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Abstract

GENERALIZED DEPTH AND ASSOCIATED PRIMES IN THE PERFECT CLOSURE
R∞

George Whelan, PhD

George Mason University, 2017

Dissertation Director: Dr. Neil Epstein

Letting (S, n) be a Noetherian local ring, and M be a finitely generated S-module, the

notions of depthS(M) and associated primes over M , denoted AssS(M), are fundamental

concepts in commutative algebra. However, if S is non-Noetherian, both of these notions

become more subtle. Prime ideals in this scenario may then be categorized as associ-

ated primes, weakly associated primes, strong Krull primes, and Krull primes, respectively

AssS(M), ÃssS(M), sKS(M), and KS(M). Likewise, any study of depth must distinguish

between c depthS(M), k depthS(M), and r depthS(M).

Now let (R,m) be a reduced Noetherian local ring of characteristic p > 0. By reduced,

we mean there exists no element r ∈ R such that re = 0 for some e ∈ N. If we extend

R to a ring which contains r
1
pe for all r ∈ R and all e ∈ N, we obtain the perfect closure

R∞. This extension shares many properties with R, however it will in general no longer be

Noetherian. If we begin with a finitely generated R-module M , we can therefore investigate

these more subtle notions of associated primes and depth over the R∞-module R∞ ⊗RM .

In order to investigate any relationships between these measures over R∞ and the sim-

pler measures over R, we consider the Frobenius functor. Given an R-module M , this



functor yields another R-module F (M). In this thesis we establish relationships between

the generalized associated primes over R∞ ⊗R M , and associated primes over iterations

F e(M) of this functor, modulo a particular submodule. Then we assume a condition on R

called F -purity which ensures a stable depth value of F e(M) over R for large values of e.

The final section of this thesis establishes this stable depth measure, and we establish its

relationships with the above mentioned generalized depths of R∞ ⊗R M over R∞. Under

both lines of investigation, we obtain results for arbitrary finitely generated M , but we take

additional care to discuss cyclic modules M = R/I, for which ideal theoretic proofs yield

some more explicit arguments.
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Chapter 1: Introduction

1.1 Conventions and Basics

All rings are commutative with unity, and all modules are unital.

The topic of this thesis is rings of characteristic p > 0, which we define below. Through-

out the document, when we write p, we are referring to a prime number p ∈ N.

We will be discussing both Noetherian and non-Noetherian rings. In particular, the

subject matter of this project will be non-Noetherian extensions of Noetherian rings. But

all rings will be local, meaning they will contain one and only one maximal ideal. As a

convention, we will write (S, n) to denote arbitrary local rings with maximal ideal n, and

(R,m) to denote Noetherian local rings with maximal ideal m. Respectively, we will write

(S, n, l) or (R,m, k) if we discuss the corresponding fields l := S/n or k := R/m.

All rings will be reduced. By saying S is reduced, we mean that there exist no non-zero

elements s ∈ S such that sn = 0 for some n > 1 (i.e.
√

0 = 0).

If S is a ring, we write Spec(S) to denote the set of prime ideals of S. This set is

equipped with a topology, the Zariski Topology in which the closed sets are of the form

V (I) := {P ∈ Spec(S) | I ⊆ P}, where I ⊂ S is an ideal.

In many contexts we will discuss pe, denoting powers of a prime number p. For simplicity

we will sometimes use q to represent pe. When we say q varies, we refer to the values pe as

e ∈ N grows.

At varioius points, we will write e � 0 as e varies over N. If we use this notation for

some N-indexed set, we are saying that there exists an e0 ≥ 0 where all elements of the set

indexed by e ≥ e0 satisfy some condition. Similarly we will use i� 0 and q � 0, the latter

referring to all q ≥ q0 for some q0 = pe0 .

1



If S is a ring and M is an S-module, we say M is finitely generated over S , or simply

finite, if M can be generated by a finite set. That is, there exists some {mi}ni=1 ⊆M where

every m ∈ M can be written m =
∑n

i=1 simi for si ∈ S. For example, the direct sum

M :=
n⊕
i=1

S for n ∈ N is finite over S, while M ′ :=
∞⊕
i=1

S cannot be finitely generated over

S. A special case of finitely generated modules is cyclic modules, which can be generated

by only one element. All cyclic modules are isomorphic to S/I for some ideal I ⊆ S.

If S is a ring and n ∈ N, we will write Sn to denote the cartesian product Sn :=

Πn
i=1S = S × S × . . . × S. This product is up to isomorphism the complete description of

a finitely generated S-module called a free module, where the generating set forms a basis,

or maximal linearly independent set. The cardinality n of its generating set is referred to

as the module’s rank.

We will be using many general constructions in commutative algebra. For more general

and/or basic constructions, see the appendix A. Presently, however, we include any defini-

tions which are more directly relevant to our scenario. Unless otherwise specified, such as

perfect closure, Frobenius closure, and f -sequences, all definitions throughout the introduc-

tion section can be found in standard commutative algebra texts. If the reader requires a

more thorough treatment, please see [BH97]. Some specific constructions vary among texts,

such as the Koszul complex, however the definitions given here will serve adequately for the

present discussion.

Throughout the discussion, let S be an arbitrary commutative ring, and let M and N

be unital S-modules.

1.2 Koszul Complex

We begin with the Koszul complex K•(x;M) for a finite sequence x ⊂ S over an S-module

M . As with any chain complex, the homology groups, and the information they yield, are

a key goal of this construction. We introduce an explicit definition which can be found in

2



[Mat86, Chapter 6, Section 16].

Let x = x1, . . . , xn be a finite sequence of elements in S, and let M be an S-module.

Let K•(x;S) be the chain complex:

. . . −→ 0 −→ S(nn) dn−→ S( n
n−1) dn−1−→ . . .

d1−→ S(n0) −→ 0

where each S(nk) is the free module over S with rank
(
n
k

)
. Let this corresponding free

module be generated by free generators indexed by all k-sized subcollections of 1, 2, . . . , n,

as in ej1,...,jk . The differentials dk are defined on these free generators by:

dk : ej1,...,jk −→
k∑
i=1

(−1)i−1xjiej1,...,ĵi,...jk

Here j1, . . . , ĵi, . . . jk denotes the k − 1-subcollection consisting of the same elements as

j1, . . . , jk, though omitting ji.

We define the Koszul complex for x on M as K•(x;M) := K•(x;S)⊗S M . Explicitly,

. . . −→ 0 −→ S(nn) ⊗S M
dn⊗S1
−−−→ S( n

n−1) ⊗S M
dn−1⊗S1

−−−−→ . . .
d1⊗S1
−−−→ S(n0) ⊗S M −→ 0

Below we will use the homology groups of K•(x;M) to uncover features of x. Namely,

we obtain a measure of how the sequence x ⊂ S acts on M .

1.3 Regular Sequences

If S is any ring and M is an S-module, an element s ∈ S is called M -regular if it annihilates

no element of M , i.e. the map M
·s−→ M is injective. A sequence s1, . . . , sn ∈ S is an M -

regular sequence if:

1. M/(s1, . . . , sn)M 6= 0

2. Each si is regular over M/(s1, . . . , si−1)M

3



An M -regular sequence x ⊂ S is called maximal if there exists no y ∈ S \ x such that

x, y is still an M -regular sequence.

One fact about finite sequences in S over M is that s1, . . . , sn is regular over M if and

only if se11 , . . . , s
en
n is a regular sequence over M if and only if s

1
c1
1 , . . . , s

1
cn
n is a regular

sequence over M (provided each s
1
ci
i ∈ S exists) [Nor76, Theorem 5.1.3]. Here each ei, cj ∈

N.

Regular sequences feature in the notion of grade of an ideal over a module, which we

define in chapter 3. As we shall see, this notion requires a more thorough discussion in the

non-Noetherian context than in Noetherian rings. As such, we reserve this discussion until

later.

1.4 Prime avoidance and Countable Prime Avoidance

The prime avoidance lemma is a fundamental result in commutative algebra which holds

for all rings. The lemma states that for any ring S, ideal I ⊂ S, and finite collection of

prime ideals P1, . . . , Pn ⊂ S, if I ⊆
⋃n
i=1 Pi, then I ⊆ Pi for some i [Kap70, section 2.2].

This result is relevant when discussing finitely many prime ideals. However, some re-

search in commutative ring theory has investigated countable prime avoidance, which is the

the identical lemma, except it allows for {Pi} to be a countably infinite set. This condition

is satisfied by i) any complete local ring, or ii) any ring which contains uncountably many

elements {uλ}λ∈Λ for which uλ − uµ is a unit for λ 6= µ. In particular, any ring which

contains an uncountable field is an example of this second condition (see [LW12, Lemma

13.2], [Bur72, Lemma 3], [SV85], [HH00]).

The stronger result states that in any ring S which satisfies i) or ii) above, for any ideal

I ⊂ S, and any countable collection of prime ideals in P1, P2, . . . ⊂ S, if I ⊆
⋃∞
i=1 Pi, then

I ⊆ Pi for some i. This result will prove relevant in theorem 12 below.

To give an example of a ring which fails to satisfy countable prime avoidance, let R =
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Q[x, y](x,y), which is a two-dimentional local ring. The only height 0 ideal is the zero ideal

since R is a domain, and the only height 2 ideal is the maximal m = (x, y). But there exist

a countably infinite number of height 1 primes, namely all principal ideals generated by

irreducible polynomials with constant term 0. But the union of all such ideals is precisely

(x, y), which is clearly not contained in any particular height 1 prime.

1.5 Characteristic p > 0

We now narrow our focus to the subject matter of this thesis. Let S be a reduced

commutative ring of characteristic p > 0. In such rings, p is the least value for which

1 + 1 + . . .+ 1 = p ≡ 0, where p ∈ N is some prime number. Alternately if successive sums

of 1 never equal 0, we say the ring has characteristic zero, such as any ring containing the

rationals numbers Q.

An example of a ring of characteristic p > 0 is the polynomial ring S := Fp[x1, . . . , xn],

where Fp = Z/pZ is the field with p-elements and x1, . . . , xn are variables. Explicitly, this

ring consists of all polynomials g(x1, . . . , xn) in n variables whose coefficients are all elements

of Fp, and whose domain is (Fp)n. Addition and multiplication in this ring are standard

polynomial addition and multiplication.

The Frobenius endomorphism is central to the study of algebra in characteristic p > 0.

Let f : S → S denote the map defined by f(s) := sp for all s ∈ S. In this context, this map

is a ring homomorphism since f(rs) = (rs)p = rpsp = f(r)f(s), and

5



f(r + s) = (r + s)p =

p∑
i=0

(
p

i

)
rp−isi

= rp +

( p−1∑
i=1

(
p!

(i)!(p− i)!

)
rp−isi

)
+ sp

= rp + p

( p−1∑
i=1

(
(p− 1)!

(i)!(p− i)!

)
rp−isi

)
+ sp

≡ rp + 0

( p−1∑
i=1

(
(p− 1)!

(i)!(p− i)!

)
rp−isi

)
+ sp

= rp + 0 + sp

= rp + sp

= f(r) + f(s)

Henceforth, whenever a map f : S → S appears, we refer to the Frobenius endomor-

phism.

1.6 Frobenius powers and the Frobenius closure

In a ring S of characteristic p > 0 the peth Frobenius power of an ideal I = (x1, . . . , xn) is

the ideal generated by peth powers of the generators of I. That is, I [pe] := (xp
e

1 , . . . , x
pe
n ).

Frobenius powers of ideals feature centrally in many closure operations in rings of charac-

teristic p > 0.

Below we will also discuss the ideal I
[ 1
pe

]
:= (x

1
pe

1 , . . . , x
1
pe

n ), which may or may not exist

in a given ring S, as some peth roots of some xi’s may not exist in S. However it will exist

in the extension S∞ which we discuss in the next section. When such an ideal occurs, we

6



will write (x)
[ 1
q

]
S∞.

Henceforth, for ease of notation we will use the convention q := pe to denote higher

powers of p. For example, I [q] refers to the pe − th Frobenius power I [pe] for some e ∈ N

and some ideal I.

In Noetherian rings R of characteristic p > 0, we focus on the Frobenius closure (or F -

closure) on ideals I ⊂ R, denoted IF , where IF := {r ∈ R | rq ∈ I [q] for some q = pe > 0}.

This operation forms a closure operator, and IF is also an ideal in S (see [Eps11]).

1.7 The Perfect Closure of a Reduced Ring of Characteristic

p > 0

Henceforth we will use R to denote arbitrary Noetherian rings for any definitions. Further-

more, for our results throughout this project we will begin with a Noetherian local reduced

(R,m). If we require a different assumption, we will specify.

Since all of our rings R are reduced, we know that the Frobenius f : R → R is an

injective map as no r ∈ R will yield f(r) = rp = 0. However it will not be surjective in

general. For example, if R := Fp[x] over the field Fp = Z/pZ, the variable x has no p-th

root. We can therefore extend R by abstractly adjoining all p-th roots of elements of R.

Remark 1.7.1. In order to construct this extension, given r ∈ R we include a justification

for the existence of r
1
p . First we show that the total quotient ring of R is a finite direct

product of fields. That is, Q(R) ∼= Πn
i=1ki for fields ki.

