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Abstract

A NEW ANALYTICAL FOURIER-TRANSFORMATION MODEL FOR X-RAY TIME
LAGS IN AGN

David C. Baughman, PhD

George Mason University, 2021

Dissertation Director: Dr. Peter A. Becker

The variability of the X-ray emission from black holes is often characterized in terms of

the time lags observed between the soft and hard energy bands in the detector. The time

lags are usually computed using the complex cross spectrum, which is based on the Fourier

transform of the data in the two energy bands. For over a decade, it has been noted that

some active galactic nuclei display soft Fourier X-ray time lags, in addition to the more

ubiquitous hard lags. In the case of a soft lag, the X-rays in the low-energy channel are

received after the corresponding signal is detected in the hard channel. The physical origin

of the soft lags is a topic of ongoing research and discussion. In this dissertation I explore

the possibility that the soft X-ray time lags result from the thermal and bulk Comptoniza-

tion of photons injected into the relatively hot, quasi-spherical coronal region surrounding

the cooler accretion disk near the central black hole. I develop a time-dependent analyt-

ical model for this process based on a Fourier-transformed radiation transport equation,

and demonstrate that the model successfully reproduces both the hard and soft time lags

observed in the narrow-line Seyfert 1 galaxy 1H0707-495, based on a unified physical mech-

anism operating in a single region. I then develop the quiescent solution and test whether

a coronal photonic source is able to generate components of the observed X-ray spectrum.



Chapter 1: Introduction

The study of the physics of accreting black holes is an active area of research continually

filled with new theories and observations. Much of the current research in this area is focused

on matching observational data with software models in an e↵ort to explain and understand

the observations. My research presents a new theoretical model based o↵ of explicit known

physical processes. I compare these results to previous publication’s observational data

and in doing so, am able to more fully explore the fundamental aspects of the underlying

physics.

This dissertation is organized as follows. In Chapter 1, I provide a history and brief

overview of the current state of knowledge and research regarding black hole sources. In

Chapter 2, I present the physical model and derivation of the time-dependent photon dis-

tribution function based on an analytical modeling of the corona around a black hole source

with a non-relativistic, time-dependent transport model for photons scattered in an advect-

ing, isothermal, inhomogeneous, spherically symmetric cloud that experiences an injection

of monochromatic seed photons at a given radius at a specific point in time. In Chapter 3, I

demonstrate the applicability of this model to a black hole source, namely the active galactic

nucleus 1H0707-495. In Chapter 4, I derive the quiescent (time-independent or steady-state)

photon distribution function and explore both monochromatic and bremsstrahlung injec-

tion sources. In Chapter 5, I review the applicability of the quiescent spectrum to the same

source, 1H0707-495. In Chapter 6, I discuss and summarize my results of this dissertation

and discuss future research opportunities.

1



1.1 A Brief History of Astrophysical Black Holes

1.1.1 Origins

Although the first “image” of an astrophysical black hole was just recently attained in

the 21st century (see Figure 1.1), within the scientific community the concept of black holes

extends over 200 years. As one of the most mystifying natural phenomenon that humans

have ever discovered, black holes continue to capture both scientist’s and laymen’s interest

alike. Ironically, the concept of black holes, something that appears to be undetectable, did

not gain popularity until observational techniques arose that allowed the inferred detection

of black holes based on theory. My research similarly requires the merger of theory and

observation, and focuses on the still debated topic of understanding the physical processes

that occur in the area surrounding black holes. I theorize, by comparison with observations,

a black hole coronal model that successfully replicates observed X-ray phenomenon.

Figure 1.1: The first “image” of a black hole in the center of the galaxy M87 captured using radio waves
and attained by the Event Horizon Telescope collaboration. Credit: Event Horizon Telescope Collaboration.

2



The first scientific idea of an astrophysical object being so massive that light could not

escape it is ascribed to John Michell. In 1784 he published a letter for the Philosophical

Transactions of the Royal Society of London where he postulated that, based on Newton’s

corpuscular theory of light, “dark stars” could exist with an equivalent density to our

sun, but 500 times larger due to the inability of light to escape the star’s own gravity

(Michell 1784). In this paper Michell also made an initial attempt at describing potential

observational techniques to discover black holes by noting that the existence of the star

could be inferred by other luminous bodies revolving around it. Unfortunately, Michell’s

concepts were forgotten until the late 20th century.

The next foray into the theoretical concept of black holes, and still the foundation of

current understanding, came in the early 20th century thanks to Albert Einstein’s Gen-

eral Theory of Relativity. The formalism found in General Relativity (GR) allowed Karl

Schwarzschild and Subrahmanyan Chandrasekhar to discover the foundation of modern

day black holes as we know it. In 1915, prior to Einstein’s final publication of his the-

ory, Schwarzschild solved GR’s field equations for the gravitational field of a non-rotating,

spherically symmetric body with mass M (now known as the Schwarzschild metric). In

this metric, at a specific radius now known as the Schwarzschild radius, rs, the solution

becomes singular (in addition to the other singularity solution where the radius is r = 0).

Although, at the time the significance of rs was debated since a coordinate change would

cause the singularity to disappear, the mathematical foundation of the modern day black

hole was discovered (albeit without the name). The influence of black holes in the sci-

entific community was still very small until almost 20 years later when, using Einstein’s

theories, Chandrasekhar discovered a limit for a white dwarf star’s mass beyond which it

would gravitationally collapse, potentially into a black hole. This limit is now known as the

Chandrasekhar limit and was the first such scientific work that implied the possibility of the

formation of black holes beyond just a mathematical description. However, the community

was still slow to garner interest in black holes until the 1960s when observational capabilities

advanced enough to allow possible correlation with theoretical work.
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The first observational evidence of black holes occurred in 1963 when the first quasar

(and still the brightest), 3C273, was discovered using an optical spectrum from an earth-

based telescope that demonstrated an unimaginably energetic source that was 1012 times

more luminous than our sun, yet emerging from a region of space that was the size of our

solar system. This was followed shortly after by the advent of space-based X-ray astronomy.

It was at this time that giants of the theoretical physics community including John Wheeler,

who coined the term black hole, in conjunction with advancements from the observational

community, pioneered current modern day black hole physics research. Thanks to modern

observational capabilities, it is now known that there are well over one-hundred thousand X-

ray sources in the sky, and black hole research, in both the theory and observation domains,

is one of the most active areas of physics today (see Figure 1.2).

Figure 1.2: Aito↵ projection of ROSAT All-Sky Survey observations in galactic coordinates. The size of
the dot scales with the log of the count-rate and the colors represent di↵erent hardness ratios. Credit: Voges
et al. (1999).
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1.1.2 Models of Accreting Black Holes

Much of the current theoretical modeling of black holes today is focused not on the

physical modeling of the black hole itself, but on the modeling of the accreting matter

surrounding black holes. This modeling impacts our understanding of the physics of the

black hole since the accretion disks are expected to be highly influenced by the black hole’s

strong gravity regime. The two black hole values that impact the surrounding accreting

matter are its mass and its spin (a third value, its charge is expected to equal zero for

accreting disks). The mass and spin dictate di↵erent aspects of accreting matter such as

the minimum gravitationally stable radius, rISCO, and the minimum angular momentum of

stable orbiting material near the black hole.

The theoretical e↵orts to understand and model the accreting matter around black holes

actually began before the first observational evidence for black holes. One of the most im-

portant initial e↵orts was Hermann Bondi’s pioneering paper “On Spherically Symmetrical

Accretion” (Bondi 1952). The model assumptions and results are now colloquially referred

to as “Bondi accretion” and include a non-rotating, spherically symmetric, gas cloud ac-

creting onto a star (defined as a point mass). The model only considers the forces of gravity

and outward pressure, but the derived solutions on sonic radii and accretion rates are still

used as valid comparative benchmarks for today’s theoretical models.

The first true accreting models were developed in the 1970s, shortly after the first

observational evidence of black holes. To date, there are still only a handful of general

solutions that are typically invoked, with other solutions being variants of these. The

primary individual stable solutions are: thin disk (Shakura-Sunyaev), slim disk, advection-

dominated accretion flow (ADAF), and thick disk (ion torus or Polish doughnut). Equally

important to these individual models are various composite models, which primarily take

into account coronas surrounding the accretion disk. All of these models have been used

to successfully recreate observations in both Galactic black hole (GBH) sources as well as

active galactic nuclei (AGN). Note that the first three solutions (thin disk, slim disk, and

ADAF) are all solved using the same system of equations that consider conservation of
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mass, radial and angular momentum, and energy, but with di↵erent assumptions and initial

values. I will briefly review all of these models below, but for a more thorough review,

publications such as “Foundations of Black Hole Accretion Disk Theory” by Abramowicz

& Fragile (2013) are recommended.

The physics of all of these models incorporates a complicated, semi-analytic combina-

tion of non-linear processes that includes gravity, hydrodynamics, viscosity, radiation, and

magnetic fields. The general physics of the accretion process is as follows. The angular

momentum of infalling matter is removed by undefined viscous forces and transported out-

wards which in turn allows the matter to spiral inward toward the black hole. The matter’s

gravitational energy is converted to heat, a fraction of which is converted into radiation.

Some of the radiation escapes and cools the accretion disk. It is assumed that, in general,

these processes occur in di↵erent dynamical, thermal, and viscous time-scales with their

relative relationship given by tdyn < tth < tvis. Dynamical processes account for pressure,

gravity, and centrifugal forces; thermal processes account for dissipative heating and cool-

ing processes such as advection; and viscous processes account for torque changes caused

by undefined dissipative stresses, identified as potentially being due to magnetic rotational

instability (Balbus 2005).

Thin Disks

The thin disk model (Shakura & Sunyaev 1973) was the first accretion disk model devel-

oped and is still one of the most commonly utilized models today. This system assumes that

undefined viscous stresses convert gravitational energy into heat, which is then radiated.

The system of equations are then solved neglecting advection and winds. The identifying

aspects of this solution are as follows. First, for a stable solution, the mass accretion rate,

Ṁ , is constant with radius and is much less than the Eddington limit, ṀE (e.g., Done et

al. 2007). This value is given as ṁ = Ṁ/ṀE  0.2 for thin disks. Note that the Eddington

limit defines the limit where radiation pressure on electrons is balanced by gravitational

attraction on protons. The Eddington limit for the luminosity, LE, is given by,
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LE = ṀE c
2 =

4⇡GMmpc

�
T

. (1.1)

Second, the accreting matter forms a thin disk such that its height is smaller than its

radius. Third, the disk temperature is relatively cool and most likely on the order of tens

to hundreds of electron volts. And fourth, the disk is optically thick, producing a quasi-

blackbody spectrum that has been fitted to numerous observed spectra as shown in Figure

1.3 (see Sections 1.2 and 1.3 for discussions on radiation and states).

Figure 1.3: Thin disk modeled spectrum (BHSPEC) shown in red as compared to the unfolded BeppoSAX
spectrum of LMC X-3. The purple is a non-thermal component (COMPTT) and the green is the composite
spectrum. See Sections 1.2 and 1.3 for discussions on radiation and states. Credit: Davis et al. (2006).
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Slim Disks

Following the solution of the thin disk model, in the late 1970s and 1980s the slim disk

model was developed due to the fact that when accounting for the same optically thick

accreting matter, as the accretion rate and luminosity increases, the assumption of cooling

solely by radiation is no longer valid (e.g., Abramowicz et al. 1988). In many aspects,

the slim disk solution is much more physical than the thin disk solution. The increasing

accretion rate creates a larger radial velocity, a temperature that increases and becomes

nearly independent of accretion rate, and a “thicker” disk, which requires advection in the

physical solutions (note that some authors identify this as a second category of ADAFs

below). In the slim disk solutions, geometrically, the accretion disk’s height can rise to

nearly the same value as its radius, which is why the solution set is identified as a “slim

disk” (e.g., Narayan et al. 1998).

Figure 1.4: Slim disk modeled X-ray spectrum of RE J1034+396 with Compontization in a hot corona
included. The dashed, solid and dotted lines represent ESD models with ṁ = 5, 10, and 20 respectively. See
Sections 1.2 and 1.3 for discussions on radiation and states. Credit: Wang & Netzer (2003).

8



A benefit of the slim disk model is that it encompasses a wide range of accretion rates

for ṁ > 0.2. For accretion rates much larger than the Eddington limit, the model becomes

known as an extreme slim disk (ESD). Spectrum predictions for this model include a “flat-

tening” of the soft blackbody X-ray energies, a total luminosity that is saturated and so

no longer proportional to the accretion rate, and a high energy cuto↵ that is independent

of the accretion rate. An example of a slim disk model fitted AGN spectrum is shown in

Figure 1.4.

An Unstable Solution: SLE

Shortly after the implementation of the thin disk model, it was noted that the model

was unable to explain the non-thermal component of X-ray sources in the hard state (see

Sections 1.2 and 1.3 for further discussions on radiation and states), and specifically Cygnus

X-1 in the hard state. Building o↵ of the work of Thorne & Price (1975); Shapiro, Lightman,

and Eardley (Shapiro et al. 1975), hereafter SLE, discovered a much hotter solution that

successfully reproduced the observed non-thermal behavior of Cygnus X-1. This solution,

known as the “SLE model”, requires a two-temperature system where the ions are much

hotter than the electrons, is optically thin, has a high accretion rate and luminosity, and

is geometrically big, similar to the slim disk described above. Unfortunately, shortly after

it was discovered it was proven to be thermally unstable and so it is no longer normally

invoked as a potential physical model. However, the SLE solution was important in that

it was one of the first e↵orts to model non-thermal spectra and it also demonstrated the

ability to utilize a two-temperature model to achieve a much hotter, almost virial, solution.

This in turn helped create a foundation for later models that, as will be shown next, provide

a stable solution.

ADAF

Originally developed in the late 1970s and early 1980s, and fully adopted in the 1990s,

a separate advection dominated solution from the slim disk model was developed for disks
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with a low optical depth. In this model, similar to the thin disk the gas is accreting at a

low rate (Ṁ < ṀE) and so is unable to cool by radiation within the accretion time-scale.

Therefore, due to the combination of low optical depth and low accretion rate, the viscous

energy is advected inward instead of being radiated outward. These solutions are known as

advection-dominated accretion flows or ADAF solutions. For a thorough review of ADAFs,

see Narayan et al. (1998).

Figure 1.5: ADAF model of J0442+32 (solid line) in the low/hard state, compared with the observational
data (dots and error bars). The dashed line shows a thin disk model at the same accretion rate, ṁ = 0.1.
See Sections 1.2 and 1.3 for discussions on radiation and states. Credit: Narayan et al. (1998).
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Similar to the SLE model, the ADAF model is very hot, nearly virial, and requires a two-

temperature (ions and electrons) solution in order to be stable. Geometrically, ADAFs are

quasi-spherical and become quite large, similar to the unstable SLE model and the simplistic

Bondi spherical solutions. It should also be noted that ADAFs are expected to usually have

large, sub-Keplerian, rotational velocities and radial velocities that are a sizable percentage

of free fall. Observationally, the ADAF solutions produce a low luminosity, non-thermal

spectra, often appearing as a Comptonizing power-law, that has been successfully applied

to black hole sources in the low/hard state as shown in Figure 1.5 (see Sections 1.2 and 1.3

for discussions on radiation and states).

Thick Disks

The fourth model category utilized to describe accreting matter around black holes

is called thick disks. I combine two separate solutions known as ion torus and Polish

doughnut into this category which both have similar geometries that resemble large spheres

with empty funnels along the rotation axis, but it must be emphasized that they each

have very di↵erent underlying physical models. The first thick disk solution, ion tori (e.g.,

Rees 1984), is created due to ion pressure in the inner regions of the accretion flow and

has a hot, two-temperature ion-electron profile similar to ADAFs. Also similar to ADAFs,

they have low accretion rates and produce little radiation with the exception of radio jets

which are powered by the Blandford-Znajek mechanism. As can be seen graphically in

Figure 1.6, there is overlap between the ion torus and ADAF models. The second thick

disk solution is known as the Polish doughnut (e.g., Abramowicz 2005). This solution

was originally discovered in the 1980s by Paczynski & Wiita (1980) while researching high

accretion rates near the black hole. Similar to the SLE solutions, these systems have high

luminosities in excess of the Eddington limit and are optically thick. These systems also

have lower angular momentum and radial velocities. Both of these thick disk models have

faced instability challenges in the past; however, it has been shown that the Roche lobe

overflow that occurs stabilizes the instabilities and so these solutions are in fact feasible
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(e.g., Straub et al. 2012). That being said, there have not been many successful published

spectra fittings utilizing one of these two thick disk models.

Figure 1.6: Major accretion models shown for di↵erent accretion rates, optical depths, and height to radius
geometries. Here M = Rg . Credit: Abramowicz et al. (2010).
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Coronal Composite Models

Since the first comparisons of observation and theory, it has almost always been noted

that the accretion models above are not able to individually completely describe the ob-

served spectra of black hole sources. This is also clearly evident in the spectral fitting

figures shown above. Because of this, in addition to the accretion models described above,

composite models, many of which describe the addition of a corona region around the black

hole, have been developed. For instance, Esin et al. (1997) and Narayan & McClintock

(2008) explored various thin disk composite geometries as shown in Figure 1.7 to account

for di↵erent observations of black holes.

Figure 1.7: Theoretical composite configurations of the accretion flow as the accretion rate changes.
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As another example, Narayan et al. (1998), proposed a transitional composite model.

This model incorporates a transition radius, rt, where inside rt, the model is described by an

ADAF solution while outside rt, the model is described by a thin disk surrounded by a hot

corona (which itself is modeled as an ADAF). As a third example, Poutanen (1998) identified

the following di↵erent coronal composite geometries: sandwich, where a hot corona covers a

cold disk; magnetic flares, where a patchy corona exists above a cold disk; cloudlets, where

the cold disk dissipates into optically thick clouds inside the corona; and sombrero, where

the cold disk only penetrates partially into the coronal region (Poutanen states this is similar

to an ADAF). He reviewed di↵erent black holes along with their common states (see Section

1.3) and explored the spectral fits of these various composite geometries where the corona

was defined as an “electron (-positron) plasma cloud in energy and pair equilibria without

assuming any specific geometry of the accretion flow”. Other authors predict composite

models where a slim disk exists toward the inner radius of high accreting black holes in

conjunction with a thin disk that is located in a slowly accreting outer radius region. These

are only a few examples of authors using composite models, but they demonstrate how

commonplace and important this aspect is to modeling the accretion flow around black

holes.

1.2 X-ray Radiative Processes in Black Hole Sources

All black hole sources are modeled (and observed) to radiate in energies across the elec-

tromagnetic spectrum. Physics predicts that some of the highest energies in the universe

are released due to the highly energetic processes and events occurring around accreting

black holes. These high energy processes in turn produce X-rays that are generated by both

thermal radiation processes consisting of blackbody, thermal bremsstrahlung, and thermal

Comptonization as well as non-thermal radiation process to include inverse Compton scat-

tering and synchrotron processes.
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1.2.1 Thermal Radiation

Thermal radiation is an important component of black hole radiation and is seen in

almost all spectral data observed of these sources. It is generated by blackbody radiation

for optically thick sources and thermal bremsstrahlung radiation for optically thin ionized

plasmas. An additional production process known as thermal Comptonization consists of

the repetitive scattering of seed photons o↵ of energetic electrons in a region where the

electrons are assumed to have a Maxwellian velocity distribution.

Blackbody

A Blackbody is theoretically defined as an object that absorbs and emits all radiation

frequencies. In the X-ray spectrum, this radiation is generated by electrons transitioning

between their inner atomic shells. For an optically thick gas in isothermal equilibrium,

blackbody radiation has a specific spectrum that depends only on the body’s temperature.

