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Abstract. An enormous proliferation of computer technology in modern societies has
produced a severe information overload. The navigation through the masses of available
information in order to derive desired knowledge is becoming increasingly difficult.
This creates a demand for intelligent systems capable of assisting data analysts in
extracting goal-oriented knowledge from large volumes of data. This paper presents
a multistrategy methodology and a system, INLEN, for knowledge discovery in large
relational databases. The system integrates data base, knowledge base and machine
learning technologies. It offers a data analyst an integrated interface and a wide range
of knowledge generalion operators, as described in the Inferential Theory of Learning.
Presented ideas are illustrated by results from experiments with INLEN.

1. Introduction

The current information age is characterized by an enormous proliferation of data generated
and stored about all kinds of human activities. An increasing proportion of this data flow
is recorded in the form of comnputer databases. This makes the data easily accessible and
analyzable by computer technology. The explosive growth of databases has not, however,
been matched with a parallel development of powerful methods for deriving knowledge from
them. Although existing data analysis tools are very useful and important, they continue
to be oriented primarily toward extraction of quantitative statistical characteristics. These
tools include determination of statistical correlations, cluster analysis, numerical taxonomy,
regression analysis, stochastic models, times series analysis, nonlinear estimation techniques,
relaxation techniques, various curve-fitting methods, and other.

The above conventional techniques seem to be particularly useful for such tasks as cre-
ation of statistical data summaries, fitting equations to data, revealing data organization
on the basis of given numerical measures, developing mathematical data models, etc. Their
results facilitate useful data interpretations, and can help to gain important insights into the
processes that generated the data. These interpretations and insights constitute the ultimate
knowledge sought for by a data analyst. Yet, they have to be developed by a human data
analyst. As the quantity of available data increases, the complexity of these processes may
outstrip capabilities of a human data analyst.

Although, traditional techniques have important practical applications in data mining,
they suffer from inherent limitations. For example, a statistical data analysis technique can
discover a correlation between given variables, but it cannot produce a conceptual char-
acterization or causal explanation why such a correlation exists. Neither it can develop a



284 R.S.Michalski/Seeking Knowledge in the Deluge of Facls

justification of this correlation in terms of higher-level concepts or laws. A statistical anal-
ysis can determine a central tendency and variability of various properties, and a regression
analysis can fit a complex curve to a set of data points. These techniques cannot, how-
ever, develop a qualitative characterization of the data points in abstract terms, or draw an
analogy between this characterization and some regularity in another domain. They cannot
generate knowledge from past experience and use it for solving new problems.

A numerical taxonomy technique can create a-classification of entities, and specify a
nurmnerical similarity among the entities assembled into the same or different classes. It
will not hypothesize, however, reasons for the entities being in the same class, or build
qualitative descriptions of the classes created. Attributes that define the similarity, as well
as the similarity measures, must be defined by a data analyst in advance. These techniques
cannot generate relevant attributes and appropriate similarity measures by themselves. All
the above problems require complex symbolic reasoning processes that relate high level
concepts and goals of the analysis to available quantitative measures, and able to performs
data transformations relevant to these goals.

In view of the above, there has been a fast growing interest in developing new tools for data
mining and knowledge discovery, e.g., Michie, 1991; Pawlak, 1991; Piatetsky-Shapiro, 1991
and 1993; Michalski et al., 1992, Zembowicz and Zytkow, 1992; Zytkow, 1992; Ziarko,1993:;
Fayyad and Uthurusamy, 1995. This paper describes a new methodology for assisting data
analyst in performing some of the above mentioned data exploration tasks.

2. Applying Machine Learning To Data Mining

2.1. Rule learning from examples

This paper discusses the application of symbolic methods of machine learning and discovery
to problem of data mining. It shows that these methods are able to perform new type of
operations on data, and therefore widen the scope of data exploration tasks that can be
autornated or semi-automated. In particular, they can perform conceptual date analysis,
that is, derive high-level data descriptions and discover qualitative patterns in data. Below
is a brief review some of these methods in the context of the data mining applications.

One class of machine learning methods that are potentially useful for data mining are
based on methods for inductive learning from examples. Given a set of examples of differ-
ent classes (or concepts), and problem relevant knowledge (“background knowledge”), an
inductive learning method hypothesizes a general description of each class. The description
is usually expressed as a set of decision rules or as a decision tree.