Since R is a reduced Noetherian ring, all the associated primes of R are all minimal,

or Ass(R) = min(R) (associated primes are defined below, see chapter 2). Letting W =

R \
⋃

Ass(R) = R \
⋃

min(R) be the collection of all non-zero divisors of R, then the

total quotient ring of R is given by Q(R) = W−1R. Q(R) is then Noetherian and zero

dimensional, and therefore Artinian. Thus Q(R) ∼= Πn
i=1Ri for some n, where each Ri is

Artinian local. But since R is reduced, each Ri is a field.

7



Now let (r1, . . . , rn) denote the image of r in Q(R), where ri ∈ ki. Then for each i,

r
1
p

i ∈ ki. That is, r
1
p

i is in the algebraic closure of ki since it is the root of the polynomial

xp−ri. We therefore see that r
1
p = (r

1
p

1 , . . . , r
1
p
n ) exists in the extension R ⊆ Q(R) ⊆ Πn

i=1ki.

Having established that pth roots of all r ∈ R exist in an extension of R, let R ↪→ R
1
p

denote the extension formed by adjoining all such roots to R. Thus f : R
1
p → R is a

surjection. We can repeat this process and form an ascending chain, each isomorphic to

one another as rings:

R ⊆ R
1
p ⊆ R

1
p2 ⊆ R

1
p3 ⊆ . . .

We now have a directed system (R
1
pe , ϕee′) in the category of commutative rings, where

⊆ is our pre-order and N is its index. The maps ϕee′ : R
1
q ↪→ R

1
q′ are the embedding maps.

We define the perfect closure or perfection of S as the direct limit of this chain:

R∞ := lim−→ R
1
pe

which contains all pe-th roots of any s ∈ R∞. Hence the Frobenius homomorphism is a

surjection, and therefore an automorphism, on R∞. Greenberg showed that given R we

can always form R∞ [Gre65]. For an explicit construction of a non-commutative twisted

polynomial ring S, which then contains a commutative subring which is isomorphic to R∞,

see [Jor82], and a description in [NS04]. This construction also addresses how to construct

the extension R∞ given a non-reduced ring R.

Remark 1.7.2. With R∞ now defined, we now have an alternate description of the Frobe-

nius closure of an ideal. If I = (x1, . . . , xn) ⊂ R is an ideal in a reduced ring R of charac-

teristic p > 0, we now have IF := IR∞ ∩ R. Here IR∞ is the ideal in R∞ generated by

the same generating set as I. We se e this equivalence because if x =
∑n

i=1 xir
1
qi
i ∈ IR∞,

8



then xq =
∑n

i=1 x
q
i r

q
qi
i ∈ I [q] for q ≥ max{qi}. Conversely, if xq =

∑n
i=1 x

q
i ri ∈ I [q], then

x =
∑n

i=1 xir
1
q

i ∈ IR∞.

Though R is a Noetherian ring, R∞ will rarely be Noetherian as well. For an example of

this fact, let R := Fp[x], whence R∞ := Fp[x, x
1
p , x

1
p2 , . . .]. Here we can see that the chain,

(x) ⊂ (x
1
p ) ⊂ (x

1
p2 ) ⊂ . . .

never stabilizes.

Specifically, R∞ will be Noetherian if and only if R is a direct product of finitely many

fields [NS04, Theorem 6.3]. However despite this difference, many well-determined relation-

ships between R and R∞ make the study of one ring closely intertwined with the other.

Two particular such relationships which feature prominently in the ensuing discussion are

the following:

1. There exists a bijective correspondence between f -sequences of R and ideals of R∞

[NS04, Corollary 3.2]. The definition of f -sequences, as well as the explicit bijection,

are defined below.

2. There exists an order isomorphism between Spec(R) and Spec(R∞). That is, the

contraction map ϕ : Spec(R∞)→ Spec(R) given by Q→ Q ∩R for Q ∈ Spec(R∞) is

an order-preserving bijection [NS04, Theorem 6.1, i)].

In light of condition 2), henceforth we will use the notation P and P∞ to denote corre-

sponding prime ideals in R an R∞ respectively.

With such correspondences in mind, the overarching goal of this project is to explore

such relationships, determine any further ones that may exist, and use features of both R

and R∞ to discover structural details of one another.

We begin by showing a stronger statement for 2), namely that Spec(R) and Spec(R∞)

are homeomorphic as topological spaces.

9



Theorem 1. Let R be a reduced Noetherian ring of characteristic p > 0, and let R∞ be its

perfect closure. Then the contraction map ϕ : Spec(R∞) → Spec(R) is a homeomorphism

with respect to the Zariski topology.

Proof. ϕ is already known to be a bijection by [NS04, Theorem 6.1, i)]. We first show that

ϕ is continuous. Let V (I) ⊂ Spec(R) be a closed set for an ideal I ⊂ R, and we must show

ϕ−1(V (I)) is closed.

We claim ϕ−1(V (I)) = V (IR∞), which is also closed. Fix P ∈ V (I), i.e. I ⊆ P , and

hence IR∞ ∩ R = IF ⊆ P . For any x
1
q ∈ IR∞, x ∈ (I [q]R∞ ∩ R) ⊆ (IR∞ ∩ R) ⊆ P =

(P∞ ∩ R) ⊆ P∞, whereby x
1
q ∈ P∞. Hence IR∞ ⊆ P∞ and P∞ ∈ V (IR∞). Conversely,

if IR∞ ⊆ P∞, then I ⊆ IR∞ ∩R ⊆ P∞ ∩R = P , and P ∈ V (I).

Next we must show that ϕ−1 : Spec(R) → Spec(R∞) is continuous. Let V (J) ⊂

Spec(R∞) be a closed set for some ideal J ⊂ R∞. We claim ϕ(V (J)) = V (J ∩ R), and

hence its pre-image under ϕ−1 is closed. If J ⊆ P∞, then clearly J ∩ R ⊆ P∞ ∩ R = P ,

whence P ∈ V (J ∩ R). Conversely, if J ∩ R ⊆ P , fix x
1
q ∈ J . Then x ∈ (J [q]R∞ ∩ R) ⊆

(J ∩R) ⊆ P = (P∞ ∩R) ⊆ P∞. Hence x
1
q ∈ P∞, and J ⊆ P∞.

1.8 Frobenius Functor

Given a reduced ring R of characteristic p > 0, we now introduce the Frobenius functor

on an R-module M . The image of M under this functor is denoted F (M), and the re-

lationship between M and F (M) is a generalization of the relationship between R/I and

R/I [p] for an ideal I ⊂ R (see remark 1.8.1). In the literature this functor is typically

defined using the R-R bimodule Rf which can be found in many resources such as [BH97].

However, we will define the R-R bimodule R
1
f , which is an equivalent construction. This

alternate point of view yields a compatible definition of the module R∞ ⊗R M as an R∞

module. Equipped with such an object, we can then investigate this module in terms of

non-Noetherian generalized depth measures which will be defined below.

10



First we introduce the standard Rf construction. Let Rf denote an R-R bimodule,

which is isomorphic to R itself. However, let the action by R be as follows, for a ∈ Rf , and

r, s ∈ R:

• Left action is performed in the obvious way, r · a = ra

• Right action is given, a • s = af(s) = asp

To present our point of view, now let R
1
f denote an R-R bimodule which as an abelian

group is identical to the ring R
1
p . However the two-sided actions by R are as follows, for

a
1
p ∈ R

1
f and r, s ∈ R:

• Left action is given by r ◦ a
1
p = f−1(r)a

1
p = r

1
pa

1
p

• Right action is performed in the obvious way, a
1
p · s = a

1
p s

Note that we reuse the ”◦” notation here, which in a previous section referred to a

composition of maps. The usage of this symbol will always be made clear.

We claim that Rf and R
1
f with their respective actions are isomorphic as R-R bimodules.

In order to see this equivalence, consider the Frobenius homomorphism f : R
1
f → R, through

which f(a
1
p ) = (a

1
p )p = a for all a ∈ R. Recall that this map is an isomorphism since R is

reduced. We then have,

r ◦ a
1
p · s = r

1
pa

1
p s

f−→ rasp = r · a • s

With this isomorphism established, we will henceforth use the R
1
f construction.

Iterating, we have R
1
fe which as an R-module is isomorphic to R

1
q for q = pe, and left

and right action by R is r ◦ a
1
q · s = r

1
q a

1
q s. Note that for any q′ ≤ q, any arbitrary element

of R
1
f can be of the form a

1
q′ for a ∈ R. However for any such element, we can rewrite as

(a′)
1
q , where a′ = a

q
q′ . Hence, without loss of generality we will write arbitrary elements of

11



R
1
fe in the form a

1
q . While there will be specific situations below in which the exponent

of the element will not be equal the corresponding iteration 1
fe , all such situations will be

specified.

We can also consider R
1
fe as a right R

1
q -module with the action performed in the obvious

way. That is, a
1
q · s

1
q = a

1
q s

1
q , which is compatible with the right action by R since R ⊆ R

1
q .

Hence R
1
fe ∈ R ModR1/q , or R

1
fe is in the category of modules which are left defined over

R, and right defined over R
1
q . Again in particular, objects in R ModR1/q are also in the

category R ModR because R ⊆ R
1
q , and hence they possess a right action by R.

Having established R
1
f , we can define the Frobenius functor F (M), which is a covariant

right exact functor in both the categories of left and right R-modules. These facts follow

from properties of tensor products. We define:

F (M) := R
1
f ⊗RM

and if ϕ : M → N is an R-module map, then:

F (ϕ) := 1R1/f ⊗R ϕ

F (M) is equipped with an R-R
1
p bimodule structure, and we describe here the left

and right action on a simple tensor. Note that we write such a simple tensor in the form

(a
1
p ⊗R m[p]). See remark 1.8.2 for an explanation of the exponentiation m[p] used in this

notation. We now have,

r ◦ (a
1
p ⊗R m[p]) · s

1
p := (r ◦ a

1
p · s

1
p ⊗R m[p])

= (r
1
pa

1
p s

1
p ⊗R m[p])

Further iterations are then given by F e(M) := R
1
fe ⊗R M , with likewise left and

12



right action, which is equivalent to F (F (. . . F (M))) composed with itself e times. Hence,

F e(M) ∈ R ModR1/q for all e. And in particular F e(M) is an R-R bimodule since R ⊆ R
1
q .

Remark 1.8.1. We make a note regarding an explicit characterization of F e(M), where

M = R/I is a cyclic module. Above, we stated that relationship between M and F (M) is

a generalization of the relationship between R/I and R/I [p]. We justify this claim for all

F e(M).

By definition, F e(R/I) := R
1
fe ⊗R R/I ∼= R

1
q /IR

1
q , with this last equivalence holding

since R
1
fe ∼= R

1
q as a left R-module with left action ◦. But we claim this module is

isomorphic to the cyclic R-module R/I [q]. To see this fact, consider the maps R
1
q

fe−→

R
g−→ R/I [q], where f is the e-th iteration of the Frobenius homomorphism, which is an

isomorphism since R is reduced, and g is the natural projection. Letting h := g ◦ f be the

composition map (to distinguish this use of the notation “◦” from the left module action

by R), the first isomorphism theorem states that R
1
q /ker(h) ∼= R/I [q]. But ker(h) = IR

1
q .

To establish this fact, letting I = (x1, . . . , xn), we have,

z ∈ ker(h)⇔ zq ∈ I [q]

⇔ zq =

n∑
i=1

xqi ri for some r1, . . . , rn ∈ R

⇔ z =

n∑
i=1

xir
1
q

i for some r
1
q

1 , . . . , r
1
q
n ∈ R

1
q

⇔ z ∈ IR
1
q

Remark 1.8.2. Returning to the general case for R-modules M , note that in describing an

arbitrary element of F (M) above, we wrote (a
1
p ⊗Rm[p]) with the exponent [p] for m ∈M .

Likewise, we will denote (a
1
q ⊗Rm[q]) for an arbitrary element of R

1
fe . That is, the exponent

13



[q] = [pe] will indicate which Frobenius iteration F e(M) we are discussing. This notation

will become relevant when some element of F e
′
(M) may be of the form (a

1
q ⊗R m[q′]) for

q < q′. For example, fix (a
1
q ⊗R m[q]) ∈ F e(M), and for e ≤ e′ consider the natural map

ϕ : F e(M) → F e
′
(M) induced by the inclusion R

1
fe ↪→ R

1

fe
′
. This element’s image under

ϕ is denoted (a
1
q ⊗R m[q′]).

To give another example of such discrepancy in exponents, note that for a simple tensor

of the form (s ⊗R m[q]) ∈ F e(M), it is identical to sq ◦ (1 ⊗R m[q]) due to the left action

of R. In general, for any q ≤ q′ simple tensors of the form (s
1
q ⊗R m[q′]) can be written

(s
1
q ⊗Rm[q′]) = (s

1
q )q
′ ◦ (1⊗Rm[q′]) = s

q′
q ◦ (1⊗Rm[q′]) ∈ F e′(M). This fact will be relevant

below.

