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Abstract

COMPUTATIONAL METHODS FOR IDEAL MAGNETOHYDRODYNAMICS

Andrew D. Kercher, PhD

George Mason University, 2014

Dissertation Director: Dr. Robert Weigel

Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for

modeling space weather and astrophysical flows. They are designed to resolve the different

waves that propagate through a magnetohydro fluid, namely, the fast, Alfvén, slow, and

entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on

the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-

regular waves no longer exist only after heavy grid refinement. A method is described for

obtaining solutions for coplanar and near coplanar cases that consist of only regular waves,

independent of grid refinement. The method, referred to as Compound Wave Modification

(CWM), involves removing the flux associated with non-regular structures and can be used

for simulations in two- and three-dimensions because it does not require explicitly tracking

an Alfvén wave. For a near coplanar case, and for grids with 213 points or less, we find

root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar

case, in which non-regular structures will exist at all levels of grid refinement for standard

FV schemes, the RMSE is as much as 25 times smaller.

A multidimensional ideal MHD code has been implemented for simulations on graphics

processing units (GPUs). Performance measurements were conducted for both the NVIDIA



GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to

two orders of magnitude greater than the CPU when using a single core, and two to three

times greater than when run in parallel with OpenMP. Performance comparisons are made

for two methods of storing data on the GPU. The first approach stores data as an Array of

Structures (AoS), e.g., a point coordinate array of size 3 × n is iterated over. The second

approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n

are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory

efficiency. All results are given for Cartesian grids, but the algorithms are implemented for

a general geometry on a unstructured grids.



Chapter 1: Introduction

The formation of compound waves in numerical solutions of the ideal magnetohydrody-

namics (MHD) equations is studied using dissipative finite volume schemes. Numerical

solutions containing compound waves were encountered during the development of a finite

volume (FV) flux corrected transport (FCT) solver for ideal MHD capable of running on

a GPU. The FV-FCT code was used to determine the benefits and limitations of GPU

parallelism. Chapter 5 contains original results on GPU efficiency. The first four chapters

of this dissertation address compound wave solutions to Riemann problems of ideal MHD.

A Riemann problem is a one-dimensional initial value problem for a conservative system

in which a single discontinuity separates two constant states. Riemann problems play an im-

portant role in fluid simulations; numerical algorithms in both computational fluid dynamics

(CFD) and computational MHD use linear approximations of local Riemann problems for

the computation of numerical fluxes [5, 30]. A Riemann problem is properly defined, and so-

lutions for different conservative systems are discussed in Chapter 2. Solutions of Riemann

problems are composed of multiple waves that emanate away from a discontinuity. Exact

and approximate solutions for the Euler equations of hydrodynamics (HD) are presented.

The exact solutions were obtained with a nonlinear solver for HD Euler equations, that was

developed for this thesis.

The equations of ideal MHD is the final conservative system discussed in Chapter 2. The

ideal MHD equations are more complex than the Euler equations of hydrodynamics. As a

result, the number of possible structures is greater. In addition, the system of equations

is non-strictly hyperbolic, which makes non-regular structures such as intermediate shocks

and compound waves possible.

A solution is only considered physical if it satisfies entropy and evolutionary conditions

[21]. The entropy is pg/ρ
γ , where pg is the gas pressure, ρ is the density, and γ is the ratio
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of specific heats. The entropy condition states that the change in entropy across a shock is

zero or larger. The evolutionary condition requires a shock to be structurally stable under

small perturbations [21]. In hydrodynamics, the entropy and evolutionary conditions are

equivalent.

In the past, intermediate shocks in ideal MHD have been considered unphysical because

they are structurally unstable under small perturbations [22]. In recent years, their physi-

cality has been reconsidered. Observations of heliospheric plasma and numerical simulations

of bow shocks have provided evidence for their existence. Feng and Wang [17] reported that

a discontinuity observed by Voyager 2 in January 1979 was an intermediate shock. Chao

et al. [7] identified an intermediate shock in Voyager 1 measurements in 1980. Intermediate

shocks have been observed in numerical simulations of bow shocks in both two- and three-

dimensions [11, 12]. They were first observed in numerical simulations by Brio and Wu

[5] whose results have been used extensively as a reference for numerical solutions of the

ideal MHD equations. The classification systems for intermediate, and normal Lax shocks

is given in Chapter 2.

Chapter 3 presents the exact and approximate solution to Riemann problems of ideal

MHD. An nonlinear solver for ideal MHD non-linear Riemann solver, that is based on the

method described by Dai and Woodward [9] with the rarefaction wave extension by Ryu

and Jones [30], was implemented to provide the exact solution. The nonlinear solver is also

used to create original benchmarks for ideal MHD model development.

Chapter 3 also discusses non-uniform convergence exhibited by dissipative FV schemes.

Torrilhon [38] computed the convergence rates for various implementations of the finite vol-

ume method on one-dimensional Riemann problems with non-unique solutions. All imple-

mentations exhibited non-uniform convergence with respect to grid resolution. The schemes

produced solutions that converged toward the non-regular solution until a certain level of

grid refinement, at which point convergence was to the regular solution. This behavior was

referred to as pseudo-convergence, and numerical diffusion was identified as the cause. For

the coplanar case, in which the rotation angle is 180◦, we argue that convergence to the
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non-regular solution is expected to always occur, independent of grid resolution, because

the transverse velocity and magnetic field are restricted to a single plane.

Because grids with more than 104 points are needed to obtain L1 errors on the order of

10−2, Torrhilon [38] suggested using adaptive mesh refinement (AMR) to reduce the com-

putational costs. AMR can be a powerful computational tool but is complex to implement,

and for structured grids, it introduces non-conformity.

In Chapter 4, we present an alternative method for error reduction, Compound Wave

Modification (CWM), that requires modifying the flux from the finite volume approxima-

tion. The modification is done to the Harden-Lax-van Leer-Discontinuities (HLLD) [25]

approximate Riemann solver implemented in the Athena MHD code [34, 32]. The CWM

solutions are compared with one-dimensional exact solutions for a near-coplanar case and

the coplanar case. Chapter 4 is almost entirely original work. In Chapter 5, the focus of the

dissertation shifts to high performance computing with graphics processing units (GPUs).

