 0.08 0.012 31.73  29.02 

 

In Mixture D, the minor contributor was apportioned an 8% mixture weight, 

estimated by assuming both contributor genotypes shown in Table 4. By assuming the 

major contributor, the log(LR) of the minor contributor increased by 5 ban units.   

 

Table 5. Two-Contributor Peeling Results: Mixture E 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 26 36 

Mix E 1 0.95 0.031 28.94 27.20  

 2 0.05 0.031 12.89   

Mix E+26 1 0.99 0.007 28.95 27.20  

 2 0.01 0.007 7.41   

Mix E+36 1 0.01 0.006 34.48  32.66 

 2 0.99 0.006 28.95 27.20  

Mix E+26+36 1 0.99 0.006 28.95 27.20  

 2 0.01 0.006 34.48  32.66 

 

In Mixture E, the minor contributor was attributed an estimated 1% mixture 

weight, thus allele detection was limited as seen in Table 5. Consequently, additional 

sampling time of 50,000 MCMC cycles was explored. At 25,000 cycles, the log(LR) 

value for the minor contributor was less than 1 ban without genotype assumptions and 

remained unchanged after the major contributor was peeled. At 50,000 cycles the minor 

contributor resulted in a log(LR) of 2 ban without genotype assumptions and remained 
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the same after the next peeling round. Upon observing STR peak height data, the minor 

contributor exhibited allelic dropout of one allele in the following three locations: 

D21S11, D2S441, and D3S1358. In low-template contributors, allelic dropout can be 

expected and is especially apparent in high molecular weight loci, therefore, these results 

are expected.  

Three-Contributor Mixtures 

The second mixture group containing five items labeled F through J were each 

composed of three contributors. Each mixture item was conditioned based on mixture 

weight where 0, 1, 2, or 3 contributors were assumed as shown in Tables 6 through 10. 

Mixture F was composed of two contributors with similar mixture weights as well as a 

4% contributor, described in Table 6. When the contributor with the highest mixture 

weight was assumed, the resulting log(LR) for reference 37 increased by 9 ban and 3 ban 

for reference 25. In the second round of peeling, the log(LR) of the remaining contributor 

increased by 4 ban in increment.  

Table 6. Two-Contributor Peeling Results: Mixture F 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 22 25 37 

Mix F 1 0.32 0.009 19.46   16.01 

 2 0.67 0.009 23.77 17.68   

 3 0.01 0.008 8.71  2.54  
Mix F+22 1 0.54 0.008 28.33 27.12   

 2 0.01 0.007 4.49  5.10  

 3 0.45 0.008 25.70   25.34 

Mix F+22+37 1 0.52 0.052 28.33 27.12   

 2 0.43 0.051 27.61   25.90 

 3 0.05 0.044 9.48  9.39  
Mix F+22+37+25 1 0.55 0.036 28.33 27.12   

 2 0.04 0.018 30.45  28.66  

 3 0.42 0.035 27.61   25.90 
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Mixture G exhibited uncertainty in genotype separation in the first round of 

peeling where residual contributors matched both inferred genotypes. Match statistics for 

all three contributors were initially informative before peeling, displaying a minimum of 

9 ban units shown in Table 7. In the first peeling round, an increase in match statistics 

were observed for both remaining contributors, in which, the log(LR) of reference 23 

improved by 3 ban and reference 21 improved by 5 ban. In the second round of peeling, 

the log(LR) of reference 21 incrementally increased by 6 ban.  

 

Table 7. Three-Contributor Peeling Results: Mixture G 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 21 23 34 

Mix G 1 0.53 0.040 28.77   26.48 

 2 0.18 0.026 16.65 9.68   

 3 0.29 0.035 20.89  13.49  
Mix G+34 1 0.52 0.029 33.92   30.70 

 2 0.30 0.040 23.34 1.04 16.83  

 3 0.18 0.030 19.09 14.65 6.22  
Mix G+34+23 1 0.30 0.036 30.91  28.39  

 2 0.52 0.039 33.92   30.70 

 3 0.18 0.019 23.69 20.28   
Mix G+34+23+21 1 0.19 0.018 27.28 26.34     

 2 0.29 0.022 30.91  28.39  

 3 0.52 0.023 33.92   30.70 

 

For Mixture H, the genotyping program had no issue resolving the mixture 

without integrating known profile assumptions, which was expected due to contributor 

proportions that largely differed, seen in Table 8. Match statistics for all three 

contributors were highly informative before peeling, displaying a minimum log(LR) 

value of 20 ban. Match statistics for residual contributors generally remained unchanged 

throughout successive peeling rounds with slight increases of 1 ban.  
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Table 8. Three-Contributor Peeling Results: Mixture H 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 24 35 40 

Mix H 1 0.29 0.039 24.96 25.19   

 2 0.58 0.041 27.73   26.70 

 3 0.12 0.024 22.33  20.11  
Mix H+40 1 0.62 0.040 29.16   27.44 

 2 0.27 0.038 26.81 26.14   

 3 0.10 0.021 20.99  20.15  
Mix H+40+24 1 0.27 0.034 30.29 29.01     

 2 0.63 0.033 29.16   27.44 

 3 0.11 0.019 23.80  21.20  
Mix H+40+24+35 1 0.29 0.019 30.29 29.01   

 2 0.10 0.014 33.62  31.02  

 3 0.61 0.022 29.16   27.44 

 

In Mixture I, uncertainty was exhibited in the separation of genotypes between the 

two minor contributors both before genotype conditioning was initiated as well as in the 

first round of peeling, described in Table 9. Without genotype assumptions, match 

statistics were informative for all three contributors, displaying a minimum log(LR) value 

of 12 ban. In the first round of peeling, a slight decrease of 1 ban in the log(LR) value 

was observed in residual contributors. In the second round of peeling, the log(LR) of the 

remaining contributor increased by 6 ban.  

