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Abstract 

 

ARTIFICIAL NEURAL NETWORKS IN PUBLIC POLICY: TOWARDS AN ANALYTICAL 
FRAMEWORK 

Joshua Lee, Ph.D. 

George Mason University, 2020 

Committee Chair: Dr. Laurie Schintler 

 

This dissertation assesses how artificial neural networks (ANNs) and other machine 

learning systems should be devised, built, and implemented in US governmental 

organizations (i.e. public agencies). While it primarily focuses on ANNs given their 

current prevalence and accuracy, many of its conclusions are broadly applicable to other 

kinds of machine learning as well.  

It develops an analytical framework, drawn from diverse fields including law, behavioral 

psychology, public policy, and computer science, that public agency managers and 

analysts can utilize. The framework yields a series of principles based on my research 

methodology that I argue are the most relevant to public agencies. The qualitative 

methodology consists of an iterative approach based on archival research, peer review, 

expert interviews, and comparative analysis. 



 

Critically, this dissertation’s intent is not to provide the specific answers to all questions 

related to machine learning in public agencies. Given the speed at which this field 

changes, attempting to provide universally applicable answers would be difficult and 

short term at best. Rather, this framework focuses on principles which can help guide 

the user to the proper questions they need to ask for their particular use case. In that 

same vein, the normative principles it provides are procedurally focused in scope rather 

than focused on policy outcomes. In other words, this framework is meant to be equally 

applicable regardless of what one’s specific policy goals are.
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1 Introduction 

 

Over the past decade, artificial intelligence (AI) has made incredible strides 

forward. Artificial neural networks (ANNs), a specific type of AI, can often perform a 

wide range of tasks that require human intelligence more accurately than any other kind 

of AI system preceding them. However, although ANNs and other machine learning (ML) 

systems have unique capabilities that previous AI systems cannot easily match, they also 

have unique limitations that must be simultaneously considered. These weaknesses are 

particularly relevant when considering issues of public policy and public administration, 

an intersection that has often gone ignored. 

We stand at the precipice of a new kind of government for a wide array of public 

services. Utilizing ANNs has the potential for significant improvements to these services 

while also opening the door to new problems. In this study, I intend to address what 

these new problems are, how they could be mitigated, and how we should assess if they 

are being mitigated. I argue that what public agency managers and analysts need most 

is a framework of principles and questions for properly developing ANNs and other 

“black box” machine learning systems for use within their public agencies. By black box, 

I mean a machine learning system where interpreting the system’s inner workings is 

extremely difficult even for expert computer scientists, and where even experts cannot 
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achieve full explainability for a system’s decisions. While this dissertation will be focused 

primarily at public agency managers and analysts, many of the points raised should be 

relevant to a broad array of social scientists and the private sector. 

1.1 Statement of the Problem 

There is already an extraordinarily large body of research concerning machine 

learning generally, and research into ANNs specifically has exploded since 2012 even 

compared to other advanced machine learning techniques such as support vector 

machines (SVMs) (Jeeva 2018). Research into ANNs has traditionally approached the 

subject from one of three levels of analysis: 

Micro-level Analysis - Analysis that focuses on the technical specifics of artificial neural 

network architecture. This includes almost any research directly focused on maximizing 

the predictive accuracy of an ANN through improving the structure, data, algorithm, or 

training process of the ANN. This level of research is almost entirely from within the 

field of computer science. 

Macro-level Analysis - Analysis that focuses on the impact of ANNs more broadly in 

society. This includes looking at the impact of autonomous vehicles, AI in the military or 

the judicial system, etc. This level is where much of the social science research related 

to ANNs resides. 

Mezzo-level Analysis - Analysis that focuses on the broader patterns gleaned from 

innovations at the micro-level while also analyzing how they impact broader issues 
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faced at the macro-level. Examples include dealing with issues such as ethics, fairness, 

privacy, explainability, and robustness, among other issues. 

1.2 Purpose of the Study 

The purpose of this study, then, is to develop a mezzo-level analytical framework 

for public agency managers and analysts who work with and manage any kind of black 

box machine learning system, particularly ANNs. By analytical framework, I mean a 

series of normative principles and associated follow-on questions that I argue should be 

considered during the development and implementation of these systems for use in a 

governmental decision-making capability. Of note, these principles will be procedurally-

focused rather than focused on policy impact and outcome: rather than attempting to 

assert that a given policy outcome is favorable, the analytical framework is focused on 

ensuring that key pitfalls are avoided and that the most important questions are being 

asked. 

1.3 Significance of the Study 

Artificial neural networks have already made waves in fields far beyond 

computer science, including many with public policy relevance. This includes political 

science (Weber, et al. 2017), healthcare (Raghupathi and Raghupathi 2017), law (Kehl, 

Guo and Kessler 2017), transportation (Bojarski, et al. 2016), and defense (Barker 2016), 

among others. However, while many fields are beginning to experiment with developing 
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and implementing ANNs, there is little in the way of coherent guidance outside of 

computer science. Nowhere is this gap clearer than in the field of public policy. 

Unfortunately, computer science micro-level analysis is often technical to the 

point where those who are not specialists themselves cannot even understand the gist 

of the material. Indeed, many computer scientists tend to abstract problems into almost 

purely mathematical terms, which may not be the ideal mechanism to convey their 

ideas to a wider audience in the social sciences (Selbst, et al. 2019). Even in much of the 

mezzo-level literature, a reader will often need to be well versed in mathematical 

notation and a wide array of niche terminology that most readers will lack. Simply put, 

there is a lot of existing computer science literature is unapproachable for too many 

outside the field. 

There are already plentiful examples of public agencies essentially implementing 

ML systems in whatever way they so choose, treating them indistinguishably from 

generic software systems and vendor contracts that public agencies have dealt with for 

decades. Indeed, we don’t even know precisely how far many US public agencies, 

including those at the state and local level, are going in their use of these systems due to 

a fundamental lack of transparency (Brauneis and Goodman 2018). 

In fairness to those public agencies, however, there is little evidence to indicate 

that most of this activity is done with inherently malicious motives or that these 

agencies are attempting to achieve goals entirely outside of their agency’s scope. We 
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can see this readily with the FBI’s usage of ML systems in DNA fingerprinting (Abadicio 

2019) or facial recognition technology (Government Accountability Office 2016). On the 

one hand, few would argue that the FBI is stepping out of its legitimate authorities 

through matching DNA evidence or faces at crime scenes to databases of criminals. On 

the other hand, the usage of ML systems to attempt to achieve these legitimate goals 

can lead to a wide range of problems that are not easily visible without deep and 

considered study. 

In short, what we all too often have today (not just with the FBI, but for many 

public agencies at the local, state, and federal level) is generally good intentions 

combined with carelessness, lack of forethought, and no clear guidance from those who 

oversee these agencies as to what should be permissible and how they should go about 

using ML systems. Unfortunately, when dealing with ANNs and other black box ML 

systems, these issues combined can equate to just as much damage to the public as 

malicious intent. 

Of course, all blame should not be laid at the feet of public agencies alone: even 

if a public agency’s leadership knew about and wanted to mitigate these issues, there is 

scant guidance for public agency managers to follow. Almost all the computer science 

literature is entirely unapproachable, and most macro-level scholarship focuses on the 

broad abstractions of societal impact rather than the nuts-and-bolts of implementation. 

All of this, then, leads to the significance of this study: to generate a framework which 
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provides such guidance to public agency managers and analysts so that they can avoid 

such pitfalls when developing these systems. 

1.4 Where to Focus: Machine Learning vs. Artificial Neural Networks 

One constant question that must be dealt with early (and indeed has already 

shown itself in the sections above) is what kinds of algorithms should be focused on: 

machine learning algorithms generally, or artificial neural networks specifically. Some 

literature in the field focuses explicitly on artificial neural networks, some on machine 

learning generally, and some even on algorithmic decision-making more broadly still to 

include any kind of automated decision-making. Additionally, while almost all 

scholarship agrees that artificial neural networks are a subset of machine learning, there 

is little agreement on the bounds of machine learning itself; both scholarly and non-

scholarly writing may refer to a wide variety of very different methods under the 

umbrella of “machine learning”.  

To better grasp why I have a particular focus on ANNs, first consider the trends 

in scholarly AI publications over the past decade: 
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Figure 1 - Dimensions.ai analysis of scholarly publications1 

 

As we can see above in Figure 1, neural network research has exploded since 

2016 and shows no signs yet of slowing down (as of January 1st, 2020, at least). If 

anything, Figure 1 likely understates the amount of artificial neural network literature 

since it only includes convolutional neural networks. In contrast, literature into support 

vector machines and random forests (two other popular advanced machine learning 

techniques) are also growing, but significantly more slowly. 

 
1 Query for Convolutional Neural Networks : "convolutional neural network"; Query for Support Vector Machines: "support vector 

machine"; Query for Random Forests: “random forests"; Queries done on “Title and Abstract”, not Full Text 
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On the one hand, choosing artificial neural networks alone as the focus may 

unnecessarily minimize this study’s potential relevance: many of the principles and ideas 

that apply to ANNs are also applicable (albeit to varying degrees) to other kinds of 

machine learning. Thus, to ignore all other machine learning literature simply because 

the literature was not explicitly focused on artificial neural networks would potentially 

exclude countless relevant research articles, not to mention highly relevant background 

history. 

On the other hand, attempting to include the entirety of machine learning, 

broadly defined, is also inherently problematic. For one thing, there is no absolute 

accepted definition as to what machine learning encompasses. For example, do 

mathematical algorithms initially developed in early the 19th century, such as linear or 

logistic regression, qualify as machine learning? While logistic regression can be a form 

of a basic one-layer neural network (Raschka 2019), linear regression is often excluded 

from the category entirely. Even ignoring those cases, there are more than a dozen 

relevant, broad sub-categories within machine learning (artificial neural networks being 

just one of them), most with further variants and sub-variants (S. Ray 2017). While they 

all may share some pitfalls, they also all have traits which may be unique to varying 

degrees. The potential scope of attempting to include the entirety of machine learning 

in such a study alongside ANNs is daunting, to say the least. 
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This study tries to find a balance between the two poles: to draw on earlier 

research focused on other machine learning techniques for background and 

foundational literature while primarily focusing on artificial neural networks. When this 

study does focus on machine learning, except where explicitly noted, it should be 

understood as a relatively narrower definition of machine learning techniques to include 

only those that are generally ‘black box’ in nature; examples of such black box machine 

learning systems include support vector machines (SVMs), random forests, and of 

course ANNs. 

What makes these ML systems black boxes is that it is not clear how they 

produce the results that they do; even though we can spell out the math that goes into 

each of them, that doesn’t mean we understand why a particularly complex 

combination of mathematics just so happens to often produce the desired answer most 

of the time. To make matters even murkier, in several cases this study discusses the 

public agency in question did not reveal precisely which machine learning algorithm it 

used; such cases create an administrative black box that is just as impenetrable (if not 

more so) than the algorithmic black boxes of these techniques, and will be considered 

black box machine learning techniques for the purposes of this study. 
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1.5 Research Question 

In this dissertation, I ask a primary research question (immediately below), as 

well as three sub-questions which will help to answer the primary question. The primary 

research question is as follows: 

What questions and principles should guide public agency 
managers when developing artificial neural networks? 

There are several word choices in this research question that bear further 

examination. First. the term “developing” is important and meaningful. There are a wide 

variety of different verbs which could be used here, with most of the tension arising 

from the line between construction of an ANN and implementation of an ANN. That is, 

simply building the ANN versus applying the ANN. I concluded that the most relevant 

term for use is from the realm of computer science. The term “developing”, from 

software development, is used because the software development lifecycle (SDLC) is 

relevant both because an ANN is inherently software, and because the SDLC itself is 

similar to many public policy development processes (Stackify 2017). 

Another term worth noting is “manager.” Determining who, precisely, this 

framework is meant for is important: policy scholars in academia, or public policy 

administrators in government. In general, the target audience should be the managers 

in public agencies who will be responsible for developing the proposed ML system, 

regardless of whether it is developed in-house or through external vendors. 
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Additionally, public agency analysts are also targets as those individuals most likely to be 

using these systems internally on a daily basis. 

 Finally, the phrase “questions and principles” is undeniably vital. The result of 

this study will be the development of a series of both principles and questions which will 

help guide public policy managers and analysts conceive of, design, implement, and 

maintain ML systems. It is equally important to note that the words “answer” and 

“solution” are not present in my research question - the field of ANNs is evolving so 

quickly and in so many directions that even if I were to arrive at “correct” answers 

today, they could easily be wrong within a few months. In contrast, determining the 

proper questions that need to be asked during development should remain more 

constant and useful over time. 

1.5.1 Sub-Question 1: What are the key “research threads” to analyze, and how do these 

threads complement or interfere with one another when developing ANNs and other ML 

systems? 

 The term “research thread” is one that is used frequently in this study. It denotes 

a distinct area of machine learning scholarly research which may intersect with other 

research threads but is nevertheless distinct in its scholarly origins and the key elements 

it focuses on as important. The first step of this study, then, is to identify the most 

important research threads related to mezzo-level analysis of ANNs and other ML 

systems. 
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 Beyond a simple recitation of a literature review, however, this study focuses 

more explicitly on the interaction between these research threads. For example, does 

improving (or optimizing for, as the case may be) one of the research threads cause 

damage to the desired end state of a different research thread? Alternatively, do they 

play a complementary role to one another wherein improvement to one thread is 

improvement to another? 

1.5.2 Sub-Question 2: What principles for developing ANNs and other ML systems in 

public agencies already exist within so-called “Ethical AI” frameworks? 

 This question revolves around archival research and comparative analysis: in the 

past three years, dozens of “ethical AI” frameworks have been released by a whole 

range of entities and groups including those in the commercial sector, individual 

scholars, scholarly institutions and conferences, and even governments. While almost all 

of this scholarship is not aimed at public agencies specifically, many of the frameworks 

nevertheless discuss key issues of ML development in different circumstances. 

1.5.3 Sub-Question 3: How should the information gathered from answering the above 

questions be evaluated, iteratively improved, and finally integrated into a cohesive 

analytical framework? 

 With the above questions answered, the last step is to bring it together into a 

cohesive analytical framework. Simply making a bullet point list of “good ideas” from 

each of the previous sub-questions, or even from each of the sections of the literature 
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review, is insufficient. Rather, there needs to be evaluative mechanisms to determine 

whether a normative principle is worthy of inclusion. 

1.6 Scope Limitations 

 This study has several limitations on its scope and applicability. Some of the 

scope limitations were chosen to ensure thoroughness would not be lost for the sake of 

covering excess topics, while others were necessary to spell out where and when this 

study should be applicable. 

1.6.1 Domestic US Focus 

This study will concentrate on domestically focused public agencies within the 

United States. I chose this scope for several reasons. First, this is a procedurally 

normative study based on the rules and norms governing US public agencies. Therefore, 

its conclusions may not apply equally to public agencies in different countries. Different 

cultures and different political systems can have not only different societal values, but 

also different ways in which public agencies function. Indeed, what is “fair” in one 

country may not be deemed fair in another due to differing cultural norms and/or 

history. 

Second, this study focuses on domestically focused public agencies because it 

touches on an individual’s rights. US citizens (and to an extent anyone located within the 

United States) are entitled to different protections under US law than those located 

outside the United States. As such, US public agency activities aimed outside the United 
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States (from entities such as the US intelligence community, the Department of 

Defense, the Department of State, etc.) fall outside the scope of focus for this 

framework. 

1.6.2 Human Focus  

This study will focus on ML systems which assess human beings and their actions 

and/or decisions. This includes both systems with input data related to people in society 

– social, economic, political, religious, etc. – and systems which require human beings to 

frequently use them and be assessed by them in some manner. I chose this focus 

because public policy itself is concerned predominantly with people. In contrast, dealing 

with machine learning techniques aimed at predicting a tree’s height from its width are 

perhaps fascinating, but much less relevant to domestic public policy analysis. 

1.6.3 Research Threads Focus  

Simply put, there are too many mezzo-level research threads to reasonably focus 

on all of them simultaneously in my study. While all of them are important, some have 

particularly high relevance for public policy analysis, and others are located outside of 

public policy with little in the way of established scholarly research. Because of this, this 

study will primarily focus on six key research threads: accuracy, fairness, explainability, 

robustness, privacy, and democratic legitimacy. The decisions for why these threads 

were chosen (and others weren’t) for the literature review and further analysis will be 

discussed in the literature review section below. 
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1.7 Importance of Definitions 

 Even while attempting to minimize the amount of mathematics necessary to 

understand this study, there are nevertheless several critical concepts that must be 

understood, if only at the abstract level. These concepts include models, layers, 

neurons, activation functions, and training and testing data, among others. The next 

chapter will go into these in greater depth. 

1.8 Structure of the Study 

 This study is structured into seven chapters and three appendices, with this first 

chapter as the current Introduction. The second chapter (Definitions and Taxonomies of 

Artificial Intelligence) provides the most important terminology definitions for 

understanding this study and identifies the various taxonomies for artificial intelligence. 

It explains the key mathematical components that make up an ANN, as well as where 

they fit into the various taxonomies of AI. Understanding the terminology and different 

taxonomies available will also help in one’s understanding of the literature review 

ahead, since different literature can use different taxonomies as its lens through which 

to analyze a given ML system. 

 The third chapter (Background) dives into the history of AI and ML systems, 

particularly ANNs, and specifically as that history relates to public policy and the federal 

government’s involvement. It provides a historical grounding and an introduction for the 

literature review as well. 
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 The fourth chapter (Literature Review) dives into each of the six key research 

threads I noted above. It focuses on their foundational works, scholarly debates, 

taxonomies of concepts within the field, and finally how that thread is normatively 

assessed (i.e. more vs. less accurate, more vs. less fair, etc.). It also has a section on the 

research threads that were excluded from the literature review and why. 

 The fifth chapter (Research Methodology) dives into how I intend to conduct my 

study and why I use the methods I do. The research methodology section is split into 

five Stages (discussed further below), each corresponding to one or more research 

methods being used in the methodology. 

 The sixth chapter (Research Findings) displays the results from following each 

stage of the research methodology. The last section in Chapter Six contains the actual 

analytical framework. 

 Finally, the seventh chapter (Conclusion) looks at the broader implications of my 

Research Findings and their applicability to the future. In addition, it looks at ongoing 

discussions in society revolving around ANNs and what this analytical framework might 

say about them. It concludes with a brief look at the many future areas of potential 

research that should follow up this study. 

 The three appendices afterward are meant to provide additional illumination for 

those interested in digging deeper into the research. Appendix A-1 shows the state of 

the initial draft analytical framework after the completion of Stage Three, and Appendix 
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A-2 shows the state of the second draft analytical framework after the completion of 

Stage Four. Appendix B provides an “example” artificial neural network created by me 

(which I refer to as the “DOHA model”) specifically to help explain and apply the 

analytical framework in Chapter Six. Finally, Appendix C notes the interviewees who 

assisted with Stage Four of the analytical framework. Of note, only the final analytical 

framework (after Stage Five) is shown in the Research Findings chapter. 
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2 Definitions and Taxonomies of Artificial Intelligence 
 
 
 

In this section, I provide two key elements necessary for understanding my 

analytical framework (not to mention the background and literature review sections). 

First, this section provides the major taxonomies for defining artificial intelligence at the 

broadest level – how AI is defined in different ways, what those definitions mean, and 

how they differ from one another. Second, this section includes more in-depth 

definitions and concepts that are necessary to understand ANNs and ML systems 

generally at an abstract level. While the taxonomies section touches on definitions 

briefly, the latter section goes into greater depth. 

2.1 Taxonomies of Artificial Intelligence 

While each taxonomy below is not mutually exclusive, they nevertheless each 

work to differentiate AI systems based on a different set of characteristics. Of note, I 

also provide literature on other taxonomies throughout the literature review. I place 

this continual emphasis on taxonomies for several reasons. First, this study is at the 

intersection of at least two fields: computer science and public policy. While much of its 

content discusses complex ideas from computer science, its primary audience is meant 

for those in public policy. Because of this, I argue that the best way to understand these 

complex concepts without the requisite computer science background is to 
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conceptualize these research threads (as well as AI itself) into various taxonomies. In 

this way, a complex concept can be broken down and the differences between elements 

within the concept can be better understood without needing linear algebra. 

Additionally, this field is replete with taxonomies already; no new taxonomies 

were needed to be invented for this dissertation. Indeed, just about every concept 

discussed in this study already has its own taxonomy of ideas (and at times several 

competing taxonomies). If anything, the difficulty was in choosing which competing 

taxonomy is the most useful. This allows me to keep my primary focus on my research 

questions rather than defining and then justifying self-created taxonomies. While this 

chapter sometimes provides new names to the taxonomies it shows, the actual 

taxonomies themselves are well documented in other research. 

2.1.1 Reasoning Taxonomy 

 

Figure 2 – Reasoning Taxonomy 
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The Reasoning Taxonomy splits the field of AI into two halves: machine learning 

and symbolic AI. As we can see from Figure 2 above, both machine learning and 

symbolic AI are subsets of artificial intelligence. Expert systems is the most well-known 

type of symbolic AI technique, and artificial neural networks are a type of machine 

learning technique. This study almost exclusively focuses on machine learning rather 

than symbolic AI, except for background information in Chapter Three. 

The basic distinction between them is based on inductive vs. deductive 

reasoning: whereas an expert system/symbolic AI is provided rules to follow and then 

applies those rules to a given data set, a machine learning system learns the rules based 

on being shown individual examples first. In this way, they are opposites of one another 

– expert systems are made directly with human-designed functions, whereas machine 

learning systems develop their own functions based on examples.  

2.1.2 Domain Taxonomy 

 

Figure 3 - Domain Taxonomy 

The Domain Taxonomy should be the most intuitive: it simply splits AI systems by 

what subject matter they are designed to focus on. The AIs themselves could be based 
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on symbolic AI or machine learning, but in this taxonomy they are split solely based on 

what subject matter they focus on in terms of input and output data. For example, a 

judicially-oriented AI system would be like COMPAS, which is a machine learning tool 

used in the Wisconsin judicial system to determine who is a likely risk of recidivism 

among prison inmates (Angwin, et al. 2016); this particular example will be discussed 

throughout the dissertation at different points. 

2.1.3 Training Data Taxonomy 

 

Figure 4 - Training Data Taxonomy 

 

This taxonomy only applies to machine learning, not expert systems/symbolic AI 

– symbolic AI does not have a data taxonomy since they are not “trained” on data. The 

training data taxonomy focuses on the type of data fed into a machine learning system.2 

Numerical data would include anything inherently numerical in nature, such as basic 

 
2 While all inputted data to an ANN ends up being converted into numerical data of some type, in this 
case I am referring to data that is originally numerical in nature – percentage values, categories, scales, 
etc. 
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true/false (i.e. Boolean) information, quantities and amounts, and percentages. Image 

data would include data such as the locations and colorings of pixels in an image. 

Textual data would encompass just that, but generally encoded into some form of 

numerical representation of the text’s meaning and/or position; audio and visual data 

would be similarly encoded. 

2.1.4 Algorithm Taxonomy 

 

Figure 5 - Algorithm Taxonomy 

 

 The Algorithm Taxonomy is also relevant only to machine learning. It splits 

machine learning techniques into their actual algorithms. There are many more machine 

learning algorithms than are listed above, not to mention sub-variants for each kind. 

This taxonomy is differentiated by the nature of the algorithm: what kind of math is 

performed on the input to achieve the output, and how training data impacts changes in 

the math. While this dissertation has a focus on artificial neural networks, it also looks at 

other common black box machine learning algorithms in the algorithm taxonomy. 
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2.1.5 Labelling Taxonomy

 

Figure 6 - Labelling Taxonomy 

 

The Labelling Taxonomy focuses on how the algorithm uses labels in the data.3 

The key difference between the different methods is how the data they are trained on is 

labelled. Supervised learning techniques generally accept data that is entirely pre-

labelled in advance – for example, a dataset of images where each image is clearly 

labelled (by a human) as to whether it has a cat or a dog in it. In contrast, unsupervised 

learning (sometimes also referred to as self-supervised learning) would be when you 

have the same dataset of images but you don’t know in advance whether or not the 

image has a cat or a dog in it. Rather, the unsupervised algorithm might attempt to 

cluster images it deems similar into different groups. The types of algorithms (from the 

algorithm taxonomy) that can be applied to supervised learning vs. unsupervised 

 
3 There are also other lesson common methods in the labelling taxonomy besides these three, such as 
one-hot learning and semi-supervised learning 
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learning techniques are generally different, although artificial neural networks have 

both variants. Presently, supervised learning is more common for finding end results, 

whereas unsupervised learning is more common for various kinds of data pre-

processing. 

Finally, reinforcement learning techniques fall somewhere in between – the label 

is generally only known after a given decision has been made, and that delayed 

feedback is then constantly used to have the algorithm learn. One of the most common 

examples of reinforcement learning being used in the real world actually involves video 

games. In these cases, the “label” would be how good or bad a given action is in the 

video game, which often is not known until seconds, minutes, or even hours have 

passed. One of the most recent and high-profile examples was with the video game 

Dota 2, where five AI bots trained with ANN-based reinforcement learning played as a 

team to defeat a team of five top professional human beings (Statt 2019).  

2.1.6 Task Taxonomy 

 

Figure 7 - Task Taxonomy 
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Finally, the Task Taxonomy splits machine learning systems by what kind of 

output they’re producing. A regression output is predicting a continuous variable (such 

as one’s height) whereas a classification output is predicting a discrete variable (such as 

True vs. False). A clustering output is the partitioning of the input variables into multiple 

groups. Finally, a ranking output orders different inputs for importance; recommender 

systems, such as when Netflix suggests a movie for you to watch, are a subset of 

rankings. This taxonomy is also closely tied to the labelling taxonomy – regression and 

classification are generally tied to supervised machine learning, clustering is generally 

tied to unsupervised machine learning, and ranking systems can be tied to any of the 

three. 

2.2 Key Definitions 

One key issue for this study is how deeply to dive into the technical minutia of 

machine learning and artificial neural networks. On the one hand, this is not a computer 

science dissertation, and most of the readers are not expected to be computer science 

scholars. At the same time, there are terms that are inherently mathematical in nature 

that require at least an abstract grasp of in order to understand the content of this 

dissertation. My intention when constructing this study is to limit the needed technical 

definitions (save for some elements of the literature review) such that those with a 

grasp of algebra and statistics will be able to follow. While some of the information 

below may be repetitive from the taxonomies section above, this is done to provide 

multiple avenues for understanding the concepts. 
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 There are a multitude of ways to define artificial intelligence. In the field of 

computer science, it is generically defined as a device or program that perceives an 

environment and acts upon that environment to achieve some goal. For practical 

purposes, all this means is a computer program which accepts a certain input (such as 

numbers, a picture, text, etc.), and based on that input produces an output that the user 

is interested in, such as classification of the input into categories or a probability 

calculation.  

2.2.1 An Inductive vs. Deductive Approach to AI 

 Symbolic AI techniques such as expert systems use a deductive approach to 

building an AI. That is, based on a set of general principles coded explicitly into the AI by 

a human expert, the AI then reacts to the provided input. This is also known as a top-

down approach – the AI can only ever be as good as the human subject matter experts 

that designed it. One excellent example of the symbolic AI approach is Deep Blue, the AI 

which defeated chess legend Garry Kasparov (Greenemeier 2017). Deep Blue had 

human chess experts and computer scientists team up to write gameplay rules and 

utilize the brute computing power available to scan deeply ahead for possible moves to 

make. 

In contrast, machine learning techniques use an inductive approach to building 

an AI. They consist of computer algorithms which utilize a dataset to “learn” about a 
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given problem, then use what they’ve learned to make future predictions. This is the 

opposite of the symbolic AI approach in many respects – rather than a human expert 

determining how the AI should function, machine learning techniques form general 

principles based on a specific set of data provided to them in advance. This should not 

be confused simply with using a database, like Deep Blue did. Rather, what separates 

machine learning systems is that the algorithms they use to make predictions are 

themselves modified and (ideally) self-improving from running through these datasets 

to learn from. 

Visualizing the Difference: Playing Pong 

 An easy way to visually conceptualize the difference between them is with an 

imaginary AI that plays the classic computer game Pong: 
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Figure 8 - The Atari Pong game 

 

 Pong is a simple and straightforward game – there are two players, and each 

player controls a paddle. The objective of the game is to hit the ball over to the 

opposing players side with your paddle without them being able to get their paddle 

there first to bounce it back. Paddles can only move up and down, and while the ball’s 

angle will change depending on how it is hit on the paddle, its speed remains the same. 

 Both machine learning and expert systems techniques could be utilized to 

develop a “Pong AI”. An expert system Pong AI would have general principles (i.e. rules) 

coded into it. For example, a computer programmer could implement a simple rule for 

the AI that says “calculate the angles at which the ball will hit the top and bottom of the 

screen in order to place the center of your paddle where the ball will be when it reaches 
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your side.” This “rule” would likely enable an expert system Pong AI to play quite well. 

We can see the deductive reasoning playing out - the system was simply told what to do 

by the human subject matter expert. Of course, for more complex situations these 

instructions can be vastly more complex and based upon complex statistical analysis as 

we saw with the chess AI Deep Blue. 

In contrast, a machine learning Pong AI would have no such human-generated 

principles to guide it. Rather, it would be provided countless thousands (or millions) of 

example games to learn from. From those games, it would slowly learn which moves of 

the paddle were likeliest to increase its own score and least likely to increase its 

opponent’s score.4 Were you to observe the machine learning system while it trained on 

the data, you would likely laugh at its poor initial and seemingly random performance. 

Eventually, assuming the machine learning algorithm was well-designed, it would learn 

how to play pong with a high degree of proficiency. 

For a relatively simple example like Pong, an expert systems approach would 

likely perform just as well as a machine learning approach, if not better. However, what 

if we were dealing with something far more complex than a simple decision to move the 

paddle up or down? For more complex tasks, human knowledge is unlikely to be 

perfectly explained with rules. 

 
4 There are variants of machine learning which work somewhat differently than this, but the general 
concept remains the same. 
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2.2.2 What is Optimization? 

 Arguably the most important mathematical concept that needs to be understood 

to grasp what it is machine learning actually does is to understand the basics of 

optimization. All machine learning algorithms have an optimization function of one kind 

or another: a mathematical algorithm which attempts to find the greatest or least 

value(s) for an equation given some constraint(s). Below is a simple example of an 

optimization function: 

Solve for the smallest value for A (i.e. min(A)) for the following equation:  

𝑚𝑖𝑛(𝐴):  2𝐵 +  2𝐶 

Without any kind of constraint, of course, this would hardly be an optimization 

problem at all: the minimum value for A would be infinitely low, you’d just need to keep 

decreasing B and C. However, now let’s add one more constraint to our function: 

𝐵 ∗  𝐶 =  1000 

The constraint states that B multiplied by C must equal precisely 1,000. If this 

constraint is violated, any potential solution wouldn’t count. Now, if you were to further 

restrict this to only analyzing whole number values for B and C, you could actually solve 

this through trial and error with basic math. With that additional stipulation, the 

equation would be optimized when B = 40 and C = 25 (or vice versa). In such a case, A = 

130. However, were you to not restrict yourself to whole numbers, through calculus 

(which is beyond the scope of this dissertation) you would discover that the truly 



31 
 

optimized solution to the problem is when 𝐵 = √1000 and 𝐶 = √1000. In such a case, 

A would be equal to ~126.5, a more optimized solution for our equation since A is 

smaller. 

This is what is at the core of how almost all machine learning functions. The only 

difference, particularly exemplified with ANNs, is that there are millions or even billions 

of such parameters that must be optimized instead of just B and C. This perhaps helps to 

explain the “black box” nature of many machine learning systems: even for the 

comparatively simple optimization problem above, figuring out why the optimal solution 

occurs when B and C are equal isn’t immediately intuitive without a background in 

math. Now consider how difficult it would be to figure out the why given an equation 

with millions of such values, particularly if the algorithm used to try and optimize the 

values involved highly complex mathematics itself. In such a case, simply seeing all the 

values is insufficient to understand why together they would all produce the most 

optimal result. This is the essence of the black box problem in machine learning. 

2.2.3 Artificial Neural Networks: A Subset of Machine Learning 

While there are many explicitly mathematical definitions available for ANNs 

already (XenonStack 2017), as I stated earlier I intend to provide as math-free a 

definition as possible while still allowing for a conceptual understanding of how they 

function. Much technical detail is necessarily omitted from the definitions below for the 

sake of brevity and clarity. 
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Visualizing an ANN: Layers, Neurons, and Weights 

At its core, an ANN is just another kind of machine learning technique, and a 

distant cousin of logistic regression. It attempts to very loosely simulate the human 

brain’s neurons inside a computer – there are layers of connected artificial neurons, 

with each connection having a weight. 

Consider the following visualization of an ANN: 

 

Figure 9 - Basic Artificial Neural Network 

 

The image above describes a simplified fully-connected ANN. Each colored circle 

represents a neuron, and each line represents a connection (i.e. a method of sending 

information) from one neuron to another, with the arrow showing the direction in 

which the information travels. Each connection also contains a numerical value called a 
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weight within it; these weights are used to determine the relative importance of a given 

connection between neurons. Each weight value is set at random when the ANN is first 

started up on a computer, generally between 0 and 1. Naturally, randomly-valued 

weights aren’t very helpful at first. 

In addition, each column of neurons represents a layer of the ANN. There are 

three layers: the input layer with three neurons, hidden layer with four neurons, and 

output layer with two neurons. The input and output layer are straightforward – the 

input layer is made up of the raw input data, with each feature (i.e. distinct column of 

input data) often given its own input neuron or set of neurons. However, since each 

input neuron generally will only accept a value between 0 and 1, more complex features 

either need to be normalized or encoded into multiple neurons. Likewise, the output 

layer neurons each represent an output for the ANN after each input – sometimes there 

is only one, sometimes many more. This output is generally in the form of values 

between 0 and 1. Even in cases where the output appears to be text prediction or image 

generation, it is often just an amalgamation of outputted values from 0 to 1.  

However, the most interesting layer of an ANN is the hidden layer. In the figure 

above, we can see that each hidden layer neuron receives a connection from all the 

neurons in the preceding layer (i.e. to its left) and connects to each neuron in the output 

layer (i.e. to its right). The model above describes a fully-connected ANN, so each neuron 
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is connected to every neuron in the preceding layer and every neuron in the succeeding 

layer. 

The Training Phase 

The process below describes a single iteration of the training phase. During the 

training phase (presuming a supervised machine learning algorithm), a given row of data 

(i.e. one instance of each input variable’s value) moves through the ANN from left to 

right. First, the input variable(s) become the starting values of the input layer neurons. 

Then, they are transmitted along the arrow lines to each neuron in next layer to the 

right (the hidden layer), along with the weight of the connection. From the figure above, 

since there are three neurons in the input layer (and thus three arrows connected to 

each hidden layer neuron), each neuron in the hidden layer receives three “value-

weight” pairs from the neurons that are connected to it.  

Before the hidden layer can send its values to the output layer, it needs to do 

two steps. First, it needs to generate the new neuron’s value by combining the value-

weight pairs together. To do this, it multiplies each value from the preceding neuron to 

its associated weight, then sums those combined values together. In other words, the 

new neuron’s value becomes: 

𝑁𝑒𝑢𝑟𝑜𝑛𝑉𝑎𝑙𝑢𝑒 =  (𝑣1 ∗  𝑤1)  +  (𝑣2 ∗  𝑤2)  +  (𝑣3 ∗  𝑤3). 
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 Next, this new neuron’s value is inputted into the activation function. In other 

words, with the exception of values going from the input layer to the hidden layer, 

before any neuron can “fire” (i.e. transmit its information to the neurons connected to it 

via an arrow) the activation function is applied to the neuron’s value.  

One common activation function is known as the sigmoid function; in the 

equation below showing the sigmoid function, A is the neuron’s output, e is a 

mathematical constant known as Euler’s number (~2.72), and z is the neuron’s value: 

𝐴 = 1/(1 + 𝑒−𝑧) 

Once the activation function is applied, this new value (A) becomes the output of 

the hidden layer neuron on its way to the neuron(s) in the next layer (in this case the 

output layer). If there were multiple hidden layers, this process would be repeated for 

every connection. 

However, since the weights were chosen by the computer at random in the 

beginning, the output for this first piece of training data is going to likely be incorrect, 

and even if correct it would have been due to luck. Once that determination is made, 

the ANN then goes “backwards” in its processing. In other words, instead of left-to-right, 

it now goes from right-to-left, starting with the output layer values. From the 

connections to those values (i.e. the arrows originating from the hidden layer neurons), 

the algorithm determines which connection weights were most valuable and which 
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were least valuable in terms of arriving at the correct answer (or in this case, the 

incorrect answer). Then, the weights are modified depending on which neurons were 

deemed most or least responsible for the correct or incorrect output. Slowly, over 

thousands or even millions of iterations, the weights become more and more accurate. 

The most common method for this feedback is known as backpropagation, although 

others also exist (Rumelhart, Hinton and Williams, Learning Representations by Back-

Propagating Errors 1986). 

The Testing Phase 
 The testing phase is generally similar to the training phase, except with two key 

differences. First, while the data is still run through row by row, the weights of the ANN 

don’t change. In other words, every step except backpropagation occurs. Second, the 

purpose of running through the data row by row in the testing phase isn’t to improve 

the accuracy, it’s to assess how accurate the ANN has become and whether or not it 

requires further training to attempt to become still more accurate. 

2.2.4 Unique Strengths and Weaknesses of ANNs 

 ANNs have several critically important strengths and weaknesses to keep in 

mind. Of note, the strengths and weaknesses noted below are just those which 

generally differ from other machine learning techniques, or at least appear more 

strongly for ANNs. Several of them were discussed briefly above and will be covered in 

\greater depth here. 
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Key Strengths 

The key strengths of an ANN generally include: (1) feature extraction, (2) 

handling multiple and varied input, (3) high accuracy at a wide range of tasks, and (4) 

generalizability. 

Feature Extraction 

First, feature extraction simply means that the ANN can figure out for itself what 

the important features (i.e. variables) are. In other words, it determines what the 

patterns for mapping input to output looks like. For example, consider an ANN that 

judges what a hand-written number should represent on the computer (0-9). No human 

being ever creates an algorithm which explicitly defines “this is what a 3 looks like”. 

Rather, the ANN builds its own understanding of what a 3 should look like based on the 

3’s labelled in the dataset. 

Multiple & Varied Input 

Second, ANNs can handle almost all kinds of inputs simultaneously: text, 

numbers, images, sound, video, and more. The researcher also doesn’t need to worry 

(as much) about extraneous or irrelevant variables as with other methods – given 

enough data to learn from and well-tuned hyperparameters, the ANN will naturally 

reduce the weight connections for unimportant inputs. 
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Wide Range of Tasks 

Third, the sheer flexibility of ANNs is powerful. The layers described above in 

Figure 9 are simple, fully-connected layers, but there are many other types of layers 

which specialize at certain types of tasks, and those layers can be mixed and matched to 

achieve superior performance for unique problems. Examples of such layers include 

convolutional neural networks (CNNs) and long short-term memory (LSTM) neural 

networks, which will be discussed in Chapter Three below. The ability to shape the 

structure of the network can be quite powerful for improving performance. 

Generalizability 

Finally, ANNs have a great deal of generalizability. For example, with a technique 

called transfer learning, an ANN trained to recognize one type of image can potentially 

be used to help recognize another totally different type of image without fundamentally 

changing the ANN, but merely giving it new input to learn from (Browlee 2017). 

Key Weaknesses 

However, the weaknesses of ANNs are equally as important to consider, as they 

have weak points in places where other ML algorithms don’t. The core weaknesses of an 

ANN include: (1) massive training data requirements, (2) advanced hardware 

requirements, (3) lack of global convergence, (4) substantial technical skill to create, and 

(5) being a “black box.” 
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Training Data Requirements 
 The training data requirements for an ANN are often extensive. While all 

machine learning is considered data hungry to a certain degree, only ANNs have 

research showing that (in some cases) “…performance increased logarithmically with 

increasing training data size” (Mitsa 2019). While even ANNs have a certain point at 

which more data will not improve performance, that point is generally considered to be a 

significantly higher number than with other types of machine learning. 

Advanced Hardware Requirements 
 While it does not take particularly advanced computer hardware to run an ANN 

on a computer that someone else has trained (i.e. a pre-trained neural network), the 

training itself requires substantial processing power. Presently, Graphical Processing 

Units (GPUs) are often used to accelerate this training faster. While smaller ANNs can be 

trained on a budget ~$1200 desktop computer with a single good GPU, the largest 

models today have billions of parameters and can require over 500 GPUs running 

concurrently to train (T. Ray 2019). 

Lack of Global Convergence 
 ANNs also don’t have something known as global convergence. What this means 

is that the ANN you’ve trained may not be the best solution that the ANN algorithm 

could achieve. For example, with logistic regression, given the same parameters and the 

same split between training and testing data, it will output precisely the same model 

each time it is trained. The reason this does not occur with ANNs is because of their 

randomized starting weights. If those random weights happen to be too inaccurate, it’s 
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possible that they will never find the best combination of weights to achieve the highest 

accuracy.5 In practice, it is possible to train the same exact ANN structure with the same 

exact input data on two separate occasions and end up with two entirely different 

models (with different levels of accuracy) simply because the initial starting weights 

were different.  

Substantial Technical Skill 

ANNs also require substantial technical skill to train correctly. There are many 

parameters that need to be set when determining the structure of the ANN (number of 

layers, number of neurons, etc.), most of which don’t have a clear or universal scientific 

process for determining what they should be set to. Instead, it can rely on trial and error 

and intuition. Indeed, many computer science scholars have gone so far as to say that 

creating an ANN can be “as much art as science” (Chang, et al. 2016). 

Being a Black Box 

Finally, as has been discussed previously, ANNs are a methodological black box. 

That is, you can see the data you’re inputting, and you can see the result that outputs, 

but you cannot easily see why a given input created a given output. For the simplest of 

ANNs, looking at the hidden layer’s weights can provide a general idea as to what the 

 
5 For more on global convergence, see https://cs.stackexchange.com/questions/2406/must-neural-
networks-always-converge 
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important variables are. However, this technique becomes vastly less effective for larger 

and more complex ANNs. 

This ‘black box’ weakness can be crippling when it comes to some kinds of policy 

analysis, particularly when it is not simply the final prediction accuracy that matters but 

explaining why that result came about. For example, many other kinds of machine 

learning provide at least a few explanatory statistics. This includes (to name a few): p-

values, correlations, statistical significance, confidence intervals, and standard error. In 

contrast, ANNs provide little usable information besides the raw outputted prediction. 

While some techniques have been studied to try and “gray” this black box nature of 

ANNs (many of which will be discussed in the literature review), at present they cannot 

yet fully compensate for this lack of explanatory information. 

2.2.5 Conclusion 

 This section should by no means be seen as exhaustive of all relevant 

terminology. Indeed, the ‘rabbit hole’ of ANN terminology can get deep quickly, with 

each term sometimes requiring explanations of several other terms before they are 

understood. Nevertheless, the information provided in this chapter should make the 

next two chapters easier to understand for the public policy reader. 
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3 Background 
 
 
 

Given that the original artificial neural networks date back all the to the early 

1940s, it may not seem accurate to call them the “newest” of AI techniques. Regardless, 

because of the scope of time being covered, I use a chronological structure to provide 

background information for how we arrived at this point in ANN development. In this 

chapter, I focus primarily on the key events that occurred which shaped ANN/ML 

development since the 1940s, but with a particular emphasis on the intersection 

between public agencies and ANN/ML systems. 

3.1 Early History: Foundational Papers and Conferences 

The creation of the most foundational concepts in “machine” learning itself (i.e. 

basic linear regression) actually far predates the invention of the computer, or even the 

typewriter for that matter (Legendre 1805). At the time, regression calculations were 

done by hand, and so one might argue that linear regression isn’t truly a machine 

learning technique and shouldn’t be classified as a kind of artificial intelligence, however 

simplistic. 

But aside from these early mathematical innovations, the “father of AI” is 

generally recognized as British computer scientist Alan Turing. Turing was made famous 
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for his work to crack the Germans’ “Enigma” code machine during World War II that 

they used to encrypt their communications. Turing and his team’s “Bombe” machine 

was developed to decipher Enigma’s encoded messages. In doing so, they became the 

creators of the first practical AI system (S. Ray 2018). However, it is important to note 

that while it certainly helped lay the foundations for the field of machine learning, the 

Bombe machine itself was not actually a machine learning system but rather based on 

symbolic AI principles. 