In the case of black holes, the radiating body is assumed to be the surrounding area of the

black hole which may consist of an accretion disk or some other optically thick body of gas

or material. Blackbody radiation spectra are defined by Planck’s law, which is given by,

I(⌫, T ) =
2h⌫3

c2

1

e

h⌫
kBT � 1

, (1.2)

where h is Planck’s constant, ⌫ is the photon frequency, c is the speed of light, kB is

Boltzmann’s constant, T is the temperature of the body, and I is the spectral radiance.

Examples of these spectra can be seen in panel a) of Figure 1.8. As noted in panel a) of

Figure 1.8, the peak of the spectrum has a clear correlation to a specific temperature given

by Wien’s displacement law,

⌫peak ⇡ 2.821

h
kBT . (1.3)
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Hence, by observing black hole sources that contain a blackbody radiation component,

one can begin to understand the temperature of the areas surrounding the black hole and

therefore what physical processes could be occuring. This spectral component nearly always

comprises some portion of observed black hole spectra. Panel b) of Figure 1.8 shows an

example of a black hole source that is radiating thermal X-ray radiation as evidenced by

the good fit between the theory line in red and the observed data in black.

Figure 1.8: a) Theoretical plots of thermal blackbody radiation at di↵erent temperatures. b) Sample
spectra of black hole binary GRO J1655-40 in the thermal state. The black plot is data and the red line is
the decomposed thermal component. Credit: Remillard & McClintock (2006).
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Thermal bremsstrahlung

Thermal bremsstrahlung or “braking” radiation arises due to energetic free electrons

interacting with ions in an isothermal gas which is assumed to have a Maxwellian velocity

distribution. As the electrons are accelerated, or more accurately decelerated, by the ions

and lose kinetic energy, they emit high energy radiation in the form of X-rays. Due to

the wide range of accelerating events that are possible, the range of energies produced

is wide ranging and so a large number of electrons will produce a broadband continuous

spectrum. For black holes this radiation is assumed to occur in an optically thin ionized gas

with at least a local thermal equilibrium. The generated electron energies are dictated by

the temperature of the gas and therefore the spectra follow well defined functions, similar

to Planck spectra, as shown in Figure 1.9. The energy emission in CGS units for thermal

bremsstrahlung in an optically thin, ionized plasma of hydrogen is shown to be, from Rybicki

& Lightman (1979),

"
ff

⌫ (⌫, Te) = 6.8⇥ 10�38
Z

2
n
2

eT
�1/2

e e
�(h⌫)/(kBTe)ḡff (1.4)

where Z is the charge number, ne is the electron density, Te is the electron temperature,

and ḡff is a velocity-averaged Gaunt factor, or quantum correction, which in the regime of

hf = kBTe, is approximately unity.
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Figure 1.9: a) Theoretical plots of thermal bremsstrahlung radiation at di↵erent temperatures. b) The-
oretical plots of increasing density of thermal bremsstrahlung radiation as it approaches optically thick
blackbody radiation. Credit: Ghisellini (2012).

18



Thermal Comptonization

Whereas blackbody and thermal bremsstrahlung radiative processes generate photons,

thermal Comptonization consists of multiple inverse Compton scatterings or scatterings

of photons o↵ of a Maxwellian distribution of electrons in thermal equilibrium where the

photons gain energy. For black holes, this radiative process is important at high accretion

rates (Maraschi & Molendi 1990). Generally speaking, this process and its relative impact

to the black hole’s spectrum can be inferred by the Compton y parameter which for non-

relativistic electrons is given by (Rybicki & Lightman 1979)

y =
4kBTe

mec
2
Max(⌧es, ⌧

2

es) , (1.5)

where ⌧es is the electron scattering optical depth andme is the mass of an electron. The ther-

mal Comptonization radiative process becomes significant when y & 1. The spectrum for

non-relativistic thermal Comptonization requires solving the Kompaneets equation, which

describes the evolution of the photon distribution function, given by (Rybicki & Lightman

1979)

@n

@tc
=

✓
kBTe

mec
2

◆
1

x2

@

@x
[x4(n0 + n+ n

2)] , (1.6)

where n is the photon phase space density, x ⌘ h⌫/kT , and tc is the time measured in units

of mean time between scatterings. If one defines the Thomson scattering optical depth as

⌧T = �TneR where R is the size of the source, and following Ghisellini (2012), rewrites the

Compton y parameter as

y = Max(⌧T, ⌧
2

T)⇥ [16⇥2 + 4⇥� x] , (1.7)

where ⇥ = kBTe/mec
2, then the following thermal Comptonization radiation spectrum

regimes exist. It should be noted that for all regimes, as the photon energy approaches the
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electron temperature the spectrum falls to zero since further scatterings leave the photon

frequency unchanged. For ⌧T < 1, the flux is a power law given by

F⌫ / x
��

, (1.8)

where � is the photon index. For the case where ⌧T & 1 the result is still a power law, but

the photon index is found to be:

� ⇡ �3/2 +
p

(9/4 + 4/y) . (1.9)

When ⌧T > 1 a Wien shape is produced and for ⌧T � 1 a more complicated spectrum with

a “Wien bump” is produced as shown in Figure 1.10. The Wien spectrum has radiation

intensity given by

I(x) / x
3
e
�x/⇥

. (1.10)
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Figure 1.10: a) Theoretical plot of thermal Comptonization for ⌧T < 1. Multiple Compton scatterings
where a fraction of the photons of the previous scattering order undergoes another scattering, and amplifying
the frequency by the gain factor A. b) Theoretical plot of thermal Comptonization for ⌧T > 1 and y >> 1.
The Wien bump can be seen on the right side of the plot. Credit: Ghisellini (2012).
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1.2.2 Non-Thermal Radiation: Inverse Compton and Synchrotron

A large portion of the X-ray radiation received by black hole sources is not clearly fitted

by the thermal radiative processes outlined above and instead is characterized by non-

thermal processes. The two most common processes noted are inverse Compton scattering

and synchrotron radiation. Similar to thermal Comptonization, inverse Compton scattering

entails a transfer of energy from the electron to the photon as they interact with each

other. Unlike thermal Comptonization, non-thermal inverse Compton scattering assumes

a di↵erent energy distribution of the electrons such as a power-law energy distribution.

Synchrotron radiation occurs when relativistic particles are moving in a magnetic field.

The gyration of the particles around the magnetic field lines generates high energy radiation

that is related to the frequency of gyration. Figure 1.11 shows how synchrotron radiation

is composed of the superposition of many individual spectra.

In both cases, relativistic factors are considered and the radiation spectrum produced is

of the form of a power law and is also related to the electron distribution power law. Given

the Lorentz factor, � = Ee/mec
2, where Ee is the total electron energy, for an electron

distribution given by

ne(�) / �
�p

, (1.11)

the flux in both types of non-thermal radiation is found to be

F / E
�↵; where ↵ = (p� 1)/2. (1.12)

For both inverse Compton scattering and synchrotron radiation, the frequency of the scat-

tered photons is found to be approximately ⌫ ⇡ �
2
⌫0.
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Figure 1.11: Plot of individual synchrotron electron spectra and the superposition of many spectra. Credit:
Shu (2009).

1.3 Investigative Techniques of Black Holes Sources

In general, black hole candidates are identified in one of two ways: observations of

gravitational anomalies and observations of highly energetic electromagnetic waves. Both

of these methods require highly advanced technology as gravitational anomalies are di�cult

to detect and the earth’s atmosphere blocks out almost all high energy electromagnetic

waves. Hence, it wasn’t until the advent of space-based X-ray astronomy in the 1960s that

the observational field of black hole astrophysics truly became possible. Since the 1960s

dozens of space-based X-ray telescopes have been launched. In addition to being utilized

to detect black holes, these spacecraft have been key in the study of understanding the

physical processes surrounding black holes. The method of X-ray investigations is broadly

broken into the following three groups: light curves, spectral data, and timing data.

1.3.1 Light curves

The first observations in the 1960s of X-ray data used light curves, which are still

useful in the study of X-ray sources. Light curves provide brightness information for a
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set of wavelengths (energies) over a period of time for the object observed (see Figure

1.12). This then provides an understanding of general phenomenological processes at work.

For instance, for stellar sized black hole binaries’ X-ray light curves, similarities arise that

allow comparisons to be made of di↵erent sources that demonstrate a “classic” light curve

characterized by an outburst profile with a fast rise and an exponential decay over a time

period on the order of weeks (McClintock & Remillard 2006).

Light curves are often broken into di↵erent energy groupings to provide more detailed

information. By observing similarities and di↵erences in these smaller groupings, further

discrimination and understanding can be achieved. For instance, with X-ray emission em-

anating from black holes, historically there are two broad groupings where certain X-rays

below an energy threshold are noted as soft X-rays (<2 keV) and those larger than a

threshold (> 10 keV) are known as hard X-rays. Note that the definition of soft and hard

is relative and varies depending on the research being conducted. Having knowledge of

the total brightness as well as the relative flux factor of the X-ray bands allows for further

classifications. The first example of this occurred with the first observed black hole source,

Cygnus X-1, where it was noted that when it was brighter, the soft X-ray flux (usually an

emission value around 1 keV) was observed to be higher than the hard flux. This com-

mon observation was defined as a “state” of the black hole and was termed the “high/soft

state” (Remillard & McClintock 2006). A variety of di↵erent combinations of states, whose

classification depends on more detailed spectral data and will be discussed later, have been

observed both in stellar sized black holes as well as AGN.
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Figure 1.12: Two example light curves. The top is of a seven-year Rossi X-ray Timing Explorer (RXTE)
All-Sky Monitor light curve from 1996 to 2003 of the stellar mass black hole binary Cygnus X-1. Credit:
McClintock and Remillard (2006). The bottom is of a one week XMM-Newton observation in 2008 of the
active galactic nuclei 1H0707-495. Credit: Fabian et al. (2009).

Light curve investigations are not limited to X-ray data alone. For instance, with AGN,

optical light curves can also be utilized. In AGN, the optical continuum, which is primarily

produced by the accreting matter itself (Smith et al. 2018), consists of light curves that have

relatively fast time-scales (on the order of hours to days to months). Hence, exploration of

the light curve variability in this data allows one to research the area near the black hole

since the entire accretion disk extends to scales on the order of hundreds or thousands of

astronomical units (Pica & Smith 1983).
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1.3.2 Spectral Data

The second key method of X-ray investigations involves detailed exploration of the spec-

tral data. This data is explored using both broad-band spectra as well as high-resolution,

narrow-band, atomic line spectra. The broadband spectra has provided the ability to val-

idate theoretical physical models that attempt to explain the observations. Additionally,

the high-resolution spectra has helped to investigate properties such as black hole mass and

spin by reviewing relative strengths and widths of the lines as well as relativistic broadening

and gravitational redshifts (Fabian et al. 1989).

Broad-band spectra investigations have yielded various commonplace spectral contin-

uum. For instance, a thermal continuum indicative of blackbody radiation is routinely

seen. Another common continuum displays an exponential or very steep decrease toward

high X-ray energies and yet another continuum type exhibits a broad power-law behavior.

In addition to attempting to produce these results with physical models, these broad-band

spectral investigations have led to standardized classifications of the aforementioned “states”

of black hole sources. The definition and classification of the states has matured over the

last 50 years and in general both spectral and timing data (ironically the original concept

of luminosity has since been abandoned) are used to determine the state.

McClintock & Remillard (2006) define four canonical states for black hole binaries that

have been widely adopted (see Figure 1.13). To first order, these states can be spectrally

understood as comprised of the following: a) Quiescent: BHBs spend most their time in

this state and it is characterized by exceptionally low luminosity and a hard, non-thermal

spectrum (� = 1.5� 2.1); b) Hard: sometimes called the “low/hard state”, with increasing

luminosity BHBs usually transition from quiescent to this state which is characterized by a

power law (� ⇠ 1.7) with either a non-existent or at least much cooler thermal component

as well as persistent radio jets; c) Thermal: sometimes referred to as the “high/soft state”,

this is the original state identified for Cyg X-1 and is dominated by a thermal component

with a ⇠ 1 keV thermal emission from a multi-temperature accretion disk as predicted

by the Shakura-Sunyaev (thin) disk model (Shakura & Sunyaev 1973); d) Steep Power
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Law: sometimes referred to as the “very high state”, this state contains a disk component

and a steep (� ⇠ 2.5) power law component as well as intermittent jets. There also exist

intermediate states that do not fit into the four states above. For a detailed review of

information on the composition of these states see McClintock & Remillard (2006).

Note that although these spectral states are identified for BHBs, they are expected to

similarly be seen in AGN. However, since time-scales scale inversely with black hole mass,

the transition time between states is expected to exceed 105 years and so population studies

of AGN are needed for further evaluations. Type 1 AGN appear to correspond to a spectral

state similar to the BHB soft state and low-ionization nuclear emission-line region (LINER)

galaxies appear to correspond to the BHB hard state (Sobolewska et al. 2011).
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Figure 1.13: Three spectral states of BHB 4U 1543-475. The components are decomposed as: thermal
(solid line), power-law (dashed), Fe line (dotted). a) Thermal state b) Hard state c) Steep Power Law state.
Credit: McClintock and Remillard (2006).
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1.3.3 Timing Data

Timing investigations, also referred to as X-ray variability, have been noted as the most

important resource for examining the area near a black hole due to the rapid variations

that are often observed (Remillard & McClintock 2006). The variability is most commonly

investigated in the frequency domain by investigating the power spectral density (PSD or

PDS), quasi-periodic oscillations (QPOs), and Fourier time lags. This research has helped

to further the study of black hole sources as well as demonstrate that the accretion process

is the same for all black holes regardless of mass when taking into accretion rates and time-

scales. Confirmation of the universality of physical processes provides confidence in our

understanding of the underlying physics and also the ability to gain insight into all black

holes by only investigating one mass scale.

Power Spectral Density

The power spectral density (PSD or PDS) explores the variability of the power, given

by the square of the amplitude of typical sinusoidal variations of frequency ⌫, versus a

plot of the frequencies in the signal (see Figure 1.14). The amplitude of typical sinusoidal

variations is found by the Fourier transform of the observed count-rate spectrum, denoted

by F̃✏(✏,!), and is given by

F̃✏(✏,!) =

ˆ
+1

�1
F✏(✏, t) e

i!t
dt , (1.13)

where F✏(✏, t) denotes the count-rate flux at the detector. The PSD then is explicitly given

by,

PSD = |F̃✏(✏,!)|2 . (1.14)

In particular, the PSD is useful for both its shape and integrated amplitude. For ex-

ample, although the first observations of AGN X-rays showed scale-invariant behavior on
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all time-scales up to days, subsequent observations showed characteristic time-scales de-

rived from PSDs (McHardy et al. 2006). To first order, the results of black hole PSDs

can be broken into categories correlating with the hard and soft states. In the hard state,

a majority of the X-ray flux is highly variable and so although the PSD is complex, it is

usually easy to quantify. Additionally, in the hard state the PSD is often described by a

sum of two or more Lorentzian distributions which is given by P⌫ / �/[(⌫ � ⌫0)2 + (�/2)2]

with FWHM equal to � or sometimes it can be described by a doubly-broken power-law

given by P⌫ / ⌫
�↵. Conversely, in the soft state a majority of the X-ray flux arises from

a non-variable quiescent component which makes it more di�cult to quantify the PSDs.

In general, the integrated amplitude of the PSD is much smaller in the soft state versus

the hard state. When the soft state PSD for galactic black holes and AGN is quantifiable,

it is often described by an ↵ ⇡ 1 power-law with a break to a steeper ↵ & 2 power-law.

An important result of PSD studies to date is that a characteristic time-scale associated

with the break (as well as the line-widths) have been shown to scale as black hole mass

divided by accretion rate across all black hole mass regimes thereby helping to confirm the

universality of physical processes (Arevalo et al. 2008).
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Figure 1.14: Two example PSD plots of BHB 4U 1543-475. The notably larger amplitude is noted in
panel b). a) Thermal state b) Hard state. Credit: McClintock and Remillard (2006).

Quasi-Periodic Oscillations

Quasi-periodic oscillations (QPOs) are transient features found within the PSDs of BHB

in non-thermal states and especially the SPL state (see Figure 1.15). For BHBs, they range

in frequency from 0.01 to 450 Hz and are usually modeled with a single Lorentzian profile
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with quality factor, Q ⌘ ⌫0/� > 2. They are further identified by utilizing a coherence

parameter given by Q = ⌫/FWHM & 2 (van der Klis 2006). BHB QPOs have been

broadly broken into high frequency (HFQPOs) with QPOs ⌫ > 100 Hz and low frequency

(LFQPOs) with QPOs 0.1 Hz < ⌫ < 100 Hz. LFQPOs are often seen in the SPL state

and sometimes in the hard state with their amplitude generally peaking at photon energies

greater than 10 keV and sometimes above 60 keV. The origins of LFQPOs is an ongoing area

of research that utilizes correlation studies with spectral parameters as well as phase lags,

but their consistent and episodic nature implies that they must occur as a holistic outcome

of the physics surrounding black holes. HFQPOs are relatively elusive and only detected at

high count rate within the SPL state. Due to their high frequency they potentially imply

the ability to explore the inner regions around BHBs and so have garnered interest. This

potential for new knowledge has made their discovery highly sought after and although their

detections are quite di�cult with AGN, research e↵orts have persisted. Relatively recently

they were reported as discovered in AGN with an ⇠ 1 hour periodicity (Alston et al. 2015).
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Figure 1.15: An example of a QPO at approximately 10 Hz for BHB 4U 1543-475 which can be described
by a Lorentzian is noted in panel b). a) SPL State Spectra Plot b) PSD with QPO observed at 10 Hz Plot.
Credit: McClintock and Remillard (2006).
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Fourier Time Lags

Oftentimes, spectral analysis requires utilizing individual, short time-scale data and

high-energy astrophysical phenomena is no exception. As an example, for black hole sources,

the typical minimum variability is equal to the light crossing time for one gravitational radius

given by Rg = GM/c
2. The timescale is given by,

�t =
GM

c3
= 4.94⇥ 10�6sec

✓
M

M�

◆
, (1.15)

where M� is in units of solar masses. If I use the observed value for the mass of AGN

1H0707-495 as an example, M = 2 ⇥ 106M�, then the time scale is approximately 10

seconds. At these timescales with these distances to the sources in question, these data sets

have poor photon statistics. The signal-to-noise ratio is nominally too low to investigate

variability with short snapshots of the spectrum and analysis becomes very di�cult in the

time domain. An example of a highly variable, multi-channel, X-ray spectrum from a Seyfert

galaxy is depicted in Figure 1.16.

In order to fully explore the underlying physics, innovative approaches are needed such

as Fourier analysis. Fourier analysis makes use of all of the data in the observation window

and is therefore an ideal tool to analyze short time-scale, high-variability data. As a subset

of Fourier analysis, time lags are a key tool and are highly useful when investigating sources

with broadband energies being generated that also are incurring variability. The study

of time lags has proven invaluable to advance our understanding of accretion processes as

it enables the ability to correlate and validate proposed physical models by being able to

compare theory with observational data.
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Figure 1.16: X-ray light curve variability shown in four energy bands normalized to the mean count rate
with time resolution at 1 ks. Credit: Iwasawa et al. (2010).
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Fourier time lags occur when one grouping of X-rays (for instance hard X-rays) asso-

ciated with a given Fourier component arrives before or after another grouping of X-rays

(for instance soft X-rays) that are associated with the same Fourier component (see Figure

1.17). Hard Fourier time lags are those in which the hard X-rays lag behind the soft X-rays

and soft Fourier time lags occur in the opposite sense. Hard Fourier time lags have been

seen in the X-ray emission from many black hole sources for more than three decades as

discussed by van der Klis et al. (1987), Böttcher & Liang (1999), Crary et al. (1998),

Arevalo & Uttley (2006), and Kroon & Becker (2016). However, soft lags are a relatively

new field of investigation.