Table 9. Three-Contributor Peeling Results: Mixture I 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 29 58 74 

Mix I 1 0.18 0.056 17.99  18.51 3.92 

 2 0.12 0.045 14.54  10.23 12.52 

 3 0.70 0.036 28.35 25.57   
Mix I+29 1 0.72 0.038 28.54 26.59   

 2 0.13 0.054 14.14  15.97 11.09 

 3 0.15 0.058 15.11  17.91 9.48 

Mix I+29+58 1 0.71 0.035 28.54 26.59   

 2 0.19 0.034 28.95  27.42  

 3 0.10 0.023 18.61   17.21 

Mix I+29+58+74 1 0.69 0.025 28.54 26.59   

 2 0.20 0.023 28.95  27.42  

 3 0.11 0.016 27.40   26.20 
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Mixture J consisted of a 7% mixture weight contributor and the contributor 

apportioned the least amount of DNA showed a mixture proportion of 1%, shown in 

Table 10. As seen in the table, the KL statistics reflect the inability of the program to 

effectively separate these trace contributors. Once majority of the data is accounted for by 

peeling the contributor with the highest mixture weight, a slight increase in log(LR) is 

observed in reference 31. Match statistics for reference 72 fluctuated throughout peeling 

rounds, where a 1 ban decrease was observed in the first peeling round and a 1 ban 

increase in the second peeling round. Thus, genotype assumptions in successive peeling 

rounds were unhelpful for the 1% contributor.  

 

 
Table 10. Three-Contributor Peeling Results: Mixture J 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 30 31 72 

Mix J 1 0.01 0.007 5.03   2.32 

 2 0.88 0.008 32.65 30.27   

 3 0.11 0.008 17.98  8.53  
Mix J+30 1 0.87 0.007 32.65 30.27   

 2 0.01 0.006 5.96   1.00 

 3 0.12 0.007 19.08  9.66  
Mix J+30+31 1 0.93 0.014 32.65 30.27   

 2 0.06 0.010 29.22  27.29  

 3 0.01 0.016 4.99   2.08 

Mix J+30+31+72 1 0.92 0.018 32.65 30.27   

 2 0.07 0.018 29.22  27.29  

 3 0.01 0.008 30.28   28.49 

 

Four-Contributor Mixtures 

The third mixture group containing five items labeled K through O were each 

composed of four contributors and genotype peeling results are displayed in Tables 11 

through 15. All items within the mixture set were conditioned based on mixture weight 
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and Mixture M was additionally conditioned by match statistics. Interpretation requests 

were formed in which 0, 1, 2, 3, or 4 contributor genotypes were assumed.  

Table 11. Four-Contributor Peeling Results: Mixture K 

  
    Log(LR) 

Evidence Contributor Weight Std Dev KL 35 37 38 71 

Mix K 1 0.31 0.149 9.61 12.10 2.74 13.45 4.83 

 2 0.07 0.114 4.39 5.53 3.22 2.73 4.79 

 3 0.28 0.101 10.92 12.80 5.04 13.03 5.88 

 4 0.34 0.082 12.27 12.23  15.48 4.30 

Mix K+38 1 0.40 0.034 33.47   29.67  

 2 0.01 0.015 3.85  1.16  1.39 

 3 0.20 0.020 18.47 5.15   2.82 

 4 0.40 0.039 19.69 13.03    

Mix K+38+35 1 0.28 0.036 33.62 31.02    

 2 0.37 0.042 33.47   29.67  

 3 0.15 0.043 15.16  10.94  14.96 

 4 0.20 0.051 16.57  9.82  16.75 

Mix K+38+35+71 1 0.28 0.026 33.62 31.02    

 2 0.37 0.031 33.47   29.67  

 3 0.19 0.031 30.86    28.38 

 4 0.16 0.028 22.19  18.26   

Mix K+38+35+71+37 1 0.28 0.023 33.62 31.02    

 2 0.15 0.022 27.61  25.90   

 3 0.38 0.022 33.47   29.67  

 4 0.19 0.024 30.86       28.38 

 

In Mixture K, high levels of genotype separation uncertainty were prevalent 

before peeling, where all four contributors exhibited positive match statistics for multiple 

inferred genotypes as seen in Table 11. The mixture proportions of the two major 

contributors differed by an estimated 10% and the two minor contributors differed by 

only 4%. Due to this similarity in mixture proportions between contributors, the level of 

genotype separation uncertainty is expected. In the first round of peeling, the log(LR) for 

reference 35 increased slightly and a decrease in log(LR) for references 37 and 71 was 

observed since unhelpful genotype assumptions may either reduce match statistics or 
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leave them unchanged. As peeling progressed, match statistics of residual contributors 

improved significantly, and the level of uncertainty in genotype separation reduced but 

was still apparent. In the second round of peeling, the match statistics for reference 37 

improved by 9 ban after the first peeling round and improved by 5 ban compared to 

before peeling was conducted. For reference 71, match statistics improved by 14 ban 

from the first peeling round and improved by 11 ban compared to before peeling was 

applied. In the third round of peeling, the log(LR) of the remaining contributor, reference 

37, increased incrementally by 8 ban.  