A decision rule can have different forms; here we will assume the following form:

CLASS <= CONDITION,

where CLASS denotes a class or a concept that is assigned to an entity, if that entity
satisfies the CONDITION. The CONDITION is a conjunction of elementary conditions on
the values of single attributes, or a disjunction of such conjunctions {a DNF form). Here,
we also assume that if the CLASS needs a disjunctive description, then several conjunctive
rules are associated with the same CLASS. For example, Figure 1 gives an example of a
disjunctive description of Class ! in the form of two rules.

Class 1 <= jacket color is red, green or blue &
head shape is round or octagonal

Class 1 <= head shape is square and jacket color is yellow

Figure 1. A two-rule description of Class 1
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These rules characterize a class of robot-figures used in the EMERALD system of learning
and discovery programs. Paraphrasing, “A robot belongs to Class ], if the color of its jacket
is red, green or blue, and his head is round or octagonal; or, alternatively, if the color of its
jacket is yellow and its head is square.”

In a decision tree representation, nodes correspond to attributes, branches stemming from
the nodes correspond to attribute values, and leaves to individual classes (e.g., Quinlan,
1986). A decision tree can be simply transformed into an equivalent set of decision rules (a
rule set) by traversing all paths from the root to individual leaves. The opposite process,
that is, transforming a rule set into a decision tree is not so direct. The reason is that a
rule representation is more powerful than a decision tree, in the sense that the decision tree
that is equivalent to a given rule set may contain superfluous attributes and thus be more
complex (e.g., Michalski, 1990). It should also be noted that the decision tree derived from
decision rules is often simpler than the decision tree derived directly from examples (Imam

and Michalski, 1993).

The EMERALD system, mentioned above, combines five programs exhibiting different
learning and discovery capabilities (Kaufman, Michalski, and Schultz, 1989; and Kaufman,
Schultz and Michalski, 1991). These capabilities include decision rule learning from ex-
amples, learning distinctions between structures, conceptual clustering, predicting object
sequences, and deriving equations characterizing data about physical processes. The rules
in Figure 1 were generated by the rule learning program (version AQ-15; Michalski, Hong
and Mozetic, 1986) from a set of “positive” and “negative” examples of robot-figures.

Most inductive rule learning methods learn attributional descriptions of entities in a class,
1.e., descriptions that involve only binary or multiple-valued attributes. Some methods learn
structural descriptions, which characterize entities in terms of both, attribute values, as
well as relationships that hold among components of the entities. Such relationships are
represented by multi-place predicates (Michalski, 1983). For data mining, most directly
applicable are programs for learning attributional descriptions, because typical databases
- characterize entities in terms of attributes.

The input to an attributional learning program include a set of examples for each decision
class, and background knowledge relevant to the learning problem. The examples are in the
form of vectors of attribute-value pairs associated with a given decision class. In many
cases background knowledge (BK) is limited to the information about the legal values the
attributes, their type (the scale of measurement), and the preference criterion for choosing
among candidate hypotheses. Such a criterion is defined by the user in advance. In addition
to BK, a learning method may have a representational bias, e.g., may constrain the form of
descriptions to only a certain type of expressions, e.g., single conjunctions, decision trees,
sets of conjunctive rules, DNF expressions, etc. In some methods, BK may include more
information, e.g., constraints on the interrelationship between various attributes, rules for
generating higher level concepts or attributes, and an initial hypothesis (e.g., Michalski,
1983). Learned rules are usually consistent and complete with regard to the input data.
This means that they completely and correctly classify all the original “training” examples.
Section 4 presents example solutions from the inductive concept learning program AQ 15.
In some applications, especially those involving learning rules from noisy data or learning
flexible concepts (Michalski, 1990), it may be advantageous to learn descriptions that may
be incomplete and /or inconsistent (Bergadano et al, 1990).

Attributional descriptions can be easily visualized by mapping them into a set of cells
in a certain diagram. Such diagram is a planar representation of a multidimensional space

spanned over the set of attributes (Michalski, 1978; Wnek et al., 1990). For example, Figure
2, shows a diagrammatic visualization of the rules from Figure 1.