Since F e(M) := (R
1
fe ⊗R M), we now have a directed system

(
F e(M), (ψee′ ⊗R 1M )

)
,

where the maps ψee′ : R
1
fe ↪→ R

1

fe
′

are embeddings. Recall that R∞ := lim−→ R
1
q , and

R
1
q ∼= R

1
fe as abelian groups. Therefore,

(R∞ ⊗RM) := lim−→ F e(M).

Since each F e(M) is defined as a right R
1
q -module as e grows, this limit (R∞ ⊗RM) is

now defined as a right R∞-module, and hence also a right R ⊆ R∞ module, in the obvious

way (and with obvious notation m[∞]):

(a
1
q ⊗R m[∞]) · s

1
q′ := (a

1
q · s

1
q′ ⊗R m[∞]) = (a

1
q s

1
q′ ⊗R m[∞])

Equipped with the Frobenius functor, we also can define the Frobenius closure on sub-

modules, which is analogous to the Frobenius closure of ideals in a ring. If M is an R-

module, and N ⊆ M is a sub-module, we define the Frobenius closure of N in M as

NF
M := {m ∈ M | (1 ⊗R m[q]) ∈ N [q] ⊆ F e(M) for e � 0}. Here N [q] := F e(i)(N), where

i : N → M is the embedding map, and F e(i) is its image under the e-th iteration of the
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Frobenius functor. Equivalently NF
M := {m ∈M | (1⊗R m[q]) = 0 ∈ F e(M/N) for e� 0}.

This fact will prove relevant below.

Specifically, we discuss below the Frobenius closure of 0 in F e(M),

0FF e(M) := {(s
1
q ⊗R m[q]) ∈ F e(M) | (s

1
q ⊗R m[q′]) = 0 ∈ F e′(M) for e′ � e}

Remark 1.8.3. Note that since we are discussing a directed system, by definition 0 ∈

(R∞ ⊗RM) is precisely the image of the elements of 0FF e(M) as e varies. That is,

(s
1
q ⊗R m[q]) ∈ 0FF e(M) ⇔ (s

1
q ⊗R m[q′]) = 0 ∈ F e′(M) for some e ≤ e′

⇔ (s
1
q ⊗R m[∞]) = 0 in R∞

In particular, for M = R/I, we have that 0FR/I = IF /I. Fix m ∈ R, and we can see this

equivalence as follows:

m ∈ 0FR/I ⇔ (1⊗R m[q]) = 0 in F e(R/I) for e� 0,

where F e(R/I) = R
1
q ⊗R R/I ∼= R

1
q /IR

1
q

⇔ m = 0 in R
1
q /IR

1
q

⇔ mq = 0 in R/I [q] for e� 0

⇔ mq ∈ I [q] for q � 0

⇔ m ∈ IF

And by identical reasoning, 0FF e(R/I) = (I [q])F /I [q].
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1.9 f-sequences

In a reduced ring R of characteristic p > 0, an f -sequence is a descending chain of ideals

. . . Ie−1 ⊇ Ie ⊇ Ie+1 ⊇ . . .

such that f−1(Ie+1) ∩ R = Ie for every e, where f denotes the Frobenius endomorphsim

which is defined on both R and R∞. In discussing R∞ this concept arises naturally. Recall

that the set of ideals of R∞ is in order-preserving bijective correspondence with the set of

f -sequences of R. For an ideal J ⊂ R∞, this correspondence is given explicitly by:

Γ : J →
(
Je
)
e∈N where for every e ∈ N, Je := {r ∈ R | r

1
pe ∈ J} [NS04],

or alternately stated Je = fe(J) ∩R

In particular, note that J0 = J ∩R.

For an example of a particular correspondence, if I ⊂ R is an ideal, let J = IR∞ be the

ideal generated in R∞ by the same generators of I. Then its corresponding f -sequence in

R is {(I [q])F }. Note that we take the Frobenius closure of the Frobenius powers of I. It is

a fact that every ideal in an f -sequence is F -closed [NS04]. Hence given an ideal I ⊂ R we

can view S := {(I [q])F } as a minimal f -sequence, since any f -sequence which contians I at

some stage must therefore contain S.

Some examples of f -sequences are {Je} = {(I [q])∗} and {Je} = {(I [q])+}, where “+”

and“∗” denote plus closure and tight closure respectively, and I ⊂ R is any ideal (for a

discussion of these closure operations, see [SN04, Lemmas 5.1 and 5.2]). We list some

additional examples, along with their corresponding ideals in R∞.

Example 1.9.1. Let R be a Noetherian ring of characteristic p > 0. The following se-

quences {Je} ⊂ R are f -sequences with corresponding ideals J ⊂ R∞.

1. {Je} = {(I [q])F }, J = IR∞, where I ⊂ R is any ideal.
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2. Letting R = k[x, y], {Je} = {(x, y)[q]} = {(xq, yq)}, J = (x, y)R∞, where k is any field

of characteristic p > 0.

3. Letting R = k[x, y], {Je} = {(x, yq)}, J = (x, x
1
p , x

1
p2 , . . . , y)R∞

4. {Je} = {P, P, . . .} for P ∈ Spec(R), J = P∞

Note that example 2 is of the form {I [q]}, but examples 1, 3 and 4 show that such a

form does not characterize all f -sequences. Furthermore, in general a sequence of Frobenius

iterates {I [q]} for some I ⊂ R will not yield an f -sequence since I [q] may not be F -closed

as q varies. However, there do exist rings for which such a construction will always do so.

In order for such a scenario to hold, we will require the condition that all ideals I ⊂ R are

F -closed. Below we will discuss F -pure rings, where I = IF for all ideals I ⊂ R.

Recall that we study the scenario where our ring R is Noetherian. For any f -sequence

{Ie} in R, we now have an ascending chain

. . . ⊇ Ie−2 ⊇ Ie−1 ⊇ Ie

for any given e ∈ N. This chain must therefore stabilize. In [NS04, Remark 4.2, iv)] it is

stated that Ie can be extended “downwards” given e. However, the Noetherianness of R

yields a stabilizing ideal regardless of e.

Suppose now the chain stabilizes to some ideal I for which I = f−1(I). We ask whether

we can explicitly find this stabilizing ideal. We begin with a lemma which shows that such

an I is a radical ideal.

Lemma 1.9.2. Let R be a reduced Noetherian ring of characteristic p > 0, and let I ⊂ R

be an ideal. Then the following are all equivalent

1. f−1(I) = I

2. f−e(I) = I for all e

3. I =
√
I

17



Proof. 1⇔ 2:

Clearly if f−e(I) = I for all e, then f−1(I) = I. Conversely, if f−1(I) = I, then

f−e(I) = f−1(f−1(. . . f−1(f−1(I))))

= f−1(f−1(. . . f−1(I)))

...

= f−1(I)

= I

2⇒ 3: Suppose rn ∈ I for some n, and let q > n. Then rq ∈ I. But then f−e(rq) = r,

which is in I since f−e(I) = I.

3⇒ 1: Suppose r ∈ f−1(I). Then rp ∈ I, and r ∈ I since I =
√
I.

It is a known fact that every term in an f -sequence has the same radical, i.e.
√
Ie =

√
Ie′

for all e, e′ ∈ N [NS04, Remark 4.2, v)]. In fact, this radical ideal coincides with the

stabilizing ideal.

Theorem 2. Let R be a reduced Noetherian ring of characteristic p > 0, and Let {Ie}e∈N

be an f sequence in R. Let I ⊂ R be the ideal such that the ascending chain

. . . ⊇ Ie−2 ⊇ Ie−1 ⊇ Ie ⊇ . . .

stabilizes, for e ∈ N. Then,

I =
√
Ie for all e
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Proof. Fix e, and clearly
√
Ie ⊆

√
I = I, with this containment holding because Ie ⊆ I, and

“
√

” is a closure operation [Eps11], while the equality holds by lemma 1.9.2.

Conversely, first note that for some e′ ≥ e, f−e
′
(Ie) = I. Hence Ie ⊇ fe

′
(I). Now fix

r ∈ I, and rq
′

= fe
′
(r) ∈ Ie, and r ∈

√
Ie.
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Chapter 2: Generalized Associated Prime Ideals

Let S be an arbitrary ring, and let M be any S-module. We say P ∈ Spec(S) is an associated

prime ideal of M , or P ∈ AssS(M), if P is the annihilator in S of some non-zero element

m ∈ M . In such a case we write P = annS(m). That is, pm = 0 for all p ∈ P , and if

p′m = 0 then p′ ∈ P . An equivalent definition states that P ∈ AssS(M) if the cyclic module

S/P can be embedded into M , with ϕ : S/P ↪→ M denoting the map ϕ : 1 7→ m. As a

consequence of this alternate definition, if P ∈ AssS(M), then HomS(S/P,M) 6= 0.

For an example, let R = Z, and M = Z/4Z. Then (2) ∈ AssZ(M), with (2) = annZ(2),

since 2×2 = 4 = 0. And we see that HomZ(Z/2Z,Z/4Z) 6= 0, since we have the embedding

map ϕ defined by ϕ : 1 7→ 2.

If S is a non-Noetherian ring, however, the notion of an associated prime ideal over a

module becomes more subtle. We state three distinct subsets of Spec(S):

Definition. Let S be any commutative ring with identity. Let M be an S-module. Let

P ∈ Spec(S) be a prime ideal.

1. P ∈ ÃssS(M) is a weakly associated prime, or weak Bourbaki prime of M if it is

minimal over some annS(m) for some m ∈ M . That is, annS(m) ⊆ P , and if there

exists a prime ideal Q ⊂ S such that annS(m) ⊆ Q ⊆ P , then Q = P .

2. P ∈ sKS(M) is a strong Krull prime of M if for any finitely generated sub-ideal I ⊆ P

we have I ⊆ annS(m) ⊆ P for some m ∈M .

3. P ∈ KS(M) is a Krull prime of M if for any element x ∈ P we have x ∈ annS(m) ⊆ P

for some m ∈M .
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For any ring S and module M , we always have the containments AssS(M) ⊆ ÃssS(M) ⊆

sKS(M) ⊆ KS(M), with none of the containments reversible. For an overview see [IR84].

It is possible that AssS(M) is empty, and we provide an example.

Example 2.0.3. LetR = Fp[x], and henceR∞ = Fp[x, x
1
p , x

1
p2 , . . .]. We claim AssR∞(R∞/(x)R∞) =

∅.

To show this claim, first note that (x)∞ is minimal over (x)R∞, and hence it is the

only possible associated prime of R∞/(x)R∞. Suppose (x)∞ = ((x)R∞ :R∞ r) for some

r ∈ R∞ \(x)R∞, where r = Σn
i=0aix

i
q for some q, and ai ∈ Fp for all i. Then x

1
pq r /∈ (x)R∞.

We can see this fact by multiplying:

x
1
pq r = x

1
pq Σn

i=0aix
i
q

= Σn
i=0aix

1
pq x

i
q

= Σn
i=0aix

ip+1
qp

But since r /∈ (x)R∞, for at least one i, the corresponding monomial is non-zero, and i < q.

But then ip+1
qp < 1, and we see that x

1
pq r /∈ (x)R∞.

Hence (x)∞ cannot be an associated prime ofR∞/(x)R∞, and hence AssR∞(R∞/(x)R∞) =

∅.

While AssS(M) can be an empty set, if S is a Noetherian ring and M 6= 0, there always

exists at least one associated prime of M . In this case the first three sets are equal, i.e.

AssS(M) = ÃssS(M) = sKS(M). For an example of why KS(M) is omitted in this equality,

see [ES14, Remark 2.2]. However, if S is Noetherian and M is finitely generated, then all

four sets are equal, and we uniformly discuss the set of associated primes of M . In such a

scenario AssS(M) is a finite set, and if we let Z(M) ⊂ S denote all elements of S which

annihilate any element of M , we have Z(M) =
⋃

AssS(M) [BH97, Section 1.2]. That is, if
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s /∈
⋃

AssS(M), then s is regular over M .

We return to our context where (R,m) is a Noetherian local ring of characteristic p > 0.

Recall from above that a prime P ∈ Spec(R) corresponds to one and only one prime ideal in

Spec(R∞) [NS04, Theorem 6.1, i)], which we are denoting P∞. We investigate associated

prime ideals in P ⊂ R over a module M and its Frobenius iterates F e(M), and we determine

some correspondences with their counterparts in P∞ ⊂ R∞ over (R∞⊗RM). In this study,

the relationship between
⋃

0FF e(M) and 0 ∈ (R∞ ⊗R M) reveals that we must consider

associated primes over the modules F e(M)/0FF e(M).

2.0.1 Results for Generalized Associated Prime Ideals

Given a module M over a regular local ring R, Epstein and Shapiro showed a characteriza-

tion of the strong Krull primes of R∞ ⊗RM .

Theorem 3. [ES14, Corollary 4.9] Let R be a regular Noetherian ring of prime character-

istic p > 0. Let L be any R-module. Then

sKR∞(L⊗R R∞) =
⋃

q∈AssR L

sKR∞(R∞/qR∞).