Whereas most black hole observations are first discovered in GBH sized sources, soft

lags were first discovered in the AGN 1H0707-495 and hereafter referred to as H707 (Fabian

et al. 2009). Since this discovery, broader studies have revealed that soft lags are quite

common and are found in all AGN mass scales ranging from low-mass (Mallick et al. 2021)

to high-mass (De Marco et al. 2013). Some of the main results from De Marco et al.

(2013) are depicted in Figure 1.18. Soft Fourier time lags have also been discovered in

stellar-mass sources (De Marco et al. 2015), however there is a great deal of di�culty in

using these sources to study the underlying physical processes due to the extremely small

time scales. Conversely, the time scales of the observed AGN soft lags is on the order of

⇠ 10 � 100 seconds (Fabian et al. 2009; Emmanoulopoulos et al. 2011; De Marco et al.

2013; Cackett et al. 2013), making them extremely useful probes in understanding the

inner regions of the associated accretion processes that include temperature, density, and

accretion configuration. The De Marco et al. (2013) and Mallick et al. (2021) studies

have also confirmed a proportional scaling relationship between AGN black hole mass and

Fourier lag magnitude, reconfirming other X-ray variability investigations, which show that

the same underlying physics are occurring in the accretion process of all black hole sources.
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Figure 1.17: Hard and soft time lags as a function of frequency for a) Cygnus X-1 and b) H707. Hard
lags are positive and soft lags are negative. a) The dashed line is the time lag obtained from a fit to the lag
model. Credit: Crary et al. (1998). b) Frequency-dependent time lags between the 0.3-1 keV and 1-4 keV
bands in H707. Credit: Fabian et al. (2009).

37



Figure 1.18: AGN with soft lags detected at > 2� confidence level. Credit: De Marco et al. (2013).
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1.4 An Introduction to X-ray Fourier Time Lags

1.4.1 Computation of X-ray Fourier Time Lags

The idea of computing the time lags between two photon energy bands using Fourier

analysis was first suggested by van der Klis (1987), with subsequent development and appli-

cation by Nowak et al. (1999). The calculation of the time lags is based on the development

of the complex cross spectrum, C, defined by

C(!) = S
⇤(!)H(!) , (1.16)

where

! = 2⇡⌫F , (1.17)

denotes the circular Fourier frequency, ⌫F is the Fourier frequency in Hz, and S(!) and

H(!) represent the Fourier transforms of the soft and hard photon energy light curves,

corresponding to photon energies ✏s and ✏h, respectively. The asterisk in Equation (1.16)

represents the complex conjugate.

The Fourier transforms S(!) and H(!) appearing in Equation (1.16) are computed

using the integrals

S(!) =

ˆ
+1

�1
s(t) ei!tdt ,

H(!) =

ˆ
+1

�1
h(t) ei!tdt ,

(1.18)

where the soft and hard photon energy light curves are denoted by s(t) and h(t), respectively.

The two light curves are related to the time-dependent X-ray photon count-rate spectrum
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observed at the detector, F✏(✏, t), via

s(t) = F✏(✏s, t) ,

h(t) = F✏(✏h, t) .

(1.19)

The corresponding Fourier time lag, �t, is then evaluated using the relation

�t(!) =
�(!)

!
, (1.20)

where the phase lag, �, is given by

�(!) = Arg[S⇤(!)H(!)] . (1.21)

According to the sign convention adopted here, a positive time lag, �t > 0, corresponds

to a hard lag, in which the hard channel signal lags the soft channel signal for a given

Fourier frequency (or inverse variability period).

Simple Example of Time Lags

As an instructional example of this, consider two light curves, hard=h(t) and soft=s(t),

where the Fourier transform of the light curves are given by:

H(!) =

ˆ
+1

�1
h(t)ei!tdt = H(!)ei'h (1.22)

S(!) =

ˆ
+1

�1
s(t)ei!tdt = S(!)ei's (1.23)

The Fourier transformed light curves have respective phases given by 'h and 's where

' = !t is the respective frequency component’s phase angle as expected. If the light curves
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have a perfect time lag between them, where t is the time for the hard curve, and t ��t

is the time for the soft curve, then the hard time lag is given by h(t) = s(t��t). Making

the substitution, t0 = t��t, the hard curve Fourier transform can now also be written as:

H (!) =

ˆ
+1

�1
h(t)ei!tdt =

ˆ
+1

�1
s(t0)ei!(t

0
+�t)

dt
0 = S(!)ei!�t (1.24)

Using Equation (1.13), C(!) is now given by:

C(!) = S
⇤(!)H(!) = S

⇤(!)S(!)ei!�t = |S(!)|2ei!�t (1.25)

It can now clearly be seen that the phase lag is given by both �(!) = 'h�'s (the argument

of the cross-spectrum) and also !�t. Hence, �(!) = !�t. Dividing this phase lag by !

as shown in Equation (1.17), it can plainly be seen that the lag solution is now a time lag

given in seconds and ⌧ = �t as expected.

It can also be easily deduced that the existence of time lags necessarily implies time

variability in the source, since steady-state light curves would generate no phase lag, and

therefore no time lag. Hence the detection of time lags from a given source necessarily

implies the existence of variability in the X-ray signal from the source. This implies that

the emission from a given source can be viewed as a superposition of continual steady-

state emission, combined with episodic bursts or flashes, which produce time-dependent

phenomenon such as the time lags.

1.4.2 Physical Models for X-ray Fourier Time Lags

Di↵erent physical models to explain X-ray Fourier hard time lags exist and at least three

models have been presented in peer reviewed literature. One model utilizes accretion rate

fluctuations over a wide range of radii and time-scales propagating inwards to modulate

a radially extended X-ray emission region with an energy-dependent profile (Lyubarskii

1997; Kotov et al. 2001; Arevalo et al. 2006). A second concept incorporates waves that
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propagate cylindrically and symmetrically in a transition disk with a uniform propagation

speed (Misra 2000). A third theory of the hard lags involves the recent, successful recon-

sideration of thermal Comptonization of a source radiation. The successful modeling was

achieved within the constraints of the broadband bremsstrahlung injection of photons into

a spherical, homogenous, static coronal cloud (Kroon & Becker 2014).

A key benefit to the Comptonization theory for hard lags, and any physical theory for

that matter, is that it does not require the kludging of di↵erent concepts to generate the

observations. Qualitatively, the cause of hard lags by Comptonization is a straightforward

matter of noting that the photons that have a higher energy will take longer to reach that

energy in the cloud. Assuming that the source energy of the photons, h⌫, are much less

than the electron temperature of the cloud, Te, the process of Comptonization in the gas

means that the energy of the photons will continue to increase over time as they continue

to interact with the higher energy electrons in the cloud. The typical fractional change in

photon energy per scattering is ⇠ 4kTe/mec
2. For a given variability in Fourier frequency,

the lower energy photons will escape the cloud first and the higher energy will escape

later since they have taken longer to reach higher energies. Additionally, the lower Fourier

frequency variability will have an associated longer time lag scale between two energy levels

than will the higher Fourier frequency. Similar to hard lags, no universally agreed upon

theory exists for the recently discovered soft time lags. Furthermore, the previous models

are complicated and utilize a patchwork of kludged mechanisms with di↵erent thermal zones

and geometrical constraints to explain the soft lags.

The first explanation for potentially occurring soft lags was given in 2000, when using a

non-linear Monte-Carlo code, Malzac & Jourdain (2000) explored scenarios of an accretion

disk corona system consisting of thermal Comptonization of flares arising from either the

corona or the disk. They predicted that if the flares arise from the corona, lags should

invert from hard to soft at some frequency related to the size of the emitting region on

time scales between 10 H/c for soft lags and 100 H/c for quasi-steady-state. These authors

presented illustrative numerical simulations, but made no attempt to fit the data for any
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source. Two other leading theories have emerged since the first discovery of soft lags in

2009, centering either on the reflection of hard emission o↵ a cool electron population,

causing down-scattering (Zoghbi et al. 2010) or on the reprocessing of radiation in a zone

in which the electrons cool on a timescale comparable to the lag time (Miller et al. 2010).

Zoghbi proposed that the lags are the result of spatial reverberation. In their model, the

soft emission is generated when hard photons originating near the event horizon in the

corona are reflected o↵ the surrounding accretion disk, which extends from an inner radius

of ⇠ 1.3Rg to an outer radius ⇠ 400Rg, where Rg = GM/c
2 is the gravitational radius for

the central black hole. They state that this type of reflection scenario naturally produces

soft time lags with a magnitude comparable to the light travel time between the corona and

the reflecting region of the optically thick disk. A time lag (or equivalently in their model

the light travel time between the corona and the reflector) of ⇠ 30 s therefore correlates

with a black hole mass of M ⇠ 2 ⇥ 106M�, which is consistent with the uncertain mass

of the H707 black hole (e.g., Zhou & Wang 2005). As an alternative model, Miller et al.

(2010) proposed that the soft lags in H707 are caused by a partially opaque reverberating

region with a lower size limit of 1000 light-seconds from the black hole corresponding to 100

Rg for a black hole mass of M ⇠ 2⇥ 106M�. In Miller’s model, this region has decreasing

opacity with increasing energy and has scattering or reflection present in all X-ray bands.

The issues with these models are next reviewed.

1.4.3 Problems with Previous Models

Shortly after the discovery of soft lags in H707 by Fabian et al. (2009), Zoghbi et

al. (2010) stated that Malzac & Jourdain’s (2000) model of having the whole spectrum

originate in the corona was inconsistent with the spectral variability properties between

the bands above and below 1 keV. Zoghbi et al. (2010) state that the abrupt change in

variability above and below 1 keV in their time bins of 10-ks implies two separate energy

components that arise from di↵erent sources. As evidence of this, Zoghbi et al. (2010)

demonstrate plots that provide evidence that the flux of the soft energy band below 1 keV
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is steady regardless of the change in overall count rate, whereas the flux of the hard energy

band above 1 keV correlates with the overall flux changes of the source. However, this does

not accurately rule out Comptonization as the cause of the time lags as will be discussed

in the discussion and conclusions.

Zoghbi’s reverberation model has had multiple journal articles dispute its validity. Miller

et al. (2010) reviewed lags in an additional larger energy band and proposed that by doing

so, Zoghbi’s reflection model predictions are ruled out at confidence > 99.9 per cent. As

another detriment to Zoghbi’s model, Miller et al. (2010) add that Zoghbi’s model is overly

complicated and that it requires separate mechanisms to reproduce the hard and soft lags

where the soft lags are produced by reverberation. Gardner & Done (2014) investigated soft

lags for a di↵erent NLS1 AGN and investigated the validity of the reflection model. They

theorize that reflection alone is unable to produce soft lags alone without an additional

combination of emission from the accretion flow and reprocessed emission, which provides

a majority of the soft X-ray excess. They propose that much of the source radiation that

is directed toward the disc is actually thermalized and reprocessed in the disc. They state

that reflection alone generates high coherence and nearly identical hard and soft band power

spectra in disagreement with observations, which shows a drop in coherence between the

energy bands at high frequencies as well as much less high-frequency power in the soft band

as compared to the hard band. Gardner & Done (2014) state that the cause of this is

due to the power law (source photons) and reflection components both contributing to the

hard and soft energy bands in a reflection model combined with the small-size scales for

a reflection model. Additional evidence that contradicts the reverberation model is from

Emmanoulopoulos et al. (2016), in which they presented a study of the PSD of H707

based on a proposed method by Papadakis et al. (2016) to find evidence supporting the

reverberation model. In this research, they noted that the X-ray reflection component

should be a “filtered echo” of the primary X-ray source and so the PSD of the reflection

component should be equal to the convolution of the primary emission with the response

function of the disc. They looked for these “reflection features” in the 5-7 keV and 0.5-1
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keV bands, where the X-ray reflection component is expected to dominate. However, the

study found no evidence of the reverberation model in the PSD results.

Miller’s model has also been contested. Zoghbi et al. (2011) contest Miller’s model by

stating that it does not also look at the energy spectrum and so is not fully consistent.

Zoghbi et al. (2011) also point out that Miller’s model also requires di↵erent mechanisms

and so is equally complicated. Additionally, Miller’s model requires obscuring clouds close

to the line of sight thereby putting specific geometry constraints on the observer.

In this dissertation, I propose an alternative theory for the creation of the soft lags. My

model does not su↵er from the boot-strapping and kludging of additional physical concepts

to established black hole models in order to fit the data. My model instead replicates the

observational data with well established physical processes in a straightforward manner

using established accretion theory. As will be shown, I obtain the exact solution to a

transport equation governing the Fourier transform of a radiation distribution function and

then successfully model my results to observational data. The hard lags and the soft lags

are a natural outcome of the physics encompassed within my model.
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Chapter 2: An Alternative X-ray Fourier Time Lag Model

2.1 Introduction

2.1.1 Overview

The ongoing discussion, analysis, and interpretation of the soft time lags has motivated

a new model for the production of the observed hard and soft time lags from AGN. My

dissertation explores the possibility that the observed time lags may be the result of thermal

and bulk Comptonization occurring in the freely-falling, quasi-spherical coronal region of

the accretion flow onto the supermassive black hole. In this scenario, the time-dependent

part of the signal (that produces the observed time lags) is the result of episodic emission of

⇠ 1 keV photons produced near the black hole, which are then Comptonized by the quasi-

spherical optically thin coronal cloud, whereas the steady-state X-ray spectrum represents

persistent thermal emission produced continuously in the optically thick, thin accretion disk.

The episodic emission of the photons may reflect the “clumpy” nature of the accretion flow

(e.g., Merloni et al. 2006; Gutierrez et al. 2021).

The theoretical approach is based on obtaining the exact solution to the transport equa-

tion governing the Fourier transform of the radiation distribution function. This method

is convenient since it allows the direct computation of Fourier-based time lags, which can

then be compared with observational data. The time-dependent transport equation in-

cludes terms describing bulk and thermal Comptonization, spatial di↵usion, advection, and

photon injection and escape.

The results obtained for the time lags as a function of Fourier frequency agree well

with the observations for H707, without requiring reflection o↵ the accretion disk or specific

observer geometry constraints while still allowing for the observed steady-state spectrum
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to be produced naturally from the accretion disk. The universality of the mass scaling law

discovered by De Marco et al. (2013) and Mallick et al. (2021) suggests that the model

explored here may be operative in all AGN displaying soft time lags.

My alternative model, for the production of the observed soft time lags from accreting

black holes, is based on the radiative transfer occurring in the quasi-spherical region of the

coronal accretion flow surrounding the black hole. The model involves the analytical solution

of a time-dependent transport equation describing the scattering of seed photons injected

into an isothermal, spherically symmetric, accreting plasma cloud, which approximates the

quasi-spherical region of the flow onto the central black hole. The seed photons are assumed

to be injected as an instantaneous flash of energy. The accretion rate is assumed to be near

or above the Eddington limit.

2.1.2 Relation to Previous Work

This transport model builds o↵ of a large body of previous work conducted over the last

35 years. The three investigations that are nearest to this model were studied by Colpi,

Titarchuk, and Kroon in 1988, 1997, and 2016 respectively. In 1988, Colpi assumed a spher-

ical geometry and included the e↵ects of both bulk and thermal Comptonization, as well as

the spatial transport of radiation via di↵usion and advection. However, she solved only the

quiescent (steady-state) case for a constant photonic source and most importantly assumed

di↵erent boundary conditions using a radial boundary condition at the origin and at infinity

(Colpi 1988). Titarchuk further studied this model in 1997 and included inner and outer

boundaries, but utilized a non-adjustable free-fall velocity profile and again only studied

the quiescent equation (Titarchuk et al. 1997). Kroon & Becker (2016) conducted further

investigations, but did not account for “bulk” Comptonization in a sub-free-fall advecting

cloud and utilized a di↵erent density profile. My model builds on all of these previous

works by investigating time-dependent solutions using a Fourier transform technique and

imposing free-streaming boundary conditions at finite values for the inner and outer radii

of the spherical region.
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2.2 Time-Dependent Transport Equation

2.2.1 Introduction

I begin by writing down the general time-dependent radiation transport equation de-

scribing the evolution of the photon distribution function, f(~r, ✏, t), which is given by (Becker

2003)

@f

@t
= �~v · ~rf + ~r ·

⇣
~rf

⌘
+
⇣
~r · ~v

⌘
✏
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✏2

@

@✏


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✓
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◆�
+Q , (2.1)

where ✏ is the photon energy, �
T

denotes the Thomson cross section, ~v represents the

accretion velocity,  is the spatial di↵usion coe�cient, k is the Boltzmann constant, Te

denotes the electron temperature, me is the electron mass, c is the speed of light, and

Q denotes the photon source term. The third and fourth terms on the right-hand side

represent the e↵ects of bulk and thermal Comptonization, respectively.

The radiation distribution function, f , is normalized so that the photon number and

energy densities, nr and Ur, respectively, are computed using

nr(~r, t) =

ˆ 1

0

✏
2
f(~r, ✏, t) d✏ / cm�3

, (2.2)

and

Ur(~r, t) =

ˆ 1

0

✏
3
f(~r, ✏, t) d✏ / erg cm�3

. (2.3)

The equivalent transport equation in terms of nr, the photon number density, is shown

in Equation 2.4. It is found by applying the integral operator
´1
0

✏
2
d✏. As a method of

validation of the solution of f , I solve for nr at the end of this chapter.

@nr

@t
= �~v · ~rnr + ~r ·

⇣
~rnr

⌘
�
⇣
~r · ~v

⌘
nr +

ˆ 1

0

Q✏
2
d✏, (2.4)
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As reviewed in Chapter 1, accreting black holes are expected to have spherical coro-

nal regions that may have varying physical parameters depending on the accretion rate.

The formation of the coronal region may be due to passage through a shock (Chakrabarti

1989; Das et al. 2009; Becker et al. 2011; Chattopadhyay & Kumar 2016), or due to the

accretion of a separate population of matter that is supplied with low angular momen-

tum ( Proga & Begelman 2003; Moscibrodzka et al. 2007), or possibly due the removal

of a substantial fraction of the angular momentum via a mildly relativistic wind (e.g.,

Dauser et al. 2012; Done & Jin, 2016). Although coronal descriptions do not necessar-

ily correlate with a specific accretion model, the underlying physics does not change. For

instance, based on Figure 1.6, it appears highly plausible that a highly accreting region

with optical depth on order of unity will form into a spherical shape. Therefore, for this

transport equation I assume a spherically-symmetric cloud and utilize the spherical coor-

dinates ~r =
⇣

@

@z
ẑ + 1

r

@

@r
rr̂ + 1

r

@

@�
�̂

⌘
. In a spherically-symmetric region, there is polar and

azimuthal symmetry of ~v and fG and so the @

@�
and @

@✓
terms in Equation 2.1 equal zero

leaving only radial terms. Since I am considering accretion the radial velocity is negative

(vr < 0) for inward flow. Hence, the transport equation can now be rewritten as

@fG

@t
= �vr

@fG

@r
+

1

r2

@

@r

✓
r
2

@fG

@r

◆
+

1

r2

@

@r

�
r
2
vr

� ✏
3

@fG

@✏

+
ne�T

c

mec
2

1

✏2

@

@✏


✏
4

✓
fG + kTe

@fG

@✏

◆�
+

N0�(r � r0)�(✏� ✏0)�(t� t0)

4⇡r2
0
✏
2
0

,

(2.5)

where fG(r, r0, ✏, ✏0, t) denotes the Green’s function, which is the response to the instanta-

neous injection of N0 photons of energy ✏0, at time t0, from a source at radius r0.
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Figure 2.1: Geometry of the physical model.