Numerical solutions for problems in ideal MHD can be computationally expensive to

obtain. Most large-scale simulations require some sort of parallelism, where data is processed

simultaneously. Parallelism occurs in two ways: distributed-, and shared-memory. When

parallelism is done by way of distributed-memory, the domain is partitioned geometrically

and each subset is send to a separate processor where the solution is updated. The process

is known as domain decomposition. After each update, the processors must communicate

with one another to update the solution at the boundaries between sub-domains. This is

done by assigning one processor as the master that handles communication. After each

update of the solution, the processors exchange information with the master to ensure the

boundaries of each sub-domain are updated appropriately.

Shared memory parallelism refers to simultaneous computation on a single processing

unit, either CPU or GPU. The standard approach is to invoke multiple threads on the CPU,

each thread performing the same computations and updating the solution independently.

Shared memory parallelism does not suffer the overhead costs of communication between

processor, but great must be taken to ensure that two or more threads do not attempt
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to access the same portion of memory simultaneously. This issue is known as memory

contention and it introduces errors into the computation. The GPU offers an alternative

option to the CPU for a shared memory device. The GPU is capable of exceeding the

computational power of a CPU by an order of magnitude. The theoretical peak performance

in floating-point operations per second (FLOPS) of the NVIDIA GeForce GTX Titan is 4500

GFLOPS for single percision, for the Xeon E5645 @ 2.4 GHz is 460 GFLOPS per sec for

single precision. The computational potential of the GPU is superior to the CPU, however,

in order to take advantage of this, the data must be transferred from the host (CPU) to

the device (GPU) and back to the host where it can be written to the drive. We expect to

see the increased performance gains from running on the GPU as the number of operations,

e.g., addition, subtraction, etc., increase.

Chapter 5 studies the performance of the two parallel shared memory processors men-

tioned above, namely the CPU and GPU. A multidimensional fluid solver capable of solv-

ing the Euler equations of hydrodynamics and the ideal MHD equations has been written

for this dissertation and is available for download at: https://github.com/akercher/

dissertation. The Trust [19] library has been utilized to implement shared memory par-

allelism. Thrust is a C++parallel template library. It supports four device backends: com-

pute unified device architecture (CUDA), OpenMP (OMP), thread building blocks (TBB),

and the standard C++device for serial runs. The CUDA backend utilizes the GPU, while

the OMP and TBB backends utilize multi-core processing on the CPU. The GPU is found

to outperform the CPU running one core by one to two orders of magnitude and by two

to three times when OMP is enabled. Chapter 5 demonstrates efficient memory access for

the GPU by considering two approaches to data storage, array of structures (AoS) and

structure of arrays (SoA). The SoA approach is shown to improve performance by one and

a half to two times depending on the algorithm used.
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Chapter 2: Riemann problems and conservative systems

In this chapter we define a Riemann problem and show that the solution consists of one

or more waves emanating from the initial discontinuity. The structure, i.e., the different

waves and their properties, of the solution is introduced via linear advection and is then

more thoroughly developed by solving select Riemann problems for linear and nonlinear

systems. The first nonlinear system discussed is the one-dimensional Euler equations of

hydrodynamics. A method for obtaining the exact solution, as well as three methods of

approximating the solution are given. The classic shock tube problem of Sod [31] is nu-

merically approximated using routines implemented in Athena MHD code [34, 32]. The

results are compared to the exact solution, obtained with a solver implemented for this

dissertation. The final system discussed in this chapter is ideal MHD. An exact nonlinear

solver and an approximate solver for the equations of ideal MHD are described.

2.1 Formulation

A Riemann problem is a type of initial value problem (IVP) for a conservation law. The

initial conditions for a Riemann problem consist of two constant states separated by a

discontinuity. The initial state, shown in Figure 2.1, is defined as

U0 =


Ul if x < xd,

Ur if x > xd,

(2.1)

where Ul is the initial left state, Ur is the initial right state, and xd is the location of the

discontinuity.
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U0

xxd

initial discontinuity

Ul

Ur

n̂

Figure 2.1: Initial conditions for a one-dimensional Riemann problem. The initial disconti-
nuity at, xd, separates two constant states, Ul and Ur.

Conservation laws are a system of partial differential equations of the form

∂U

∂t
+
∂F

∂x
= 0 ,

where U is a vector of the conservative state variables and F is a vector of fluxes [35].

2.2 Linear advection

The one-dimensional linear advection equation is

∂u

∂t
+ a

∂u

∂x
= 0, (2.2)

where u is the conserved variable, and a is the constant wave velocity. The solution to the

Riemann problem for linear advection with a > 0, initial conditions given by Equation 2.2,

and xd = 0 is

u =


ul if x < at,

ur if x > at.

In the x-t plane, the solution changes from the initial left state, ul, to the initial right
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t

x

x− at = 0

0

ul

ur

Figure 2.2: Solution to the Riemann problem for linear advection in the x-t plane. The
position of the discontinuity is given by the dashed line.

state, ur, across the characteristic line x− at = 0. Across the discontinuity the solution is

given by the Rankine-Hugonoit jump conditions, which express the transition as conserva-

tion across the discontinuity:

Fr − Fl = Si(Ur −Ul), (2.3)

where Si is the speed of a discontinuity connecting two states Ul and Ur. For the linear

advection equation, the jump conditions are

aur − aul = S(ur − ul),

which gives the wave speed S = a. This is the speed defined by the characteristic, x−at = 0.

2.3 Linear systems

Consider the hyperbolic system of n linear equations

∂U

∂t
+ A

∂U

∂x
= 0, (2.4)
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where A is an n × n constant coefficient matrix. If A has n real eigenvalues, λ1, . . . , λn,

and a corresponding set of n linearly independent right eigenvectors, r1, . . . , rn, the system

is called hyperbolic. It is called strictly hyperbolic system if the eigenvalues are distinct.

The hyperbolicity of the systems allows for it to be written in terms of the characteristic

variables, that are the components of W = liU, where li is the matrix of left eigenvectors,

see [35]. In characteristic form, the system is

∂W

∂t
+ Λ

∂W

∂x
= 0, (2.5)

where Λ is a diagonal matrix and i-th entry of the main diagonal is λi. The system has

been transformed to n scalar equations of the form

∂wi
∂t

+ λi
∂wi
∂x

= 0, (2.6)

where the eigenvalues are the characteristic speeds. The system is assumed to be strictly

hyperbolic so that eigenvalues are arranged such that λ1 < . . . < λi < . . . < λn. The solution

to each scalar equation is given in terms of the characteristic variables by the solution to a

linear advection problem with a = λi.