Omitting the hypothesis of regularity of R, we show a characterization of these prime

ideals in relation to the associated primes of F e(M)/0FF e(M). Additionally we find that the

strong Krull primes of R∞ ⊗RM coincide with ÃssR(R∞ ⊗RM).

Theorem 4. Let R be a reduced Noetherian ring of characteristic p > 0, and let R∞ be

its perfect closure. Let P and P∞ be corresponding prime ideals in Spec(R) and Spec(R∞)

respectively. Let M be an R-module. Then the following are all equivalent:

1. P ∈
⋃

AssR
(
F e(M)/0FF e(M)

)
via left action by R

2. P∞ ∈ ÃssR(R∞ ⊗RM)
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3. P∞ ∈ sKR(R∞ ⊗RM)

Proof. 1⇒ 2: Suppose P ∈
⋃

AssR(F e(M)/0FF e(M)) with P =
(
0FF e(M) :R

∑
i

(s
1
q

i ⊗Rm
[q]
i )
)
.

I.e. for all r ∈ P , we have r ◦
∑
i

(s
1
q

i ⊗R m
[q]
i ) =

∑
i

(r
1
q

i s
1
q

i ⊗R m
[q]
i ) ∈ 0FF e(M). But

then by Remark 1.8.3,
∑
i

r
1
q

i s
1
q

i ⊗R m
[∞]
i = 0 in R∞. Thus PR∞ ⊂ P

[ 1
q

]
R∞ ⊆

(
0 :R∞

∑
i

(s
1
q

i ⊗R m
[∞]
i )

)
.

On the other hand, fix some s
′ 1
q′ ∈

(
0 :R∞

∑
i

(s
1
q

i ⊗R m
[∞]
i )

)
. If q′ ≤ q, then s

′ q
q′ ∈ R

and s
′ q
q′ ◦ (

∑
i

s
1
q

i ⊗Rm
[q]
i ) = (

∑
i

s
′ 1
q′ s

1
q

i ⊗Rm
[q]
i ) ∈ 0FF e(M). Hence s

′ q
q′ ∈ P , and s

′ 1
q′ ∈ P∞.

However if q′ > q, consider the image of s′ ◦ (
∑
i

s
1
q

i ⊗Rm
[q]
i ) =

∑
i

(s′
1
q s

1
q

i ⊗Rm
[q]
i ) under

the map ψee′ = ϕee′ ⊗R 1 : R
1
f ⊗R M → R

1
f ′ ⊗R M . The corresponding left actions by R

on F e(M) and F e
′
(M) yield,

ψee′(
∑
i

(s′
1
q s

1
q

i ⊗R m
[q]
i )) =

∑
i

(s′
1
q s

1
q

i ⊗R m
[q′]
i )

=
∑
i

s
′ q
′
q ◦ (s

1
q

i ⊗R m
[q′]
i )

=
∑
i

s
′( q′

q
−1)

s′ ◦ (s
1
q

i ⊗R m
[q′]
i )

= s
′( q′

q
−1) ◦

(∑
i

(s
′ 1
q′ s

1
q

i ⊗R m
[q′]
i )
)
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But
∑
i

(s
′ 1
q′ s

1
q

i ⊗R m
[q′]
i ) ∈ 0F

F e′ (M)
because s

′ 1
q′ ∈

(
0 :R∞

∑
i

(s
1
q

i ⊗R m
[∞]
i )

)
. Thus s′ ∈

(
0FF e(M) :R (

∑
i

s
1
q

i ⊗R m
[q]
i )
)
, whereby s′ ∈ P and s

′ 1
q′ ∈ P∞.

We have now shown that PR∞ ⊆
(
0 :R∞

∑
i

(s
1
q

i ⊗Rm
[∞]
i )

)
⊆ P∞. Since

√
PR∞ = P∞,

we know that P∞ is minimal over PR∞. Hence P∞ is minimal over
(
0 :R∞

∑
i(s

1
q

i ⊗R

m
[∞]
i )

)
as well. This fact shows that P∞ is minimal over the annihilator of an element of

(R∞ ⊗R∞ M), and therefore P∞ ∈ ÃssR(R∞ ⊗RM).

2⇒ 3: Always true, as stated above.

3⇒ 1: Suppose P∞ ∈ sKR(R∞⊗RM), then PR∞ is a finitely generated sub-ideal, and

we have PR∞ ⊆
(
0 :R∞

∑
i

(s
1
q

i ⊗R m
[∞]
i )

)
⊆ P∞. Hence P ⊆

(
0FF e(M) :R

∑
i

(s
1
q

i ⊗R m
[q]
i )
)

by definition (see Remark 1.8.3).

Conversely, fix s ∈
(
0FF e(M) :R

∑
i

(s
1
q

i ⊗R m
[q]
i )
)
. Again by definition (Remark 1.8.3),

s ∈
(
0 :R∞

∑
i

(s
1
q

i ⊗R m
[∞]
i )

)
⊆ P∞. Thus s ∈ P∞ ∩ R = P . Therefore P ⊇

(
0FF e(M) :R

∑
i

(s
1
q

i ⊗R m
[q]
i )
)
.

We now have P =
(
0FF e(M) :R

∑
i

(s
1
q

i ⊗R m
[q]
i )
)
, and P ∈ AssR

(
F e(M)/0FF e(M)

)
.

Furthermore, we have a similar theorem regarding cyclic modules. Its proof relies on

different techniques, and we must discuss some preliminaries before we proceed.

Remark 2.0.4. Suppose M is a finitely generated R-module, and suppose the ideal J is

the annihilator of M . Then by [Kap70, Theorem 86], if P ∈ Spec(R) is minimal over J ,
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then P is the annihilator of some non-zero element of M .

In particular, now let N be a finitely generated R-module, and let n ∈ N be some

non-zero element such that annR(n) 6= 0. Let J = annR(n), and let P be a minimal

prime over J . We claim that P = annR(rn) for some r ∈ R, i.e. P annihilates some

multiple of n. In order to show this claim, let M = R/J , whereby P is minimal over

the annihilator of M , and therefore P anihilates some non-zero element of M . Thus for

some r ∈ R \ J , P = (J :R r). But since we said J = (0 :R n) for n ∈ N , we now have

P =
(
(0 :R n) :R r)

)
= (0 :R rn) = annR(rn), where rn ∈ N .

One special case of this particular scenario holds when N = R/I is any cyclic module,

whereby if P is minimal over annR(n) for some n ∈ R/I, we have that P is minimal over

(I :R n). Thus P = (I :R rn) for some r ∈ R.

Recall that if {Je} is an f -sequence in R, we have that AssR(R/Je) ⊆ AssR(R/Je+1)

for all e. In light of Remark 2.0.4, if P ∈ AssR(R/Je) for some e with P = (Je :R s), we

now have an explicit description of the element it annihilates over R/Je+1. The following

lemma is probably known, however we include a proof for the convenience of the reader.

Lemma 2.0.5. Let R be a reduced Noetherian ring of characteristic p > 0, and let {Je}

be an f -sequence in R. Fix P ∈ AssR(R/Je) with P = (Je :R s) for some s ∈ R. Then

P = (Je+1 :R rs
p) for some r ∈ R.

Proof. Fix P ∈ AssR(R/Je) with P = (Je :R s) for some s ∈ R. We first show that

P ⊇ (Je+1 :R sp). Suppose xsp ∈ Je+1 for x ∈ R. Then certainly xpsp ∈ Je+1, and

xs ∈ Je = f−1(Je+1). Hence x ∈ P .

Furthermore, note that P is minimal over (Je+1 :R sp). Suppose there exists some

P ⊇ Q ⊇ (Je+1 :R sp) for some prime ideal Q. Fix x ∈ P , then xs ∈ Je, and xpsp ∈ Je+1,

whereby xp ∈ (Je+1 :R s
p) ⊆ Q. Hence x ∈ Q, and therefore P ⊆ Q, and P = Q.

Finally, since P is minimal over (Je+1 :R sp), by Remark 2.0.4, P = (Je+1 :R rsp) for

some r ∈ R.
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By an inductive argument, if e′ > e, then P = (Je′ :R rs
q′
q ) for some r ∈ R. We are now

ready to prove the theorem for cyclic modules.

Theorem 5. Let R be a reduced Noetherian ring of characteristic p > 0, and let R∞ be its

perfect closure. Let J ⊂ R∞ be an ideal, and let {Je} be its corresponding f -sequence in R.

Let P and P∞ be corresponding prime ideals in Spec(R) and Spec(R∞) respectively. Then

the following are all equivalent:

1. P ∈
⋃

AssR(R/Je)

2. P∞ ∈ ÃssR(R∞/J)

3. P∞ ∈ sKR(R∞/J)

Proof. 1⇒ 2: Let P ∈ AssR(R/Je), with P = (Je :R s) for some s ∈ R. Then P
[ 1
q

]
R∞ ⊆

(J :R∞ s
1
q ) for q = pe, since ps ∈ Je ⇔ p

1
q s

1
q ∈ f−e(Je) ⇔ p

1
q s

1
q ∈ J . We claim (J :R∞

s
1
q ) ⊆ P∞ as well.

To prove this claim, suppose x
1
q′ s

1
q ∈ J for some x

1
q′ ∈ R∞. If q′ ≤ q, then x

q
q′ s ∈ Je,

whereby x
q
q′ ∈ P and x

1
q′ ∈ P∞. However if q′ > q, then xs

q′
q ∈ Je′ , and clearly for any

y ∈ R, x(ys
q′
q ) = y(xs

q′
q ) ∈ Je′ . Since P ∈ AssR(R/Je), growth of associated primes over

an f -sequence [SN04, Remark 4.2, iv)] states that P ∈ AssR(R/Je′) as well, and specifically

P = (Je′ :R zs
q′
q ) for some z ∈ R by Lemma 2.0.5. Hence x(zs

q′
q ) ∈ Je′ , x ∈ P , and

x
1
q′ ∈ P∞.

We now have P
[ 1
q

]
R∞ ⊆ (J :R∞ s

1
q ) ⊆ P∞. Hence P∞ is minimal over (J :R∞ s

1
q ),

which is to say that P∞ ∈ ÃssR(R∞/J).

2⇒ 3, Known to be true, as stated above.

3⇒ 1: Suppose P∞ ∈ sKR∞(R∞/J). Then PR∞ is a finitely generated sub-ideal, and

hence PR∞ ⊆ (J :R∞ s
1
q ) ⊆ P∞ for some s ∈ R. Now fix x ∈ P , and we have xs

1
q ∈ J ,
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and xqs = (xs
1
q )q = fe(xs

1
q ) ∈ fe(J) ∩ R = Je. Therefore x ∈ (Je :R s). But since x ∈ P

was arbitrary, we know P [q] ⊆ (Je :R s).

Moreover, fix some x ∈ (Je :R s), i.e. xs ∈ Je = fe(J) ∩R, and hence x
1
q s

1
q ∈ J . Hence

x
1
q ∈ (J :R∞ s

1
q ), which shows that x

1
q ∈ P∞ and x ∈ P .

We now have that P [q] ⊆ (Je :R s) ⊆ P , whereby P is minimal over (Je :R s), and

P ∈ ÃssR(R/Je) = AssR(R/Je). This equality holds since R is a Noetherian ring.

Furthermore, for an ideal I ⊂ R, and for the f -sequence {(I [q])F }, we know the corre-

sponding ideal in R∞ is IR∞. We then have a special case of these results.

Corollary 2.0.6. Let R be a reduced Noetherian ring of characteristic p > 0, let I ⊂ R be

an ideal, and let R∞ be its perfect closure. Let P and P∞ be corresponding prime ideals in

Spec(R) and Spec(R∞) respectively (that is, let P = P∞ ∩ R). Then the following are all

equivalent:

1. P ∈
⋃

AssR(R/(I [q])F )

2. P∞ ∈ ÃssR(R∞/IR∞)

3. P∞ ∈ sKR(R∞/IR∞)

Proof. Letting J = IR∞, and Je = (I [q])F for all e, we see this corollary is a special case of

Theorem 5.

Alternately, letting M = R/I, we see the corollary is a special case of Theorem 4.
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Chapter 3: Generalized Depth

Let S be any ring, again not necessarily Noetherian. We have the notion of grade of an

ideal over a module M , grS(I,M), which is another ring theoretic concept which generalizes

into multiple concepts in the non-Noetherian context. Above we have defined M -regular

sequences and the Koszul complex, while the appendix contains a section discussing Ext.

All three of these constructions feature presently. An explanation of generalized grade can

be found in [Hoc74] and [Bar72].

Definition Let S be any commutative ring with identity, let I ⊂ R be an ideal, and let M

be an S-module.

1. c grS(I,M) := sup{|x|} where x ⊂ I is a finite M -regular sequence contained in I.

2. k grS(I,M) := sup{n− h} where x = x1, . . . , xn ⊂ I is a finite set, and h is index of

the highest non-zero homology group of the Koszul complex K•(x1, . . . , xn;M). If x

is a finite sequence, we can discuss the koszul grade on x, k grS(x,M) := n− h with

n and h as above.