2.2.2 Model Assumptions

As stated above, the model assumes a spherical coronal cloud that surrounds a black

hole. The coronal cloud has both inner and outer boundaries and is accreting. A simplified

schematic representation of the model is provided in Figure 2.1. The gas is assumed to

be comprised of fully ionized hydrogen and electrons surrounding a black hole. As stated

in the introduction, BHBs and AGN spectra have large thermal components which implies

large areas of isothermal equilibrium and hence in this model the electrons are assumed to

comprise a Maxwellian distribution with a constant temperature Te. Additionally, due to

Comptonization dominating the cooling process (leading to temperatures around 108 K),

the so-called “thermostat” e↵ect occurs ensuring that the temperature remains constant

(e.g., Shapiro et al. 1975). The gas in the spherical region has already passed through the

outer critical point, and is therefore necessarily supersonic. The radial velocity, vr, and

50



the electron number density, ne, are assumed to follow the free-fall profiles vr / r
�1/2 and

ne(r) / r
�3/2, respectively. These profiles ensure separability in the partial di↵erential

equation. The radial velocity, vr(r), profile can be written as

vr(r) = ` v↵(r) = �`

r
2GM

r
, (2.6)

where v↵(r) denotes the local free-fall velocity, and the constant ` lies in the range 0  `  1,

with ` = 1 corresponding to exact free-fall (Colpi 1988).

Since the accreting gas is assumed to be composed of pure, fully-ionized hydrogen, the

spatial di↵usion coe�cient, , shown in Equation (2.5), is related to the electron number

density, ne, via

(r) =
c

3ne(r)�T

. (2.7)

The electron number density, ne, is related to the mass accretion rate, Ṁ , via

Ṁ = 4⇡r2mpne|vr| = constant , (2.8)

where mp denotes the proton mass.

2.2.3 Non-dimensionalizing

It is useful to non-dimensionalize the transport equation. Combining Equations (2.6),

(2.7), and (2.8), the radial velocity, vr, the electron number density, ne, and the spatial

di↵usion coe�cient, , can be written as

vr(r̃) = �v̂c r̃
�1/2

, ne(r̃) =
r̃
�3/2

3�
T
Rg̂

, (r̃) = ̂Rgc r̃
3/2

, (2.9)
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where Rg = GM/c
2, the dimensionless constants v̂ and ̂, and the dimensionless radius

r̃ ⌘ r

Rg

. (2.10)

have been introduced. The constant v̂ introduced in Equation (2.9) is related to Colpi’s

constant ` via v̂ =
p
2 `. Hence setting v̂ =

p
2 yields the exact free-fall case with vr(r) =

v↵(r) (see Equation (2.6)). Furthermore, Equations (2.8) and (2.9) can now be combined

to relate v̂ and ̂ to the accretion rate Ṁ via

Ṁ =
4⇡Rgmpv̂c

3̂�
T

. (2.11)

It is also of interest to compute the electron scattering optical depth, ⌧(r), between

radius r and the outer radius of the spherical coronal region, located at r = rout. The result

obtained is

⌧(r̃) =

ˆ
rout

r

ne(r
0)�

T
dr

0 =
2 ṁ

v̂

⇣
r̃
�1/2 � r̃

�1/2

out

⌘
, (2.12)

where r̃ = r/Rg, r̃out = rout/Rg, and I have utilized Equation (2.9) to substitute for ne(r).

Transforming the spatial coordinate from r to r̃ in the transport equation and substituting

for vr, ne, and  using Equation (2.9) yields the result:

@fG

@t
=

v̂cr̃
�1/2

Rg

@fG

@r̃
+

̂cr̃
�2

Rg

@

@r̃

✓
r̃
7/2

@fG

@r̃

◆
� v̂cr̃

�3/2

2Rg

�
@fG

@�

+
c⇥r̃

�3/2

3̂Rg

1

�2

@

@�


�
4

✓
fG +

@fG

@�

◆�
+

N0�(r̃ � r̃0)�(�� �0)�(t� t0)

4⇡r2
0
✏
2
0
kTeRg

,

(2.13)

52



where I have introduced the dimensionless photon energy, �, and the dimensionless tem-

perature, ⇥, using

� ⌘ ✏

kTe

, ⇥ ⌘ kTe

mec
2
. (2.14)

2.2.4 The Trapping Radius

In spherically-symmetric accretion flows, a significant radial location exists where spatial

transport is dominated by advection because background flow exceeds di↵usion velocity.

Hence, the spatial transport of the radiation is dominated by inward-bound advection for

r < rt, and by outward-bound di↵usion for r > rt, where rt is the “trapping radius,” defined

by (Payne & Blandford 1981; Colpi 1988)

rt ⌘
3Ṁ�

T

4⇡mpc
. (2.15)

In order to derive this relationship, first note that the mean free path for photons

scattering in a gas composed of fully-ionized hydrogen is given by

` =
1

ne�T

. (2.16)

Next, for a homogeneous spherical corona, the radial di↵usion velocity and optical depth

can be approximated by writing

vdi↵ =
1

3

c

⌧
, ⌧ =

r

`
. (2.17)

Combining Equations (2.16) and (2.17) yields

vdi↵ =
1

3

c `

r
=

1

3

c

ne�T
r
. (2.18)
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Next, combining the mass accretion rate equation (Equation (2.8)) with Equation (2.18)

gives

vdi↵ =
1

3

c

�
T
r

4⇡r2mp|vr|
Ṁ

=
4⇡rmp c |vr|

3�
T
Ṁ

. (2.19)

As noted earlier, at the trapping radius, rt, the di↵usion and flow velocities are equal (but

opposite), so vdi↵ = |vr|, which yields the given equation for the trapping radius in Equation

(2.15),

rt =
3Ṁ�

T

4⇡ cmp

. (2.20)

In terms of the non-dimensional substitutions, using Equation (2.11), the trapping radius

can be expressed in the form

rt

Rg

=
v̂

̂
= 3ṁ , (2.21)

where the dimensionless accretion rate, ṁ, is defined by

ṁ ⌘ Ṁ

ṀE

, (2.22)

and the Eddington accretion rate, ṀE, is defined by

ṀE ⌘ 4⇡GMmp

c�
T

. (2.23)

2.2.5 Eddington Luminosity and Accretion Rate

As noted in Chapter 1, the Eddington accretion rate is related to the Eddington lumi-

nosity by Equation (1.1). The first half of that equation is shown again here,
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LE = ṀE c
2
. (2.24)

This relationship provides the maximum energy per unit time released by a gas that is

bound by a central mass such as a black hole. It is found by equating the competing forces

of gravity, Fg, and radiation, Frad of the gas surrounding the massive body. Assuming a

gas of fully-ionized pure hydrogen,

Fg = Frad ! GMmp

r2
=

LE�T

4⇡r2c
, (2.25)

Rearranging terms and solving for LE gives,

LE =
4⇡Gmpc

�
T

M = 1.26⇥ 1038 erg s�1

✓
M

M�

◆
. (2.26)

If the radiation pressure is greater than the gravitational pressure, then the equality will

be broken and the gas will be blown away. Hence, this luminosity limit necessarily implies

a maximum mass and a maximum accretion limit. Combining Equations (2.24) and (5.8),

the original Equation (1.1) is found,

LE = ṀE c
2 =

4⇡GMmpc

�
T

. (2.27)

2.2.6 Final Non-dimensional Transport Equation

As noted by Payne & Blandford (1981) and Colpi (1988), the physical significance of

the trapping radius motivates a transformation of the spatial variable r̃ in the transport

equation to the new spatial variable y, defined by

y ⌘ rt

r
=

v̂

̂r̃
, (2.28)
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so that the trapping radius corresponds to y = 1, and the radiation is trapped in the region

with y > 1 (r < rt). Finishing transforming the non-dimensionalized transport equation by

making the change of variables from r̃ to y yields

@fG

@q
=

⇥

3̂v̂

y
3/2

�2

@

@�


�
4

✓
fG +

@fG

@�

◆�
+ y

4
@

@y

✓
y
�3/2

@fG

@y

◆
� y

5/2
@fG

@y

� y
3/2

�

2

@fG

@�
� N0y

2
0
̂
3
y
2
�(y � y0)�(�� �0)�(q � q0)

4⇡x2
0
R3

g(kTe)3v̂3
,

(2.29)

where the dimensionless time, q, is related to the time t, via

q ⌘ ̂
3/2

v̂1/2

t c

Rg

. (2.30)

and q0, y0, and �0 are the dimensionless injection time, radius, and energy.

2.3 Fourier Transform Method

2.3.1 Overview

In order to compute theoretical time lags using Equation (1.20), the transport equation

formalism must be used to evaluate the Fourier transforms of the light curves observed at the

soft and hard channel energies, ✏s and ✏h, respectively. The required solution for the Fourier

transform can be obtained by performing a Fourier transformation of the partial di↵erential

transport equation, Equation (2.29). This yields an ordinary di↵erential equation satisfied

by the Green’s function Fourier transform, FG, which is related to the Green’s function, fG,

via the fundamental definition (cf. Equation (1.18))

FG(r, ✏,!) ⌘
ˆ

+1

�1
fG(r, ✏, t) e

i!t
dt . (2.31)
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The Fourier transform can also be expressed in terms of the dimensionless time, q, by

writing

FG(r, ✏, !̃) =
v̂
1/2

̂3/2

Rg

c

ˆ
+1

�1
fG(r, ✏, q) e

i!̃q
dq , (2.32)

where the dimensionless Fourier frequency, !̃, is related to ! via

!̃ ⌘ v̂
1/2

̂3/2

Rg

c
! . (2.33)

Performing the Fourier transformation of Equation (2.29) by applying the operator
´
+1
�1 e

i!̃q
dq

yields an ordinary di↵erential equation for the Fourier transform Green’s function, FG given

by

�i!̃FG =� y
5/2

@FG

@y
� y

3/2
�

2

@FG

@�
+ y

4
@

@y

✓
y
�3/2

@FG

@y

◆

+
⇥ y

3/2

3v̂̂�2

@

@�


�
4

✓
FG +

@FG

@�

◆�
+

N0y
4
0
̂
3/2

�(y � y0)�(�� �0)ei!̃q0

4⇡R2
gc(kTe)3�2

0
v̂5/2

.

(2.34)

2.3.2 Separation of Functions

In order to solve Equation (2.34) to determine the solution for the Fourier transform

Green’s function, FG, I must separate the di↵erential equation. Previously I noted that

with the free-fall profile, all of the terms are separable with the exception of the source

term. However, for � 6= �0, the source term vanishes. Consequently Equation (2.34) can

be separated using the function

F�(y,�) = G(y)H(�) , (2.35)

where � denotes the separation constant, and the functions G(y) and H(�) represent the

spatial and energy separation functions, respectively. Substituting Equation (2.35) into
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Equation (2.34) and rearranging terms, for � 6= �0,

�i!̃y
�3/2 +

y

G

dG

dy
� y

5/2

G

d

dy

✓
y
�3/2

dG

dy

◆

=
⇥

3v̂̂

1

�2H

d

d�


�
4

✓
H +

dH

d�

◆�
� �

2H

dH

d�
=

�

2
.

(2.36)

The separation constant � is independent of the coordinates y and �, and therefore one

can obtain two distinct ordinary di↵erential equations satisfied by the functions G(y) and

H(�). The equations obtained are

y
d
2
G

dy2
�
✓
3

2
+ y

◆
dG

dy
+

�

2
G+ i!̃y

�3/2
G = 0 , (2.37)

and

1

�2

d

d�


�
4

✓
H +

dH

d�

◆�
� ��

dH

d�
� ��H = 0 , (2.38)

where

� ⌘ 3v̂̂

2⇥
. (2.39)

2.3.3 Boundary Conditions

The spatial boundary conditions utilized in this model are based on the transition to free-

streaming that must occur at the inner and outer surfaces of the spherical coronal region.

The free-streaming or “absorbing” boundary condition was also discussed by Titarchuk et al.

(1997). It is important to note that alternative boundary conditions such as those utilized

by Colpi (1988) (adiabatic inner and di↵usive outer), as well as all combinations thereof,

have been derived, calculated, and compared with observational data (See the appendix

for further derivations). In doing so, it was determined that the model’s inner boundary

is insensitive to either a free-streaming finite boundary or an adiabatic boundary at the
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origin. However, the di↵usive outer boundary which equates to an infinite cloud was unable

to successfully reproduce the observational data. The specific (spatial) radiation flux, F,

also referred to as the “streaming function,” is given by (Becker 1992)

F(✏, r, t) = �
@fG

@r
� vr✏

3

@fG

@✏
. (2.40)

The inner and outer boundaries of the spherical coronal region are located at r = rin

and at r = rout, respectively, and the corresponding values of the dimensionless location

parameter y are (see Equation (2.28))

yin =
Rgv̂

̂ rin
,

yout =
Rgv̂

̂ rout
.

(2.41)

The free-streaming boundary condition operative at the inner and outer boundaries can

be written as

�
@fG

@r
= �cfG , r = rin , (inner boundary) ,

�
@fG

@r
= cfG , r = rout , (outer boundary) .

(2.42)

Transforming the free-streaming boundary conditions from r to y yields

(v̂̂y)1/2
@fG

@y
= � fG , y = yin , (inner boundary) ,

(v̂̂y)1/2
@fG

@y
= fG , y = yout , (outer boundary) .

(2.43)
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Fourier transformation of Equations (2.43) demonstrates that the spatial boundary condi-

tions satisfied by the Green’s function Fourier transform, FG, are given by

(v̂̂y)1/2
@FG

@y
= �FG , y = yin , (inner boundary) ,

(v̂̂y)1/2
@FG

@y
= FG , y = yout , (outer boundary) .

(2.44)

By combining Equations (2.35) and (2.44), it is found that the spatial separation function

G(y) satisfies the free-streaming boundary conditions

(v̂̂y)1/2G0 +G = 0 , y = yin , (2.45)

(v̂̂y)1/2G0 �G = 0 , y = yout , (2.46)

where primes denote di↵erentiation with respect to y. The eigenfunctions, Gn(y), represent

the discrete set of solutions to Equation (2.37) that simultaneously satisfy both the inner

and outer boundary conditions given by Equations (2.45) and (2.46), respectively. The

corresponding eigenvalues for the separation constant � are denoted by �n.

2.3.4 Eigenfunctions

Spatial Eigenfunctions

The global solutions for the spatial eigenfunctions Gn(y) are obtained using a three-

step process. The first step is to numerically solve the ordinary di↵erential equation,

Equation (2.37), starting with the inner boundary condition (Equation (2.45)), imposed

at y = yin. This yields the inner solution, denoted by Gin(y). The second step is to carry

out the numerical integration again, this time starting with the outer boundary condition

(Equation (2.46)), imposed at y = yout, which yields the outer solution, Gout(y).

For general, arbitrary values of the separation constant, �, the inner and outer solutions

are linearly independent functions. However, for certain special values of �, the Wronskian
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of the inner and outer solutions vanishes, i.e.,

W(y⇤) = 0 , (2.47)

where

W(y⇤) ⌘ Gin(y⇤)G
0
out(y⇤)�Gout(y⇤)G

0
in(y⇤) , (2.48)

and y⇤ is located anywhere in the computational domain, so that yin  y⇤  yout. The

eigenvalues �n are the roots of Equation (2.47). Note that the Fourier frequency, !̃, appears

in Equation (2.37), and therefore it follows that a unique set of eigenvalues �n is obtained

for each value of !̃.

Energy Eigenfunctions

The energy separation functions, H(�), satisfy the second-order ordinary di↵erential

equation given by Equation (2.38). In addition, in order to obtain convergent results for

the photon number and energy densities using Equations (2.2) and (2.3), H must not

increase faster than ✏
�3 as ✏ ! 0. Likewise, H must decrease faster than ✏

�4 as ✏ ! 1.

Additionally, H must be continuous at the injection energy � = �0 in order to avoid an

infinite di↵usive flux in the energy space. Becker & Wol↵ (2007) obtained the exact solution

to Equation (2.38) satisfying the required boundary and continuity conditions (Becker &

Wol↵ 2007, Equation (48)), which can be written as

Hn(�,�0) = �
�4

e
��/2

M,µ(�min)W,µ(�max) , (2.49)

where M,µ, and W,µ denote the Whittaker functions,

�min ⌘ min(�,�0) , �max ⌘ max(�,�0) , (2.50)
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and the parameters  and µ are given by

 ⌘ 1

2
(� + 4) , µ ⌘ 1

2

h
(3� �)2 + 4 ��n

i1/2
. (2.51)

2.3.5 Orthogonality

The final closed-form solution for the Fourier transform FG can be expressed as an

infinite series if I can demonstrate that the spatial eigenfunctions, Gn(y), form an orthogonal

set. Orthogonality of the spatial eigenfunctions can be established as follows. First, I rewrite

the separated spatial equation, Equation (2.28) which is shown below,

y
d
2
G

dy2
�
✓
3

2
+ y

◆
dG

dy
+

�

2
G+ i!̃y

�3/2
G = 0 , (2.52)

in the Sturm-Liouville form

d

dy


S(y)

dGn

dy

�
+Q(y)Gn +

�n

2
⌦(y)Gn = 0 , (2.53)

where the weight function, ⌦(y), is defined by

⌦(y) = y
�5/2

e
�y

, (2.54)

and the functions S(y) and Q(y) are defined by

S(y) = y
�3/2

e
�y

,

Q(y) = i!̃y
�4

e
�y

.

(2.55)

Next, I assume that �n and �m represent distinct eigenvalues associated with the spatial

eigenfunctions Gn and Gm, respectively. Equation (2.53) is then multiplied by Gm and the
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result is subtracted from the same equation with the indices n and m interchanged. After

some algebra, the result obtained is

Gm

d

dy


S(y)

dGn

dy

�
�Gn

d

dy


S(y)

dGm

dy

�
= (�m � �n)⌦(x)GnGm . (2.56)

Integration by parts between the inner and outer radii yin and yout yields

S(y)


Gm

dGn

dy
�Gn

dGm

dy

� ����
yout

yin

= (�m � �n)

ˆ
yout

yin

⌦(y)Gn(y)Gm(y) dy . (2.57)

Utilizing the spatial free-streaming boundary conditions at the inner and outer radii

(Equations (2.36) and (2.37)), the left-hand side of Equation (2.57) vanishes giving,

ˆ
yout

yin

⌦(y)Gn(y)Gm(y) dy = 0 , �n 6= �m . (2.58)

This establishes that the spatial eigenfunctions Gn and Gm are orthogonal with respect to

the weight function ⌦(y) in the computational domain located between the inner and outer

free-streaming boundaries located at y = yin and y = yout, respectively. Similarly, note that

this same procedure is used for the alternate boundary conditions in Appendix A giving

the same result.

2.3.6 Final Closed-Form Solution

Since the spatial eigenfunctions have been shown to form a complete orthogonal set, it

is possible to express the Fourier transform Green’s function, FG, using the infinite series

FG(y0, y,�0,�, !̃) =
NmaxX

n=1

CnGn(y, y0)Hn(�,�0) , (2.59)
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where y0 indicates the injection location, and Nmax denotes the maximum index included in

the sum, which must be large enough to ensure convergence of the numerical results for the

time lags. The expansion coe�cients, Cn, can be determined by exploiting the orthogonality

of the spatial eigenfunctions and applying the derivative jump condition

lim
"!0

�


�
4
@FG

@�

� �����

�=�0+"

�=�0�"

=
��N0̂

3/2
�(y � y0)ei!̃q0y5/2

2⇡v̂5/2R2
gc(mec

2)3⇥3
, (2.60)

which is obtained by integrating Equation (2.34) over a small region in energy space around

� = �0. Equation (2.59) is now substituted into Equation (2.60) to obtain

NmaxX

n=1

CnGn(y)�
�4

0
e
��0/2W(�0) =

��N0̂
3/2

�(y � y0)ei!̃q0y5/2

2⇡v̂5/2R2
gc(mec

2)3⇥3�
4
0

, (2.61)

where the Wronskian, W(�0), is defined by (Becker & Wol↵ 2007)

W(�0) ⌘ M,µ(�0)W
0
,µ(�0)�W,µ(�0)M

0
,µ(�0) =

��(1 + 2µ)

�(µ� + 1/2)
, (2.62)

and primes denote di↵erentiation with respect to �. The final result in Equation (2.62) is

obtained using Equation (55) from Becker & Wol↵ (2007).