The diagram was generated by the visualization program DIAV (Wnek, et al., 1990). Each
cell in the diagram represents one combination of values of the attributes. For example. the
cell marked by an X represents the vector: (HeadShape=S, Holding=S, Jacket Color=R,
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IsSmiling=F). The four darker-shaded areas, marked Class 1 (A), represent rule A, and the
lighter-shaded area, marked Class 1 (B), represents rule B. In such a diagram, conjunctive
rules correspond to regular arrangements of cells and can be easily recognized (Michalski,
1978). It should be noted that this example is used only for illustration. In real-world

scenarios, the number of attributes and the size of the data set may be very large. However,
the same regularities apply.

52 "Class 2.

Class 1
(B)

Rule A: Class 1 <:: Jacket Color is Red, Green or Blue & Head
Shape is Round or Octagonal

Rule B: Class 1 <:: Head Shape is Square and Jacket Color is
Yellow

Figure 2. Visualization of rules from Figure 1

The diagrammatic visualization can be used for displaying the target concepi (i.e., the
concept to be learned), the training examples (the examples and counter-examples of the
concept), and the actual concept learned by a method. By comparing the target concept
with the learned concept, one can determine the error area, i.e., the area containing all
examples that would be incorrectly classified by the learned concept. The diagrammatic
visualization method can illustrate any kind of attributional learning process. Since rows of
data tables can be viewed as points in a multidimensional space, this visualization technique
can be useful for representing data and learned symbolic descriptions.

A program for learning concept descriptions from examples can be used for two classes of
data mining problems:

- determining differences between different groups of entities in a data set (i.e., learn-
ing a discriminate concept description}). Such differences are expressed as symbolic
descriptions or rules.

- developing descriptions characterizing one or more groups of entities (i.e., learning a
characteristic concept description).
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Section 3 will illustrate these two types of descriptions. More advanced problems in the area
of learning concepts from examples include:

® Learning from incorrect date, i.e., learning from examples that may contain of errors or
noise,

e Learning from incomplete dala, i.e., learning from examples in which values of some
attributes are unknown.

o Learning flexible concepts, i.e., learning concepts that lack precise definition and are
context-dependent {Michalski, 1990).

2.2. Conceptual clustering

Another class of methods developed in symbolic machine learning is concerned with devel-
oping a classification of a given set of entities. The problem is similar to that considered in
traditional cluster analysis, but is defined in a more general way. Given a set of attributional
descriptions of some entities, a langnage for characterizing classes of entities (concepts), and
a cluster quality criterion, the task is to split entities to classes that maximize the cluster
quality criterion, and generate symbolic descriptions of these classes. Thus, a conceptual
clustering method seeks not only a classification {a dendrogram) but also a symbolic de-
scription of the proposed classes (clusters). In determining the quality of the classification,
the properties of the class descriptions are taken into consideration.

A conventional (“similarity-based”) clustering method groups objects into classes on the
basis of a “similarity” measure that is a function of properties (attribute values) of the
objects being compared O; and Oa:

Similarity(0,, O2) = {(properties(O;), properties(O;))

In contrast, a conceptual clustering program clusters objects on the basis of conceptual
cohesiveness that is a function of not only properties of the objects, but also of the set
of concepts C (specified by the language for characterizing classes of objects), and of the
environment E (a set of neighboring examples):

Conceptual_cohesiveness(0q,02) = f(properties(0,), properties(O;), C, E)

The conceptual_cohesiveness takes into consideration the “fit” of cluster description to the
data, the simplicity of the description, and some other elementarily criteria (Michalski, Stepp
and Diday, 1981). Section 3 gives an illustration of conceptual clustering.

2.3. Other symbolic operators on data

Methods for learning rules from examples usually assume that the examples are expressed
in terms of attributes that are given a priori. These attributes must be sufficiently relevant
to the problem, otherwise, the resulting rules will be poor. One important advantage of
symbolic methods is that they can relatively easily determine irrelevant attributes. In these
methods, an attribute is irrelevant or weakly relevant, if there is a complete and consistent
class description that does not use this attribute. Inductive learning programs such as rule-
learning AQ or decision tree learning ID3 can relatively easily cope with large number of
irrelevant attributes. '

If very many irrelevant attributes are present in a data set, the speed of a rule learning
program is affected. In such a situation, one can employ an operator that determines the
most relevant attributes in the data for the given learning task (e.g., Quinlan, 1986). Only
these attributes are used in the learning process.