Table 12. Four-Contributor Peeling Results: Mixture L 

 
    Log(LR) 

Evidence Contributor Weight Std Dev KL 28 29 30 38 

Mix L 1 0.08 0.035 11.95   2.48   11.00 

 2 0.42 0.045 18.72 12.57  17.68  

 3 0.02 0.028 3.59  3.10  1.07 

 4 0.48 0.046 17.61 11.93  17.55  

Mix L+30 1 0.51 0.009 32.65   30.27  

 2 0.13 0.009 15.85    2.37 

 3 0.35 0.008 25.48 24.46    

 4 0.01 0.006 5.69  1.76   

Mix L+30+28 1 0.43 0.031 30.03 27.71    

 2 0.42 0.030 32.65   30.27  

 3 0.04 0.051 5.26  3.96  3.96 

 4 0.12 0.033 16.25    13.13 

Mix L+30+28+38 1 0.41 0.018 30.03 27.71    

 2 0.44 0.018 32.65   30.27  

 3 0.12 0.014 33.46    29.67 

 4 0.02 0.034 4.91  5.99   

Mix L+30+28+38+29 1 0.41 0.025 30.03 27.71    
 2 0.06 0.018 28.54  26.59  

 
 3 0.42 0.030 32.65   30.27  

 4 0.12 0.021 33.46       29.67 

 

In Mixture L, contributors also exhibited similar mixture proportions in which the 

two major contributors were relatively the same and the two minor contributors differed 
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by only 6% as shown in Table 12. Therefore, uncertainty in genotype separation was 

evident however, the log(LR) values were highly informative and above 10 ban units, 

excluding the contributor with the lowest mixture proportion of 6%. In the first round of 

peeling, the log(LR) value for reference 28 increased two-fold. As uncertainty in 

genotype separation reduced in the first peeling round, the log(LR) of reference 38 

reduced from 11 ban units to 2 ban units. Match statistics for reference 29 fluctuated as 

peeling progressed. In the second round of peeling, the two major contributor genotypes 

were assumed and the log(LR) for reference 38 jumped to an informative 13 ban, 

although, some genotype separation uncertainty was still observed. Once this genotype 

was accounted for in the third peeling round, a small increase of 2 ban was observed in 

reference 29 resulting in a more informative log(LR) value of nearly 6 ban.  

Mixture M was conditioned by mixture weight as well as by match statistics, 

where genotype conditioning routes diverge in the first and second rounds of peeling. 

Genotype peeling results are displayed in Table 13 and interpretation requests conducted 

based on match statistics are indicated by an asterisk. The two major contributors 

consisted of similar mixture proportions differing by an estimated 3%. Uncertainty in 

genotype separation was evident however, the log(LR) values were highly informative at 

10 ban and above excluding the contributor with the lowest mixture proportion. The 

contributor that apportioned the least amount of DNA showed a mixture proportion of 

2% and match statistics generally centered around 2 ban throughout successive peeling 

rounds, regardless of the conditioning method. In the first round of peeling by mixture 

weight, reference 32 was assumed and the log(LR) of reference 58 increased two-fold. 
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The log(LR) value of reference 72 remained the same. When peeling by match statistics, 

reference 72 was assumed and the log(LR) of reference 32 increased by 3 ban. The 

log(LR) of reference 58 remained the same. In the second round of peeling based on 

mixture weight, contributors 32 and 58 were assumed and a small increase of 2 ban was 

observed in reference 72. When peeling by match statistics, the genotypes of contributors 

72 and 58 were assumed and the log(LR) of reference 32 increased two-fold. 

 

Table 13. Four-Contributor Peeling Results: Mixture M 

 
    Log(LR) 

Evidence Contributor Weight Std Dev KL 32 40 58 72 

Mix M 1 0.13 0.041 10.66 1.29  4.70 15.60 

 2 0.48 0.066 18.42 10.32  11.63  

 3 0.24 0.084 11.45 10.37  10.56 9.25 

 4 0.15 0.200 6.28 7.90 2.09 7.11 2.48 

Mix M+32 1 0.39 0.006 27.77 26.18    

 2 0.18 0.006 24.45    15.85 

 3 0.42 0.006 28.07   23.53  

 4 0.01 0.005 5.62     

Mix M+72* 1 0.20 0.006 30.28    28.49 

 2 0.01 0.006 5.32  1.51   

 3 0.41 0.008 17.51 13.19  11.79  

 4 0.37 0.007 17.68 12.10  12.78  

Mix M+32+58 1 0.40 0.060 27.77 26.18    

 2 0.38 0.041 28.95   27.42  

 3 0.10 0.133 8.61  2.27  16.26 

 4 0.11 0.062 11.63    17.49 

Mix M+72+58* 1 0.36 0.026 28.95   27.42  

 2 0.16 0.013 30.28    28.49 

 3 0.45 0.035 27.19 26.00    

 4 0.02 0.029 6.39  2.08   

Mix M+32+58+72 1 0.44 0.006 27.77 26.18    

 2 0.39 0.006 28.95   27.42  

 3 0.17 0.006 30.28    28.49 

 4 0.01 0.005 5.56     

Mix M+32+58+72+40 1 0.42 0.020 27.77 26.18    

 2 0.02 0.011 29.16  27.44   

 3 0.39 0.024 28.95   27.42  

 4 0.17 0.026 30.28    28.49 
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In Mixture N, the contributor that apportioned the least amount of DNA showed a 

mixture proportion of an estimated 1%, displayed in Table 14. Match statistics for this 

contributor were uninformative at 1 ban and generally remained constant before 

conditioning and throughout successive peeling rounds. Without genotype assumptions, 

high levels of uncertainty in genotype separation between contributors was present and 

reduced in successive peeling rounds as more contributor profiles were assumed. In the 

first round of peeling, the contributor with the highest mixture weight was assumed 

resulting in an increase of 5 ban units for reference 31 and the match statistics of the 

other residual contributors relatively remained the same. In the second round of peeling, 

the log(LR) of reference 74 increased by 3 ban.  