The solution in the x-t plane, for the linear system is shown in Figure 2.3. It is composed

of n waves, each one corresponding to a characteristic speed, propagating away from the

initial discontinuity. Only the state on one side of the wave is needed to determine the

change across it because the speed of a linear wave is independent of the discontinuous

quantity. The speed of the wave is calculated by the quantities in the known state. A

rotational discontinuity is an example of a linear wave in plasma physics. It travels with a

velocity equal to the Alfén velocity, Bn/
√

4πρ, where Bn is the magnitude of the normal

component of the magnetic field, and ρ is the density. Across a rotational discontinuity, Bn,

and ρ are unchanged, and determine the speed, and the jump conditions are then used to

compute the connected state. In this way, every state, connected through multiple waves

can be determined. The complete solution is then given by the superposition of the n waves.
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t

x

λ1

λ2

λi

λn−1

λn

Ul Ur

Figure 2.3: Solution to the Riemann problem for a hyperbolic system of n linear equations
in the x-t plane.

The difference in characteristic variables across each wave is given by αi = li · (Ul−Ur),

and the solution in terms of conservative variables is

U = Ul +

m∑
i=1

αir
i, or U = Ur −

n∑
i=m+1

αir
i,

for λm < x/t < λm+1. As described next section, the states on both sides of a nonlinear

wave are needed to determine the speed. As such, only local knowledge of the solution is

available at a nonlinear discontinuity.

2.4 Nonlinear systems

The results from the previous sections are now extended to nonlinear hyperbolic systems of

the form

∂U

∂t
+
∂F

∂x
= 0, (2.7)
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where U is a vector of conserved variables and F(U) is the flux vector. The system is

called hyperbolic if the Jacobian matrix, J(U) = ∂F/∂U, has n real eigenvalues and a

corresponding set of n linearly independent right eigenvectors. Again the The system is

also assumed to be strictly-hyperbolic so that the eigenvalues can be considered ordered

based on speed. For each of the n eigenvalues there is an associated wave with speed Si. As

with the linear system, the n waves partition the solution into n + 1 states. Each wave in

the linear system travels at a constant speed, λi, and has an associated jump discontinuity.

In the nonlinear systems, the wave speeds are functions of the conservative variables and

the structure of the wave is not always a jump discontinuity.

t

x

S
Ul

Ur

t

x

S
Ul

Ur

t

x

S
Ul

Ur

Figure 2.4: (left) Characteristics on both sides of a shock, (center) linear discontinuity, and
(right) rarefaction (right).

The formation of compression and expansion waves is an distinguishing feature of non-

linear systems. Shock waves are compressive discontinuities that connect two states. The

characteristics of the two states connected by shock wave converge in the x-t planeas shown

in the left panel of Figure 2.4.. The Rankine-Hugonoit jump conditions for a shock wave

are given by Equation 2.3.

Expansion shocks are possible solutions, however, they violate the entropy condition and

are disregarded as unphysical. The entropy is defined, pg/ρ
γ , where pg is the gas pressure,

ρ is the density, and γ is the ratio of specific heats. The entropy condition states that the
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entropy cannot decrease across a shock.

Rarefactions are another nonlinear wave. They connect two states through a smooth

transition. Unlike shocks, they are an expansion wave, and the characteristics of two states

connected by rarefaction wave diverge in the x-t plane, as shown in the right panel of

Figure 2.4.

We adopt the following conventions when discussing to the structure of the solution to

Riemann problems. For a wave propagating with speed S, connecting two constant states,

the upstream state, Uu, is the pre-shock state, i.e., the state of the flow that has not crossed

the shock. The downstream state, Ud, is the post-shock state, i.e., the state of the flow

that has crossed the shock. For the right-going wave shown in Figure 2.1, Ul the upstream

state, and Ur is the downstream state. The difference across a discontinuity is denoted

with square brackets, e.g., [U] = Ud −Uu.

t

x

Sl Sr

Ul

U∗

Ur

Figure 2.5: Solution to a Riemann with one intermediate state in the x-t plane.

When the solution to a Riemann problem is composed of more than one wave, the

state between two waves is called an intermediate state, and is denoted U∗. If the solution

includes more than two waves, then the intermediate states are referenced in relation to the

left-most and right-most state. If n+ 1 states compose the solution, the states downstream
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of Uj are denoted U∗ij , where i = 1, . . . ,m/2, j = l, r, and

m =


n if n is even,

n+ 1 if n is odd.

If n is even, then the middle state is written without a subscript.

2.5 Compressible hydrodynamics

The Euler equations of compressible hydrodynamics comprise a nonlinear hyperbolic system

of conservation laws. The structure of the solution for Riemann problems of compressible

hydrodynamics is presented below. If viscosity and thermal conductivity are neglected, then

the Euler equations describe the evolution of a compressible ideal gas. The equations form

a strictly-hyperbolic system that admit shocks, rarefactions, and linear discontinuities. The

conservative form of the Euler equations is

∂ρ

∂t
+∇ · (ρv) = 0 , (2.8)

∂(ρv)

∂t
+∇ · [ρv ⊗ v + pg] = 0 , (2.9)

∂E

∂t
+∇ · [(E + pg) v] = 0 , (2.10)

where the energy density is defined as

E =
pg

γ − 1
+
ρv2

2
, (2.11)
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v2 = v2
n + v2

t , and the gas constant γ is the ratio of specific heats. The one-dimensional

quasi-linear form of the Euler equations is

∂U

∂t
+ A(U)

∂U

∂x
= 0. (2.12)

The Jacobian of A(U) must have three real and distinct eigenvalues and a set of three

linearly independent right eigenvectors because the system is strictly-hyperbolic. If the

eigenvalues are arranged such that λ1 < λ2 < λ3, then λ1 and λ3 correspond to nonlinear

waves, and λ2 is a linear wave. The nonlinear waves can be either a shock (i.e., discontinuous

wave) or rarefaction (i.e. smooth wave). The linear wave is contact discontinuity (CD)

that carries a carries a single jump in density and satisfies the jump conditions given by

Equation 2.3. The three eigenvalues and their associated waves are:

λ3 = vn + a : rarefaction or shock,

λ2 = vn : contact discontinuity, and

λ1 = vn − a : rarefaction or shock,

where a =
√
γpg/ρ is the speed of sound.