3. r grS(I,M) := inf{i | ExtiR(S/I,M) 6= 0} (for definition of ExtiR(S/I,M), see A.5).

For arbitrary S, I, and M , we always have c grS(I,M) ≤ k grS(I,M) ≤ r grS(I,M),

while each inequality can be strict. See [Bar72, 2] for an example where k grS(I,M) <

r grS(I,M). See [ES14, Remark 2.2] for an example where c grS(I,M) = 0 < k grS(I,M).

The inequality in this second example holds by Remark 3.0.7.

Additionally if I ⊆ J are ideals in S, then for each notion grade, we have

grS(I,M) ≤ grS(J,M), [Bar72]. For example, c grS(I,M) ≤ c grS(J,M).
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None of these measures are necessarily finite. For example let S = k[x1, x2, . . .] be

the non-Noetherian polynomial ring over some field k with infinitely many variables, let

I = (x1, x2, . . .), and M = S. Then x1, x2, . . . is an infinite regular sequence over M . Hence

c grS(I,M) is infinite, as are the other two measures since c grS(I,M) ≤ k grS(I,M) ≤

r grS(I,M).

If S is a Noetherian ring, then c grS(I,M) ≤ k grS(I,M) = r grS(I,M), and all three

concepts are indeed finite. If S is Noetherian and furthermore M is finitely generated as

an S-module, then all three measures grS(I,M) coincide. In this case, some textbooks

such as [BH97] state the third construction as the definition of grS(I,M), while the other

two values are proven as equivalences. In such a case, all maximal M -sequences in I have

the same length.

Specifically if (S, n) is local, for each notion grade we define the depth of S on M ,

where each notion is defined for the unique maximal ideal n. That is, depthS(M) :=

grS(n,M). For example, c depthS(M) := c grS(n,M). In particular if S is Noetherian

and M is finitely generated over S, then depthS(M) := grS(n,M). Furthermore, in such a

case, let depthS(M) = n. Then for all i = 1, . . . , n, we have that depthS
(
M/(x1, . . . , xi)M

)
=

depthS(M)− i, where x1, . . . , xn is a maximal M -sequence.

With these three distinct values, and in light of the discussion in the previous chapter,

we now have the generalized notions of both associated primes and depth for a module over

a non-Noetherian local ring. For a given local ring (S, n), and S-module M , these concepts’

relationships with one another follow as an exercise from their respective definitions. For

the convenience of the reader, we include a proof here.

Remark 3.0.7. Let (S, n) be a local ring, and let M be an S-module. Then,

1. n ∈ AssS(M) if and only if r depthS(M) = 0

2. n ∈ sKS(M) if and only if k depthS(M) = 0

3. n ∈ KS(M) if and only if c depthS(M) = 0
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Proof. 1): Since (S, n) is a local ring, we have:

n ∈ AssS(M) ⇔ 0 6= HomS(S/n,M) ∼= Ext0
S(S/n,M)

⇔ r depthS(M) = 0, by definition

2):

n ∈ sKS(M) ⇔ for all finite x = x1, . . . , xn ⊂ n, (x) ⊆ annS(m) ⊆ n for some nonzero

m ∈M

∗ ⇔ for all finite x = x1, . . . , xn ⊂ n, Hn(x;M) 6= 0

⇔ sup{k grS(x;M) | x ⊂ n is a finite set} = 0

⇔ k depthS(M) = 0, by definition

Note the line labeled ∗. The statement in this line is true if and only if for all finite

x = x1, . . . , xn ⊂ n, (x) ⊆ annS(m) for some nonzero m ∈ M . But since (S, n) is a local

ring, we also have the containment annS(m) ⊆ n.

3):

n ∈ KS(M) ⇔ for all x ∈ n, x ∈ annS(m) ⊆ n for some m ∈M, i.e., there exist no

M -regular elements in n

∗∗ ⇔ sup{|x| | x ⊂ n is a regular sequence} = 0

⇔ c depthS(M) = 0, by definition

Similarly, the“if and only if” statement on the line labeled ∗∗ is true since (S, n) is a

local ring.

Note that we have no equivalence for ÃssS(M). These generalized depths do not cur-

rently relate to weakly associated primes in an obvious way.
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Also note that if S is Noetherian and M is finitely generated, then all concepts coincide.

In such a situation we can therefore uniformly say:

n ∈ AssS(M) if and only if depthS(M) = 0

3.1 Depth Behavior Over f-sequences

Returning to our context, let (R,m) be a reduced commutative Noetherian local ring of

characteristic p > 0 and let (R∞,m∞) be its corresponding perfect closure. Let {Je} be

an f -sequence in R. Since our ring is Noetherian, and since any cyclic module is finitely

generated, we have one uniform notion of associated prime ideals over R/Je for any e. It

is a fact that AssR(R/Je) ⊆ AssR(R/Je+1) for all e [SN04, Remark 4.3, iv)], i.e. terms in

an f -sequence can gain associated primes but not lose any as e grows. Additionally, any

regular element over a module must exist in the complement of the union of associated

primes of the module [BH97, Section 1.2]. Hence later terms in an f -sequence can lose

regular elements over the corresponding cyclic module, but cannot gain any such elements.

This fact shows,

Theorem 6. Let (R,m) be a local commutative Noetherian ring of characteristic p > 0,

and let {Je}e∈N be an f -sequence in R. If depthR(R/Je+1) ≤ 1 for some e, then,

depthR(R/Je) ≥ depthR(R/Je+1).

Proof. If depthR(R/Je) = 0, then m ∈ AssR(R/Je) ⊆ AssR(R/Je+1). Then depthR(R/Je+1) =

0. It is therefore impossible that depthR(R/Je) = 0 while depthR(R/Je+1) = 1.

Since this hypothesis allows for an extremely restrictive case, we ask whether the same

feature is true for regular sequences over R/Je+1 of length longer than 1. I.e., suppose

we omit the hypothesis in this result that depthR(R/Je+1) ≤ 1, where again we have
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one uniform notion of depth since R is Noetherian. To give a specific context for this

investigation, we investigate the minimal f -sequences {(I [q])F } discussed above. For an

ideal I ⊆ R we ask whether the depthR(R/(I [q])F ) would decrease as q grows. For an

arbitrary ring R of characteristic p > 0, this fact seems unlikely.

However, we can modify this question by invoking the notion of F -purity for our rings.

Recall from above that every term in an f -sequence is Frobenius closed. However, if we

demand the condition that all ideals in our rings are F -closed, we obtain an affirmative

answer to this question. All the following results in this section require this assumption on

our rings, which we define here. We list the general definition of F -pure rings, as well as

two other consequences.

3.2 F-purity

Let S be any ring, and let A and B be S-modules. We say an S-module map ϕ : A→ B is

pure if the map ϕ⊗S 1M : A⊗SM → B⊗SM is injective for all S-modules M . Alternately

we say that A is a pure submodule of B.

We say that a reduced Noetherian ring R of characteristic p > 0 is F -pure if the

embedding R ↪→ R
1
p is a pure map. Equivalently, for any R-module M the induced map

M → F (M) := R ⊗RM → R
1
p ⊗RM is an injective map. Note that if R is F -pure, then

for any q the embeddings R ↪→ R
1
q , as well as the embedding R ↪→ R∞ are pure maps as

well.

If a ring R is F -pure, then for any R-module M we have that M ⊆ F (M) is a pure

submodule as well. This statement holds since given M ↪→ F (M) := (R⊗RM) ↪→ (R
1
p ⊗R

M), and given any R-module N , we have:
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(
M ⊗R N → F (M)⊗R N

)
=
(
(R⊗RM)⊗R N → (R

1
p ⊗RM)⊗R N

)
=
(
R⊗R (M ⊗R N)→ R

1
p ⊗R (M ⊗R N)

)
=
(
M ⊗R N → F (M ⊗R N)

)
which is an injection by F -purity of R.

Remark 3.2.1. If R is an F -pure ring, then every ideal I ⊂ R is F -closed. For the

convenience of the reader, we include a proof that IF = I for all such I.

Proof. Suppose R is an F -pure ring, and suppose I ( IF with r ∈ IF \ I, and I =

(x1, . . . , xn) ⊂ R. Then there exists some q such that rq ∈ I [q]. Therefore r ∈ IR
1
q , since

if rq = Σn
i=1aix

q
i ∈ I [q] for ai ∈ R, then r = Σn

i=1a
1
q

i xi ∈ IR
1
q . However, we now have the

map R/I → F e(R/I) = R
1
q ⊗R R/I ∼= R

1
q /IR

1
q is not injective since x 7→ 0. Hence R is

not F -pure, which is a contradiction.

A particular case of prime characteristic rings is F -finite rings R, for which R
1
p is finitely

generated as a module over R, or R
1
f is finitely generated as a right R-module. These rings

are commonly discussed in the literature, and in such a case F -purity is equivalent to F -

splitness [HR76, Corollary 5.3]. A reduced ring R of characteristic p > 0 is F -split if the

embedding R ↪→ R
1
p splits. As a consequence, R

1
p ∼= Ra ⊕ N for some free rank a ∈ N,

and some R-module N . We will not explicitly discuss this characterization. However the

reader will be advised that under the assumption of F -finiteness, F -splitness is a sufficient

condition in order for all results below to hold.

All F -pure rings are reduced, and we therefore need not mention the reduced hypothesis

in our results below. To see this fact, suppose there exists some r ∈ R such that rn = 0,

then let q be sufficiently large so that q ≥ n. Then r /∈ (0), but rq ∈ (0)[q], which contradicts

the fact that the ideal (0) is F -closed.
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Some examples of F -pure rings are regular rings, such as the polynomial ring S =

k[x1, . . . , xn], where k is a field of characteristic p > 0. Additionally, a class of F -pure

examples can be given if (S, n) is any F -finite regular local ring and R = S/I is any

quotient. In such a scenario R is F -pure if and only if (I [q] :R I) * n[q] for all q. This result

is known as Fedder’s criterion.

A non-example of an F -pure ring is R := [x, y, z]/(xp − yzp). We can see that the ideal

(z) is not F -closed. Certainly x /∈ (z), but xp = yzp ∈ (z)[p], and hence x ∈ (z)F \ (z).

Alternatively, we can see x = y
1
p z ∈ (z)R∞ ∩R = (z)F .

3.2.1 Results Requiring F -purity

In an F -pure ring, since all ideals I ⊆ R are F -closed by Remark 3.2.1, {(I [q])F } = {I [q]}

is always an f -sequence. We now ask a question modified from the one stated above: in

an F -pure ring, is depthR(R/I [q]) non-increasing as q grows? This assumption on our rings

provides a key piece of information regarding the behavior of depth over such sequences, as

the answer to the question is yes. Additionally, we obtain several relationships with some

of the generalized depth values of (R∞ ⊗R M) over R∞. Our first result in this section

answers our question, and as we shall see, provides a context for further inquiry:

Lemma 3.2.2. Let (R,m) be an F-pure Noetherian local ring of characteristic p > 0, and

let I ⊂ R be an ideal. If x = x1, . . . , xn ⊂ R is a regular sequence on R/I [p], then it is

regular on R/I.

Proof. First recall that by the properties of regular sequences, x = x1, . . . , xn is an R/I [p]

sequence if and only if x[p] = xp1, . . . , x
p
n is a regular R/I [p] sequence as well [Nor76, Theorem

5.1.3].

We will proceed by induction on the length of x. If |x| = 1, let x and hence xp be regular

over R/I [p]. We claim that x is R/I regular. If we suppose not, then xz ∈ I for some z /∈ I.

Due to the F -purity of R, we know that I = IF by Remark 3.2.1, and hence zp /∈ I [p]. But
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then xpzp ∈ I [p], which contradicts our assumption about of regularity of xp over R/I [p].

Now assume the statement is true for length ≤ n−1, and |x| = |x[p]| = n, both of which

are regular over R/I [p]. By our inductive hypothesis, x′ = x1, . . . , xn−1 is R/I - regular.

But now assume that x is not R/I - regular, and xn is not regular over R/(I,x′), with

z /∈ (I,x′) and xnz ∈ (I,x′). Now in R, (I,x′) = (I,x′)F by Remark 3.2.1, and hence

zp /∈ (I,x′)[p]. But then xpnzp ∈ (I,x′)[p], whence xpn is not regular over (I,x′)[p], which is a

contradiction.

Note that the proof of this lemma requires all ideals in R to be F -closed, while the

statement is unknown if R is not F -pure. But in this context the following corollary provides

an affirmative answer to our question.

Theorem 7. Let (R,m) be an F-pure Noetherian local ring of characteristic p > 0, and let

I ⊂ R be an ideal. Then,

depthR(R/I) ≥ depthR(R/I [p]).

Proof. Let depthR(R/I [p]) = n, and x = x1, . . . , xn ⊂ R be a maximal R/I [p]-sequence.

Then by lemma 3.2.2 x is R/I-regular, and hence depthR(R/I) ≥ n.

Having answered the question for cyclic modules, we quickly can prove a stronger state-

ment, and we can do so through a far simpler argument. Recall by remark 1.8.1 thatR/I [p] ∼=

R
1
q /IR

1
q ∼= (R

1
p⊗RR/I) = F (R/I). We have thus shown depthR(R/I) ≥ depthR

(
F (R/I)

)
.

