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Abstract. Across a wide range of domains, there is an urgent need for a well-
founded approach to incorporating uncertain and incomplete knowledge into for-
mal domain ontologies. Although this subject is receiving increasing attention
from ontology researchers, there is as yet no broad consensus on the definition of a
probabilistic ontology and on the most suitable approach to extending current on-
tology languages to support uncertainty. This paper presents two contributions to
developing a coherent framework for probabilistic ontologies: (1) a formal defini-
tion of a probabilistic ontology, and (2) an extension of the OWL Web Ontology
Language that is consistent with our formal definition. This extension, PR-OWL,
is based on Multi-Entity Bayesian Networks (MEBN)), a first-order Bayesian logic
that unifies Bayesian probability with First-Order Logic. As such, PR-OWL com-
bines the full representation power of OWL with the flexibility and inferential
power of Bayesian logic.
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Introduction

Since its adoption in the field of Information Systems, the term ontology has been
given many different definitions. A common underlying assumption is that classical
logic would provide the formal foundation for knowledge representation and reasoning.
Until recently, theory and methods for representing and reasoning with uncertain and
incomplete knowledge have been neglected almost entirely. However, as research on
knowledge engineering and applications of ontologies matures, the ubiquity and impor-
tance of uncertainty across a wide array of application areas has generated consumer
demand for ontology formalisms that can capture uncertainty.

Although interest in probabilistic ontologies has been growing, there is as yet no
commonly accepted formal definition of the term. We demonstrate that augmenting an
ontology to carry numerical and/or structural information about probabilistic relation-
ships is not enough to deem it a probabilistic ontology. This paper proposes a formal
definition based on the core notion that a probabilistic ontology formalism should pro-
vide the means to express all relevant uncertainties about the entities and relationships
that exist in a domain in a logically coherent manner. This would not only provide a
consistent representation of uncertain knowledge that can be reused by different prob-
abilistic systems, but would also allow applications to perform plausible reasoning with



that knowledge. We also introduce PR-OWL, an extension of the Web Ontology Lan-
guage OWL that provides a consistent framework for building probabilistic ontologies.
PR-OWL combines the expressive power of OWL with the flexibility and inferential
power of Bayesian logic.

1. Basics of Representing and Reasoning under Uncertainty

1.1. Why should we care about uncertainty?

OWL has its roots in its own web language predecessors (i.e. XML, RDF), and in tradi-
tional knowledge representation formalisms that have historically not considered un-
certainty. Examples of these formalisms include Frame systems [1] and Description
Logics, which evolved from the so-called “Structured Inheritance Networks” [2]. This
historical background somewhat explains the lack of support for uncertainty in OWL, a
serious limitation for a language expected to support applications in uncertainty-laden
domains such as biogenetics or medicine.

Although OWL itself is focused on the Semantic Web, by extending it to become a
probabilistic-aware language we are tackling a problem that predates the current
WWW: the quest for more efficient data exchange. Clearly, solving that problem re-
quires more precise semantics and flexible ways to convey information. While the
WWW provided a new presentation medium and technologies such as XML presented
new data exchange formats, both failed to address the semantics of data being ex-
changed. The SW is meant to fill this gap. Realization of its goals will require major
improvements in technologies for data exchange. However, since virtually all current
ontology formalisms are based on classical logic, SW languages such as OWL provide
no consistent support for uncertainty representation or plausible reasoning.

This lack of support for uncertainty can be justified in closed systems designed to
perform well-defined tasks, for which clear and unambiguous vocabularies can be con-
structed. But the semantic web vision requires heterogeneous systems to interoperate in
an open world. Inevitably, vocabularies that are adequate for a single stand-alone ap-
plication break down when required to interoperate with systems employing different
vocabularies originally tailored to different tasks. Inevitably, there is incomplete and
partial overlap of terminology and concepts. Even when concepts are clearly defined,
in an open-world system available inputs may be insufficient to determine which mean-
ing is most appropriate. For example, a standard ontology might enumerate different
senses for the word “Washington,” such as the United States as an agent, the first
President of the United States, a state in the Pacific Northwest, or a baseball team. Se-
mantic Web applications employing the ontology must identify which of these senses is
most appropriate in a given context, e.g., when the word is embedded in the sentence,
“Washington voiced strong objections to the proposed policy.” As another example,
the developers of an ontology for military planning [3] identified over a dozen different
doctrinal uses of the word “clear” within the United States Department of Defense [4].
In complex open-world problems, legislating unambiguous usage is often infeasible.
Several items of evidence in combination may be required to disambiguate among dif-
ferent meanings of a given term. Evidential reasoners require information about the
strength of association between items of evidence and the conclusions to which they
point, as well as contextual factors that affect the strength of evidence.