There can also be many examples of the same class, more than necessary for successful
learning. In a such situation, one may apply an operator that selects the most representative
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examples of a given class. A method for determining such examples is described in (Michalski
and Larson, 1978).

In many applications, it is not easy to determine a priori what attributes are most relevant
to the problem at hand. The original attributes are usually dictated by the available mea-
surements. In such a situation, one may apply an operator that searches for new attributes
that represent certain functions or transformations of the original attributes (Bongard, 1970).
Methods for designing such operators are considered in the area of consiructive induction
(Michalski, 1983). For example, constructive induction programs, AQ 17-HCI and AQI7-
DCI, can generate new attributes by combining initially given attributes in may different
ways ( Michalski, Bleodorn and Wnek, 1991), or by detecting patterns in decision rules (Wnek
and Michalski, 1993).

3. Illustrating Data Mining Operators Via Data Ta-
ble

Many symbolic data mining operators can be illustrated by a data table (Figure 3). The
columns in such a table correspond to the initial attributes selected to characterize given
entities. FEach attribute is assigned a domuain and a iype. The domain i1s the set of all
possible values that an attribute can take on, which may include “?” (“unknown”) and N/A
(“not applicable”). The type defines the order of the values in the domain (the scale). The
attributes can be of nominal type (no order), linear type {total order), and structured type
(a hierarchical order). |

Rows in the table correspond to individual entities characterized by attributes assigned
to columns. An entry in the table can thus be a specific value of an attribute, a symbol ?
(meaning that value is unknown), or a symbol N/A, if the given attribute does not apply
to the given entity. For example, the “color” attribute applies to physical objects, but does
not apply to abstract entities such as “freedom”.

One problem of data analysis is to determine if a designated (“output”) attribute in a
table depends on other attributes. A more complex problem is to determine the form of this
relationship. The latter problem becomes a concept learning problem, if the output attribute
is nominal (its value set is unordered). In such a case, values of this attribute denote classes
whose descriptions are to be learned.

- In Figure 3, the first column corresponds to output attribute. In conceptual clustering,
there are no a priori classes to which entities belong (therefore, it is a form of “unsupervised
learning™). Figure 3 illustrates operators summarized below.

Concept learning from examples

Classes of examples are sets of rows in the table that have the same value of the output
variable. The operator determines general descriptions {rulesets) characterizing the classes
of examples.

Ezample selection

This operator selects rows in the table that correspond to the most representative examples
of different classes. One of the methods for doing this is based on choosing outstanding
representatlives.
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Original Attributes Derived Attributes

(% =
V) |

Selecting \ I M

representing Selecting represent active attributes
examples

Figure 3. An illustration of the role of different knowledge generation operators

Attribute selection

This operator selects columns that correspond to the most relevant attributes for character-
izing given classes or the differences among them. This operator can employ any of the many
criteria for evaluating the usefulness of attributes for classification (e.g., Quinlan, 1986).

Generating new attributes

The problem is to generate additional columns that correspond to new attributes generated
by a constructive induction method. These new attributes are created by using the problem
background knowledge, and/or special heuristic procedures (Michalski, Bloedorn and Wnek,
1991; Wnek and Michalski, 1993; Bloedorn and Michalski, 1996).

Conceptual clustering

The problem is to split the rows of the table to groups of rows that correspond to “conceptual
clusters”, that is sets of entities with high conceptual cohesiveness. An additional column
is added to the table that corresponds to a new “output attribute”. The values of this
attribute in the table denote the proposed class of each entity (Michalski, Stepp and Diday,
1991; Michalski and Stepp, 1993).
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Learning from imperfect data

In some situations, the entries of the data table are missing, or are incorrect. The problem is

to determine the best (e.g., the most plausible) hypothesis that accounts for all or the most
of the data.