 

Table 14. Four-Contributor Peeling Results: Mixture N 

 
    Log(LR) 

Evidence Contributor Weight Std Dev KL 25 26 31 74 

Mix N 1 0.11 0.147 4.58 1.22 7.24 2.46 4.75 

 2 0.33 0.062 16.35  13.06 18.60  
 3 0.45 0.131 17.62  22.31 4.74  

 4 0.11 0.059 8.45  2.42  9.88 

Mix N+26 1 0.55 0.065 28.95  27.20   
 2 0.10 0.087 6.97 1.42  2.88 10.85 

 3 0.29 0.045 22.02   23.95  
 4 0.06 0.070 5.38 2.54   8.04 

Mix N+26+31 1 0.60 0.007 28.95  27.20   
 2 0.30 0.007 29.22   27.29  
 3 0.01 0.006 8.43     
 4 0.09 0.007 16.85    13.21 

Mix N+26+31+74 1 0.56 0.006 28.95  27.20   
 2 0.31 0.006 29.22   27.29  
 3 0.12 0.006 27.40    26.20 

 4 0.01 0.005 7.16     
Mix N+26+31+74+25 1 0.01 0.008 30.45 28.66    
 2 0.59 0.018 28.95  27.20   
 3 0.27 0.019 29.22   27.29  
 4 0.12 0.019 27.40       26.20 
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 In Mixture O, the mixture proportion of the contributor that was attributed the 

least amount of DNA was also estimated to be about 1% as seen in Table 15. The match 

statistics for this contributor remained uninformative with log(LR) values less than one 

before and after successive peeling rounds. Uncertainty in genotype separation was 

observed periodically, due to the two minor contributors with similar mixture weights, 

differing by only an estimated 7%. Excluding the 1% minor contributor, match statistics 

of the other inferred genotypes were informative before peeling rounds and improved as 

peeling progressed. In the first round of peeling, the contributor with the highest mixture 

weight was assumed and the log(LR) values of reference 34 and reference 36 increased 

by 5 ban and 2 ban, respectively. In the second round of peeling, the log(LR) of reference 

34 improved incrementally by 2 ban.  

 
Table 15. Four-Contributor Peeling Results: Mixture O 

     Log(LR) 

Evidence Contributor Weight Std Dev KL 22 23 34 36 

Mix O 1 0.11 0.009 17.00   8.95  
 2 0.01 0.016 5.25     
 3 0.22 0.012 25.42    17.44 

 4 0.66 0.009 27.87 26.85    
Mix O+22 1 0.67 0.024 28.33 27.12    
 2 0.04 0.048 6.12   9.23  
 3 0.21 0.023 27.65    19.48 

 4 0.08 0.021 13.08   13.00 1.67 

Mix O+22+36 1 0.54 0.163 28.33 27.12    
 2 0.17 0.015 34.48    32.66 

 3 0.06 0.045 10.54   15.23  
 4 0.23 0.151 18.03 21.46  9.04  
Mix O+22+36+34 1 0.24 0.070 28.33 27.12    
 2 0.08 0.020 33.91   30.70  
 3 0.19 0.019 34.48    32.66 

 4 0.49 0.070 27.95 27.03    
Mix O+22+36+34+23 1 0.72 0.015 28.33 27.12    
 2 0.01 0.005 30.91  28.39   
 3 0.08 0.010 33.91   30.70  
 4 0.19 0.014 34.48       32.66 
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Five-Contributor Mixtures 

The fourth mixture group containing five items labeled P through T were each 

composed of five contributors and genotype conditioning results are displayed in Tables 

16 through 20. The mixture items were conditioned based on mixture weight and when 

genotype conditioning routes diverged, mixture items were also conditioned based on 

match statistics. Interpretation requests were formed that assumed 0, 1, 2, 3, 4, or 5 

contributors and requests conducted based on match statistics are labeled with an asterisk.  

In Mixture P, match statistics for inferred genotypes before peeling were 

uninformative and centered around 1 ban, excluding the contributor with the highest 

mixture weight displaying an informative log(LR) of 11 ban as shown in Table 16. In the 

first round of peeling, the contributor with the highest mixture weight was assumed and 

match statistics for residual contributors improved. The log(LR) values for references 25, 

26, and 34 each increased by 4 ban and the log(LR) value for reference 30 increased by 3 

ban. Uncertainty in genotype separation was observed before peeling was initiated and 

increased in the first peeling round since contributors exhibited similar mixture 

proportions. The two contributors that consisted of the least amount of DNA, references 

30 and 34, were estimated to have the same mixture weight of 11% and the mixture 

weights of references 25 and 26 differed by an estimated 4%.  

In the second round of peeling, the log(LR) value of reference 26 improved 

significantly by 9 ban and the log(LR) value of reference 30 increased by 4 ban, in 

increment. The match statistic for reference 34 slightly decreased due to contributors 

consisting of similar mixture weights. In the third round of peeling, match statistics for  
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Table 16. Five-Contributor Peeling Results: Mixture P  

 
    Log(LR) 

Evidence Contrib. Weight Std Dev KL 25 26 30 34 58 

Mix P 1 0.39 0.007 15.65     11.71 

 2 0.18 0.007 16.87 1.45     

 3 0.01 0.005 3.92      

 4 0.10 0.006 13.61      

 5 0.33 0.007 15.98  1.33   8.44 

Mix P+58 1 0.16 0.077 28.95         27.42 

 2 0.16 0.037 10.97 1.07 1.49 3.43 4.56  

 3 0.40 0.073 16.81 2.91     

 4 0.05 0.082 3.09 1.86  2.14 3.31  

 5 0.23 0.053 11.17 5.36 5.41    

Mix P+58+25 1 0.29 0.008 30.45 28.66        

 2 0.30 0.008 28.95     27.42 

 3 0.15 0.008 17.80  1.40 7.55 1.80  

 4 0.01 0.006 3.43      

 5 0.25 0.008 21.33  14.34    

Mix P+58+25+26 1 0.24 0.048 30.45 28.66        

 2 0.23 0.031 28.95  27.20    

 3 0.31 0.053 28.95     27.42 

 4 0.12 0.045 14.18   12.97 10.24  

 5 0.09 0.064 9.42   13.06 10.63  

Mix P+58+25+26+30 1 0.24 0.037 30.45 28.66        

 2 0.20 0.038 28.95  27.20    

 3 0.13 0.021 32.65   30.27   

 4 0.30 0.038 28.95     27.42 

 5 0.14 0.044 19.05    17.79  

Mix P+25+26+58+30+34 1 0.24 0.031 30.45 28.66        

 2 0.20 0.021 28.95  27.20    

 3 0.11 0.018 32.65   30.27   

 4 0.11 0.019 33.91    30.70  

 5 0.33 0.035 28.95         27.42 

 