A possible structure of the self-similar solution U(x, t) to the Euler equations is shown

in Figure 2.6. Three waves: a fast shock, a contact discontinuity, and a slow rarefaction,

separate the four constant states: the initial left, left intermediate, right intermediate, and

initial right. The state, U∗lfan, inside the rarefaction wave is not constant. It connects the

states Ul and U∗l through a smooth transition. The characteristic speed at the head of a

rarefaction wave is vnu ± au. At the tail of a rarefaction wave, the characteristic speed is

vnd ± ad. The plus (minus) sign refers to right-going (left-going) waves. The speed of the

contact discontinuity is given by the characteristic speed λ2. The shock speeds are derived

from the Rankine-Hugonoit jump conditions, Equation 2.3. The speeds of a right-going
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Figure 2.6: Possible structure of the solution to a Riemann problem for the Euler equations
the x-t plane. The solution consists of a rarefaction wave to the left of contact discontinuity,
and a shock wave to the right.

shock, Sr, and left-going shock, Sl, are

Sr = vnr + ar

√(
γ + 1

2γ

)(
p∗g
pgr

)
+

(
γ − 1

2γ

)
,

Sl = vnl − al

√(
γ + 1

2γ

)(
p∗g
pgl

)
+

(
γ − 1

2γ

)
,

where p∗g = p∗gl = p∗gr, since the gas pressure is unchanged across a contact discontinuity. The

velocity at the head (tail) of a rarefaction wave is given by the corresponding characteristic

speed in the upstream (downstream) state.

2.5.1 Exact Riemann solver

The solution to a Riemann problem consists of n waves separating n + 1 states, and it is

found by determining the speed of each wave, and the jump associated with each wave.

Solving a Riemann problem for the one-dimensional Euler equations requires determining

two unknown states, U∗l and U∗l , and three wave speeds. The exact solution is calculated

by improving an initial guess for gas pressure in the intermediate states through an iterative
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procedure, e.g., Newton’s method [35]. The iteration is carried out until the jump condition

for the normal velocity at the contact discontinuity, [v∗n] = 0, is satisfied to the desired

accuracy. In practice, this is done by finding the root of the equation

f(p∗g,Ul,Ur) ≡ fr(pgr,Ur) + fl(pgl,Ul) + vnr − vnl = 0 ,

where fr (fl) is a function connecting the initial right (left) state to the intermediate right

(left) state. The normal velocity in the intermediate states (Equation (4.9) of [35]) is

v∗n =
1

2
(vnr + vnl) +

1

2
(fr − fl).

The functions fl and fr depend on the type of wave, i.e. shock or rarefaction. If pressure

increases across the wave, p∗d > pgu, then the wave is a shock, otherwise, the wave is a

rarefaction. The function fj , for j = l and j = r, (Equations (4.6) and (4.7) of [35]) is given

by

fj(pgj ,Uj) =


(p∗g − pgj)

[
2

ρj((γ+1)p∗g+(γ−1)pgl)

] 1
2

if p∗g > pgj ,

2aj
(p∗g−1)

[(
p∗g
pgj

) γ−1
2γ − 1

]
if p∗g ≤ pgj .

where j = l and j = r. The densities ρj for j = l and r, in the left and right intermediate

states are

ρ∗j =


ρj

[
p∗g
pgj

+ γ−1
γ+1

γ−1
γ+1

p∗g
pgj

+1

]
if p∗g > pgj ,

ρj

(
p∗g
pgj

) 1
γ

if p∗g ≤ pgj .
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If the solution contains a rarefaction wave then the states in the fan are needed to complete

the solution. The state in the rarefaction wave is

ρ = ρj

[
2

(γ + 1)
± (γ − 1)

(γ + 1)aj

(
vnj −

x

t

)] 2
γ−1

,

vn =
2

(γ + 1)

[
(γ − 1)

2
vnj ± aj +

x

t

]
,

pg = pgj

[
2

(γ + 1)
± (γ − 1)

(γ + 1)aj

(
vnj −

x

t

)] 2γ
γ−1

,

for j = l and r, and the plus (minus) sign corresponds to a left-going (right-going) wave.
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Figure 2.7: Exact solution to Sod shock tube problem. The head of the rarefaction is located
at x ≈ 0.2, and the tail is at x ≈ 0.45. The contact discontinuity is located at x ≈ 0.72,
and the shock is located x ≈ 0.95.

Shock tube problems in Gas Dynamics are an example of a Riemann problem for the

Euler equations. They are typically used for validation and benchmarking. The problem

consists two fluids are separated by a thin film at x = 0.5. At time t = 0, the film is removed

and the fluids interact. The exact solution to the Sod shock tube problem at time t = 0.25

([31], test 1 in [35]), is shown in Figure 2.7. The initial left state is Ul = (1.0, 0.0, 1.0)

and the initial right state is Ur = (0.125, 0.0, 0.1). The problem was solved using our own
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implementation of the routine exact.f provided in [35]. Convergence is established when

2|pn+1
g − png |

pn+1
g + png

< 10−6, (2.13)

where pg is the gas pressure in the intermediate states and n is the number of iterations.

The solution consists of a left rarefaction, contact discontinuity, and right shock.

Convergence to the exact solution is not guaranteed since obtaining it requires Newton

iteration. In flow simulations, approximate Riemann solvers maintain a similar level of

accuracy as the exact solver, while reducing the computational cost since no iterations are

required. Three different approximate Riemann solvers for the Euler equations are described

in the following sections.