The solution for the expansion coe�cients, Cn, is obtained by multiplying Equation (2.61)

by Gm(y)⌦(y) where ⌦(y) is the weight function derived above, and then integrating with

respect to y from yin to yout. Utilizing the orthogonality of the spatial eigenfunctions after

some algebra, the final expression obtained for Cn is

Cn =
�N0̂

3/2
Gn(y0)⌦(y0)e�0/2e

i!̃q0y0
5/2�(µ� + 1

2
)

2⇡v̂5/2R2
gc(mec

2)3⇥3�


0
In�(1 + 2µ)

, (2.63)
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where the quadratic normalization integrals, In, are defined by

In ⌘
ˆ

yout

yin

⌦(y)G2

n(y) dy . (2.64)

Combining Equations (2.59) and (2.63), the final closed-form solution for the Fourier

transform Green’s function, FG, can be written as

FG(y0, y,�0,�, !̃) =
�N0̂

3/2
�
�4⌦(y0)e(�0��)/2

e
i!̃q0y0

5/2

2⇡v̂5/2R2
gc(mec

2)3⇥3�


0

⇥
NmaxX

n=1

�(µ� + 1

2
)

In�(1 + 2µ)
Gn(y0)Gn(y)⇥M,µ(�min)W,µ(�max) ,

(2.65)

where �min, �max, , and µ are computed using Equations (2.50) and (2.51). Equation (2.65)

gives the final solution for the Fourier transform, FG, of the radiation Green’s function, fG,

evaluated at energy �, location y, and Fourier frequency !̃. The solution describes the

response to the injection of N0 photons at location y0 and time q0, with energy �0.

2.4 Time Lag Computation

Although Equation (2.65) represents the fundamental solution for the Fourier transform

of the radiation field inside the spherically symmetric accretion flow, it remains necessary

to compute the Fourier transform of the escaping radiation field in order to compute the

observed time lags. The time-dependent X-ray photon count-rate spectrum observed at

the detector, F✏(✏), is directly related to the radiation distribution escaping from the outer

edge of the spherical region, located at radius r = rout. Since the boundary condition at

the outer radius is free-streaming (Equation (2.42)), the computation of the escaping radia-

tion spectrum is self-consistent and the time-dependent X-ray photon count-rate spectrum
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observed at the detector is simply given by

F✏(✏, t) = c

⇣
rout

D

⌘2
✏
2
fG(rout, ✏, t) / cm�2 s�1 erg�1

, (2.66)

where D is the distance to the source. Further discussion of this derivation is given in

Section 4.6.

In order to utilize the formalism developed here to compute the observed time lags, the

Fourier transform of the observed count-rate spectrum, denoted by F̃✏(✏,!) and given by

F̃✏(✏,!) =

ˆ
+1

�1
F✏(✏, t) e

i!t
dt , (2.67)

or, equivalently (cf. Equation (2.32)),

F̃✏(✏, !̃) =
v̂
1/2

̂3/2

Rg

c

ˆ
+1

�1
F✏(✏, q) e

i!̃q
dq . (2.68)

must be evaluated. Applying a Fourier transformation to both sides of Equation (2.66) by

applying the operator
´
+1
�1 e

i!̃q
dq yields

F̃✏(✏, !̃) = c

⇣
rout

D

⌘2
✏
2
FG(rout, ✏, !̃) , (2.69)

where FG is evaluated using Equation (2.65).

The theoretical soft and hard energy light curves, s(t) and h(t), respectively, required to

compute the time lags using Equation (1.20) are related to the photon count-rate spectrum,

F✏(✏, t), via Equations (1.19). Applying a Fourier transformation to Equations (1.19) yields
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the corresponding expressions

S(!̃) = F̃✏(✏s, !̃) ,

H(!̃) = F̃✏(✏h, !̃) ,

(2.70)

where S andH denote the soft- and hard-energy light curve Fourier transforms, respectively,

and the function F̃✏ is evaluated using Equation (2.69). Finally now, the Fourier time lag,

�t, is evaluated using Equation (1.20) where the phase lag is calculated using Equation

(1.21).

In order to compute X-ray time lags using this theoretical model, initially five parameters

must be specified, namely: (1) the black hole mass, M ; (2) the dimensionless accretion rate,

ṁ = Ṁ/ṀE; (3) the dimensionless velocity parameter, v̂; (4) the dimensionless inner radius,

r̃in = rin/Rg; and (5) the dimensionless outer radius, r̃out = rout/Rg. With these values

inputted, the value of ̂ is calculated using Equation (2.21) which is given by ̂ = v̂/(3ṁ).

Next, a corresponding vector of values for the dimensionless Fourier frequency, !̃, using

Equation (2.33) is generated. Utilizing these values, the set of eigenvalues and spatial

eigenfunctions are determined following the method outlined in Section 2.3.4.

After determining the set of eigenvalues and spatial eigenfunctions for each selected

value of the dimensionless Fourier frequency, !̃, the remaining theory parameters are varied

in order to obtain an acceptable fit to the observed time lags. The remaining four theory

parameters comprise (1) the energy of the injected seed photons, ✏0; (2) the dimensionless

electron temperature ⇥ = kTe/(mec
2); (3) the hard photon channel energy, ✏h; and (4) the

soft photon channel energy, ✏s.

2.5 Model Validation

Model validation is a key issue in a complex calculation such as the one being performed.

One e↵ective way to validate the model is to compute and compare the Fourier transform
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of the photon number density distribution using two methods.

2.5.1 Method 1: Integration of the Green’s Function

First, utilizing software such as Mathematica, I can numerically integrate the Fourier

transformed transport equation, Equation (2.49), in order to perform the first half of my

model validation:

NG =

ˆ 1

0

✏
2
FGd✏ . (2.71)

This method is relatively straightforward and simple to implement and the results can then

be compared to the results with the solution for NG found in the next section.

2.5.2 Method 2: Integration of the Di↵erential Equation

The second method I can use to compute the Fourier transform of the photon number

density distribution is to analytically determine NG. One can transform Equation (2.5)

to nG, the photon number density, and after non-dimensionalizing, directly solve for the

dimensionless Fourier transform of this, NG (!̃), defined as:

NG(!̃) =
v̂
1/2

̂3/2

Rg

c

ˆ
+1

�1
nG(q) e

i!̃q
dq , (2.72)

where the dimensionless Fourier frequency, !̃, is related to ! via

!̃ ⌘ v̂
1/2

̂3/2

Rg

c
! . (2.73)

The solution of this is then numerically compared with the results of Equation (2.71). This

comparison allows for a computational validation of the solution of FG by conducting a

numerical cross-check.
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Spherical transformation to nG (t) and Fourier transform to NG (w)

Beginning with Equation (2.5) and shown below,
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,

(2.74)

I transform fG to nG by applying the integral operator
´1
0

✏
2
d✏ to Equation (2.74) giving,

@nG

@t
= � 1

r2

@
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. (2.75)

Now, I non-dimensionalize this equation by utilizing the same substitutions as shown earlier,

which are given by,

vr(r̃) = �v̂c r̃
�1/2

, ne(r̃) =
r̃
�3/2

3�
T
Rg̂

, (r̃) = ̂Rgc r̃
3/2

,

y ⌘ rt

r
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v̂

̂r̃
, � ⌘ ✏

kTe

, ⇥ ⌘ kTe

mec
2
, q ⌘ ̂

3/2

v̂1/2

t c

Rg

.

(2.76)

Performing these substitutions and algebra the dimensionless photon number density

distribution is given by:

@nG

@q
= y

4
@

@y


1

y3/2
(�nG +

@nG

@y
)

�
� N0̂

3
y
2
0
y
2
� (y � y0) � (q � q0)

4⇡v̂3R3
g

. (2.77)

In order take the Fourier transform of this equation, the integral of the Fourier transform

on the left hand side can be found by integrating by parts as shown:
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v̂
1/2

̂3/2

Rg

c

ˆ
+1
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@q
e
i!̃q
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1/2
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Rg
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nGe
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�
= �i!̃NG . (2.78)

The right hand side has terms nG, � (q � q0), and the multiplied e
i!̃q with a q depen-

dence. All other terms and operators move out of the integrals. Completing the Fourier

transform gives:

�i!̃NG = y
4
@

@y


1

y3/2
(�NG +

@NG

@y
)

�
� N0̂

3/2
y
2
0
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2
� (y � y0) ei!̃q0

4⇡v̂5/2R2
gc

. (2.79)

Boundary Conditions for NG

Given appropriate boundary conditions, NG will have two separate solutions, one for

the region inside the source term, and one for the region outside the source term. The

boundary conditions utilized here are given by the photon number flux of n, Fn, as a

function of di↵usion and advection (Becker 1992):

Fn =

ˆ 1

0

✏
2Ffd✏ = �

dn

dr
+ vrn / sec�1 cm�2 (2.80)

.

As stated before with the fG boundary conditions, in this model I assume that at the

inner edge of the cloud, as well as the outer edge, the photon di↵usion term transitions to

a free-streaming condition given by,

�
dn

dr
= �cn (inner edge), � 

dn

dr
= cn (outer edge) . (2.81)

Non-dimensionalizing and performing the Fourier transform gives the boundary conditions
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as:

�(v̂̂y)1/2N 0
in = Nin and N (yin) = 1 at y = yin , (2.82)

(v̂̂y)1/2N 0
out = Nout and N (yout) = 1 at y = yout . (2.83)

Global Solution of NG(!̃)

The global solution of NG is given by:

NG =

(
AinNin, for yin < y < y0

AoutNout, for y0 < y < yout

. (2.84)

One can solve for the constants Ain and Aout by integrating Equation (2.79) around y0 and

taking the limit,
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(2.85)

After performing the integration and algebra, the following condition is found,

lim
✏!0

2
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. (2.86)

Utilizing this result along with the knowledge that at y = y0, AoutNout = AinNin, the

resulting global solution has for its constants:

Ain =
N0(̂y0)3/2ei!̃q0

4⇡v̂5/2R2
gc

✓
N (y0)out

N (y0)inN (y0)
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◆
, (2.87)
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Aout =
N0(̂y0)3/2ei!̃q0

4⇡v̂5/2R2
gc

✓
N (y0)in

N (y0)inN (y0)
0
out

�N (y0)outN (y0)
0
in

◆
. (2.88)

Computational Validation

The global solution for NG can now be evaluated using Method 1 and Method 2. If

the results match, then there is a high probability that the correct solution is achieved.

Although this comparison cannot be done analytically, it can be solved numerically with

the given boundary conditions. This has been done with high success via the Mathematica

software thus providing high confidence in the solutions.
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Chapter 3: Model Application to AGN 1H0707-495

3.1 Observations of AGN 1H0707-495

3.1.1 General Observations

H707 is a narrow-line Seyfert 1 (NLS1) galaxy that since 2000, has had multiple obser-

vational campaigns. It demonstrates steady UV/optical emission (Pawar et al. 2017) and

has a redshift of z = 0.04057 (Jones et al. 2009). The black hole is expected to have a mass

somewhere between 2⇥ 106M� (Zhou & Wang 2005) and 1⇥ 108M� (Leighly 2004) with

an accretion rate that is at or above the Eddington limit (Tanaka et al. 2004). Its X-ray

spectrum has been well-fitted in XSPEC using continuum models that commonly consist

of a thermal accretion disk component such as blackbody or Comptonization, a power law,

and ionized reflector components (See Figure 3.1 panel a)). The X-ray flux of the accretion

disk potentially is produced up to 100s of gravitational radii away from the black hole (see

for example Wilkins & Fabian 2011) which implies that the accretion disk itself is poten-

tially as large as 1000 gravitational radii. Due to the observable excess iron L↵ and iron

K↵ lines in observations, H707 is expected to have its iron abundance be several times the

Solar composition (See Figure 3.1 panel b)). The iron lines show relativistic broadening and

imply that the black hole has a very high spin parameter a > 0.97, where a = J/(McRg)

for a black hole with mass M and angular momentum J (Fabian et al. 2009).
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Figure 3.1: a) H707 spectral model that includes a power law (dashed red line), a blackbody (dot-dashed
green), and a blurred reflection component (dotted blue). b) Ratio of H707 spectrum to a simple power law.
Note the broad excesses which are theorized to correspond to Fe K↵ and L↵ lines. Credit: Zoghbi et al.
(2010).
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H707 is well known for its large, sharp drop in X-ray flux at ⇠ 7 keV discovered by

Boller et al. (2002). It is also well known as one of the most highly variable NLS1 galaxies,

varying by factors of tens within hours (Kosec et al. 2018), with higher variability seen in

the power law spectrum above 1 keV (Fabian et al. 2009). Figure 3.2 shows the bright and

faint states in panel a) and the corresponding highly variable light curves in panel b), and

the PSD plot in four di↵erent energy bands in panel c).

Figure 3.2: a) Unfolded spectrum of H707 in two di↵erent 2008 XMM observations; O1 is faint and O4 is
bright. b) Variable light curves of H707 in two di↵erent observations. Credit: Zoghbi et al. (2010). c) PSD
in di↵erent energy bands. Credit: Zoghbi et al. (2011).

3.1.2 Time Lags

As previously noted in Section 1.4.2, H707’s variability data displays both hard and

soft time lags as a function of Fourier frequency (See Figure 3.3 panel a)) when analyzed

75



between the 0.3 � 1 keV and the 1 � 4 keV energy bands. The time lags comprise an

interesting patten, with the source displaying hard lags of magnitude ⇠ 100 s for Fourier

frequencies ⌫F . 10�3Hz and soft lags on the order of ⇠ �10 s for Fourier frequencies

⌫F & 10�3Hz. When the lags are analyzed as a function of energy with respect to two

di↵erent Fourier frequency groupings (lower frequency / hard lags and higher frequency /

soft lags; see Figure 3.3 panel b)), the lower / hard lag frequencies within the 0.3� 0.9 keV

energy range show a nearly constant zero lag between all of the energies.

Figure 3.3: a) H707 time lags vs. Fourier frequency as determined between the 0.3-1 keV and 1-4 keV
energy bands. Credit: Fabian et al. (2009). b) H707 time lags vs. energy spectrum computed for energy
band bins referenced to the 0.3-0.8 keV bin. Credit: Kara et al. (2013).

However, at an energy of ⇠ 0.9-1 keV, the hard lags increase rapidly to 100s of second.

The lags then mostly level o↵ and then increase rapidly again around 6 keV until the last
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values at 10 keV. In the higher, soft lag frequencies, ⌫F & 10�3
Hz, the lags appear to

increase monotonically with energy, but in the opposite direction of the lower hard lag

frequencies (from hard to soft), with the exception of precipitous drops at ⇠ 1 keV and 6

keV, that then rebound quickly as the energies increase (Kara et al. 2013). It is important

to note that 1 keV and 6 keV are at the energy of the iron L↵ and K↵ lines.

3.2 Model Parameters

As stated in section 2.4, in order to compute X-ray time lags I initially specify five

parameters: (1) the black hole mass, M ; (2) the dimensionless accretion rate, ṁ = Ṁ/ṀE;

(3) the dimensionless inner radius, r̃in = rin/Rg; (4) the dimensionless outer radius, r̃out =

rout/Rg; and (5) the dimensionless velocity parameter, v̂.

3.2.1 Mass and Accretion Rate

Parameters (1) and (2) are quickly established based on previous research. For the mass

value, I utilize the lower limit provided by Zhou & Wang (2005) of M = 2 ⇥ 106M�. For

the accretion rate I use a value just slightly above the Eddington limit of ṁ = 1.1 in line

with Tanaka et al (2004)’s estimate which was also based on the same mass value.

3.2.2 Inner Radius

For the third parameter, the inner radius, based on the inner boundary condition being

a free-streaming boundary, I define the inner edge of the spherical region, at radius r = rin,

as the radius of the innermost stable prograde circular orbit, rISCO, so that

rin = rISCO . (3.1)

The value of rISCO is computed using (Shapiro & Teukolsky 1983)
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h
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2

1

�1/2
.

(3.2)

In the case of a non-rotating black hole, a ! 0, and Equation (3.2) reduces to the

Schwarzschild result, rISCO = 6Rg. Note that the radius of the event horizon for prograde

orbits, rH , is given by

rH = Rg

⇣
1 +

p
1� a2

⌘
, (3.3)

which reduces to rH = 2Rg in the Schwarzschild limit. In accordance with Fabian et al.

(2009), I set the spin parameter for the black hole at a = 0.98, which gives the inner edge

of the spherical region to be located at radius rin = rISCO = 1.61Rg (Equation (3.2)), and

the event horizon at rH = 1.20Rg (Equation (3.3)).

3.2.3 Outer Boundary

For the fourth parameter, the outer edge of the spherical region, I model a relatively

extended coronal region with a boundary at rout = 120Rg. Although this is larger than the

⇠ 35Rg extended coronal region discussed by Fabian et al. (2012) and their research group,

it is noted as expected in the same class of models as they used to replicate and model the

observed time lags, which was taken from Arevalo & Uttley (2006). Additionally, this outer

boundary range is in line with Miller et al. (2010), who cite a radius of 100 Rg for their

corona. Further discussion on this is found in Section 3.4.1.
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3.2.4 Radial Velocity

Finally, to set the fifth parameter, the dimensionless velocity parameter, v̂, as discussed

in Section 2.2.2 within the quasi-spherical coronal region the radial velocity, vr follows the

free-fall profile vr / r
�1/2. As shown in Equation (2.6), my model allows for a varying

of the velocity parameter between free-fall and any value below free-fall. In this example,

since I am assuming an extended coronal region with low optical depth all the way down to

the inner regions near the black hole, there is very limited material to counteract gravity

and so I set the dimensionless velocity parameter to v̂ =
p
2, which corresponds to exact

free-fall.

3.2.5 Additional Calculated Parameters

With the five parameters now set, solving Equation (2.21) yields for the dimensionless

di↵usion parameter ̂ = 0.429. The values of the inner and outer dimensionless location

parameters, yin and yout, can be computed using Equation (2.41), which yield yin = 2.045

and yout = 0.028. Note that according to Equation (2.21), the trapping radius is located at

rt = 3.3Rg for ṁ = 1.1.

The electron scattering optical depth measured inward from the outer edge of the spher-

ical region, ⌧(r̃), is computed using Equation (2.12), and plotted in Figure 3.4. The optical

depth at radius r = 1.86Rg is unity, which is in agreement with the relativistically blurred

iron line emission from the inner parts of the accretion disk being able to be resolved

spectroscopically (e.g., Wilkins et al. 2014). The optical depth at the inner boundary,

r = rISCO = 1.61Rg, is ⌧ = 1.082 and decreases monotonically out to ⌧ = 0 at r = 120Rg.
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Figure 3.4: The electron scattering optical depth, ⌧(r̃), measured inward from the outer edge of the
spherical region, plotted as a function of the dimensionless radius r̃, computed using Equation (2.12).

For completeness, although not needed for the time lag calculations, the luminosity of

H707 is also calculated utilizing values attained from previous research. Assuming isotropic

emission at the source, the X-ray luminosity, LX , is computed using

LX = 4⇡D2
FX , (3.4)

where FX = 1.44⇥ 10�10 erg cm�2 s�1 is the observed X-ray flux in the energy range 0.3-

4 keV, calculated using data from Zoghbi et al. (2010) and D = 181 Mpc is the luminosity

distance (Sani et al. 2010). The X-ray luminosity obtained using Equation (3.4) is therefore

LX = 5.63⇥ 1044 erg s�1 which corresponds with other estimates.
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3.3 Simulated Time Lags

3.3.1 Eigenvalue Computation

Since the eigenvalues, �n, in my calculation are functions of the Fourier frequency, ⌫F ,

a sample of discrete Fourier frequencies must be selected and the time lags evaluated at

those frequencies. Note that a continuous range of Fourier frequencies is not required in

this model, since I do not need to perform the inverse Fourier transformation. Instead, the

required time lags are computed directly from knowledge of the Fourier transform itself.