 

residual contributors improved significantly. The log(LR) values for reference 30 

increased by a 6-ban increment and a 9-ban increment for reference 34. Genotype 

separation uncertainty was still observed; however, it was eliminated in the following 

round of peeling upon the genotype assumption of the contributor with a similar mixture 

weight. As a result, the match statistics for the remaining contributor became more 

refined and improved by an additional 7 ban units in the fourth peeling round. Figure 6 
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provides a visual representation of the observed increases in the log(LR) values for 

reference 34 in Mixture P as genotype conditioning progressed.  

 

 
Figure 6. Log(LR) Increases for Reference 34 in Mixture P at D1S1656. The questioned evidence corresponds 

to the inferred genotype probabilities before conditioning (Q3) followed by a total of four successive peeling 

rounds (Q7, Q13, Q20, Q25) for subject reference 34 (S4). Genotype View (left): The probabilities of the 

questioned evidence (shades of blue), reference (green), and population (brown) for genotype (15, 16.3) are 

shown. The blue bars represent the posterior probabilities, and the brown bar represents the prior probability. Each 

posterior probability value is divided by the prior probability value to produce the genotype log(LR) for this locus, 

shown in Match View (right). Log(LR) values show incremental improvements as peeling rounds progressed at 

this genetic marker.  

 

 

In Mixture Q, the mixture weights of the two high-template contributors were 

within close range of each other and differed by an estimated 5%, shown in Table 17. The 

three remaining contributors consisted of low-template DNA amounts where one 

contributor consisted of a 6% mixture weight and the other two contributors were each 
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apportioned 1%. Genotype separation uncertainty is expected and prevalent due to the 

similarity of mixture proportions between multiple contributors. Therefore, all 

interpretation requests within Mixture Q were processed with a higher burn-in and read-

out time of 50,000 MCMC cycles. Mixture Q was conditioned by mixture weight as well 

as by match statistics, where genotype conditioning routes diverge in the first and third 

rounds of peeling. Interpretation requests conducted based on match statistics are 

indicated by an asterisk. 

Before peeling, the match statistics of the high-template contributors were 

informative, displaying log(LR) values of 9 ban for reference 31 and 16 ban for reference 

36. References 28 and 32 were each apportioned a 1% mixture weight and match 

statistics were uninformative for these contributors centering around 1 ban, which 

remained consistent throughout all rounds of peeling regardless of the peeling approach 

used. The log(LR) of reference 27 was about 4 ban units before conditioning, which 

fluctuated as different contributors were peeled in both conditioning routes. In the first 

round of peeling by mixture weight, reference 31 was assumed and the log(LR) value of 

reference 36 increased nearly two-fold. Although there was a slight increase in the 

log(LR) for reference 32, the match statistic was still uninformative. Upon conditioning 

by match statistics, reference 36 was assumed and the log(LR) for reference 31 improved 

over two-fold by 15 ban units. The log(LR) for reference 27 decreased slightly in both 

conditioning routes and genotype separation uncertainty was still apparent. In the third 

round of peeling by match statistics, the log(LR) for reference 27 was 5 ban, 1 ban 

greater than before peeling was conducted.  
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Table 17. Five-Contributor Peeling Results: Mixture Q 

 
    Log(LR) 

Evidence Contrib. Weight Std Dev KL 27 28 31 32 36 

Mix Q 1 0.35 0.021 18.50     9.37   16.65 
 2 0.15 0.030 14.24    1.71  

 3 0.39 0.031 17.87   9.30  16.22 
 4 0.03 0.018 7.61      

 5 0.08 0.039 9.57 4.72       

Mix Q+31 1 0.37 0.009 29.23    27.29     
 2 0.05 0.009 8.42 3.66     

 3 0.44 0.009 30.96     31.20 
 4 0.12 0.008 14.78 1.73   2.18  

 5 0.01 0.007 3.14      

Mix Q+36* 1 0.45 0.009 34.48     32.66 
 2 0.18 0.009 15.08      

 3 0.01 0.007 5.27 1.36     

 4 0.34 0.009 23.10   24.48   

 5 0.02 0.009 4.95      

Mix Q+36+31 1 0.44 0.007 29.23     27.29     
 2 0.39 0.007 34.48     32.66 
 3 0.01 0.005 2.42    1.14  

 4 0.15 0.007 16.84      

 5 0.01 0.006 3.70      

Mix Q+36+31+27 1 0.01 0.007 31.73 29.02         
 2 0.36 0.008 29.23   27.29   

 3 0.45 0.008 34.48     32.66 
 4 0.13 0.008 17.10      

 5 0.06 0.008 9.73      

Mix Q+36+31+32* 1 0.42 0.020 29.23   27.29   

 2 0.01 0.007 27.77    26.18  

 3 0.42 0.017 34.48     32.66 
 4 0.03 0.053 6.31 4.16 1.50    

 5 0.12 0.033 13.23 5.32     

Mix Q+36+31+32+27 1 0.06 0.019 31.73 29.02         
 2 0.42 0.038 29.23   27.29   

 3 0.01 0.010 27.77    26.18  

 4 0.39 0.032 34.48     32.66 
 5 0.12 0.027 16.49  1.07    

Mix Q+31+36+32+28+27 1 0.06 0.007 31.73 29.02         
 2 0.01 0.006 30.04  27.71    