We argue that the ontology layer is the appropriate place in the Semantic Web ar-
chitecture for representing declarative knowledge about likelihood. That is, in envi-
ronments in which noisy and incomplete information is the rule, likelihood information
is a key aspect of domain knowledge, and should be included in formal domain ontolo-
gies. A counter-argument has been made that probability (with the possible exception
of microscopic quantum phenomena) is epistemic, but formal ontology should repre-
sent phenomena and relationships as they exist in the world. Carried to its extreme,
however, this philosophical stance would preclude the use of virtually every ontology
that has yet been developed. To explore this idea further, we note that if computational
ontologies had existed in the 17" century, Becher and his followers might well have
developed an ontology of phlogiston. We may chuckle now at their naiveté, but who
among our 17" century predecessors had the foresight to judge which of the many sci-
entific theories then in circulation would stand the test of time? Researchers in medi-
cine, biology, defense, astronomy, and other communities have developed a plethora of
domain ontologies. It is virtually certain that at least some aspects of some of these
ontologies will, as human knowledge progresses, turn out in retrospect to be as well
founded as the theory of phlogiston. Shall we outlaw use of all these ontologies until
the day we can prove they contain only that which is ontological, and nothing that is
mere epistemology? We take a pragmatic stance that although our ultimate objective is
to seek the truth about Reality as it is, that ultimate objective is unattainable in the life-
time of any human. Nevertheless, it is necessary and desirable to do the best we can
with the knowledge we have. To pretend certainty when we are uncertain is not doing
the best we can. Formal ontology provides a useful means of communicating domain
knowledge in a precise and interoperable manner, and of extending and revising our
descriptions as human knowledge accrues. To do this in a sound and principled manner
requires a sound and principled way to represent, communicate, and reason with uncer-
tainty. Probabilistic ontologies provide a means of doing so.

Not surprisingly, as ontology engineering research has achieved a greater level of
maturity, the need for representing uncertainty in ontologies in a principled way has
become more and more clear. There is increasing interest in extending traditional on-
tology formalisms to include sound mechanisms for representing and reasoning with
uncertainty.

1.2. Probabilistic ontologies

In general, people faced with the complex challenge of representing uncertainty in lan-
guages like OWL tend to begin by writing probabilities as annotations (e.g. marked-up
text describing some details related to a specific object or property). This is a palliative
solution that addresses only part of the information that needs to be represented. Over
the past several decades, semantically rich and computationally efficient formalisms
have emerged for representing and reasoning with probabilistic knowledge (e.g., [5]-
[6]). Annotating a standard ontology with numerical probabilities is just not enough, as
too much information is lost to the lack of a good representational scheme that captures
structural constraints and dependencies among probabilities. A true probabilistic ontol-
ogy must be capable of properly representing those nuances. More formally:

Definition 1 (from [7]): A probabilistic ontology is an explicit, formal knowledge rep-
resentation that expresses knowledge about a domain of application. This includes:
e  Types of entities that exist in the domain;
e  Properties of those entities;
e Relationships among entities;



e Processes and events that happen with those entities;
e  Statistical regularities that characterize the domain;
e Inconclusive, ambiguous, incomplete, unreliable, and dissonant knowledge re-
lated to entities of the domain; and
e  Uncertainty about all the above forms of knowledge;
where the term entity refers to any concept (real or fictitious, concrete or abstract)
that can be described and reasoned about within the domain of application. B

Probabilistic Ontologies are used for the purpose of comprehensively describing
knowledge about a domain and the uncertainty associated with that knowledge in a
principled, structured and sharable way, ideally in a format that can be read and proc-
essed by a computer. They also expand the possibilities of standard ontologies by in-
troducing the requirement of a proper representation of the statistical regularities and
the uncertain evidence about entities in a domain of application. It is important to em-
phasize that a probabilistic ontology is not a probabilistic model (e.g. a model built
using applications such as Netica, Hugin, or Quiddity*Suite), in the same way that an
ontology is not a database application.