Artificial neural networks themselves began as a field of study soon afterwards in 

1943 with a paper theorizing how biological neurons worked in mathematical terms 

(McCulloch and Pitts 1943). This initial research was reinforced with the subsequent 

publication of Organization of Behavior (Hebb 1949), which posited that neural 

pathways are strengthened each time they are used. In the years that followed, 

computational power expanded to the point where such theories could be tested. 

 ANN research formally moved into the experimental stage in 1956, with the 

Dartmouth Summer Research Project on Artificial Intelligence. It brought together 

researchers from all over the world to discuss the nascent field of artificial intelligence 

(including neural networks) and pool available research. The conference’s mandate was 

“to proceed on the basis of the conjecture that every aspect of learning or any other 

feature of intelligence can in principle be so precisely described that a machine can be 

made to simulate it” (Garson 1998, 3). It was at this conference that Nathaniel 
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Rochester of IBM attempted to show off the first-ever applied neural network. Although 

its seemingly nonsensical output at the time wasn’t fully understood, this nevertheless 

amounted to another step forward (McCarthy, et al. 1955). 

In fact, it was immediately after this conference that the federal government 

took its first interest in ANNs. In 1957, Dr. Frank Rosenblatt created the first functional 

artificial neural network at Cornell Aeronautical Laboratory called the Perceptron. While 

Dr. Rosenblatt himself wasn’t an employee of the federal government, his research was 

nevertheless funded by the US Navy’s Office of Naval Research (ONR) (Olazaran 1996, 

621). 

Because of his success at Cornell, in 1958 the Navy’s Weather Bureau employed 

Dr. Rosenblatt to build a Perceptron neural network for them simply named “704”, at a 

cost of nearly $17 million 2017 dollars (New York Times 1958). Unfortunately, while this 

Perceptron technically functioned in the basic experiments they showed off to news 

reporters (for instance, having it teach itself the difference between right and left), Dr. 

Rosenblatt had made vastly overoptimistic claims to the press about the capability of his 

neural network in the near future. These included claims such as the ability to “walk, 

talk, see, [and] write” (New York Times 1958). This exaggeration lead to substantial 

controversy from within the emerging field of AI, especially when of course no such ANN 

was created (Olazaran 1996). 
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Nevertheless, ONR soon made another foray into ANNs, this time creating the 

world’s first applied neural network with real-world implications. In 1959, ONR funded 

work for a neural network to eliminate echoes on phone calls. It worked, and ADALINE 

became the first neural network applied to a real-world problem in 1960 (Widrow and 

Hoff 1960). However, there is little evidence of continued ONR interest after this point. 

It was also around this point that the term “machine learning” itself was spread and 

popularized (Samuel 1959). 

Despite ONR’s apparent lack of continued interest, however, it appeared ANN 

researchers had suddenly won the research lottery: a major new federal player had 

entered the field of computer science research with the creation of the Advanced 

Research Projects Agency (ARPA) in 1958. ARPA was later renamed DARPA (adding 

Defense) in 1972 and will be referred to as such throughout the remainder of this paper 

to avoid confusion. Suddenly, there was a governmental organization set up as a matter 

of public policy for funding cutting-edge computer science research. 

Unfortunately, hopes around DARPA being supportive of ANN research were 

quickly disabused. Although there was some brief interest in DARPA’s first few years, 

that quickly faded (Anderson and Rosenfeld 1993, 303). This isn’t surprising, given (a) 

the then-ongoing controversy around the Perceptron, and (b) DARPA’s close ties to 

symbolic AI researchers since its founding. Even with the founding of DARPA’s 

Information Processing Techniques Office (IPTO) in 1962, which was set up for the 
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explicit purpose of creating a new generation of computers which would be able learn 

and improve over time, DARPA refused to touch ANN research. Rather, almost all their 

AI funding was focused on symbolic AI research alone (Olazaran 1996, 635-636). 

By the middle of the 1960s, it was clear that there were multiple fundamental 

problems with developing ANNs further: (1) a lack of sufficient computational power, (2) 

a lack of institutional support/funding anywhere, public sector or private, (3) 

exaggerated early claims about neural networks leading to resentment and 

disappointment, and (4) fierce proponents of symbolic AI who genuinely thought ANNs 

were a lost cause (and if we’re being cynical, a potential loss of funding for themselves). 

These factors combined to create an increasingly hostile research environment for 

scholars interested in ANNs. 

3.2 The First AI Winter 

The culmination of these trends resulted in one of the most important pieces of 

scholarly literature in artificial neural network history: the 1969 book entitled 

Perceptrons (Minsky and Papert 1969) argued that the current design of neural 

networks was fundamentally unworkable for more complex problems. In more technical 

terms, Minsky and Papert argued that because the XOR function was not linearly 

separable, it could not be done with any existing neural network architecture. 
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This assertion was later to be proven wrong, but at the time it had a substantial 

impact on the artificial intelligence research community. In fact, although it wasn’t 

officially published until 1969, many drafts were well-travelled within the AI research 

community during the mid-1960s (Olazaran 1996, 629). Intentionally or not, their book 

helped bring about the First AI Winter for ANN researchers – the federal government 

wouldn’t touch neural network research, and the technology had little real-world 

application for private industry to get interested in. Many scholars ended up moving to 

other kinds of machine learning or focusing on the symbolic AI branch of artificial 

intelligence instead. 

During the next two decades, there was almost no significant federal or private 

research support for neural network research. Although a few scattered scholars made 

occasional contributions and additions (Garson 1998, 5), there was little in the way of 

sustained advancement in the field.  

3.3 Backpropagation and the Thawing of Winter 

It wasn’t until 1986, with the popularization of the technique of 

backpropagation, that ANN research was finally able to throw off the first AI Winter 

(Rumelhart, Hinton and Williams, Learning Representations by Back-Propagating Errors 

1986). Although these authors were not the first to discover backpropagation (Werbos 

1974), which they themselves admitted, their straightforward explanation and 
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prominent publication venue in the academic journal Nature finally spread the 

technique to scholars across the field. Indeed, the trio followed up their initial 

publication with a much more in-depth analysis of backpropagation which also 

addressed the problems addressed by Minsky in Perceptrons (Rumelhart, Hinton and 

Williams, Learning internal representations by error propagation 1986). 

This “discovery” of backpropagation helped lead to the end of the First AI 

Winter, and a variety of publications followed. In 1989, another publication was 

released that is today almost universally cited as a key stepping stone (Hornik, 

Stinchcombe and White 1989). The authors’ key contribution (partially funded by the 

National Science Foundation) was that they “mathematically proved that multiple layers 

allow neural nets [ANNs] to theoretically implement any function, and certainly XOR” 

(Kurenkov 2015). Today, these kinds of ANNs are known as multi-layer perceptions 

(MLPs). 

Suddenly, the federal government was interested in neural networks for the first 

time since the Perceptron in the 1950s (Anderson and Rosenfeld 1993, 299, 306). 

DARPA reversed itself completely, culminating in their own massive formal study on 

neural networks. In it, they concluded that “[i]t is time for DARPA to re-examine neural 

network capabilities.” (Widrow, DARPA Neural Network Study 1989, 52). Indeed, in the 

years that followed it appears that DARPA made some targeted research investments in 

ANNs. Also around this time period, the Canadian government became interested in 
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ANNs - the Canadian Institute For Advanced Research (CIFAR) brought in two noted 

neural network scholars in 1987, Yann LeCun and Geoff Hinton, which would later prove 

to be a prescient decision on their part (Bergen and Wagner 2015). 

  With the widespread dissemination of both backpropagation and the 

mathematical refutation of Minsky and Papert’s assertion through using multiple layers, 

variations of neural networks began to appear for more specific tasks beyond MLPs 

(which generally handled numerical data). The invention of convolutional neural 

networks (CNNs) was a specialized variant that handled visual data. In (LeCun, et al. 

1989), the authors created a neural network that analyzed handwritten zip code digits 

on mail. Prior to their work, computers had had extreme difficulties managing to 

interpret the subtle differences and imperfections in human writing, even for something 

as specific as 0 through 9. In fact, the work of (LeCun, et al. 1989) went on to become 

the "basis of [a] nationally deployed check-reading systems,” which was one of the first 

large-scale implementations of a neural network (Kurenkov 2015). 

Yet another ANN innovation following the popularization of backpropagation 

was how to use neural networks for unsupervised learning tasks. Clustering algorithms 

within the field of machine learning more generally were nothing new, but (Bourlard 

and Kamp 1988) brought about the idea of autoencoders into the ANN mainstream. An 

autoencoder is an unsupervised (i.e. using unlabeled data) ANN that learns how to 

compress and encode a particular kind of data and then reverse the process to regain 
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the original data back (Badr 2019). Soon afterward, ANNs also entered reinforcement 

learning, showing a level of flexibility generally unmatched by other machine learning 

techniques (Narendra and Parthasarathy 1990). By the start of the 1990s, neural 

networks seemed to be on fire in terms of research dollars.  

For example, DARPA funded a speech recognition research project through SRI 

International from 1990 to 1997 based on neural networks that produced over a dozen 

scholarly publications on the subject (Abrash, Cohen and Franco 1997). In addition, they 

hosted the DARPA Artificial Neural Network Technology Program Review Conference in 

Arlington, VA from at least 1991-19946 (SRI 1997). 

While the generally numerically focused multi-layer perceptions (MLPs) and the 

generally visually-focused convolutional neural networks (CNNs) had been built up until 

this point, two more ANN variants soon joined the kinds of supervised learning ANNs, 

these with a focus on interpreting textual data. Recurrent neural networks (RNNs) and 

Long Short-Term Memory (LSTM) neural networks were both major innovations during 

this period on textual data. RNNs were first conceptualized as far back as 1982 (Hopfield 

1982), although they didn’t gain more major attention until a decade later (Bengio 

1993). The LSTM followed in 1997 (Hochreiter and Schmidhuber 1997). 

 
6 I could find no official public record of those conferences beyond secondhand accounts, and they may 
have gone on for additional years beyond this period. 
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RNNs specialize in processing sequences of information, or information where 

the order of the information (such as sequences of letters making up words) is 

particularly relevant. Whereas MLPs and CNNs deal with a fixed length for input and 

output, RNNs can have widely varying lengths. This make sense considering how one 

sentence can vary from another in terms of length; this is in contrast to an image as the 

input, which are generally standardized in terms of the image’s dimensions. This makes 

RNNs widely used in natural language processing tasks (i.e. dealing with textual content) 

(Zhou 2019). LSTMs are a further variant of an RNN: they modify the algorithm to better 

“remember” past data. In other words, LSTMs are often used when the most relevant 

sequence (i.e. word/phrase/sentence) isn’t just the current one, but sequences that 

may have been seen previously as well (Mittal 2019). 

However, despite the innovations over this period, the renaissance for ANNs was 

not to last. ANNs were still incredibly difficult to train and use. The parameters were 

often difficult to set correctly for training, they could not explain why their results were 

accurate (an ongoing problem to this day), and the amount of processing power 

required to train them was extensive, particularly in that era of computing. Even with 

new mathematical learning techniques and increased funding, there just wasn’t enough 

computational power or data available to make truly complex (i.e. deep) ANNs function 

in the real world for many tasks.  
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It appears that DARPA also gave up: from October 1998 to October 2009, I could 

find no publicly available evidence of any DARPA funding for ANN-oriented projects.7 

(Jackson 1998) (Johnson 2009) Simply put, ANN performance was unable to exceed 

more traditional expert systems computer science techniques at almost any task, and 

many machine learning scholars had given up on the subfield once again (Allen, How a 

Toronto professor’s research revolutionized artificial intelligence 2015). These 

culminated in the beginning of the Second AI Winter. 

3.4 The Second AI Winter 

With the advent of new and powerful machine learning techniques such as 

random forests (Ko 1995) and support vector machines (Cortes and Vapnik 1995), ANNs 

soon fell into a rut. While backpropagation had shown itself effective at simple tasks like 

hand-written digit recognition, it had failed to scale up to larger tasks efficiently with 

available processing power. These two new techniques, in contrast, proved to be quite 

effective, faster to train, and easier to use. Indeed, even famed neural network scholar 

Yann LeCun noted that support vector machines surpassed all but the very best neural 

networks, while at the same time being substantially easier to use (LeCun, et al. 1995).  

 
7 Considering the potentially classified nature of some of DARPA’s projects, this may not indicate that no 
such research occurred, however. Additionally, it is possible that there were obscure projects that 
escaped my notice during this period. 
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By the early 2000s, there were estimated to be less than a half dozen artificial 

neural network specialists worldwide (Allen 2015). However, also around this time, the 

researchers at CIFAR began to make some interesting discoveries. With CIFAR’s support, 

one of the field’s top research scholars George Hinton published two seminal works 

which caused the beginning of the end for the Second AI Winter (Hinton, Osindero and 

Teh, A fast learning algorithm for deep belief nets 2006) (Hinton, Osindero and Teh, A 

fast learning algorithm for deep belief nets 2006). In the latter work, Hinton and his co-

authors proved that a neural network could achieve a record-breaking accuracy of 

98.75% against the MNIST dataset (a well-known handwritten digit recognition 

benchmark for machine learning), surpassing the then-record of 98.6% utilizing more 

traditional ML techniques. To solve the problems of backpropagation, they utilized new 

advances in processing power, enabling them to build additional layers into their 

network that weren’t previously feasible. 

3.5 Taking Machine Learning by Storm: 2006-2013 

 Hinton and LeCun’s work started the revolution that we see ongoing today. 

Although their work back in 2006 did not initially have too spectacular a response (an 

improvement of 0.15% isn’t particularly grand, after all), what followed unarguably was. 

Hinton et al’s publication began a wave of renewed academic interest. That interest 

soon flourished into additional advances: by 2009, Hinton and two of his students 
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developed a neural network that set a then-record for accurate speech recognition, 

vastly outstripping previous results (Mohamed, Dahl and Hinton 2009). 

 At long last, the floodgates had broken and ANN research exploded with 

interest. With more and more scholars entering the field and funding starting to open 

up from DARPA and private industry, vastly improved predictive accuracy at a wide 

array of tasks soon poured in: achieving a success rate of 99.65% on the MNIST dataset 

(Ciresan, et al. 2010) and classifying 1.7 million images into 1000 different categories 

with a record-breaking accuracy of 84.7% and beating the previous record by over 10% 

(Krizhevsky, Sutskever and Hinton 2012), just to name a few. Since 2013, well-designed 

ANNs have generally matched or surpassed other machine learning techniques (in terms 

of raw accuracy) in most complex tasks. 

3.6 Conclusion 

 Beginning in about 2012 and continuing to accelerate since then, ANN 

scholarship began to look deeper outside of raw predictive accuracy. While some of the 

research threads defined in the next chapter had already been well-established studying 

problems with other kinds of machine learning, it was at this point that they began to 

flourish for ANNs specifically. Excluding foundational works from general machine 

learning, this is the time period (2012-2020) where most of the literature review takes 

place. 
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4 Literature Review 
 
 
 

From their founding as a theoretical concept 1943 up until about 2012, almost all 

ANN scholarship (and to a somewhat lesser extent machine learning scholarship more 

broadly) focused on a single, overwhelming objective: maximizing predictive accuracy. It 

isn’t hard to understand why – the most fundamental purpose of artificial intelligence is 

to make decisions, and thus it stands to reason that a system which is able to produce 

correct decisions more often should be superior. What’s more, the inherently 

standardized, quantitative, and comparable nature of accuracy as a measurement of 

success has allowed scholars to directly compare and compete with one another for 

whose machine learning system was “best.” Today, we have open-source ML 

competitions, such as those hosted on Kaggle, where scholars and amateur researchers 

alike can compete to build the most accurate system for a given task (Kaggle.com 2018). 

Starting in about 2012, however, other issues began to percolate to the surface. 

ANNs were starting to overtake existing ML methods (not to mention traditional 

approaches based on pure statistics or symbolic AI) in many areas, and it soon became 

clear that because of their particularly unexplainable and complex internal behavior 

(among other issues), accuracy alone wasn’t enough.  
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For this literature review, the six research threads I choose to focus on are as follows: 

- Accuracy 
- Explainability 
- Fairness 
- Robustness 
- Privacy 
- Democratic Legitimacy 

Within each of these six research threads (perhaps aside from accuracy), there is 

easily enough scholarship to allow for an entire dissertation’s literature review and 

more. Because of this, I was of necessity highly selective in the literature I covered. 

Section 4.7 below also delves into additional threads that were considered but not used 

as part of the literature review. For each thread, I predominantly include only four types 

of literature: 

a) Foundational literature which began the research thread under consideration, 
b) Where applicable, literature discussing the key disputes within the thread itself (i.e. 

when is an explanation sufficient? How is fairness defined? What makes up 
democratic legitimacy?),  

c) Literature creating a taxonomy of techniques gleaned from a review of previous 
literature, and 

d) Literature on how to best assess/measure a given research thread (i.e. what 
indicates when “explainability” rises or falls?) 

4.1 Accuracy 

 Accuracy is the original and (in theory) the simplest research thread to delve 

into. Merriam-Webster dictionary defines it plainly enough as “conformity to truth or 

to a standard or model” (Merriam-Webster Dictionary n.d.). However, what most 

people naturally think of as “accuracy” is really just one specific and intuitive method of 

calculating this “conformity to truth” for a given mathematical model. Alongside 
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accuracy, there are also several other potentially relevant metrics that are often found 

in machine learning scholarship. Most prominently, this includes: recall, precision, F1 

score, markedness, and informedness (Powers 2011) (Shung 2018). 

To better understand these concepts and their importance relative to accuracy, 

first let’s define a hypothetical ML model that aims to predict whether someone has 

been diagnosed with a deadly disease. Based on the previous data of one million 

individuals, we know that the model has an accuracy of 99%. That is, 99 in 100 times it 

accurately predicts if someone has the deadly disease. If this model were to predict that 

you had this deadly disease, then, should you be worried? The intuitive answer for many 

people of course is immediately “Yes!”, but this isn’t necessarily the case. 

To better determine if you should be worried about the diagnosis, let’s add on 

one additional data point - what if we also knew that only one thousand of the one 

million people in the dataset actually had the disease to begin with. Now we can create 

a confusion matrix (Data School 2014) which will help to calculate the five metrics 

discussed above: 
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Table 1 - Disease Predictions vs. Reality 

 Predicted to have Deadly Disease 

 

Actually have 
Deadly Disease 

 YES NO 

YES 990 (True Positive, or TP) 10 (False Negative, or FN) 

NO 9,990 (False Positive, or FP) 989,010 (True Negative, or 
TN) 

  

 

As we can see above, 99% of people were accurately diagnosed – that includes 

the 
990

1000
 people who actually have the disease and the 

989,010

999,000
 people who don’t. 

4.1.1 True Positive, False Positive, False Negative, and True Negative 

The four concepts noted above (also referred to as TP, FP, FN, and TN) make up 

the confusion matrix, and they are the key values which help us understand what 

accuracy and these related terms indicate. However, before going any further, lets 

answer the original question: should someone predicted as likely to have the disease by 

this model be worried?  

With the confusion matrix before us, the answer becomes much clearer. From it, 

we can see that a total of 10,980 people (TP + FP) were predicted to have the disease by 

the model, regardless of if they actually have it. However, we already know that only 

990 of them (TP) have the disease – by definition the false positives are just that, false. 
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By calculating the percentage of actually true cases over all true cases (i.e. 
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

990

10980
= ~0.0902), we can see that only about 9% of the people that the model 

predicted “yes” for will actually have the disease! This is certainly much less fear-

inducing than the original accuracy number assessed initially. As will be discussed in the 

next section, this measurement is quite useful, and is known as precision. 

4.1.2 Recall, Precision, and F1 Score 

 The confusion matrix is a critical component for understanding recall and 

precision, and from them the F1 score. First popularized in their current form in 1955 for 

the then-burgeoning field of information retrieval (Kent, et al. 1955), recall and 

precision are now used widely when analyzing the results of binary classifications (i.e. 

True/False decisions) from an ML model. Recall (also known as sensitivity) is the 

likelihood of finding something that is truly there (only looking at true predictions), 

while precision (also known as positive predictive value) is the likelihood that what you 

predict to be true is actually true. These two concepts, along with accuracy itself, are 

defined mathematically below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
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 While accuracy needs little explanation, precision and recall are meant to 

capture sensitivity to high false positives and high false negatives respectively. For our 

case above, lets calculate the precision again (which we’ve already calculated 

previously) and the recall: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
=

990

10,980
= ~0.09016 = ~9% 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
=

990

1,000
= 0.99 = 99% 

 In this case, it just so happens that the recall measurement is identical to the 

accuracy, but this is in no way assured. For the example above, the recall statistic tells us 

that among those who already have the disease (regardless of whether the model 

predicted they would), there’s a 99% chance that the model would correctly predict it. 

Thus if you somehow came in knowing you had the disease, the model would almost 

definitely also say you had the disease. In contrast, the precision tells us that among all 

the people the model predicted would have the disease, only ~9% actually have it. In 

this case, clearly precision is the more useful and relevant metric, but that won’t always 

be the case. 

 Finally, the F1 Score is the “harmonic mean” of the recall and precision 

measurements (Hayes 2019), and is generally thought of as a better measure of 

incorrect classifications than accuracy because it penalizes more extreme values. It is 

defined below: 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
= 2 ∗

. 08926

1.08016
= ~0.16527 = ~16.527% 

A visualization can also be helpful: 

 

Figure 10 - Changes in F1 Score by Recall/Precisions 

 

Credit: (Mikulski 2019)) 

We can see from Figure 10 above that rather than simply averaging the recall 

and precision together, the F1 Score is more pressured by extremely low values. For 

example, regardless of how high recall gets, so long as the precision is fairly low the F1 

score is going to be fairly low, and vice versa. By contrast, the only way that a high F1 

score is going to be calculated is if both recall and precision are both high.  
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In summation, while a model has 99% accuracy gives it the appearance of being 

an excellent model, a low F1 Score can show this to be a false veneer.  

Criticisms of Recall, Precision, and F1 Score 
However, while these other metrics may have advantages over accuracy in some 

respects, these alternative evaluation methods are not themselves without critics. First, 

all three values are critiqued because they are entirely insensitive to changes in the True 

Negative value (Powers 2011, 38). That is, the True Negative value can be changed to 

any value, no matter how extreme, and recall, precision, and F1 Score will not move in 

the slightest.  

Additionally, the F1 Score has been critiqued because it provides the same 

weight to recall and precision (Hand and Christen 2018). However, this may not always 

be ideal: depending on the use case, either recall or precision may be the more 

important value to have maximized. In the example above, clearly precision is 

significantly more relevant than recall. However, if the precision and recall values were 

swapped, the less important recall would still have equal weight and the F1 Score would 

remain unchanged, even though the situation would be quite different. From these 

critiques, still more alternative evaluation measurements were born. 

4.1.3 Informedness and Markedness 

 Informedness and markedness were identified by (Powers 2011) as alternative 

mechanisms of evaluation to recall, precision, and F1 Score. While informedness was a 

new concept which Powers introduced, markedness was previously popularized for use 



63 
 

in psychology under the term ∆P, or Delta P (Allan 1980).  First, let’s define the terms 

mathematically, then more intuitively: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
−

𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
= 𝑅𝑒𝑐𝑎𝑙𝑙 −  

𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
= 0.99 − 0.01

=  0.98 

𝑀𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
−

𝐹𝑁

(𝑇𝑁 + 𝐹𝑁)
= 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 

𝐹𝑁

(𝑇𝑁 + 𝐹𝑁)
= ~0.09016 − ~0.00001

= ~0.09015  

 One of the immediately noticeable aspects is that the informedness/markedness 

for our test case example are not significantly different than their respective 

counterparts of recall and precision. This is because of the extremely high True Negative 

value – if this value were more in line with TP/FP/FN then informedness and 

markedness would be significantly different. Indeed, this is a core difference with both 

Informedness and Markedness: they both incorporate the True Negative value, which 

was a key critique of recall and precision. Additionally, they can be anywhere from -1 to 

1, rather than 0 to 1 like recall and precision.  

Informedness is just as it sounds: it is a measurement for how informed a given 

model is about the positive and negative values. It takes recall as the starting point, but 

then penalizes it if the model predictions had too high a percentage of false positives 

among all actually negative values. Markedness, by contrast, is a measurement of 

whether the model “marked” the data it needed, whether True or False. It takes 
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precision as the starting point, but then subtracts from it the percentage of wrong false 

predictions values among all false predictions (true and false). 

4.1.4 Accuracy for ANNs: Alternative Measurements 

 For some special use cases of ML systems, accuracy itself (including derivations 

such as F1 Score, etc.) are not used at all. Rather, they have their own highly specialized 

kinds of pseudo-accuracy equivalents that they primarily utilize instead. These 

replacements are generally used because the type of task being trained on does not 

lend itself to easy usage of a traditional accuracy metric. 

For example, for an ANN designed to translate from Spanish to English, what is 

defined as a “correct” answer and what is defined as an “incorrect” answer? This sort of 

task does not lend itself to easy assessment with the binary options of right vs. wrong 

given the subjectivity of translations and the ability for an answer to be varying degrees 

of “somewhat” correct. Because of this, the field of natural language processing (NLP) 

has invented a wide array of alternative measurements meant to replace accuracy with 

something more meaningful in their field. The classic example of this is the Bilingual 

Evaluation Understudy (BLEU) score. First conceived of in 2002 (Papineni, et al. 2002), 

their paper has since been cited over 10,000 times and is the baseline measurement for 

a wide range of NLP tasks to this day. 
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4.2 Explainability 

 Even with those alternatives to potentially better evaluate a model, accuracy and 

its derivative metrics alone aren’t enough in public policy. Getting to the right answer 

isn’t the only important quality an ANN might have - rather, the why can be equally as 

important, if not more so. Except in the simplest of one-layer cases, artificial neural 

networks do not natively provide much of any explanatory information. Indeed, the only 

information natively produced by most ANNs are the final weights of each connection 

and the raw accuracy of its predictions with those weights. It is from these limitations 

that the research thread of explainability, sometimes also referred to as explanatory 

power or explainable AI, was born.  

It should be self-evident why explainability is highly prized from a public policy 

perspective: at a minimum, government systems generally necessitate at least some 

level of transparency and accountability in their processes, but transparency and 

accountability are meaningless if the public agency itself doesn’t understand why an 

ANN made a given decision. Even more fundamental, however, is the question of what 

exactly explainability even is within the context of ANNs, and how “much” explainability 

is enough. What kinds of techniques exist and how do they differ from one another? 

Indeed, the level of explainability required even varies by context. 

Consider two potential cases of ANN use in public policy: handwritten character 

recognition and federal loan guarantees. In the former case, explainability needs are 
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likely to be fairly low: so long as the model is accurate, policymakers are unlikely to be 

interested in explanations on which curves and corners of the writing make the ANN 

detect which characters. However, in the latter case we would expect explainability 

needs to be substantially higher: precisely how the ANN came to a given loan decision 

should be important in almost any public policy context. 

 This section primarily focuses on the taxonomy of (Gilpin, et al. 2018) for 

understanding the different types of explainability techniques that presently exist; 

Gilpin’s work goes into a deeper technical discussion of these issues for those 

interested. Their paper was chosen for several of reasons. First, the authors provide an 

efficient taxonomy which covers a broad range of techniques that presently exist and 

can likely be used to classify many future techniques. Second, many techniques within 

their taxonomy can be applied broadly to various kinds of ANNs, which was a limitation 

of other explainability taxonomies considered such as (Grun, et al. 2016). Finally, the 

authors focus on one of the central purposes of this section: to better define what, 

precisely, explainability even means. It is only with a clear definition that we can 

compare explanatory power to other research threads. 

4.2.1 Foundational Works 

 Scholarship into explainability for ANNs began in 2013 when (Zeiler and Fergus 

2013) introduced a technique to help understand why a convolutional neural network (if 

we recall, a type of ANN generally used with images as inputs) functions as it does. Their 
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technique was simple: first, they placed a gray box which covered up some portion of 

the input image and then had the CNN classify the image. Then, they moved the box 

along the image and continually had the CNN reclassify the modified image to look at 

how the output changed. This process was repeated until they had predictions for each 

possible position the gray box could be in.  

In this way, they could attempt to determine which pixels or group of pixels were 

the most important in the image based on which gray box position caused the greatest 

change in output. Their work was soon followed by (Simonyan, Vedaldi and Zisserman 

2013), who hypothesized that instead of identifying the pixels which caused the most 

neurons to fire, it is the pixels that require the least change to cause the greatest impact 

on classification that are most important. From these beginnings, other scholars joined 

to help understand not only the what, but the why; as of December 2019, Zeiler and 

Fergus’ work has been cited almost 7,900 times according to Google Scholar. 

4.2.2 What Makes a Good Explanation? 

 The concept of an explanation itself has deep roots in philosophy. (Gilpin, et al. 

2018) argue that an explanation is sufficient for the purposes of an ANN when there are 

no further “why questions” that need to be asked. The authors further assert that there 

are two ways an explanation can be evaluated: by interpretability and by completeness. 

Interpretability is how easily a given explanation can be understood by humans, 

whereas “[a]n explanation is more complete when it allows the behavior of the system 
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to be anticipated in more situations” (Gilpin, et al. 2018). Thus perfect completeness 

would have each and every mathematical operation spelled out, whereas perfect 

interpretability would allow any user (including non-experts) to understand precisely 

what is being presented and how the presented conclusions were reached. By default, 

perfect completeness and almost no interpretability is already present; an ANN is just a 

series of complex number matrices and equations, after all. However, given the millions 

or billions of mathematical operations which occur to train an ANN, no human could be 

expected to interpret such a “perfectly complete” explanation, if it could even be called 

that. 

 Interpretability and completeness, then, are often in conflict: human beings 

need some mechanism to simplify a perfectly complete ANN’s explanation into 

something we can interpret and draw reasonable conclusions from. However, going to 

the opposite extreme is also potentially flawed: an overly simplified explainability 

mechanism that merely outputs “yes” or “no” could in some situations be considered 

incomplete and end up hiding or misrepresenting a significant amount of information. 

The core issue in explainability, then, is what the proper balance between 

interpretability and completeness is and how to best reach that balance. 

4.2.3 Taxonomy of Explainability Techniques 

Rather than attempt to define what that perfect relationship is (a task which is 

highly subjective, context-dependent, and ever-changing), (Gilpin, et al. 2018) provide a 
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taxonomy of explainability methods as well as how to evaluate what those methods 

produce. They split existing techniques into three categories based on how they attempt 

to explain the ANN in question: processing, representation, and explanation producing 

techniques.  

First, processing techniques focus on reducing the complexity of the data within 

an ANN to the point where it can be interpreted by a human being. Examples include 

generating graphical visualizations of different weights and activation functions being 

used, as well as decomposing the ANN into a decision tree and then interpreting the 

tree’s outputs. Second, representation techniques focus on understanding how data 

flows through key structural elements of the ANN, such as its layers, its neurons, or even 

the general vector direction of its output. Finally, explanation producing techniques 

attempt to create a fundamentally more explainable ANN from the beginning through 

the structure of the model itself.  

4.3 Fairness 

 Perhaps no topic is more important in the realm of public policy than that of 

fairness and bias. However, there are many ways to define fairness, some of which 

violate other definitions. This can make determining what is fair quite difficult, and 

indeed subjective, depending on the fairness standard one uses.  

This section in the literature review will be devoted to algorithmic fairness, or in 

other words fairness as it relates to the choice of algorithms and/or statistics used to 
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calculate the fairness of an ANN or machine learning system. Algorithmic fairness and 

bias are essentially antonyms in the context of artificial neural networks and machine 

learning: an ANN that has achieved perfect algorithmic fairness in a particular dimension 

(i.e. gender, race, etc.) is not biased along that dimension, and a biased system cannot 

be perfectly fair. Any further references to fairness in this dissertation should be 

construed as referring to algorithmic fairness unless otherwise specified. 

In contrast to algorithmic fairness, there is also non-algorithmic fairness, which I 

define as fairness as it relates to a public agency’s structure and decisions more broadly. 

Non-algorithmic fairness is encompassed within the democratic legitimacy section of the 

literature review below. 

Issues of fairness in ANNs also have a broad applicability to society at large. For 

example, a 2018 study from Harvard’s Center for Internet and Society identified five 

real-world examples where the potential for bias in AI could be particularly harmful – (1) 

calculating credit scores, (2) healthcare diagnostics, (3) online content moderation, (4) 

recruitment and hiring, and (5) automated essay scoring (Raso, et al. 2018). Many of 

these issues are not directly in the realm of public policy or public agencies, of course – 

the US government does not calculate an individual’s credit score, for example. 

Nevertheless, the problems achieving fairness faced by private sector actors are often 

the same. 
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 However, even the most fundamental questions in this research thread are 

subject to fierce debate. For example, what precisely do fairness and bias mean when 

they must be defined mathematically? This is important, because the only way to 

implement any kind of “fairness standard” in an algorithm, ANN or otherwise, is to have 

it defined mathematically. 

4.3.1 Foundational Works 

 Fairness literature into machine learning generally was first introduced with 

(Kamiran and Calders 2009), and was quickly followed with other works as the field 

expanded (Pedreschi, Ruggieri and Turini 2009) (Calders and Verwer 2010 ). However, 

most ML techniques prior to ANNs were not capable of handling the same kinds of 

datasets that ANNs now can. For example, an ANN can be structured to simultaneously 

accept visual and textual data or to perform both supervised and unsupervised learning 

in the same model; this can require some distinct literature. The foundational work of 

fairness literature focusing on ANNs specifically is often thought of as going back to 

2016, with (Bolukbasi, et al. 2016) analyzing the biases within Google’s “Word2Vec” 

word embedding ANN. 

4.3.2 Conceptions of Fairness: Spaces, Beliefs, and Mechanisms 

One of the most thorough and methodical attempts to define algorithmic 

fairness for the purposes of machine learning is (Friedler, Scheidegger and 

Venkatasubramanian 2016). The authors begin by summarizing the central defining 

problem: the inherent tension in many of the existing competing fairness definitions 
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between equality of outcomes (i.e. fairness in result) and equality of treatment (i.e. 

fairness in procedure). 

Interestingly, this dispute should already be familiar to many of those who deal 

with public policy or economics. This is because these two competing definitions of 

fairness broadly make up the key dividing line between the US political left and right on 

economics: left-wing economic policy is often more focused on equality of outcome 

(Matthews 2015), whereas right-wing economic policy is often more focused on equality 

of treatment (sometimes alternatively referred to as equality of opportunity) (FREOPP 

2016). 

For an example in public policy today, consider the case of taxation policy – one 

example of a taxation policy tilted towards equality of treatment would be a flat tax, or 

in other words a tax system where everyone pays the same percentage of their income 

in taxes. No matter how much money you make (i.e. the outcome), you still pay the 

same percentage in taxes. In contrast, a tax policy with multiple tax brackets depending 

on your income is more closely aligned with equality of outcome – some individuals will 

pay a higher percentage of their income in taxes than others (which is not equal 

treatment) in order to attempt to achieve greater fairness in the outcome, such as 

through using the excess revenue to fund public services. 

For their own part, (Friedler, Scheidegger and Venkatasubramanian 2016) 

provide a taxonomy for understanding different definitions of fairness in the context of 

ANNs through three overlapping concepts: spaces, beliefs, and mechanisms. 
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Spaces 
The authors first define three types of “space” that overlap with one another to 

varying degrees: the decision space, the construct space, and the observed space. These 

spaces are particularly important, as “it is the conflation of these spaces that leads to 

much of the confusion and disagreement in the literature on algorithmic fairness” 

(Friedler, Scheidegger and Venkatasubramanian 2016, 2). 

The decision space refers to the potential problem that must be dealt with; some 

examples include employee productivity, the tax rate, prison recidivism, or college 

admissions. Within that decision space, there is the construct space, the central concept 

within that decision space that is being measured. For example, within the decision 

space of college admissions, examples of a construct space might include an applicant’s 

intelligence or their success in high school.  

We use the construct space to define the question we want to solve within the 

decision space. However, the authors are quick to note that construct space is generally 

impossible to perfectly map, no matter how much data we have – after all, there is no 

such thing as a perfect measurement of intelligence or a perfect measurement of 

“success” in high school. 

Nevertheless, whichever (inherently imperfect) measurement ends up being 

used within the construct space is the observed space. That is, the precise variable(s) 

used for measurement in the construct space. Whereas the construct space is 

impossible to perfectly observe, this is not the case for the observable space, which we 
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can measure and gather data on. Thus, to measure intelligence, one potential observed 

space variable might be IQ, or to measure success in high school, the observed space 

might be a student’s GPA. However, literature abounds showing that IQ is not a perfect 

measurement of intelligence (Martschenko 2017) and that student success in high 

school is not necessarily the same as a student’s GPA (York, Gibson and Rankin 2015). 

Despite this inherent imperfection in measurement, however, the observed space is all 

we can gather data in. 

With the three overlapping spaces in mind, the authors then define two other 

key concepts: that of beliefs (what is believed about the state of our world) and that of 

mechanisms (what methods should be instituted to achieve a belief’s ideal). 

Beliefs 
There are two central beliefs defined by (Friedler, Scheidegger and 

Venkatasubramanian 2016) that are linked to what we assume about the relationship 

between the constructed and the observed space: what they colloquially refer to as 

“what-you-see-is-what-you-get,” or WYSIWYG, and “we-are-all-equal,” or WAE. The 

WYSIWYG belief asserts first and foremost that while we may not be able to perfectly 

map the construct space from the observed space, it is generally similar enough to the 

observed space such that there is little problem in using measurements for the observed 

space as a stand-in for the constructed space. Thus, a WYSIWG belief might assert that 

IQ (the observed space) is a close enough mapping of an individual’s intelligence (the 
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construct space) to use it in the decision space without any further modifications to 

achieve fairness. 

In contrast to this is WAE, which asserts that since we cannot get a truly accurate 

image of the construct space from an inherently imperfect unit of measurement in the 

observed space, we should instead begin with the assumption that all relevant sub-

groups being measured within the observed space should on average have an equal 

outcome. In those cases where the data doesn’t reflect this, the fault then lies either in 

the observed space being poorly mapped to the constructed space, or the fact that 

those inequalities in outcome are due to issues of structural bias in one’s society or 

environment that individuals cannot control for and thus should not be held against 

them mathematically.  

In short, the WYSIWYG belief starts with the observed space and then claims the 

construct space is very similar, whereas the WAE belief starts with an assumption of 

equality between groups in the construct space, and then claims that differences in the 

observed space are therefore due to an imperfect mapping between the spaces or 

structural biases in society. 

In comparing these two beliefs (alternatively called axioms), the authors 

conclude that “[w]hatever the motivation (which is ultimately mathematically 

irrelevant), the choice in axiom is critical to a decision-making process. The chosen 

axiom determines what fairness means by giving enough structure to the construct 

space or the mapping between the construct space and observed space to enforce 
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fairness despite a lack of knowledge of the construct space” (Friedler, Scheidegger and 

Venkatasubramanian 2016, 9). Depending on which axiom an individual or public agency 

believes in, then, will fundamentally shape how they determine what achieving fairness 

looks like. 

Mechanisms 
The authors finally define two mechanisms to achieve what they call fairness in 

result (i.e. equality of outcome) and/or equality of treatment): the individual fairness 

mechanism and the group fairness mechanism. An individual fairness mechanism is 

what we would think of intuitively as fairness at the individual level; it looks at how each 

individual performs, and the model that makes the correct decision for the greatest 

percentage of individuals is considered the fairest. Thus if a model gets the answer right 

for 95% of individuals (i.e. a 5% error rate), that 95% is what an individual fairness 

mechanism would assess to determine how “fair” the ML system is. Under the individual 

fairness mechanism, any ML system that obtained lower than 95% correct would be less 

fair since it got more individuals wrong. 

A group fairness mechanism, in contrast, focuses on comparing the results of 

sub-groups of individuals within the overall group. For example, a group fairness 

mechanism would consider if poor individuals and rich individuals as respective groups 

had similar error rates: if rich individuals had an error rate of 2% but poor individuals 

had an error rate of 10%, a group fairness mechanism would consider that gap as highly 
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relevant to assessing fairness (although there is no definitive clear-cut numerical metric 

like there is for the individual fairness mechanism). 

These two mechanisms are often at odds with one another – is it better to have 

a lower overall error rate for all individuals with unequal error rates between different 

groups (i.e. the rich and the poor), or is it better to have a somewhat higher overall 

error rate but have equal error rates between the two groups? Is there a certain 

quantitative error gap where either the individual or group fairness mechanism 

becomes “better”? Attempting to quantify what such a number should be is a task I 

don’t envy. 

The authors conclude that there is no “magic bullet” for fairness and non-

discrimination to both be achieved. Depending on which belief the decision-maker 

subscribes to, there are different guarantees. As the authors put it, “…under the 

WYSIWYG worldview fairness [in result] can be guaranteed, while under a structural bias 

[WAE] worldview non-discrimination [fairness in treatment] can be guaranteed.” 

(Friedler, Scheidegger and Venkatasubramanian 2016, 12). The authors also assert that 

the choice of mechanism is equally as important: fairness can only be guaranteed using 

both the WYSIWYG axiom and the individual fairness mechanism, and non-

discrimination can only be guaranteed using both the WAE axiom and the group fairness 

mechanism. This is not to say that fairness and non-discrimination are not possible 

otherwise, simply that they cannot be mathematically guaranteed. 
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In summation: 
 
 
 
Table 2 - Fairness Mechanisms vs. Worldview 

 Individual Fairness 
Mechanism 

Group Fairness Mechanism 

WYSIWYG Guarantees Individual 
Fairness in Result 
 

Guarantees Lack of 
Fairness 

WAE Guarantees Discrimination Guarantees Group Non-
Discrimination 

 

 

4.3.3 Conceptions of Fairness: Parity, Equality of Odds, and Calibration 

However, (Friedler, Scheidegger and Venkatasubramanian 2016) isn’t the only 

scholarship looking to understand and conceptualize algorithmic fairness. An alternative 

taxonomy and definitions are provided by (Wadsworth, Vera and Piech 2018). Their 

study focuses more closely on issues of criminal justice and incarceration between 

blacks and whites. Rather than looking at the WAE vs WYSIWYG dichotomy, Wadsworth 

et al. assert that “…if black people are more likely to become incarcerated in the US than 

white people when controlling for criminal behavior…black inmates should not be 

punished for our biases with harsher recidivism predictions.” To put this into the 

language of (Friedler, Scheidegger and Venkatasubramanian 2016), Wadsworth et al. do 

not accept that the constructed space (incarceration) is near-identical to the decision 

space (guilt or innocence judgment); rather, they assert that the inequalities that exist 

are due to structural issues in society and that algorithms should not punish black 
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inmates for this. In short, the worldview of (Wadsworth, Vera and Piech 2018) is clearly 

WAE, and they reject WYSIWYG as an option. Instead, they go into greater depth within 

WAE and compare different mechanisms of group fairness. 

(Wadsworth, Vera and Piech 2018) explicitly focus on the intersection of 

machine learning algorithms with recidivism cases, specifically the controversy that 

erupted from the case of COMPAS, a machine learning tool used in the Wisconsin 

judicial system. COMPAS was designed to determine who is a likely risk of recidivism by 

inmates. However, in May 2016 ProPublica produced a study asserting that the COMPAS 

algorithm was racially biased (Angwin, et al. 2016). Six weeks later, research scholars at 

Northpointe (the firm that makes COMPAS) put out their own competing study claiming 

that no such bias existed (Dieterich, Mendoza and Brennan 2016). 

Wadsworth et al. wade into this conflict by creating their own taxonomy of 

fairness mechanisms and applying them to the case of recidivism. First, they describe 

their three definitions of fairness (which should be noted are all different definitions of 

group fairness, having rejected simple individual fairness as insufficient): 

Parity: “…the proportion of individuals classified as high-risk is the same for each 
demographic” (Wadsworth, Vera and Piech 2018) 

Equality of Odds: “…the proportion of individuals classified as high-risk is the same for 
each demographic, when true future recidivism is held constant. White and black 
inmates that do recidivate should have the same proportion of high risk classification.” 
(Wadsworth, Vera and Piech 2018) In other words, equality of odds is equivalent to 
having the same true positive and true negative rates between groups. 
 