We can ask whether this statement is true in greater generality. We indeed find that over

arbitrary finitely generated R-modules M , we can make the identical statement for M and

F (M). However, we must first state a lemma addressing the different left and right actions

of R on F (M). We show that for a regular sequence x, we can discuss its regularity over

F (M) without specifying left or right action. Additionally, this fact enables us to study

depthR
(
F (M)

)
, which is therefore a two-sided concept.
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Lemma 3.2.3. Let R be an F -pure Noetherian ring of characteristic p > 0. Let M be an

R-module, and let x = x1, . . . , xn ⊂ R be a finite sequence. Then for any e ∈ N, x is a

regular left F e(M)-sequence if and only if x is a regular right F e(M)-sequence.

Proof.

Fix e ∈ N. It is easy to see that x is a left-regular F e(M)-sequence if and only if

x[q] = xq1, . . . , x
q
n is a left-regular F e(M)-sequence if and only if x is a right-regular F e(M)-

sequence.

The first equivalence is true by properties of regular sequences [Nor76, Theorem 5.1.3],

whereby x is a left-regular F e(M) if and only if x[q] is a left-regular F e(M) sequence.

The second equivalence is true because for any
∑k

i (s
1
q

i ⊗Rm
[q]
i ) ∈ F e(M), the left action

by any xqj for j = 1, . . . , n is element-wise equivalent to right action by xj . That is,

xqj
(∑k

i (s
1
q

i ⊗R m
[q]
i )
)

=
∑k

i (xjs
1
q

i ⊗R m
[q]
i )

=
∑k

i (s
1
q

i xj ⊗R m
[q]
i )

=
(∑k

i (s
1
q

i ⊗R m
[q]
i )
)
xj

We then have an immediate corollary.

Lemma 3.2.4. Let (R,m) be an F -pure Noetherian local ring of characteristic p > 0.

Let M be an R-module, and let F e(M) denote the image of M under the e-th iteration

of the Frobenius functor for e ∈ N. Then left depthR F
e(M) = right depthR F

e(M). The

two-sided depthR F
e(M) is therefore a well-defined concept.

Proof. By lemma 3.2.3, x ⊂ R is left F e(M)-regular if and only if it is right F e(M)-regular.

Therefore all maximal such sequences have the same length under right and left action.

We next prove an additional lemma. This fact is probably known, however we include

a proof for the convenience of the reader.
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Lemma 3.2.5. Let (R,m) be a reduced Noetherian local ring. Let M ⊆ N be a pure

inclusion of R-modules such that M 6= 0 is finitely generated over R. Let the finite set

x ⊂ R be an N -regular sequence. Then x is regular over M as well.

Proof. We proceed by induction on |x|. Let x = x be a singleton. Then M/xM 6= 0 by

Nakayama’s lemma since x ∈ m and M 6= 0. Furthermore, x clearly annihilates no element

of M ⊂ N .

Now assume the statment is true for |x| = n− 1. Let |x| = n, and let x′ = x1, . . . , xn−1

denote the first n− 1 elements of x. Again, M/xM 6= 0 by Nakayama’s lemma since x ⊂ m

and M 6= 0.

Additionally, M/x′M embeds intoN/x′N . In order to see this fact, recall thatM/x′M ∼=

M ⊗R R/(x′), and N/x′N ∼= N ⊗R R/(x′), and since M is a pure sub N -module we have

the embedding M ⊗R R/(x′) ↪→ N ⊗R R/(x′).

Thus since xn annihilates no element of N/x′N , it will therefore annihilate no element

of the submodule M/x′M . Therefore, x is an M -regular sequence.

We can now show the identical statement as above for the more general setting for

arbitrary finitely generated M and F (M).

Lemma 3.2.6. Let (R,m) be a local Noetherian F -pure ring of characteristic p > 0, and

let M be a finitely generated R-module. If x = x1, . . . , xn is regular over F (M), then it is

regular over M .

Proof. M ⊆ F (M) is a pure submodule. Hence by 3.2.5, if x is regular over F (M), it is

also regular over M .

We then have the immediate corollary regarding the non-increasing nature of depth

under the Frobenius functor.

Theorem 8. Let (R,m) be a local Noetherian F -pure ring of characteristic p > 0, and let

M be a finitely generated R-module. Then,
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depthR(M) ≥ depthR
(
F (M)

)
.

Proof. If depthR
(
F (M)

)
= d and x1, . . . , xd is a maximal F (M)-sequence, then by lemma 3.2.6

x1, . . . , xd is M -regular, and depthR(M) ≥ d.

Remark 3.2.7. Note that the finite generation of M provides for this inequality since

lemma 3.2.5 requires that hypothesis. We can then consider the pure submodule inclusion

F e(M) ⊆ F e+1(M) for e > 0. However, since we are not assuming that R is F -finite,

F e(M) may not be finitely generated as a right R-module. Yet it will be finitely generated

as a left R-module, since the f−e action is equivalent to obvious action on the left by R
1
q

on R
1
f ⊗RM . Recall that by lemma 3.2.3 we can consider the left action when discussing

the regularity of a sequence over F e(M). Hence by lemma 3.2.5, if x is a maximal regular

F e+1(M)-sequence, then it is a regular F e(M)-sequence.

We now have that in an F -pure Noetherian ring R of characteristic p > 0, for a finitely

generated R-module M ,

depthR(M) ≥ depthR
(
F (M)

)
≥ depthR

(
F 2(M)

)
≥ . . .

I.e., depthR
(
F e(M)

)
is non-increasing e grows. Furthermore, it is bounded below by 0,

and the value must therefore stabilize, meaning there must exist some d ∈ N for which

depthR
(
F e(M)

)
= d for e� 0. This fact yields a definition.

Definition: Let (R,m) be an F-pure Noetherian local ring of characteristic p > 0, and

let M be a finitely generated R-module. Let e0 be the value at which depthR
(
F e0(M)

)
stabilizes. We define the stabilizing depth:

s depthR(M) := depthR
(
F e(M)

)
for all e ≥ e0.

In particular for an ideal I ⊂ R,

s depthR(R/I) := depthR(R/I [q]) for all q ≥ q0.
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In order to show an example where this definition yields distinct values, we now include

a class of a cyclic modules such that depthR(R/I) > s depthR(R/I). First we cite such

a module for which s depth drops to 0 for q large, then we construct a module over an

extension of the base ring for which s depth drops to t > 0.

Example 3.2.8. Let (A, a) be a local Noetherian ring F -pure ring of characteristic p > 0,

and let J ⊂ A be an ideal such that depthA(A/J) > s depthA(A/J) = 0, i.e. depthA(A/J) 6=

0, while depthA(A/J [q]) = 0 for q � 0. For an example for such a cyclic module, first

see [SS04] for a ring S where the sets AssS(S/J [q]) grow as q increases. If we then fix

P ∈ AssS(S/J [q]) \ AssS(S/J) for some q, we can then localize at P . Letting A = SP and

a = PA we have a local ring (A, a). Therefore, we can discuss the depth of modules over

A, and specifically depthA(A/JA) > 0, while depthA(A/J [q]A) = s depthA(A/JA) = 0.

Now let R := AJx1, . . . , xtK for variables xi, which is local with maximal ideal m =

(x1, . . . , xt)+aR [Mat86, Discussion on Page 4]. Let I = JR. Then for all q, depthR(R/I [q]) =

depthA(A/J [q]) + t (follows from [BH97, 1.2.16]). Hence depthR(R/I) = depthA(A/J)+t >

t, but depthR(R/I [q]) = depthA(A/J [q]) + t = 0 + t = t for q � 0. Thus depthR(R/I) >

s depthR(R/I) > 0.

3.2.2 Depth Type Comparisons

With this new measure of a finitely generated module M over an F -pure R, we investigate

how it relates to the other depth measures of (R∞⊗RM) over the non-Noetherian extension

R∞. In particular for a cyclic moduleM = R/I, we would like to know these depth measures

of R∞/IR∞ compare to s depthR(R/I).

In order to compare s depthR(M) with c depthR∞(R∞ ⊗RM), we begin with a lemma

regarding regular sequences from R.

Lemma 3.2.9. Let R be an F -pure Noetherian ring of characteristic p > 0, and let R∞

be its perfect closure. Let M be an R-module, and let x = x1, . . . , xn ⊂ R be a finite
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sequence. Then, x is a regular F e(M)-sequence for all e ∈ N if and only if x is a regular

(R∞ ⊗RM)-sequence.

Proof. If x is a regular (R∞ ⊗RM)-sequence, then by remark 3.2.7, x is a regular F e(M)-

sequence since F e(M) ↪→ (R∞ ⊗RM) is a pure submodule by F -purity of R.

Conversely, we proceed by induction on |x|. If x = x is a singleton, suppose x is

not (R∞ ⊗R M)-regular, with
(∑k

i (s
1
q

i ⊗R m
[∞]
i )

)
x =

∑k
i (s

1
q

i x ⊗R m
[∞]
i ) = 0. Then 0 =

∑k
i (s

1
q

i x⊗R m
[q′]
i ) =

(∑k
i (s

1
q

i ⊗R m
[q′]
i )
)
x in some F e

′
(M), and 0 6=

∑k
i (s

1
q

i ⊗R m
[q′]
i ), since

it was not zero in (R∞ ⊗RM) = Lim−−→ F e(M). Thus x is not F e
′
(M)-regular.

Now suppose x = x1, . . . , xn ⊂ R is F e(M)-regular for all e, and let x′ = x1, . . . , xn−1,

which is by hypothesis regular over (R∞ ⊗RM). We must show that xn is regular over

(R∞ ⊗RM)/(R∞ ⊗RM)x′ ∼= (R∞ ⊗RM)⊗R R/x′R

∼= R∞ ⊗R (M ⊗R R/x′R)

∼= R∞ ⊗RM/x′M

We then apply the identical argument to the regular element xn over the module F e(M/x′M),

which is therefore is also regular over the module (R∞ ⊗RM/x′M).

If x is a maximal regular sequence over F e(M) for some specific e, and y is a maximal

regular sequence over F e(M) for all e, clearly |x| ≥ |y|. Hence In light of lemma 3.2.9, we

can compare c depthR∞(R∞ ⊗RM) to s depthR(M).

Theorem 9. Let R be an F -pure Noetherian ring of characteristic p > 0, let R∞ be its

perfect closure, and let M be a finitely generated R-module. Then c depthR∞(R∞ ⊗R M)

is finite, and more specifically

s depthR(M) ≥ c depthR∞(R∞ ⊗RM)
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In particular, if M = R/I is a cyclic module,

s depthR(R/I) ≥ c depthR∞(R∞/IR∞)

Proof. Let x′ = x
1
q1
1 , . . . , x

1
qn
n ⊂ R∞ be an (R∞⊗RM)-regular sequence. Then by properties

of regular sequences [Nor76, Theorem 5.1.3], x := x1, . . . , xn ⊂ R ⊆ R∞ is (R∞ ⊗R M)-

regular as well. By lemma 3.2.9, x is F e(M)-regular for all e. Hence any maximal (R∞⊗R

M)-sequence can have at most the length of s depthR(M) = depthR
(
F e(M)

)
for e� 0.

The particular case is true since R∞ ⊗R R/I ∼= R∞/IR∞.

The particular case of the cyclic c depthR∞(R∞/IR∞) in this theorem can be proven

using a different technique. We include an alternate proof here here in order to display this

differing point of view and the different techniques it incorporates. Again we begin with

similar lemma.

Lemma 3.2.10. Let R be an F -pure Noetherian ring of characteristic p > 0, and let R∞

be its perfect closure. Let I ⊂ R be an ideal, and let x = x1, . . . , xn ⊂ R be a finite sequence.

Then the following are equivalent:

1. x is an R∞/IR∞ - regular sequence.

2. x is an R∞/I [q]R∞ - regular sequence for all q.

3. x is an R/I [q] - regular sequence for all q.

Proof. 1⇒ 2 : We proceed by induction on the length of x. If |x| = 1, suppose the singleton

x is not R∞/I [q]R∞ - regular for some q and zx ∈ I [q]R∞ for some z /∈ I [q]R∞, and hence

z
1
q /∈ IR∞. Then z

1
q x

1
q ∈ IR∞ and x

1
q is not IR∞ - regular, hence neither is x by properties

of regular elements.

Suppose the statement is true for sequences of length ≤ n − 1, and |x| = n. Let
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x′ = x1, . . . xn−1 (i.e. the same sequence as x but without the last element), which is

regular over R∞/I [q]R∞ for all q by hypothesis. But suppose for some q, xn is not regular

over (I [q],x′)R∞ with zxn ∈ (I [q],x′)R∞. Then z
1
q x

1
q
n ∈ (I, (x′)

[ 1
q

]
)R∞. Then x

[ 1
q

]
is not a

regular R∞/IR∞ sequence, and neither is x by properties of regular sequences.