The differences in the in-depth underlying concepts and technologies supporting
ontologies and database schemas are not easily distinguishable, as the real differentia-
tion between the two resides in their respective intended purposes. Ontologies represent
domains in a way that should facilitate interoperability with other representations of
that domain (i.e. other ontologies build by different people with different views and
interests) or of domains that are not directly related but share some concepts. When a
database solution for a given domain is conceived, its primary focus is not in represent-
ing all concepts of a domain in a way that makes it interoperable with current or future
views of that domain, but in defining the concepts of that domain which would enable
storage and retrieval of the information the database stakeholders (and their customers)
want to store and retrieve, in a way that best fits their requirements.

In a similar vein, when a probabilistic model is built to solve (say) a radar data fu-
sion problem, the main interest driving its creators is not in making sure that their defi-
nitions about radar domain concepts are interoperable with other definitions that might
exist for those same concepts. In contrast, interoperability would definitely be a pri-
mary focus when building a probabilistic ontology for the domain of radar data fusion.
Ontology engineers would attempt to express one view of that domain in a way that
others (with possibly different views) may use/understand and thus build applications
(databases, decision systems, etc) that are compatible with anything built under that
view.

Furthermore, it is not necessary for an ontology to be a running database, yet a da-
tabase application can be built on top of an ontology. Likewise, a probabilistic ontol-
ogy does not necessarily need to be a running probabilistic model, yet a running prob-
abilistic model (i.e. an executable application built using a probabilistic package) can
be built on top of a probabilistic ontology if that fits the objectives of the application at
hand. A subtle difference here is that anything built on top of a traditional ontology can
be built on top of a probabilistic ontology, but the converse is not always true, since the
latter is an extension of the former that adds the above mentioned features of a prob-
abilistic framework.

1.3. MEBN: The Probabilistic Logic of PR-OWL

To comply with interoperability requirements and at the same time to enable probabil-
istic model to be built on top of its definitions, a probabilistic ontology has to be based



on a very flexible logical foundation. When searching for that framework, we realized
that there will always be a trade-off between flexibility and expressiveness among the
candidate probabilistic logics. After some careful research (see [7] and [8] for details)
we found that MEBN logic [5] provides a particularly attractive trade-off that made our
work easier when extending the OWL Semantic Web language.

MEBN is a first-order Bayesian logic that integrates classical first-order logic with
probability theory. Classical first-order logic (FOL) is by far the most commonly used,
studied and implemented logical system, serving as the logical basis for most current-
generation Al systems and ontology languages. MEBN logic provides the basis for
extending the capability of these systems by introducing a logically coherent represen-
tation for uncertainty. Because a MEBN theory represents a coherent probability distri-
bution, Bayes Theorem provides a mathematical foundation for learning and inference,
that reduces to classical logic in the case of certain knowledge (i.e., all probabilities are
Zero or one).

MEBN represents the world as comprised of entities that have attributes and are
related to other entities. Knowledge about the attributes of entities and their relation-
ships to each other is represented as a collection of MEBN fragments (MFrags) orga-
nized into MEBN Theories (MTheories) An MFrag represents a conditional probability
distribution for instances of its resident random variables given their parents in the
fragment graph and the context nodes. An MTheory is a set of MFrags that collectively
satisfies consistency constraints ensuring the existence of a unique joint probability
distribution over instances of the random variables represented in each of the MFrags
within the set. MEBN semantics integrates the standard model-theoretic semantics of
classical first-order logic with random variables as formalized in mathematical statis-
tics.

As a full integration of first-order logic and probability, MEBN provides: (1) a
means of expressing a globally consistent joint distribution over models of any consis-
tent, finitely axiomatizable FOL theory; (2) a proof theory capable of identifying in-
consistent theories in finitely many steps and converging to correct responses to prob-
abilistic queries; and (3) a built in mechanism for adding sequences of new axioms and
refining theories in the light of observations. Thus, even the most specific situations
can be represented in MEBN, provided they can represented in FOL. Furthermore, be-
cause MEBN is a first order Bayesian logic, using it as the underlying semantics of PR-
OWL not only guarantees a formal mathematical foundation for a probabilistic exten-
sion to the OWL language (PR-OWL), but also ensures that the advantages of Bayesian
Inference (e.g. natural “Occam’s Razor”, support for learning from data, etc.) will ac-
crue to PR-OWL probabilistic ontologies. A comprehensive explanation of MEBN
logic is not on the scope of this work, but the interested reader is directed to [5], [9].