2.5.2 Approximate Riemann solvers

HLLE solver

The Harten-Lax-van Leer-Einfeldt (HLLE) [13] solver assumes a two wave solution with a

single intermediate state, see Figure 2.5. The intermediate state is approximated as the

integral average over the Riemann fan: [xl, xr]× [0, t], i.e. the region between the left and

right wave in Figure 2.5. The integral form of the conservation laws are

∫ xr

xl

U(x, tf )dx−
∫ xr

xl

U(x, 0)dx+

∫ t

0
F(U(xr, t

′))dt′ −
∫ t

0
F(U(xl, t

′))dt′ = 0. (2.14)

Applying (2.14) over [xl, xr]× [0, t], gives the HLLE intermediate state as

U∗ =
SrUr − SlUl + Fr + Fl

Sr − Sl
. (2.15)

The HLLE fluxes

F∗ =
SrFl − SlFr + SrSl(Ul −Ur)

Sr − Sl
, (2.16)
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are found by applying (2.14) over the left ([xl, 0]× [0, t]) or right ([0, xr]× [0, t]) side of the

Riemann fan, and substituting (2.15) into the result (see Appendix A). The HLLE states

are defined by

U(x, t) =


Ul if 0 < Sl,

U∗ if Sl ≤ 0 ≤ Sr,

Ur if Sr < 0.

(2.17)

The HLLE interface fluxes are defined

F(x, t) =


Fl if 0 < Sl,

F∗ if Sl ≤ 0 ≤ Sr,

Fr if Sr < 0.

(2.18)

The method is very robust because it is positivity preserving, ρ > 0, and pg > 0 [14].

However, as described in the next section, the HLLE approximate Riemann solver is diffuse

because it neglects the difference in density across the contact discontinuity. The alternative

approach of Toro et al. [36] restores the contact discontinuity. It is referred to as the HLLC

method, where C stands for Contact.

HLLC solver

The approximate solution of the HLLC solver in the x-t plane is shown in Figure 2.8.

The intermediate states are calculated by approximating the integral over the appropriate

Riemann fan and requiring that the Rankine-Hugoniot jump conditions, v∗nr = v∗nl, v∗tr = v∗tl,

and p∗gr = p∗gl, are satisfied across the contact discontinuity. The intermediate states are
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Figure 2.8: Restoration of the contact discontinuity in the HLLC approximate Riemann
solver.

(Equation (10.33) of [35])

U∗j = ρj

(
Sj − vnj
Sj − v∗n

)


1

vn

vtj

Ej
ρj

+ (Sm − vnj)
[
Sm +

pgj
ρj(Sj−vnj)

]


,

where j = l and j = r. The HLLC states are

U(x, t) =



Ul if 0 < Sl,

U∗l if Sl ≤ 0 ≤ Sm,

U∗r if Sm ≤ 0 ≤ Sr,

Ur if Sr < 0.

(2.19)
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The HLLC fluxes can then be derived with the procedure given in Appendix A. They are

F(x, t) =



Fl if 0 < Sl,

F∗l = Fl + Sl(U
∗
l −Ul) if Sl ≤ 0 ≤ Sm,

F∗r = Fr + Sr(U
∗
r −Ur) if Sm ≤ 0 ≤ Sr,

Fr if Sr < 0.

(2.20)

Both the HLLE and HLLC methods depend on the approximations of the fastest (slow-

est) wave speed Sr (SL). Davis [10] used wave speeds of

Sl = min{λ1(Ul), λ1(Ur)}, and Sr = max{λn(Ul), λn(Ur)}, (2.21)

where λ1 (λn) is the smallest (largest) eigenvalue of (2.7). Einfeldt et al. [14] used

Sl = min{λ1(Ul), λ1(URoe)}, and Sr = max{λn(Ur), λn(URoe)}, (2.22)

where λi(URoe) is an eigenvalue of the Roe matrix, see Section 2.5.2.

The middle wave speed, Sm, needs to be approximated in the HLLC solver. Batten

et al. [3] argued that the middle wave speed should be determined using only (2.21) or

(2.22), and the initial states. They gave the speed as

Sm =
(Sr − vnr)ρrvnr − (Sl − vnl)ρlvnl − pgr + pgl

(Sr − vnr)ρr − (Sl − vnl)ρl
. (2.23)

Toro et al. [36] suggested an alternative method of determining the wave speeds by first

estimating the pressure and velocity in the intermediate state according to

Sl = vnl − alql , Sm = v∗n , Sr = vnr − arqr , (2.24)
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where

qj =


1 if p∗g ≤ pgj ,[
1 + γ+1

2γ

(
p∗g
pgj
− 1
)] 1

2
if p∗g > pgj ,

(2.25)

for j = l and j = r.
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Figure 2.9: HLLE (left), and HLLC (right) approximate solutions for a slow moving con-
tact discontinuity. Athena [32] was used to compute the approximate solutions. The ex-
act solution was computed with code written for this dissertation: https://github.com/
akercher/dissertation.

The two-state approximation of the HLLC method is able to resolve an isolated station-

ary CD exactly. In the case of a slow moving CD, the HLLC method is less diffusive than

the HLLE method. This can be demonstrated by considering a Riemann problem for the

Euler equations with initial conditions (test 7 of [35])

(ρl, vnl, pgl) = (1.4, 0.1, 1.0),

(ρr, vnr, pgr) = (1.0, 0.1, 1.0).

(2.26)

The exact solution to (2.26), shown with a solid black line in Figure 2.9, consists of one CD
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moving slowly to the right. The solution approximated with HLLE (HLLC) fluxes is shown

with dotted red lines in the left (right) panel of Figure 2.9. The results were obtained using

a uniform grid of 128 cells and the van Leer (VL) integrator of Stone and Gardiner [33].

The interface states were constructed using piece-constant (i.e. first order) interpolation.

The HLLD approximate Riemann solver of Miyoshi and Kusano [25], see Section 2.6.4, is an

magnetohydrodynamic extension of the HLLC solver that resolves isolated discontinuities

with the same level of accuracy as the HLLC solver..