Machine learning research has developed a large number of methods that can be used
as data mining operators. Many of these methods and their implementations have been
described in (Michalski, Carbonell and Mitchell, 1983 and 1986; Forsyth and Rada, 1986;
Kodratoff, 1988, and Kodratoff and Michalski, 1990, Michie, 1991; Shapiro, 1993). Below
we illustrate some of the knowledge generation operators employed in the INLEN knowledge
discovery system (see sec. 4). The operators are illustrated by means of a simple example
involving microcomputers from a computer museurm. Suppose we are given a data table with

there microcomputers, as shown in Figure 4.

Microcomputer |Display |RAM[ROM [Processor[No Keys

Apple IT Color_.TV[48K [10K [6502 52

Atari 800 Color_TV[48K 10K [6502 57-63
Comm. VIC 20|Color_TVI[32K |11-16K|6502A  [64-73
Txidi Sorceror |B/W.TV 48K [4K Z80 57-63
Zenith 118 Builtain [64K J1K S8080A  [64-73
Zenith 1189 Built.in 64K |8K 780 64-73
HP 85 Builtin 32K |80K [HP 92

Horizon Terminal (64K |8K Z80 57-63

Challenger B/W_TV[32K [10K 6502 53-56
0.5 11 Series |B/W-_IV 48K [10K [6502C  [53-56

TRS-80 1 B/W_TV 48K [12K |Z80 53-56
TRS-80 I11 Builtin [48K |14K {Z30 64-73

Figure 4. A Data Table with Ancient Microcomputers

Suppose now that we would like to determine a conceptual classification of the microcom-
puters in the table. This is done by applying a conceptual clustering operator, CLUSTER,
which takes data in the table in Figure 4 as one of its inputs (other inputs are value sets of
the attributes, a criterion for measuring clustering quality, and a parameter suggesting the
number of classes).

The results of applying this operator are shown in Figure 5, for the suggested number
of classes 2 and 3. The results consist of two components: an extended data table, and
a set of rules. The new data table has two additional columns: the first column indicates
the “numerical name” of the class assigned to each tuple (entity) in the generated two-class
clustering, and the second column indicates the numerical name of the class in three-class
clustering. The second component are two sets of rules: the first rule set describes classes in
the two-class clustering, and the second ruleset describes classes in the three-class clustering

(Figure 6).

Rules characterizing 2-class clustering

[Class 1] = [RAM =16K..48K]
[Class 1] <= [No Keys < 63]

[Class 2] <= [RAM = 64K] & [No Keys > 63]
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INPUT ouTPUT
Microcomputer |Display |[RAM|ROM J[Processor|No_Keys[[2-Group|3-Group
Apple 11 Color TV[48K [IOK [6502 52 1 1
Atari 800 Color TV[48K [IOK  [6502 57-63 |1 1
COmIll. VIC 20|Color TV|32K [11-16K[6502A  |64-73 1 2
Exidi Sorceror |B/W TV 48K J4K Z80 57-63 1 2
Zenith 118 Builtin |64K 1K  |8080A [64-73 |2 3
Zenith 1189 Builtin [64K |8K Z80 64-73 2 3
HP 85 Builtan 32K |80K [HP 92 1 2
Horizon Terminal [64K [SK 8D 57-63 1 2
Challenger B/W TV [32K {1I0K  [6502 53-56 1 1
0-S 11 Series B/W TV 48K [IOK [6502C [53-56 1 2
TRS-80 1 B/W TV [48K [12K |Z80 53-56 |1 1
'TRS-80 ITI Built in 48K [14dK  [Z80 64-73 |11 1

Figure 5. An extended table generated by the CLUSTER operator

Rules characterizing 3-class clustering

[Class 1} <=  [Processor = 6502 v 8080A v Z80] & [ROM =1 OK..14K]
[Class 2] <=  [Processor = 6502A v 6502C v HP]
[Class 2] <= [ROM=1K..BK] & [Display # Built inj

[Class 3] <=  [Processor = 6502 v 8080A v Z80] &
(ROM =1 K.. 8K] & {Display = Built in]

Figure 6. Rules characterizing classes created by the CLUSTER operator

Suppose now that we use the extended data table in Figure 5 as an input to a program for

learning concepts from examples. Suppose that the parameters of the operator, GENRULE,
call for determining discriminant descriptions of the classes (descriptions that use the min-

imum conditions needed to discriminate between given classes). The results are shown in
Figure 7.