Calibration: “…reflects the same likelihood of recidivism irrespective of the individual's 
demographic. In this application, black inmates who are classified as high risk should 
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have the same probability of true recidivism as white inmates classified as high risk.” 
(Wadsworth, Vera and Piech 2018)  
 

The easiest way to compare their definitions is that Wadsworth et al. goes 

deeper than (Friedler, Scheidegger and Venkatasubramanian 2016) in how far along 

they dive into group fairness. In fact, parity is generally equivalent to the Group Fairness 

Mechanism defined by (Friedler, Scheidegger and Venkatasubramanian 2016). However, 

(Wadsworth, Vera and Piech 2018) go even further with their two additional 

mechanisms. By describing two additional mechanisms, they are implicitly asserting that 

parity on its own is an insufficient definition for group fairness. 

The next definition, equality of odds, can also be described as true negative plus 

true positive equality. In other words, among only those inmates that did end up 

recidivating, is parity still true? Finally, calibration flips equality of odds on its head – 

instead of holding recidivism constant and checking for whether the groups are 

classified as high-risk equally, calibration holds the original high-risk assessment 

constant and checks for whether the groups recidivate equally. 

However, (Wadsworth, Vera and Piech 2018) found that all three of their group 

fairness mechanisms could not be maximized simultaneously. When they rebuilt the 

COMPAS ML algorithm from part of the original data that COMPAS used (the data was 

released publicly, but the actual ML system COMPAS built was not), the AUC8 for their 

unconstrained ANN (that is, when they applied none of their three fairness constraints 

 
8 AUC stands for “Area Under Curve”. For more information on AUC as a statistical measurement, please 
see https://analyse-it.com/docs/user-guide/diagnosticperformance/auc 
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and allowed accuracy to maximize) was 72%. In contrast, their chosen constrained ANN 

(where the gap between different racial sub-groups was 2% or less) had an AUC of only 

70%. (Wadsworth, Vera and Piech 2018, 3) The authors also admit that they did worse 

at calibration than COMPAS’ entirely unconstrained approach because they optimized 

for parity and equality of odds. 

Returning to the specifics of COMPAS, although ProPublica’s and Northpointe’s 

methodologies were both disputed by other scholars (Flores, Bechtel and Lowenkamp 

2016), their most fundamental disagreement (whether or not COMPAS was biased) can 

be explained with the terminology provided by (Wadsworth, Vera and Piech 2018): 

Northpointe assessed calibration as its definition of fairness, while ProPublica assessed 

parity and equality of odds as its definition of fairness. By each of their own definitions, 

they were correct. What’s more, were Northpointe to attempt to achieve parity and 

equality of odds, they would likely have to damage calibration to do it. 

4.3.4 Taxonomy of Fairness Techniques 

 While the fairness mechanisms discussed above are techniques in the abstract 

sense, and (Wadsworth, Vera and Piech 2018) even provide a few examples of practical 

techniques, neither discusses in depth the ways to create these fairness mechanisms 

algorithmically. From my review of current literature, there are four families of 

techniques in this taxonomy: data augmentation, preprocessing algorithms, algorithm 
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modifications, and postprocessing techniques (S. Friedler, et al. 2018) (Chen, Johansson 

and Sontag 2018). 

Data Augmentation 
Data augmentation simply involves adding more training data. For example, 

(Chen, Johansson and Sontag 2018) argue that since most other fairness optimization 

techniques end up reducing the overall predictive accuracy of their model in search of 

fairness, they are inherently inferior, especially for critical areas where accuracy is 

paramount such as healthcare or criminal justice. The authors then suggest that as an 

alternative, “…[additional] data collection is often a means to reduce discrimination 

without sacrificing accuracy” (Chen, Johansson and Sontag 2018). However, it’s arguable 

whether or not this is a generally applicable technique for increasing fairness since there 

are many situations when more data cannot be obtained. 

Preprocessing Algorithms 
Preprocessing algorithms are based on the idea that “training data is the cause 

of the discrimination that a machine learning algorithm might learn, and so modifying it 

can keep a learning algorithm trained on it from discriminating.” (S. Friedler, et al. 

2018). Generally, such techniques don’t involve changing data labels (i.e. the ground 

truth for the training data), but rather focus on various input modifications (Feldman, et 

al. 2015).  

Algorithm Modification 
Algorithm modifications involve model-specific changes to how learning 

functions in order to reduce or eliminate bias. For example, the ANN produced by 
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(Wadsworth, Vera and Piech 2018) clearly fits this definition: by applying adversarial 

learning techniques to their network while it was training, they attempted to achieve 

their fairness standard. These algorithm modification techniques are often referred to 

as constrained optimization, or in other words, “obtain the highest possible accuracy 

during training while not violating a given standard of fairness”. Because the decision 

boundaries for the ANN are inherently more limited, however, that accuracy is likely to 

be at least slightly lower than it would be in an unconstrained training environment. 

Postprocessing Techniques 
Finally, postprocessing techniques function after training has been completed. 

These techniques modify the output in some way to ensure that a fairness standard is 

met. An example of postprocessing is (Hardt, et al. 2016), who show how to adjust a 

learned predictor’s output to remove discrimination. However, their model relies on 

their specific definition of fairness, as well as their assumption that data about the 

predictor, target, and membership in the “protected group” are all available in the data. 

4.4 Robustness 

 In this study, robustness is defined as how resistant an ML algorithm is to 

maliciously manipulated data, including both data poisoning during training and 

adversarial examples on a trained model. Both issues are potential threats not only to 

ANNs, but to almost any kind of machine learning system.  
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Data poisoning is a simple concept – a malicious user provides an ML model in 

the midst of training with artificially modified data so that the model learns the wrong 

inferences from the data (Moisejevs 2019). Adversarial examples are similar – they 

occur not when the model is training, but when the model is done training and an 

adversary wants to trick the model into misclassifying an input. 

Of note, robustness should not be confused with accuracy: although there is 

often a correlation between the two, a model can be both non-robust and have a high 

accuracy. This is because unless special procedures are utilized to mitigate the issue, the 

accuracy of the model is generally based on “normal” instances of the input and is tied 

to the specific test dataset it is evaluated on (Madry, et al. 2019).  However, an 

adversarial example is maliciously created to fall outside of the normal conditions a 

model is designed to handle.  

For example, consider a hypothetical ML system with 99% accuracy. This 99% 

accuracy should not be construed as representing “99% accuracy no matter what kind of 

input is attempted.” Rather, this is 99% accuracy based on the data it was trained on 

(which, unless it was augmented in some way, is representative of reality only). Because 

an adversarial example can be subtly manipulated into an input that cannot exist in the 

real world, accuracy is often substantially lower when faced against adversarial 

examples versus normal data (Madry, et al. 2019). 
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The best way to conceptualize an adversarial example is visually, because it 

provides a striking case. The basic procedures are straightforward to create an 

adversarial example in the first place. First, begin with an ANN which assesses what kind 

of object is being displayed in an image. Then, add a specially designed perturbation to 

the pixels in the image and watch as the ANN suddenly asserts the image to be 

something nonsensical. An actual real-world example is below: 

 

 
(Source: http://people.csail.mit.edu/madry/lab/blog/adversarial/2018/07/06/adversarial_intro/) 

Figure 11 - Adversarial perturbation of image 

 

The initial image on the left is correctly classified as a pig by the ANN. However, 

by applying a 0.5% change to each pixel based on the static-like image’s pixels, the 

image becomes classified as an airliner, which is obviously incorrect. Of course, no 

human would make such a mistake – the image that the ANN classified as an “airliner” 

still looks entirely like a pig. Indeed, the image needs to be observed closely and zoomed 

in on before a human can even detect the slight perturbation in the image with the 

naked eye. However, ANNs can be fooled by such perturbations. An adversarial example 

http://people.csail.mit.edu/madry/lab/blog/adversarial/2018/07/06/adversarial_intro/
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is, for all intents and purposes, an attack designed to have the system explicitly 

misclassify the image under consideration. 

4.4.1 Foundational Works 

Issues of robustness were known in the world of machine learning far before 

ANNs became prominent. The concept of “attacking” trained machine learning 

classifiers in such a manner was first published in 2004 against a simpler form of 

machine learning (Dalvi, et al. 2004). Their article references the ways in which email 

spammers would defeat rudimentary anti-spam machine learning classifiers (i.e. 

adversarial examples) and how those classifiers needed to be constantly rebuilt to 

ensure that their accuracy didn’t degrade too quickly. More scholarship on the subject 

soon followed (Globerson and Roweis 2006).  

Since then, literature on the subject has continued to expand. However, it wasn’t 

until 2013 that ANNs had achieved enough notoriety in image classification that 

scholarship started appearing about the problem (Szegedy, et al. 2013). Since then, 

innumerable papers have been published on the topic. Robustness literature frequently 

revolves around a “cat-and-mouse” game where new techniques are discovered to 

make an ANN more robust, only for future literature to then poke holes in those 

techniques and vice versa. 

As just one example, the process of distillation of an ANN was originally 

conceived of to increase its accuracy and performance (Hinton, Vinyals and Anddean 
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2015). However, some scholars soon took this concept a step further and conceived of 

defensive distillation, or in other words, utilizing the techniques of distillation to make 

an ANN not only more accurate but also more robust (Papernot, McDaneil, et al. 2016). 

This new technique quickly became the subject intense debate over its effectiveness, 

with both attacks against it (Carlini and Wagner, Defensive Distillation is Not Robust to 

Adversarial Examples 2016) (Carlini and Wagner 2017) and further refinements to it. 

(Papernot and McDaniel 2017) Other examples of robustness techniques which have 

been frequent targets of both attack and refinement include obfuscated gradients 

(Athalye, Carlini and Wagner 2018) and ensemble defenses (He, et al. 2017), among still 

more. 

4.4.2 Robustness Certification Standards 

While there is little in the way of taxonomies of robustness techniques, the 

remainder of this section is focused on analyzing the different methods of measuring 

robustness and what those methods entail. 

Arguably the most common method of measuring robustness (as of December 

2019) is via something known as a robustness certification standard, which states that 

for a given classification, the certification provides an absolute assurance within a given 

area of decision space nearby that adversarial perturbations will not cause a 

misclassification. While there are a great many techniques to try and find the largest 

certified robustness region, most scholarship presently agrees that some kind of 
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robustness certification is the best standard to measure robustness by. The idea should 

be made easier to understand with the help of a visual aid: 

 

 

Figure 12 - Robustness Certification 

 

Credit: (Boopathy, Presentation on an efficient computation framework of a certified 

robustness measure for convolutional neural networks 2019)  

The graphic above helps to visualize the idea of robustness certification. First, it 

simplifies our decision space to only two dimensions, X and Y. Then, we have the 

classification of this Ostrich image, represented by the center point.  The three decision 

boundary lines show us the actual decision boundary lines within our two dimensional 

space – if the (X,Y) coordinate for classifying an Ostrich were adversarially modified, 
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with examples shown by the red dots, the decision boundary shows the limits to which 

the ANN would still classify the ostrich as an ostrich. Thus, the red dots are successful 

adversarial attacks in this case. 

 In this same vein, the black circle shows us the largest circle (since this is 

simplified to only two dimensions) we can create while still having an ostrich correctly 

classified as an ostrich. If the black circle were to have its radius increased any more, at 

least one part of it would fall outside the decision boundary. However, there’s an 

important problem here – while a computer might easily be able to make such a 

determination in a two-dimensional space, determining the actual decision space 

boundaries (and thus the minimum adversarial distortion) for a 300-dimension decision 

space (far more common in image classification) is often computationally infeasible. 

Because of this, a variety of different methods for determining a certified robustness 

area within the minimum boundary that we can calculate have been devised.  

While some scholars focused on providing an absolute certification for 

robustness based on the worst case possibility for an adverbial attack (Zhang, et al. 

2018) (Weng, Zhang, et al. 2018) (Boopathy, Weng, et al. 2019), others focused on 

methods which provide a nearly absolute assurance but have significant gains in terms 

of computational speed. (Mangal, Nori and Orso 2019) (Weng, Chen, et al. 2019). For a 

deeper technical review of available literature in these two areas, see (Singh, et al. 

2019). 
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In short, while an absolute robustness certification would provide 100% 

certification within the green circle of Figure 12 that adversarial examples wouldn’t 

work, the near-absolute certification would provide a lesser degree of surety. As 

discussed above, however, the trade-off is in computational speed. Different robustness 

certification techniques, absolute or otherwise, compete on several criteria:  

Speed of Computation: Since computational efficiency is one of the key limitations 

towards calculating this certified area, the mathematical algorithm used to certify the 

space as robust matters significantly. Even if all algorithms successfully certify a region, 

an algorithm which can do so 10x or 100x or 1000x times as fast is naturally going to be 

superior for practical usage. 

Flexibility of Application: There are numerous kinds of activation functions and layers 

that exist with ANNs, and each function differently. An algorithm which can successfully 

create a certified robustness region for a convolutional neural network, for example, 

isn’t necessarily able to do so on a fully connected neural network. 

Absolute vs. Approximate Certification: Absolute certification techniques have the 

simplicity of simply being able to say “never” when it comes to adversarial examples 

within their certified area. However, they are also generally computationally infeasible 

for larger/deeper ANNs as of 2019. In contrast, approximate certifications can certify 

larger areas for deeper networks, but those robustness certifications have caveats. 
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Sometimes those caveats are large and sometimes they’re small, but they can make 

assessing robustness more complicated. 

Size of Certified Robustness Region: Finally, techniques compete on the size of the 

overall certified robustness region. A larger certified region means that the network is 

better able to deal with adversarial attacks and avoid misclassification. Notably, the 

techniques listed in this section are generally not for directly optimizing an ANN to 

become more robust. Rather, they simply spell out a mechanism to measure precisely 

how robust they are. 

4.5 Privacy 

Privacy has come to the forefront of ANN research in recent years. Any kind of 

machine learning, but especially ANNs, take in a massive quantity of data to train with. 

However, even if the training data itself is anonymized, there is still the threat of de-

anonymization (Lee, et al. 2017). That is, even when a given dataset has been explicitly 

relieved of its individually identifying characteristics, de-anonymization would get that 

data to be re-linked to the individuals associated with it. Within this research thread, 

there many methods for creating a “privacy-preserving ANN.” This study will primarily 

focus on differential privacy (DP), presently the most published technique, although 

other methods such as homomorphic encryption and federated learning are reviewed as 

well. 
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4.5.1 Foundational Works: Differential Privacy 

Research into the idea of differential privacy itself began in 2006 with (Dwork 

2006), although it was not directly applied to the field of ANNs until 2015 (Shokri and 

Shmatikov 2015). In their work, the authors identify three key objectives for a privacy-

preserving ANN: 

- Protecting privacy of the training data 

- Enabling participants to control the learning objective and how much to reveal about 
the model 

- Allowing the application of new inputs into a given model without revealing the 
original inputs or the outputs. 

While homomorphic encryption and federated learning are also concepts worthy 

of discussion, neither has reached the critical mass of ANN scholarship that DP has 

(Mancuso 2019). 

Differential privacy can generally be understood as a set of techniques meant to 

counteract the de-anonymization of data. There are a wide variety of algorithms which 

attempt to produce differential privacy, as well as different standards for when 

differential privacy has been achieved. One easy way to conceptualize DP without math 

is to consider the case of two near-identical databases, database A and database B. The 

only difference between database A and database B is that database A contains your 

information and database B doesn’t (i.e. one row of data missing). From there, 

“[d]ifferential [p]rivacy ensures that the probability that a statistical query will produce 



93 
 

a given result is (nearly) the same whether it’s conducted on the first or second 

database.” (Green 2016). 

With this basic example, DP would be defeated simply by querying a count of the 

number of rows – if the database has your information, the result would be one higher. 

However, such queries (and others like them) can be defended against by adding a small 

amount of random statistical noise to the result. In other words, by adding a slight 

amount of imprecision to the query result (i.e. if the query returned a row count within 

+/- 3 rows of being accurate), DP would be achieved. However, the tradeoff to adding 

this statistical noise is accuracy itself – by preserving differential privacy, we would 

potentially lose some level of accuracy. In short, DP works to blur the decision 

boundaries of the ANN in order to make it harder to reverse engineer how those 

decision boundaries were created. The central question within this subfield, then, is the 

best mechanism to quickly achieve DP without losing significant accuracy. 

Since the original work by (Shokri and Shmatikov 2015), countless others have 

followed not only within DP, but also regarding other privacy-preserving techniques.  

4.5.2 Other Privacy Techniques: Forming a Taxonomy 

Homomorphic Encryption 
 Like DP, homomorphic encryption was first conceived before ANNs became a 

popular technique (Rivest, Adleman and Dertouzos 1978). However, soon after (Shokri 

and Shmatikov 2015) first brought privacy issues generally to light regarding ANNs, 

some scholars began to attempt to apply homomorphic encryption to the problem of 
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privacy-preservation; the idea of homomorphic encryption is simply to “encrypt data 

such that certain operations can be performed on it without decrypting it first.” (Dowlin, 

et al. 2016). Since the values don’t need to be decrypted to function, then, there is no 

chance of private information leaking out. 

 However, while fully homomorphic encryption schemes have been developed 

(Gentry 2009), one of the key criticisms is that they can significantly slow down the 

processing time of an ANN. Thus, the key question that modern homomorphic 

encryption has sought to answer is whether it can be done computationally quickly and 

be universally applied to any kind of data. 

Federated Learning 
 Federated learning (FL) is a technique created by research scientists at Google in 

2017 (McMahan and Ramage 2017). Whereas DP adds randomized noise to query 

results and homomorphic encryption allows the training data to always remain 

encrypted, federated learning attempts to create privacy through the complete 

elimination of centralized training itself. The idea is simple enough: eliminate the need 

for any kind of centralized database of information to conduct machine learning. 

Instead, have many client machines conduct ML training locally, then transmit the 

results of that training to a centralized server. The example they use is with 

smartphones: individual smartphones would be able to run a relatively small amount of 

ML training on the device, then transmit the results of that training to the centralized 

server. However, the training data that each smartphone uses is never sent to the 
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centralized server. Thus, the centralized server isn’t a privacy risk if it never has the 

private data to begin with. 

4.6 Democratic Legitimacy 

Democratic legitimacy is perhaps the most unique research thread here in that 

until about 2018, it had rarely been a focus of any ANN scholarship or even more 

general machine learning scholarship. Given the centrality of democratic legitimacy to 

public agencies, this will be the most extensive section of the literature review.  

Beyond analyzing the foundational works in the field of democratic legitimacy, 

this section of the literature will review specifically which activities within democratic 

legitimacy are most relevant to the topic of ANNs. This is an important distinction, 

because not all parts of democratic legitimacy are clearly relevant to ANN development. 

For example, democratic elections themselves are obviously of great importance to 

democratic legitimacy, but machine learning systems (at least at the present time) have 

little association with such activities. 

Each of the preceding threads to this section vary in their balance of assessment 

between quantitative and qualitative – some are purely quantitative, whereas others 

are a mix of quantitative and qualitative analysis. However, democratic legitimacy is 

unique in that assessing “more” or “less” is an almost entirely qualitative activity; there 

is no democratic legitimacy statistic that can be calculated for a public agency. The 

purpose of this literature review section, then, is to define what activities are involved in 
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achieving democratic legitimacy and how relevant those activities are to machine 

learning and especially ANNs. 

However, there is no current, unified literature at the intersection of democratic 

legitimacy and ANNs. Rather, there are two highly relevant sub-fields which I work to 

synthesize in this section: traditional (i.e. not related to algorithms or machine learning) 

democratic legitimacy literature, and the emerging area of algorithmic governance 

literature. The latter also includes so-called “Fairness, Accountability, and Transparency” 

literature, also known as FAT. While algorithmic governance literature should (as it 

grows and expands) eventually make the need for including more traditional democratic 

legitimacy literature obsolete, we are not yet at this point. Thus, I first dive into 

algorithmic governance literature to find which activities scholars in the field deem the 

most important to achieve democratic legitimacy. Then, I supplement those activities 

with those found in traditional democratic legitimacy literature that are relevant to 

machine learning. 

4.6.1 Foundational Works 

The concept of democratic legitimacy itself (ignoring machine learning) in 

modern scholarship began in the late 1960s/early 1970s (Kriesi 2013, 609). At that time, 

the predominant worry among scholars was that expanding expectations of the State 

from people would eventually cause democracies to falter. By the end of the Cold War, 

however, it appeared as though those worries were wrong, and the field of study went 
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largely ignored. However, social and economic problems since the 2009 Great Recession 

have caused a resurgence in literature focusing on the issue  

4.6.2 Algorithmic Governance 

 Although the term ‘algorithmic governance’ was first coined as a concept in 

2006, its current definition and usage is more closely aligned with machine learning in 

government. (Danaher, et al. 2017, 1-2) define algorithmic governance as when public 

agencies (or corporate entities) “…outsource decision-making authority to algorithm-

based decision-making systems” which may even be “…able to learn and adapt to any 

decision-making situation without the need for human input or control.” Algorithmic 

governance is intricately related to democratic legitimacy because of the need to have 

human beings in control (or at least “in-the-loop”) of automated decision-making (Koulu 

2019, 9-11). 

 Within the concept of algorithmic governance (and thus democratic legitimacy) 

stand three primary concepts: fairness, accountability, and transparency (often just 

referred to as FAT). However, while there is an entire sub-field of “FAT/ML” literature, I 

only focus on FAT/ML scholarship specifically oriented towards algorithmic governance. 

Of note, fairness within algorithmic governance literature (and FAT/ML) can mean 

algorithmic fairness, non-algorithmic fairness, or (most often) both simultaneously. 

Challenges Facing Algorithmic Governance 
There are several challenges facing algorithmic governance. In particular, 

(Stoyanovich 2019) argues that the “[l]ack of transparency and accountability threatens 
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the democratic process itself.” To alleviate this lack of transparency and accountability, 

the author presents a “Data Transparency Framework” based on a case study of New 

York City’s efforts to tackle the topic. 

Most scholarship about non-algorithmic fairness, transparency, and 

accountability in algorithmic governance also seem to agree that trade secrets are part 

of the problem: when source code is kept secret, however necessary for profitability, 

the public suffers from its inability to determine the effectiveness of a machine learning 

tool (Katyal 2019). However, agreement on the problem does not imply agreement on 

the solution (Redden 2018). 

Machine Learning in Government: Differing Viewpoints 
While there is no disagreement in recent scholarship that non-algorithmic 

fairness, accountability, and transparency are important to the idea of algorithmic 

governance, there is a wide spectrum of viewpoints as to whether or not these 

standards are reasonably achievable, and in turn whether or not machine learning has 

reached a point where its benefits outweigh its costs in public agencies. 

On one end of the spectrum is (Coglianese and Lehr 2019). The authors discuss 

whether machine learning algorithms can meet a sufficiently high standard of 

transparency (and implicitly accountability and non-algorithmic fairness) to achieve 

democratic legitimacy. They conclude that new technical advances will allow for enough 

transparency to meet the standards of democratic legitimacy. Even though such 

transparency may not exist in full today, the authors assert that “[i]n the future, a 
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government that makes use of so-called black-box algorithms need not be a black-box 

government. With responsible practices, government officials can take advantage of 

machine learning's predictive prowess while remaining faithful to principles of open 

government.” (Coglianese and Lehr 2019). In short, they argue that while there are 

problems at the present, these problems are not crippling and should not stop us from 

learning more about how to increase transparency in public agency usage of algorithms. 

Other scholars take a more cautious view. While (Coglianese and Lehr 2019) 

accept that issues of bias exist, the authors are firmly of the belief that technology will 

allow us to solve these problems and that the benefits clearly outweigh the costs. In 

contrast, (Brkan 2019) provides a somewhat different view. Their research specifically 

focuses on the so-called ‘right of explanation’ found within Europe’s new GDPR laws. 

They conclude that “…if the algorithm used for decision-making is a neural network, 

prone to very fast machine learning, it will be close to impossible to explain the reasons 

behind its decision.” (Brkan 2019, 120-121). While accepting that the future may allow 

for greater transparency with machine learning systems, Brkan argues that without such 

transparency there cannot be true legitimacy. Thus, Brkan hopes to wait until we have 

more explanations behind neural networks before beginning to use them in public 

agencies. 

 However, some scholarship takes a much darker interpretation of machine 

learning in the age of algorithmic governance. One exemplar of this train of thought is 
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(Valentine 2019), who argues that much of the machine learning used by public agencies 

today amounts to “social control mechanisms to contain and criminalize marginalized 

populations.” The author argues that rather than any new revolution in efficiency or 

effectiveness, current usage of machine learning (and other algorithms) in government 

agencies often amounts to simply re-codifying historical patterns of discrimination into a 

technological redlining that “reinforces oppressive social relationships.” Rather than 

expressing the general optimism of Coglianese or the waiting and caution of Brkan, 

Valentine asserts that almost any usage of machine learning in public agencies for 

predictive or policing purposes is inherently unjust and should be fought against in 

courts and through activism.  

4.6.3 The Activities of Democratic Legitimacy 

While there are scholarly debates as to the intersection of machine learning and 

algorithmic governance, that may not make up the entirety of what is encompassed 

within the broader idea of democratic legitimacy. This section will identify the specific 

activities that traditional democratic legitimacy literature can add. The algorithmic 

governance literature provides us with FAT, but what else is there? 

These activities will be extracted from three pieces of literature (discussed 

below). Any extracted activities must also meet three criteria: (1) the activity is 

pertinent to democratic legitimacy as it relates to public agencies, (2) the activity must 

be procedural in orientation, rather than based on a particular subjective policy 
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outcome, and (3) the activity must not be entirely covered in a previous research 

thread. 

The first criteria should be self-evident – obviously only those aspects of 

democratic legitimacy that relate to public agencies (and thus this dissertation) are 

being considered. This is not to say that other aspects are less important, but rather that 

their consideration is beyond the scope of this study. For example, democratic 

legitimacy activities related to passing legislation are not included because the focus 

here is not on legislative activities. The second criteria is necessary because this study is 

not meant to advocate for particular policies and indeed explicitly avoids adding 

principles meant to achieve certain policy end goals. Finally, the last criteria is needed 

because there will inevitably be some element of overlap between democratic 

legitimacy and one or more of the existing research threads above. 

Kriesi’s Democratic Legitimacy Typology 
(Kriesi 2013, 617) provides an excellent conceptualization of democratic 

legitimacy in a matrix model. The author divides conceptions of democratic legitimacy 

into procedural vs. long term results legitimacy and into input vs. output legitimacy: 

 

Table 3 - Democratic Legitimacy in Input vs. Output 

Normative basis Input Legitimacy Output Legitimacy 

Yes Procedural legitimacy I: 
satisfaction with the 
quality of representative 
democracy 

Procedural legitimacy II: 
satisfaction with the 
quality of governance 
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(responsiveness and 
accountability) 

(rule of law, impartiality, 
fairness) 

No Partisan legitimacy: 
satisfaction with electoral 
outcome 

Outcome legitimacy: 
satisfaction with policy 
performance 

 

 

 Among the four types of democratic legitimacy-making activities, all activities 

covered within Procedural legitimacy I and Procedural legitimacy II meet all three 

criteria. However, in the case of fairness here, it’s again important to make the 

distinction between algorithmic fairness (which is what the literature review section on 

fairness covered) and non-algorithmic fairness, which is being covered here. 

Partisan legitimacy and outcome legitimacy fail to meet the second criteria for 

the same reason: they are subjective based upon what one defines as a “good” 

outcome. Additionally, partisan legitimacy fails the first criteria since it does not directly 

touch on public agencies. That is, while a democratic election may cause a public agency 

to produce a new ANN (or stop producing a new ANN), the standards for whether or not 

the ANN is well-designed and effectively implemented and managed do not change.  

 What remains are two activities within Procedural Legitimacy I (responsiveness 

and accountability) and three activities within Procedural Legitimacy II (rule of law, 

impartiality, and non-algorithmic fairness). Let us put a pin in these activities until the 

other two key pieces of literature are reviewed. 
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The RESuME Project 
The second study chosen was the Resources on the European socio-economic 

model (RESuME) project (Chiocchetti 2017). Their study reviews five general categories 

related to democratic legitimacy, each with one or more activities within. The bolded 

activities are those which I argue meet all three specified criteria above (if only some 

sub-bullets qualify, only the sub-bullets are bolded): 

I. Electoral Authorization 
a. Universality of voting 
b. openness and fairness of political competition 
c. integrity of electoral procedures 
d. level of participation 
e. characteristics of electoral system 

II. Direct Citizen Participation 
a. Referendums 
b. public consultations 
c. access to elected representatives and public officials 
d. internal party democracy 

III. Deliberation (i.e. informed and reasoned agreement between different 
parties) 

IV. Substantive Representation - the preferences and concerns of citizens in the 
political system are being met through a variety of mechanisms, such as: 
a. Similarity 
b. Delegation 
c. Accountability 
d. Responsiveness 

V. Constitutional Protections 
a. Checks and balances 
b. Subjective rights 
c. Procedural protections aimed at protecting the individual from the 

state 
d. Procedural protections aimed at protecting minorities from majorities 

Below are the explanations for why each democratic legitimacy activity noted in the 
RESuME project was either accepted or rejected. 
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Table 4 - Summary of Activities: Acceptance vs. Rejection 

Activity Rejection vs. 
Acceptance 

Explanation 

Electoral 
Authorization (all 
sub-activities) 

 

In general, machine learning systems are not 
associated (at present) with voting activities or 
access to voting. They are thus beyond the 
scope of this study. 

Direct Citizen 
Participation (a, c, d) 

 

Referendums, access to elected officials, and 
internal party democracy are all activities 
related to the legislative branch and the 
Executive Office of the President rather than 
public agencies. 

Direct Citizen 
Participation – 
Public Consultations 

 

Unlike the other three activities housed inside 
Direct Citizen Participation, public 
consultations are needed not only when 
passing legislation (which is beyond the scope 
of this study) but also when public agencies 
are interpreting and implementing those laws. 

Deliberation 

 

This category is similar to public consultations, 
except it might include other key stakeholders 
besides the public at large. 

Substantive 
Representation (a, b) 
 

 

Once again, similarity and delegation are 
generally relevant to the legislative branch and 
legislation rather than public agency 
implementation.  

Substantive 
Representation - 
Accountability 

 

Accountability is a key feature of any public 
agency, and is repeatedly mentioned in any 
literature related to algorithmic governance. 

Substantive 
Representation – 
Responsiveness 

 

While related to accountability, they are not 
precisely the same concept. A public agency 
can have fast responsiveness, but those 
“responses” can themselves contain little 
information relevant to maintaining 
accountability. Likewise, a public agency can 
have strong accountability but be poor at 
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conveying that information quickly and 
effectively to the public. 

Constitutional 
Protections – Checks 
& Balances 

 

While checks and balances are of course vital 
in the US, it is also predicated on focusing on 
the balance between all three branches of 
government. As this study focuses exclusively 
on public agencies, and not on how the 
branches may conflict with one another, it is 
not pertinent. 

Constitutional 
Protections – (b, c, d) 

 

The three remaining activities under 
Constitutional Protections are all clearly 
relevant: public agencies have a responsibility 
to protect subjective rights, minority rights 
against the majority, and individual rights 
against government encroachment. 

 

 

AI Now’s Algorithmic Impact Assessment 
If there were to be a foundational work at the intersection of democratic 

legitimacy and machine learning, it would be the AI Now Institute’s Algorithmic Impact 

Assessment (AIA), which provides guidance to public agencies on how to manage what 

they refer to as “automated decision making” systems9 (Reisman, et al. 2018). While 

their analysis covers more than just ANNs or even machine learning, it is still the best 

candidate for being the true foundational work at the intersection of democratic 

legitimacy and machine learning. 

Even though the authors never explicitly use the term “democratic legitimacy”, 

they specify in their Executive Summary that “[t]he turn to automated decision-making 

 
9 AI Now introduced their first Algorithmic Impact Assessment in 2016, and then produced successive 
iterations in 2017 and 2018. 
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and predictive systems must not prevent agencies from fulfilling their responsibility to 

protect basic democratic values, such as fairness, justice, and due process, and to guard 

against threats like illegal discrimination or deprivation of rights.” (Reisman, et al. 2018, 

5). Because of this, and because their work specifically considers algorithms in the 

context of democratic governance, I believe that it is a critical component to include.  

To arrive at their conclusions, the authors conducted a comparative study of 

other impact assessment frameworks, including from “environmental protection, data 

protection, privacy, and human rights policy,” and apply the principles of those 

frameworks to their own AIA (Reisman, et al. 2018, 7). The AIA consists of five phases: 

pre-acquisition review, initial disclosure requirements, comment period, due process 

challenge period, and AIA renewal.  

First, the pre-acquisition phase “allows the agency and the public to identify 

concerns that may need to be negotiated or otherwise addressed before a contract is 

signed.” (Reisman, et al. 2018, 8). The idea behind this first phase is to stop the usage of 

an automated decision-making system before a substantial investment has been made. 

Next, the initial disclosure requirements phase deals with the final outputs from 

the preceding phase. These include: 

- Publishing the agency’s definition of an automated decision system 
- Disclosing details of the system, such as purpose, reach, internal use policies, and 

implementation timeline 
- Assessing the system internally for inaccuracy, bias, and harms, as well as 

establishing ways to address those impacts. 
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- Proposing a plan for providing access to researchers outside the agency who seek to 
review the system once it is deployed. 

Third, the comment period phase is just as it sounds – the public should be 

provided with time to provide feedback on the system, as well as establish any 

concerns. Fourth, the due process challenge phase is a more adversarial version of the 

comment phase – if concerns were not mitigated in the preceding phase, this phase 

would set aside time for challenges to an agency’s oversight body or even a court of law. 

The final phase is renewal, which states that the agency should be required to repeat 

the previous four stages of the AIA “on a regular schedule,” with the suggestion that 

every two years is a reasonable timeline (Reisman, et al. 2018, 10). 

Aligning AIA Key Elements and Policy Goals 
With these chronological stages in mind, the AIA provides five key elements 

(hereafter referred to as E-1 through E-5) for an algorithmic assessment, plus four key 

policy goals (hereafter referred to as P-1 through P-4) that any public agency using an 

“automated decision system” should strive towards (Reisman, et al. 2018, 4-5). They are 

presented below for ease of later comparison: 

E-1. Agencies should conduct a self-assessment of existing and proposed automated 
decision systems, evaluating potential impacts on fairness, justice, bias, or other 
concerns across affected communities. 

E-2. Agencies should develop meaningful external researcher review processes to 
discover, measure, or track impacts over time;  

E-3. Agencies should provide notice to the public disclosing their definition of 
“automated decision system,” existing and proposed systems, and any related self-
assessments and researcher review processes before the system has been acquired;  
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E-4. Agencies should solicit public comments to clarify concerns and answer outstanding 
questions; and  

E-5. Governments should provide enhanced due process mechanisms for affected 
individuals or communities to challenge inadequate assessments or unfair, biased, or 
otherwise harmful system uses that agencies have failed to mitigate or correct. 

P-1. Respect the public’s right to know which systems impact their lives by publicly 
listing and describing automated decision systems that significantly affect individuals 
and communities;  

P-2. Increase public agencies’ internal expertise and capacity to evaluate the systems 
they build or procure, so they can anticipate issues that might raise concerns, such as 
disparate impacts or due process violations;  

P-3. Ensure greater accountability of automated decision systems by providing a 
meaningful and ongoing opportunity for external researchers to review, audit, and 
assess these systems using methods that allow them to identify and detect problems; 
and  

P-4. Ensure that the public has a meaningful opportunity to respond to and, if necessary, 
dispute the use of a given system or an agency’s approach to algorithmic accountability 

 

4.6.4 Synthesizing Democratic Legitimacy Activities 

 In this section, I take the activities identified in the algorithmic governance and 

traditional democratic legitimacy literature and merge those which are functionally 

identical or split those covering too big a subject area. I then place the results in a matrix 

summary table for the final activities list of democratic legitimacy.  

Initially, we have the following democratic legitimacy-seeking activities from the 

democratic legitimacy literature review above: 

- Public consultations 
- Non-algorithmic fairness 
- Transparency 
- Deliberation 
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- Accountability 
- Responsiveness 
- Subjective rights 
- Procedural protections (individual against the state) 
- Procedural protections (minority against majority) 
- Impartiality  
- Autonomy 
- Interpretability 
- AIA’s E-1 through E-5 
- AIA’s P-1 through P-4 

However, there is still substantial overlap in these activities, and they can be refined 

into a much smaller group. 

Deliberation vs. Public Consultations 
 These are both similar concepts, with the core difference between who is being 

consulted: public consultation requires the consultation of the population at large, 

whereas deliberation can involve just about any group with an interest in a given policy. 

Since deliberation can effectively include public consultations within it, public 

consultation will be considered an element of deliberation. 

Procedural Protections 
 Procedural protections for the individual against the state and for minority 

groups against the majority can be more succinctly be stated as substantive due process 

rights under the 5th and 14th Amendments (Broderick 2009). The “famous footnote” of 

the United States v. Carolene Products Co (1938) case made clear that the legislative 

branch (and the federal agencies which implemented its legislation) would be under 

“strict scrutiny” for actions which fell under the following categories: 

- Activities which violated the Bill of Rights 
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- Activities which violated fundamental political processes, such as voting and free 
speech 

- Activities which were prejudicial against “discrete and insular minorities” 

Additionally, we can add subjective rights (defined as those referenced in the UN’s 1948 

Universal Declaration of Human Rights) to this list (Peters 2011). Moving forward, 

procedural protections for individuals and minority groups plus subjective rights will be 

jointly referenced as substantive due process rights, or SDPR. 

Responsiveness vs. Accountability 
 Both (Chiocchetti 2017) and (Kriesi 2013) place responsiveness and 

accountability together (in their substantive representation and procedural legitimacy I 

sections respectively), and this makes sense. While the two terms aren’t identical, they 

are intrinsically related to one another – being responsive is necessary to being 

accountable and being accountable is necessary to being responsive. For the purposes 

of this study, responsiveness will be considered an element of accountability. 

Transparency vs. Accountability 
While there is an element of intersection between transparency and 

accountability, they are not equivalent. Rather, transparency is a necessary but not 

sufficient prerequisite for accountability (Koene, et al. 2019, 1). In other words, 

transparency can exist without accountability, but accountability cannot exist without 

some element of transparency. However, transparency still has value as a separate 

activity – while achieving transparency without accountability is obviously not 

preferable, such a result is certainly preferable for a public agency than achieving 

neither. Therefore, I will leave them as separate activities. 
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Interpretability vs. Explainability 
For the purposes of this study, explainability refers to what we can explain or 

understand of the model itself (i.e. explanatory power), whereas interpretability is more 

closely related to how a public agency provides that explanation to the public (or at 

least to those groups that require explainability). An ML system may have perfect 

explanations provided, but a public agency can still fail to make those explanations 

meaningful to the public. Likewise, a public agency may do its utmost to effectively 

share as much as possible about the ML system that it uses. However, if it simply 

doesn’t have much explainability to begin with, such interpretability isn’t as useful. In 

short, there is an overlapping and complementary relationship between the two, but 

they are nevertheless distinct: explainability can be covered algorithmically in the 

literature review above, whereas interpretability more closely relates to the public 

agency’s activities rather than work done on or with the algorithm/data. 

Integrating AIA Elements & Policy Goals 
 Given the AIA’s specific focus is on algorithms, it stands to reason that their 

democratic legitimacy-seeking activities are more specified and focused than the 

activities for the other two studies reviewed. Because of this, some of them can be fit 

squarely into one or more of the previously defined activities. Specifically: 

 

Table 5 - Linking Legitimacy Activities to the AIA 

Current Legitimacy Activity Relevant AIA Element/Policy Goal 

Deliberation E-4, P-3, P-4 
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Accountability E-2, P-2, P-3, P-4 

(Protection of) Substantive Due Process 
Rights 

E-1 (partial), E-5, P-4 

Transparency E-3, P-1 

Non-algorithmic Fairness E-1, E-2, E-5, P-2 

Interpretability E-3, P-1, P-3 

  

 However, the AIA study also has two activities that are not represented in the 

preceding two pieces of literature. In particular, this refers to algorithmic maintainability 

and human autonomy. 

Algorithmic Maintainability 
In addition to the activities specified from the primary democratic legitimacy 

literature reviews, I argue that there is one additional activity required in the context of 

ANNs and machine learning generally: algorithmic maintainability. Both E-2 and P-3 

within AIA’s study help describe algorithmic maintainability. From them, I define 

algorithmic maintainability as “the process through which a machine learning system is 

reassessed to ensure that it continues to meet or exceed previously approved standards 

of performance, both in terms of accuracy and other relevant assessment metrics.”  

With human-made decisions, there are natural processes of maintainability: for 

example, laws or regulations can be changed over time as society changes, and new 

leaders are routinely elected. However, ML systems lack this kind of maintainability. If 

ANNs are going to be used in potentially important decision-making processes, then it is 
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important for them to have the need for their maintainability spelled out for them to 

remain democratically legitimate.  

At the same time, ML systems shouldn’t necessarily be treated as generic 

software programs – updating them (i.e. adding new data to train from) simply for the 

sake of updating isn’t necessarily a net positive – those updates could potentially lower 

accuracy or even have lower quality data. Then there are subjective questions as to 

how, precisely, to do the update – should old data be thrown out, should the new data 

simply be added on top of the old data? 

Human Autonomy 
 Along with algorithmic maintainability, human autonomy is another unique 

concept presented in the AIA study, a concept which is specific to the issues created 

with machine learning systems. Human autonomy in relation to ML systems is defined 

as an individual’s capacity for self-determination or self-governance. More specifically, 

P-1 and P-4 within the AIA study both reference how ML systems might harm an 

individual’s capability for self-determination. 

4.6.5 Key Democratic Legitimacy-Inducing Activities Defined 

With these key activities refined and integrated together, the final list of eight 

key democratic legitimacy activities as related to ML systems is below: 
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Table 6 - Definitions of Democratic Legitimacy Activities 

Democratic Legitimacy 
Activity 

Definition 

Deliberation (i.e. 
deliberative democracy) 

“…political decisions should be the product of fair and 
reasonable discussion and debate among citizens.” 
(Eagan 2013) 

Accountability “A set of mechanisms, practices and attributes that 
sum to a governance structure which involves 
committing to legal and ethical obligations, policies, 
procedures and mechanism, explaining and 
demonstrating ethical implementation to internal and 
external stakeholders and remedying any failure to act 
properly” (Koene, et al. 2019, 4) 

Substantive Due Process 
Rights (i.e. SDPR) 

The public agency, to the best of its ability, ensures the 
substantive due process rights of individuals who are 
assessed with its machine learning system are not 
violated. These rights specifically include: 
- Activities which violate the Bill of Rights 
- Activities which violate fundamental political 

processes, such as voting and free speech 
- Activities which are prejudicial against “discrete 

and insular minorities” 
- Activities which violate the rights specified in the 

UN Universal Declaration of Human Rights 
  

Algorithmic Maintainability The process through which a machine learning system 
is reassessed to ensure that it continues to meet or 
exceed previously approved standards of performance, 
both in terms of accuracy and other relevant 
assessment standards. 

Transparency “Depending on the type and use of an algorithmic 
decision system, the desire for algorithmic 
transparency may refer to one, or more of the 
following aspects: code, logic, model, goals (e.g. 
optimisation targets), decision variables, or some other 
aspect that is considered to provide insight into the 
way the algorithm performs. Algorithmic system 
transparency can be global, seeking insight into the 
system behaviour for any kind of input, or local, 
seeking to explain a specific input - output 
relationship.” (Koene, et al. 2019, 4) 
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(Human) Autonomy “Autonomy is an individual’s capacity for self-
determination or self-governance.” (Dryden n.d.) 

(Non-algorithmic) Fairness In contarst to optimizing for fairness in an algorithm, 
this conception of fairness deals with how a public 
agency itself implements fairness at an organizational 
level rather than at an algorithmic level. This includes 
concepts such as ensuring that the data used to train is 
fair to different sub-groups, as well as ensuring that all 
agency employees who utilize a machine learning 
system are well trained. 