Roe solver

The Riemann solver of Roe [29] replaces the nonlinear Jacobian in (2.12), A(U), with a

linear approximation, Ã(URoe), where URoe is a matrix of averaged state variables. The

linearized equation

∂U

∂t
+ Ã

∂U

∂x
= 0. (2.27)

of the approximated Riemann problem is then solved exactly. The linearized Jacobian is

constrained to be hyperbolic, consistent with the nonlinear Jacobian of the original problem,

i.e., it must equal the nonlinear Jacobian when the left and right states are equal, and it

must retain conservation across discontinuities. The interface flux is built from the results

of Section 2.3. It is given as

FRoe =
1

2

(
Fl + Fr −

n∑
i=1

α̃i|λ̃i|r̃i
)
, (2.28)
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where α̃i = l̃i · (Ul −Ur) is the wave amplitude, λ̃i is the wave speed, l̃ and r̃ are the left

and right eigenvectors respectively. The so-called Roe-averaged state variables are

ρ̃ =
√
ρlρr,

ṽn =

√
ρlvnl +

√
ρrvnr√

ρl +
√
ρr

,

ṽt =

√
ρlvtl +

√
ρrvtr√

ρl +
√
ρr

,

H̃ =

√
ρlHl +

√
ρrHr√

ρl +
√
ρr

,

ã =

[
(γ − 1)

(
H̃ − ṽ2

2

)] 1
2

,

(2.29)

where ṽ2 = ṽ2
n + ṽ2

t , and Hj = (Ej + pgj)/ρ is the total enthalpy for j = l and j = r. The

eigenvalues of the Roe matrix are

λ̃1 = ṽn − ã, λ̃2 = λ̃3 = λ̃4 = ṽn, λ̃5 = ṽn + ã. (2.30)

The right eigenvectors are the columns of the matrix

R̃ =



1 0 0 1 1

ṽn − ã 0 0 ṽn ṽn + ã

ṽt1 1 0 ṽt1 ṽt1

ṽt2 0 1 ṽt2 ṽt2

H̃ − ṽnã ṽt1 ṽt2
1
2 Ṽ

2 H̃ + ṽnã


. (2.31)
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The left eigenvectors are the rows of the matrix

L̃ =



(
γ1
2 Ṽ

2 + ṽnã
)
/
(
2ã2
)
− (γ1ṽn + ã) /

(
2ã2
)
− (γ1ṽt1) /

(
2ã2
)
− (γ1ṽt2) /

(
2ã2
)

γ1/
(
2ã2
)

−ṽt1 0 1 0 0

−ṽt2 0 0 1 0

1− γ1Ṽ
2/
(
2ã2
)

γ1ṽn/ã
2 γ1ṽt1/ã

2 γ1ṽt2/ã
2 −γ1/ã

2(
γ1
2 Ṽ

2 − ṽnã
)
/
(
2ã2
)
− (γ1ṽn − ã) /

(
2ã2
)
− (γ1ṽt1) /

(
2ã2
)
− (γ1ṽt2) /

(
2ã2
)

γ1/
(
2ã2
)


,

(2.32)

where V 2 = v2
n + v2

t , and γ1 = γ − 1.

Sod shock tube

A common test case for the Euler equations is the shock tube problem of Sod [31]. The

exact solution at time t = 0.25 is shown in Figure 2.7 for initial conditions

(ρl, vnl, pgl) = (1.0, 0, 1.0),

(ρr, vnr, pgr) = (0.125, 0, 0.1).

(2.33)

The solution was approximated with the van Leer (VL) integrator of Stone and Gardiner

[33] on a 128 cell grid. The interface states were constructed using piece-wise constant

interpolation. The three flux schemes were used: HLLE, HLLC, and Roe. The results,

shown in Figure 2.10, indicate that all three schemes produce similar results, with the

HLLE solver being more diffuse than the HLLC or Roe solver. The Roe solver requires

eigenvalue decomposition, which increases computation costs. This makes the HLLC solver

a better choice for most simulations. These properties carry over to the MHD extensions of

each of the schemes, and as such, influenced our choose of incorporating the new compound

wave correction, see Chapter 4, into the HLLD solver instead of a Roe solver.
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Figure 2.10: HLLE (Top row), HLLC (middle row), and Roe (bottom row) approxi-
mate solution to Sod shock tube problem computed using first-order piece-wise constant
interpolation. Athena [32] was used to compute the approximate solutions. The ex-
act solution was computed with code written for this dissertation available at: https:
//github.com/akercher/dissertation.
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2.6 Ideal magnetohydrodynamics

The ideal MHD equations are an approximate description of the interaction between plasma

flowing in a region with a magnetic field. They consist of the Euler equations of hydrody-

namics and the magnetic induction equation, ∂B
∂t = ∇ × (v ×B) + η∇2B, for which the

divergence-free condition ∇ ·B = 0 is satisfied. The effects of resistivity, thermal conduc-

tivity, and viscosity are neglected. The equations are

∂ρ

∂t
+∇ · (ρv) = 0 , (2.34)

∂(ρv)

∂t
+∇ ·

[
ρv ⊗ v +

(
pg +

B2

2

)
I−B⊗B

]
= 0 , (2.35)

∂E

∂t
+∇ ·

[(
E + pg +

B2

2

)
v − v ·B⊗B

]
= 0 , and (2.36)

∂B

∂t
+∇ · [v ⊗B−B⊗ v] = 0 , (2.37)

where the energy density is defined as

E =
pg

γ − 1
+
ρv2

2
+
B2

2
, (2.38)

the gas constant γ is the ratio of specific heats, and B is the magnitude of the magnetic

field. The units are chosen so that the speed of light c and constant 4π do not appear in

the equations.

In one dimension, with flow variation in the x-direction, the ideal MHD equations can

be written in the form of a conservation law

∂U

∂t
+
∂F

∂x
= 0 ,
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where the conservative state variables U and their respective fluxes F are

U =



ρ

ρvn

ρvt

E

Bt


, F =



ρvn

ρv2
n + pg +B2/2−B2

n

ρvnvt −BnBt

(E + pg +B2/2)vn − (v ·B)Bn

vnBt −Bnvt


,

and a normal (x) component is denoted with the subscript n and tangential components

are denoted with the subscript t. The normal component of the magnetic field is treated as

a parameter because it must be constant in order to satisfy the divergence-free condition of

B, which is ∂Bn/∂x = 0 in one dimension.