In applying the model to H707, I select values for the vector of Fourier frequencies, ⌫F

(in Hz), that are comparable to the values shown by Fabian et al. (2009) and Zoghbi et

al. (2010) in their plots of the time lags. The values adopted here are: ⌫F = 7.94 ⇥

10�5
, 1.58 ⇥ 10�4

, 2.51 ⇥ 10�4
, 3.98 ⇥ 10�4

, 6.31 ⇥ 10�4
, 1.00 ⇥ 10�3

, 1.58 ⇥ 10�3
, 2.24 ⇥

10�3
, 3.31 ⇥ 10�3

, 5.01 ⇥ 10�3
, 7.08 ⇥ 10�3

, 1.00 ⇥ 10�2. The corresponding dimensionless

Fourier frequency values, !̃, computed using Equation (2.33) are: !̃ = 0.02, 0.04, 0.06, 0.10,

0.16, 0.26, 0.42, 0.59, 0.87, 1.32, 1.86, 2.62. Note that the value of the photon injection

number N0 has no a↵ect on the time lags and also that the injection time can be set to

t0 = q0 = 0 without loss of generality.

The sequences of complex eigenvalues, �n, obtained for each discrete value of the Fourier

frequency !̃ adopted here are plotted in Figure 3.5, with the value of !̃ increasing from

bottom to top. The eigenvalues are indicated by the points, and the lines are added to

clarify the eigenvalue sequence for each frequency. It should be noted that in the limit

!̃ ! 0, the eigenvalues approach the quiescent case and are no longer imaginary. Using

alternate boundary conditions, such as that explored by Colpi (1988) and Titarchuk et al

(1997) (See Section 2.3.3), the eigenvalues are given by �n = 2n + 5;n = 0, 1, 2, ... The

quiescent case is further explored in Chapter 4.
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Figure 3.5: Plot of the first 10 complex eigenvalues, �n, for each Fourier frequency !̃, with the log of the
real part on the horizontal axis and the log of the negative of the imaginary part on the vertical axis. Each
color sequence corresponds to a di↵erent Fourier frequency. The eigenvalues are indicated by the points, and
the lines are added for clarity. The eigenvalue index n increases from left to right, and the dimensionless
Fourier frequency !̃ increases from bottom to top, through the vector of 12 values for !̃.

3.3.2 Fit Parameters

As noted in Section 2.4, after determining the eigenvalues, the computation of the

simulated time lags, �t, using my theoretical model, requires specification of three more

parameter sets: (1) the electron temperature ⇥ = kTe/(mec
2), (2) the hard and soft channel

energies, ✏h and ✏s, respectively, and (3) the source parameters, which includes the photon

injection energy ✏0; and the the injection radius r0.
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3.3.3 Electron Temperature

For the first parameter, ⇥, to achieve the best fit, the value adopted for the dimensionless

electron temperature is ⇥ = 0.05, so that kTe ⇡ 25 keV. This value is in line with expected

coronal temperatures which are expected to be much hotter (kTe > 10 keV) than the

underlying accretion disk expected values of tens to hundreds of eV.

3.3.4 Time Lag Energy Bands

The second parameter set must be approximated since the observational time lags pro-

vided by Fabian et al. (2009) and others use entire energy bands for the two channels. In this

example, the bands are given by ✏s = 0.3�1 keV for the soft energy band and ✏h = 1�4 keV

for the hard energy band. My model is not able to accommodate an energy range for the

soft and hard bands, and instead exact values are needed for ✏s and ✏h. Qualitatively, one

notes that the Fourier frequency generation of the lags utilizes the composite Fourier signal

of all of the energy signals in each respective band. If the variability throughout the band

is approximately equal or if the variability is dominated by a certain discrete energy value,

the variability of each signal can then be approximated by a single energy value within the

band. As noted by Figure 3.3 panel b), this is the case for the bands in question where the

variability in the soft band is dominated at the lower edge of the band and the variability

in the hard band is on average . To achieve the best fit, I set the hard and soft channel

energies to the values ✏s = 0.33 keV and ✏h = 1.76 keV.

3.3.5 Injection Parameters

For the third and final source parameter set, the best fit values are found using ✏0 =

0.89 keV for the injection energy and r0 = 16Rg for the injection radius. This value is noted

to be a value in the vicinity that dissects where the energy lags are not appearing and then

begin to rapidly occur (See Figure 3.3) as well as the peak of the broadened and skewed

energy of the iron L-line that Fabian et al. (2009) reported for H707 (See Figure 3.1). The

value of the injection radius is toward the inner regions of the black hole and in line with
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estimates that predict most of the X-ray production occurs near the black hole.

3.3.6 Converging Model Fit

The convergence of the results obtained for the time lags as a function of the value of the

maximum index, Nmax, appearing in the sum in Equation (2.65), has been analyzed to en-

sure accuracy in the model. I find that setting Nmax = 5 is su�cient to ensure convergence

to a relative error of ⇠ 1%. To guarantee confidence in the results, I use the first 10 eigen-

values and eigenfunctions in computing the time lags for each value of the Fourier frequency

! to ensure convergence of my results. The resulting time lag distribution, �t, computed

using Equation (1.20), is plotted as a function of the Fourier frequency ⌫F = !/(2⇡) using

the green solid curve in Figure 3.6, and compared with the observational data for H707

reported by Fabian et al. (2009) and Zoghbi et al. (2010). The hard lags (positive values),

where the hard signal is detected after the soft signal for the same Fourier frequency, occur

in the lower Fourier frequency components of the varying energy signals. These lags peak

at a relatively large value of approximately 150 seconds and then rapidly descend toward

a transition frequency. Conversely, the soft lags (negative values), which steadily appear

at values on the order of 10s of seconds, occur in the higher Fourier frequency components

of the varying energy signals. Note the good agreement between the theoretical model and

the time-lag data from Fabian et al. (2009) and Zoghbi et al. (2010), including the change

in sign of �t from positive below Fourier frequency ⇠ 5 ⇥ 10�4Hz to negative at higher

frequencies.
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Figure 3.6: Time lag distribution �t plotted as a function of the Fourier frequency, ⌫F = !/(2⇡) (green
diamonds and line). A positive value for �t indicates a hard lag and a negative value indicates a soft lag.
Observational data are taken from Fabian et al. (2009; blue dots) and Zoghbi et al. (2010; purple dots).
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One can also explore the PSD of the two energy bands. Recall in Chapter 1, that the

PSD is given by,

PSD = |F̃✏(✏,!)|2 . (3.5)

The results that Zoghbi et al. (2011) obtained for the PSD for H707 are shown in

Figure 3.2 panel b). It is interesting to compare the PSD predicted by my theory with

the observational data reported by Zoghbi et al. (2011). This comparison is carried out

in Figure 3.7 using two specific values for the photon energy, ✏ = 0.4 keV and ✏ = 2 keV.

The good agreement between the theory and the observations adds further credence to the

validity of my theory.

Figure 3.7: Comparison of H707 PSD plot for observation and theory for two energy bands
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3.4 Discussion

3.4.1 The Critical Frequency

The behavior of H707’s time lags �t as a function of the Fourier frequency, ⌫F = !/(2⇡),

display unusual behavior, especially if viewed in relation to the lags noted in Chapter 1 for

the BHB Cyg X-1 and shown in Figure 1.17. The most peculiar aspect of the lags is the

existence of the aforementioned transition point and the fact that the lags contain both

hard and soft lags. In order to clearly analyze and discuss this behavior, the transition

point implies the need to define a new variable, the critical frequency, ⌫c, which for this

source is located at ⇠ 5⇥ 10�4Hz.

The critical frequency has been shown to exist in many other AGN as shown by De

Marco et al. (2013) and Mallick et al. (2021). Mallick’s plot of similar “low-mass” AGN to

H707 is shown in Figure 3.8 panel a). In panel b) I have created a table and plot with a best

linear fit line of the 7 AGN showing their estimated mass versus critical frequency. Note

that H707 would basically follow the trend where more massive AGN have lower critical

frequencies. Mallick et al. (2021) identified with a black arrow a similar value to the critical

frequency using the lowest soft lag frequency instead of the transition point (See Figure 3.8

panel a)). They also separately overlaid DeMarco’s data, which covered a much broader

range of masses. In the Mallick plot the trend showed a relation between mass and frequency

whereby with increasing mass one finds decreasing values of the soft lag frequency similar

to DeMarco’s research. Both of these plotted results provide observational evidence that in

general, the soft lags lowest frequency are not necessarily dependent on a certain specific

value of Fourier frequency, but instead occur due to a scaling relationship that is dependent

on the mass of the black hole. This aspect of the shifting of the critical frequency naturally

occurs in my model as one notes the relationship of my dimensionless frequency given by

Equation (2.33), and given again here,

!̃ ⌘ v̂
1/2

̂3/2

Rg

c
! . (3.6)
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As can be seen, remembering that Rg = GM/c
2, for a given dimensionless frequency, if the

mass of the black hole is increased, the frequency decreases in agreement with observations.

Figure 3.8: a) Plots of seven “low-mass” AGN time lag plots. The yellow and green lines have been added
to show the critical frequency value. Credit: Mallick et al. (2021). b) A table showing the critical frequency
versus mass for each of the seven plots as well as a plot of the data that shows the best-fit linear trend line.
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3.4.2 Physical Interpretation

The complex behavior of the time lags, �t, as a function of Fourier frequency stems from

the fact that the energy of the injected iron L-line emission, ✏0 = 0.89 keV, lies between the

soft and hard detector band energy ranges used to compute the time lags. The existence of

the critical frequency implies that there are competing physical processes occurring where

one dominates or only occurs at lower Fourier frequencies and one dominates or only occurs

at higher Fourier frequencies. In an attempt to better understand the cause of the time lags,

Miller et al. (2010) reviewed di↵erent energy bands (See Figure 3.9). They noted that the

same critical frequency occurs between their defined hard band (4-7.5 keV) and soft band

(0.3-1 keV) and their defined medium band (1-4 keV; which aligns with my and Fabian’s

hard band) and soft band. Their hard/soft plot in the center panel of Figure 3.9 shows

larger hard lags at lower frequencies than the medium/soft plot in the left panel. Their

plot of lags between their hard/medium bands in the right panel of Figure 3.9 does not

demonstrate any defined lags above 3⇥ 10�4, but does show hard lags in the lower Fourier

frequencies below that value. These results appear to correlate with Figure 3.3 panel b) and

demonstrate that there are no lags in Fourier frequency variability in their hard band as

compared to their medium band at Fourier frequencies above the critical frequency (i.e. the

high frequency variability occurs at the same time in energies above 1 keV) and that below

the critical frequency, the variability in each Fourier frequency takes time to propagate to

higher energies above 1 keV. These results help to shed light on the cause of the time lags

as well as the change in sign at the critical frequency.
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Figure 3.9: Three plots of time lags versus Fourier frequency for H707. Left panel: 0.3-1 keV versus 1-4
keV. Center panel: 0.3 keV versus 4-7.5 keV. Right panel: 1-4 keV versus 4-7.5 keV. Credit: Miller et al.
(2010)

The cause of time lags di↵ering in sign above and below the critical frequency has to

do with the time scale of processes that occur due to Comptonization (see Figure 3.10).

Soft time lags, which occur at high Fourier frequency, for ⌫ & ⌫c, are due to First-order

energy gain (shifting) which occurs at short time scales. There is no change in the soft

lags time scale as the energy increases with respect to the soft band due to the nature of

this rapid energization. Hard time lags, for ⌫ . ⌫c, occur at low Fourier frequency due to

second-order energy gain (broadening) which takes longer. The continued increase in hard

lag time scale with increased energy noted by Miller in Figure 3.9 is expected in accordance

with Comptonization that occurs since for increasing photon energy, it takes longer for the

same Fourier frequencies that occur below the critical frequency.
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Figure 3.10: Pictorial representation of the physical interpretation for the hard and soft lags. Credit:
Becker (2021).
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Chapter 4: Quiescent Model

4.1 Overview

As noted in Chapter 1, there are many aspects to studying and adequately understanding

the underlying physics surrounding black holes. A key aspect of this is not only investigating

the observed timing behavior, but also the observed spectrum. In this chapter, I develop

the steady-state, or quiescent, transport equation using the same model equation and terms

in order to demonstrate that components of the observed spectrum can be generated by

this same coronal model. It is important to emphasize that the quiescent spectrum does

not contribute to the time lags, since as discussed in Section 1.4, “An Introduction to X-ray

Fourier Time Lags”, steady-state light curves do not generate phase lags and therefore do

not generate time lags. Further to this point, as discussed in that section, the emission from

a given source can be viewed as a superposition of continual steady-state emission, combined

with episodic bursts or flashes, which produce the time-dependent phenomenon. Whereas

in Chapter 2 and 3 the focus was on the episodic portion of the emission, in the next two

chapters the focus is on the steady-state portion of the emission. As noted in Chapters 1

and 3, the black hole spectra are most likely formed (i.e. comprised) by numerous radiative

processes to include both thermal and non-thermal. This is evidenced by model fits that are

able to recreate the observed spectra. In my model, after I demonstrate the development

of the quiescent solution, I will demonstrate that components of the observed spectrum

can be generated by the same model. This spectra is generated by the injection of seed

(or source) photons from the cooler accretion disk near the central black hole into the

relatively hot, quasi-spherical surrounding coronal region where they undergo thermal and

bulk Comptonization.

92



4.2 Transport Equation

The transport equation of the steady-state model is very similar to the time-dependent

one with two key exceptions. First, there is no time dependency and second, the instanta-

neous source injection term N0 is modified now to Ṅ0 to account for the continuous injection

of photons per unit time in the steady-state model. Hence, the source term is now given

by,

Ṅ0�(r � r0)�(✏� ✏0)

4⇡r2
0
✏
2
0

(4.1)

Beginning with Equation 2.5 and noting that fG is now the steady-state Greens function,

the transport equation for the quiescent case is now given by:
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(4.2)

I can now non-dimensionalize this equation by utilizing the same substitutions as made in

the time-dependent case (see Section 2.2) which are given by,

vr(r̃) = �v̂c r̃
�1/2

, ne(r̃) =
r̃
�3/2

3�
T
Rg̂

, (r̃) = ̂Rgc r̃
3/2

,

y ⌘ rt

r
=

v̂

̂r̃
, � ⌘ ✏

kTe

, ⇥ ⌘ kTe

mec
2
,

(4.3)

where Rg = GM/c
2, r̃ ⌘ r/Rg, and rt ⌘ (3Ṁ�

T
)/(4⇡mpc). Making these substitutions and

performing algebra, the non-dimensional quiescent transport equation is now given by,
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(4.4)

where fG(y, y0,�,�0) denotes the steady-state Green’s function, which is the response to

the continual injection of Ṅ0 photons of dimensionless energy �0 per rate of time from a

source at dimensionless radius y0.

4.3 Separation of Functions

Similar to the time-dependent case, the next step in solving for fG is to note that for

certain values, Equation (4.4) can be separated. As in the time-dependent case, due to the

delta functions in the source term, when � 6= �0 the source term vanishes and the transport

equation can be solved by writing

f�(y,�) = g(y)h(�) (4.5)

where � denotes the separation constant and g(y) and h(�) denote the spatial and energy

separation functions respectively. For � 6= �0, substituting Equation (4.5) into Equation

(4.4) and rearranging terms gives,

y
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(4.6)

Since the separation constant � is independent of the coordinates y and �, it follows that

I can obtain two distinct ordinary di↵erential equations satisfied by the functions g(y) and

h(�), given respectively by
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where

� ⌘ 3v̂̂

2⇥
. (4.9)

4.4 Solutions of Seperated Functions

Unlike the time-dependent case, both of the separated di↵erential equations are solv-

able analytically. The solution to the spatial equation is shown below for the finite inner

and outer free-streaming boundary conditions. As in the time-dependent case, alternative

boundary conditions have also been solved for and are discussed in Appendix A. The energy

equation and its boundary conditions are identical to the time-dependent case and the final

solution is once again shown below for completeness.

4.4.1 Spatial Equation

The spatial equation is of the form of Kummer’s equation and its complete global solu-

tion is given by,

g(y) = AM

⇣��

2
,
�3

2
, y

⌘
+BU

⇣��

2
,
�3

2
, y

⌘
(4.10)

where M(a, b, z) and U(a, b, z) are confluent hypergeometric functions, A and B are arbi-

trary constants, and b 6= �n with n being a positive integer (e.g., Abramowitz & Stegun

1964). The constants can be solved by utilizing the same boundary conditions as given in
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the time-dependent case. The free-streaming boundary conditions for the steady-state case

are shown below while the di↵usive-adiabatic solution is shownin the appendix.

As shown previously for the boundary conditions in the time-dependent solution, the

spatial separation function g satisfies the free-streaming boundary conditions,

(v̂̂y)1/2g0(y) + g(y) = 0 , at y = yin , (4.11)

(v̂̂y)1/2g0(y)� g(y) = 0 , at y = yout . (4.12)

Additionally, I can normalize the solution so that

g(yin) = 1 . (4.13)

The constants A and B are then solved for by substituting Equation (4.10) into the

boundary conditions and performing algebra. Note that the eigenvalues, �n, in this solution

are the same as in the time-dependent case when !̃ = 0 and therefore can be numerically

solved for by the exact solution shown here or by the same method identified in Section

2.3.4, with the special case where !̃ = 0.

4.4.2 Energy Equation

The separated energy equation and its associated boundary conditions are exactly the

same as the time-dependent solution shown in Section 2.3.4 and therefore has the exact

same solutions given by,

hn(�,�0) = �
�4

e
��/2

M,µ(�min)W,µ(�max) , (4.14)

where M,µ, and W,µ denote the Whittaker functions,

�min ⌘ min(�,�0) , �max ⌘ max(�,�0) , (4.15)
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and where the parameters  and µ are given by

 ⌘ 1

2
(� + 4) , µ ⌘ 1

2

h
(3� �)2 + 4��n

i1/2
. (4.16)

4.4.3 Orthogonality

The quiescent proof of spatial function orthogonality follows the same procedure as the

time-dependent one above. In this case, I rewrite Equation (4.7), which is shown below,

y
d
2
g

dy2
�
✓
3

2
+ y

◆
dg

dy
+

�

2
g = 0 , (4.17)

in the Sturm-Liouville form

d

dy


S(y)

dgn

dy

�
+Q(y)gn +

�n

2
⌦(y)gn = 0 , (4.18)

where the weight function, ⌦(y), is defined by

⌦(y) = y
�5/2

e
�y

, (4.19)

and the functions S(y) and Q(y) are defined by

S(y) = y
�3/2

e
�y

,

Q(y) = 0 .

(4.20)

Note that S(y) and ⌦(y) are the same values as in the time-dependent case. As before,

assume that �n and �m represent distinct eigenvalues associated with the spatial eigenfunc-

tions gn and gm, respectively. Equation (4.18) is then multiplied by gm and the result is

subtracted from the same equation with the indices n and m interchanged. After some
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algebra, the result obtained is,

gm
d

dy
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dgn

dy

�
� gn

d

dy


S(y)

dgm

dy

�
= (�m � �n)⌦(x)gngm (4.21)

Integration by parts between the inner and outer radii yin and yout yields,

S(y)


gm

dgn

dy
� gn

dgm

dy

� ����
yout

yin

= (�m � �n)

ˆ
yout

yin

⌦(y)gn(y)gm(y) dy (4.22)

This is the exact equation as shown in the time-dependent version’s above with the

same definition of S. Therefore as noted before, utilizing either the spatial free-streaming

boundary conditions or the alternate boundary conditions at the inner and outer radii, the

left-hand side of Equation (4.22) vanishes resulting in,

ˆ
yout

yin

⌦(y)gn(y)gm(y) dy = 0 , �n 6= �m . (4.23)

This establishes that the spatial eigenfunctions gn and gm are orthogonal with respect

to the weight function ⌦(y) in the computational domain located between the inner and

outer boundaries at y = yin and y = yout, respectively.