2. An Upper Ontology for Probabilistic Models

2.1. The Basics of PR-OWL

PR-OWL was developed as an extension enabling OWL ontologies to represent com-
plex Bayesian probabilistic models in a way that is flexible enough to be used by di-
verse Bayesian probabilistic tools (e.g. Netica, Hugin, Quiddity*Suite, JavaBayes, etc.)
based on different probabilistic technologies (e.g. PRMs, BN, etc.). More specifically,
OWL is an upper ontology for probabilistic systems that can be used as a framework



for developing probabilistic ontologies (as defined in Section 1.2) that are expressive
enough to represent even the most complex probabilistic models.

Ideally, specification of a probabilistic ontology language would follow the steps
defined by the W3C [10] to issue an official standard. New tools would need to be de-
veloped to support the extended syntax and implied semantics of the probabilistic ex-
tensions. Such an effort would require commitment from diverse developers and
workgroups, which falls outside our present scope. For this reason, PR-OWL was writ-
ten as an upper OWL ontology. DaConta et al. define an upper ontology as a set of
integrated ontologies that characterizes a set of basic commonsense knowledge notions
([11], page 230). In this preliminary work on PR-OWL as an upper ontology, these
basic commonsense notions are related to representing uncertainty in a principled way
using OWL syntax. If PR-OWL were to become a W3C Recommendation, this collec-
tion of notions would be formally incorporated into the OWL language as a set of con-
structs that can be employed to build probabilistic ontologies.

The PR-OWL upper ontology for probabilistic systems consists of a set of classes,
subclasses and properties that collectively form a framework for building probabilistic
ontologies. The first step toward building a probabilistic ontology in compliance with
our Definition 1 is to import into any OWL editor an OWL file containing the PR-
OWL classes, subclasses, and properties (one is available at http://www.pr-owl.org/pr-
owl.owl). In fact, this is exactly what we did when we built the Star Trek probabilistic
ontology depicted in [7]. We used the Protégé Ontology Editor (available at
http://protege.stanford.edu) import feature to import the pr-owl.owl file we previously
downloaded. Figure 1 shows the major elements within that file.
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Figure 1 — Main Elements of the PR-OWL Upper Ontology

After importing the PR-OWL definitions, the next step in ontology design is to
construct domain-specific concepts, using the PR-OWL definitions to represent uncer-
tainty about their attributes and relationships. As an example, the concepts of the
above-mentioned Star Trek probabilistic ontology were either subclasses or instances
of the imported PR-OWL upper ontology. Using this procedure, an ontology engineer



is not only able to build a coherent generative MTheory and other probabilistic ontol-
ogy elements, but also make it compatible with other ontologies that use PR-OWL
concepts.

Figure 2 shows the initial Protégé screen after importing the PR-OWL ontologies
and defining the classes of object entities that will be part of the ontology. In Protégé,
concepts of imported ontologies appear with a light colored dot icon and the name-
space abbreviation at the left side of the concept’s name, as it can be seen in the As-
serted Hierarchy window on the left side of the picture.

The darker icons (Starship, Zone, Sensor Report, and TimeStep) correspond to the
classes created as a first step in building the Starship probabilistic ontology. PR-OWL
object entities correspond to frames in frame systems and to objects in object-oriented
systems. The simple model used in this research contains only four object entities; so
four classes were created under the PR-OWL ObjectEntity Class (i.e. Starship, Zone,
SensorReport, and TimeStep). These are the user-defined classes that convey the
equivalent of what a standard ontology would represent about a domain, so its indi-
viduals are the concepts and entities that would populate a non-probabilistic description
of that domain. In our Starship ontology, the domain instances will be individual zones,
sensor reports, starships, and time steps, all represented as individuals of the domain
classes created by the user.