Rules for a 2-class differentiation created by the GENRULE operator

[Class 1] «= [Display # Built in]
[Class 1] <= [ROM 2> 14K]
[Class 2] «= [RAM = 64K] & [No Keys = 64-73]

Rules for a 3-class differentiation created by the GENRULE operator
(Class 1] <= [Processor = Z80 v 6502] & [ROM =1 OK..14K]

Class 2] <= [Processor = 6502C v 6502A v HP]
Class 2] <= [ROM = 4K..BK] & [Display = B/W_TV v Term]

Class 3] «<== [ROM =1K..BK] & [Display = Built_in

Figure 7. Discriminant rules for old microcomputers generated by the GENRULE operator

Comparing rules in Figure 6 with those on Figure 7 (the latter were generated without
knowledge of the former), one can see that they are similar but not identical. Rules in
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Figure 7 are simpler, and express only information needed for discriminating between the
classes. The rules in Figure 6 are called characteristic descriptions; such rules may contain
the maximal number of characteristics common for a given class (Michalski, 1983). Both sets
of rules, in Figure 6 and 7, are complete and consistent with all the examples in the table in
Figure 5, i.e., they cover all examples and do not cover any counter-examples of each class.

4. INLEN: A Multistrategy System for Knowledge
Discovery

CLUSTER and RULEGEN are examples of operators that produce new knowledge from
given data and background knowledge. These operators have been described in the Inferen-
tial Theory of Learning (Michalski, 1994) as fundamental knowledge generation operators.
The theory, which views every form of learning and discovery as a search through a knowl-
edge space, has identified several other fundamental operators, generally called knowledge
transmutations, such as abstraction, explanation, similization, agglomeration, an others.

To make knowledge generation operators easily available to a data analyst, they have
been integrated into one system, called INLEN (Kaufman, Michalski and Kerschberg, 1990;
Michalski et al. 1992, Kaufman and Michalski, 1996). INLEN has integrated a wide range of
knowledge generation operators, including both symbolic operators (developed in machine
learning) and conventional statistical data analysis operators. To facilitate the application
of these operators, INLEN combines a relational data base technology with a krnowledge base
technology. The database technology is used for storing and updating data tables, and the
knowledge base technology is used for storing and updating rules.

A general diagram of INLEN is presented in Figure 8. (The name is an acronym from
inference and learning.)

Database
Maintanance
: Operators
Knowledge (DMO)
Generation
Operators

(KGO) Knowledge
Maintanance
Operators

(KMO)

Figure 8. A general diagram of the INLEN system for conceptual data exploration

The system offers a data analyst three classes of data manipulation and knowledge gen-
eration operators:

e DMOQ: Database Maintenance Operators. These operators are conventional operators
for creating, modifying and accessing data tables.
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o KMO: Knowledge Maintenance Operators. These operators play a similar role as the
DMO, but they apply to the rules and other structures in the knowledge base.

» KGO: Knowledge Generation Operators. These operators perform symbolic and numer-
ical data mining operations on data and knowledge to produce new knowledge. They

are based on machine learning and inference programs, as well as on conventional data
analysis techniques.

INLEN also includes data and knowledge visualization operators for visualizing results of
data mining. The diagramrmnatic visualization method, described briefly above, is used for
displaying effects of symbolic operations on discrete data. '

The KGOs operators are the heart of the INLEN system. To facilitate their use, the
concept of a knowledge segment was introduced. A knowledge segment is a structure that
links some table or tables from the database with some rules from the knowledge base. Such
knowledge segments are both inputs and outputs of KGO operators. Thus, KGOs can be
viewed as modules for performing inferences on knowledge segments in order to create new
knowledge segments. An execution of a KGO usually requires some background knowledge
(BK), and is guided by some parameters. BK specifies the facts about the application
domain, provides information about legal value sets of attributes, about their types and the
scale, constraints and relationships among attributes, etc. The parameters specify how to
choose an output description from multiple possibilities. KGOs can usually work in either
incremental or batch mode. In the incremental mode, they try to improve or refine the
existing knowledge; while in the batch mode, they try to create entirely new knowledge from
facts in the database, using knowledge from the knowledge base.