4.5 Final Closed-Form Solution

As in the time dependent case, since the spatial eigenfunctions have been shown to be

orthogonal, it is possible to solve for the Green’s function, fG, as an infinite series

fG(y0, y,�0,�) =
NmaxX

n=1

bngn(y, y0)hn(�,�0) , (4.24)

Performing the same calculations in the same vein as the time-dependent case, the derivative
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jump condition is as follows:
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The expansion coe�cients, bn, can be determined by exploiting the orthogonality of

the spatial eigenfunctions, and applying the derivative jump condition. Substituting Equa-

tion (4.24) into Equation (4.25) gives,
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, (4.26)

where the Wronskian, W�(�0), is defined by (Becker & Wol↵ 2007)

W�(�0) ⌘ M,µ(�0)W
0
,µ(�0)�W,µ(�0)M

0
,µ(�0) =

��(1 + 2µ)

�(µ� + 1/2)
. (4.27)

The expression for the expansion coe�cient, bn, can now be obtained by substituting

Equation (4.27) into Equation (4.26), reorganizing, multiplying by the product gm(y)⌦(y),

where ⌦(y) is the weight function as defined above, and integrating with respect to y from

yin to yout. Utilizing the orthogonality of the spatial eigenfunctions, I find after some algebra

that the final expression for the expansion coe�cient bn can be written as

bn =
�Ṅ0̂

3/2
gn(y0)⌦(y0)e�0/2y
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2
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, (4.28)

where the quadratic normalization integrals, In, are computed via numerical integration,

using the definition

In ⌘
ˆ

yout

yin

⌦(y)g2n(y) dy . (4.29)
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Combining Equations (4.24) and (4.28), I find that the final closed-form solution for fG

is given by

fG(y0, y,�0,�) =
�Ṅ0̂

3/2
�
�4⌦(y0)e(�0��)/2
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2
)

In�(1 + 2µ)
gn(y0)gn(y)M,µ(�min)W,µ(�max) ,

(4.30)

where , µ, �min, and �max are computed using Equations (4.16) and (4.15). Equa-

tion (4.30) gives the final solution of the radiation Green’s function, fG, at energy x and

radius y. The photons are injected at radius y0 with energy x0.

4.6 Injection Sources

In order to solve for the radiation spectrum, an injection photon source must be inputted

that in turn creates the observed photons after interacting with the model. As noted

in Chapter 1, there are many possible sources of radiation surrounding accreting black

holes. One of the benefits of the method utilized in this dissertation is that the radiation

Green’s function solved for in both the time-dependent and time-independent cases can

be convolved with any source photon distribution since the transport equation is a linear

partial di↵erential equation. The integral convolution for any steady-state source photon

distribution Q̇ is given by,

fp(r, ✏) =

ˆ
rout

rin

ˆ 1

0

4⇡r20✏
2

0Q̇(r0, ✏0)
fG(r0, r, ✏0, ✏)dr0d✏0

Ṅ0

, (4.31)

where 4⇡r2
0
✏
2
0
Q̇(r0, ✏0)dr0d✏0 gives the number of photons injected in the energy range d✏0,

radius range dr0, around (✏0, r0).

Although Equation (4.31) represents the fundamental solution for the radiation field
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inside the spherically symmetric accretion flow, it still remains necessary to compute the es-

caping radiation field in order to plot the observed spectrum. The theoretical X-ray steady-

state photon flux spectrum observed at the detector is directly related to the radiation

distribution escaping from the outer edge of the spherical region, located at radius r = rout.

Since the boundary condition at the outer radius is free-streaming (Equation (4.12)), the

computation of the escaping radiation spectrum is self-consistent and the X-ray photon

spectrum observed at the detector, that can now be compared to observational data, is

given by

F✏(✏) = c

⇣
rout

D

⌘2
✏
2
fp(rout, ✏) . (4.32)

where D is the distance from the source to the detector on the earth and fp is given by

Equation (4.31).

4.6.1 Monochromatic Source

A monochromatic source is not the most commonly anticipated radiation process occur-

ring in the areas surrounding an accreting black hole. However, as noted in Chapter 3, there

appear to be certain situation where monochromatic injection of radiation does make sense.

The formulation of the Green’s function solution given by Equation (4.30) was solved for

using the monochromatic source distribution Q̇ = (Ṅ0�(r � r0)�(✏ � ✏0))/(4⇡r20✏
2
0
). Notice

that convolving this with fG in Equation (4.31) returns the original function fG. Therefore,

the equation needed to plot the radiation spectrum is simply given by,

F✏(✏) = c

⇣
rout

D

⌘2
✏
2
fG(rout, ✏) (4.33)

where fG is given by Equation (4.30).
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4.6.2 Bremsstrahlung Source

As noted in Chapter 1, many radiative processes are broadband. A likely source of this

is thermal bremsstrahlung radiation given by,

"
ff

⌫ (r0, ⌫0) = 6.8⇥ 10�38
Z

2
n
2

e(r0)T
�1/2

e e
�(h⌫0)/(kTe)ḡff (4.34)

where "ff⌫ is found in Rybicki and Lightman (1979) and ḡff is a velocity-averaged relativistic

corrective Gaunt factor which here is set equal to unity. For pure, fully-ionized hydrogen,

Z = 1. Convolving this source term with Equation (4.31) and changing variables from ✏ to

⌫, the bremsstrahlung radiation field inside the corona is given by,

fB(r, ⌫) =

ˆ
rout

rin

ˆ 1

0

4⇡r20 "
ff

⌫ (r0, ⌫0)
fG(r0, r, ⌫0, ⌫)dr0d⌫0

Ṅ0 h⌫0

. (4.35)

Making use of Equation (4.3) and non-dimensionalizing, the radiation field is now given by,

fB(y,�) =

ˆ
yin

yout

ˆ 1

0

⇣
fG(y, y0,�,�0)

Ṅ0

⌘
"
ff

⌫

⇣
v̂Rg

̂

⌘3⇣4⇡
y4

⌘
dy0d�0

h�0

, (4.36)

Using Equation (4.34) and the relationship for ne as shown in Equation (4.3), the final,

non-dimensionalized bremsstrahlung radiation field inside the corona is given by,

fB(y,�) = 6.8⇥ 10�38

ˆ
yin

yout

ˆ 1

0

fG(y, y0,�,�0)
4⇡Rgdy0d�0

(3�
T
̂)2hṄ0T

1/2

e �0e
�0y0

. (4.37)

The computation of the escaping radiation spectrum produced by thermal bremsstrahlung

radiation can now be compared to observational data and is given by

F✏(✏) = c

⇣
rout

D

⌘2
✏
2
fB(rout, ✏) . (4.38)
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Chapter 5: Quiescent Application to AGN 1H0707-495

5.1 Observational Data

Similar to other NLS1 galaxies, H707 has a steep spectrum and shows a strong soft excess

in the X-ray which is traditionally interpreted as blackbody radiation. As noted in Chapter

3, the steady-state spectrum of H707 appears to be comprised of multiple components.

Figures 5.1 and 5.2 show two fits of the observed spectrum. In general, a majority of the

spectrum is well fitted in each of these cases by simply combining a blackbody thermal

component below 1 keV as well as a power law component that extends from below to

above 1 keV.

Both Zoghbi et al. (2010) and Pawar et al. (2016) used observations attained by XMM-

Newton in 2008 with the European Photon Imaging Camera-pn (EPIC-pn) in large window

imaging mode with medium filter while the optical monitor was operated with UVW1 filter

in fast imaging mode. The data was analyzed using Science Analysis System (SAS) and

the spectral fits were performed using NASA’s High Energy Astrophysics Science Archive

Research Center (HEASARC) XPSEC software.

For the spectral fit, Zoghbi et al. (2010) used blackbody, power law, and blurred reflec-

tion components which included broad energy lines accounting for the iron-L and K↵ lines.

Pawar used a similar fit, but did not include a “reflection” fit. The assumed parameter

values for Zohgbi’s plot were inner radius of rin = 1.41Rg, outer radius of rout = 400Rg,

and blackbody temperature of 50 eV. Pawar’s assumed parameter values used a black-

body temperature of 108 eV and inner and outer radius of rin < 1.7Rg and rout < 400Rg

respectively.
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Figure 5.1: Plot of H707 spectrum. Long-dashed (red) line is the power law, dot-dashed (green) line is the
blackbody, and dotted (blue) line is the blurred reflection component. The black line is the total. Credit:
Zoghbi et al. (2010).

Figure 5.2: H707 time averaged (black) and simulated (red) spectrum with blackbody (dashed), plower
law (dotted), and two Laor lines (dash-dotted lines). Shaded green (power law) and yellow (blackbody)
displays area between lowest and highest flux values. Credit: Pawar et al. (2016).
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5.2 Model Parameters and Calculations

In order to determine if the same coronal model that worked for the time-dependent

transport equation works for the quiescent solution, where applicable the same model pa-

rameters are utilized. Hence, noting the calculation method in Chapter 4, in order to find

the eigenvalues I need to first provide the values for the inner and outer radius, the ra-

dial velocity, and the accretion rate. Therefore, referencing Chapter 3, for the mass I use

M = 2⇥ 106M� and for the spin parameter I use a = 0.98, which when combined to solve

for the inner radius gives rin = rISCO = 1.61Rg. I set the outer radius to r = 120Rg. I

also set the dimensionless radial velocity to v̂ =
p
2 and the accretion rate to Ṁ = 1.1ṀE .

With these values established, I am able to numerically solve for the eigenvalues that will

be needed to calculate the radiation spectrum.
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Figure 5.3: Plot of the numerically solved quiescent spatial Wronskian. The eigenvalues occur at the
crossings, when � = 0.
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Similar to the quiescent model, I utilize the free-free streaming boundary conditions and

solve the spatial equation at both the outer and inner boundaries going inward and outward

respectively toward an undefined spatial point in the middle of the radius. I solve for the

Wronskian following the method outlined in Section 2.3.4, by setting !̃ = 0. Figure 5.3

shows a graphical representation of the solutions at the crossings.

Next, in order to solve for the radiation spectrum in accordance with Equation (4.30), I

set the source photon rate to Ṅ = 1051 and in accordance with Chapter 3 values, I set the

coronal temperature to ⇥ = 0.05. Note that depending on the source used, changing the

number of photons either will or will not change the value of the flux. Finally, in order to

compare observational to theoretical X-ray steady-state photon flux spectrum observed at

the detector, regardless of the injection source utilized, I must use Equation (4.38), which

is restated here,

F✏(✏) = c

⇣
rout

D

⌘2
✏
2
fp(rout, ✏) . (5.1)

Note that this equation requires the distance to H707, which in Chapter 3 was given as

D = 181 Mpc (Sani et al. 2010).

5.3 Quiescent Spectrum

5.3.1 Monochromatic Injection Source

As a first e↵ort to reproduce the observed spectrum using my transport equation, I

utilize the same monochromatic injection energy source as was used for the time-dependent

spectrum. In order to accomplish this, I numerically solve Equation (4.30) for a given set

of eigenfunctions. I find that the energy solution converges to within 1% after five terms

and so I utilize ten terms to ensure an accurate solution.

The final step to produce the theoretical spectrum is to utilize the eigenfunctions with
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Equation (4.33). The resulting plot is shown in Figure 5.4. As can be seen, the monochro-

matic injection energy can neither produce the observed composite spectrum or the in-

dividual predicted components of a thermal broadband or power law spectrum noted in

other author’s XSPEC fittings in shape. However, almost all authors have concluded that

monochromatic source energy still appears to be responsible for an aspect of the energy

spectrum in the form of emission lines. Pawar et al. (2016), note an excess in the energy

in spectrum near both the iron-L and K↵ line energies and employ a broadened emission

line from an accretion disk that includes general relativity e↵ects (Laor in XSPEC) at these

energies to improve their spectrum fits. I will discuss this further in Section 5.4.
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Figure 5.4: Plot of observed H707 spectrum as compared to theoretical monochromatic injection spectrum
with an injection energy at ✏0 = 0.89 keV. Although the injection energy cannot produce the broadband or
power law spectrum components, it may still be responsible for the excess noted.
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5.3.2 Bremsstrahlung Source

As stated in Chapter 4, another potential source of seed photons that helps generate the

observed spectrum is a broadband source such as bremsstrahlung. Following the prescription

in Chapter 4, the eigenvalues are the same as in the monochromatic solution, with the only

di↵erence occurring when convolving the source energy in order to achieve the radiation

spectrum. For the bremsstrahlung solution, I must solve Equation (4.37), which requires

me to integrate over both the entire radius and the entire broadband energy spectrum for

each desired energy output. In order to achieve these results, as a practical matter, I reduce

the double integral in Equation (4.37) to a single integral by noting that the spatial function

and energy function are seperable and that additionally, the spatial function operates over

a sum of values. Rewriting Equation (4.37) below I have,

fB(y,�) = 6.8⇥ 10�38

ˆ
yin

yout

ˆ 1

0

fG(y, y0,�,�0)
4⇡Rgdy0d�0

(3�
T
̂)2hṄ0T

1/2

e �0e
�0y0

. (5.2)

Including the complete Green’s function, fG, Equation (5.2) becomes,

fB(y,�) = 6.8⇥ 10�38

ˆ
yin

yout

ˆ 1

0

�Ṅ0̂
3/2

�
�4⌦(y0)e(�0��)/2

y
5/2

0

2⇡v̂5/2R2
gc(mec

2)3⇥3�


0

⇥
NmaxX

n=1

�(µ� + 1

2
)

In�(1 + 2µ)
gn(y0)gn(y)M,µ(�min)W,µ(�max)

4⇡Rgdy0d�0

(3�
T
̂)2hṄ0T

1/2

e �0e
�0y0

,

(5.3)

Now, only acting the spatial integral on those terms with a spatial dependence, this is

rewritten as,

108



fB(y,�) = 6.8⇥ 10�38

ˆ 1

0

�Ṅ04⇡Rg̂
3/2

�
�4

e
(�0��)/2

(3�
T
̂)2hṄ0T

1/2

e 2⇡v̂5/2R2
gc(mec

2)3⇥3�


0
�0e

�0

⇥
NmaxX

n=1

�(µ� + 1

2
)

In�(1 + 2µ)

ˆ
yin

yout

y
5/2

0
⌦(y0)

y0
gn(y0)dy0gn(y)M,µ(�min)W,µ(�max)d�0 ,

(5.4)

or equivalently,

fB(y,�) =
��

�41.51⇥ 10�38

�2

T
h(Te̂)1/2v̂5/2Rgc(mec

2)3⇥3e�/2

ˆ 1

0

1

�
+1

0
e�0/2

⇥
NmaxX

n=1

�(µ� + 1

2
)

In�(1 + 2µ)
Jngn(y)M,µ(�min)W,µ(�max)d�0 ,

(5.5)

where

Jn =

ˆ
yin

yout

y
5/2

0
⌦(y0)

y0
gn(y0)dy0 =

ˆ
yin

yout

e
�y0

y0
gn(y0)dy0 . (5.6)

I now utilize Mathematica to solve for the spectrum. I utilize these results with Equation

(4.38) in order to produce the theoretical radiation spectrum. As shown in Chapter 1,

bremsstrahlung radiation produces well defined spectra dictated by the temperature and

density of the gas, which implies that even if it is unable to produce the composite spectrum,

it may produce a component. The theoretical spectrum compared to observational data is

shown in Figure 5.5.
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Figure 5.5: Plot of observed H707 spectrum as compared to theoretical bremsstrahlung spectrum.

Although, due to integrating the radiation function over the entire radius and all of the

energy, the photon count is much closer to the observations than the monochromatic source

energy was, it is still much smaller than either the observed composite spectrum or the

individual predicted components. As can be seen by Figure 5.5, the bremsstrahlung plot

does not achieve a plot similar to the overall observed composite spectrum or an individual

component of the spectrum. In fact, as opposed to the predicted spectral components that

would fit the spectrum which show a steady decrease in photon count around 0.5 keV,

the theoretical bremsstrahlung spectrum plotted is still increasing at all of the observed

energies. This combined with the low e�ciency of bremsstrahlung in the spherical accretion

flow suggests that the steady-state X-ray spectrum is the result of emission from a much

cooler, radially larger, thin disk, that surrounds the spherical inner region. This discrepancy

will be discussed in further detail in Section 5.4.
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5.4 Discussion

In general, my transport model does not appear to be able to reproduce the spectrum

of H707 when utilizing the same values as used to successfully replicate the time lags. The

temperature in the coronal cloud appears to be much too high to generate the observed

thermal radiation. However, the results do give evidence as to what may produce the

thermal spectrum and the coronal cloud also may still potentially be responsible for at least

part of the non-thermal spectrum.

5.4.1 Thermal Radiation

Bremsstrahlung

The calculated and plotted bremsstrahlung spectrum does not appear to be able to

replicate portions of the spectrum with the utilized cloud temperature. However, the plot-

ted theoretical bremsstrahlung spectrum does provide clues as to what is generating the

observed spectrum. Noting that the bremsstrahlung spectrum in Figure 5.5 shows a rise

throughout the observed energies, and recalling the standard predictable nature and spec-

tra of bremsstrahlung radiation from Chapter 1, it appears that the temperature of the

coronal cloud must be much too high. In order to validate this, I plot the theorized coronal

temperature as well as two other bremsstrahlung plots for di↵erent temperatures in Figure

5.6.
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Figure 5.6: Plot of di↵erent theoretical bremsstrahlung spectrum’s for varying temperatures.

As can be seen, a hotter temperature shifts the spectral shape of the bremsstrahlung

spectrum to the right and a cooler temperature shifts the spectral shape to the left. The

count rate peaks at energies further to the right as the temperature of the cloud increases. As

the temperature rises, bremsstrahlung becomes much more prevalent of a potential radiation

source and the number of photons increases. Additionally, note that the number of photons

produced by the bremsstrahlung plot is much too low as compared to the observed count

rate. Increasing the optical depth also will increase the count rate of the plot as noted

from Chapter 1. These results suggest that the optically thin coronal cloud cannot produce

enough seed photons to explain the observed thermal X-ray spectrum and is also much

too hot to match the observed profile. Hence, in conjunction with our optically thin, hot
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corona, the results imply that the most likely explanation for generating the steady-state

X-ray spectrum is a cooler, optically thick source such as an accretion disk that lies under

the corona and extends much farther out radially.

Blackbody

A second potential source of thermal radiation from the coronal cloud is blackbody ra-

diation. Reviewing the observational spectrum for thermal blackbody radiation and noting

Wien’s law in Equation (1.3), the temperature of the cloud required to create a spectral peak

at around 0.2 keV as shown in the observed spectra of Figure’s 5.1 and 5.2 is ⇥ ⇡ 0.0004.