2.6.1 Waves in ideal magnetohydrodynamics

The Jacobian matrix, J(U) = ∂F/∂U, has real but not necessarily distinct eigenvalues

in ideal MHD. The ideal MHD system is called non strictly hyperbolic because it can

have degenerate eigenvalues. Each eigenvalue is associated with a wave that travels at the

characteristic speed

vn : contact or tangential discontinuity (entropy),

vn ± cs : slow rarefaction or shock,

vn ± ca : rotational discontinuity (Alfvén), and

vn ± cf : fast rarefaction or shock,
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where cs, ca, cf are the slow, Alfvén, and fast wave propagation speeds, respectively. The

sign in each equation indicates the direction of propagation. The propagation speeds are

c2
f,s =

1

2

[
a2 + c2

a + c2
t ±

√(
a2 + c2

a + c2
t

)2 − 4a2c2
a

]
and c2

a =
B2
n

ρ
,

where c2
t = B2

t /ρ, a2 = γpg/ρ, ca (ct) is the Alfvén speed normal (tangential) to the wave

front, and a is the speed of sound. The plus (minus) sign corresponds to the fast (slow)

propagation speed.

2.6.2 Shock classification

In ideal MHD, a contact discontinuity (CD) has a discontinuous jump in density that

occurs where the normal component of the magnetic field is nonzero and the velocity, gas

pressure, and tangential components of the magnetic field are continuous. The heliopause

and magnetopause are two astrophysical boundaries where plasma flows are separated by

a density discontinuity. If the normal component of the magnetic field is zero, the contact

discontinuity is referred to as a tangential discontinuity. For a tangential discontinuity, only

the normal velocity and total pressure (gas plus magnetic pressure) are continuous [20].

Shocks are typed by comparing the pre-shock and post-shock velocities with the char-

acteristic velocities in the respective states. Numbers are assigned to the state according to

the inequalities 4 < cs < 3 < ca < 2 < cf < 1. If |vn| > cf , a state is referred to as superfast

and denoted 1; if |vn| = cf , it is referred to as fast and denoted 1, 2; if |vn| < cf it is referred

to as subfast and denoted 2. When |vn| = ca, it is referred to as an Alfvén shock and

denoted 2, 3. The shock is referred to as superslow (3) if |vn| > cs, slow (3, 4) if |vn| = cs,

and subslow (4) if |vn| < cs. Finally, the shock is classified as static if |vn| = 0. Shocks are

then classified as an i→ j type where i is the upstream type and j is the downstream type.

• 1→ 2 fast shocks (FS) have compression and a increase in strength of the tangential

magnetic field as the shock front is transversed: Bt1 < Bt2.

28



• 3→ 4 slow shocks (SS) have compression and a decrease in strength of the tangential

magnetic field as the shock front is transversed: Bt1 > Bt2.

• 1 → 2, 3 (switch-on) shocks have a tangential magnetic field that is zero upstream

and nonzero downstream: Bt1 = 0 and Bt2 6= 0.

• 2, 3→ 4 (switch-off) shocks have a tangential magnetic field that is nonzero upstream

and zero downstream: Bt1 6= 0 and Bt2 = 0.

• 1 → 3, 1 → 4, 2 → 3 and 2 → 4 intermediate shocks (IS) have a change in sign

of the tangential magnetic field as the shock front is transversed: Bt1 < 0 < Bt2 or

Bt1 > 0 > Bt2.

So-called regular waves only influence the orientation of the perpendicular magnetic

field or its magnitude. Fast and slow shocks alter the magnitude of the perpendicular mag-

netic field while rotational discontinuities alter their orientation. A rotational discontinuity

(RD) propagates with a speed of ca and rotates the perpendicular magnetic field while the

magnitude of the perpendicular magnetic field is equal on both sides of the discontinuity.

Expansion waves can also occur in ideal MHD. The magnitude of the tangential magnetic

field will decrease across fast rarefaction (FR); across slow rarefaction (SR) it will increase.

Intermediate shocks are over-compressive shocks that alter both the magnitude and

orientation of the tangential magnetic field. These shocks are classified as 1 → 3, 1 → 4,

2 → 4, and 2 → 3. The 2 → 3 class is called an Alfvén shock and across it the tangential

magnetic field rotates by 180 A switch-on shock (1 → 2, 3) corresponds to a pre-shock

tangential magnetic field of zero and a non-zero post shock tangential magnetic field. A

switch-off shock (2, 3→ 4) occurs when the tangential magnetic field is zero post-shock.

2.6.3 Nonlinear Riemann solver

Analytic solutions to problems of ideal MHD are generally not known. However, highly

accurate, to machine precision, solutions can be generated using a nonlinear solver [9, 30, 37].

The exact solutions presented in this work were found using a nonlinear solver that is based
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on the method originally developed by Dai and Woodward [9] and improved by Ryu and

Jones [30] to correctly compute rarefaction waves.
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Figure 2.11: Seven possible waves and/or discontinuities separating the eight possible re-
gions, or states of the ideal MHD Riemann problem. The initial contact discontinuity, i.e.,
the entropy wave, separates regions U∗3l and U∗3r.

The exact solutions are composed of eight possible MHD states separated by seven wave

fronts, as depicted in Figure 2.11. The transitions from one region to another through a

discontinuity is controlled by the jump conditions associated with the discontinuity. The

Rankine-Hugoniot jump conditions for ideal MHD in Lagrangian mass coordinates, dm =

ρdx, are

W [V ] = −[vn], (2.39)

W [vn] = −[P −B2
n], (2.40)

W [vt] = −Bn[Bt], (2.41)

W [VBt] = −Bn[vt], and (2.42)

W [V E] = [vnP ]−Bn[Bnvn + Bt · vt], (2.43)
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where P = pg + 1
2(B2

n + B2
t ) is the total pressure and W = −(ρvn)u = −(ρvn)d is the

Lagrangian velocity of the discontinuity and V = 1/ρ [9, 30]. When moving in the −x

direction, the velocity W is negative. Brackets are used to denote the difference between

the upstream and downstream states for a quantity Q, i.e [Q] = Qu −Qd.