Interpretability Interpretability is one of the least well-defined terms in 
machine learning. In a thorough review of existing 
interpretability litreature, (Lipton 2016) argues that the 
objectives of interpretability include trust, causality, 
transferability, informativeness, and fair and ethical 
decision-making. 

 

 

4.6.6 Separate Research Thread vs. Democratic Legitimacy Activity 

Among the democratic legitimacy-seeking activities noted above, four stand out 

as being potentially viable candidates for their own research thread: algorithmic 

maintainability, transparency, non-algorithmic fairness, and accountability. However, 

each was rejected for the same reason: while they are intricately related to ANNs (and 

machine learning more broadly, to varying degrees), they are not primarily technical 

properties to be optimized. That is, they will not be solved (at least primarily) through 

enhancing the algorithm, the model, or the data, but rather through the structure and 

procedures of the public agency itself. This contrasts with accuracy, robustness, privacy, 
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explainability, and (algorithmic) fairness, each of which are primarily technical in how 

they are optimized. 

4.7 Excluded Possible Threads 

 While each of the six threads listed above are included in my analytical 

framework, there are several other candidates that were considered as well, either as 

separate research threads or as activities housed within democratic legitimacy. 

4.7.1 Ethical AI 

 Ethical AI literature focuses on how AI should be implemented in society more 

broadly. While this topic is not included in my literature review directly, a meta-analysis 

of different ethical AI frameworks is included in my formal methodology below (Stage 

Two). 

One of the most important works in this field is from (Mittelstadt, et al. 2016), 

who defined six distinct ethical concerns for algorithms. While their work is for 

algorithms generally, it’s nevertheless applicable to neural networks as well. These six 

ethical concerns include: inconclusive evidence (there will never be 100% accuracy), 

inscrutable evidence (hidden connection between data and conclusion), misguided 

evidence (how representative the data is of reality), unfair outcomes (standards of 

fairness and bias), transformative effects (the oft-hidden changes in how people 

conceptualize their world due to algorithms), and traceability (determining who or what 

is responsible for adverse decisions). Many of these ethical concerns can be mapped to 



117 
 

previous areas of neural network scholarship. Because a study of Ethical AI frameworks 

is included in the formal methodology as an archival review, I found it unnecessary to 

include it as a section of the literature review as well. 

4.7.2 Law & Regulation 

 There have already been a variety of policy and legal scholars who have weighed 

in on the implications of implementing ML systems in society, both in terms of how to 

regulate emerging technologies (Bonnín-Roca, et al. 2017) (Price II 2017) and whether or 

not various uses of machine learning are even legal for a public agency to use 

(Coglianese and Lehr 2017).  

However, the reason why this thread was not included is because it is beyond 

the scope of this study. This dissertation is not focused on answering questions related 

to the proper way to regulate or deal with the legality of ML systems. Additionally, 

questions of legality and regulation move away from the procedural side and looks at 

the end result. Rather, my hope is that researchers interested in these fields can draw 

from my analytical framework to develop effective laws and regulations. 

4.7.3 Behavioral Psychology 

 Behavioral psychology is another thread of research where there is 

unfortunately little in the way of published research related to machine learning 

systems, particularly those used in the context of public agencies. Indeed, even many 

recent AI ethical frameworks have failed to delve into this field very deeply. Because of 
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the lack of significant peer reviewed scholarly publications available at the intersection 

of ANNs and behavioral psychology, it makes this area untenable as a separate research 

thread in the literature review. In short, this thread was not included because it still 

needs more basic research when applied to ANNs, not to mention being outside the 

field of public policy. Were this a dissertation in the field of behavioral psychology, it 

would be quite a different story. Indeed, once more research has been conducted, I 

believe it would be an excellent and highly useful thread to this literature review (or 

potentially added within democratic legitimacy). 

 However, despite my inability to find much peer reviewed scholarly literature at 

this intersection, there is still a smattering of news articles and blogs on the subject 

which allow for a basic review of concepts. There is also some scholarly literature 

focusing on the intersection of automated systems more generally with behavioral 

psychology. 

Within behavioral psychology, then, the primary issue relevant to artificial neural 

networks is that of cognitive bias. However, this should not be confused with the 

previous section discussing bias as it relates to algorithmic fairness. Whereas that 

section focuses on bias from the neural network side of the equation (such as an ANN 

being more likely to misclassify input data from a minority group), cognitive bias looks at 

the human side of bias. 
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 According to Cami Russo, author of Psychology Today’s The Future Brain: The 

Intersection of AI and Human Intelligence series, “[h]uman cognitive bias influences AI 

through data, algorithms and interaction.” She further notes that “[t]he size, structure, 

collection methodology, and sources of data impact machine learning. Machine learning 

is dependent on the quality of learning data sets.” (Russo 2018). These three areas of 

influence are important to focus on: data, algorithms, and interaction.  

First, data can be subject to cognitive bias because even if an artificial neural 

network determines for itself which input parameters are important, it is still a human 

being who defines the overall list of parameters to choose from in the first place. How a 

computer programmer conceives of what parameters might be important, even if the 

ANN itself determines which subset of parameters are the most predictive, can 

fundamentally shape the result. 

Second, algorithms can be subject to cognitive bias because of the sheer variety 

of hyperparameter choices that a human being must select from. Choices include type 

of layer (RNN, LSTM, CNN, fully-connected, etc.), number of layers, number of neurons 

per layer, activation function, and more. The cognitive assumptions a programmer has 

about which algorithms will perform best at which task will deeply shape the final ANN. 

Indeed, this problem of hyperparameter selection is well-known in scholarly research, to 

the point where some scholars have attempted to develop automated machine learning 

solutions for hyperparameter selection itself (Rodriguez 2018). 
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Finally, human interaction with an ANN’s output can be shaped by cognitive bias. 

Consider the hypothetical case of an ANN used to assess patient risk at a hospital – the 

ANN is implemented to predict if a patient is likely to soon need medical assistance 

based on blood pressure and other relevant medical metrics in real time. It then outputs 

that likelihood for the presiding doctor as a standard percentage likelihood (i.e. “patient 

X has a 60% chance of needing medical assistance within the next hour”). Presuming 

that the system is highly accurate, unbiased, and mitigates all the other problems noted 

in the threads above, the cognitive bias of human interaction can still play a role. This is 

because human beings are less than ideal at acting “correctly” based on raw statistics 

(Rosenblat, Kneese and Boyd 2014). Indeed, the very usage of an automated system 

itself may lead to new human biases, which some refer to as automation bias (Skitka 

2011). At the same time, other scholarship has asserted that a well-designed artificial 

neural network may actually be a countervailing force against intrinsic cognitive biases 

(Andreessen Horowitz 2017). 
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5 Research Methodology 

 
 
 
 With the various taxonomies of AI, background information, and a wide 

literature review in hand, below is my research methodology for conducting my study. 

5.1 Introduction 

 My research methodology is a qualitative, multi-method, iterative approach 

consisting of archival research, comparative analysis, expert interviews, and peer review 

which refines and improves my analytical framework. It consists of five distinct, 

sequential, and interrelated stages:  

(1) evaluate the relationship of the competing research threads noted above to one 

another; 

(2) extract key actionable principles from existing “ethical AI” frameworks in various 

fields of study; 

(3) develop a draft analytical framework based on the previous two stages; 

(4) conduct a combination of peer review and expert interview to iteratively improve 

the framework; 

(5) compare what has been produced at this point against an existing similar framework 

for public agencies for additional iterative improvements. 
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The first stage allowed me to take the key elements of my literature review and 

ask a very simple question of them all: while all of these research threads are important 

to optimize, particularly in a public policy setting, how do they interact with one 

another? That is, does optimizing for one cause problems for another? What does 

current empirical scholarship have to say on the subject (limited though it is at times), 

and how can I add on to this literature with an analysis of democratic legitimacy as a 

new thread? 

The second stage then looked at those ethical AI frameworks that have been 

developed thus far from different fields of study: general ethical AI in society, law, public 

administration, software development, and government grand strategy. Based on 

several criteria (discussed below), I then selected the most relevant principles from the 

ethical AI frameworks to utilize in my own analytical framework. 

Next, the third stage was the construction of the first draft framework itself – 

from the conclusions drawn in the first two stages, I generated my initial principles. 

Some of those principles had a one-to-one relationship with the principles extracted in 

the previous stages, whereas others were based upon derivations or combinations of 

multiple concepts. At the conclusion of the third stage, my first draft analytical 

framework was completed (this is located in Appendix A-1). 

The fourth stage revolved around iteratively improving my analytical framework 

through a combination of expert interview and peer review. At the conclusion of the 
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fourth stage, I had my second draft analytical framework completed (this is located in 

Appendix A-2). 

Finally, the fifth stage encompassed a comparative analysis with the framework 

produced by (Leslie 2019), the only directly comparable work focused on the same set 

of problems to this study’s analytical framework, for further iterative improvement. 

5.2 Stage One: Testing of Competing Research Threads 

 This stage consisted of an archival review of empirical literature (save for 

democratic legitimacy, where there isn’t necessarily empirical literature) where the 

relationship between two or more research threads were tested against one another. 

Specifically, I looked for literature which showed either a positive (i.e. complementary), 

negative (i.e. in tension), or mixed relationship between two or more research threads 

when attempting to optimize them. These terms are defined below: 

Complementary Relationship: We would expect optimizing one research thread to have 

a positive impact on the other research thread, or that optimizing for both 

simultaneously would not have a negative impact on either thread compared to them 

being optimized separately.  

Tension Relationship: We would expect optimizing one research thread to be in tension 

with another if it simultaneously decreases the optimization of a separate research 

thread, or has a negative relationship. 
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Mixed Relationship: Sometimes the relationship is positive and sometimes the 

relationship is negative depending on conditions, or the relationship is entirely neutral, 

or the relationship cannot be determined. 

5.2.1 Defining Optimization 

 For each of the research threads, the meaning of “optimization” is different. 

While a given definition of optimization may be best practice today, that does not mean 

that it will continue to be the best method of determining how optimized a given 

research thread is in the future. Indeed, for some research threads there is no 

universally accepted objective standard for what optimizing it even looks like. 

Additionally, because this is a relatively new field of study within artificial neural 

networks, the existing literature in this area is not always particularly deep, particularly 

when looking for direct empirical evidence.  

Below are definitions for how I define optimization for each research thread: 

Accuracy 
 Optimizing for accuracy involves assessing either the simple accuracy, the 

recall/precision/F1 Score, or alternative accuracy replacement measurements in unique 

sub-fields such as natural language processing (such as BLEU). 

Privacy 
 There are many ways of optimizing for privacy in ANNs. This study considered 

optimizing for differential privacy primarily (since that is where the highest 
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concentration of literature exists) but also allowed for studies that looked at secure 

enclaves or other newer methods if they could be found. 

Robustness 
This study considered certified robustness standards as optimizing for 

robustness. As those robustness standards are focused on defending against adversarial 

examples and data poisoning, that is how robustness’ optimization is assessed in this 

study. 

Fairness 
 Fairness is arguably the thread with the most complicated debate over the 

proper definition, which in turn changes how it should be optimized. Indeed, many 

definitions are mathematically incompatible with one another. Rather than simply 

selecting one definition of fairness as legitimate, the empirical studies comparing the 

optimization of fairness against other research threads is thin enough that regardless of 

which standard of algorithmic fairness is chosen, the study will be included here. 

Explainability 
 With explainability, it is particularly difficult to define what optimization looks 

like because it is inherently less quantitative in nature than the other research threads 

(except for democratic legitimacy). Indeed, the most “optimized” explanation for a given 

ANN’s output can be different depending on the situation, and determining if an 

explanation got better or worse is hardly an entirely mathematical exercise. Because of 

this, it will be mostly left out of this section, except for comparing it against democratic 

legitimacy. 
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Democratic Legitimacy 
 Whereas explainability has both quantitative and qualitative components to it, 

democratic legitimacy has entirely qualitative components. Math will not directly 

determine if an ANN created by a public agency has democratic legitimacy (though it 

may indirectly assist by helping prove issues such as fairness). Because of this, 

determining “optimization” for democratic legitimacy against other threads will not be 

empirically based. Rather, we will qualitatively assess the different democratic 

legitimacy activities defined previously in Section 4.6.5. This will be explored in Chapter 

Six in more depth. 

5.3 Stage Two: Ethical AI Framework Meta-Analysis 

Unlike the remaining Stages of research, Stage Two does not build directly on 

top of Stage One. Rather, these two stages were conducted independently of one 

another with the intent that each shed light onto different kinds of principles, questions, 

and concepts. Together, they form the baseline first draft of my analytical framework. 

Whereas the previous stage looked at weighing research threads against one another, 

this stage analyzed the myriad of “ethical AI frameworks/principles” that have been 

created by various individuals, groups, and governments. There are dozens of such 

frameworks that have already been written, and from a wide range of fields. While this 

section is not intended to be entirely exhaustive of every framework in existence, it 

should nevertheless cover a wide swath of what presently exists. Indeed, it even covers 

several other meta-analyses of ethical AI frameworks. 
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The purpose of this stage was two-fold. First, it determined areas of deep 

agreement or disagreement between various frameworks. Conflicts may indicate 

principles without wide areas of scholarly agreement, whereas deep and widespread 

agreement can indicate concepts which are widely accepted enough to potentially 

become principles for this framework. Second, analyzing these principles helped to 

provide guidance in Stage Four during expert interviews. 

The remainder of this Stage contains three sections: (a) listing the AI ethics 

frameworks chosen for this analysis and why they were chosen when others were not, 

(b) describing the different types of sources for AI ethics frameworks, and (c) the 

principle criteria that will be used to assess each frameworks’ principles for validity and 

use in this study. 

5.3.1 Listing of AI Frameworks Covered 

Mostly since 2016, dozens of groups have attempted to develop ethical AI 

frameworks. One of the most prominent examples was in January 2017, when AI 

researchers from all over the world met to discuss the implications of artificial 

intelligence (primarily ANNs and other ‘black box’ machine learning systems) going into 

the future. Following the completion of their conference, they codified what they 

considered to be the 23 most important principles that all AI researchers should follow 

in their own research (Future of Life Institute 2017). By July 2018, over 1,250 AI 

researchers (among them many of the leading scholars in the field) had signed onto 
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those principles. For any scholar looking to analyze the current state of understanding of 

the impact of ANNs on society, the Future of Life Institute’s 2017 conference principles 

on AI is an excellent starting point. 

Their 23 principles included five dealing with research itself, thirteen dealing 

with the ethics and values of developing AI, and five assessing the long-term 

applications and implications of AI. Although some of these principles are too vague to 

provide any substantive guidance (“There should be constructive and healthy exchange 

between AI researchers and policy-makers”), others are more meaningful in their direct 

implications (“Any involvement by an autonomous system in judicial decision-making 

should provide a satisfactory explanation auditable by a competent human authority”). 

The table below includes the frameworks I analyzed. Most of them are actual 

frameworks themselves, whereas a few are meta-analyses of various previous 

frameworks. 

 

Table 7 - List of AI Ethics Frameworks 

Framework/Paper Name Citation Source of 
Framework 

AI at Google: Our Principles & 
Responsible AI Practices 

(Pichai 2018) 
(Google 2019) 

Software 
Development 

The UX of AI (Lovejoy 2018) Software 
Development 

AI UX: 7 Principles of Designing Good AI 
Products 

(Pásztor 2018) Software 
Development 
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Montréal Declaration for Responsible 
Development of Artificial Intelligence 

(Abrassart, et al. 
2018) 

Government 

Executive Order on Maintaining 
American Leadership in Artificial 
Intelligence 

(Trump 2019) Government 

Governance Principles for a New 
Generation of Artificial Intelligence: 
Develop Responsible Artificial 
Intelligence 

(Laskai and 
Webster 2019) 

Government 

Ethics Guidelines for Trustworthy AI (High-Level Expert 
Group on AI 2019) 

Government 

ALGORITHMIC IMPACT ASSESSMENTS: 
A PRACTICAL FRAMEWORK FOR PUBLIC 
AGENCY ACCOUNTABILITY  
 

(Reisman, et al. 
2018) 

Public Administration 
& Law 

Machine Learning for Public 
Administration Research, 
with Application to Organizational 
Reputation 

(Anastasopoulos 
and Whitford 
2019) 

Public Administration 
& Law 

Regulating by Robot: Administrative 
Decision 
Making in the Machine-Learning Era 

(Coglianese and 
Lehr, Regulating by 
Robot: 
Administrative 
Decision Making in 
the Machine-
Learning Era 2017) 

Public Administration 
& Law 

AI and Its Impact on Public 
Administration 

(Shrum, et al. 
2019) 

Public Administration 
& Law 

Asilomar AI Principles (Future of Life 
Institute 2017) 

Civil Society 

TOP 10 PRINCIPLESFOR ETHICAL 
ARTIFICIAL INTELLIGENCE 

(UNI Global Union 
2017)  
 

Civil Society 

The Toronto Declaration: Protecting the 
right to equality and non-discrimination 
in machine learning systems 

(Amnesty 
International 2018) 

Civil Society 

Universal Guidelines for Artificial 
Intelligence 

(The Public Voice 
2018) 

Civil Society 

 The Ethics of AI Ethics: An Evaluation of 
Guidelines 

(Hagendorff 2019) Meta-framework 
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Introducing the Principled Artificial 
Intelligence Project 

(Hilligoss and Fjeld 
2019) 

Meta-framework 

 

 

5.3.2 Four Existing Sources of Frameworks 

In the table above, we can see AI frameworks coming out of four existing 

sources, as well as “meta-frameworks” which attempt to do something like what this 

Stage is doing. The meta-frameworks are included to help analyze additional 

frameworks not directly included in this Stage. The four sources are defined as such: 

Civil Society 
Civil society frameworks are created by non-governmental non-profit 

organizations or by groups of scholars in general. Some are peer reviewed, whereas 

others are not. 

Public Administration & Law 

 These frameworks are generally from legal scholars. They focus on the legal 

aspects of implementing all kinds of machine learning in society – what laws already 

exist, what laws might need to be created, where existing case law is headed, and what 

kind of regulations currently exist which deal with government agencies handling ML 

systems. 
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Software Development 

 These principles are created by software developers. In general, their 

frameworks are more oriented towards the technical minutia of developing ML systems, 

as well as how those technical minutia interact with society. They often provide 

guidance for the software developers themselves seeking to develop and implement ML 

systems in their own companies. 

Government 
 While these “government” documents sometimes discuss AI in other facets 

besides ethical principles in society, they are also basic primers for how major world 

powers see the development of ethical AI, or at least what they are saying publicly 

about it. While other countries have also produced such AI ethics guidelines, I focus on 

four governmental entities in particular: the US, Canada, China, and the European Union 

(EU). Aside from the obvious inclusion of the US, Canada was chosen because of their 

history in developing ANNs, China was chosen because along with the US they are one 

of the leaders in AI R&D spending, and the EU was chosen due to their GDPR law and its 

potential worldwide impact on ANNs and other ML systems. Although this study is 

focused on US public policy and public agencies, that does not mean that principles 

noted in these other countries are irrelevant. 

5.3.3 Principle Assessment Criteria 

 With the list of AI ethics frameworks to be considered in hand, I will apply the 

following criteria to them to filter and extract out those principles deemed most 
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relevant. A potential principle must meet all five criteria to be considered for inclusion in 

this framework. Principles on the ‘borderline’ of one or more criteria are discussed 

further below. The five principle assessment criteria for inclusion are as follows: 

Criteria 1: The principle is not just a computer science principle 
Principles revolving exclusively around computer science were not selected. 

There are already countless guides to selecting the proper number of layers or neurons, 

selecting the proper optimization algorithm, how many iterations (epochs) to allow an 

ANN to be trained, how large the batch size should be, etc. What’s more, such principles 

may only be right today – they are the kinds of principles that lend themselves to 

change over time. Additionally, they are outside the scope of this framework – this 

framework is meant to be at the mezzo-level of analysis, not the micro-level. It is not 

meant to inform computer scientists on the technical specifics of ANN development. 

Rather, it is meant for public agency managers (and analysts) who may not be as well 

versed in computer science. 

Criteria 2: The principle is relevant to US, domestically-focused public agencies 
 Some principles may revolve principally around private sector actors, non-

governmental bodies, or US public agencies focused abroad. While they may be valid 

principles for their intended target, they are not relevant for this analytical framework 

given its scope limitations. 

Criteria 3: The principle is not overly generalized, self-evident, or simply inaccurate 
 Principles that provide little other than generic platitudes or are deemed to be 

so self-evident that they provide little to no practical utility were not included. This is a 
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common issue for many AI ethics frameworks. As (Whittlestone, et al. 2019) note in 

their meta-analysis of ethical AI frameworks, many AI ethical frameworks “…are often 

too broad and high-level to guide ethics in practice,” such as those that mention that “AI 

should be used for the common good, should not be used to harm people or undermine 

their rights, and should respect widely held values such as fairness, privacy, and 

autonomy.” Therefore, the principle must at least be partially actionable to be included 

– there should be specific activities that a public agency manager could pursue (or avoid 

pursuing) that are directly guided by a given principle. For example, there are few who 

would argue against fairness, good explanations, high accuracy, robustness, and privacy 

being “good”, or that bias, black boxes, and discrimination are “bad”. But simple 

statements of “good” and “bad” are insufficient for inclusion. 

Criteria 4: The principle does not violate democratic legitimacy 
 For a public agency, democratic legitimacy is of the utmost importance. This is 

admittedly an assumption throughout this study, that all public agencies should seek 

democratic legitimacy. However, I do not believe it to be a poor or improper assumption 

to make. Nevertheless, potential principles originating from different sources where 

democratic legitimacy is not necessarily a primary consideration (or simply may not 

have been considered in such terms) may therefore require special attention before 

inclusion.  
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Criteria 5: The principle does not rely on normative assertions of the results of specific 
policies 
 As has been noted previously, this framework is designed to be procedurally 

normative – that is, it makes normative assertions about the proper procedure to follow 

when developing and implementing ANNs and to some extent ML systems more 

broadly, regardless of what one’s intended policy goals are. Indeed, democratic 

legitimacy itself is viewed through a procedural lens in this framework. Because of this, 

principles which are aimed at achieving one particular policy goal were excluded. This is 

not to make a judgment that such policy goals are illegitimate, but rather that they are 

beyond the scope of this framework. 

 As an example, this framework is not itself meant to assess whether the police or 

the FBI should be permitted to utilize ANN-based facial recognition software when 

searching face matches for criminals, or whether they should be permitted to pull in 

photos from social media and the internet generally (Collins 2019). Thus, a principle 

which asserted that ANNs should or should not be used by police for facial recognition 

would not be included in this study’s analytical framework. While this issue is 

undoubtedly a vitally important question of public policy, it is outside the scope of this 

framework. 

Rather, this framework is designed to ensure that if such a policy goal was 

desired, there are clear normative procedures which could mitigate as many negatives 

as possible during development and implementation. In short, this framework tries to 
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make no judgment on whether a policy end goal itself is normatively good or not. Of 

course, even if every procedurally normative principle in this framework were to be 

followed, someone can still argue that the resultant policy is wrong for ethical or moral 

reasons related to the policy outcome. 

5.4 Stage Three: Produce Draft Analytical Framework 

With the first two stages complete, the next stage is to produce the first draft 

analytical framework. The determination of what qualifies as a principle and what 

principles should be included is inherently a subjective one, regardless of how rigorous 

and transparent the selection procedures, but I argue that the criteria I have set ensures 

that this framework will have the greatest possible utility to US public agencies. 

However, this initial draft is just that – a draft, and an early one. This early draft is 

located in Appendix A-1 rather than in Chapter Six to avoid confusion. 

5.5 Stage Four: Evaluate, and Improve Analytical Framework 

With the preceding three stages complete, I have my first draft analytical 

framework in hand. From there, the task moves on to evaluation and iterative 

improvement of that framework. 

5.5.1 Evaluating the Draft Analytical Framework 

Evaluation is of critical importance when developing any kind of framework. 

However, the challenges of evaluation are potentially tricky in this case – while there is a 

wide body of literature concerning qualitative evaluation methodologies generally, most 
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of those methodologies are not designed to themselves evaluate a framework. Rather, 

they generally focus on program or project evaluation. This being the case, I instead 

developed an evaluation methodology based on RAND Corporation’s 2013 evaluation 

methodology development framework (Guthrie, et al. 2013). In this fourth stage, I 

analyze how my draft analytical framework would fit into RAND’s evaluation 

methodology framework, consider which methods and tools are best suited to 

evaluating my analytical framework, and then implement the evaluation methodology it 

recommends. 

RAND’s framework itself utilizes a case study analysis and comparison of 

fourteen previous research evaluation methodologies to build their evaluation 

methodology development framework. In this section, I outline how my own analytical 

framework fits into their evaluation methodology. 

RAND first determines four central types of characteristics based on what they 

deem to be the most important in an evaluation methodology: summative vs. formative 

evaluation, purpose of what is to be evaluated, types of tools used in the evaluation, 

and in what stage(s) the research should be measured, either quantitatively or 

qualitatively. Based on these four central characteristics, the authors make separate 

recommendations for developing an evaluation methodology.  

With these characteristics in mind, they then ask the framework’s user to answer 

thirteen questions that further shape the users’ evaluation methodology. These 
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questions include topics such as: purpose, characteristics, context, pitfalls, tools, level of 

aggregation, and implementation. Below, I provide my conclusions based on what I 

determined the four central characteristics of my analytical framework are, with 

particular emphasis given to the choice of tools (i.e. methods). 

5.5.2 Key Characteristics to Evaluate 

The first central characteristic RAND defines is whether you want a summative or 

formative evaluation methodology. As the names imply, summative evaluations assess 

what currently exists, while formative evaluations “focus on learning and improvement 

rather than assessing the current status” (Guthrie, et al. 2013, 5). My analytical 

framework was incomplete after the first three stages are finished. Therefore, a 

formative evaluation methodology is obviously fitting. 

The second central characteristic the authors define is based the purpose of the 

evaluation itself. They define four generalized purposes of evaluation: advocacy (making 

the case for the program being evaluated), accountability (determining whether funding 

for a given project was used effectively), allocation (determining how much funding to 

allocate for a given program), and analysis, which they define as “to understand how 

and why research is effective and how it can be better supported, feeding into research 

strategy and decisionmaking by providing a stronger evidence base” (Guthrie, et al. 

2013, 6)  
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I argue that while none of the four are perfect fits, analysis is clearly the best fit 

for my evaluation methodology. This is because the other three types are primarily 

concerned with project management evaluations, whereas the analysis typology is more 

closely aimed at research itself. Also, an analytical framework should naturally be 

concerned with analysis first and foremost. However, it is admittedly not a perfect fit, 

but research and development is inherently part of what a public agency would require 

when implementing an ANN or other ML system. At this point, based on RAND’s 

methodology, my evaluation methodology would be a formative analysis. 

The third central characteristic defined by Gurthrie et al is at what stage the 

measurement itself should take place. They point to five possible stages of 

measurement: 

- Input measures, which capture the resources consumed for an intervention to take 

place 

- Output measures, which accounts for the goods and/or services directly produced as 

a result of an intervention 

- Process measures, which capture what occurs between input and output 

- Outcome measures, which reflect the initial impact of an intervention 

- Impact measures, which reflect the long-term impact of an intervention. 

However, not all types of measurement are relevant for all evaluation methodologies. 

For the purposes of my analytical framework, I argue that input measures and impact 
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measures can be immediately discounted. The former can be discounted because the 

input is minimal – the resources required to utilize my analytical framework (as 

compared to not using it) is not directly financially significant. This should not be 

confused with the costs associated with developing an ANN or ML system, which could 

be significant. Likewise, the latter can be discounted because there hasn’t been enough 

time for ANNs and black box ML systems in public agencies to even conduct such an 

extended analysis. 

This leaves us with measurement at three possible stages: process, output, and 

outcome. However, among these three outcome is not be as viable as the other two 

since I am not actually implementing my framework in a real-world public policy 

situation – I do not control the levers of government, and thus outcome is particularly 

difficult to assess since I won’t myself be able to place a neural network created through 

my analytic framework in a real-world situation as a part of a government agency. That 

stage of evaluation will be left to those in public administration, and should prove a 

fruitful avenue of future research. 

Thus, measured my framework at two stages: process and output. In my case, 

the process includes the overall quality of the methodology for creating this analytical 

framework, and the output includes the final principles themselves. 

Finally, (Guthrie, et al. 2013, 9) unsurprisingly consider the choice of tool(s) to be 

a particularly important characteristic in an evaluation methodology. Their framework 
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includes “Group 1 tools,” which includes case studies, documentary review, site visits, 

and peer review, and “Group 2 tools,” which includes bibliometrics, economic analysis, 

interviews, and data mining. Group 1 tools are generally “formative, flexible and able to 

deal with crossdisciplinary and multi-disciplinary assessment,” whereas Group 2 tools 

are generally “scalable, quantitative, transparent, comparable, free from judgement and 

suitable for high frequency, longitudinal use.” (Guthrie, et al. 2013, 9). 

Considering the formative nature of my evaluation methodology, as well as the 

cross-disciplinary nature of my research generally, my tools should come from Group 1. 

While expert interviews is arguably included in Group 2, from context is appears that 

Guthrie et al. are referring to more en masse interviews with a broader population, 

rather than in-depth interviews with a select group of experts.  

There are several reasons for this selection. First, most quantitative metrics (i.e. 

Group 2) are less relevant or effective in evaluating my analytical framework. This is 

because there is no straightforward quantitative metric, such as accuracy, whose 

improvement would be strongly correlated with my analytical framework “improving.” 

There is also no measurement of profitability or any easy way to quantitatively measure 

“success”, either. 

Second, many other qualitative methods for evaluation fall short in evaluating 

my analytical framework. For example, site visits to current sites of neural networks 

being used in public agencies would be unlikely to be effective or even plausible given 
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the general restrictions on divulging information about such systems. Indeed, previous 

studies even attempted to obtain such information (on either ANNs or machine learning 

generally) with FOIA requests, yet were generally unable to pierce the lack of 

transparency that exists today (Brauneis and Goodman 2018). 

Finally, peer review and expert interviews provide a way to “escape the bubble” 

of theoretical research and ensure the relevancy of my framework outside my own 

research. This is particularly important for a public policy dissertation with a strong 

element of computer science. Peer review allowed other scholars to assess and 

comment on my findings prior to publication, and expert interviews allowed me to delve 

deeper into what I gather from my peer reviews. Additionally, a comparative analysis 

allowed me to compare my own research and ATI’s, with each framework having been 

conceived of and developed entirely independent of the other. 

5.5.3 Evaluation Methods Explained 

 Given the relatively restricted group of individuals to choose from (see below), 

the lack of available financial compensation for interviewees’ time, and the 

comparatively large request of their time, I considered a minimum of five 

interviewees/peer reviewers to be acceptable. 

Participant Selection Criteria 
My participants all needed to meet the following minimum requirements: 
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- The participants were from differing fields (or if from the same field, then covering 

an entirely different subset of that field), but each would need a history of 

interdisciplinary peer-reviewed publications involving the impact of artificial neural 

networks (or machine learning generally) on society. 

- The participants could either be computer scientists with a deep interest in the 

social sciences, or social scientists/legal scholars with a deep interest in machine 

learning. 

- All interviewees were working on issues relevant to the United States, given this 

study’s domestic focus. 

- All interviewees must either have had a PhD or JD already, or be a PhD candidate 

with a history of relevant first-author peer reviewed publications 

- All interviewees must be 21 years of age or older 

- All interviewees must sign an authorization from the George Mason University 

Institutional Review Board asserting that their participation is voluntary and that 

they will be recorded 

Structure of the Interview 
The interviews themselves were almost entirely unstructured in nature – while I 

had a broader set of potential questions to ask depending on their field of study and 

how our discussion progressed, there was no automatic pre-set question list. I chose 

unstructured interviews for several reasons. First, the problem with a structured 

interview in these cases is that I was not yet confident that I knew all the best questions 
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to ask. Second, given the wide variety of fields and approaches, it seemed unlikely that 

the insights provided would be of the same focus or easily comparable to one another. 

Rather, the intent was to obtain separate and distinct insights from different 

perspectives. Therefore, an unstructured interview design should be best. 

5.5.4 Expert Interview & Peer Review Procedures 

With the preceding subsections of 5.5 in mind, Stage Four involved the following specific 

steps: 

1. Research for potential participants. This included reviewing scholars in the 

literature review section, simple web searchers for previous interviews 

conducted, as well asking known scholars for recommendations. 

2. Send initial communications to potential participants. Potential participants were 

contacted to ask if they would be interested in participating in this study, or if 

not, if they had any scholars in a similar field of study who might be interested. 

3. If initial interest is identified, send more complete information as to what would 

be required of them, as well as obtaining their signatures for consent per the 

Institutional Review Board. (Five participants were selected who met the 

selection criteria. The names of the five individual scholars can be found in 

Appendix C at the bottom.) 

4. Provide selected participants with a brief executive summary of my dissertation 

and my full draft analytical framework for their review.  
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5. Schedule a roughly hour-long interview with participants no less than four (4) 

weeks after receipt of my executive summary and draft analytical framework. 

6. Conduct the interview and record the audio conversation for later perusal. 

7. Update my analytical framework based on the discussions and critiques of my 

interviewees and write a new section identifying the key critiques from 

participants, my thoughts on their critiques, and whether or how those critiques 

were addressed or incorporated into the analytical framework 

8. Send participants an updated draft of the analytical framework, along with the 

new section identifying the critiques provided from them and other participants. 

Optionally, participants could send me via email their final thoughts on the 

critiques and my responses to them. 

9. Incorporate any final changes based on these replies and finish the second draft 

analytical framework 

At the end of incorporating their changes, I created the second draft analytical 

framework, which can be found in Appendix A-2. 

5.6 Stage Five: ATI Study Comparison and Finalize Analytical Framework 

This stage of my methodology focused on the Alan Turing Institute’s 

Understanding artificial intelligence ethics and safety: A guide for the responsible design 

and implementation of AI systems in the public sector as a target for comparative 

analysis (and hereafter referred to as “the ATI Study” for ease of reference) (Leslie 
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2019). Of note, this stage in the methodology went beyond comparison for the sake of 

finding similarities and differences – it worked to actively build from and incorporate the 

best elements from the ATI study to make this analytical framework stronger. 

The comparative analysis consisted of three parts. First, I identified the key 

differences in scope between the studies. Second, I went through each research thread 

(including splitting the different activities within democratic legitimacy into their own 

sections) and identified where the ATI study had relevant and/or competing key 

concepts. Finally, for each identified key concept, I summarized whether it merited 

inclusion as a new principle, enhanced an existing principle, or did not merit inclusion 

and why. It is also important to note that the same five selection criteria applied in 5.3.3 

Principle Assessment Criteria during Stage Two are applied here for determining what 

qualified as a “Key Concept”. 

5.6.1 Differentiating Comparative Analysis from Literature Review 

 While the ATI study could admittedly have fit within the literature review above 

instead of as its own Stage, I separated it for several reasons. First and foremost, it is the 

only study to my knowledge that qualifies as having attempted to create nearly the 

same kind of framework as this study does. Because of the sheer level of similarity, I 

argue that a significantly closer inspection is warranted from it rather than it simply 

being included as background information in the literature review. 
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 Second, it doesn’t easily fit into the structure of a literature review that is based 

on research threads because it at least touches on every research thread I cover. Unlike 

literature on algorithmic governance, the ATI study goes much deeper into how public 

agencies should use these ML systems on a practical level. Thus, it would require a 

fundamental change to the organizational structure of the literature review. 

 Finally, putting it at the end of the iterative stages of improvement for my 

framework allowed for a more effective and powerful one-to-one comparison between 

the ATI study and this study. Rather than using the ATI study to develop the 

fundamentals of how this framework should look from the beginning, the very fact that 

the ATI study and this study were developed entirely independent from one another 

(until this Stage) allowed for unique questions to be asked – for example, how did two 

analytical frameworks with similar intents but fundamentally dissimilar methodologies 

compare against one another in outcome? What do the differences between them 

mean? What can be learned from the ATI study? 
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6 Research Findings 

 
 
 
 With the research methodology defined, the research itself was conducted and 

documented. Below are the findings of my research. 

6.1 Stage One Findings 

 The first stage involved bilateral comparisons of the different research threads. 

With six optimization problems each compared against five other optimization problems 

(and subtracting those not compared against explainability), this provided me with 

eleven pairs. For each pair, I identified which of the three bilateral relationships existed 

as defined in the Research Methodology section (namely, a Complementary 

Relationship, a Negative Relationship, or a Mixed Relationship). A visualization of these 

relationships is provided in Section 6.1.4 below. 

6.1.1 Democratic Legitimacy’s Bilateral Relationships 

First, I analyzed democratic legitimacy’s relationship to each of the other 

threads. Democratic legitimacy is provided its own section for several reasons. First, it is 

arguably the most important research thread to consider for public agencies, as well as 

the thread through which each of the other threads intersect. Second, rather than base 

my arguments on the quantitative studies conducted by previous scholars, the bilateral 
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relationships of democratic legitimacy are argued based on the key legitimacy-inducing 

activities of democratic legitimacy defined in the literature review. Indeed, because the 

increasing or decreasing of democratic legitimacy cannot be defined on a quantitative 

basis, it does not easily lend itself to experiments or straightforward empirical evidence 

like the remaining bilateral pairs.  

Below are my conclusions: 

Accuracy <-> Democratic Legitimacy 

This relationship is perhaps the simplest and most obvious. It should be self-

evident that an ANN used in a public agency which is more accurate is inherently going 

to increase democratic legitimacy (while holding all other factors constant). At a 

minimum, accountability is enhanced when accuracy increases, as well as protecting 

one’s due process rights. 

Conclusion: Complementary  

Fairness <-> Democratic Legitimacy 

Fairness (except where otherwise noted referring to algorithmic fairness) is 

intrinsically critical to democratic legitimacy, particularly in the United States – however 

you define it, questions of fairness and bias permeate almost every major public policy 

process. Presuming the actual choice in how a public agency defined algorithmic 

fairness followed high standards of democratic legitimacy (itself a difficult and complex 

issue), the act of quantitatively increasing an ANNs algorithmic fairness would certainly 
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enhance substantive due process protections and accountability, as well as human 

autonomy and even non-algorithmic fairness. 

Conclusion: Complementary 

Explainability <-> Democratic Legitimacy 

Making an ANN or other machine learning system more explainable should 

increase its transparency, interpretability, and accountability at the least. Transparency 

is enhanced when what is being made transparent isn’t simply that “there is a black 

box” but rather “this is why we believe the not-as-black box made the decision that it 

did, and this is how we back up our reasoning”. Likewise, it’s difficult to hold a public 

agency accountable if there is no understanding of why a particular decision was made 

by an ANN. Due process rights are also protected when explainability is enhanced – it’s 

difficult to know when an individual’s rights are being violated if there is no 

explainability in an ANN’s decisions, regardless of accuracy.  

Conclusion: Complementary 

Robustness <-> Democratic Legitimacy 

Making an ANN more robust against malicious manipulation certainly enhances 

substantive due process rights – it is difficult to imagine one’s constitutional rights being 

protected if the ANN ends up being manipulated into making incorrect decisions. 
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However, democratic legitimacy and robustness have a more complex 

relationship when it comes to transparency. The question relies on what, precisely, 

makes up robustness: does robustness extend only to the model itself, or is robustness 

also a function of the threat environment the model is in? In the former definition, 

transparency (or indeed any element of democratic legitimacy) have no impact on 

robustness since none of them directly modify the model itself. Regardless of how much 

transparency is provided, the model’s architecture and weights are not modified in any 

way. 

With the latter definition, however, robustness can be strongly and negatively 

impacted by increasing transparency. For example, if a public agency reveals all training 

and testing data and the model structure of the ANN they are using, this can make it 

significantly easier for malicious users to manipulate the outputs of that system. Indeed, 

the differences between “black box” and “white box” systems in robustness literature 

should make this point particularly clear – defeating the robustness of a black box 

system is significantly more difficult than a more transparent system (Alshemali and 

Kalita 2019). This does not mean that there shouldn’t be transparency, but there needs 

to be a balance between the two. 

For this study, I accept the latter definition of robustness which incorporates the 

threat environment as well as the model itself. 
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Conclusion: Mixed 

Privacy <-> Democratic Legitimacy 

 Privacy is substantively like robustness in terms of its relationship to 

transparency. At first glance, increasing privacy (such as through differential privacy) is 

inherently complementary to democratic legitimacy – ensuring that the specific 

individuals used for training data cannot be recreated afterwards, for example, should 

only improve protections of due process rights and increase accountability and even 

human autonomy. However, enhancing transparency (and thus democratic legitimacy) 

can end up harming privacy through informing a malicious user about how a given ANN 

model was trained. With that information in hand, reverse engineering what elements 

were used to train the ANN (and thus the potential for the de-anonymization of data) 

should be easier. Indeed, (Young, et al. 2018) even provide a legal-technical framework 

for balancing the need for privacy with the need for democratic legitimacy (in this case 

accountability and transparency). 

Conclusion: Mixed 

6.1.2 Exclusion of Explainability 

The only bilateral relationship which won’t be further explored is that of 

explainability (except for qualitatively assessing it against democratic legitimacy above). 

This is because while explainability is highly important, it becomes extremely hard to 
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assess it as a positive or negative relationship with any of the remaining research 

threads. This difficulty stems from several areas. 

First, the techniques discussed in the explainability section either (a) don’t 

involve any direct change to the model itself, or (b) encompass techniques which 

improve explanatory power by happenstance (such as attention models) rather than by 

intent. Second, the sheer and ever-expanding quantity and variety of explanatory 

techniques (and the lack of consensus regarding which explanatory techniques are 

“best”, which can easily vary with circumstance) makes it extremely difficult to assess in 

this way.  

Finally, except for democratic legitimacy, explanatory power is the most 

qualitative research thread to assess. There is no definitive quantitative method of 

determining if a model is sufficiently explainable, as that will change with each situation. 

It can also be difficult at times to tell if something has become “more” or “less” 

explainable when comparing different methods. This contrasts with accuracy, 

robustness, fairness, and privacy, where the metrics for whether they have become 

more or less optimized is almost entirely quantitative in nature, even if there is debate 

over the proper quantitative metric. 

6.1.3 Other Bilateral Relationships 

Therefore, aside from democratic legitimacy’s bilateral relationships and the 

exclusion of explainability, there are six other relationships that need to be explored: 
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1. Fairness vs. Accuracy 
2. Robustness vs. Accuracy 
3. Privacy vs. Accuracy 
4. Robustness vs. Fairness 
5. Privacy vs. Fairness 
6. Robustness vs. Privacy 

Unlike with democratic legitimacy, where evaluation is almost entirely qualitative in 

nature and which made practical testing next to impossible, each of these relationships 

below are based on at least one piece of empirical scholarship. Scholarship was selected 

if it met the following conditions: 

- The scholarship conducted actual quantitative experimentation which concluded 
one way or the other as to the nature of the bilateral relationship, even if that 
experimentation was not meant to be generalizable to all use cases 

- If the experimental testing was not with an ANN, then the scholarship considers 
ANNs and the potential differences between their own study and whether their 
conclusions should be relevant to ANNs 

- The scholarship was available for review no later than December 1st, 2019 

Nevertheless, some relationships only have minimal empirical scholarship available, 

some had literature only on the pre-print server arXiv and was not yet peer-reviewed, 

and as mentioned previously, some literature did not set out to be generalizable for the 

entirety of the relationship. Because of this, the conclusions reached in this section 

should be taken as highly preliminary and may be subject to change as future 

scholarship becomes available. Indeed, only the strongest conclusions from this section 

are included in the final analytical framework. 
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Fairness <-> Accuracy 

No matter what fairness definition is used, current empirical literature shows 

that fairness constraints hamper accuracy, or at absolute best do nothing to improve it 

(Wadsworth, Vera and Piech 2018) (Raff and Sylvester 2018) (Jagielski, et al. 2019) (S. 

Friedler, et al. 2018) (Yurochkin and Bower 2019). 

According to (Raff and Sylvester 2018), “[i]t would be unusual to expect adding 

the fairness constraint to any classifier would significantly increase accuracy.” 

Additionally, (Jagielski, et al. 2019, 17) show that as fairness increases (defined by the 

authors as equality of odds), accuracy is likely to decrease. This is one of the strongest 

and most consistent relationships identified in empirical literature. 