However, my utilized cloud temperature is ⇥ = 0.05. Therefore, it immediately appears

that the coronal cloud is much too hot to produce the observed spectrum from blackbody

radiation. One can further explore this potential radiation source and determine if black-

body emission from the hot coronal cloud is even a viable alternative by solving for the

maximum blackbody temperature of an accreting gas orbiting a compact object. Similar

to the previous derivation of the Eddington luminosity, the maximum temperature is de-

termined by equating the gravitational force to the radiation force. In this case, one write’s

the radiation force using Stefan-Boltzmann’s law, which describes the power radiated from

a black body in terms of its temperature, which gives,

Fg = Frad ! GMmp

r2
=

�SBT
4
�T

c
. (5.7)

Noting that the smallest possible radius will achieve the highest possible temperature, I use

one gravitational radius as the upper limit (although, the radius of the accreting gas will be

much larger thereby reducing the temperature even further). Setting r = RG, substituting,

and solving for Tmax gives,

Tmax =

✓
c
5
mp

�TGM�SB

◆1/4

= 5.32⇥ 107 K

✓
M

M�

◆�1/4

. (5.8)
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If the mass of H707 is used, where M = 2 ⇥ 106M�, then the maximum temperature

possible for blackbody radiation from H707 is Tmax = 1.41 ⇥ 106 K, or in energy and

dimensionless units, kTmax = 0.12 keV and ✓ = 0.00024 respectively. Noting that my

theoretical coronal temperature is ✓ = 0.05, it is obvious that my corona cannot produce

the blackbody spectrum. Additionally, again using Wien’s law to find the peak spectral

energy density for this temperature, the spectrum for this temperature will peak at Epeak =

0.344 keV which is higher than the observed peak. This peak energy will decrease for

lower temperatures which means the blackbody temperature must be even lower than the

maximum possible temperature. Similar to the bremsstrahlung results, these results imply

the existence of a much cooler accretion disk that exists under the corona and extends

farther out radially

Thermal Comptonization in the Corona

Finally, one can analyze whether thermal Comptonization within the corona contributes

to the observed thermal spectrum. Although, the corona does not appear to be responsible

for generating the thermal spectrum, it is important to investigate whether the the spectrum

produced by the accretion disk that passes through the corona will be altered. Recall from

Chapter 1, the Compton y-parameter is given by,

y =
4kBTe

mec
2
Max(⌧es, ⌧

2

es) . (5.9)

Utilizing ⇥ = kBTe/mec
2 = 0.05, and the total optical depth at the inner radius, rISCO,

of ⌧ = 1.082, the Compton y-parameter is, y ⇠ 0.2. Again, recall from Chapter 1 that

Comptonization only a↵ects radiative processes when y & 1. Since y ⇠ 0.2, there will not

be a large distortion of photons passing through and becoming up-scattered by the hot

electrons in the corona. Therefore, it appears the corona in my model has very little impact

on the thermal portion of the spectrum.
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5.4.2 Non-thermal Radiation

The monochromatic theoretical spectrum, although not able to precisely fit either the

complete or a portion of the spectrum, also helps provide a clearer picture of the underlying

physics. There appears to be a potential synergy with my transport model and what

has been noted as an observed excess of the spectral fits by Zoghbi and Pawar. At the

approximate values of the iron L and K↵ emission lines, there are observed excesses beyond

the composite fit that utilizes the blackbody and power law spectra as shown in Figure 3.1

panel b). To account for this excess, it is common to use the XSPEC Laor emission line

models. The spectrum that the XSPEC Laor model produces has a similar shape to my

monochromatic injection spectrum. The Laor model includes general relativity e↵ects.
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Figure 5.7: Plot of observed spectrum (Zoghbi et al. 2010), simulated iron Laor line spectrum (Pawar et
al. 2016), and theoretical monochromatic spectrum with an injection energy at ✏0 = 0.89 keV.
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Specifically, the Laor emission line spectrum peaks at the emission line energy, which in

this case is the same as my injection energy, and then falls o↵ drastically at higher energies

as can be seen by Figure 5.7. This correlation provides further qualitative evidence that

the iron lines are in fact being produced in abundance and are responsible for generating

both the newly observed soft lags as well as the additional soft excess.
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Chapter 6: Conclusions

In my dissertation, I have developed and presented a new semi-analytical physical model

that successfully replicates the thoroughly researched, yet intensely debated phenomenon

identified as soft time lags from AGN by utilizing a simple astrophysical model. I have

compared this model to the observational data and previous research thereby validating my

work. The development of this semi-analytical model allows me to have complete control of

my model parameters and even the ability to employ this model in the future using analysis

software. My work represents a significant improvement in the current understanding of

key processes being researched in modern high-energy astrophysics. In this final section I

summarize my conclusions and present future work.

6.1 Comparison with Previous Models

It is interesting to examine in detail the similarities and di↵erences of my model com-

pared with previous models for the production of soft time lags in AGN. For example, the

Fabian et al. (2012) model is taken from Arevalo & Uttley (2006) who note that their model

is based on an optically thick, geometrically thin accretion disk which at the center is sur-

rounded by an optically thin, geometrically thick corona (Churazov et al. 2001). Miller’s

model also has an optically thin corona surrounding the black hole. My corona is also op-

tically thin with the X-ray optical density of my model becoming nearly transparent very

quickly with a value of ⌧ = 2/3 at r = 3.7 Rg and ⌧ = 1/3 at r = 10.7 Rg. Additionally,

my modeled corona most likely exists in conjunction with an optically thick, geometrically

thin accretion disk. My extended corona of 120 Rg, although larger than Fabian’s estimate

of 35 Rg, is similar in radius to the 100 Rg reverberation region modeled by Miller et al.

(2010). Note that my model does not require the actual photon source to extend throughout
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the cloud for the creation of time lags, but in fact, as noted in Section 1.4.1, the emitting

photons that generate the time lags must be from a variable source of photons located at

a specific radius. The injection photons in my model are injected isotropically at a radius

value of 16 Rg, which is similar to Fabian et al. (2012), who estimate that the X-ray source

extends radially out to 20Rg. Finally, the temperature of my corona of kTe ⇡ 25 keV is also

similar to Fabian group’s coronal temperature estimates. Wilkins et al. (2014) estimates

H707’s corona temperature to be kTe ⇡ 60 keV for an optical depth of ⌧ = 1 and Kara

et al. (2017), in researching NLS1 Ark 564 which is similar to H707 and accreting at the

Eddington limit, determined its corona to be ⇠ 15 keV. However, a key di↵erence between

my model and the other previous models is the physical basis for the time lags.

As discussed in Section 1.4.2, in the reflection model put forward by Fabian et al.

(2009) and Zoghbi et al. (2010), the soft lags arise from photons traveling toward the

black hole where they lose energy and then are reverberated or reflected out toward the

observer. The hard lags are generated by the same direct emission variability photons,

but are generated by the photons that travel directly toward the observer against inwardly

propagating luminosity fluctuations through the corona. The reverberation explanation of

these lags was initially qualitatively addressed. Shortly thereafter, Zoghbi et al. (2011),

with partial success, demonstrated a model that correlated their proposed theory. They did

this by following the modeling method outlined in Arevalo & Uttley (2006) which is based on

fluctuations propagating inwards through an accretion flow modulating the emission of the

inner regions as proposed by Lyubarskii (1997). In their model, they used two components

(a hard lag emitting component and a simple uniform reflection transfer function for the soft

lag emitting component (See Figure 6.1)) to generate their plot. Zoghbi et al. (2011) stated

that several combinations of parameters can reproduce the data and so their model shows

consistency with the data, but is not a fit. Note in Figure 6.1 the lack of solid correlation

with observational data. For instance, how the turnover at low frequencies does not occur

and the soft lags are nearly zero in their model.
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Figure 6.1: H707 lag spectrum with two component model. Dotted line is hard lag propagating fluctua-
tions; dashed line is soft lag simple reflector with transfer function; Continuous line is the sum of components.
Credit: Zoghbi et al. (2011).

Miller et al. (2010) alternatively proposed that the soft lags were created by a partially

opaque reverberating/reflecting region with a lower size limit of 1000 light-seconds from the

black hole corresponding to 100 Rg for a black hole mass of M ⇠ 2⇥106M�. Although this

region generates both soft and hard lags in Miller’s model, similar to Zoghbi et al. (2010),

Miller et al. (2010)’s model also requires two transfer functions in order to create the soft

and hard lags (e.g., Zoghbi et al. 2011). As also discussed in Section 1.4.2, additional

research has been presented that casts doubt that either of these models are presenting the

correct physics for the observed lag behavior.

Hence, an important distinction between my model and the other models is that they

require di↵erent mechanisms to explain the production of the hard time lags at low Fourier
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frequencies and the soft time lags at large Fourier frequencies. Conversely, in my model,

both the hard and soft lags are produced as a natural consequence of thermal and bulk

Comptonization occurring in the given physical model parameters.

6.2 X-ray Time Lags and PSDs

I have applied my new model to the interpretation of the X-ray time lags found in

observations of 1H0707-495, as reported by Fabian et al. (2009), Zoghbi et al. (2010),

and others. My physical time-dependent model has been able to successfully replicate the

soft time lags based on a rigorous theoretical framework describing the reprocessing of an

instantaneous flash of iron L-line photons. The value for the injection energy adopted here,

✏0 = 0.89 keV, is close to the peak value for the energy of the broad iron L-line reported by

Fabian et al. (2009), and hence the injection of the photons may be due to fluorescence of

the iron line.

The theoretical results for the time lags plotted in Figure 3.6 provide good qualitative

agreement with the observed time lag data for 1H0707-495, demonstrating that the observed

soft lags are produced via thermal and bulk Comptonization occurring within the quasi-

spherical region of the accretion flow. Hence, in my model, the hard and soft time lags

are both produced in a single region, via the action of a unified physical mechanism. This

provides a much simpler and straightforward alternative to other models which rely on

unusual geometrical configurations, or multiple thermal zones with di↵erent properties, in

order to reproduce the observed time lags. For instance, Zoghbi et al. (2010) and Miller

et al. (2010) invoke di↵erent physical mechanisms to explain the production of the hard

time lags at small Fourier frequencies and the soft time lags at large Fourier frequencies.

Conversely, in my model, both the hard and soft lags are produced as a natural consequence

of the underlying physics that occur due to thermal and bulk Comptonization in the quasi-

spherical inner region of the accretion flow. As noted in Chapter 3 (see Figure 3.7), further

supporting my model is that the PSD plots appear to show good agreement with the

observed PSD, in contrast to the PSD study conducted to validate the reverberation theory,
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which did not agree with their expected theory (Emmanoulopoulos et al. 2016).

6.3 Universality of Time-Lag Mass Scaling

The universality of the mass scaling law discovered by De Marco et al. (2013) suggests

that the critical frequency varies inversely with the black hole mass (see Figure 6.2).

Figure 6.2: Negative lag frequency vs. MBH for 15 AGN that display soft lags. The lag frequencies and
amplitudes are redshift-corrected. The best-fitting linear models and the combined 1� error on the slope
and normalization are overplotted as continuous and dotted lines. Credit: De Marco et al. (2013).
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Note that this behavior is a natural consequence of the bulk and thermal Comptonization

model explored here, since, according to Equation (2.33),

!c = !̃c

 
v̂
1/2

̂3/2

Rg

c

!�1

, (6.1)

where !c = 2⇡⌫c denotes the dimensional critical frequency and !̃c = 5⇥ 10�4 is the

dimensionless critical frequency, which is a constant in my model. Hence Equation (6.1)

implies that the critical frequency !c is inversely proportional to the mass of the black hole,

in agreement with the results of De Marco et al. (2013), as depicted in Figure 6.2. This

suggests that thermal and bulk Comptonization may be operative in all AGN displaying

soft time lags. And if this is true, then it implies that my model should be applicable to

many, if not all of these sources.

6.4 Discussion of GR Modifications and Causality

I now note two important technical points. First, although general relativity has not

been fully incorporated, I expect that the same fundamental results would be obtained in an

equivalent, fully relativistic model, because the fundamental physical process leading to the

production of the time lags is electron scattering in the spherical region of the accretion flow,

which is rigorously treated in my model. Second, due to the inherent geometry of my model,

the flash of iron L-line photons is produced simultaneously at all points on a spherical shell

with radius r0. Since, relativity precludes any coherence in the emission process occurring

on time-scales shorter than the light-crossing time for the region, one would obtain the same

result for the Fourier transform solution obtained here even if the iron L-line photons where

emitted at random locations on the spherical surface. This is because the time window for

the Fourier transform “sweeps up” many such emission episodes. Hence, provided they are

distributed in a spherically symmetric way, the total Fourier transform would remain in

agreement with that computed here, and there would be no causality violation.
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6.5 Quiescent Spectrum

In attempting to replicate the quiescent spectrum with my model, evidence points to the

fact that a composite, two-component accretion scenario exists where, although the corona

potentially contributes to the excess monochromatic emission lines noted in the spectrum, a

cooler accretion disk is responsible for the vast majority of the broadband thermal contribu-

tions. The lack of the ability to fit the broadband thermal spectrum combined with evidence

from the bremsstrahlung theoretical spectrum implies that the steady-state thermal emis-

sion, comprising the bulk of the X-ray signal, is produced in a surrounding, geometrically

thin but optically thick, much cooler and radially larger, accretion disk. A cooler accretion

disk corresponds with Fabian and others predicted physical configuration of a cooler accre-

tion disk. As shown in Chapter 5, my optically thin, hot corona does not have a great deal

of impact on any quiescent spectrum that might pass through it as demonstrated by the

small Compton y-parameter. However, the flash of iron L-line photons within the corona

that is responsible for the time lags, also appears to add to the spectral excess found in

the composite spectrum. As shown in Chapter 5, the monochromatic injection source at an

energy equaling the injection energy for the time lags, replicates the XSPEC Laor emission

line that Pawar et al. (2016) and others use to model the composite spectrum. This further

implies that the material accreting onto the black hole has two distinct aspects to it. The

first material accretes spherically with low angular momentum, perhaps representing gas

accreting from a spherical halo component in the galaxy. The second material has angular

momentum, and forms the standard, cooler, canonical thin disk.

6.6 Future Work

There are key opportunities to continue research and expand on the work accomplished

in this dissertation. First, a key next step is to apply this model to other black hole sources

that generate soft lags such as shown in Figure 1.18 and Figure 3.8 panel a), but with

expected di↵erent physical conditions. The generation of soft lags should be due to the
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same underlying physical processes and therefore my model should still be able to account

for them by modifying my input parameters. A second and important next step is to

attempt to achieve a fully holistic model. In order to do this, I propose to create a model

that incorporates the aforementioned two-segment model. This more advanced model will

include a cooler, optically thick, yet geometrically thick, radially extended, accretion disk

in conjunction with a hot, optically thin, yet geometrically thick corona. This model will

be able to investigate extending the accretion disk under the corona and employ it as the

photon source for the Comptonizing corona above it. With this model I should be able to

successfully generate both the spectral fits and the time lags.
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Appendix A: Alternate Spatial Boundary Conditions

As stated previously, Colpi’s (1988) investigation of an earlier version similar to this

model assumed di↵erent spatial boundary conditions which included an adiabatic inner

boundary at the origin and a di↵usive boundary at infinity. Based on her work, for the time-

dependent solutions, these alternate boundary conditions were also employed and studied in

order to determine their validity in attaining models that might fit the observational data.

The derivations and results for both the quiescent and time-dependent cases are presented

below.

A.1 Time-Dependent Alternate Boundaries

Following Colpi’s work, the inner and outer boundaries of the spherical coronal region

are located at r = 0 and at r = 1, respectively, and the corresponding values of the

dimensionless location parameter y are,

yin = 1, yout = 0 . (A.1)

The adiabatic and di↵usive boundary conditions at the inner and outer boundaries can

be written as

2yf 0
G = �fG , fG(yin) = 1, y = yin , (A.2)

2yf 0
G = 5fG , fG(yout) = 1, y = yout , (A.3)

where primes denote di↵erentiation with respect to y. Fourier transformation demonstrates

that the spatial boundary conditions satisfied by the Green’s function Fourier transform,

FG, are given by,
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2yF 0
G = �FG , y = yin , (inner boundary) ,

2yF 0
G = 5FG , y = yout , (outer boundary) .

(A.4)

By combining Equations (2.35) and (A.4), it is found that the spatial separation function

G(y) satisfies the free-streaming boundary conditions

2yG0 = �G , y = yin , (A.5)

2yG0 = 5G , y = yout . (A.6)

Similar to the main text, the eigenfunctions, Gn(y), represent the discrete set of solutions

to Equation (2.37) that simultaneously satisfy both the inner and outer boundary conditions

given by Equations (A.5) and (A.6), respectively. The corresponding eigenvalues for the

separation constant � are denoted by �n.

The global solutions for the spatial eigenfunctions Gn(y) are obtained using the same

three-step process as discussed in the Chapter 2. For general, arbitrary values of the separa-

tion constant, �, the inner and outer solutions are linearly independent functions. However,

for certain special values of �, the Wronskian of the inner and outer solutions vanishes, i.e.,

W(y⇤) = 0 , (A.7)

where

W(y⇤) ⌘ Gin(y⇤)G
0
out(y⇤)�Gout(y⇤)G

0
in(y⇤) , (A.8)

and y⇤ is located anywhere in the computational domain, so that yin  y⇤  yout. The

eigenvalues �n are the roots of Equation (2.47). Note that the Fourier frequency, !̃, appears

in Equation (2.37), and therefore it follows that a unique set of eigenvalues �n is obtained
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for each value of !̃.

Utilizing these solutions, one can solve for the eigenvalues as discussed in the main text

and attempt to model the observed time lags. Additionally, one can also attempt to model

the lags with a combination of the di↵erent boundary conditions. As can be seen by Table

(A.1), the inner boundary condition produced similar results for both the inner adiabatic

condition at the origin and the free-streaming inner boundary at rISCO. However, no lag

fits were achievable using the infinite di↵usive flux boundary.

Table A.1: Table of Attempted Boundary Condition Model Time Lag Fits to Observational Data.

A.2 Quiescent Alternate Boundaries

The quiescent alternate boundary conditions follow a similar derivation to the principal

ones presented in the main text with the notable exception that I can utilize the fact that

the function must be well behaved at the boundaries to simplify the solution.. The spatial

equation is of the form of Kummer’s equation and its complete solution is given by,

g(y) = AM

⇣��

2
,
�3

2
, y

⌘
+BU

⇣��

2
,
�3

2
, y

⌘
(A.9)

Since the function must be well-behaved and go to zero at the boundaries, in the inner

region, as y ! 1, the M function blows up and so must not be part of the solution.
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Likewise, in the outer region, as y ! 0, the U function blows up and so must not be part

of the solution. Hence, the solutions in each of the regions is

g(y) = BU

⇣��

2
,
�3

2
, y

⌘
, y0 < y < yin , (A.10)

g(y) = AM

⇣��

2
,
�3

2
, y

⌘
, y0 < y < yout . (A.11)

For the di↵usive-adiabatic case, the spatial separation function g satisfies the boundary

conditions

2yg0 = �g , g(yin) = 1, y = yin , (A.12)

2yg0 = 5g , g(yout) = 1, y = yout . (A.13)

Now, combining equations (A.10) and (A.12), for the inner region I have,

g(yin) = 1 = B U

⇣��

2
,
�3

2
, y

⌘
! B =

✓
U

⇣��

2
,
�3

2
, y

⌘◆�1

. (A.14)

Similarly, combining equations (A.11) and (A.13), for the outer region I have,

g(yout) = 1 = A M

⇣��

2
,
�3

2
, y

⌘
! A =

✓
M

⇣��

2
,
�3

2
, y

⌘◆�1

. (A.15)

Hence, the complete explicit spatial solutions in each of the regions for the adiabatic-

di↵usive case is

g(y) =

✓
U

⇣��

2
,
�3

2
, y

⌘◆�1

U

⇣��

2
,
�3

2
, y

⌘
, y0 < y < yin , (A.16)
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g(y) =

✓
M

⇣��

2
,
�3

2
, y

⌘◆�1

M

⇣��

2
,
�3

2
, y

⌘
. y0 < y < yout . (A.17)

These solutions must create a smooth, continuous solution at y0 and so the Wronskian

must vanish at y0 for these two regional solutions. Hence, the Wronskian of these must

equal zero at y0 and is given by (See Abramowitz and Stegun (1965)),

W(y0) = ��(�3/2)y3/2ey/�(��/2) . (A.18)

Utilizing these solutions to the spatial equation and the boundary conditions, one can

solve for the eigenvalues using the same method as employed for the primary free-free

boundary conditions in the main text. The eigenvalues for the quiescent solution are the

same as given by Colpi (1988) and are the same as the adiabatic-di↵usive boundary time-

dependent case for !̃ = 0.
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