 3 0.43 0.007 29.23   27.29   

 4 0.01 0.007 27.77    26.18  

 5 0.48 0.007 34.48         32.66 

 

 

In Mixture R, the mixture weights of the two contributors that make up the larger 

portion of the mixture were within close range of each other and differed by an estimated 
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5% as described in Table 18. Of the three remaining contributors, two contributors were 

each apportioned a 13% mixture weight and one contributor consisted of a 1% mixture 

weight. Genotype separation uncertainty is expected and prevalent because of this 

similarity of mixture proportions between two or more contributors. Mixture R was 

conditioned by mixture weight as well as by match statistics, where genotype 

conditioning routes diverged in the first and third rounds of peeling. Interpretation 

requests conducted based on match statistics are indicated by an asterisk. Before 

genotype conditioning, match statistics for the two contributors that make up the larger 

portion of the mixture (references 24 and 37) were informative and each displayed 

log(LR) values of 12 ban. The match statistics for the two 13% contributors (references 

23 and 73) each displayed log(LR) values of 3 ban. The log(LR) value for the 1% 

contributor rested at values less than 1 ban and did not show improvement in subsequent 

peeling rounds. 

In the first round of peeling by mixture weight, reference 37 was assumed and the 

match statistic for reference 24 improved significantly by 11 ban. Match statistics for 

reference 23 slightly improved by 2 ban, resulting in a log(LR) of 5 ban. The log(LR) 

value for reference 73 remained steady at 3 ban in both conditioning routes. Upon peeling 

by match statistics, reference 24 was assumed and the log(LR) values for reference 37 

improved by 10 ban. The match statistics for the three remaining contributors were the 

same in ban units as compared to before peeling was employed. As majority of the 

genotyping data was accounted for in the second round of peeling, an improvement in 

match statistics for the residual 13% contributors was observed. The log(LR) for 
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reference 23 increased by 5 ban and 7 ban compared to the previous peeling round by 

mixture weight and match statistics, respectively. The log(LR) for reference 73 increased  

Table 18. Five-Contributor Peeling Results: Mixture R 

     Log(LR) 

Evidence Contrib. Weight Std Dev KL 23 24 37 73 75 

Mix R 1 0.19 0.007 11.66  3.53 6.15 3.30  

 2 0.33 0.007 14.79  11.66 12.29   

 3 0.14 0.007 12.21 3.29   3.22  

 4 0.01 0.005 3.83      

 5 0.34 0.007 15.18   12.90 10.92     

Mix R+37 1 0.29 0.028 27.61   25.90   

 2 0.01 0.023 5.38 2.25     

 3 0.22 0.013 14.32  3.92  3.57  

 4 0.12 0.032 12.78 5.95     

 5 0.35 0.013 22.50  23.81    

Mix R+24* 1 0.32 0.008 30.29  29.01    

 2 0.09 0.007 13.14 3.74     

 3 0.16 0.007 16.45    3.30  

 4 0.43 0.007 24.44   22.15   

 5 0.01 0.005 3.43      

Mix R+37+24 1 0.33 0.007 30.29   29.01       
 2 0.41 0.008 27.61   25.90   

 3 0.01 0.006 3.95      

 4 0.15 0.007 15.85 4.46   9.93  

 5 0.11 0.007 13.32 10.41   8.20  

Mix R+37+24+73 1 0.38 0.005 30.29   29.01       
 2 0.39 0.005 27.61   25.90   

 3 0.13 0.005 29.02    27.52  

 4 0.01 0.004 8.47      

 5 0.09 0.005 20.51 10.41     

Mix R+24+37+23* 1 0.09 0.021 30.91 28.39     

 2 0.38 0.027 30.29  29.01    

 3 0.33 0.093 27.61   25.90   

 4 0.03 0.049 6.86    4.89  

 5 0.17 0.069 19.04    15.11  

Mix R+37+24+73+23 1 0.09 0.005 30.91 28.39         
 2 0.35 0.005 30.29  29.01    

 3 0.44 0.005 27.61   25.90   

 4 0.12 0.005 29.02    27.52  

 5 0.01 0.004 4.87      

Mix R+37+24+73+23+75 1 0.13 0.011 30.91 28.39         
 2 0.34 0.008 30.29  29.01    

 3 0.39 0.009 27.61   25.90   

 4 0.13 0.013 29.02    27.52  

 5 0.01 0.005 29.40         27.44 
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by about 6 ban units from both conditioning approaches conducted in the previous round. 

In the third round of peeling by mixture weight, match statistics for residual contributors 

remained unchanged. Upon peeling by match statistics, the log(LR) value of reference 73 

increased by 6 ban, incrementally.  

Mixture S consisted of three low-template contributors with mixture weights less 

than 10%, of which, reference 72 attributed 8%, reference 40 attributed 6%, and 

reference 74 attributed 1% as described in Table 19. With low-template contributors 

consisting of relatively similar mixture proportions, genotype separation uncertainty is 

expected and prevalent before conditioning and in the first peeling round. Before 

genotype conditioning, match statistics for the two contributors that composed the larger 

portion of the mixture were more informative. The match statistics for reference 22 

showed a log(LR) value of 18 ban and 11 ban for reference 35. The 8% contributor 

displayed a log(LR) value of 5 ban and was more informative than the 6% and 1% 

contributors, whose log(LR) values were both less than 1 ban.  