Consensus: Tension 

Robustness <-> Accuracy 

For the purposes of this study, robustness is defined as resiliency to adversarial 

examples; when robustness is defined in terms of label noise, some scholarship has 

actually shown a positive relationship between accuracy and robustness (Vahdat 2017) 

(Hendrycks and Dietterich 2019). However, the relationship between adversarial 

examples and accuracy is complex – currently available literature provides some 

empirical evidence indicating that while optimizing for robustness with a small training 

set may actually increase accuracy, optimizing for robustness with a larger dataset will 

likely decrease accuracy (although not all scholarly literature tested models based on 
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smaller training datasets) (Tsipras, et al. 2018) (Su, et al. 2019) (Lei, Wang and Su 2019) 

(Zhang, et al. 2019). Current scholarship theorizes that this is because with lower 

quantities of data, the decision boundaries are drawn too sharply and optimizing for 

robustness can cause these decision boundaries to be more blurred. With higher 

quantities of data, the decision boundaries are already sufficiently blurred to maximize 

accuracy and any further blurring causes false positives or false negatives, which thus 

decreases accuracy. Therefore, I consider it a mixed relationship – there are so many 

factors which influence this relationship (not the least of which is one’s definition of 

robustness itself) that it can easily vary between ANNs. 

Conclusion: Mixed 

Privacy <-> Accuracy 

Current literature is nigh-unanimous in concluding that optimizing for differential 

privacy will decrease accuracy, at least to some degree (Shokri and Shmatikov 2015) (Yu, 

et al. 2019) (Bagdasaryan and Shmatikov 2019) (Phan, Thai, et al. 2019) (Jayaraman and 

Evans 2019). Indeed, some have taken the argument further and linked it to fairness: for 

example, (Bagdasaryan and Shmatikov 2019) assert that for smaller groups in a dataset 

(i.e. a racial or ethnic minority) “accuracy of DP [differential privacy] models drops much 

more for the underrepresented classes and subgroups.” 

Conclusion: Tension 
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Robustness <-> Fairness 
While there was no literature I was able to find comparing robustness and 

(algorithmic) fairness in broadly applicable terms to all ANNs, there is some literature 

focusing explicitly on the intersection of fairness and robustness in text classification 

(Garg, et al. 2019) (Yurochkin and Bower 2019). Although the authors have different 

methodologies, the basic premise of their papers is the same: they attempt to achieve 

fairness through providing robustness.  

While (Garg, et al. 2019) explicitly focus on individual fairness, (Yurochkin and 

Bower 2019) work to link their scholarship closer to group fairness. Both cases are also 

focused on specific use cases for text classifiers, which may not be broadly applicable to 

other uses. Both of the authors sought as their ideal that there should be little to no 

change in a machine learning system’s output if the only change is to specific “protected 

words” (i.e. words dealing with a protected subgroup) in the text. 

For example, a machine learning system assessing an applicant’s resume for a 

job would be fair under both of their definitions if the score it provided didn’t change 

regardless of if the applicant’s name is likely to be Caucasian or African-American, or for 

differing genders. Both papers show that by making their system robust to such 

changes, they achieve fairness as they define it. Although their definitions of fairness are 

somewhat narrow and their use case is hard to generalize from, they do appear to show 

a positive relationship between robustness and fairness. 

Conclusion: Complementary, but with caveats 
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Privacy <-> Fairness 

Although this literature is still young (and at the present only focuses on 

differential privacy), the current consensus in existing scholarship is that privacy and 

fairness are in tension with one another (Bagdasaryan and Shmatikov 2019) (Jagielski, et 

al. 2019) (Cummings, et al. 2019). First, (Bagdasaryan and Shmatikov 2019) assert that 

“if the original model is unfair, the unfairness becomes worse once DP [differential 

privacy] is applied. We demonstrate this effect for a variety of tasks and models, 

including sentiment analysis of text and image classification.” What is more, the authors 

show that the damage to fairness is even worse for underrepresented minority groups. 

Likewise, (Jagielski, et al. 2019) appear to agree with this assessment: while they 

showed that they could achieve realistic differential privacy with a relatively small 

tradeoff in accuracy and fairness, the fact that tradeoffs existed is still true (Jagielski, et 

al. 2019, 17). Finally, (Cummings, et al. 2019) assert that while it is mathematically 

impossible to achieve differential privacy with exact fairness and “non-trivial” accuracy, 

they also try to prove mathematically that what they define as “approximate fairness” 

can be achieved alongside differential privacy with low cost. Nevertheless, while such 

research in minimizing the tension is certainly useful, the fact that the two threads 

remain in tension by default remains. 

Conclusion: Tension 
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Robustness <-> Privacy 
 Existing literature focused on this relationship is nigh-unanimous that there is a 

complementary (or at least neutral) relationship between optimizing for differential 

privacy and robustness (Lecuyer, Atlidakis, et al. 2018) (Phan, Vu, et al. 2019) (Phan, 

Thai, et al. 2019) (Lecuyer, Atlidakis, et al. 2019). This makes intuitive sense as well, 

since both methods semantically focus on the same problem: an adversary is attempting 

to take advantage of the machine learning system in some way, and the designer must 

thus try to mitigate this issue. 

Conclusion: Complementary 

6.1.4 Summarizing Bilateral Relationships 

 From these findings, I have created the following summary table for reference: 

Table 8 - Bilateral Relationships of Research Threads 

Research Thread Accuracy Privacy 
(Algorithmic) 
Fairness Robustness 

Explainable 
AI 

      

Accuracy           

(Algorithmic) Fairness           

Robustness     *     

Privacy           

Democratic Legit.           

*Caveats apply      

 
Key: 

Red: Tension relationship 
Green: Complementary relationship 
Yellow: Sometimes complementary, sometimes tension 
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 While such a simplified form as this table may lack nuance and is a valid target of 

critique because of this, I believe it nevertheless captures enough of these relationships 

to be a worthwhile visual addition. 

6.1.5 Beyond Bilateral Relationships 

 While analyzing these bilateral relationships is the primary purpose of this stage 

of my methodology, it is also important to look where scholars are pushing research 

even further. One of the most powerful pieces of recent scholarship is (Sharma, 

Henderson and Ghosh 2019), where they produce a model-agnostic auditing system for 

ANNs and other ML models. Their auditing model uses the concept of counterfactuals to 

examine not only accuracy, but also “robustness, interpretability, transparency, and 

fairness.” While their current model doesn’t assess for privacy, it should nevertheless be 

seen as an important stepping stone to the kind of methodical, standardized testing 

framework necessary for implementing ANNs in a public policy setting. 

6.1.6 Conclusions 

 In conclusion, while I believe the first stage has value in terms of assessing the 

current state of comparative research between these different threads, it is important 

not to draw too much from its conclusions. There is simply not enough research, and 

particularly not enough broad and conclusive research, to definitively prove that all the 

relationships identified above are constant throughout all ANNs and machine learning 

systems and in all situations. 
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 Rather, they should be seen as a starting point for understanding the current 

state of research and show potential avenues for more broader studies as to these 

relationships. I do not doubt that the relationships identified above may change or even 

be proven wrong once there is deeper research. 

6.2 Stage Two Findings 

 This section includes the principles extracted from one or more of the existing AI 

frameworks specified in Section 5.3 above. Each extracted principle includes the 

framework (or frameworks) that the principle was gleaned from. Once extracted, some 

of the relevant principles were merged with similar principles or split into separate 

principles for the first draft analytical framework; the first draft can be found in 

Appendix A-1. 

 For the sake of clarity and focus, only those principles which were at least on the 

borderline of meeting all five criteria (the idea of borderline denoted below as a yellow 

caution sign) are included. Otherwise, there would be hundreds of additional principles 

from the ethical AI frameworks above to add simply to be immediately rejected. 

Common types of rejected principles include those related to AI legislation advocacy 

(failed Criteria 2), generic statements about not violating a given right (failed Criteria 3), 

and principles related to how to regulate private sector AI usage (failed Criteria 2 & 

Criteria 5). 
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As I have noted previously, the purpose of this study is not to assert that ML 

systems should or shouldn’t be used for particular policy end goals or that a particular 

kind of legislation or regulation would be ideal for managing such systems. Rather, it is 

to find those normative procedural principles that are most important for successful 

development and implementation, regardless of what one’s policy goals are. 

To restate, here are the five criteria I use from Section 5.3.3 above: 

Criteria 1: The principle is not just a computer science principle 

Criteria 2: The principle is relevant to US domestically-focused public agencies 

Criteria 3: The principle is not overly generalized or self-evident 

Criteria 4: The principle does not violate democratic legitimacy 

Criteria 5: The principle does not rely on normative assertions of the results of specific 
policies 

6.2.1 Summary of Extracted Principles 

Some frameworks simply did not contain any principles besides generic ones. 

Indeed, most potential principles from the government grand strategy documents rarely 

moved beyond generic principles and thus failed to meet Criteria 3. Here are those 

principles that were accepted which were at least on the borderline for all five criteria: 

 

Table 9 - Extracted AI Principles 

 Citations Criteria 
1 

Criteria 
2 

Criteria 
3 

Criteria 
4 

Criteria 
5* 

Principle  

A human must 
always be in 

(UNI Global 
Union 2017) 
(The Public      
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control of an 
AI’s decisions 

Voice 2018)  
(Google 2019) 
(Coglianese and 
Lehr, Regulating 
by Robot: 
Administrative 
Decision Making 
in the Machine-
Learning Era 
2017) 
(Abrassart, et al. 
2018) 
(Future of Life 
Institute 2017) 
(High-Level 
Expert Group on 
AI 2019) 

Ban attribution 
of responsibility 
to robots 

(UNI Global 
Union 2017) 
(Abrassart, et al. 
2018) 

     

Conduct 
external impact 
assessments 

(Amnesty 
International 
2018)  
(Reisman, et al. 
2018) 

     

Disclose known 
vulnerabilities 

(Amnesty 
International 
2018)      

Publicly disclose 
where systems 
are being used 

(Amnesty 
International 
2018) (The 
Public Voice 
2018) 

     

Avoid ‘black 
box systems’ 

(Amnesty 
International 
2018)      

Utilizing a 
contractor 
negates none of 
the public 

(Amnesty 
International 
2018)      
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agency’s 
responsibilities 

Use a human-
centered design 
approach 

(Pásztor 2018) 
(Lovejoy 2018) 

     

Empower users 
to test 
themselves 

(Pásztor 2018) 

     

Differentiate AI 
content visually 

(Pásztor 2018) 

     
Make 
explainability 
visual where 
possible 

(Pásztor 2018) 

     

Ensure users 
understand 
their role in 
calibrating a 
given system  

(Lovejoy 2018) 

     

If a human 
cannot perform 
a task, neither 
can an AI 

(Lovejoy 2018) 

     

Solicit public 
comment prior 
to 
implementation 

(Reisman, et al. 
2018) 

     

Correlation 
does not equal 
causation, 
particularly 
with ANNs 

(Anastasopoulos 
and Whitford 
2019)      

Do not assign 
responsibility to 
a “lower-level 
analyst” 

(Coglianese and 
Lehr, Regulating 
by Robot: 
Administrative 
Decision Making 
in the Machine-
Learning Era 
2017) 
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Usage of ML 
systems may 
force previously 
qualitative 
values to be 
quantified 

(Coglianese and 
Lehr, Regulating 
by Robot: 
Administrative 
Decision Making 
in the Machine-
Learning Era 
2017) 
 

     

Critically 
important final 
decisions 
regarding a 
person’s life, 
quality of life, 
or reputation 
must be made 
(time and 
circumstance 
permitting) by a 
human being 

(Abrassart, et al. 
2018) 

     

It is legitimate 
to restrict 
access to an AIs 
algorithm and 
training data 
when there is a 
high chance of 
endangering 
public health or 
safety. 

(Abrassart, et al. 
2018) (Trump 
2019)      

AI-generated 
user behavior 
profiles should 
be treated with 
great caution 

(Abrassart, et al. 
2018) 

     

People should 
have the right 
to access, 
manage and 

(Future of Life 
Institute 2017) 
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control the data 
they generate 

Determine if 
special redress 
procedures are 
necessary for 
the machine 
learning 
system’s 
determinations 

(Shrum, et al. 
2019) 
(Reisman, et al. 
2018) 

     

Determine if 
the machine 
learning system 
is engaging in 
“nudging”, and 
if so, how 
acceptable such 
nudging is.  

(Shrum, et al. 
2019) 
      

Vulnerable 
groups, such as 
the differently 
abled, children, 
the elderly, the 
poor, and 
disadvantaged 
minority 
groups, are at 
particularly 
acute risk from 
ML systems 

(High-Level 
Expert Group on 
AI 2019)      

Consider both 
technical and 
non-technical 
methods to 
ensure that 
problems that 
may arise from 
ML systems are 
solved 

(High-Level 
Expert Group on 
AI 2019)      
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6.2.2 Discussion on “Arguable” Principles 

 In the section above, there were three principles identified which were on the 

borderline of meeting certain criteria. They are discussed in greater depth in this section 

as to their inclusion or exclusion: 

Avoid using ‘black box’ systems 
 While in an ideal world no ANN or machine learning system would be a black 

box, at present it is nigh-impossible to find an ANN (or an advanced ML system) that 

isn’t at least partially a black box. While attempting to mitigate this black box problem 

through explainability is certainly important (indeed, an entire section of the literature 

review is based on how to do this), a blanket assertion that such systems should never 

be used is overly prescriptive at the least.  

Depending on how one defines a black box, including such a principle could 

preclude usage of any and all ML systems, regardless of their potential benefit. While 

the fact that these systems are often at least partially black boxes is a reasonable 

concern, it should not be an overriding one in all cases regardless of the circumstances. 

A more moderate version of this principle will be included in the framework instead 

which outlines the potential harms while also leaving such decisions to the public 

agency manager to weigh costs and benefits. 

If a human cannot perform a task, neither can an AI 
 The problem with this principle is that it requires a significant amount of context, 

and its potential to be used out of context (and thus drawing potentially harmful 
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conclusions from it) is high. This principle is specifically meant in the context of applying 

labels to training data – if human beings cannot successfully label training data, then a 

supervised machine learning system can’t be expected to learn the task. This is 

undoubtedly true, and a valuable point to consider, but if one applies this principle too 

broadly it can lead to highly fallacious conclusions. For example, no human being is 

capable of quickly and correctly identifying one face from a database of millions, yet 

ANNs can do this with ever-increasing accuracy. In short, this principle’s potential for 

misunderstanding and misapplication require it to be substantially reworded for 

inclusion 

People should have the right to access, manage, and control the data they generate 
 This is a broad principle that arguably crosses the line into policy outcome versus 

procedure. However, it encompasses a far more fundamental discussion of data, 

privacy, and government: how much control should an individual have over data the 

government legally collects from them? Should every individual have the right to opt-

out of having their data in any public agency’s machine learning system? Or to go even 

further, should public agencies be by default forbidden to use people’s data in a 

machine learning system without the express permission of Congressional legislation? 

Or can the risks to privacy and human autonomy be sufficiently mitigated to allow it in 

some circumstances? 

 While this principle encompasses procedures as well as outcome, I believe it 

pushes too far into subjective political outcomes for it to be included in this framework. 
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This is not to indicate that the question is unimportant, but rather that it is not meant to 

be answered by this study. 

6.2.3 Conclusion 

 With a set of principles extracted from the ethical AI frameworks (along with the 

findings from Stage One), a first draft analytical framework was constructed; it can be 

viewed in Appendix A-1. 

6.3 Stage Three Findings 

From the first two stages, there are three basic categories of principles which 

were created for organizational purposes. These categories may need to be further 

expanded and changed as this methodology changes and evolves, but they provide a 

sufficient place to begin with. 

6.3.1 Initial Categories of Principles 

 There are three categories of principles in the first draft analytic framework. 

First, there are the Optimization Principles. These principles will be predominantly 

(though not entirely) gathered from the Stage One findings covering how different 

research threads relate to each other and the problems that can be faced when trying to 

optimize multiple principles simultaneously. Second, there are Human Interaction 

principles. These principles are largely drawn from Stage Two and cover those areas 

where the human-machine interaction is the primary element of study. Finally, there are 
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General Principles. This is a catch-all category for principles which don’t easily fit into 

either of the two preceding categories and come from either Stage One or Stage Two. 

6.4 Stage Four Findings 

Stage Four consisted of five interviews combined with five concurrent peer 

reviews from individuals in a variety of related fields. While my ideal would have been 

to have 8-11 such interviews/peer reviews completed (as is common in qualitative 

interviewing in the social sciences), this was unfortunately impossible to accomplish. 

There are thousands of scholars in the United States focused on machine learning and 

ANNs, but unfortunately the number that (a) had an interdisciplinary focus between 

computer science and the social sciences, and (b) agreed to participate, was much 

smaller. Over 80 scholars were contacted, but only 5 participated to the end of the 

process. 

Before I provide an updated framework, it is important to specify the core 

critiques presented over the course of these expert interviews and peer reviews. To 

ensure that participants were able to speak freely about their views, specific quotations 

or attributions of specific critiques to one or more individuals are not provided. While 

most critiques presented were accepted to varying degrees, I provide accompanying 

explanations as to my reasoning why or why not a given critique was accepted and how 

it was integrated into the framework. 
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From the interviews and peer review, several broad ideas emerged. Most of 

those ideas impacted the analytical framework itself, although some also caused 

additions to the literature review or introduction sections as well. Where areas outside 

the analytical framework itself were impacted, they are also specified. 

6.4.1 Key Critiques 

The second draft analytical framework (that is, after completing the interviews 

and attempting to mitigate the critiques it provided but before conducting the 

comparative analysis in Stage Five) is in Appendix A-2 at the end of the study. It is not 

provided in this section to avoid confusion between the drafts and the final version of 

the framework. However, the key critiques of the interviewees are listed immediately 

below, along with a summary of the changes implemented from these critiques into the 

second draft. 

Critique 1: Integrate principles aimed at the public agency’s relationship with the software 
vendor 
 One major element argued to be missing from the original draft framework was 

what principles should be used when dealing with software vendors. While some rare 

public agencies might have the ability in-house to create such internal machine learning 

tools, current research agrees that the large majority rely on external vendors for their 

software solutions, particularly in the case of machine learning systems (Shrum, et al. 

2019) (Reisman, et al. 2018) (Brauneis and Goodman 2018) (Ram 2017) (Wexler 2017). 
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Table 10 - Summary of Actions Taken 1 

Summary of Actions Taken 

Implementation: Full 

Improvement(s): - Added new Vendor section to 
analytical framework 

- Re-reviewed findings from Stage One 
and Stage Two for relevant vendor-
oriented principles that may have 
been overlooked. 

 
 
 

Critique 2: Focus on Machine Learning more broadly instead of just Artificial Neural 
Networks 

This was an idea mentioned by several interviewees: since most of the principles 

are applicable (to varying degrees) to machine learning systems in general, the focus on 

artificial neural networks should be reduced or even removed. This idea was partially 

implemented. While the dissertation is still focused on ANNs more than other kinds of 

machine learning, significant additional attention was given to machine learning in 

general. Additionally, added explanation is provided as to what machine learning is 

defined as and what kinds of techniques fall under machine learning as defined in this 

study. 

Additionally, ideas or principles that are relevant to more than just ANNs were 

changed to machine learning in the text throughout the dissertation, and additional 

literature was added to the literature review as well. For the analytical framework itself, 

each principle was specifically identified as applying to either ANNs specifically or to 

machine learning systems more generally (either None, Partial, or Full). Finally, previous 
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sections delineating what methods constituted machine learning and what methods did 

not were updated and refined. 

 

Table 11 - Summary of Actions Taken 2 

Summary of Actions Taken 

Implementation: Partial 

Improvement(s): - Literature review expanded 
- Definition of machine learning and its 

relationship to ANNs refined 
- Draft framework principles refined to 

better exemplify whether they were 
meant as applicable to ANNs or ML at 
large. 

 
 
 

Critique 3: Democratic Legitimacy is too vague and undefined to argue for normatively 
It is not immediately clear at face value what achieving democratic legitimacy 

entails to be proven or disproven. Because of this, it was originally suggested that a 

different principle such as social welfare be chosen instead, or alternatively that 

democratic legitimacy be better defined so that the reader understands what is being 

considered. I chose the latter option, significantly refining what actions were required to 

achieve democratic legitimacy.  

To make these determinations, I first added more algorithmic governance 

literature within my literature review section on democratic legitimacy. Then, I worked 

to integrate the ideas from traditional democratic legitimacy literature and algorithmic 

governance literature to determine what the key activities for achieving democratic 
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legitimacy are in the context of machine learning systems. Finally, I added a new 

element to each of my framework’s principles specifying if it was relevant to achieving 

democratic legitimacy, and if so, which specific activities within democratic legitimacy. 

 

Table 12 - Summary of Actions Taken 3 

Summary of Actions Taken 

Implementation: Partial 

Improvement(s): - Algorithmic governance literature 
added to literature review section 
under democratic legitimacy 

- Definition of the activities that make 
up democratic legitimacy refined to 
integrate concepts from algorithmic 
governance 

- Added relevance to democratic 
legitimacy activities (if applicable) to 
each principle 

 
 
 

Critique 4: Remove overly vague principles 
 This is a catch-all for various several specific criticisms of my original draft 

framework’s principles. Four principles were entirely removed due to vagueness. I 

agreed with these critiques, and removed the offending principles: 

- General Principles #1, #6: 

- Optimization Principles #2, #5 
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Table 13 - Summary of Actions Taken 4 

Summary of Actions Taken 

Implementation: Full 

Improvement(s): - Principles specified above were 
removed or combined with other 
principles 

 
 
 

Critique 5: Insufficient focus on the outcome versus the process 
 This is a valid critique and one I accept. It comes down to what the focus of this 

study and this analytical framework is intended to be. This framework is not meant as a 

guide to judge a particular policy outcome as normatively “good” or “bad”. Rather, as I 

have noted several times, the framework is meant to be procedurally normative in 

focus: what are the best principles to consider for designing and maintaining a machine 

learning system, regardless of one’s desired policy goals. This also connects to the focus 

on helping users to ask the right questions rather than answering those questions. 

However, this point was not clear enough in the dissertation previously and has now 

been made clearer. The idea was minimally implemented to increase clarity as to this 

study’s focus. 

 

Table 14 - Summary of Actions Taken 5 

Summary of Actions Taken 

Implementation: Minimal 

Improvement(s): - Added additional clarity to 
Introduction, Research Methodology 
sections specifying that the normative 
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focus of this dissertation is procedural 
and not on specific policy outcomes. 

 

Critique 6: Tie principles together with additional structure 
 One critique was that the principles did not “tell a story”, but rather were just 

disjointed bits of knowledge. Even if they were valuable data points individually, they 

were not sufficiently connected to be considered a framework or to be effectively 

understood in relationship to the other principles. 

 This idea was fully accepted. While I had initially concluded that categorizing the 

principles was enough to connect them to one another, there remained a lack of 

connection between principles of different categories and indeed at times between 

principles of the same category. What is more, some principles arguably fit under two 

categories simultaneously.  

To combat this, I added a summary table to the beginning of each principle. Each 

principle’s summary table would show which specific research thread(s) it was related 

to, as well as whether or not the principle had a secondary category it could be 

simultaneously placed in and whether the principle had one or more other principles 

that were most closely related to it. 
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Table 15 - Summary of Actions Taken 6 

Summary of Actions Taken 

Implementation: Full 

Improvement(s): - Summary table added at the 
beginning of each principle showing 
which specific research thread(s) it 
relates to, as well as whether the 
principle has a secondary category. 

 
 
 

Critique 7: Split General Principles category 
One critique of the original General Principles section was that it was simply too 

inclusive – it included both highly technical principles as well as principles that were 

broader or more overarching. In order to alleviate this issue, I split the original General 

Principles section into General Sociotechnical Principles and Public Agency Manager 

Principles. While the former category is still something of a catch-all, the principles 

within them both are at least somewhat more in line with one another than previously. 

This idea was fully implemented. 

 

Table 16 - Summary of Actions Taken 7 

Summary of Actions Taken 

Implementation: Full 

Improvement(s): - Split General Principles into General 
Sociotechnical Principles and Public 
Agency Manager Principles 
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Critique 8: Better define and explain the differences between Transparency, 
Interpretability, Accountability, and Explainability 
 This critique was based on my original focus on explainability as a catch-all for all 

four of these concepts when that is not necessarily the case. This is a valid point: while 

the four concepts are strongly related to each other, they are not necessarily equivalent 

or even entirely overlapping. For example, a machine learning system can be 

transparent but lack explainability: even if all input data is provided as well as the 

technical details such as weights and neurons, this does not automatically imply that the 

system is explainable. Additionally, the idea of transparency also applies to the structure 

of the public agency itself and their rules on releasing that data to the public. Even if the 

machine learning system is explainable internally, that does not mean that this 

explainability will be released to the public.  

Likewise, accountability and explainability can exist independently of one 

another: even if a machine learning system is sufficiently explainable, the concept of 

accountability extends much further than the system itself. Rather, accountability 

encompasses the governing structure of the public agency that surrounds the machine 

learning system; it is not something that can be optimized for by modifying the structure 

of the machine learning system itself. 
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Table 17 - Summary of Actions Taken 8 

Summary of Actions Taken 

Implementation: Full 

Improvement(s): - Added Accountability, Interpretability, 
and Transparency as unique concepts 
within Democratic Legitimacy 

 
 
 

6.4.2 Summary of Key Improvements from First to Second Draft of Analytical Framework 

 In summation, the following key improvements were made from the first draft of 

the analytical framework to the second draft: 

- General Principles category split into Public Agency Manager Principles and General 

Sociotechnical Principles 

- New Vendor Principles category added 

- Refined definition of the relationship between ML systems and ANNs 

- Added key references to algorithmic governance literature 

- Added summary table for each principle to assist in linking the principles together 

- Greatly enhanced the definition of democratic legitimacy by adding greater 

specificity to legitimacy-seeking activities 

- Added net total of eight principles from first draft to second draft, including the 

removal of several principles deemed overly vague 
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6.5 Stage Five Findings 

 With each of the preceding stages complete, I had the second draft analytical 

framework ready, which can be viewed in Appendix A-2. From this point, Stage Five 

involved a comparative analysis of my framework against the ATI study’s framework. 

Rather than simply include the ATI Study in the literature review (or as a subset of 

ethical AI literature), I concluded that it was similar enough in concept to warrant its 

own Stage of analysis for iterative improvement of my own draft analytical framework. 

6.5.1 Identifying Key Structural Differences 

 This study focused on six research threads: accuracy, explainability, fairness, 

robustness, privacy, and democratic legitimacy. In contrast, ATI structured their 

principles differently. While both studies attempt to provide guidance to public agency 

managers in dealing with AI systems, there are nevertheless several key differences in 

their scope that bear closer examination. 

National Focus 
 First, both this study and ATI’s have a different national focus. Although the ATI 

study itself does not explicitly endorse usage for public agencies in a particular country, 

the Alan Turing Institute itself is the United Kingdom’s national institute for data science 

and artificial intelligence. As such, it is reasonable to construe their framework as being 

oriented towards public agencies in the UK. By contrast, this study focuses on US public 

agencies. 
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AI Ethics 
 Second, both studies focus on AI ethics to differing degrees. This study focuses 

more exclusively on procedurally normative best practices for public agency managers. 

In contrast, ATI’s study attempts to discuss what ethics and morality themselves entail 

in both procedure and outcome.  

AI vs. ML vs. ANNs 
Third, both studies have a somewhat different focus in terms of artificial 

intelligence vs. machine learning vs. artificial neural networks. Although ATI’s study uses 

the term “AI”, it is clear that they are referring to machine learning rather than symbolic 

AI systems. Indeed, the implication is present from their very first page of content that 

they are specifically interested in “increasingly sophisticated machine learning 

algorithms” (Leslie 2019, 3). While this is not precisely the same as the focus of this 

study, it is nevertheless close enough to allow for a comparative analysis without 

significant hurdles. 

Near Term vs. Long Term 
 While this study is predominantly focused on proper design and initial 

implementation of for ANNs (and ML systems more broadly), ATI’s study theorizes over 

the administrative mechanics of public agency implementation over the mid to long 

term. 

6.5.2 Limitations of the ATI Study 

 While building on ATI’s work through a comparative analysis is expected to 

improve this study’s analytical framework, ATI’s study is nevertheless lacking in two 
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specific areas of content: methodically dealing with research thread conflicts and 

dealing with software vendors.  

First, while it does mention the concept of trade-offs several times, it does not 

develop the idea too deeply. The ATI study discusses trade-offs in ethical values 

generally (Leslie 2019, 11), trade-offs in algorithmic fairness (Leslie 2019, 18), and trade-

offs between accuracy and interpretability (Leslie 2019, 44). However, it lacks a more 

methodical analysis of recent literature as to what additional tensions might exist (for 

example, between privacy/robustness and accuracy). Additionally, it provides little 

information as to which research threads do the opposite – where improving 

optimization in one thread has a complementary (or mixed) relationship with another. 

 Second, it does not touch on external vendors. In the US especially, it is a rare 

event when a domestically focused public agency can entirely implement its own ML 

models without outside vendor assistance. While it is possible that UK government 

agencies have substantially more internal technical expertise and require less from 

vendors, I find this unlikely to be the case. Unfortunately, comparative information 

about the frequency of utilizing outside contracting firms for developing machine 

learning systems between the US and UK governments is not presently available. 

6.5.3 Differing Conceptions of the Key Research Threads  

 Another difference was how both studies conceived of the different research 

threads. It is important to delineate this since there are situations where both this study 
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and the ATI study use the same terminology to refer to a potentially different concept. 

This is not to say that the ATI study’s conceptions are wrong, but simply that they may 

not be referring to the same thing. 

First, the ATI study more closely aligned algorithmic fairness and non-algorithmic 

fairness under a single fairness umbrella, rather than splitting them between 

“algorithmic fairness” and “non-algorithmic fairness”. More specifically, the ATI study 

explains non-algorithmic fairness in terms of data fairness, design fairness, and 

implementation fairness (although some elements of these concepts arguably fall 

outside of even non-algorithmic fairness as this study defines them), whereas the ATI 

study uses outcome fairness when they are referring to algorithmic fairness. This will be 

discussed in greater detail below. 

 Second, the ATI study does not always make clear the differences between 

explainability and interpretability. While it goes into detail to define interpretability, it 

does not signify how (or if) the idea of explainability is different than interpretability. 

Rather, it appears to use them relatively interchangeably. 

 Third, it defines privacy as more of an organizational issue rather than as a 

technical issue. While it does not mention concepts such as differential privacy, 

homomorphic encryption, or federated learning, its conception of privacy is much more 

firmly related to individual rights and invasions of privacy by public agencies and 



183 
 

malicious actors. In this study, those ideas are captured within democratic legitimacy 

and the concept of privacy is left to ensuring privacy at the algorithmic level. 

 With these in mind, a review of each of this study’s research threads and how 

the ATI study’s key concepts relate to them is below. The conclusion section(s) for each 

research thread below are italicized. In areas where additional summarizing information 

is needed for a key concept, it will be included above the conclusion section. When 

multiple Key Concepts are similar enough that they can be analyzed with a single 

conclusion section, they are placed immediately after one another. 

6.5.4 Accuracy  

Key Concept 1: Model accuracy is often based on complex social/historical patterns which 
may contain encoded bias from cultural norms 

Key Concept 2: Accuracy is not necessarily an absolute metric based on the ‘ground truth’ 
– it can be subject to biased human decisions and judgments when the data is subjective.  
(Leslie 2019, 14-15) 

Conclusion: Both key concepts in this section are already somewhat covered 

under General Sociotechnical Principles, Principle 3. However, they both add additional 

context and bring greater clarity to the meaning of the principle. As such, this principle 

will be updated to include this information. 

6.5.5 Fairness (non-Algorithmic & Algorithmic) 

 Like accuracy, fairness was a key subject of focus in both the ATI study and this 

one. Indeed, both studies attempted to spell out various definitions of fairness (Leslie 

2019, 13-22). 
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Key Concept 1: Data Fairness 
 The ATI study defines data fairness as making sure a machine learning system is 

“trained and tested on properly representative, relevant, accurate, and generalisable 

datasets” (Leslie 2019, 14). This type of fairness is most closely related to this study’s 

definition of “non-algorithmic fairness” within democratic legitimacy. 

Conclusion: Updates to General Sociotechnical Principles, Principle 3 from the Accuracy 

section above should have covered ensuring this concept is integrated. 

Key Concept 2: Design Fairness 
 Design fairness is considered through making sure that the “model 

architectures…do not include target variables, features, processes, or analytical 

structures (correlations, interactions, and inferences) which are unreasonable, morally 

objectionable, or unjustifiable” (Leslie 2019, 14).  

Conclusion: This concept is alluded to in this study generally and General Sociotechnical 

Principles, Principles 6 & 7 touch upon it, but there is still more that can be said. A new 

principle will be added to General Sociotechnical Principles discussing it in greater depth 

– while the ML system itself decides which variables are “important”, it is still up to 

human beings to decide which variables are selected as possibilities in the first place. 

Key Concept 3: Outcome Fairness 
 Outcome fairness is what is meant by the broader Fairness section of the 

literature review. Below is a basic mapping of the fairness concepts that the ATI study 

considers, and a comparison to how this study identifies and considers them: 
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Table 18 - Outcome Fairness Study Comparison 

ATI Study This Study Notes 

Demographic/ Statistical 
Parity 

Parity (Wadsworth, Vera 
and Piech 2018) 
 

Parity is essentially the 
same as ATI’s 
conception for 
demographic / 
statistical parity 

True Positive Rate Parity Equality of Odds 
(Wadsworth, Vera and 
Piech 2018)  

Equality of Odds 
achieves both True 
Positive and False 
Positive Rate Parity 

False Positive Rate Parity 

Positive Predictive Value 
Parity (PPVP) 

Equal precision across 
groups 

This standard of 
fairness is not explicitly 
referenced in this 
study, but it is implicitly 
identified through the 
precision metric – PPVP 
refers to the case 
where precision is 
equivalent across 
protected groups. 

Individual Fairness Basic individual fairness This is the basic 
definition for individual 
fairness covered in the 
Fairness section of the 
literature review. 

Counterfactual Fairness N/A “Counterfactual 
fairness” is as much 
about explainability as 
it is about fairness. 
While is not covered in 
the Fairness part of the 
literature review, it is 
covered briefly in 
Section 6.1.4 above. 
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Conclusion: These conceptions of fairness are for the most part already considered in this 
study. No new information is updated. 
 

Key Concept 4: Implementation fairness 
 According to the ATI study, implementation fairness is when machine learning 

systems are “…deployed by users sufficiently trained to implement them responsibly 

and without bias”. This includes both Decision-Automation Bias and Automation-Distrust 

Bias. Decision-automation bias is when the user is “…hampered in their critical 

judgment, rational agency, and situational awareness as a result of their faith in the 

perceived objectivity, neutrality, certainty, or superiority of the AI system” (Leslie 2019, 

21-22). 

At the opposite end of the spectrum, automation-distrust bias is when the user 

“disregard[s] its [the machine learning system’s] salient contributions to evidence-based 

reasoning either as a result of their distrust or skepticism about AI technologies in 

general or as a result of their over-prioritisation of the importance of prudence, 

common sense, and human expertise” (Leslie 2019, 21-22). 

Conclusion: While issues similar to these coming from the field of behavioral psychology 

were identified at the end of the literature review in Section 4.7.3, they were not 

originally included in the framework itself since behavioral psychology was not a chosen 

research thread. However, this section makes a compelling case for their inclusion. A 

new principle will be added to Human Interaction Principles section. 
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6.5.6 Explainability 

While the ATI study is somewhat vague on where it draws the line between 

explainability and interpretability, it nevertheless has several key concepts based on the 

idea. 

Key Concept 1: Lack of explainability may be acceptable in some cases, although conflicts 
with issues of fairness/discrimination make it more potentially problematic. 
(Leslie 2019, 4) 

Conclusion: This concept is already covered within Public Agency Manager Principles, 

Principle 1. 

Key Concept 2: When machine learning systems draw from human relationships and 
social patterns for data, designers must ensure there is enough interpretability such that 
the systems are non-discriminatory. When this is not possible, a more transparent and 
explainable model should be chosen. 
(Leslie 2019, 17) 

Conclusion: This concept should already be covered in previously implemented additions 

to General Sociotechnical Principles, Principle 3. 

Key Concept 3: There are four explanatory strategies: internal explanation, external 
explanation, supplemental explanatory infrastructure, and counterfactual explanations. 
(Leslie 2019, 50) 

 Let us first compare these conceptions to the conceptions described in the 

literature review’s explanatory techniques taxonomy. While they do not perfectly match 

up, they cover the same general families of techniques: 
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Table 19 - Explanatory Techniques Study Comparison 

ATI Study This Study Notes 

Internal Explanation Representation Techniques 
Disentanglement 
Techniques 

N/A 

External Explanation Processing Techniques N/A 

Supplemental explanatory 
infrastructure 

Attention Techniques 
Generated Explanations 

N/A 

Counterfactual 
explanations 

Processing Techniques 
Democratic Legitimacy 
(Interpretability) 

Counterfactual 
explanations are a type of 
external explanation that 
also encompasses 
increasing the 
interpretability of the 
model (Leslie 2019, 50). 
 

 
 
 
Conclusion: No additional information needs to be added. 

6.5.7 Robustness 

 While the ATI study writes a lot on robustness, most of it relates to defining 

adversarial attacks and data poisoning, as well as summarizing technical methods of 

defending against them, rather than prescriptive ideas to help optimize robustness. 

Key Concept 1: The key risks that robustness is meant to counter are adversarial attacks, 
data poisoning, and misdirected reinforcement learning behavior  
(Leslie 2019, 32-34) 

Conclusion: Both adversarial attacks and data poisoning are covered in the robustness 

section of the literature review; the third element to this concept is arguably related to 

data poisoning and is too niche to consider granting its own principle. To ensure that 
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framework does not ignore the point, a new question was added to Public Agency 

Manager Principles, Principle 1. 

6.5.8 Privacy 

Key Concept 1: When dealing with stakeholders during project formulation, public 
agencies should determine how a given AI system might infringe on privacy rights both in 
terms of system design and system deployment. 
(Leslie 2019, 28) 

Conclusion: Stakeholder discussions are already included in Public Agency Manager 

Principles, Principle 4, and Vendor Principles, Principle 4. Additional commentary related 

to privacy from this concept will be added to the latter. 

6.5.9 Democratic Legitimacy (Transparency) 

Key Concept 1: Be able to justify your process 

Key Concept 2: Be able to explain results in a clear, non-technical, socially meaningful way 

Key Concept 3: Be able to justify your outcome to affected stakeholders 
(Leslie 2019, 35-36) 

 Conclusion: These three concepts again relate to stakeholders. The ideas behind them 

are already implemented in Public Agency Manager Principles, Principle 4, and Vendor 

Principles, Principle 4. 

6.5.10 Democratic Legitimacy (Human Autonomy) 

Key Concept 1: AI systems that “nudge” data subjects without their knowledge/consent 
might infringe on respect for human autonomy 
(Leslie 2019, 5) 
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Conclusion: This concept is already full covered in Human Interaction Principles, Principle 

7. 

6.5.11 Democratic Legitimacy (SDPR) 

Key Concept 1: The SUM Values 
The “SUM Values” were devised by the ATI study as a combination of previous 

work in bioethics and human rights (Leslie 2019, 9-11). These values include: 

• RESPECT the dignity of individual persons 

• CONNECT with each other sincerely, openly, and inclusively 

• CARE for the wellbeing of each and all 

• PROTECT the priorities of social values, justice, and the public interest 

More details for each of these values can be seen in their study. 

Conclusion: While these values are undoubtedly important, as the ATI study’s author 

notes, they are “not specifically catered to the actual processes involved in developing 

and deploying AI systems” (Leslie 2019, 11). Rather, they are for helping to conceptualize 

what ethics and morals would make for good AI principles. Rather than the “SUM 

Values”, this study utilizes the idea of US substantive due process rights and subjective 

rights from the UN Universal Declaration of Rights. No new information is needed to be 

added. 



191 
 

6.5.12 Democratic Legitimacy (Accountability) 

Key Concept 1: Automated decisions are not self-justifiable. Humans can be called to 
account for judgments, whereas machines cannot. This creates an accountability gap that 
must be addressed.  

Key Concept 2: Automated decisions can be particularly complex in how they are brought 
about due to opaque black box models. This adds an extra layer of responsibility on a 
public agency to mitigate 

Key Concept 3: Accountability can be broken down into answerability and auditability.  

Key Concept 4: In terms of timeframe for implementation, accountability encompasses 
both anticipatory accountability and remedial accountability 
(Leslie 2019, 23-26) 

Conclusion: These four key concepts fit together, and they provide a compelling picture 

by the ATI study of what makes up accountability for public agencies. They will be 

integrated together into a new principle focusing on accountability under Public Agency 

Manager Principles. 

6.5.13 Democratic Legitimacy (Deliberation) 

Key Concept 1: Create a Fairness Position Statement (FPS) reviewable by all affected 
stakeholders 
(Leslie 2019, 20) 

Conclusion: Rather than focusing explicitly on algorithmic fairness as Optimization 

Principles, Principle 3 does, this concept takes a broader approach and includes non-

algorithmic fairness as well. While Public Agency Manager Principles, Principle 1 

mentions this idea briefly, it will be expanded upon. The idea behind an FPS, that a public 

agency should make clear to the public how it’s defining fairness, is certainly important 

to make explicit. 
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Key Concept 2: Develop a Stakeholder Impact Assessment (SIA)  
(Leslie 2019, 26-30) 

Conclusion: This concept spells out Public Agency Manager Principles, Principle 4 in more 

actionable language. It will be used to update that principle and linked back to ATI’s 

study for a more thorough review of what should go into an SIA. 

6.5.14 Democratic Legitimacy (Maintainability) 

Key Concept 1: Model accuracy can change as time passes and society itself shifts.  
(Leslie 2019, 15) 

Conclusion: This concept is covered in General Sociotechnical Principles, Principle 4. 

Key Concept 2: Create a Dataset Factsheet 
(Leslie 2019, 15-16) 

 The Dataset Factsheet in the ATI Study is just as the name implies – it’s a 

factsheet for maintaining total data provenance, including issues such as 

“…procurement, pre-processing, lineage, storage, and security”, plus qualitative input 

from team members regarding “…data representativeness, data sufficiency, source 

integrity, data timeliness, data relevance, training/testing/validating splits, and 

unforeseen data issues encountered across the workflow” (Leslie 2019, 15-16). 

Conclusion: This concept will be used to expand upon the ideas presented in Vendor 

Principles, Principle 3. The original idea of a model factsheet will remain, but it will now 

be augmented to include the specific kinds of model-related data that it should 
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encompass. The principle’s category location will also be changed to Public Agency 

Manager Principles. 

6.5.15 Democratic Legitimacy (Interpretability) 

Key Concept 1: Logic, semantics, social understanding of practices/beliefs/intentions, and 
moral justification all play a key role in determining interpretability 
(Leslie 2019, 40) 

 The ATI study essentially takes Section 4.2.2 What Makes a Good Explanation? 

from this study and expands upon it to encompass this study’s idea of interpretability. 

While that section of the literature review defines a good explanation as the balance 

between interpretability and completeness, ATI’s study broadens the focus.  

First, the ATI study asserts that logic plays a key role in determining 

explainability. While this is undoubtedly true, this idea should be too self-explanatory 

for inclusion as a principle itself – almost any element playing a key role in any decision 

requires logic to be valid. Second, the ATI study considers semantics. This concept most 

closely relates to Section 4.2.2 in the sense that choosing proper semantics is a key 

element of how that balance is struck.  

Third, the ATI study considers the agency’s practices, beliefs, and intentions. This 

concept expands upon the Model Fact Sheet presented in Human Interaction Principles, 

Principle 3. It will be updated to further emphasize this element. Finally, the ATI study 

considers moral justification. While moral justification is also undoubtedly vital, 
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alongside logic, this study considers it to be self-explanatory – any public agency policy 

or activity in any circumstance should be morally justifiable. 

Conclusion: Among the four concepts brought up by the ATI study, the idea of a social 

understanding of practices, beliefs, and intentions adds the most value for this study’s 

framework. It will be added to the analytical framework. A new principle will be added to 

Public Agency Manager Principles. 