KGOs in INLEN can be classified into several groups, based on the type of the output
they generate. Each group includes a number of specific operators.

o GENRULE operators generate various kinds of rules from given facts. They include oper-
ators that generate symbolic descriptions of data, e.g., generate rules characterizing a set of
facts, discriminate between groups of facts, build decision trees, characterize a sequence of
events, and determine differences between sequences. They also include operators generat-

ing equations characterizing qualitatively and quantitatively numerical data sets, and build
conceptual hierarchies.

» TRANSRULE operators perform various transformations of the rules, e.g., generalize or
specialize, abstract or concretize given rules.

e GENATR operators generate new attributes, or select the most representative attributes
from a given set (using methods of constructive induction).

e GENEVE operators generate events, facts or examples that satisfy given rules, select the
most representative events from a given set, determine an example that is similar to a given
example, or predict a value of a given variable.

¢ ANAREL operators analyze mathematical, statistical and logical relationships existing in
the data, e.g., they may determine the degree of similarity between two examples, check if
there is an implicative relationship between two variables, determine statistical properties of
the data. |

e TEST operator tests the performance of given set of rules on a testing set of examples. The
primary output from the operator is a confusion matrix, i.e., a table whose (%, 7)th element
shows how many examples from class i were classified by the rules for class ;.

For more details about these operators the reader may consult (Michalski et al. 1992;
Kaufman, Michalski and Kerschberg, 1990).
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5. A Real-World Application: INLEN Searches for
Demographic and Economic Patterns in a World
Database

This section briefly describes application of INLEN to the problem of deriving economic
and demographic patterns in different regions of the world in 1965 and 1990. The database
consisted of characterizations of each country in terms of 95 attributes, such as

- population

— growth rate

— percentage of the labor force in industry

- percentage of land area devoted to agriculture

— per capita GNP

— individual life expectancy

— percentage of population over age 65 and others.

Using its constructive induction capabilities, the system is able to construct additional de-
rived attributes that are especia.lly relevant to a given class of tasks. For example, it may
canstruct an attribute: “Change in the life expectancy between 1980-90.”

In the experiment reported below, several operators have been applied, such as conceptual
clustering, representation space optimization, empirical rule induction, rule optimization,
rule testing and example matching.

Here are few examples of patterns found by INLEN:

— SE Europe has rural, heavily agricultural socielies
~ There is low resource allocation to education in Mediterranean Europe
~ Developed Far Fastern couniries, such as Japan and Korea, have low death rate

The system created classes of countries, “regional patterns”, and defined typical char-
acteristics for these regions. It also found exceptional countries that do not follow typical
patterns for their region. Here are examples of such cases:

"~ Canada resembles the Far Fuast more than the US in some respects, such as population
growth rate, allocation of GNP to medicine, agricullural labor force, infant mortality
rate, death rate, percentage of the labor force in indusiry.

— Italy is influenced more by Western than Southern Europe
— China s very similar to {formerly) Communist countiries of Southeastern Europe
— Islend countries tend to deviate from the nearby mainland’s patterns.

Although many of the found characteristics and proposed classifications of the world
regions are known, some of them are novel. The main achievement of this experiment is,
however, not the knowledge created, but a demonstration of the capabilities of INLEN to
discover plausible and understandable patterns in large volumes of data.

6. Summary

An enormous proliferation and growth of databases has created a demand for new type of
data exploration systems that can conceptually characterize data and derive useful knowledge
from them. In particular, such systems need to be able to determine logical relationships,
qualitative evaluations and causal dependencies in the data, which are very important for
human data interpretation and decision making. To derive such knowledge, these systems
need to be able to represent and take advantage of prior knowledge about the data.

This paper described a methodology underlying the multistrategy knowledge discovery
system, INLEN, designed with such objectives in mind. INLEN integrates data base, knowl-
edge base, machine learning and discovery technologies. It incorporates a large family of
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operators that perform symbolic data and knowledge manipulation, and synthesis of vari-
ous kinds of knowledge. These operators include rule generation, selection of most relevant
attributes, selection of the most representative data items, generation of new attributes,
building conceptual hierarchies, generation of equations and others.

Many INLEN operators are based on modules that have been originally developed as
stand-alone programs. More research is required to make some of them more integrated with
each other, or more efficient in exploring large volumes of data. Future research includes

integration in INLEN other learning and discovery operators useful for data mining and
knowledge discovery.
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