In the first round of peeling, the log(LR) value for reference 35 improved by 9 

ban. Match statistics for reference 72 (8% mixture weight) and reference 40 (6% mixture 

weight) slightly improved to 4 ban and 6 ban respectively, however additional rounds of 

peeling were not helpful. This was evident in the second peeling round, where a decrease 

in log(LR) values for references 72 and 40 were observed. The match statistics for the 1% 

contributor, reference 74, displayed log(LR) values less than 1 ban throughout majority 

of peeling rounds and showed a log(LR) value of 1 ban in the fourth round of peeling, 

remaining uninformative. 
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Table 19. Five-Contributor Peeling Results: Mixture S 

     Log(LR) 

Evidence Contrib. Weight Std Dev KL 22 35 40 72 74 

Mix S 1 0.29 0.007 16.51 13.34         
 2 0.01 0.005 3.74      

 3 0.12 0.007 15.81    5.24  

 4 0.21 0.007 15.90 2.98 11.81    

 5 0.38 0.008 20.33 18.81     

Mix S+22 1 0.62 0.029 28.33 27.12         
 2 0.02 0.029 3.93   1.78 1.71  

 3 0.21 0.038 20.21  20.18    

 4 0.10 0.053 9.60  11.00 3.59 6.18  

 5 0.05 0.057 5.35  3.07 4.20 6.13  

Mix S+22+35 1 0.18 0.018 28.33 27.12         
 2 0.20 0.008 33.62  31.02    

 3 0.01 0.005 3.72      

 4 0.12 0.009 20.53    4.90  

 5 0.50 0.020 27.27 26.77     

Mix S+22+35+72 1 0.12 0.008 28.33 27.12         
 2 0.21 0.008 33.62  31.02    

 3 0.08 0.008 30.29    28.49  

 4 0.58 0.013 27.82 26.65     

 5 0.01 0.005 4.29      

Mix S+22+35+72+40 1 0.69 0.010 28.33 27.12         
 2 0.17 0.011 33.62  31.02    

 3 0.05 0.008 29.16   27.44   

 4 0.08 0.007 30.29    28.49  

 5 0.01 0.004 4.56     1.17 

Mix S+22+35+72+40+74 1 0.66 0.028 28.33 27.12         
 2 0.19 0.022 33.62  31.02    

 3 0.06 0.021 29.16   27.44   

 4 0.08 0.019 30.29    28.49  

 5 0.01 0.009 27.40         26.20 

 

 

 

Mixture T was composed of three low-template contributors with corresponding 

mixture weights of less than 10% and produced uninformative match statistics. With low-

template contributors consisting of relatively similar mixture proportions, genotype 

separation uncertainty is expected and prevalent throughout conditioning. Therefore, all 

interpretation requests within Mixture T were processed with a higher burn-in and read-

out time of 50,000 MCMC cycles. Mixture T was conditioned by mixture weight as well  
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Table 20. Five-Contributor Peeling Results: Mixture T 

  
    Log(LR) 

Evidence Contrib. Weight Std Dev KL 21 29 38 39 71 

Mix T 1 0.76 0.052 27.65     23.37 

 2 0.08 0.025 8.15  7.09    
 3 0.05 0.046 5.48  5.56    
 4 0.04 0.061 5.06  1.85    
 5 0.07 0.032 7.84  6.98    
Mix T+71* 1 0.27 0.009 30.54         28.22 

 2 0.01 0.007 7.01      
 3 0.52 0.009 29.80     27.83 

 4 0.13 0.008 14.85  11.96    
 5 0.07 0.008 11.35  4.39    
Mix T+29 1 0.07 0.008 28.54  26.59    
 2 0.01 0.007 6.46      
 3 0.85 0.008 30.33     28.22 

 4 0.06 0.008 13.49      
 5 0.01 0.008 4.79      
Mix T+71+29* 1 0.08 0.035 28.54   26.59       

 2 0.79 0.036 30.54     28.22 

 3 0.05 0.059 5.45 1.25   1.98  
 4 0.04 0.050 4.42 1.21   1.66  
 5 0.05 0.059 5.54 1.04   1.40  
Mix T+29+39 1 0.07 0.032 28.54  26.59    
 2 0.01 0.011 31.12    28.32  
 3 0.03 0.030 5.70      
 4 0.01 0.007 5.56      
 5 0.88 0.025 28.93     28.17 

Mix T+71+29+39 1 0.09 0.032 28.54   26.59       

 2 0.01 0.009 31.12    28.32  
 3 0.73 0.207 30.54     28.22 

 4 0.05 0.059 5.35 1.85     
 5 0.12 0.195 7.95 2.24    14.66 

Mix T+71+29+39+21 1 0.01 0.005 27.27 26.34         

 2 0.11 0.014 28.54  26.59    
 3 0.01 0.005 31.12    28.32  
 4 0.09 0.012 30.54     28.22 

 5 0.77 0.022 30.53     28.22 

Mix T+71+29+21+39+38 1 0.15 0.004 27.27 26.34         

 2 0.32 0.003 28.54  26.59    
 3 0.03 0.004 33.46   29.67   
 4 0.27 0.004 31.12    28.32  
 5 0.24 0.004 30.54      28.22 
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as by match statistics, where genotype conditioning routes diverge in the first and second 

rounds of peeling. Interpretation requests conducted based on match statistics are 

indicated by an asterisk in Table 20. Match statistics for the two contributors that were 

apportioned the highest mixture weight were informative, displaying log(LR) values of 

23 ban for reference 71 and 7 ban for reference 29 before genotype conditioning was 

initiated.  

In the first round of peeling by match statistics, reference 71 was assumed and the 

log(LR) of reference 29 improved by 4 ban. When peeling by mixture weight, reference 

29 was assumed and the log(LR) of reference 71 improved by 5 ban. Match statistics for 

references 21, 38, and 39 exhibited log(LR) values of less than one before conditioning as 

well as after the first peeling round, regardless of the conditioning approach performed. 

In the second round of peeling by match statistics, references 71 and 29 were assumed. 