Key Concept 2: Draw on standard interpretable techniques when possible 
(Leslie 2019, 45-46) 

Conclusion: This concept is a slightly more pointed take on General Sociotechnical 

Principles, Principle 2. No additional information is needed to be added. 

Key Concept 3: Look first to context, potential impact, and domain-specific need when 
determining the interpretability requirements of your project 
(Leslie 2019, 44-45) 

According to the ATI study, context revolves around the type of application the 

machine learning system is to be used for. The requirements for a machine vision 

system used in policing should naturally be substantially higher than a machine learning 

system used to recommend the proper form that a website user needs to fill out. 

Embedded in the concept of context are potential impact (for example, is it assessing a 

high-risk activity) and domain-specificity (what kind of task is the system trying to 

perform). 
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Conclusion: This concept effectively spells out several important elements within 

interpretability in the context of public agencies. It will be incorporated as a new 

principle under Public Agency Manager Principles and combined with Key Concept 1 

above and Key Concept 4 below. 

Key Concept 4: When utilizing ‘black box’ AI systems (i.e. ANNs and SVMs), formulate an 
“interpretability action plan” 
(Leslie 2019, 46-56) 

The “interpretability action plan” would be designed to ensure the system 

provides effective explanations for the systems’ decisions, behaviors, and problem-

solving tasks. The action plan would involve three elements: 

• Clear articulation of the explanatory strategies 

• Explanation delivery strategy 

• Detailed timeframe for evaluating progress 

Conclusion: This concept adds actionability to developing interpretability, and the 

framework presented by the ATI study is concise and useful. Rather than “reinventing the 

wheel”, this study will suggest that users implement the ATI study’s interpretability 

action plan. 

6.5.16 Additional Concepts 

 The ATI study also focuses on three areas that were not explicitly covered in this 

study initially: sustainability, safety, and the development lifecycle. 
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Sustainability 
First, in the case of sustainability the ATI study notes that “[d]esigners and users 

of AI systems should remain aware that these technologies may have transformative 

and long-term effects on individuals and society” (Leslie 2019, 26). 

Conclusion: Sustainability is highly related to algorithmic maintainability and is also 

covered within the stakeholder impact assessment concept. No additional principles are 

needed. 

Safety 
 The ATI study defines safety as a combination of “accuracy, reliability, security, 

and robustness” (Leslie 2019, 30). Accuracy and robustness each already have their own 

research thread in this study. Reliability is defined as an AI system performing as it was 

intended; this can be thought of as being encompassed within a combination of 

robustness and algorithmic maintainability. Finally, security is defined as a combination 

of data integrity (avoiding malicious modification of training/testing data) with data 

confidentiality (no unauthorized access to personal information), which can be mapped 

to a combination of robustness and privacy in this study.  

Conclusion: No additional principles are needed. 

Machine Learning Development Lifecycle 
 The ATI study also utilizes chronological phases (highly related to the software 

development lifecycle) for where in the development process various tasks occur. The 
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structure is ostensibly meant for analyzing fairness, but it is nevertheless applicable to 

the process overall (Leslie 2019, 22). The chronology consists of five phases: 

1. Problem Formulation 
2. Data Extraction & Acquisition 
3. Data Pre-Processing 
4. Modeling, Testing, and Validation 
5. Deploy, Monitor, and Reassess 

However, as noted in Section 6.5.2, the ATI study is lacking in regards to dealing with 

external vendors. Because of the frequency with which external vendors are used for 

developing ML systems in public agencies in the US, and since none of the original five 

phases deal with the vendor, a new stage (Vendor Negotiations) will be added in 

between Problem Formulation and Data Extraction & Acquisition: 

1. Problem Formulation 
2. Vendor Negotiations 
3. Data Extraction & Acquisition 
4. Data Pre-Processing 
5. Modeling, Testing, and Validation 
6. Deploy, Monitor, and Reassess 

Conclusion: With the updated sixth chronological phase, this development lifecycle can 

be added to the analytical framework. This will be implemented throughout the 

framework as a simple chronological phase identifier in a new row to each principle’s 

summary table. It should also help to answer Critique #5 from the previous stage in the 

methodology by tying the principles together more closely and showing how they relate 

to one another. In cases where a principle applies to more than one phase of the 

development lifecycle, this will be specified as well. 
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6.5.17 An Example for Applicability 

This issue is one that I found applied to both studies after comparing them: a 

lack of a direct real-world example for applicability. Both studies relied strongly on 

theoretical examples, but neither provided an actual trained ML model with actual real-

world data to attempt to test these ideas, even in a hypothetical public policy situation. 

To attempt to mitigate this limitation in my own study, I found a real-world public policy 

situation in which creating a ML model might be considered. While I could have used a 

ML system presently in use in a real-world situation, the lack of information about how 

these systems are used means that doing so would be problematic. 

For this (admittedly hypothetical) public policy situation, I created several real 

ML models from real-world data in a situation where, if implemented, the ML models 

would have significant real-world consequences. More information on the ML models I 

created can be found in Appendix B, and will be cited throughout relevant areas of the 

final draft of my analytical framework below. In those cases where only a real-world 

case can be used (such as in the case of Vendor Principles – I needed no vendor), I will 

use the well-documented case of COMPAS as my example situation. 

6.5.18 Summary of Key Improvements from Second Draft to Final Draft 

 The key improvements identified in this section going from the second draft to 

the final draft of the analytical framework are summarized below: 
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- Enhanced details of General Sociotechnical Principles, Principle 3 to understand 

differing conceptions of fairness 

- Enhanced conception of fairness from just fairness in outcome to encompass other 

areas of non-algorithmic fairness, including data fairness, design fairness, and 

implementation fairness 

- Added additional question to Public Agency Manager Principles, Principle 1 

- New principle with a more explicit focus on the role of accountability in democratic 

legitimacy is added to the framework 

- Added additional language to enhance the ideas of making the public agency’s 

position on conflicting fairness definitions known as well as how the public agency 

handles relevant stakeholders 

- Expanded Vendor Principles, Principle 3 to encompass the ideas from ATI’s Dataset 

Factsheet 

- Added new principle to Public Agency Manager principles which specifically focused 

on interpretability 

- Added chronological information as to the development stage a given principle was 

most relevant in 

6.5.19 Conclusion 

In summation, the Alan Turing Institute’s study on machine learning in public 

agencies is an excellent resource for a comparative analysis. While many of its key 

concepts were used to further refine and enhance this framework’s existing principles, 
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its Stakeholder Impact Assessment and Interpretability Action Plan are arguably its 

greatest contribution to this analytical framework. These two concepts are clear, 

specific, well-reasoned, and do not try to provide all the answers. Rather, they attempt 

to guide the creation of the proper questions to ask, just as this study attempts to do. 

6.6 Final Analytical Framework 

The final product of my research methodology is the analytical framework 

below. Its principles come from a wide range of sources: some were found through 

archival research and my literature review, others came from peer review or expert 

interviews, and still more from my comparative analysis with the ATI study.  

Each of the principles below is not designed to be a final answer or to argue in 

favor of or against a policy. Rather, they seek to provoke the questions that should be 

asked prior to and during the development and implementation of machine learning 

systems in public agencies. Those questions will have different answers in different use 

cases depending on both the normative values being applied to determine the “correct” 

answer as well as how technical techniques evolve and change. However, the principles 

behind them in this framework should remain more fixed. Some of the principles 

explicitly ask follow-on questions, whereas others allow the reader to determine their 

own follow-on questions as needed. 

The framework’s principles are divided into five categories: (1) public agency 

manager principles, (2) general sociotechnical principles, (3) human interaction 
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principles, (4) optimization principles, and (5) vendor principles. These categories are 

determined from a combination of natural division points that appeared when 

extracting principles, as well as through expert interviews. The categories themselves 

are more fully defined below. While not all principles are necessarily phrased 

normatively for the sake of clarity and avoiding excessive repetition (for example, they 

don’t all begin with “a public agency should make sure to consider…”), this preface can 

be presumed in those cases where it is needed. 

At the beginning of each principle, I provide a summary table with the following 

characteristics for each principle: 

Responsible Actor(s): Refers to the individual(s) within a given public agency that are 

likely to be the most responsible for implementing a given principle, if applicable. The 

options are Manager, Analyst, and Developer; while most public agencies have far more 

varieties of employees of course, these are generalized categories meant to provide 

broad guidance only. Brief descriptions for each role follow: 

- Manager refers to the public agency manager who is responsible for the 

development of a particular ANN/ML system 

- Analyst refers to the actual “low level” day-to-day internal users of the system 

within the public agency 

- Developer refers to those internal agency software developers who are working with 

the vendor’s software developers which are creating the ML system 
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Relevant Research Thread(s): Which research thread(s) are most relevant to the 

principle. In the case of democratic legitimacy, the activity within democratic legitimacy 

is specified as well. 

Secondary Category (if applicable): While some principles fit cleanly into a single 

category, other principles have one primary category along with a second category that 

is also applicable, if not always quite as strongly. In cases where there is no secondary 

category, “N/A” is used. 

Non-ANN Machine Learning Applicability: This identifies how applicable the principle is 

to other advanced ML systems such as random forests, support vector machines, etc. 

Some principles are fully applicable to both ANNs and other ML systems, others are only 

partially applicable, and some are simply only applicable to ANNs. This is either set to 

None, Partial, or Full. In the case of Partial especially, a short explanation is generally 

provided in the text of the principle itself.  

Development Stage(s): This refers to the six chronological stages of development and 

implementation found in Section 6.5.16 above. 

Applied ML Model: This identifies which ML model I apply the principle to. The value 

will either be “DOHA”, “COMPAS”, “Both”, or “None”; None will be chosen when I do 

not believe there is value to be gained from applying the principle it after the fact. Both 

will be chosen when I believe that there is significant value in comparing how a principle 

would be applied to the DOHA model versus the COMPAS model. 
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The DOHA model refers to the artificial neural network I created in Appendix B 

from the Defense Office of Hearings and Appeal’s (DOHA) publicly released data. The 

COMPAS model refers to the ML model used in the Wisconsin judicial system for 

recidivism prediction. It has been discussed several times in this dissertation previously, 

particularly in Section 4.3 of the literature review.  

For each principle, I determine which of the two ML models is the best to apply. 

For example, the DOHA Model is an artificial neural network and the COMPAS model 

very likely is not (we don’t actually know precisely what kind of ML model it is due to 

vendor secrecy), which means that there are certain principles that aren’t necessarily 

applicable to the COMPAS model. Likewise, the COMPAS model has actually been 

applied in the real world and the DOHA model has not, which means there are certain 

principles for which it is more applicable. Whichever model is chosen, I show how the 

given principle might shape the further development of the chosen ML model and/or 

whether the conclusions drawn from the principle might persuade or dissuade usage of 

the model at all. 

Additionally, there are several terms that require further definitions for the 

following section: 

Vendor - An external private firm which is responsible for the technical development of 
a machine learning system for a public agency. 

Internal User - Public agency employees (usually more junior individuals in the agency’s 
hierarchy) who are responsible for the day-to-day usage of the machine learning system 
within the agency. 
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External User - Members of the public who interact with and/or are assessed in some 
manner by the machine learning system. 

Protected Groups - Groups which under US law are explicitly protected against 
discrimination. Includes subgroupings based on an individual’s race, religion, national 
origin, age, and sex, among others. 

6.6.1 Public Agency Manager Principles 

 Public agency manager principles are defined as principles that are oriented 

towards management of a machine learning project. They generally relate to issues 

occurring during problem formulation, or to issues that exist throughout the 

development process. 

Principle 1: Definitions for key terms and concepts should be continually clarified and re-
justified as development and implementation proceeds 

Responsible Actor(s): Manager 

Relevant Research Thread(s): All 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): All 

Applied ML Model: COMPAS 

 

While this principle may seem self-explanatory, it bears further discussion. The 

myriad of taxonomies presented in this study, not to mention those presented in others, 

should show both the incredible breadth of techniques that exist and the amount of 

critical terms with subjective and debatable definitions. How you define (and how you 

justify your definitions) for the critical concepts comprised within each research thread 

will play a substantial role in just about every successive activity. Given the complexity 

and subjectivity of several of the key issues, this is not an area to be overlooked. What’s 
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more, definitions are not static – they can and should be refined as development 

progresses. Indeed, such refinement may be required since not all information may be 

known during the Problem Formulation stage.  

In the case of COMPAS, we could certainly see a significant potential 

improvement from applying this principle from early on. For example, the firm that 

produced COMPAS, Northpointe, was permitted to define fairness themselves; there 

was no public or agency input into that decision. Because of that, it has come under 

frequent critique for not having a sufficiently strong algorithmic definition of fairness 

(see Section 4.3). Were such a determination to be made at the public agency level and 

continually re-justified based on public feedback, it would be much more difficult to 

attack in such a way. 

Several follow-on questions arise from this principle: 

Question 1: How much explainability is enough for your machine learning system and 
why? 
 In the case of COMPAS, I argue that a pretty substantial amount of explainability 

should be required before usage. At the very least, there should be additional 

information as to how COMPAS’ recidivism likelihood statistic was calculated. This 

means sharing the particular ML algorithm used to create COMPAS. Depending on the 

particular algorithm used, more specific explanatory information would change. 
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Question 2: What type(s) of privacy are you implementing (differential privacy, federated 
learning, etc.) and why? 
 To my knowledge, no particular privacy protocols were implemented on 

COMPAS algorithmically. However, since the overall threat of de-anonymization is fairly 

low, this likely isn’t a significant problem. The dataset Northpointe released is fully 

anonymized, with almost nothing in the way of identifying an individual’s characteristics 

with their real-world identities. Standard cybersecurity practices to protect the 

information should be sufficient. 

Question 3: Does the agency consider fairness in the algorithm’s design, fairness in the 
model’s outcomes, fairness in data collection, and fairness in implementation (i.e. 
effective internal user training)? How are each of these definitions justified? 

Unfortunately, this question is a big question mark for the case of COMPAS. We 

don’t know precisely how fairness was incorporated into data collection, 

implementation, outcomes, or design. This is a major issue with how COMPAS’ 

proprietary nature is harmful. 

Question 4: How were adversarial examples and data poisoning mitigated? 
 Again, we don’t know how these issues were mitigated, if they were at all. 

However, the risks in both areas are likely to be rather small with COMPAS – there is 

little opportunity for adversarial examples, and data poisoning is also minimal unless the 

datasets were hacked into. 

Principle 2: The importance of each research thread should vary between different types 
of machine learning and different use cases 

Responsible Actor(s): Manager 

Relevant Research Thread(s): All 

Secondary Category (if applicable): N/A 
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Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): All 

Applied ML Model: Both 

 

Permanently “ranking” research threads (save for democratic legitimacy as the 

most important) is a poor idea for a public agency due to the changing importance of 

each thread from case to case. For example, if there is no interface through which 

malicious input could be provided (as in the case of COMPAS, where prisoners’ data is 

not entered in by the prisoners themselves), optimizing for robustness becomes less 

important. Likewise, if the data involved isn’t personally identifiable information and is 

already available to the public, the value of optimizing for privacy is also reduced. That’s 

not to say that they are entirely unimportant in those instances, but simply that 

considering other research threads should be of greater importance.  

For the COMPAS model, I argue that the importance of each thread ranks as 

such: 

1. Democratic Legitimacy 
2. Fairness 
3. Explainability 
4. Accuracy 
5. Privacy 
6. Robustness 

In contrast, for the DOHA model, I argue that the importance of each thread ranks as 

such: 



208 
 

1. Democratic Legitimacy 
2. Accuracy/Fairness 
3. Explainability 
4. Privacy 
5. Robustness 

Both lists are similar, but there are some distinct differences as well. Democratic 

legitimacy is naturally on top for both cases, and in both cases the fear of adversarial 

attack is pretty minimal. For the DOHA model, it’s difficult to determine whether or not 

accuracy or fairness are of greater importance – in the real world I would want to go 

back to DOHA and see if they had additional personal information I could use to assess 

fairness and bias for issues such as race, ethnicity, etc. I would also want to see how 

trying to maximize fairness could potentially damage predictive accuracy.  

In the case of COMPAS, accuracy is hardly unimportant but the needs of fairness 

and explainability are potentially higher. Particularly in the context of our judiciary, it is 

exceptionally important that we be able to explain why certain decisions were made. In 

addition, the US has historically had unfairness towards protected groups in our justice 

system, requiring that issues of fairness be taken to the forefront. However, if ensuring 

that there is sufficient explainability and fairness causes accuracy to degrade too much, 

this may indicate that a machine learning system is unsuitable for the task at hand. 

By contrast, explainability may not be of the highest importance for the DOHA 

model since isn’t the true decision-making entity (it’s just reading the text of the case 

summary; see Appendix B), but it is still having enough of an impact that it is reasonable 

to want to understand why the DOHA model makes the decisions it does. 
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Principle 3: Public agency decision-makers should be prepared to engage in quantitative 
coding of value judgments that were previously made qualitatively 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Interpretability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 
Data Pre-Processing 

Applied ML Model: None 

 

Public agencies often have qualitative values encoded into the decisions that the 

agency is responsible for. These qualitative values are not always clear-cut and can have 

a significant amount of subjective value assessment. One possible problem when trying 

to implement machine learning systems for such cases is that these systems cannot use 

these purely qualitative (and often intuitive) value assessments as inputs – it requires 

those inputs to be quantified to some degree. This change from qualitative to 

quantitative values may be difficult for some agencies to manage and should be 

scrutinized during development and implementation. 

It is particularly difficult to apply this principle to either model. It cannot easily 

be applied to the DOHA model because DOHA is not used in the real world, and it 

cannot easily be applied to the COMPAS model because we do not know enough about 

the internal non-judicial decision-making in the Wisconsin judicial system. 

Principle 4: Accountability should not just be remedial, but anticipatory as well 

Responsible Actor(s): Manager 
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Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Interpretability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 
Deploy, Monitor, and Reassess 

Applied ML Model: COMPAS 

 

Accountability is not something just done after the fact – there are anticipatory 

activities a public agency can do to help mitigate future accountability issues when 

utilizing ML systems. These accountability activities can be divided into procedures to 

increase answerability and procedures to increase auditability. Answerability means 

ensuring that there is a continuous chain of human responsibility across the entire 

workflow, with those responsible able to provide at least some level of explainability, 

while auditability means “demonstrating both the responsibility of design and use 

practices and the justifiability of outcomes” (Leslie 2019, 24).  

Whereas answerability and auditability involve the tasks that need to be done to 

make up accountability, however, anticipatory and remedial accountability focus on the 

when the accountability should take place. Anticipatory accountability involves ensuring 

that there is accountability by design throughout the design and implementation 

process of an AI system, and remedial accountability involves the processes setup to 

deal with problems in accountability that occur after the fact.  

Together, these ideas produce the following matrix: 
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Table 20 - Answerability vs Auditability 

 Answerability Auditability 

Anticipatory 
accountability 

There should be a 
continuous chain of human 
accountability during the 
design and 
implementation of the ML 
model. 

All system design decisions 
should be fully justifiable 
during the design and 
implementation of the ML 
model 

Remedial accountability There should be a 
continuous chain of human 
accountability during the 
remediation of 
accountability issues 
discovered after 
implementation. 

All system outcomes 
should be fully justifiable 
during the design and 
implementation of the ML 
model 

A further review of these ideas can be seen in the ATI study (Leslie 2019, 24). 

For the COMPAS model, none of the boxes in the matrix above have a clear 

answer: we simply don’t know who is accountable for COMPAS’ outcomes. It might be 

argued that Northpointe itself is the answer to all four aspects of accountability, but 

accepting that explanation adds additional problems - should a private company really 

be the one accountable for (one element of) the decisions of Wisconsin’s judicial 

system? 

Principle 5: Utilize a Model Factsheet 

Responsible Actor(s): Manager 
Developer 

Relevant Research Thread(s): Explainability, Democratic Legitimacy 
(Accountability, Transparency, 
Interpretability) 

Secondary Category (if applicable): General Sociotechnical Principles 

Non-ANN Machine Learning 
Applicability: 

Partial 
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Development Stage(s): Data Pre-Processing 
Modeling, Testing, and Validation 
Deploy, Monitor, and Reassess 

Applied ML Model: DOHA 

 

Some ML models (particularly ANNs) are not very forthcoming about what 

makes them tick. The output itself is clear, but the reasoning behind that output is often 

much more difficult to parse. While there is a limit to what the model itself can explain, 

however, maximizing interpretability is reliant on the public agency itself. Even if state-

of-the-art explanatory techniques are successfully applied to a given ANN, these 

explanations will be of little value if the public agency does a poor job of providing 

socially meaningful content to the public. For both explanations of the meaningful 

content a model produces and for more structural information regarding how the model 

was created, a model factsheet can be a useful solution. In short, this model factsheet is 

one of the essential mechanisms through which explanatory power and interpretability 

can be maximized – a simple yet powerful method for explaining a model and its data. 

A model fact sheet is a standardized, relatively non-technical outline of the 

capabilities and limitations of a given ANN, although it could be applied to non-ANN 

machine learning systems as well. Depending on the use case, the precise content can 

vary greatly. (Brajer, et al. 2019) provide an example of a model fact sheet in the case of 

healthcare delivery: 
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Figure 13 - Model Factsheet Example 

Credit: (Brajer, et al. 2019) 

We can see several critical areas from Figure 13 above: 

- Name of the model 
- Mechanisms for input, outcome, data, and model information 
- How it was tested and should be used 
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- Warnings about potential inappropriate uses and the conditions under which it 
should be discontinued 

- Other models that are related to it 

Regardless of the use case, such a fact sheet should allow non-expert users to 

both understand how a model works and allow for easier model-to-model comparisons 

and analysis. The information itself can be provided through any or all of the 

explanatory techniques discussed in the literature review, such as processing 

techniques, representation techniques, attention techniques, etc.  

Additionally, such a factsheet should cover issues of data and model provenance 

as well – where did the data come from and how has it been transformed since then. 

ML systems can have data arrive from a wide array of sources. That data can be split, 

rearranged, transformed, merged, reconstructed, and extrapolated multiple times from 

initial data ingest to training. The determination of where this data came from, whether 

it is accurate, and how it is used are questions of significant importance when public 

agencies implement machine learning systems (Shrum, et al. 2019, 19). Interpretation of 

the output of a ML system requires (to some degree) the ability to determine where the 

data came from and how valid that data is. Likewise, external reviewers require data 

provenance to ensure public agency accountability. 

It also may be necessary to create a separate model factsheet for both internal 

and external users. This is due to several reasons. First, the data that both groups are 

interested in may vary. Internal users may be more interested in the granular details of 

the meaning of a model’s output. By contrast, external users may be more interested in 
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information relating to how the particular model was chosen and what intentions and 

beliefs went into creating the model in the first place. 

Additionally, not all information may be able to be released to the public as 

compared to internal users. In a perfect world, the public would be able to see the 

entirety of the data used to train the model, as well as the precise details of the model’s 

structure. However, issues of trade secrecy (see Vendor Principles #1), privacy and 

robustness (see Optimization Principles #4), and de-anonymization (see Optimization 

Principles #5) make such absolute transparency non-viable. 

For the DOHA model, below is what a Model Factsheet might look like: 

 

Figure 14 – DOHA Model Factsheet 
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Principle 6: Determine the relevant stakeholders and invite stakeholder feedback 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (Deliberation, 
Transparency) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 
Deploy, Monitor, and Reassess 

Applied ML Model: DOHA 

 

Public review of new regulations or policies is a frequent feature of many public 

agencies, such as the Federal Communications Commission (FCC 2019). However, such 

reviews become increasingly important when machine learning systems come into play. 

This is because even with public or expert input, there can be a significant lack of 

explainability in the results of a machine learning system.  

More specifically, the ATI study provides documentation for how to conduct 

what it refers to as a Stakeholder Impact Assessment. This assessment is designed to 

build public confidence in the design and deployment of the ML system, strengthen 

accountability, bring to light unseen risks, enhance transparency, and demonstrate a 

public agency is doing their due diligence to the public. Rather than repeat them 

verbatim here, more details on the specifics of this assessment can be seen in their 

study (Leslie 2019, 26-30). 

Relevant stakeholders for the DOHA model (aside from a general public interest) 

include the Department of Defense Inspector General, Congress, DOHA’s own 
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administrative judges, and applicants to the federal government who might need 

security clearances. 

Principle 7: Public agencies should develop protocols early to maximize interpretability 

Responsible Actor(s): Manager 
Developer 

Relevant Research Thread(s): Democratic Legitimacy (Interpretability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

Development Stage(s): Problem Formulation 
Vendor Negotiations 
Deploy, Monitor, and Reassess 

Applied ML Model: None 

 

While all ML systems need interpretability, that interpretability can be more 

difficult to come by ANNs especially. Furthermore, interpretability is not an afterthought 

to be considered at the end of development. Rather, it is essential that it be considered 

during initial problem formulation and vendor negotiations. This is because it can 

require early intervention in an ML system’s development to ensure it has sufficient 

interpretability. 

The ATI study recommends what it calls an Interpretability Action Plan to 

maximize interpretability. While their study is not the only one that considers what 

interpretability in ML should entail, it is among the only studies that considers 

interpretability specifically from the lens of public agencies. For example, (Lipton 2016) 

provides a far more exhaustive review of what interpretability in machine learning 
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should entail generally. For precise details on how to construct an Interpretability Action 

Plan, the ATI study can be reviewed (Leslie 2019, 46-56). 

6.6.2 General Sociotechnical Principles 

 This category includes broad principles focused on where the more technical 

aspects of machine learning system development are subjective and require more than 

just a degree in computer science to deal with them effectively. 

Principle 1: Correlation is not causation 

Responsible Actor(s): N/A 

Relevant Research Thread(s): Fairness, Democratic Legitimacy (SDPR) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Modeling, Testing, and Validation 

Applied ML Model: DOHA 

 

The statistical adage “correlation does not imply causation” is well-known (S. 

Singh 2018). Admittedly, this principle is not actually a normative principle like the 

others, but rather a positive one; this makes it rather unique in this analytical 

framework. Nevertheless, it has such a special and important meaning in the context of 

machine learning systems and ANNs, particularly as applied to questions of public 

policy, that I believe it requires its own principle regardless.  

Simply put, machine learning systems do not predict causation; rather, their 

predictions are only based upon countless subtle correlations. The output should thus 

never be thought of on its own determining a direct causation between the input and 
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the output. This is particularly important considering that the end-users of a given ML 

system, whether it be the public or the average analyst at a public agency, may be 

unlikely to be well-versed in statistical analysis (Faes, et al. 2019). 

Examples abound on the gap between correlation and causation. Consider the 

following examples from the book/website Spurious Correlations (Vigen 2015): 
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Figure 15 - Correlation != Causation Examples 

Obviously, there is no causal relationship between math doctorates and uranium 

storage or U.S. science R&D spending and suicide rates, yet both relationships have a 

correlation of over 95%. What can this tell us about machine learning systems? Simple - 

if you provided an ANN with the math doctorates awarded each year as input and had it 

attempt to predict the uranium stored at US nuclear power plans as output, it would 

likely perform admirably well. However, the deeper question underlying this for public 

agencies to deal with is whether making determinations based upon a given correlation 

is a positive or a negative – should two variables unlikely to have a causal relationship 

be used to predict one another purely based on a correlation? 

Question 1: Should a causal relationship between input and output be required (or at 
least asserted) prior to using a given variable as the input? 

Question 2: What is the standard for determining causality in such cases? 

Question 3: Are there procedures in place to try and test which variables are correlated, 
even in black box systems? 

Answering all three questions for the DOHA model, there should be a clear 

causal relationship to the model’s data: what the administrative judge writes about a 

given applicant’s case should cause the applicant to be granted or denied a security 

clearance. However, as previously noted it is also possible that the model is focusing on 

seemingly unimportant but correlated text within each clearance case summary. 

Convolutional neural networks like the DOHA model have several techniques (some 

discussed in the literature review) to help understand what elements of the input the 

neural network is most focused on – this should help to answer the second question. 
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Were this model to be implemented, DOHA would need to create procedures to test for 

this. 

Principle 2: Public agencies should test multiple types of machine learning systems 

Responsible Actor(s): Developer 

Relevant Research Thread(s): Fairness, Accuracy, Explainability, 
Democratic Legitimacy (Interpretability, 
Transparency) 

Secondary Category (if applicable): Optimization Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Modeling, Testing, and Validation 

Applied ML Model: DOHA 

 

Even if ANNs have achieved broadly superior results to more classical ML 

techniques in the realm of raw accuracy, the potential loss in terms of other research 

threads may indicate that an ANN is not the best solution for every case. What’s more, 

there are still some areas where other machine learning systems can still match an 

ANN’s results in terms of raw accuracy. Thus, rather than settling on ANNs from the 

beginning in order to use the “most advanced” technology, it is worthwhile to have 

multiple kinds of systems built and tested. Different machine learning systems suffer 

from different flaws which may be more or less important in different use cases. 

For the DOHA model, this was certainly conducted. Four other types of ML 

models were tested alongside the convolutional neural network (see Section B.5.2) to 

see how the DOHA model compared. The DOHA model surpassed all of them in 

predictive accuracy as ANNs often do, although the other methods were all less of a 
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black box than an ANN is (except perhaps for the SVM). The question, then, of what 

percentage decrease in accuracy is worth what level of increase in explanatory power, is 

the vital one to answer. 

Principle 3: Unrepresentative data should be checked for even in cases where an entire 
population is the sample 

Responsible Actor(s): Developer 

Relevant Research Thread(s): Accuracy, Fairness, Accuracy, Democratic 
Legitimacy (non-algorithmic Fairness) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Data Extraction & Acquisition 
Data Pre-Processing 

Applied ML Model: Both 

 

I use the term “unrepresentative data” for this section in contrast to “sampling 

bias” because an entire group or population can be the dataset when it comes to 

training machine learning systems, yet still have fundamental problems related to the 

sample obtained. Under the traditional sampling bias paradigm, no sampling means no 

sampling bias. However, if your data isn’t representative of reality, either due to how it 

was collected or social policies which affect who is in the dataset, insights gleaned from 

it that were trained on that data may be tainted and produce unfair results. This is 

almost regardless of the model’s predictive accuracy. 

For example, going back to the case of COMPAS: if it were the case that US 

policing policies caused unrepresentative populations of protected groups from the 
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overall US population being arrested and imprisoned to be used as training data to 

predict recidivism rates, these biases could be transferred into a model.  

Because of this, declaring predictive accuracy or data labels as the equivalent of 

‘ground truth’ may itself be flawed in some instances. Rather, accuracy may more 

closely resemble the idea of being consistent with previous decisions. An ML system 

trained on data that was labelled by human subject matter experts (SMEs) thus is not 

necessarily predicting accuracy to reality, but rather predicting what an amalgamation 

of SME analysis would predict (which we hope is equivalent to reality). This relates to 

the ideas discussed in fairness literature relating to the observed space versus the 

constructed space (see Section 4.3.2). 

For its own part, the DOHA model could easily have unrepresentative data. Even 

though there was no sampling (to my knowledge), the DOHA data may not include all 

records from 1998 onward (perhaps DOHA doesn’t put every record online for access, 

for example). Additionally, perhaps DOHA’s standards have changed over time from 

1998 to 2019; if these clearance case summaries were written substantially differently 

in the past or even by the different styles of writing by different judges, this could 

potentially make the data substantially unrepresentative. Finally, DOHA’s data only 

included DoD contractor applicants and thus it may not be fully applicable to non-

contractors seeking clearances if significant differences in those populations were to be 

observed. 
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Principle 4: Procedures for “algorithmic maintenance” should be defined from the 
beginning of development 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Accuracy, Democratic Legitimacy 
(Algorithmic Maintenance, 
Accountability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

Development Stage(s): Problem Formulation 
Vendor Negotiations 
Deploy, Monitor, and Reassess 

Applied ML Model: DOHA 

 

Algorithmic maintainability (as applied to ANNs in particular, though somewhat 

applicable to ML systems generally) is the idea that there should be specific procedures 

in place to handle how these systems should be periodically analyzed and updated to 

ensure that they are maintaining the same level of performance as when they were 

initially assessed. Unlike traditional software packages, updating a machine learning 

system automatically just for the sake of updating it may not be the correct solution. 

This is because unlike traditional software packages, a “new” version should not be 

construed as automatically implying the system is inherently superior. Rather, what that 

update would entail is of great importance: often an update entails additional training 

data being used to try and improve the model. Such updates need to be considered on a 

case-by-case basis. 

Several questions arise from this principle: 
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Question 1: Should new data be inputted continuously into an ANN’s training as it 
becomes available, or should it be done with “versions” similar to traditional software 
development methods? 
 For the DOHA model, there would need to be a deep review of how predictive 

accuracy changes when new clearance case summaries are provided to the model. 

Question 2: Should the ANN be retrained every N years from scratch?  
 I believe that the DOHA model should be retrained from scratch every N years 

(the precise number would require deeper study) because judges change and even the 

standards of assessment may also change over time. Because of this, older records may 

not be as valuable as newer records if standards and styles of writing change over time. 

However, this retraining is predicated on the model’s accuracy not degrading from 

fewer training samples. If the model’s accuracy would decrease, this makes the question 

much more complex to answer, and it becomes a balancing test. 

Question 3: Who is responsible for the decisions stemming from the ANN? 
 DOHA would need to assign an individual or a specific team of individuals 

responsibility for these algorithmic maintenance questions. It would be their 

responsibility to answer these questions in greater depth and report on their findings 

whenever an update is considered. 

Principle 5: Public agencies should measure more than just the raw “accuracy” statistic for 
a given ML model 

Responsible Actor(s): All 

Relevant Research Thread(s): Accuracy 

Secondary Category (if applicable): Optimization Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Modeling, Testing, and Validation 
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Applied ML Model: DOHA 

 

 As the Accuracy section in the literature review should have made clear, even 

the study of accuracy itself (generally thought of as the most quantitative and 

straightforward of research threads) can still have qualitative subjectivity. Public agency 

managers and internal users both need to be aware of what kind of “accuracy” numbers 

a ML system is providing, or if the system is assessing on a unique algorithm such as the 

BLEU score. The difference between assessing actual raw accuracy and F-1 Score can be 

substantial when considering the suitability of a ML system for implementation. 

 The DOHA model measures not only raw accuracy, but also recall, precision, F1 

score, markedness, and informedness. All of these statistics produced very strong 

results. Doing so ensured that the accuracy statistic on its own was not hiding deeper 

problems in the model. 

Principle 6: Protecting underrepresented groups within training datasets should be of 
particular importance since they are often in greater danger from poor model 
performance 

Responsible Actor(s): All 

Relevant Research Thread(s): Democratic Legitimacy (SDPR), Accuracy, 
Fairness 

Secondary Category (if applicable): Optimization Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Data Extraction & Acquisition 
Deploy, Monitor, and Reassess 

Applied ML Model: DOHA 
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 Protected groups can be intrinsically at greater risk of unfair treatment by a 

public agency because there often won’t be as much training data for the minority 

group (Zhong 2018). The correlation between the quantity of high-quality training data 

and model performance is extremely strong; all other things being equal, a model with 

significantly more training data will almost always achieve equal or (more often) 

superior performance to an equivalent model with less training data. Because of this, 

protected groups may be particularly vulnerable to a dearth of training data. While 

there are various techniques which attempt to mitigate these issues, there is presently 

no “silver bullet” solution (Barros, et al. 2019). 

Question 1: Does your training dataset have relevant protected groups? If so, are you 
testing the predictive accuracy for those groups separately? 
 Unfortunately, only the gender of applicants is known, not other protected 

statuses. If those protected statuses are known to DOHA officials, they should also be 

tested for potential bias in the model, particularly underrepresented groups. However, 

gender was tested and it definitively showed that accuracy did not degrade below 97% 

for either gender. No matter which standard of fairness is chosen, we can say that the 

model is extremely unlikely to have gender bias. 

Question 2: Is your definition of algorithmic fairness mitigating this problem? 
 In the case of gender only, the DOHA model meets or nearly meets both parity 

and equality of odds, as well as the other standards suggested by the ATI study in 

Section 6.5.5. As stated previously, without other protected group information we do 

not know for certain since that information is not available. 
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Question 3: Are there likely to be new protected groups with specific unique 
characteristics that are presently missing from the training dataset? 
 Once again, this is unknown for the DOHA model – we do not know what 

protected groups we do have, so it’s hard to say which ones we don’t have too. 

Principle 7: Public agency analysts should question assumptions about what they think is 
being learned 

Responsible Actor(s): Analyst 

Relevant Research Thread(s): Accuracy, Explainability, Democratic 
Legitimacy (Interpretability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

Development Stage(s): Modeling, Testing, and Validation 
Deploy, Monitor, and Reassess 

Applied ML Model: DOHA 

 

 Machine learning systems, and particularly ANNs, will often try to “cheat” during 

training. By design they seek the easiest training path to maximize accuracy. For image 

recognition tasks, this often (though not always) means that the most obvious and 

consistent differences between two different image classifications will be what the 

system learns. While this may seem like a good thing at first glance (and it often is), it 

isn’t always a positive. 

Indeed, there are several famous cases in the history of machine learning where 

this misunderstanding of what was learned caused substantial real-world problems. One 

of the most well-known cases was when a neural network was trained to differentiate 

between wolves and huskies (Ribeiro, Singh and Guestrin 2016). On the one hand, the 
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model achieved a very high accuracy during training and it was thought of as a great 

success initially (particularly back in 2016). 

 However, when it was applied to the real world, it failed spectacularly, 

misclassifying what should have been easy identifications between wolves and huskies. 

When researchers dug into the ANN, they found out that they had been wrong about 

what it had succeeded in classifying: the ANN hadn’t been classifying the animals, but 

rather it had become adept at identifying images with snow in them. Since all the 

images with wolves had snow in them, it was thus able to successfully classify the 

wolves rather easily. In the real world, however, the images of wolves did not always 

have snow in them. This caused the classifier to essentially malfunction (Kepler 2019). 

 For the DOHA model, what we think is being learned is that the DOHA model is 

picking up on key phrases (and variants of those phrases) that it has learned should 

generally cause someone to be granted or denied a security clearance, as well as the 

relationships between those key phrases. However, this assumption may not be correct. 

As noted previously, it is possible that the DOHA model is merely focusing on highly 

correlated phrases that nevertheless should not reasonably be related to whether 

someone should be granted a security clearance. In the real world, additional 

experimentation should be conducted to determine which kinds of words or phrases the 

DOHA model is focusing on most often. 
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Principle 8: Variable selection should not be left entirely to computer scientists 

Responsible Actor(s): Manager 
Developer 

Relevant Research Thread(s): Explainability, Democratic Legitimacy 
(non-algorithmic Fairness, Accountability) 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Partial 

Development Stage(s): Data Extraction & Acquisition 
Data Pre-Processing 
Modeling, Testing, and Validation 

Applied ML Model: DOHA 

 

 While one of the greatest strengths of ANNs is their ability to find the most 

important variables themselves (not to mention the subtle relationships between those 

important relationships), this strength can also be a weakness. In most other kinds of 

machine learning, the human is generally responsible for selecting the most important 

variables, but this isn’t always the case with ANNs. However, while the model chooses 

the relevant variables from among those provided to it, it is the responsibility of those 

developing and implementing the model to choose which variables the ANN can choose 

from in the first place. While obvious protected group indicators (depending on the use 

case) may require being excluded (i.e. race, sex, religion, etc.), more subtle variables 

may implicitly encode various protected statuses anyway (Roberts 2018). Thus, finding 

the proper balance between eliminating unwanted correlations and maximizing model 

accuracy should be a constant consideration. 
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 It is thus unwarranted to leave such a decision to those responsible for 

developing the ANN alone. Rather, the usage of particular variables can have major 

implications for democratic legitimacy and explainability – public agencies cannot 

expect to retroactively justify using questionable variables by blaming the computer 

scientists. 

 For the DOHA model, there were several subjective decisions that were made 

about the data to be used. First, only the two sections of text which I deemed to be the 

most objective were used to avoid the DOHA model applying circular logic. 

Nevertheless, I could have been mistaken in my assessment – perhaps only one of those 

sections should have been included, or perhaps there was an additional section of text I 

missed which would have substantially improved the model.  

Second, I also gathered binary True/False information on what formal suitability 

criteria an applicant had problems with. Since this dataset involved appeals cases, all 

individuals had at least one suitability criteria where the initial determination was made 

that the individual had a problem. However, since I achieved such a high level of 

accuracy simply by using the text of the clearance case summary, I did not use this 

suitability criteria information as addional input for my model. This decision may also 

need to be considered further. 
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6.6.3 Human Interaction Principles 

 There are two potential human “audiences” for an ML system implemented in a 

public agency: internal users and external users. These terms were defined at the 

beginning of this section. Some ML systems will only have internal users and some will 

have both internal and external users; it’s highly unlikely that an ML system will have no 

internal users at all in the context of public agencies and within the scoping of this 

study. Whether internal or external, the principles below focus on how humans interact 

with ML systems. 

Principle 1: Public agencies should design the user interface (UI) as a critical feature, not 
an afterthought in machine learning system design 

Responsible Actor(s): All 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Interpretability), Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 
Vendor Negotiation 
Deploy, Monitor, and Reassess 

Applied ML Model: COMPAS 

 

This principle is emphasized by (Pásztor 2018) most prominently: a computer 

system is not simply its input and output, it’s also its interface. All too often, 

government systems have terrible user interfaces (Sinders 2018), and that can cause 

significant issues in the development and usage of ML systems. These issues can be for 

internal users and external users both.  
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For example, a poor user interface for internal users may allow flaws and/or 

biases to go unnoticed. Likewise, a poor user interface for external users may provide an 

incorrect sense of what the system determined and why it determined it. While 

government has traditionally had a poor history of UI design, the problems arising from 

ML systems are not just frustrating but can have significant negative real-world 

consequences. Some recent scholarship has focused on experimentation with using 

interfaces to increase the understanding of trade-offs between accuracy and fairness 

(Yu, et al. 2019). 

In the case of COMPAS, I don’t know precisely how this recidivism information 

was provided to judges in terms of user interface. However, particularly prior to the 

case of Wisconsin v. Loomis, there was clearly little to no information for the judge to 

understand where this kind of statistic came from. One way of applying this principle 

would be to ensure that the information provided by COMPAS be colored differently 

than other information, and surrounded with key contextual information in a non-

technical format about where the statistic comes from and what, precisely, it indicates 

beyond a simple “risk number.” 

Principle 2: Internal users should be enabled to do their own testing 

Responsible Actor(s): Analyst 

Relevant Research Thread(s): Democratic Legitimacy (Algorithmic 
Maintenance, Interpretability), 
Explainability 

Secondary Category (if applicable): General Sociotechnical Principles 

Non-ANN Machine Learning 
Applicability: 

Full 
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Development Stage(s): Vendor Negotiations 
Deploy, Monitor, and Reassess 

Applied ML Model: COMPAS 

 

The design of almost any ML system should allow for internal users to do their 

own testing and analysis. For example, depending on the sensitivity of the data and how 

“fakeable” it is, internal users should be able to enter fake data to help them get a 

better understanding of what the system is capable of and to spot potential design 

flaws. Even if internal users aren’t computer scientists, they’re more likely to be subject 

matter experts and may detect problems that would be otherwise missed.  

Beyond simple testing, complex analytical suites are also available such as 

Stanford’s open-source neural network verification project (SyncedReview 2019). Such 

analytic suites can be important to help internal users grasp if an ML model is behaving 

as it should be even before external experts or consultants are hired to review it. In the 

case of COMPAS, it would be incredibly useful for employees in the Wisconsin judicial 

system to be able to send “fake” prisoner information into COMPAS to assess how its 

output changes. For example, out of the over 100 input variables that COMPAS accepts, 

internal users could test how substantially changing just a single variable might alter 

COMPAS’ output. This could also be used to help detect biases against characteristics 

common with protected groups. 
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Principle 3: Differing user acceptance of False Positives versus False Negatives should be 
assessed for each use case 

Responsible Actor(s): Manager 
Developer 

Relevant Research Thread(s): Democratic Legitimacy (Accountability), 
Explainability, Accuracy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Modeling, Testing, and Validation 

Applied ML Model: DOHA 

 

 Depending on the use case, internal users may be more or less receptive to false 

positives versus false negatives. In other words, there can be a significant difference 

between stating that a wrong answer is right versus stating that a right answer is wrong. 