The other PR-OWL classes shown in the picture are directly fulfilled by individu-
als representing the elements of a generative MTheory. The user does not create new
classes here, but individuals that convey the information necessary for performing in-
ferences about the attributes of and relationships among instances of the entities repre-
sented in the ontology. In other words, these individuals express the probabilistic as-
pects of the domain MTheory. These individuals can be used by a probabilistic rea-
soner as templates for building a situation-specific Bayesian network (SSBN) to an-
swer a probabilistic query about specific entities in a given situation (e.g., whether
one’s own starship is under attack from the starships detected by its sensors).
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In our conceptual approach, we considered the question of whether to represent an
MFrag template as a class or an instance. It is important to keep in mind that no matter
what approach an ontology designer uses in the light of his/her objectives, the struc-
tural and logical constraints of MEBN logic will be inherited. Since the other elements
of the ontology will also be either instances or subclasses of the imported PR-OWL
upper ontology, then all will inherit the structural and logical constraints that collec-
tively enforce the compliance with MEBN rules, thus guaranteeing that such an ontol-
ogy would be a coherent, logically consistent MEBN Theory.

Although PR-OWL does not enforce a specific resolution of this issue, we consid-
ered the pros and cons of modeling our concepts as subclasses or instances of PR-OWL
classes in the design of our Star Trek probabilistic ontology. Our experience leads us to
conclude that the objectives and characteristics of the probabilistic ontology being built
will dictate how to make this choice. Again, representing uncertainty within an ontol-
ogy is not the same thing as building a probabilistic system. In our Star Trek case
study, the generative MTheory was seen as the part of the system that holds the domain
knowledge used in this process. In other words, the process of building, working and
storing the instantiated MFrags in this case is not part of the Star Trek probabilistic
ontology, but a task to be executed by a Bayesian-capable IT system that uses that on-
tology.

Finally, from our definition it is possible to realize that nothing prevents a prob-
abilistic ontology from being “partially probabilistic”. That is, a knowledge engineer
can choose the concepts that he/she is interested to be in the “probabilistic part” of the
ontology, while writing the other concepts in standard OWL.

In this specific case, the “probabilistic part” refers to the concepts written using
PR-OWL definitions and that collectively form an MTheory. There is no need for all
the concepts in a probabilistic ontology to be probabilistic, but at least some have to
form a valid MTheory. Of course, only the concepts being part of the MTheory will be
subject to the advantages of the probabilistic ontology over a deterministic one.

2.2. An Operational Concept for using PR-OWL

At its current stage of development, PR-OWL contains only the basic representation
elements that provide a means of representing any MEBN theory. Such a representa-
tion could be used by a Bayesian tool (acting as a probabilistic ontology reasoner) to
perform inferences to answer queries and/or to learn from newly incoming evidence via
Bayesian learning.

However, building MFrags in a probabilistic ontology is a manual, error prone,
and tedious process. Avoiding errors or inconsistencies requires deep knowledge of the
logic and of the data structures of PR-OWL. Without considering the future paths to be
followed by research on PR-OWL (i.e. whether it will be kept as an upper ontology or
transformed into a semantic extension to the OWL language), the framework provided
by the upper ontology on probabilistic models already enables the development of
plugins to current OWL editors for building and using probabilistic ontologies.

Figure 3 illustrates a concept for a possible plugin based on the OWL Protégé edi-
tor (which is itself an OWL plugin). It shows a MFrag graphical editor that uses a con-
cept very similar to BN construction GUIs found in graphical packages such as
Netica™ (demo available at http://www.norsys.com). To build an MFrag a user has to
select the icon related to the kind of node he/she wants to create (e.g. resident, input,
context), connect that node with its parents and children, and enter its basic characteris-
tics (i.e. name, probability distribution, etc.) by double-clicking on it or via another
GUI-related facility. Nodes would be associated with attributes of entities or relation-



ships among entities, either by clicking on an existing attribute or relationship to name
the node, or by naming the node to automatically create the attribute or relationship.

The idea of such a plugin is to hide from users the complex constructs required to
convey the many details of a probabilistic ontology, such as the reified relationships,
composite RV term constructions (with or without quantifiers and Exemplar constants),
and others. In the figure, the Zone MFrag was selected from the combo box in the top
of the viewing area, thus information about its nodes is displayed in a graphical format
that allows the user to build more nodes, edit or view the existing ones. and then chose
node ZoneEShips(z) so it appears highlighted (a red box around it) and all its data is
shown in the lower square.

Tedious tasks such as building a PR-OWL table with many cells could be carried
out much more quickly and with fewer errors, thus providing a boost in productivity. In
the probability table case, the user would only have to fill the probabilities in the cor-
rect cells of a CPT’s graphical display and the plugin would build their respective PR-
OWL constructs.