2⇒ 3 : We again proceed by induction on the length of x. If |x| = 1, suppose the

singleton x is not R/I [q] - regular for some q, and for some z /∈ I [q] we have zx ∈ I [q] =

I [q]R∞ ∩ R, with this equality due to F -purity. Hence zx ∈ I [q]R∞ with z ∈ R∞ \ I [q]R∞.

Then x is not regular over R∞/I [q]R∞.

Now suppose the statement is true for sequences of length ≤ n − 1, and |x| = n. Let

x′ be as above. Suppose for some q, xn is not regular over (I [q],x′) with z /∈ (I [q],x′) and

zxn ∈ (I [q],x′) = (I [q],x′)R∞ ∩ R (again due to F -purity). Now zxn ∈ (I [q],x′)R∞ with

z ∈ R∞ \ (I [q],x′)R∞. Hence x is not regular over R∞/I [q]R∞.

3⇒ 1 : Again we first suppose that |x| = 1 and the singleton x is not R∞/IR∞ - regular.

Let z
1
q x ∈ IR∞ for some z

1
q ∈ R∞ \ IR∞. Then zxq ∈ I [q]R∞ ∩ R = I [q] (F -purity), with

z /∈ I [q]. Hence xq is not R/I [q] - regular and neither is x by properties of regular elements.

Let the statement be true for sequences of length ≤ n − 1, and |x| = n. Let x′ be

as above. Suppose xn is not regular over R∞/(I,x′)R∞ with z
1
q xn ∈ (I,x′)R∞ for z

1
q ∈

R∞ \ (I,x′)R∞. Then z ∈ R \ (I [q],x′[q]), but zxqn ∈ (I [q],x′[q])R∞ ∩ R = (I [q],x′[q]), due

to F -purity. Then x[q] is not a regular R/I [q] sequence, and neither is x by properties of

regular sequences.

We now can prove the particular case, where the proof uses identical reasoning. This

proof can invoke either lemma 3.2.9 or lemma 3.2.10.

Theorem 10. Let R be an F -pure Noetherian ring of characteristic p > 0, let R∞ be its

perfect closure, and let I ⊂ R be an ideal. Then c depthR∞(R∞/IR∞) is finite, and in

particular
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s depthR(R/I) ≥ c depthR∞(R∞/IR∞)

Proof. Let x′ = x
1
q1
1 , . . . , x

1
qn
n ⊂ R∞ be an R∞/IR∞-regular sequence. Then by properties

of regular sequences, x := x1, . . . , xn ⊂ R ⊆ R∞ is R∞/IR∞-regular as well. By either

lemma 3.2.9 or lemma 3.2.10, x is R/I [q]-regular for all q. Hence any maximal (R∞/IR∞)-

sequence can have at most the length of s depthR(R/I) = depthR(R/I [q]) for q � 0.

We now return to the case where M is an arbitrary finitely generated R-module. After c

depth, the next largest depth value of (R∞⊗RM) over R∞ is the Koszul depth. Somewhat

surprisingly we find that it coincides with our new notion.

Before we discuss our next result, we make note of some notation used throughout its

proof. If for some q, y ⊂ R
1
q ⊆ R∞ is some finite sequence (perhaps even y ⊂ R), we can

construct the koszul complex K•(y;F e
′
(M)) for any e′ ≥ e, since R

1
q ⊆ R

1
q′ . But we can

also construct K•(y;R∞⊗RM). Since both such complexes are constructed from the same

finite sequence y, the matrices defining the differentials dj are identical in each construction.

Therefore, when we discuss the differentials for the Koszul complex over F e(M) we write

dqj , while the differentials over R∞ ⊗RM are denoted d∞j .

Similarly, when we discuss an arbitrary element of a direct sum of copies of F e(M) we

write z[q] or y[q]. While their images in the corresponding direct sum of copies of R∞⊗RM

are are denoted z[∞] and y[∞] respectively.

Lastly, before we state our next theorem, we require a lemma.

Lemma 3.2.11. Let (R,m) be an F-pure Noetherian local ring of characteristic p > 0, let

(R∞,m∞) be its perfect closure, and let M be a finitely generated R-module. Then,

k depthR∞(R∞⊗RM) = sup{k grR∞
(
m

[ 1
q

]
R∞, (R∞⊗RM)

)
} for all e ∈ N, where q = pe.

In particular if M = R/I is a cyclic module, then

k depthR∞(R∞/IR∞) = sup{k grR∞(m
[ 1
q

]
R∞, R∞/IR∞)} for all e ∈ N, where q = pe.
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Proof. We know that k depthR∞(R∞ ⊗R M) = sup{k grR∞
(
I, (R∞ ⊗R M)

)
}, where I ⊂

R∞ is any finitely generated sub-ideal. We therefore must show that the ideals m
[ 1
q

]
R∞

determine the Koszul depth.

Recall from above that for ideals I ⊆ J ⊂ R∞, we have k grR∞(I,M) ≤ k grR∞(J,M).

Let I = (y
1
q1
1 , . . . , y

1
qn
n ) ⊂ R∞ be a finitely generated ideal. Then I ⊆ m∞ since (R∞,m∞)

is a local ring. Letting q ≥ max{qi}, we see that I ⊆ m
[ 1
q

]
R∞. Hence for any finitely

generated I ⊂ R∞, we have k grR∞(I,M) ≤ k grR∞(m
[ 1
q

]
R∞,M)

)
for q � 0, since it is a

sub-ideal. Therefore sup{k grR∞
(
I, (R∞⊗RM)

)
} is achieved by ideals of the form m

[ 1
q

]
R∞.

The particular M = R/I scenario holds since R∞ ⊗R R/I ∼= R∞/IR∞.

We are now ready to prove the relationship between k depthR∞(R∞⊗RM) and s depthR(M).

Theorem 11. Let (R,m) be an F-pure Noetherian local ring of characteristic p > 0, let R∞

be its perfect closure, and let M be a finitely generated R-module. Then k depthR∞(R∞⊗R

M) is finite, and more specifically

k depthR∞(R∞ ⊗RM) = s depthR(M)

In particular if M = R/I is a cyclic module, then

k depthR∞(R∞/IR∞) = s depthR(R/I)

Proof. To show k depthR∞(R∞ ⊗R M) ≥ s depthR(M), let x = x1, . . . , xn be minimal

system of generators for m. We claim that k grR∞
(
(x)R∞, (R∞ ⊗R M)

)
≥ s depthR(M),

which will prove the inequality, since k depthR∞(R∞⊗RM) ≥ k grR∞
(
(x)R∞, (R∞⊗RM)

)
.

To prove this claim, let depthR
(
F e(M)

)
≥ d for all e, and let j > n − d. Fix e, and

q = pe. Recall that since R is Noetherian, k depthR(F e(M)) = depthR(F e(M)). Thus

Hj

(
x;F e(M)

)
= 0, and we must also show Hj

(
x; (R∞ ⊗R M)

)
= 0. Fix z[∞] ∈ ker(d∞j ).
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Then z[q] ∈ ker(dqj). By exactness at this j-th homology group, there exists a non-zero

y[q] ∈
(
F e(M)

)( n
j+1) such that dqj+1(y[q]) = z[q]. By F -purity of R, we have an injection

F e(M)(
n

j+1) ↪→ (R∞⊗RM)(
n

j+1), hence the image y[∞] in (R∞⊗RM)(
n

j+1) is non-zero. But

now d∞j+1(y[∞]) = z[∞].

Since z[∞] ∈ ker(d∞j ) was chosen arbitrarily, therefore ker(d∞j ) = image(d∞j+1), and

Hj

(
x; (R∞ ⊗RM)

)
= 0.

To show the reverse inequality, again let x = x1, . . . , xn be minimal system of generators

for m, and recall that k depthR∞(R∞ ⊗R M) = sup{k grR∞
(
(x)

[ 1
q

]
R∞, (R∞ ⊗R M)

)
} by

lemma 3.2.11. We claim that for any e, k grR∞
(
(x)

[ 1
q

]
R∞, (R∞⊗RM)

)
≤ depthR

(
F e(M)

)
,

where again q = pe. Hence k depthR∞(R∞ ⊗RM) is finite, and since the statement is true

for e� 0, the inequality is true.

To prove this claim, fix e. Let k grR∞
(
(x)

[ 1
q

]
R∞, (R∞ ⊗R M)

)
= d, and j > n − d,

whereby Hj

(
x

1
q ; (R∞⊗RM)

)
= 0. We must show that Hj

(
x;F e(M)

)
= 0 as well, where x

acts on the left, which is equivalent to right action by x
1
q . Therefore, we can equivalently ask

whether Hj

(
x

[ 1
q

]
;F e(M)

)
= 0 via right action. Fix z[q] ∈ ker(dqj), whereby z[∞] ∈ ker(d∞j ).

Then z[∞] = 0 ∈ coker(d∞j+1) by exactness of H•
(
x

1
q ; (R∞⊗RM)

)
at the j-th position. But

coker(d∞j+1) = coker(dqj+1 ⊗R 1R∞) = coker(dqj+1) ⊗R R∞, and since R is F -pure we have

an injection coker(dqj+1) ↪→ coker(dqj+1) ⊗R R∞. Since z[∞] = 0 in the image of this map,

therefore its preimage z[q] = 0 as well.

Since z[q] ∈ ker(dqj) was chosen arbitrarily, H•
(
x;F e(M)

)
is exact at the j-th position.

The particular case is true since R∞ ⊗R R/I ∼= R∞/IR∞.

Combining the previous results, we now have the comparison:
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k depthR∞(R∞ ⊗RM) = s depthR(M) ≥ c depthR∞(R∞ ⊗RM)

And for cyclic M = R/I, we have:

k depthR∞(R∞/IR∞) = s depthR(R/I) ≥ c depthR∞(R∞/IR∞)

In order to find a condition under which this last inequality is an equality, currently we

require a further supposition on our rings. Namely, we require rings which satisfy countable

prime avoidance, which we introduce above. Alternately, a specific application of the prime

avoidance lemma is sufficient.

Theorem 12. Let (R,m) be an F-pure Noetherian local ring of characteristic p > 0, and

let M be a finitely generated R-module. If either of the following two conditions hold:

1. R satisfies countable prime avoidance

2.
⋃⋃

e

AssR
(
F e(M)/F e(M)y

)
contains finitely many prime ideals, where y ⊂ R is a

maximal (R∞ ⊗RM) sequence in R∞

then,

s depthR(M) = c depthR∞(R∞ ⊗RM)

In particular if M = R/I is a cyclic module, if either of the following two conditions

hold:

1. R satisfies countable prime avoidance

2.
⋃⋃

e

AssR
(
R/(I,y)[q]

)
contains finitely many prime ideals, where y ⊂ R is a maxi-

mal (R∞/IR∞) sequence in R∞

then,

s depthR(R/I) = c depthR∞(R∞/IR∞)
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Proof. We have already shown that s depthR(M) ≥ c depthR∞(R∞ ⊗R M). In order to

prove the converse, suppose that s depthR(M) > c depthR∞(R∞ ⊗R M) = d. Let y =

y1, . . . , yd ⊂ R be a maximal (R∞⊗RM) sequence. Then for all e, depthR
(
F e(M)/F e(M)y

)
>

0 = c depthR∞
(
(R∞⊗RM)/(R∞⊗RM)y

)
. We claim that m =

⋃⋃
e

AssR
(
F e(M)/F e(M)y

)
.

Note that this union consists of at most countably many prime ideals since it is a countable

union of finite sets.

Clearly the union is contained in m, since each such associated prime ideal is a sub-

ideal of the maximal ideal in a local ring. Conversely, suppose that there exists some

z ∈ m \
⋃⋃

e

AssR
(
F e(M)/F e(M)y

)
. Then z is not contained in any associated prime of

F e(M)/F e(M)y for any e. Hence z is regular over F e(M)/F e(M)y for all e. Then {y, z} is

a right regular F e(M)-sequence for all e, and hence it is (R∞⊗RM)-regular by lemma 3.2.9.

But this fact contradicts the maximality of y.

Now suppose either condition of the theorem holds. Since m is contained in this union

of prime ideals, then m ⊆ P for some P ∈ AssR
(
F e(M)/F e(M)y

)
and for some e. But

since m is maximal, m = P . We now have the maximal ideal of R shown to be an associated

prime of F e(M)/F e(M)y, and hence depthR
(
F e(M)/F e(M)y

)
= 0. We have therefore

contradicted our assumption that depthR
(
F e(M)/F e(M)y

)
> 0.

The particular case is true since R∞ ⊗R R/I ∼= R∞/IR∞, and
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F e(R/I)/F e(R/I)y = (R
1
fe ⊗R R/I)/(R

1
fe ⊗R R/I)y

∼= (R
1
fe ⊗R R/I)⊗R R/yR

∼= R
1
fe ⊗R (R/I ⊗R R/yR)

∼= R
1
fe ⊗R

(
R/(I + (y)

)
∼= R

1
fe ⊗R R/(I,y)

∼= R
1
fe /
(
R

1
fe (I,y)

)
∼= R/(I,y)[q]

In sum, if R is a Noetherian F -pure ring of characteristic p > 0, R∞ is its perfect closure,

and M is an R-module, we always have:

k depthR∞(R∞ ⊗RM) = s depthR(M) ≥ c depthR∞(R∞ ⊗RM)

Additionally, if either condition of theorem 12 holds,

k depthR∞(R∞ ⊗RM) = s depthR(M) = c depthR∞(R∞ ⊗RM)

In particular if M = R/I is a cyclic module, then

k depthR∞(R∞/IR∞) = s depthR(R/I) ≥ c depthR∞(R∞/IR∞)

And if either condition of theorem 12 holds,

k depthR∞(R∞/IR∞) = s depthR(R/I) = c depthR∞(R∞/IR∞)
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Appendix A:

Let S be a commutative ring with identity, not necessarily Noetherian, and let M be an

S-module.