This is entirely dependent upon the use case, however. For example, consider the case 

of an image classification system designed to track poachers (Harvard 2019). For those 

internal users assigned to understand what the system is saying, there can be a 

significant difference in user acceptability between showing too many false positives 

(that is, showing that poaching was occurring when it actually wasn’t) and false 

negatives (showing that poaching was not occurring when it actually was). Even though 

the raw accuracy may be the same regardless, the internal users in this case are much 

more likely to be willing to get false positives rather than false negatives: better to sift 

through the false positives to find the real cases of poaching rather than miss actual 

cases of poaching entirely (within reason). 
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 For the DOHA model, user acceptance likely tilts in favor of false negatives over 

false positives, although neither can be easily dismissed as unimportant. Predicting that 

an applicant should not be granted a security clearance when they should be is less than 

ideal since a qualified individual will not be able to do their job. However, predicting 

that an applicant should be granted a security clearance when they should not is a 

whole different issue in that it is a potential threat to national security. Thus, the model 

should be scrutinized closely for whether it is providing more false positives or false 

negatives. Even if it reduces accuracy, the model might still be improved overall if it 

used constrained optimization it better minimize false positives over false negatives. 

Principle 4: Public agencies should explicitly determine what information should and 
should not be provided for external users 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Transparency), Explainability, Privacy, 
Robustness 

Secondary Category (if applicable): Vendor Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 

Applied ML Model: DOHA 

 

 When external users utilize a machine learning system, what those users are told 

about the decisions the system makes are of great importance. Indeed, there is no one 

right answer for the correct amount of information, and the act of choosing which 

information to reveal is a difficult balancing act. On the one hand, there is the need to 
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provide external users with accountability and transparency from public agencies. On 

the other hand, several competing factors may suggest less information be revealed: 

- Issues of trade secrecy from the vendor (see Vendor Principles #1) 

- The necessity to protect the machine learning system from adversarial attacks (see 

Optimization Principle #4) 

For the DOHA model, users should have the right to see how the DOHA model 

performed if they were denied a clearance – did the administrative judge approve them, 

only for the DOHA model to deny them and cause a further review? Or did the opposite 

occur? This information is important enough for applicants that it should be released to 

them once the decision is made. 

Principle 5: The “nudging” of external users by machine learnings systems should be 
carefully assessed and reviewed 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Human Autonomy, SDPR) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 
Deploy, Monitor, and Reassess 

Applied ML Model: None 

 

 While governments have long sought (either intentionally or not) to use a 

combination of incentives and behavioral psychology to affect citizen behavior, these 

ideas were first brought together and understood under the colloquialism of “nudging” 
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in 2008 (Thaler and Sunstein 2008). While nudging can be applied to any public agency 

system (AI or otherwise), nudging in the realm of machine learning systems can be 

particularly complex to deal with. As (Shrum, et al. 2019, 21) puts it, “[w]ith AI systems, 

a group of individuals can be provided certain information as a result of being identified 

by an AI system and ‘nudged’ to behave in a certain way or to believe certain things 

while other individuals are either not ‘nudged’ or are ‘nudged’ in a different direction”. 

It is easy to take this a step further and imagine such systems being used for potentially 

discriminatory purposes by nudging only a minority group in particular ways (Sunstein 

2015). Some follow-on questions that arise from this principle, including: 

Question 1: Where is the line when nudging becomes active manipulation? Is there such 
a line? 

Question 2: Are this machine learning system’s external users likely to be particularly 
vulnerable? 

Question 3: Do those responsible for designing and implementing user prompts have a 
strong incentive towards users providing a certain answer? 
  

Principle 6: Internal users should be properly trained to both handle a ML model’s output 
and to consider their own possible biases towards AI 

Responsible Actor(s): Analyst 

Relevant Research Thread(s): Explainability, Democratic Legitimacy 
(non-algorithmic Fairness, Accountability, 
SDPR, Interpretability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 
Deploy, Monitor, and Reassess 

Applied ML Model: COMPAS 
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 Beyond training to use the ML model’s output itself, internal users responsible 

for making a public agency’s assessments based on the output of a ML model should 

also be trained to understand two key issues they may be vulnerable to: decision-

automation bias and automation-distrust bias. First, decision-automation bias is when 

internal users are “…hampered in their critical judgment, rational agency, and 

situational awareness as a result of their faith in the perceived objectivity, neutrality, 

certainty, or superiority of the AI system” (Leslie 2019, 21-22). In other words, it stems 

from an over-reliance on “the AI told me to do it”, as though an AI’s output should be 

automatically free of bias and immune from criticism or second thoughts. This idea is 

somewhat related to the famous Milgram shock experiment, which found that people 

were more likely to obey authoritative individuals in white lab coats into doing “bad” 

actions without applying critical thought (McLeod 2017). 

 Second, automation-distrust bias is at the opposite end of the spectrum, 

covering when internal users are inherently distrustful of an AI’s output. The user will 

“disregard[s] its [the machine learning system’s] salient contributions to evidence-based 

reasoning either as a result of their distrust or skepticism about AI technologies in 

general or as a result of their over-prioritisation of the importance of prudence, 

common sense, and human expertise” (Leslie 2019, 21-22). This is also inherently 

problematic – the ML model’s outputs are meaningless if they’re ignored entirely. As 

always, finding the proper balance is essential. 
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 In the case of COMPAS, it is highly likely that the judges who rely (in part) on its 

assessments do not receive any special training on how to handle COMPAS’ output. It is 

unclear if they are provided significant guidance on the potential pitfalls of using such a 

recidivism risk statistic in their analyses, and it is unclear if they are aware of their own 

potential positive or negative biases towards AI outputs. 

6.6.4 Optimization Principles 

 The optimization principles below delve more deeply into the interaction effects 

between the six research threads (fairness, explainability, robustness, privacy, 

democratic legitimacy, and accuracy). An interaction effect is defined as a situation 

where optimizing for one element of an ANN (such as fairness) is likely to directly impact 

another element (such as accuracy). While there were more possible principles that 

could have been included in this section based on the findings of Stage One, I chose to 

be highly conservative in what was included due to the at-times lack of comprehensive 

empirical research into which research threads are in tension or complementary. Given 

how early this empirical scholarship is in its development, it would be too easy to add 

false principles that are not borne out by more extensive analyses. Additionally, because 

of these limitations and unlike the other sections of principles, many of these principles 

are more positive than normative in nature. 

Principle 1: Constrained optimization inherently trades some level of optimization in one 
research thread in exchange for simultaneously optimizing one or more other research 
threads 

Responsible Actor(s): Manager 
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Relevant Research Thread(s): Accuracy, Fairness, Explainability, 
Robustness, Privacy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

None 

Development Stage(s): Modeling, Testing, and Validation 

Applied ML Model: DOHA 

 

Constrained optimization is where artificial limits are put in place during the 

ANN’s training process to avoid certain “training paths” that might further optimize a 

given research thread because it violates a different research thread. One of the most 

powerful papers on the topic was put out by (Corbett-Davies, et al. 2017), where the 

authors showed that accuracy and fairness can very easily be at odds with one another – 

to reduce racial disparities in a given decision-making system, additional constraints 

were placed when optimizing for maximum accuracy. However, they showed that by 

doing so the final predictive accuracy was lower than it would have been without those 

constraints. 

The same problem exists with adversarial examples – to make an ANN more 

robust against adversarial examples, the training data is sometimes modified in some 

form. This allows for easy conflict between the two optimization tasks – if optimizing for 

fairness requires one general training path and optimizing for adversarial examples 

requires another general training path, which should be taken? Alternatively, if one or 

the other optimization is applied sequentially, the one that is applied second may be 

forced to work with the training path already set out. 
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For the DOHA model, from previous principles we have seen several areas where 

constrained optimization may need to be considered. First, if there is access to more 

information about protected group statuses, constrained optimization may be needed 

to ensure algorithmic fairness. Second, since false positives are likely to be significantly 

less acceptable than false negatives, constrained optimization may be necessary to 

minimize false positives. However, both could decrease predictive accuracy or interfere 

with one another other if applied. 

Principle 2: Different research threads should have varying difficulties in assessing 
optimization itself 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Accuracy, Fairness, Explainability, 
Robustness, Privacy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

Development Stage(s): Problem Formulation 

Applied ML Model: None 

 

Some optimization problems are easier than others to assess in terms of how 

optimized they are at a given point. Based on my research, I have ranked them as such 

in terms of difficulty of assessing: 

1. Accuracy 
2. Privacy, Robustness, and Fairness 
3. Explainability 
4. Democratic Legitimacy 

Keep in mind that the rankings above are not related to the difficulty of choosing the 

correct standard. Rather, I am attempting to answer regardless of if a given standard is 
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correct or not, how difficult is/are those standards to assess? Accuracy is clearly the 

easiest to assess – optimizing accuracy is the purest of numerical calculations – how 

accurately does a given ANN make a prediction? Regardless of whether you use F1 Score 

or BLEU or markedness or informedness, the math is simple, straightforward, and purely 

quantitative. Your choice of which accuracy metric to use may be wrong, but the actual 

calculations are not difficult regardless of which choice you make. 

Next, privacy, robustness, and (algorithmic) fairness are roughly equal in terms 

of how difficult they are to assess. On the one hand, how optimized they are can be 

clearly defined quantitatively, just as accuracy can. However, at the same time they all 

have links to more qualitative concepts as well. In other words, they can also be linked 

directly to the functions of a public agency rather than the functions of the algorithm 

itself; even when the optimization of the math is done perfectly, the public agency’s 

usage and implementation of that output can sometimes play a substantial role in the 

true difficulty of assessing these research threads. 

 Explainability is next, and its problem stems from the lack of easy quantifiability. 

As the literature review above discussed, how much explainability is sufficient and how 

does explainability technique X compare to explainability technique Y? There is no 

simple number that can be used to assess these, no matter which standard of 

explainability is chosen. Even excluding conceptions of interpretability (which deal with 

the public agency), explainability is still in part an inherently qualitative concept. 
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 Finally, democratic legitimacy is clearly the most difficult and subjective research 

thread to “optimize” and assess. Simply put, there is no mathematical algorithm yet 

devised that can assess democratic legitimacy. It is an entirely qualitative task and a 

potentially subjective one. 

Principle 3: Public agency managers should recognize that all definitions of algorithmic 
fairness cannot be met simultaneously 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Fairness, Democratic Legitimacy 
(Transparency, Deliberation, non-
algorithmic Fairness) 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

None 

Development Stage(s): Problem Formulation 
Deploy, Monitor, and Reassess 

Applied ML Model: DOHA 

 

As has been noted previously several times in the literature review, all 

competing definitions for algorithmic fairness cannot be achieved simultaneously 

(Wadsworth, Vera and Piech 2018). Therefore, a public agency will inevitably have to 

pick and choose a definition (or a subset of different but compatible and overlapping 

definitions) that that agency will use for determining fairness. This is true for both 

algorithmic and non-algorithmic standards of fairness. While all standards will inevitably 

be imperfect and some will not be happy with any given definition of fairness, making 

the process public and transparent, as well as looking for stakeholder feedback, should 

help to meet the requirements of non-algorithmic fairness. Some of the discrimination-
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related questions provided by (Shrum, et al. 2019, 20-21) are particularly relevant when 

making these assessments: 

Question 1: How can AI systems be tested before they are employed to ensure that they 
will not discriminate among individuals in ways that have traditionally been prohibited or 
to determine if they are discriminating among individuals in unanticipated ways? 
 This has previously been discussed for the DOHA model. 

Question 2: What redress or grievance procedures should be available to individuals who 
believe they have been unfairly treated as a result of an AI system? 
 DOHA itself already has an appeals process built in when someone is denied a 

security clearance – there is an appeal (which is this dataset), and there is even an 

appeal of the appeal (which is not included). Based on this, it appears there is already a 

strong grievance procedure in place to handle applicants who may feel wronged by the 

DOHA model. However, this could only be confirmed with internal information about 

DOHA. 

 

Principle 4: The relationship between democratic legitimacy and robustness/privacy 
should be determined on a case-by-case basis  

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (Deliberation, 
Interpretability, Transparency), 
Robustness, Privacy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

Development Stage(s): Problem Formulation 

Applied ML Model: DOHA 
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Unlike fairness, accuracy, or explainability, where an increase in any of those 

three should always increase democratic legitimacy, increasing robustness and/or 

privacy may increase or decrease democratic legitimacy. This comes into play most 

prominently when issues of transparency, interpretability, and deliberation are at stake. 

On the one hand, optimizing for differential privacy and robustness would suggest 

minimizing how much information is provided to the public about how a given ANN was 

trained or created. However, doing so could harm democratic legitimacy by minimizing 

deliberation and reducing interpretability and transparency by having the public agency 

be more opaque about its internal workings. 

In the case of the DOHA model, the primary worry here is with robustness (at 

least thus far). No one has yet de-anonymized clearance case summaries, but in the age 

of big data that may become possible down the road. However, in terms of robustness, 

applicants may attempt to “game the system” if they discover that particular kinds of 

answers to questions may cause the clearance case summaries to be written differently 

and thus interpreted differently by the DOHA model.  

While this may be more difficult because the applicant’s input is indirect (the 

applicant does not write the clearance case summary), that does not mitigate the 

potential problem entirely. Complete transparency of all model outputs would 

potentially make this gaming more likely. Thus, democratic legitimacy and robustness 

are potentially in tension in this case, albeit not as strongly as in other potential cases. 
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Principle 5: De-anonymization techniques exist even when individual data has been made 
theoretically private 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (Transparency, 
SDPR), Privacy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

Development Stage(s): Problem Formulation 
Modeling, Testing, and Validation 
Deploy, Monitor, and Reassess 

Applied ML Model: DOHA 

 

 While this principle is admittedly less normative than the others, it still is 

important enough to include regardless. De-anonymization techniques are those which 

involve taking anonymized data and then determining the identity of the anonymous 

individuals with the help of external, oftentimes public datasets (Dorschel 2019) (Lee, et 

al. 2017). What this means is that anytime personally identifiable information is being 

actively used when training a machine learning system, this poses a potential issue in 

case the data is reidentified later on.  

This is particularly true if that dataset is to be anonymized and made public on 

purpose for the sake of transparency. While all public agencies should seek for some 

level of transparency with the general public, this potential issue of de-anonymization 

makes it that much more complicated to determine how much transparency should be 

provided. The balancing act, then, is between privacy and transparency. Some questions 

that arise from this tension include: 
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Question 1: How should you calculate reidentification risk? Which standard of privacy is 
enough in which use cases? 
 The reidentification risk of applicants is very small (thus far) from the available 

data in the DOHA model. However, if more protected information were provided to the 

public (i.e. on race, ethnicity, etc.), this might increase the reidentification risk. 

Question 2: Are there some fields of data which should be automatically removed simply 
because they are too dangerous to have be reidentified? 
 Not in the case of the DOHA model. Personal names are already removed, as are 

social security numbers. 

6.6.5 Vendor Principles 

 The vendor is the key middleman that often exists for advanced software 

solutions in public agencies. Public agencies rarely have the resources to have their own 

expert internal data science team that can create complex ML systems, particularly 

state-of-the-art ANNs. Because of this, public agencies will often have a contract with a 

private firm that manages the ML system’s development and deployment on its behalf. 

However, the usage of a private vendor come with additional issues to contend with. Of 

note, since the DOHA model is hypothetical and not created by a vendor, it is not 

discussed in this section. 

Principle 1: Vendor claims to extensive trade secrecy should be treated with automatic 
skepticism 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (all), Explainability 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 
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Development Stage(s): Problem Formulation 
Vendor Negotiations 

Applied ML Model: COMPAS 

 

 Significant research has been conducted at the intersection of intellectual 

property rights, machine learning systems, and public agencies plus our judicial system 

(Ram 2017) (Wexler 2017) (Shrum, et al. 2019) (Reisman, et al. 2018) (Brauneis and 

Goodman 2018). On the one hand, trade secrecy has inherent value to any free market 

society. Indeed, the ability for private firms to profit from their innovations is an 

essential element of the free enterprise in the US. On the other, “…it is unlikely that 

these [trade secrets] extend to information such as the existence of the system, the 

purpose for which it was acquired, or the results of the agency’s internal impact 

assessment” (Reisman, et al. 2018, 14). 

In the case of ML systems, such secrecy can have a particularly high cost. First 

and foremost, there can be no transparency, explainability, or interpretability without at 

least some members of the public being aware of how a ML system functions in the first 

place, and accountability is also harmed as a result. Open records laws in many states 

make exemptions for trade secrets, and public agencies (at the federal, state, and local 

level) have in the past used this reasoning to prevent even basic transparency requests 

to their ML systems (Brauneis and Goodman 2018, 153-154). 

Of course, COMPAS is where much of the foundations for this principle originate 

from. The fact that Northpointe never released their COMPAS model to public 



250 
 

inspection (or even to independent inspection by a select private group to protect trade 

secrecy) ensures that there are countless questions that simply cannot be answered. 

Principle 2: Capabilities for maintenance should be transferrable where feasible 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Democratic Legitimacy (Algorithmic 
Maintainability) 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Vendor Negotiations 

Applied ML Model: COMPAS 

 

If the ML system is controlled by an external vendor, there may come a day 

when that vendor is no longer wanted or needed, such as when the contract is 

transferred to a new private firm. In such cases, the public agency may want to ensure 

that there are contractual provisions such that the ML system can be transferrable to 

another vendor. Otherwise a public agency will be left with either being permanently 

stuck with a single vendor for a critical system, starting from scratch with a new vendor 

and a new ML system, stop using the ML system entirely, or enter a legal dispute. 

In the case of COMPAS, it does not appear that there is such transferability to 

another vendor (although this remains unknown). If the Wisconsin judicial system 

considers COMPAS to be particularly important, this means that they will be unable to 

easily switch vendors and maintain functionality unless they wish to stop using COMPAS 

entirely. While such transferability is not always feasible (for example due to proprietary 
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technology and trade secrecy), public agency managers should consider the potential 

long-term reliance on one particular private firm that this causes. 

Principle 3: Public agencies should carefully vet which external entities should be provided 
what level of data as a part of the vendor contract 

Responsible Actor(s): Manager 

Relevant Research Thread(s): Privacy, Democratic Legitimacy 
(Accountability, Transparency, 
Deliberation) 

Secondary Category (if applicable): General Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Problem Formulation 
Vendor Negotiations 

Applied ML Model: COMPAS 

 

 Building on Public Agency Managers Principle #5 and Vendor Principle #1, 

attempting to add stakeholders after contracting with the vendor can be difficult due to 

issues of trade secrecy and contract requirements. Because of this, the stakeholders 

should be defined in procurement contracts specifying what kinds of data those 

stakeholders should be granted throughout development and implementation. These 

external groups may include non-governmental “good governance” organizations, 

independent researchers, legislative oversight committees, and the public in general, 

among others. 

 Issues of privacy, accountability, and transparency all intersect within this 

principle. First, there will be privacy concerns regarding any data transmitted to an 

external entity, both in terms of the vendor’s worry about losing trade secrets and the 
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public agency’s worry about personal data being unnecessarily revealed. Second, there 

will be transparency/accountability concerns given that it is unlikely that every external 

entity that wants access will be given access, or will be given as much access as it wants 

to the model and its data. In this case, privacy and accountability/transparency conflict 

with one another, and finding the proper balance behind them may be difficult. 

 In terms of COMPAS, while the firm Northpointe did release large quantities of 

training data and COMPAS’ assessments based on that training data to the public, it is 

unclear to me if they were contractually obligated to do so or if this was entirely 

voluntary and external users simply “got lucky”. Regardless, Northpointe still has not 

allowed any external entity (to my knowledge) to view their model itself, which should 

be seen as highly problematic. 

Principle 4: Internal expertise requirements for evaluating vendor systems should be 
recognized as significant by public agencies 

Responsible Actor(s): Manager 
Developer 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Transparency, Deliberation, SDPR) 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

Development Stage(s): Vendor Negotiations 

Applied ML Model: None 

 

 Simply because someone is a public agency manager or a procurement specialist 

does not make them inherently qualified to determine which vendor system should be 
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designed or purchased when dealing with ML systems. Even though these principles are 

designed to help with those determinations, the decision stills require significant 

technical subject matter expertise. Therefore, it’s important to consider what 

experience and expertise is required when evaluating a potential machine learning 

system before it is designed or developed (Shrum, et al. 2019, 20-21). 

6.6.6 Conclusion 

 In conclusion, I believe that the principles above will help to provide a 

foundation for public agencies seeking to implement ANNs and other ML systems. 

However, the principles above should not be viewed as a finished product – rather, they 

are a starting point. There are still other fields of study, such as behavioral psychology 

(Russo 2018), that have valuable insights to add to and further develop and refine this 

framework. Indeed, there is also a great need for additional empirical research to 

determine bilateral relationships more strongly. 

 In the case of COMPAS, I would argue that based on the principles in this 

framework it should not continue to be used without substantial revisions, and even 

with the revisions below it is arguable simply that such black box predictive models do 

not belong in our judicial system. At the least, there is room for improvement in 

multiple areas: 

- Ensuring that their contract does not preclude at least some sharing of their 

proprietary model 
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- Having a genuine public discussion and comment period about the best standard for 

algorithmic fairness, rather than have Northpointe determine such a standard 

themselves 

- Assess the COMPAS model against potential competitors to determine if other ML 

models provided superior outcomes 

- Ensure that COMPAS’ recidivism assessment is provided to judges visually in a way 

that allows the judge to understand more about where the statistic comes from 

- Create a model factsheet for COMPAS to increase transparency as to how it was 

designed and at least name the particular algorithm or group of algorithms used to 

predict with it 

 As to the viability of the DOHA model, I would conclude based on my 

framework’s principles that overall it is not possible to mitigate enough of the issues to 

apply it in the real world. Despite the fact that attempting to follow these principles and 

answer the questions shed significant light into areas that could be improved to the 

DOHA model as-is, even if those improvements were made, the broader question of 

should it be used in the first place is still a definitive no in my view. 

There are several key problems with using the DOHA model that using this 

framework revealed. First, the very fact that the model is based on such extraordinarily 

subjective data as the text of a judge’s clearance case summary makes the model 

potentially unreliable. Something as simple as someone’s unique writing style or future 
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administrative changes to clearance case summary formatting could completely change 

the effectiveness of the model. 

 Second, while the overall accuracy of the model is not inherently suspicious, the 

model makes extremely confident individual assessments; it generally surpasses 98% 

confidence for each individual assessment of a clearance case summary, whether 

granted or denied. In terms of explainability, this could imply that the model is 

“cheating” in some fashion (i.e. finding correlated words or phrases that have nothing to 

do with an applicant’s clearance suitability to determine whether it should be granted or 

denied). Otherwise, one would expect there to be less than nigh-absolute confidence in 

many of the model’s assertions. 

 Third, there is a lack of information about protected groups (beyond gender) to 

have any confidence that the model is treating those groups fairly, regardless of the 

fairness standard used. While the DOHA model’s extremely high accuracy might 

implicitly assure us that those applicants are highly likely treated fairly, there still should 

be more confidence that the model is fair to other protected groups as well.  

 Finally, there is the potential risk of applicants attempting to game the system if 

they knew that the way in which they phrased their answers might impact how the 

system assessed their suitability. This goes back to issues of robustness – the model is 

only ~97.5% accurate against the kinds of non-maliciously modified data it has seen 
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before. If adversarial examples were provided to it (even indirectly through the “finding 

of facts” from a judge/investigator), this might severely decrease accuracy. 

 In summation, these risks in my view are simply too great – I would recommend 

that DOHA not implement any kind of ANN or advanced ML system to assist in its 

determinations of clearance suitability at this point. 

  



257 
 

 
 

 
7 Conclusions    

 
 
 
 This study utilized a qualitative, multimethod approach consisting of archival 

research, expert interviews, peer review, and comparative analysis. The methods were 

combined to iteratively improve the final analytical framework. The result was an 

analytical framework consisting of 5 categories and 30 distinct principles. It is intended 

to provide public agency managers and analysts with guidance to assist them in their 

conception, development, and implementation of ANNs and other ML systems within 

their public agencies. Rather than trying to answer to every conceivable question that 

might need to be asked, its purpose is to help find the right questions that need to be 

asked. 

7.1 Final Thoughts 

 To repeat what I wrote earlier, we stand at the precipice of a new kind of 

government for a wide array of public services. Utilizing machine learning, particularly 

artificial neural networks, has the potential for significant improvements to these 

services while also opening the door to new problems. Only by understanding how we 

got here and asking for assistance from fields as wide ranging as behavioral psychology, 

public administration, law, and computer science will we be able to ensure that the 
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positives outweigh the negatives. This analytical framework should not be seen as the 

end of the road, but a beginning for future research. 

7.2 A New Case Study: Clearview AI and Facial Recognition 

 A new case at the intersection of machine learning and public policy has recently 

arisen in the US, but unfortunately it was too recent to be included in the main content 

of this dissertation. Nevertheless, it is relevant and important enough that it at least 

deserves mention here. Indeed, this case may be an even bigger “poster child” for the 

necessity of such a framework of principles than the case of COMPAS. 

In January 2020, news reports from the New York Times came to light of a start-

up company called Clearview AI and their facial recognition system (Hill 2020). Through 

gathering over 3 billion photos of individuals from social media websites across the 

internet, they have since contracted with over 600 law enforcement agencies worldwide 

to provide their facial recognition services to law enforcement agents through simple 

smartphone apps. Those agents can upload photos they take of suspects on those apps 

to Clearview AI’s servers, and Clearview AI then sends the law enforcement officer any 

matching faces their algorithm found from their massive database. 

We can already see several problematic areas related to my framework above. 

First, when the New York Times reporter attempted to contact Clearview AI, he was 

originally unable to reach them. He soon (voluntarily) asked a police officer using 

Clearview AI’s app to upload his photo to see what it would return with; it came back 
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with several matches, which was unsurprising. However, “[a]fter the company realized I 

[the reporter] was asking officers to run my photo through the app, my face was flagged 

by Clearview’s systems” and it did not return matches any longer. 

Clearview AI claimed that this was a software bug, but that is a difficult claim to 

take at face value considering that they are using a machine learning system that (if we 

remember) is unlikely to have human-made rules in its matching. However one feels 

about the idea of police using en masse facial recognition based on collected social 

media data, it is hard to dispute that a private firm probably shouldn’t have what 

appears to be essentially oversight powers over law enforcement queries. This raises 

substantial questions of accountability and transparency, to say the least. 

Next there is the fact that there is no external verification on any Clearview AI 

system – their database cannot be verified for accuracy externally, and again (just like 

with COMPAS) the particular machine learning algorithm they’re using is proprietary. 

However, given that they are doing facial recognition and that multiple police sources 

have reported high levels of predictive accuracy, it is highly likely that they are 

employing some version of a neural network, probably a convolutional neural network. 

Then there is the fact that some law enforcement agencies are relying solely on 

overall predictive accuracy to assess Clearview AI’s system. According to the former 

Indiana State Police captain who used Clearview AI’s system, “[f]or us, the testing [of 

Clearview AI’s app] was whether it worked or not.” (Hill 2020). It is understandable why 
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this perspective might exist among law enforcement; indeed, Indiana State Police 

achieved a positive match on a criminal within just 20 minutes of first using the app. 

However, such a perspective unfortunately papers over a whole host of potential 

problems related to transparency, fairness, accountability, deliberation, and privacy. 

The list goes on; I can also see immediate further issues with the lack of 

transparency and interpretability – Clearview AI’s legal representative wrote a legal 

memo, which police appear to be following, stating that “authorities don’t have to tell 

defendants that they were identified via Clearview, as long as it isn’t the sole basis for 

getting a warrant to arrest them.” So aside from the other issues, defendants may not 

even know if this system was used against them. While Clearview AI violated the Terms 

of Service for various social media websites to collect their massive trove of data (which 

their founder readily admits), since all of the facial information is publicly available it 

appears as though they are violating no laws as of yet. 

In summation, even from this quick and cursory analysis, we can see that there 

are significant problems with using Clearview AI’s system. It may indeed be able to 

produce extremely high levels of accuracy in its matches, but as I hope I have shown 

throughout this dissertation, that is insufficient for a public agency. It is unfortunate that 

this information did not come to light 6 months earlier or I might have rewritten this 

dissertation to focus on it rather than COMPAS. 
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7.3 Impact on Public Agency Behavior 

 The intent of this framework is to shape the behavior of public agencies 

(particularly public agency managers) when it comes to their utilization of ANNs and ML 

systems more broadly. Most human beings, including the employees of a public agency, 

will automatically turn to accuracy to see how effective a given AI is – after all, what 

could be more important than how often an AI correct? As I hope this framework has 

shown, however, the question of accuracy is only the very first surface-level question 

that needs to be asked. Indeed, even accuracy is subjective – the section on accuracy in 

the literature review makes clear that the accuracy statistic on its own may not tell the 

whole story when compared to recall, precision, etc. 

 Beyond accuracy, this framework urges public agency managers in particular to 

consider other key research threads. Generic platitudes about fulfilling fairness, privacy, 

robustness, explainability, and democratic legitimacy are replete in existing literature, 

but the principles in this framework attempt to provide more actionable ideas that 

public agency managers can follow to help achieve them. Based not only on what 

lessons have been learned from the past but what the past and present tell us about the 

future, this framework should help both managers and analysts alike better implement 

ANNs and ML systems more broadly in such a way that the public can have more trust in 

these systems.  Perhaps most importantly, the material in this dissertation is more 

accessible to those without a deep specialization in computer science. 
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7.4 Addressing Literature Gaps 

 While the array of literature regarding ANNs continues to increase at a 

staggering rate, there are nevertheless gaps that need to be addressed. As this 

dissertation should show, there is already extensive literature regarding algorithmic 

governance and ethical AI issues generally. Additionally, issues of fairness, robustness, 

explainability, and privacy with regard to ANNs are not hard to find. However, with the 

exception of (Leslie 2019), there has been little to no comprehensive literature 

discussing how public agencies should utilize ANNs besides this dissertation. 

Indeed, given the wide subject matter that this dissertation covered, it should be 

no surprise that there is substantial follow-on research that needs to occur both within 

the field of public policy and outside of it. First, there is a need for more experimental 

research and empirical evidence related to the bilateral relationship of different 

research threads. 

 Second, there needs to be more behavioral psychology research into how 

humans interact with ANNs and advanced ML systems more generally. This dissertation 

briefly touched on behavioral psychology through discussions of “nudging” and user 

interfaces, but that only skims the surface of these issues. 

Finally, there needs to be more interdisciplinary computer science research into 

all areas of ANNs, particularly between public policy scholars and computer scientists. 

While I was able to identify potential trends from early research, it is possible that more 
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thorough and concrete studies in the future will disprove them. Aside from a few pairs 

of threads, such as fairness and accuracy or robustness and privacy, most threads only 

have relatively thin empirical research as to their bilateral relationship. 

7.5 Relevance to the Future 

 Machine learning in general and artificial neural networks in particular are 

unlikely to dissipate as a relevant issue for public agencies to have to deal with. Until 

now, the approach has mostly been haphazard – public agencies would follow standard 

protocols for software development. However, these protocols have clearly fallen short 

– as the review on democratic legitimacy should make clear, there is already a 

substantial enough history of machine learning in public agencies to show that those 

agencies are unlikely to be following too many of the principles in this framework. 

Indeed, whether they are following any of these principles is itself difficult to know 

because of the near-total lack of transparency in some cases. This makes studying 

current usage extremely difficult, and was one reason why I eschewed attempting to 

study many other examples of ML systems used by public agencies already (with the 

exception of COMPAS and my own personally devised neural network). 

 In conclusion, it is my sincere hope that this dissertation is a clarion call for 

future research at the intersection of public policy and computer science. Only by 

looking at both sides will we be able to further develop best practices for public 

agencies. 
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Appendix A-1: Original Framework, Pre-Interviews 

 
 
 

From the first two Stages of my research methodology arose this series of 

principles. Some of them were directly extracted from either the first or second stage, 

others were implicit in several distinct concepts, and still others were a combination of 

several different principles from different texts. Each of the principles below is not 

designed to be the final answer, but rather to provoke the right questions to be asked – 

those questions will have different answers for different use cases as techniques evolve 

and change, but the principles behind them should remain more constant. Some of the 

principles explicitly ask follow-on questions. 

The principles were split into three categories: general principles, human 

interaction principles, and optimization principles. 

A-1.1 General Principles 

 These are the broadest principles in this framework. Rather than being pulled 

explicitly from one document or another, they were principles that showed themselves, 

implicitly or explicitly, from several sources. Although several of these principles may 

seem obvious to a computer scientist, they are meant for usage by public agency 

managers who are much less likely to have that background. 
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Principle 1: Democratic legitimacy is intrinsically tied to each of the other research threads 
 While each of the other research threads can be defined separately from one 

another (i.e. it’s not difficult to determine where measuring robustness ends and 

measuring fairness begins), democratic legitimacy is unique. It is pervasive and if 

defined broadly enough could theoretically encompass all other research threads within 

its paradigm. Because of this, and because of the inherent importance of achieving 

democratic legitimacy for any public agency, it should be the starting point for 

implementing ANNs in public agencies. 

Principle 2: ANNs predict correlation, not causation 
 The principle “correlation does not imply causation” is well-known and should be 

self-evident. Nevertheless, it has special meaning in the context of ANN development. 

ANNs do not predict causation; rather, their predictions are only based upon countless 

subtle correlations. ANN output should never be thought of as implying a direct 

causation between the input and the output. This is particularly important considering 

that the end-users of a given ANN, whether it be the public or the average analyst at a 

public agency, are unlikely to be well-versed in statistical analysis. (Faes, et al. 2019) 

Principle 3: Define your key definitions early and review them often for refinement 
 The myriad of taxonomies presented in this study should show both the 

incredible breadth of techniques that exist and the amount of critical terms with 

subjective and debatable definitions. More specifically, how you define (and justify your 

definitions) for fairness, explainability, robustness, democratic legitimacy, and privacy 

are critically important. Even accuracy requires definitions, such as whether recall, 
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precision, and F-1 score will be utilized. Several follow-on questions arise from this 

principle: 

Question 1: Which definition(s) of fairness will you be optimizing for and why? 

Question 2: Is differential privacy enough when defining privacy generally? 

Question 3: How much explainability is sufficient for your ANN and why? 

Question 4: How problematic are adversarial examples for your ANN and what level of 
robustness certification is necessary? 
 

Principle 4: The importance of each research thread can vary between different ANNs and 
different use cases 
 Save for democratic legitimacy at the top, permanently ranking the research 

threads in importance is a poor idea for a public agency because how important each 

one is can vary from case to case. For example, if there is no interface through which 

malicious input could be provided to an ANN, optimizing for robustness becomes less 

important. Likewise, if the data involved isn’t personally identifiable information and is 

already available to the public, the value of optimizing for privacy is also reduced. That’s 

not to say that they are entirely unimportant in those instances, but simply that 

considering other research threads should be of greater importance. 

Principle 5: Attempt traditional ML techniques before moving to ANNs 

 This is a principle which should be considered at the very beginning of any sort of 

analysis – is an ANN the best kind of ML model? Even if ANNs have achieved broadly 

superior results to more classical ML techniques in the realm of raw accuracy, the 

potential loss in the remaining research threads may indicate that ANNs are not the best 

solution.  
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Principle 6: Public agencies are unlikely to have intrinsic legal problems implementing 
ANNs but should still tread cautiously 
 According to a legal analysis conducted by (Coglianese and Lehr, Regulating by 

Robot: Administrative Decision Making in the Machine-Learning Era 2017), ANNs (and 

machine learning in general) shouldn’t face any intrinsic legal problems when being 

implemented within a public agency. Nevertheless, there should still be due caution due 

to the potential for misuse and poor policy that may arise from an improper 

implementation. Despite the lack of legal limitations, or perhaps even because of them, 

how public agencies choose to use ANNs becomes increasingly important. 

Principle 7: Unrepresentative data can exist even in cases where an entire population is 
the sample 
 I use the term “unrepresentative data,” in contrast to “sampling bias,” because 

an entire group or population can sometimes be the dataset when it comes to training 

ANNs. Under the traditional sampling bias paradigm, no sampling means no sampling 

bias. However, even when using an entire group or population as the dataset, the data 

may still be unrepresentative of reality. This issue is discussed in greater detail within 

the definition of fairness provided above. If your data isn’t representative of reality, 

insights gleaned from an ANN trained on that data and with 99.9% “accuracy” may be 

tainted and produce unfair results. 

Principle 8: ANNs require algorithmic maintenance 
 Algorithmic maintainability (as applied to ANNs) is the idea that there should be 

specific procedures in place to handle how the ANN should be periodically analyzed and 

potentially updated to ensure it is maintaining the same level of performance as it was 
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when previously checked. However, updating for the sake of updating should be 

avoided. Unlike with traditional software packages, a “new” version should not be 

construed as implying the system is inherently superior. Rather, such updates need to 

be considered on a case-by-case basis. 

Several questions arise from this principle: 

Question 1: Should new data be inputted continuously into a neural network’s training as 
it becomes available? 

Question 2: Should new data be ignored until it is proven that the neural network’s 
performance is degrading? 

Question 3: Should the ANN be retrained every N years from scratch?  

Question 4: Should data from at least Y years old be removed from future iterations? 

Question 5: What if new data causes accuracy to decline or bias to rise or some 
combination of the two? 

Question 6: What human being is responsible for the decisions stemming from the ANN? 
 

A-1.2 Human Interaction Principles 

 There are two potential human “audiences” for an ANN implemented in a public 

agency: internal users and external users. Internal users include members of the public 

agency themselves who would use those predictions as a part of their job, and external 

users are those in the general public that interact with the system. Some ANNs will only 

have an internal audience, some will have only an external audience, and some will have 

both. Regardless, the principles below focus on how humans interact with ANNs, who is 

responsible for that interaction, and what the effects of that interaction are. 
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Principle 1: User interface design is a critical feature and not an afterthought 
 This principle is emphasized by (Pásztor 2018) most prominently. The basic idea 

of this framework is that a computer system is not simply its input and output, it’s also 

its interface. All too often, government systems have terrible user interfaces, and that 

may cause issues in the development and usage of ANNs. For example, a poor user 

interface for internal users may allow flaws and/or biases to go unnoticed. Likewise, a 

poor user interface for external users may provide an incorrect sense of what the 

system determined and why it determined it. 

Principle 2: Enable internal users to do their own testing 
 The design of almost any ANN should allow for internal users to do their own 

testing and analysis. For example, these users should be able to enter fake data to help 

them get a better understanding of what the system is capable of and to spot potential 

design flaws. Even if internal users aren’t computer scientists, they’re likely to be 

subject matter experts and may be able to detect problems that would be otherwise 

missed.  

Beyond simple testing, complex analytical suites are also available such as 

Stanford’s open-source neural network verification project. (SyncedReview 2019) Such 

analytic suites are essential to help internal users grasp if an ANN is behaving as it 

should be even before external experts or consultants are hired to review it. 

Principle 3: Be cautious of empathy loss through relying overmuch on ANNs 
 Sometimes the pure quantitative facts don’t provide a complete picture of a 

given situation. Whereas decisions made by human beings have at least the chance of 



270 
 

human empathy allowing for exceptions in extreme situations, ANNs don’t inherently 

allow for such exceptions. The impact of this can be edge cases where a human observer 

would be very likely to decide against standard policy, whereas an ANN will not. 

Principle 4: Provide a model fact for an ANN in production 
A model fact sheet is a standardized, relatively non-technical outline of the 

capabilities and limitations of a given ANN. Depending on the use case, the precise 

content can vary greatly. (Brajer, et al. 2019) provide an example of a model fact sheet 

in the case of healthcare delivery. Regardless of the use case, such a fact sheet should 

allow non-expert internal users to both understand how a model works and to have 

model-to-model comparisons. 

Principle 5: The use of ANNs may compel agency decision makers to engage in 
quantitative coding of value judgments that have typically been made qualitatively 

Public agencies often have qualitative values encoded into the decisions that the 

agency is responsible for. These qualitative values aren’t always clear-cut, and can have 

a significant amount of subjective value assessment. One possible problem when trying 

to implement an ANN for such a case is that the ANN cannot accept these purely 

qualitative and often intuitive value assessments as inputs – it requires those inputs to 

be quantified to some degree. This change from qualitative to quantitative values may 

be difficult for some agencies to manage, and should be carefully scrutinized during 

development. 
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A-1.3 Optimization Principles 

 The optimization principles below delve more deeply into the interaction effect 

between the six research threads (fairness, explainability, robustness, privacy, 

democratic legitimacy, and accuracy). An interaction effect is defined as a situation 

where optimizing for one element of an ANN (such as fairness) is likely to directly impact 

another element (such as accuracy). 

Principle 1: Constrained optimization inherently trades some level of optimization in one 
research thread in exchange for simultaneously optimizing one or more other research 
threads 
 Constrained optimization is where artificial limits are put in place during the 

ANN’s training process to avoid certain “training paths” that might further optimize a 

given research thread because it violates a different research thread. One of the most 

powerful papers on the topic was put out by (Corbett-Davies, et al. 2017), where the 

authors showed that accuracy and fairness can very easily be at odds with one another – 

to reduce racial disparities in a given decision-making system, additional constraints 

were placed when optimizing for maximum accuracy. However, they showed that by 

doing so the final predictive accuracy was lower than it would have been without those 

constraints. 

The same problem exists with adversarial examples – to make a ANN more 

robust against adversarial examples, the training data is often modified in some form. 

This allows for easy conflict between the two optimizations – if optimizing for bias 

requires one general training path and optimizing for adversarial examples requires 
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another general training path, which should be taken? Alternatively, if one or the other 

optimization is applied sequentially, the one that is applied second will be forced to 

work with the training path already set out. 

Principle 2: Look beyond bilateral relationships 
 While this paper looked principally at the bilateral relationships between 

different research threads, this is just the beginning. There may be relationships 

between three or more research threads that only become apparent when all three are 

being optimized simultaneously. When developing an ANN, these relationships should 

be considered as well. 

Principle 3: Different research threads have varying difficulties in assessing optimization 
itself  
 Some optimization problems are easier than others to assess in terms of how 

optimized they are at a given point. Based on my research, I have ranked them as such 

in terms of difficulty of assessing: 

1. Accuracy 
2. Privacy, Robustness, and Fairness 
3. Explainability 
4. Democratic Legitimacy 

Accuracy is the easiest to assess – optimizing accuracy is the purest of numerical 

calculations – how accurately does a given ANN make a prediction? Next, privacy 

(specifically differential privacy), robustness, and fairness are roughly equal in terms of 

how difficult they are to assess. On the one hand, how optimized they are can be clearly 

defined quantitatively, just as accuracy can. However, at the same time they all lack a 
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universal definition for what precisely should be optimized for. As discussed above, 

there are multiple competing and inconsistent standards of how we define fairness. For 

robustness, should only an absolute robustness certification be measured, and for 

privacy, perhaps federated learning or secure enclaves is a better kind of privacy to 

optimize for than differential privacy. While each of these definitions for privacy, 

robustness, and fairness can be assessed quantitatively, the difficulty in assessing them 

lies in choosing the correct definition to optimize for. 

 Explainability is next, and its problem stems from the lack of easy quantifiability. 

As the literature review above discussed, how explainable is sufficiently explainable and 

how does explainability technique X compare to explainability technique Y? There is no 

simple number that can be used to assess these, no matter which standard of 

explainability is chosen. 

 Finally, democratic legitimacy is the most difficult and subjective research thread 

to “optimize” and assess. There is no mathematical algorithm yet devised that can 

assess democratic legitimacy, and the concept of legitimacy itself is at times only in the 

eyes of the beholder. 

Principle 4: All definitions of fairness cannot be met simultaneously 
 No matter how the concept of fairness and bias is defined, all competing 

definitions for fairness cannot be achieved simultaneously. (Wadsworth, Vera and Piech 

2018) Therefore, a public agency will inevitably have to pick and choose a definition (or 

a subset of different but compatible and overlapping definitions) that that agency will 
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use for determining fairness. While this will inevitably be imperfect and some will not be 

happy with any definition, making the process public and transparent should help to 

meet the requirements of democratic legitimacy. 