Another point of usage improvement is the intrinsic syntax check provided by a
guided construction. As an example, when writing a composite RV term, the user
would not have to actually write the complex reified relations (ArgRelationships,
Skolem contants, OVariables, Inner terms, etc). Instead, a menu with the allowed con-
nectives would be available so his/her task would be reduced to enter the arguments of
the formula and embed the connectives the way he/she wants. The final result would be
a valid formula that would then be transformed in PR-OWL syntax by the plugin.
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Figure 3 — Snapshot of a Graphical PR-OWL Plugin

It is important to keep in mind that this brief description of an operational concept
barely scratches the surface of the many possibilities for the technology presented here,



and its purpose is to point out one such possibility. Nevertheless, implementing such a
plugin would be an important first step toward making probabilistic ontologies a real-
ity, opening the door to its wide use in many domains.

3. Related Research

One of the main reasons why research in ontology languages is still focused on deter-
ministic approaches has been the limited expressiveness of traditional probabilistic
languages. There is a current line of research focused on extending OWL so it can rep-
resent probabilistic information contained in a Bayesian Network (e.g. [12]-[13].). The
approach involves augmenting OWL semantics to allow probabilistic information to be
represented via additional markups. The result would be a probabilistic annotated on-
tology that could be translated to a Bayesian network (BN). Such a translation would
be based on a set of translation rules that would rely on the probabilistic information
attached to individual concepts and properties within the annotated ontology. BNs pro-
vide an elegant mathematical structure for modeling complex relationships among hy-
potheses while keeping a relatively simple visualization of these relationships. Yet, the
limited attribute-value representation of BNs makes them unsuitable for problems re-
quiring greater expressive power.

Another option for representing uncertainty in OWL is to focus on OWL-DL, a
decidable subset of OWL that is based on Description Logics [14]. Description Logics
are a family of knowledge representation formalisms that represent the knowledge of
an application domain (the “world”) by first defining the relevant concepts of the do-
main (its terminology), and then using these concepts to specify properties of objects
and individuals occurring in the domain (the world description). Description Logic
divides a knowledge base into two components: a terminological box, or T-Box, and
the assertional box, or A-Box. The first introduces the terminology (i.e. the vocabulary)
of an application domain, while the latter contains assertions about instances of the
concepts defined in the T-Box. Description Logic is a subset of FOL that provides a
very good combination of decidability and expressiveness, and is the basis of OWL-
DL. Probabilistic extensions have been developed for description logics (e.g.,
[15][16][17]). Description logics are highly effective and efficient for the classification
and subsumption problems they were designed to address. However, their ability to
represent and reason about other commonly occurring kinds of knowledge is limited.
An example of a restrictive aspect of DL languages is their limited ability to represent
constraints on the instances that can participate in a relationship.

Although the above approaches are promising where applicable, a definitive solu-
tion for the generic semantic mapping problem requires a general-purpose formalism
that gives ontology designers a range of options to balance tractability against expres-
siveness. Pool and Aiken [18] developed an OWL-based interface for the relational
probabilistic toolset Quiddity*Suite, developed by IET, Inc. Their constructs provide
an expressive method for representing uncertainty in OWL ontologies. Their work is
similar in spirit to ours, but is specialized to the Quiddity*Suite toolset. We employ
MEBN as our underlying logical basis, thus providing full first-order expressiveness.
Costa [7] presents rules for constructing PR-OWL ontologies in a manner that can be
translated into Quiddity*Suite, and for performing the translation.



4. Discussion

Semantic interoperability is a major objective in general IT system development and a
necessary ingredient for systems seeking improved knowledge sharing and reuse. In
this work, we discussed the role of ontologies in general and probabilistic ontologies in
particular as a means to achieve semantic interoperability. We presented a Bayesian
ontology language based on MEBN logic that provides the means to express first-order
probabilistic theories. We also addressed the inherent complexity of the language and
the consequent need of a GUI as a means to make the development of probabilistic
ontologies a less intricate task.

Probabilistic ontologies are an increasingly important topic in forums devoted to
best practices in systems development. Given the nature of the domain knowledge em-
bedded in their systems, system developers in general would profit most from the ad-
vantages of being able to convey such knowledge with a principled treatment for un-
certainty. That would allow the proper use of probability information to help devise
reliable, more general semantic mapping schemas by using probabilistic ontologies to
represent the mappings between two or more ontologies as its instances.
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