The log(LR) values for reference 39 remained less than 1 ban throughout all runs and 

references 21 and 39 displayed log(LR) values of 1 ban. An improvement in match 

statistics was not observed for any contributor when peeling by mixture weight. In the 

third peeling round, the match statistic for reference 21 slightly improved, exhibiting a 

log(LR) of 2 ban.  

When observing STR peak height data, it was determined that Mixture T was 

subjected to human error. The genotype for reference 71 showed an allele pair of (23.2, 

33) at locus SE33, however, allele 23.2 was absent from the electropherogram data, 

resulting in a large negative match statistic at this genetic location. This instance was 

rather odd, since reference 71 is the major contributor and having a major allele dropout 
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is unusual. On the other hand, the data itself displayed a major contributor with allele pair 

(26.2, 33) that should have been designated as reference 71. It was presumed that a 

mistype had occurred due to human error when entering the genotype for reference 71. 

This assumption was confirmed with the Forensic DNA Lab in the Beaufort County 

Sheriff’s Office that had provided the original mixture data. In TrueAllele, the genotype 

for reference 71 was then updated and new interpretation requests were formed with this 

updated genotype for analysis. Match statistics were then recalculated, and these results 

were used for comparisons. Typically, human error causes adverse effects that can be 

reflected in the experimental data and indicated when measured results deviate from the 

true or desired value. In instances where true values are unknown, human error becomes 

easily overlooked and ultimately effects identification, which emphasizes the importance 

of accuracy and reliability in complex mixture interpretation to minimize potential 

sources of human error.  
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CONCLUSION 

The purpose of any forensic analysis and interpretation is to derive informative 

conclusions that generate investigative leads, which remains the focus for genotype 

conditioning applications. Due to the high amounts of uncertainty associated with 

mixture samples, many laboratories have halted the interpretation of complex mixtures 

involving three or more contributors. The research results reported herein demonstrate 

additional capabilities in the area of mixtures, tests the waters for what probabilistic 

genotyping can accomplish, and shows the importance and value of using known samples 

when appropriate to decrease uncertainty in mixture deconvolution. Empirical testing 

serves as the basis for scientific and legal reliability (Bauer et al., 2020). Thus, validation 

studies testing laboratory-generated data, as described in this study, and casework field 

data are both necessary. Developing novel methods to analyze complex mixtures 

efficiently would continue to benefit the forensic science community in understanding 

and applying these methods to feasibly generate higher match statistics than traditional 

mixture deconvolution procedures used in forensic DNA laboratories. These kinds of 

validation studies can lead to casework practices that are expected to result in higher 

identification rates.  

In this study, DNA mixtures consisting of 2, 3, 4, and 5 contributors were 

interpreted probabilistically by incorporating genotype conditioning methods based on 
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mixture weight and match statistics. Overall, adding information to mixture samples is 

beneficial in mixture deconvolution and increases in resulting LRs was repeatedly 

observed upon genotype conditioning. The results of this study conclude that genotype 

conditioning was helpful in mixture deconvolution, especially in contributors that were 

apportioned similar mixture weights. Without peeling, match statistics of contributors 

within such mixtures were initially depressed and subsequently improved when a 

contributor with a similar mixture proportion was assumed by genotype conditioning.  

Contributors that were attributed less than a 3% mixture weight were unaffected 

by genotype conditioning and relative match statistics generally remained constant and 

uninformative throughout all rounds of peeling. However, improvements in match 

statistics of contributors with mixture weights between 3% and 10% were observed and 

were more pronounced in two and three-contributor mixtures. These improvements in 

log(LR) values became less prominent as the number of contributors increased across 

mixture sets, yet they were still informative. As the number of contributors increased, the 

levels of uncertainty in genotype separation were observed, in which, contributors 

exhibited positive match scores for multiple inferred genotypes. This level of uncertainty 

is expected and prevalent due to the similarity of mixture proportions between two or 

more contributors. Genotype separation uncertainty can be caused by several factors such 

as the presence of low-template contributors and contributors exhibiting similar mixture 

weights. It is possible that in such instances the computer program may require additional 

MCMC cycles to explore all variables due to the nature of the sample.  
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Since only four mixture items diverged into two routes of peeling, it was difficult 

to determine whether conditioning by mixture weight or by match statistic was more 

beneficial in producing consistently higher log(LR) values. This factor should be 

addressed in further studies to determine which approach may be more favorable and 

under what circumstances. Future directions of this project may also include the 

assessment of mixtures greater than five contributors, as well as mixtures containing 

limited quantities of DNA from touch or degraded samples. Additionally, the impact of 

genotype conditioning on contributors consisting of less than 10% mixture weight should 

be assessed through the exploration of higher MCMC cycles to ensure that the program is 

provided enough time to determine the solution as well as to further ascertain the 

circumstances under which genotype peeling becomes more or less appropriate.  

As technology evolves the range of its techniques and discoveries widen, 

therefore it is incumbent upon the forensic community to adopt new methodologies that 

corroborate justice by their ability to interpret challenging samples efficiently in an effort 

to continue to exonerate the innocent and confidently identify criminals. The growing 

demands for evidence processing in recent years have clearly shown that labs must move 

towards more efficient and sophisticated methods and procedures for mixture 

deconvolution. Scientific and technological advances made possible through strong 

support for research will be essential in ensuring that forensic DNA laboratories keep 

pace with increasing demand. When implemented after careful consideration and 

evaluation, genotype peeling can be used to maximize the information obtained from 

complex mixtures while maintaining a high standard of reliability and reproducibility. As 
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more forensic laboratories are incorporating probabilistic methods into their workflow, 

there has been an increase in the ability to successfully separate complex mixtures where 

valuable conclusions could be drawn and reported. Improving the accuracy and scope of 

forensic DNA interpretation methods minimizes human error and ultimately strengthens 

the administration of justice. 
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