Principle 5: Privacy and Robustness should be optimized jointly 
 Among all five research threads (plus accuracy), no two are as closely related as 

privacy and robustness. While they seek different goals, each deals with preventing 

malicious external actors from improperly manipulating the ANN. Current research 

shows that at a minimum optimizing them won’t put them into conflict, and they may 

even have a mutually reinforcing relationship. (Phan, Vu, et al. 2019) (Phan, Thai, et al. 

2019) (Lecuyer, Atlidakis, et al. 2019) 

Principle 6: The relationship between democratic legitimacy and robustness/privacy 
should be determined by a case-by-case analysis  
 As a corollary to the preceding principle, robustness and privacy may have a 

negative relationship with democratic legitimacy. This is unlike fairness, accuracy, or 

explainability, where an increase in any of those three should always increase 

democratic legitimacy. However, optimizing for privacy and/or robustness may 

paradoxically end up harming democratic legitimacy. This comes into play most 

prominently when issues of transparency and public deliberation are at stake. On the 

one hand, optimizing for differential privacy and robustness would suggest minimizing 

how much information is provided about how a given ANN was trained or created. 

However, doing so would harm democratic legitimacy by minimizing deliberation and 

reducing transparency (and thus potentially constitutional protections). 
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Principle 7: Agencies should develop meaningful external researcher review processes to 
discover, measure, or track impacts over time (AlA) 
 Public review of new policies is a frequent feature of many public agencies. 

However, such reviews become increasingly important in the case of ANN development. 

In order to achieve democratic legitimacy in particular, the public needs to be confident 

that the public agency isn’t violating any constitutional protections. To do this, external 

researchers should be permitted to assess the ANN and its impact over time. At the 

same time, this transparency must be weighed against the harm to robustness and/or 

privacy that may come from this level of intervention. A balance between the two 

should be struck, although where that balance is will change between projects. 
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Appendix A-2: Second Draft Framework, Post-Interviews/Expert 
Review/Revisions 

 
 
 

The second draft of my research methodology is the analytical framework below. 

It was written after the completion of Stage Four but before Stage Five in my research 

methodology. Its principles come from a wide range of sources: some were found 

through archival research and my literature review, others came from peer review, and 

still more through expert interviews. Some of the principles explicitly ask follow-on 

questions, whereas others allow the reader to determine their own follow-on questions 

as needed. 

At the beginning of each principle, I provide a small table showing the relevant 

research thread(s), the principle’s secondary category (if applicable), and whether the 

principle is as applicable to machine learning in general as it is to artificial neural 

networks. The principles were divided into five categories: (1) public agency manager 

principles, (2) general technical principles, (3) human interaction principles, (4) 

optimization principles, and (5) vendor principles. These categories were determined 

from a combination of natural division points that appeared when discovering different 

principles as well as through expert interviews. The categories themselves are more fully 

defined below. 
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Additionally, some further definitions are required: 

Vendor: An external private firm which is responsible for the technical development of a 

machine learning system for a public agency. 

Internal User: Public agency employees (usually more junior individuals in the agency’s 

hierarchy) who are responsible for the day-to-day usage of the machine learning system 

within the agency. 

External User: Members of the public who interact with and/or are assessed in some 

manner by the machine learning system. 

A-2.1 Public Agency Manager Principles 

 Public agency manager principles are defined as principles that public agency 

managers should constantly keep in mind and apply over the entire course of the 

development and implementation process. They do not end after a given stage of 

development finishes (i.e. after a vendor is chosen). Rather, they are constant principles 

that should be considered and reconsidered. 

Principle 1: Clarify your key definitions early, and review them often for refinement 

Relevant Research Thread(s): Democratic Legitimacy (Transparency), 
Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 
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While this principle may be self-explanatory, it bears further analysis. The myriad 

of taxonomies presented in this study should show both the incredible breadth of 

techniques that exist and the amount of critical terms with subjective and debatable 

definitions. How you define (and how you justify your definitions) for the critical 

concepts comprised within each research thread will play a substantial role in both the 

actual implementation of machine learning systems as well as how the public perceives 

that implementation. Several follow-on questions arise from this principle: 

Question 1: How much explainability is enough for your machine learning system and 
why? 

Question 2: How problematic are adversarial examples for your machine learning system 
and what level of robustness certification is necessary? 

Question 3: What type(s) of privacy are you implementing (differential privacy, federated 
learning, etc.) and why? 

Question 4: How does your agency define fairness and why was that particular definition 
chosen against other definitions? 
 

Principle 2: The importance of each research thread varies between different types of 
machine learning and different use cases 

Relevant Research Thread(s): All 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning Applicability: Full 

 

Permanently ranking research threads in importance is a poor idea for a public 

agency due to the changing importance of each thread from case to case. For example, 

if there is no interface through which malicious input could be provided, optimizing for 

robustness becomes less important. Likewise, if the data involved isn’t personally 
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identifiable information and is already available to the public, the value of optimizing for 

privacy is also reduced. That’s not to say that they are entirely unimportant in those 

instances, but simply that considering other research threads should be of greater 

importance. 

Principle 3: Public agency decisionmakers may be compelled to engage in quantitative 
coding of value judgments that were typically made qualitatively 

Relevant Research Thread(s): Democratic Legitimacy (Accountability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

 

Public agencies often have qualitative values encoded into the decisions that the 

agency is responsible for. These qualitative values aren’t always clear-cut and can have a 

significant amount of subjective value assessment. One possible problem when trying to 

implement machine learning systems for such cases is that these systems cannot these 

purely qualitative (and often intuitive) value assessments as inputs – it requires those 

inputs to be quantified to some degree. This change from qualitative to quantitative 

values may be difficult for some agencies to manage and should be scrutinized during 

development and implementation. 

Principle 4: Define your stakeholders and invite them for collaboration at various stages 

Relevant Research Thread(s): Democratic Legitimacy (Deliberation, 
Transparency) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 
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Public review of new regulations or policies is a frequent feature of many public 

agencies, such as the Federal Communications Commission. (FCC 2019) However, such 

reviews become increasingly important when machine learning systems come into play. 

This is because even with public or expert input, there can be a significant lack of 

explainability in the results of a machine learning system.  

A-2.2 General Sociotechnical Principles 

 These principles include broad principles generally focused on the more 

technical aspects of machine learning system development. However, while they are 

technical in nature, understanding these principles and how to answer the questions 

they bring up is not a question just of computer science competency but rather an 

assessment of the values of the public agency and what it requires. 

Principle 1: Correlation is not causation 

Relevant Research Thread(s): Fairness, Accuracy, Democratic 
Legitimacy (SDP) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

 

The statistical adage “correlation does not imply causation” is well-known and 

should be self-evident. (S. Singh 2018) Nevertheless, it has special meaning in the 

context of machine learning systems, particularly ANNs. Because of this, it deserves 

extra attention. Notably, machine learning systems do not predict causation; rather, 

their predictions are only based upon countless subtle correlations. ANN output should 
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thus never be thought of as determining a direct causation between the input and the 

output. This is particularly important considering that the end-users of a given ANN, 

whether it be the public or the average analyst at a public agency, may be unlikely to be 

well-versed in statistical analysis. (Faes, et al. 2019) 

Examples abound on the gap between correlation and causation. Consider the 

following examples from Tyler Vigen’s book/website Spurious Correlations (Vigen 2015):
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Figure 16 - Correlations != Causations (Old Example) 

 It should be self-evident that there is clearly no causal relationship between 

math doctorates and uranium storage or U.S. science R&D spending and suicide rates, 

yet both of these relationships have a correlation of over 95%. What can this tell us 

about machine learning systems? Simple - if you provided a neural network with the 

math doctorates awarded each year as input and had it attempt to predict the uranium 

stored at US nuclear power plans as output, it would perform admirably well. However, 

the deeper question underlying this for public agencies is whether making 

determinations based upon a given correlation is a positive or a negative. 

Question 1: Should a causal relationship between input and output be required (or at 
least asserted) prior to using a given variable as the input? 

Question 2: What is the standard for determining causality in such cases? 
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Principle 2: Test multiple types of machine learning systems 

Relevant Research Thread(s): Fairness, Accuracy, Explainability, 
Robustness, Privacy 

Secondary Category (if applicable): Optimization Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

 

Even if ANNs have achieved broadly superior results to more classical ML 

techniques in the realm of raw accuracy, the potential loss in the remaining research 

threads may indicate that ANNs are not the best solution for every case. What’s more, 

there are still some areas where other machine learning systems can still match their 

results in terms of raw accuracy. Thus, rather than settling on one particular type of 

system from the beginning, it’s worthwhile to have multiple kinds of systems built. 

Different machine learning systems suffer from different flaws which may be more or 

less important in different use cases.  

Principle 3: Unrepresentative data can exist even in cases where an entire population is 
the sample 

Relevant Research Thread(s): Fairness, Accuracy, Explainability, 
Robustness, Privacy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

 

I use the term “unrepresentative data,” in contrast to “sampling bias,” because 

an entire group or population can be the dataset when it comes to training machine 

learning systems. Under the traditional sampling bias paradigm, no sampling means no 
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sampling bias. However, even when using an entire group or population as the dataset, 

the data may still be unrepresentative of reality. This issue is discussed in greater detail 

within the Fairness literature review section above. If your data isn’t representative of 

reality, insights gleaned from a machine learning system trained on that data, even with 

99.9% “accuracy”, may be tainted and produce unfair results. 

Principle 4: Algorithmic Maintenance needs are higher than with traditional software 
algorithms 

Relevant Research Thread(s): Democratic Legitimacy (Algorithmic 
Maintenance, Accountability) 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

 

Algorithmic maintainability (as applied to ANNs in particular, though somewhat 

applicable to machine learning systems generally) is the idea that there should be 

specific procedures in place to handle how these systems should be periodically 

analyzed and potentially updated to ensure that they maintaining the same level of 

performance as when they were initially assessed. Unlike traditional software packages, 

updating a machine learning system automatically just for the sake of updating it may 

not be the correct solution. This is because unlike traditional software packages, a 

“new” version should not be construed as implying the system is inherently superior. 

Rather, what that update would entail is of great importance. Rather, such updates 

need to be considered on a case-by-case basis. 

Several questions arise from this principle: 
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Question 1: Should new data be inputted continuously into an ANN’s training as it 
becomes available, or should it be done with “versions” similar to traditional software 
development methods? 

Question 2: Should new data be ignored until it is proven that the ANN’s performance is 
degrading? 

Question 3: Should the ANN be retrained every N years from scratch?  

Question 4: Should data from at least Y years old be removed from future iterations? 

Question 5: What if new data causes accuracy to decline or bias to rise or some 
combination of the two? 

Question 6: What human being is responsible for the decisions stemming from the ANN? 
 

Principle 5: Measuring “accuracy” is more than just the raw accuracy statistic 
 

Relevant Research Thread(s): Accuracy 

Secondary Category (if applicable): Optimization Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 As the Accuracy section in the literature review should have made clear, even 

the study of accuracy itself can be subjective. Public agency managers and internal users 

both need to be aware of what kinds of “accuracy” numbers a machine learning system 

is providing. The difference between assessing actual raw accuracy and F-1 Score can be 

substantial when considering the suitability of a machine learning system for 

implementation. 

Principle 6: Minority groups within training datasets are in greater danger of poor model 
performance 

Relevant Research Thread(s): Democratic Legitimacy (SDP), Accuracy, 
Fairness 

Secondary Category (if applicable): Optimization Principles 

Non-ANN Machine Learning 
Applicability: 

Partial 
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 Minority groups can be intrinsically at greater risk of unfair treatment by a public 

agency because there often won’t be as much training data for the minority group. The 

correlation between the quantity of high-quality training data and model performance is 

extremely strong; all other things being equal, a model with significantly more training 

data will almost always achieve equal or (more often) superior performance to an 

equivalent model with less training data. Because of this, minority groups may be 

particularly vulnerable to a dearth of training data. While this may also be the case for 

other kinds of machine learning, it can vary between types. 

Question 1: Does your training dataset have relevant minority sub-groups? If so, are you 
testing the predictive accuracy for those groups separately? 

Question 2: Are there likely to be new minority groups with specific unique 
characteristics that are presently missing from the training dataset? 

 
Principle 7: Question what you think is being learned 

Relevant Research Thread(s): Accuracy, Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

 

 Machine learning systems, and particularly ANNs, will constantly try to “cheat” 

during training. By cheat, I meant that they will by design seek the easiest training path 

to maximize accuracy. For image recognition tasks, this often (though not always) 

means that the most obvious and consistent differences between two different image 
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classifications will be what the system learns. While this may seem like a good thing at 

first glance (and it often is), it isn’t always a positive. 

Indeed, there are several famous cases in the history of machine learning where 

this misunderstanding of what was learned caused substantial real-world problems. 

Perhaps the most well-known case is when a neural network was trained to 

differentiate between wolves and huskies. (Ribeiro, Singh and Guestrin 2016) On the 

one hand, the model achieved a very high accuracy during training and it was thought of 

as a great success initially (particularly back in 2016). 

 However, when it was applied to the real world, it failed spectacularly, 

misclassifying what should have been easy identifications between wolves and huskies. 

When researchers dug into the ANN, they found out that they had been wrong about 

what it had succeeded in classifying: the ANN hadn’t been classifying the animals, but 

rather it had become adept at identifying images with snow in them. Since all the 

images with wolves had snow in them, it was thus able to successfully classify the 

wolves rather easily. In the real world, however, the images of wolves didn’t always 

have snow in them. This caused the classifier to essentially malfunction. (Kepler 2019) 

A-2.3 Human Interaction Principles 

 There are two potential human “audiences” for an ANN implemented in a public 

agency: internal users and external users. These terms were defined at the beginning of 

this section. Some ML systems will only have internal users and some will have both 
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internal and external users; it’s extremely unlikely that an ML system will have no 

internal users at all. Internal or external, the principles below focus on how humans 

interact with ML systems. 

Principle 1: User interface and user experience (UI/UX) are critical features, not 
afterthoughts, to machine learning systems 

Relevant Research Thread(s): Democratic Legitimacy (Accountability), 
Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

 

This principle is emphasized by (Pásztor 2018) most prominently: a computer 

system is not simply its input and output, it’s also its interface. All too often, 

government systems have truly terrible user interfaces (Sinders 2018), and that can 

cause significant issues in the development and usage of ANNs in particular. These 

issues can be for internal users and external users both. For example, a poor user 

interface for internal users may allow flaws and/or biases to go unnoticed. Likewise, a 

poor user interface for external users may provide an incorrect sense of what the 

system determined and why it determined it. While government has traditionally had a 

poor history of UI/UX, the problems arising from ANNs will not just be annoying, but can 

have significant negative real-world consequences. 

Principle 2: Enable internal users to do their own testing 

Relevant Research Thread(s): Democratic Legitimacy (Maintenance), 
Explainability 

Secondary Category (if applicable): General Technical Principles 
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Non-ANN Machine Learning 
Applicability: 

Full 

 

The design of almost any ANN should allow for internal users to do their own 

testing and analysis. For example, these users should be able to enter fake data to help 

them get a better understanding of what the system is capable of and to spot potential 

design flaws. Even if internal users aren’t computer scientists, they’re likely to be 

subject matter experts and may be able to detect problems that would be otherwise 

missed.  

Beyond simple testing, complex analytical suites are also available such as 

Stanford’s open-source neural network verification project. (SyncedReview 2019) Such 

analytic suites are essential to help internal users grasp if an ANN is behaving as it 

should be even before external experts or consultants are hired to review it. 

Principle 3: Create a model fact sheet for all internal users 

Relevant Research Thread(s): Democratic Legitimacy (Transparency, 
Accountability), Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

 

A model fact sheet is a standardized, relatively non-technical outline of the 

capabilities and limitations of a given ANN. Depending on the use case, the precise 

content can vary greatly. (Brajer, et al. 2019) provide an example of a model fact sheet 

in the case of healthcare delivery. Regardless of the use case, such a fact sheet should 
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allow non-expert internal users to both understand how a model works and to have 

model-to-model comparisons. 

Principle 4: Internal user acceptance of False Positives and False Negatives are not always 
equivalent 

Relevant Research Thread(s): Democratic Legitimacy(Accountability), 
Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 Depending on the use case, internal users may be more or less receptive to false 

positives versus false negatives. In other words, there can be a significant difference 

between stating that a wrong answer is right versus stating that a right answer is wrong. 

This is entirely dependent upon the use case, however. For example, consider the case 

of an image classification system designed to track poachers. For those internal users 

assigned to understand what the system is saying, there is a significant difference in 

user acceptability between showing too many false positives (that is, showing that 

poaching was occurring when it actually wasn’t) and false negatives (showing that 

poaching was not occurring when it actually was). Even though the raw accuracy may be 

the same regardless of whether the wrong answers are false positives or false negatives, 

the internal users in this hypothetical case are much more likely to be willing to get false 

positives rather than false negatives: better to sift through the false positives to find the 

real cases of poaching rather than miss actual cases of poaching entirely (within reason). 
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Principle 5: Determine what information should and should not be provided for external 
users 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Transparency), Explainability, Privacy, 
Robustness 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 When external users utilize a machine learning system, what those users are told 

about the decisions the system makes are of great importance. Indeed, there is no one 

right answer for the correct amount of information. The act of choosing which 

information to reveal is a difficult balancing act. On the one hand, there is the need to 

provide external users with accountability and transparency from public agencies. On 

the other hand, several competing factors may suggest less information be revealed: 

- Issues of trade secrecy from the vendor (see Vendor Principles #1) 

- The necessity to protect the machine learning system from adversarial attacks (see 

Optimization Principle #4) 

Principle 6: Determine if special redress procedures are needed for external users 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Deliberation), Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 As with many principles here, there is no singular answer as to whether external 

users should be granted what I call special redress procedures, or in other words, a 
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particular procedure that external users can follow when they believe they have been 

wrongly treated by the machine learning system’s determination. Current research on 

the subject varies in its conclusions between this simply being a necessary internal 

question for a public agency to consider (Shrum, et al. 2019, 20-21) to this being a 

mandatory prerequisite for any machine learning system in a public agency. (Reisman, 

et al. 2018) Some of the following questions may help to determine if such procedures 

are necessary: 

Question 1: What is the overall importance of the determination? Does it have 
substantial reputational or financial implications? 

Question 2: Does the system have significant PII as its input? 

Question 3: How likely is it that the machine learning system’s data that it has on an 
individual is flawed in some way? 
 

Principle 7: The “nudging” of external users by machine learnings systems should be 
carefully assessed 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Autonomy), Explainability 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 The concept of “nudging” is usually thought to have originated from (Sunstein 

2015). While it can be applied to any public administration system (AI or otherwise), 

nudging in the realm of machine learning systems can be particularly complex to deal 

with. As (Shrum, et al. 2019, 21) puts it, “[w]ith AI systems, a group of individuals can be 

provided certain information as a result of being identified by an AI system and 
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“nudged” to behave in a certain way or to believe certain things while other individuals 

are either not “nudged” or are “nudged” in a different direction”. It is easy to take this a 

step further and imagine such systems being used for potentially discriminatory 

purposes by nudging only a minority group in particular ways. Some follow-on questions 

that arise from this principle include: 

Question 1: Where is the line when nudging-based manipulation occurs? Is there such a 
line? 

Question 2: Are this machine learning system’s external users likely to be particularly 
vulnerable? 

Question 3: Do those responsible for designing the user prompt have a strong incentive 
towards users providing a certain answer? 
 

A-2.4 Optimization Principles 

 The optimization principles below delve more deeply into the interaction effect 

between the six research threads (fairness, explainability, robustness, privacy, 

democratic legitimacy, and accuracy). An interaction effect is defined as a situation 

where optimizing for one element of an ANN (such as fairness) is likely to directly impact 

another element (such as accuracy). 

Principle 1: Constrained optimization inherently trades some level of optimization in one 
research thread in exchange for simultaneously optimizing one or more other research 
threads 

Relevant Research Thread(s): Accuracy, Fairness, Explainability, 
Robustness, Privacy 

Secondary Category (if applicable): General Technical Principles 

Non-ANN Machine Learning 
Applicability: 

None 
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Constrained optimization is where artificial limits are put in place during the 

ANN’s training process to avoid certain “training paths” that might further optimize a 

given research thread because it violates a different research thread. One of the most 

powerful papers on the topic was put out by (Corbett-Davies, et al. 2017), where the 

authors showed that accuracy and fairness can very easily be at odds with one another – 

to reduce racial disparities in a given decision-making system, additional constraints 

were placed when optimizing for maximum accuracy. However, they showed that by 

doing so (and meeting two of their standards for accuracy) the final predictive accuracy 

was lower than it would have been without those constraints. 

The same problem exists with adversarial examples – to make a ANN more 

robust against adversarial examples, the training data is often modified in some form. 

This allows for easy conflict between the two optimizations – if optimizing for bias 

requires one general training path and optimizing for adversarial examples requires 

another general training path, which should be taken? Alternatively, if one or the other 

optimization is applied sequentially, the one that is applied second will be forced to 

work with the training path already set out. 

Principle 2: Different research threads have varying difficulties in assessing optimization 
itself  

Relevant Research Thread(s): Accuracy, Fairness, Explainability, 
Robustness, Privacy 

Secondary Category (if applicable): General Technical Principles 

Non-ANN Machine Learning 
Applicability: 

Partial 
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Some optimization problems are easier than others to assess in terms of how 

optimized they are at a given point. Based on my research, I have ranked them as such 

in terms of difficulty of assessing: 

5. Accuracy 
6. Privacy, Robustness, and Fairness 
7. Explainability 
8. Democratic Legitimacy 

Keep in mind that the rankings above are not related to the difficulty of choosing 

the correct standard. Rather, regardless of if a given standard is correct or not, how 

difficult is/are those standards to assess? Accuracy is clearly the easiest to assess – 

optimizing accuracy is the purest of numerical calculations – how accurately does a 

given ANN make a prediction? Regardless of whether you use F1 Score or not, the math 

is simple, straightforward, and purely quantitative. Next, privacy, robustness, and 

fairness are roughly equal in terms of how difficult they are to assess. On the one hand, 

how optimized they are can be clearly defined quantitatively, just as accuracy can. 

However, at the same time they all lack a universal definition for what precisely should 

be optimized for. As discussed above, there are multiple competing and inconsistent 

standards of how we define fairness. For robustness, should only an absolute 

robustness certification be measured, and for privacy, perhaps federated learning or 

secure enclaves is a better kind of privacy to optimize for than differential privacy. While 

each of these definitions for privacy, robustness, and fairness can be assessed 
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quantitatively, the difficulty in assessing them lies in choosing the correct definition to 

optimize for. 

 Explainability is next, and its problem stems from the lack of easy quantifiability. 

As the literature review above discussed, how explainable is sufficiently explainable and 

how does explainability technique X compare to explainability technique Y? There is no 

simple number that can be used to assess these, no matter which standard of 

explainability is chosen. 

 Finally, democratic legitimacy is the most difficult and subjective research thread 

to “optimize” and assess. There is no mathematical algorithm yet devised that can 

assess democratic legitimacy, and the concept of legitimacy itself is at times only in the 

eyes of the beholder. 

Principle 3: All definitions of fairness cannot be met simultaneously 

Relevant Research Thread(s): Fairness 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

None 

 

No matter how the concept of fairness and bias is defined, all competing 

definitions for fairness cannot be achieved simultaneously. (Wadsworth, Vera and Piech 

2018) Therefore, a public agency will inevitably have to pick and choose a definition (or 

a subset of different but compatible and overlapping definitions) that that agency will 

use for determining fairness. While this will inevitably be imperfect and some will not be 
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happy with any definition, making the process public and transparent should help to 

meet the requirements of democratic legitimacy. Some of the discrimination-related 

questions provided by (Shrum, et al. 2019, 20-21) are particularly relevant when making 

these assessments: 

Question 1: How can AI systems be tested before they are employed to ensure that they 
will not discriminate among individuals in ways that have traditionally been prohibited or 
to determine if they are discriminating among individuals in unanticipated ways? 

Question 2: What redress or grievance procedures should be available to individuals who 
believe they have been unfairly treated as a result of an AI system? 
 

Principle 4: The relationship between democratic legitimacy and robustness/privacy 
should be determined by a case-by-case analysis  

Relevant Research Thread(s): Democratic Legitimacy (all), Robustness, 
Privacy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

 

As a corollary to the preceding principle, robustness and privacy may have a 

negative relationship with democratic legitimacy. This is unlike fairness, accuracy, or 

explainability, where an increase in any of those three should always increase 

democratic legitimacy. However, optimizing for privacy and/or robustness may 

paradoxically end up harming democratic legitimacy. This comes into play most 

prominently when issues of transparency and public deliberation are at stake. On the 

one hand, optimizing for differential privacy and robustness would suggest minimizing 

how much information is provided about how a given ANN was trained or created. 
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However, doing so would harm democratic legitimacy by minimizing deliberation and 

reducing transparency (and thus potentially constitutional protections). 

Principle 5: De-anonymization techniques exist even when individual data has been made 
theoretically private 

Relevant Research Thread(s): Democratic Legitimacy (Transparency, 
SDP), Privacy 

Secondary Category (if applicable): N/A 

Non-ANN Machine Learning 
Applicability: 

Partial 

 

 De-anonymization techniques are those which involve taking anonymized data 

and then determining the identity of the anonymous individuals with the help of 

external, oftentimes public datasets. What this means is that anytime personally 

identifiable information is being actively used when training a machine learning system, 

this poses a potential issue in case the data is reidentified later on. While all public 

agencies should seek for some level of transparency with the general public, this 

potential issue of anonymized data being reidentified makes it that much more 

complicated to determine how much transparency should be provided. The balancing 

act, then, between privacy and transparency becomes the essential issue. Some 

questions that arise from this tension include: 

Question 1: How should we calculate reidentification risk? Which standard of privacy is 
sufficient in which use cases? 

Question 2: Are there some fields of data which should be automatically removed simply 
because they are too dangerous to have be reidentified? 
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A-2.5 Vendor Principles 

 The vendor is the key middleman that often exists for advanced software 

solutions in public agencies. Public agencies rarely have the resources to have their own 

expert internal data science team that can create these systems. Because of that, public 

agencies will often have a contract with a private firm that manages the software’s 

development and deployment. However, with usage of a private vendor come with new 

issues that must be deal with 

Principle 1: Vendor claims to extensive trade secrecy should be treated with caution 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Transparency, Maintainability, SDP), 
Explainability, Privacy 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 There is significant evidence that one of the biggest tensions during ANN 

development is the tension between a vendor’s trade secrecy and the relevant research 

threads noted above. On the one hand, trade secrecy has inherent value to any free 

market society. However, in the case of ANNs that secrecy has a particularly high cost. 

There can be no transparency (and thus no explainability or interpretability) without at 

least some members of the public being aware of how the ANN functions in the first 

place, which is prevented with trade secrecy. What’s more, accountability is intrinsically 

limited as well. Even individual privacy can be harmed since it can be more difficult to 

categorically confirm how the public’s data is being used.  
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Principle 2: Capabilities for maintenance should be transferrable 

Relevant Research Thread(s): Democratic Legitimacy (Maintenance) 

Secondary Category (if applicable): Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 This principle derives directly from maintainability – if the ANN is controlled by 

an external vendor, there may come a day when that vendor is no longer wanted or 

needed. The public agency may develop the capabilities to internally manage the ANN, a 

vendor may go out of business, or a new vendor which has lower prices may be sought 

after some period of time. Regardless of the reason, the ANN should be able to be 

transferrable from one firm to another, lest a public agency become permanently stuck 

and reliant upon a single vendor for a critical system. 

Principle 3: Data provenance should be maintained as metadata 

Relevant Research Thread(s): Democratic Legitimacy (Transparency, 
Accountability), Explainability 

Secondary Category (if applicable): General Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 ANNs can have data arrive from a wide array of sources. That data can be split, 

rearranged, transformed, merged, reconstructed, and extrapolated from multiple times 

from initial data ingest to training. The determination of where this data came from, 

whether it’s accurate, and how it’s used are questions of significant importance when 

public agencies implement machine learning systems. (Shrum, et al. 2019, 19) Indeed, 
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maintaining specific and precise logs for where this data comes from and how it has 

been transformed since then becomes extremely important. Interpretation of the 

output of an ANN requires to some degree the ability to determine where the data 

came from and how valid that data is. Likewise, external reviewers require data 

provenance to ensure public agency accountability. 

Principle 4: Determine which external entities should be provided what level of data as a 
part of the vendor contract 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Transparency) 

Secondary Category (if applicable): General Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 

 

 Building on Public Agency Managers Principle #4 and Vendor Principle #1, 

attempting to add stakeholders after contracting with the vendor can be difficult due to 

issues of trade secrecy and contract requirements. Because of this, the stakeholders 

should be defined early and specifying what kinds of data those stakeholders should be 

granted throughout development and implementation. These entities may include 

external model auditing groups, non-governmental “good governance” organizations, 

and the public in general, among others. 

Principle 5: Evaluation of vendor systems can require extensive internal expertise 

Relevant Research Thread(s): Democratic Legitimacy (Accountability, 
Transparency, Deliberation, SDP) 

Secondary Category (if applicable): General Public Agency Manager Principles 

Non-ANN Machine Learning 
Applicability: 

Full 
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 Simply because someone is a public agency manager or a procurement specialist 

does not make them inherently qualified to determine which vendor system should be 

purchased. Even though these principles are designed to help with those 

determinations, the decision may require significant subject matter expertise beyond 

these principles. Therefore, it’s important to consider what experiences and expertise 

are required when evaluating a machine learning system before it is used. (Shrum, et al. 

2019, 20-21) 
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Appendix B: An Example Artificial Neural Network in Public Policy 
 
 
 

The purpose of this section is two-fold. First, it will walk the reader through the 

general process of creating an ANN at an abstract level. Second, it will provide a 

valuable, usable ANN to help understand and apply the principles noted in Section 6.6. 

The model produced here is referred to frequently in that section as the “DOHA model”. 

For a deeper inspection of the code used to produce the model, you can view the 

associated GitHub repository.10 Within this section, I will loosely follow the development 

stages outlined in Section 6.5.16, although all cannot be realistically achieved in a 

hypothetical case. 

1. Problem Formulation 
2. Vendor Negotiations 
3. Data Extraction & Acquisition 
4. Data Pre-Processing 
5. Modeling, Testing, and Validation 
6. Deploy, Monitor, and Reassess 

B.1 Problem Formulation 

 Since this is a hypothetical example, I could draw upon almost any relevant data 

source and situation. The source I chose is generally well-known to those working in 

public policy: that of security clearances. I wanted to answer a simple question: is it 

 
10 https://github.com/Starstorm/Dissertation 
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possible to develop an ANN that could predict whether someone should be granted a 

security clearance based on the textual content of their clearance case summary? 

People working for the federal government often need security clearances for a 

wide variety of jobs in federal agencies. Among them, the largest federal agency with 

cleared employees is the Department of Defense (DoD). When DoD contractors have 

their security clearance applications rejected initially, they can appeal that decision 

through the Defense Office of Hearings and Appeals (DOHA). 

 The potential uses for this model are straightforward. Rather than attempting to 

replace administrative judges in DOHA, this model could be used for quality assurance 

purposes: if the model’s accuracy is high enough, in theory it could be used as another 

“check” alongside an administrative judge’s decision. For example, if the administrative 

judge says “clearance should be granted” but the ANN says “clearance should not be 

granted”, this might theoretically cause an additional layer of review for the case. 

 Critically, this should not be seen an endorsement of using such a model for this 

situation. Indeed, that is the purpose of the analytical framework in Section 6.6: to help 

determine not only how to best implement such a model, but also to answer the more 

fundamental question of whether or not it’s even appropriate for an ML model to be 

built in the first place or whether the problems with developing and implementing the 

model are simply too great to mitigate. 
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B.2 Vendor Negotiations 

 Since this is a hypothetical example, there is no vendor to negotiate with. 

B.3 Data Extraction and Acquisition 

When an individual appeals their initial acceptance or rejection of a security 

clearance, DOHA kindly places all of their (anonymized) clearance case summaries going 

back to 1998 online, albeit not in spreadsheet format; web scraping was required to 

obtain the cases from their website and organize them in a table. The ANN was initially 

trained from about 5,000 of these clearance case summaries. This does not include all 

the clearance case summaries from the DOHA website, however – some of them were 

unable to be properly scraped, others did not have a decision clearly marked, and still 

more were actually second-layer appeals, which were excluded. The ground truth for 

this dataset will be the actual decisions by DOHA’s administrative judges on whether the 

security clearance should be granted or not. 

B.3.1 Example Input Data 

 Below is an example of one of the input’s (from the roughly 5,000 in the 

dataset). It is an anonymized clearance case summary. Only the Statement of the Case 

and Findings of Fact were included. Note that formatting (such as spaces and newline 

characters) may be distorted from the original text: 
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96-0522.h1 
December 31, 1996 
____________________________________ 
In Re: 
SSN: 
Applicant for Security Clearance 
____________________________________ 
ISCR OSD Case No. 96-0522 
DECISION OF ADMINISTRATIVE JUDGE 
MICHAEL KIRKPATRICK 
Appearances 
FOR THE GOVERNMENT 
Earl C Hill, Jr., Esq. 
Department Counsel 
FOR THE APPLICANT 
Pro Se 
STATEMENT OF THE CASE 
On July 30, 1996, the Defense Office of Hearings and Appeals (DOHA), pursuant to Executive 
Order 10865 and Department of Defense Directive 5220.6 
(Directive), dated January 2, 1992, issued the attached Statement of Reasons (SOR) to                                        
(Applicant), which detailed reasons why DOHA 
could not make the preliminary affirmative finding under the Directive that it is clearly 
consistent with the national interest to grant or continue a security 
clearance for the Applicant, and which recommended referral to an Administrative Judge to 
determine whether clearance should be denied or revoked. 
Applicant responded to the SOR in writing on August 3, 1996, and in his Answer he elected to 
have the case determined on a written record in lieu of a hearing. 
Department Counsel submitted the Government's File of Relevant Material (FORM) to Applicant 
on September 25, 1996. The Government submitted seven 
items in support of its contentions. Applicant was instructed to submit information in rebuttal, 
extenuation or mitigation within 30 days of receipt. The date on 
which Applicant received the FORM cannot be determined from the file, but he submitted 
additional material for consideration on October 25, 1996. On 
November 20, 1996, Department Counsel submitted his written objections to the Applicant's 
additional material. Nevertheless, the undersigned Administrative 
Judge has overruled Department Counsel's objections and considered Applicant's additional 
material submitted on October 25, 1996. 
The case was assigned to the undersigned Administrative Judge on November 25, 1996. 
FINDINGS OF FACT. 
In his Answer to the SOR, Applicant admitted the material facts alleged in SOR subparagraphs 
1.a., 1.b., 1.c., and 1.d., and those admissions are hereby 
incorporated herein as findings of fact. The following additional findings of fact are entered as to 
each paragraph and subparagraph in the SOR: 
Applicant is 34 years old, and he is employed as a ----------------------------- by a defense contractor. 
A secret-level Department of Defense security clearance is 
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required in order for him to perform his assigned duties. 
Paragraph 1 (Criterion H - Drug Involvement).  The Government alleges that Applicant is 
ineligible for clearance because he has used marijuana and cocaine. 
Applicant first smoked marijuana in 1978, when he was in high school. From 1980 to 1984, when 
he was in college, Applicant smoked marijuana from two to 
three times per month, on the average, although there was periods of up to four or five months 
when he abstained from smoking marijuana. (Items 3, 4, and 5.) 
During this period of time, Applicant purchased marijuana once or twice, paying less than 
$20.00 for an eighth of an ounce of marijuana on each occasion. 
(Items 3, 4, and 5.) His motivation for smoking marijuana was "enjoyment and recreation." (Item 
5.) 
In March of 1983, on Applicant's 21st birthday, he snorted cocaine. He does not intend to use 
cocaine again. (Items 3, 4, and 5.) 
On June 13, 1985, Applicant signed and submitted a Personnel Security Questionnaire (PSQ) as 
part of an employment and security clearance application 
process, certifying that his answers were true and complete and accurate. In that PSQ, Applicant 
stated that his desire and his opportunity to smoke marijuana 
had "dropped, though not disappeared." (Item 4.) 
In his signed, sworn statement dated January 2, 1986, Applicant stated, "I have no intention of 
any future use of marijuana as it is not part of my current 
lifestyle." (Item 5.) 
Nevertheless, Applicant did smoke marijuana during the period from December of 1989 to  
January 15, 1996. His frequency of use was two or three times per 
week, on the average, although there were periods of two to three months at a time when he 
did not use marijuana, and even one period of nine months when he 
did not smoke marijuana. (Items 3, 6, and 7.) He last smoked marijuana on January 15, 1996, 
celebrating his "good fortune" in being offered a job with a 
defense contractor. (Items 3, 6, and 7.) During the period from approximately 1989 to January of 
1996, Applicant purchased marijuana approximately ten to 
twenty times, paying from $25.00 to $50.00 per occasion to purchase an eighth of an ounce. 
(Item 7.) 
Applicant arranged and paid for drug screening tests on nine separate dates during a three 
month period from February 26, 1996  to May 29, 1996, and the 
results of those tests were negative. (Item 3.) He also arranged and paid for a drug screening 
test on September 17, 1996, and the results of that test were 
negative. (Additional Material submitted by Applicant in response to the FORM.) 
Applicant's intention is not to smoke marijuana "at least through (his) period of employment 
with (a defense contractor) and/or the duration of (his) need to 
hold a security clearance." (Item 7.) Applicant states that "marijuana is still in (his) environment 
because (he) continues to associate with musicians and other 
performers about twice a week ..." (Item 7.) 
Mitigation. 
Applicant's use of illegal drugs has not resulted in any arrests or in any financial problems. He 
has never trafficked in, sold, distributed, manufactured, or grown 
any illegal drugs. (Item 7.) 
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Applicant graduated in the top ten percent of his high school class, and he graduated from 
college. (Items 3, 4, and 6.) 
Applicant arranged and paid for drug screening tests on nine separate dates during a three 
month period from February 26, 1996  to May 29, 1996, and the 
results of those tests were negative. (Item 3.) He also arranged and paid for a drug screening 
test on September 17, 1996, and the results of that test were 
negative. (Additional Material submitted by Applicant in response to the FORM.) 
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B.3.1 Advantages of the Dataset 

This dataset has several inherent advantages to it that make it a good potential 

choice to use as an example: 

- The dataset is (from what I could find) completely unused by other scholars in the 

field. This freshness will allow for original research that has not been previously 

covered.  

- The dataset is based on raw text. While machine learning techniques have long dealt 

with numerical or categorical data, neural networks have shown great promise in 

the field of textual analysis. 

- The data set has genuine public policy relevance – handling the approval or denial of 

security clearances is a critical task for the federal government to manage. False 

positives (providing clearances to those who should be denied) is a substantial 

national security risk, and false negatives (denying those clearances which should be 

granted) can potentially ruin the careers of dedicated civil servants. 

- My baseline neural network will utilize Google’s Word2Vec model for converting the 

textual data into machine-readable numerical information. Word2Vec and models 

like it have become frequent tools for analyzing textual data with neural networks 

due to their ability to mathematically describe the relationship between words. 

At the same time, the dataset and situation has one key disadvantage: in general 

(although not entirely), the DoD is focused on issues abroad rather than domestically. 
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Thus, most ML models developed by DoD would be outside the scope of this study (see 

Section 1.6). A perfect test case for this study would be from an organization with an 

entirely domestic focus. Nevertheless, since the impact of these security clearance 

decisions is directly on American citizens that are often employed domestically, I believe 

that this issue is at least partially mitigated. 

B.4 Data Pre-Processing 

The data required substantial pre-processing prior to use. After extracting the 

raw data from the DOHA website, I needed to parse out only the most vital information. 

In particular, not all sections from each clearance case summary were included. I did not 

want to include the subjective determinations of the judges themselves; this would 

allow the model to “cheat” more easily. Rather, I only provided the model with the 

“objective” sections from each clearance case summary – namely, the sections entitled 

“Statement of the Case” and “Findings of Fact”. Additionally, I deleted any phrases 

similar to “clearance is granted” or “clearance is denied” to prevent the model from 

unfairly using such statements to make a circular determination (i.e. clearance predicted 

to be granted because it says “clearance is granted”). I also worked to extract the 

applicant’s gender from each application for later analysis, as well as the decision itself, 

which weren’t always clear from the text. 
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B.5 Modeling, Testing, and Validation 

 The model I chose was a Convolutional Neural Network (CNN). While CNNs are 

most often used for image data, they have also been shown to be successful for textual 

analysis as well. Recurrent Neural Networks (RNNs) or their cousin Long Short Term 

Memory neural networks (LSTMs) are generally more common for use with most kinds 

of natural language processing (NLP) tasks. The difference between RNNs and CNNs is 

that “[a]n RNN is trained to recognize patterns across time, while a CNN learns to 

recognize patterns across space” (Ghelani 2019). While this “space” is commonly 

associate with image data, there is no reason why it can’t work with textual data as well. 

 Once I knew I was going to use a CNN, the next step was to design the specific 

architecture and layers of the model. As (a) this is not a computer science dissertation, 

(b) this is a fairly basic and straightforward sentence/document classification problem, 

and (c) I do not claim the same level of expertise as a computer science PhD at 

constructing such models, I simply used an architecture based off of an extremely well-

known (if older) model from previous scholarly literature (Kim 2014) (Kekic 2018). I 

make no claim that this is the ideal architecture to use, or that there are no superior 

architectures out there. The technical specifics of my implementation of the model can 

be seen on my associated GitHub project. TensorFlow (the Python software library used 

to create and train the model) produced the following summary of the model’s 

structure: 
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Figure 17 - TensorFlow Model Summary 

B.5.1 Results of the Model 

 With about 4,000 examples to train on and about 1,000 examples to test on, the 

model achieved a high accuracy of about 97.5% on the test data during validation. More 

specifically, the following confusion matrix was created based on 1,002 elements of test 

data: 

Table 21 - Confusion Matrix 

Confusion Matrix 

 Predicted TRUE Predicted FALSE 

Actually TRUE 315 (True Positive) 14 (False Negative) 

Actually FALSE 11 (False Positive) 662 (True Negative) 
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With the confusion matrix in hand (see Section 4.1 above), recall, precision, F1 Score, 

markedness, and informedness can all be calculated: 

Recall: 0.957 
Precision: 0.966 
F1 Score: 0.962 
Informedness: 0.9411 
Markedness: 0.946 

From these statistics, we can see that no matter which kind of accuracy 

measurement is used, they all say the same thing: this is an accurate predictive model. 

B.5.2 Additional Validation: Testing Other Models 

 In addition to the CNN, I also tested four other ML algorithms to see if the CNN’s 

results were unique or if these other models could achieve the same results. Each of 

these other models were cross-validated five times; in other words, the models were 

each created five separate times with different data points randomly put into the 

training dataset and the testing dataset each time. This helped to ensure a more robust 

model, since it is not dependent on some “lucky” data points getting into the training 

dataset. The four models included: support vector machines, random forests, logistic 

regression, and multinomial naïve bayes. The accuracy of the other four models’ results 

is below (LinearSVC refers to the SVM): 



314 
 

  

Figure 18 - Comparison to Other ML Models 

While the SVM approached the ANN in accuracy (SVMs are often thought to 

have near-ANN levels of predictive accuracy at many tasks), the other three models 

clearly did not approach the same level of predictive accuracy. However, they all 

showed themselves to be relatively robust during cross-validation. 

B.5.3 Conclusions from Testing and Validation 

 At first glance, the CNN model achieves an extremely high level of accuracy and 

it surpasses a variety of other ML algorithms thrown at the same problem. However, 

this does not imply that there are no problems to applying such a model in a public 
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policy setting. Section 6.6 will delve into the kinds of questions that should arise when 

attempting to implement such a model. 

B.6 Deploy, Monitor, and Reassess 

 Since this example is not actually being applied in the real world, there is little to 

add in this section. 
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Appendix C: Interviewees 
 
 
 
 The following individuals were interviewed and provided peer reviews to 

complete Stage Four of this dissertation: 

Elizabeth Bondi, PhD Candidate, Harvard University 

 

Robert Brauneis, Professor of Law, George Washington University 

 

Aziz Huq, Frank and Bernice J. Greenberg Professor of Law, University of Chicago 

 

Dr. Daniel Greene, Assistant Professor, University of Maryland 

 

Dr. Gregory Hager, Mandell Bellmore Professor of Computer Science, Johns Hopkins 
University 
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