A.1 Tensor Products

We begin with the definition of the tensor product of two S-modules M and N over S,

which is written M⊗SN . As a group, this new module consists the free abelian group G on

pairs (m,n) which are subject to conditions. We define a subgroup H of this group defined

by the following generators,

• (m+m′, n)− (m,n)− (m′, n)

• (m,n+ n′)− (m,n)− (m,n′)

• (m · s, n)− (m, s · n)

where m,m′ ∈ M , n, n′ ∈ N , and s ∈ S. The tensor product of M and N over S is now

defined M ⊗S N := G/H. By construction, this resulting module now has the following

three properties (which taken together are regarded as bilinearity over S):

• (m+m′, n) = (m,n) + (m′, n)

• (m,n+ n′) = (m,n) + (m,n′)

• (m · s, n) = (m, s · n)

M ⊗S N is an S-module as well, as multiplication is performed in accordance with the

actions defined over M and N . Tensor products are fundamental to commutative algebra,

and feature centrally in constructions above. From them we define the Frobenius functor

in characteristic p > 0. Functors over S-modules will appear shortly, while the Frobenius

functor in particular is defined above.
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Arbitrary elements of M⊗SN are of the form
∑k

i=1(mi⊗S ni), which sometimes cannot

be written in simpler terms if for each i 6= j, mi 6= mj and ni 6= nj . Any isolated term of

the form (m⊗S n) is referred to as a simple tensor.

Tensor products of S-modules satisfy associativity. That is, (L ⊗S M) ⊗S N ∼= L ⊗S

(M ⊗S N) for any S-modules L,M and N . Additionally they satisfy symmetry, whereby

M ⊗S N ∼= N ⊗S M .

A.2 Hom

An S-linear map, or an S-homomorphism, of S-modules is a function ϕ : M → N for which

ϕ(sm + s′m′) = sϕ(m) + s′ϕ(m′) for s, s′ ∈ S and m,m′ ∈ M . We write HomS(M,N) to

denote the collection of all S-homomorphisms from M to N . This set is itself a module

over S, where addition and scalar multiplication are given by,

• (ϕ+ ϕ′)(m) := ϕ(m) + ϕ′(m) for all m ∈M

• (s · ϕ)(m) := s · ϕ(m) = sϕ(m) = ϕ(sm) for s ∈ S, and for all m ∈M

A.3 Functors, Tensor, Hom

We now define functors in the category of modules for over a ring S. Omitting a full

introduction to category theory, we merely concern ourselves with functors which map to

and from the category of S-modules. We first state the general definitions, then we focus

on the specific functors relevant to the current project, using the above discussion of Hom

and tensor products.

Let ModS and S Mod denote the set of all right and left S-modules respectively. Ad-

ditionally, the notation S ModS denotes all modules both left and right defined over S. It

should be noted, however, that left and right action by S may not be identical, as is the

case in the Frobenius functor. Lastly, if ϕ : R→ S is a ring homomorphism, we can discuss
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S ModR or R ModS which are respectively left or right defined over S and R. Throughout,

whenever the difference in action is relevant, it is always mentioned explicitly.

Without loss of generality, in the present section we will discuss S Mod, while all defi-

nitions correspondingly generalize to all module categories mentioned in the previous para-

graph.

A functor F : S Mod→ S Mod is a mapping which associates each M ∈ S Mod to some

other F (M) ∈ S Mod. If M,N ∈ S Mod and f : M → N is any map of S-modules (called a

morphism), then F associates f to a new map F (f) : S Mod→ S Mod such that,

1. F (id
S Mod) = id

S Mod, which is the identity map

2. If g : N → L is another map of S-modules, one and only one of the following is true:

(a) F preserves the action of f and g, and we obtain:

F (g ◦ f) = F (g) ◦ F (f)

(b) F reverses the action of f and g, and we obtain:

F (f) : F (N)→ F (M)

F (g) : F (L)→ F (N)

F (g ◦ f) = F (f) ◦ F (g)

If F satisfies 2a), then F is called a covariant functor. If F satisfies 2b), it is called a

contravariant functor.

Let A be a fixed S-module. Below we must define the right-derived functors ExtiS , as

well as the Frobenius functor in characteristic p > 0. In order to do so, we must first

establish tensor products A⊗S −, and the Hom functors HomS(A,−) and HomS(−, A).

For any M ∈ S Mod we can define the functor F (M) := A⊗SM , which is an S-module

as well. Tensor products are covariant, since if f : M → N is a map of S-modules, we have

F (f) := 1 ⊗S f , which is a map 1 ⊗S f : A ⊗S M → A ⊗S N . Additionally this functor is

right exact, which we define below.
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Again let A ∈ S Mod be fixed, and let M ∈ S Mod be arbitrary. We define the functor

F (M) := HomS(A,M), which represents all S-homomorphisms from A to M . This functor

is covariant, since if f : M → N is a map, F (f) : HomS(A,M) → HomS(A,N) is defined

by F (f) := f ◦ ϕ for any ϕ ∈ HomS(A,M).

Similarly, we can define F (M) := HomS(M,A) which represents all S-module homo-

morphisms from M to A, which is again itself an S-module. However, this functor is now

contravariant. If f : M → N is a map, then F (f) : HomS(N,A)→ HomS(M,A) is defined

by F (f) := ϕ ◦ f for any ϕ ∈ HomS(N,A).

Both Hom functors are left exact, which we define below.

We use the functors A⊗S− and HomS(−, A) respectively to define the Frobenius functor

over characteristic p > 0, and the right-derived functor Ext.

A.4 Direct Limits

A directed set is a set X together with a binary relation ≤ which for any A,B,C ∈ X

satisfies:

1. Reflexivity : A ≤ A

2. Transitivity : If A ≤ B and B ≤ C, then A ≤ C

3. Every two elements of X must share an upper bound. That is, if A,B ∈ X, then

there must exist some C ∈ X such that A ≤ C and B ≤ C.

The first two conditions without 3) on ≤ form a pre-order.

Let (X,≤) be a directed set, let I be some index, and let {Yi : i ∈ I} be a family of

objects in X. For every Yi ≤ Yj let gij , be a map which maps Yi to Yj . These maps gij

have the properties:

1. gii : Yi → Yi is the identity map
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2. if gij : Yi → Yj and gjk : Yj → Yk are maps for i ≤ j ≤ k, then gik := gjk ◦ gij which

maps Yi to Yk

The pair (Yi, gij) is called a directed system.

Let (Yi, gij) be a directed system. The direct limit of the system, Y = lim−→ Yi, is an

element of the set X whereby for each Yi we have a map ϕi : Yi → Y where for each

Yi ≤ Yj , ϕi = ϕj ◦ gij , where“◦” denotes the composition map (this notation will be used

differently below to denote an action by rings on a module. It will be clear throughout

which usage is being discussed). Furthermore, suppose there exists some other Y ′ ∈ X such

that there exists a family of maps {ϕ′i}i∈I from each Yi to Y ′ with the same such properties

as {ϕi}i∈I . Then there exists a unique map ψ : Y → Y ′ such that ϕ′i = ψ ◦ ϕi for all

i. The direct limit Y may not exist given a category X, but it will exist for our directed

systems throughout.

A.5 Ext

We now establish the ExtiS functors, which are referred to as a right-derived functor for

reasons that will be apparent below. Left-derived functors can be defined using similar

machinery, however they will not feature in our discussion.

Before proceeding, we note that our point of view while constructing the modules

ExtiS(S/I,M) is not unique. They can alternately be defined using injective resolutions

of S-modules in conjuctions with the covariant functor HomS(S/I,−). However we will

utilize the free resolution point of view in conjunction with the contravariant HomS(−,M)

functor.

In order to proceed we first must define chain complexes. Let S be a commutative ring.

A chain complex C• of modules over S is a sequence,

. . .
di+2−→Mi+1

di+1−→Mi
di−→Mi−1

di−1−→ . . .
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where image(di+1) ⊆ ker(di) for all i. Hence each composition map has the property

di ◦ di+1 = 0. The maps di are referred to as differentials. Furthermore, if image(di+1) =

ker(di) for some i, we say that C• is exact at the ith position. If C• is exact for all i, then

it an exact sequence. Note that we indexed our Mi in a descending manner, however the

indexing can ascend as well.

Given a chain complex C• of S-modules, since image(di+1) ⊆ ker(di) we define the i-th

homology module of C• by the quotient:

HC
i := ker(di)/image(di+1)

In particular if C• is exact at the i-th position, note that HC
i = 0. If C• is an exact sequence,

all the homology groups are 0.

Letting A be any S-module, we can now define right and left exactness respectively

for tensor products A ⊗S − and the Hom functors HomS(−, A) and HomS(A,−). Let

0 → M2 → M1 → M0 → 0 be an exact sequence of S-modules, called a short exact

sequence. Then the following chain complexes are all exact at the 0-th position:

1. . . .→ A⊗S M1 → A⊗S M0 → 0

2. 0→ HomS(A,M2)→ HomS(A,M1)→ . . .

3. 0→ HomS(M0, A)→ HomS(M1, A)→ . . .

1) describes the right exactness of tensor products, while 2) and 3) describe the left

exactness of the Hom functors. This third condition in particular is necessary in our con-

struction of Ext modules, since we will be applying the contravariant Hom to free resolutions

of S/I for ideals I ⊂ S.

Let S be a ring and let M be an S-module. An augmented free resolution of M is an

exact sequence of free modules,

. . . −→ Sn1 −→ Sn0 −→M −→ 0
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where each Sni is a free module with the corresponding free ranks ni. For arbitrary S and

M , the ni’s may be infinite cardinals. But for Noetherian S, and if M is finitely generated

over S, then each ni ∈ N. Furthermore, the modules Sni may or may not terminate, i.e.

possibly Sni = 0 for i � 0. In this case, we say M has finite projective dimension. If no

resolution exists with this property, we say M has infinite projective dimension.

We require one minor adjustment of our augmented free resolution of M before we

define the functors ExtiS . We omit M in the last position, thus obtaining the deleted free

resolution,

. . . −→ Sn1 −→ Sn0 −→ 0

which is still exact in each position, except the 0-th homology group which is isomorphic to

M . We will use this latter sequence in our forthcoming construction.

It is a fact that if S is a Noetherian, and M is a finitely generated S-module, there always

exists a minimal free resolution. By minimal, we mean that if C• is such a resolution,

then each Sni cannot be generated by any strictly smaller collection of generators while

maintaining that C• is a free resolution.

Now let I ⊂ S be an ideal. Finally we can define the functors ExtiS , and more concretely

the modules ExtiS(S/I,M) for some S -module M , and i ∈ N. Let

. . .
d2−→ Sn1

d1−→ S
ε−→ S/I −→ 0

be a free resolution of the cyclic module S/I (since S/I is a cyclic module, meaning it

requires only one generator, note that n0 = 1). As mentioned above, we will need the

deleted resolution:

. . .
d2−→ Sn1

d1−→ S −→ 0

where again HC•
0
∼= S/I.

If M is any S-module, we now apply the contravariant functor F (−) := HomS(−,M)

to this deleted free resolution of S/I. The action of this functor now reverses the direction
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of the chain complex. The ascending index extends to the right, hence the term ”right

derived” functor we use to describe Ext. Due to left exactness, the chain is now:

0 −→ HomS(S,M)
F (d1)

−−−−→ HomS(Sn1 ,M)
F (d2)

−−−−→ . . .

This resulting complex will no longer be exact in general, and the resulting non-zero

homology modules are the goal of this construction. We use them to measure certain features

of how an ideal I ⊂ S acts on M . The i-th Ext functor ExtiS(S/I,−) : S Mod → S Mod

maps the module M to the i-th Ext module ExtiS(S/I,M), which is defined as the i-th

homology module of this complex.

One particular homology module of note is the 0-th Ext0
S(S/I,M), which is isomorphic

to HomS(S/I,M).

A.6 Closure Operator

Closure operators are a general notion used throughout mathematics, and they feature

prominently in the study of ideals in commutative rings. Recall that given some set X,

a closure operator c is an operation which maps subsets U ⊆ X to some other ”c-closed”

U c ⊆ X. Furthermore, for any U, V ⊆ X, we have:

1. U ⊆ U c

2. (U c)c = U c

3. If U ⊆ V , then If U c ⊆ V c

We see in [Eps11] that closure operations on ideals in rings are a thriving subject of study

in commutative algebra. Throughout, we focus on the Frobenius closure in characteristic

p > 0.
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