Dai and Woodward [9] give the fast and slow shock speeds in mass coordinates as

W 2
f,s =

1

2(1 + S0)

[
(C2

s + C2
f + S2

1)±
√

(C2
s + C2

f + S2
1)2 − 4(1 + S0)(C2

sC
2
f − S2)

]
,

(2.44)

where Cf = ρcf and Cs = ρcs. The quantities S0, S1, S2 are given by Ryu and Jones [30] in

terms of Bt as

S0 = −1

2
(γ − 1)

[Bt]

Bt
, (2.45)

S1 =
1

2

{
−(γ − 2)V C2

t

[Bt]

Bt
+ 2C2

0 − (γ − 4)V C2
t

− 2γC2
a

}
[Bt]

Bt
, and

(2.46)

S2 =
1

2

{
C2
a [Bt]

2

V
+ (γ + 2)CtC

2
a [Bt] + V C2

t C
2
a(γ + 1)

+ (γ + 1)C4
a − 2C2

0C
2
a

}
[Bt]

Bt
,

(2.47)

where C0 = ρa is the Lagrangian speed of sound, Ca = ρca is the Lagrangian Alfvén speed,

and Ct =
√
ρB2

t . The quantities in equations (2.45)-(2.47) are for the state downstream of

the shock.
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The relationships for fast rarefactions given by Ryu and Jones [30] are

dC0

dBt
= −γ + 1

2

√
ρ

CtC
2
s

C0(C2
s − C2

a)
=
γ + 1

2

√
ρ
C2
s (C2

f − C2
a)

C2
aCtC0

=
γ + 1

2

ρ

C0

dpg
dBt

, (2.48)

dvn
dBt

= ∓ 1√
ρ

C⊥C2
a

Cf (C2
s − C2

a)
= ±

C2
f − C2

a√
ρCtCf

= ± 2

γ + 1

C0C
2
a

C2
sCf

1

ρ

dC0

dBt
, and (2.49)

1

cosψ

dvt1
dBt

=
1

sinψ

dvt2
dBt

= ∓ 1√
ρ

Ca
Cf

, (2.50)

where the upper and lower signs refer to right- and left-going waves, respectively. The

rotation angle is defined by tanψ = Bz/By.

For slow rarefactions, replace the fast speed (Cf ) with the slow speed (Cs) and the slow

speed (Cs) with the fast speed (Cf ) in Equations (2.48)-(2.50).

An initial guess for the solution in the six interior regions shown in Figure 2.11 is im-

proved iteratively until the jump conditions of the initial contact or tangential discontinuity

are satisfied to within a desired accuracy. We have found a very high rate of convergence

using the intermediate states approximated using the HLLD method for the initial guess.

In practice, we use a relaxation factor and apply damping to speed up convergence.

2.6.4 HLLD approximate Riemann solver

An MHD extension of the HLLC scheme for the Euler equations (see Section 2.5.2) capable

of resolving all isolated linear discontinuities of ideal MHD, i.e. RDs and CDs was developed

by Miyoshi and Kusano [25]. They referred to the scheme as HLLD, where the D stands

for discontinuities. The HLLD scheme assumes a six-state solution separated by five waves

as depicted in Figure 2.12. Two nonlinear waves, i.e., shocks and rarefactions, separate

the left and right initial states from the intermediate states in the Riemann fan, i.e., U∗l ,

U∗2l, U∗2r, and U∗r . The four intermediate states are separated by two RDs with velocities,

S∗l , S∗r , and one CD with velocity, Sm. The one-dimensional wave speeds and intermediate

states of [25] have been modified for general coordinates, with vn = v · n, and Bn = B · n,
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Figure 2.12: Intermediate states and waves used in the HLLD approximate Riemann solver.

where n is a normal vector with unit length.

The velocity of the CD, Sm, is estimated with the HLL average given by (2.23), except

gas pressure, pg, is replaced with total pressure, pt, and it becomes

Sm =
(Sr − vnr)ρrvnr − (Sl − vnl)ρlvnl − ptr + ptl

(Sr − vnr)ρr − (Sl − vnl)ρl
. (2.51)

The intermediate states are approximated by solving the jump conditions across each wave.

Since the total pressure is conserved across the linear discontinuities in ideal MHD, the total

pressure is constant throughout the Riemann fan. It is given as

p∗t = p∗tj = ptj + ρj(Sj − vnj)(Sm − vnj) (2.52)

for j = l or j = r. Substituting (2.51) into (2.52) and averaging over the left and right

states yields the explicit expression for total pressure throughout the Riemann fan:

p∗t =
(Sr − vnr)ρrptl − (Sl − vnl)ρlptr + ρrρl(Sr − vnr)(Sl − vnl)(vnr − vnl)

(Sr − vnr)ρr − (Sl − vnl)ρl
. (2.53)

The states downstream of the fast waves, U∗j for j = l and j = r of Figure 2.12, are given
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in one-dimension by Eqs (41)-(47) of [25], written for general coordinates: they are

ρ∗j = ρj
Sj − vnj
Sj − Sm

, (2.54)

v∗j = vj +
(Sj − Sm) (p∗t − ptj) n−BnBj (Sm − vnj)

ρj(Sj − vnj)(Sj − Sm)−B2
n

, (2.55)

B∗j =
Bj

(
ρj(Sj − vnj)2 −B2

n

)
−Bn (p∗t − ptj) n

ρj(Sj − vnj)(Sj − Sm)−B2
n

, (2.56)

E∗j =
(Sj − vnj)Ej − ptjvnj + p∗tSm +Bn(vj ·Bj − v∗j ·B∗j )

Sj − Sm
. (2.57)

If n = (1, 0, 0), v∗x = Sm, Bx = Bn, (2.55) and (2.56) reduce to (44)-(47) of [25], given as

v∗yj = vyj −BxByj
Sm − vnj

ρj(Sj − vnj)(Sj − Sm)−B2
x

,

v∗zj = vzj −BxBzj
Sm − vnj

ρj(Sj − vnj)(Sj − Sm)−B2
x

,

B∗yj = Byj
ρj(Sj − vnj)2 −B2

x

ρj(Sj − vnj)(Sj − Sm)−B2
x

, and

B∗zj = Bzj
ρj(Sj − vnj)2 −B2

x

ρj(Sj − vnj)(Sj − Sm)−B2
x

.

The states downstream of the rotational discontinuity, U∗2j , of Figure 2.12, can be found

in terms of the initial left state and U∗j . The density, normal velocity, and total pressure

are

ρ∗2j = ρ∗j , (2.58)

v∗n2j = v∗nj , (2.59)

p∗t2j = p∗tj , (2.60)
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because they are constant across the rotational discontinuity. The Alfvén speeds of the left

and right rotational discontinuities are

S∗l = Sl −
|Bn|√
ρ∗l

and S∗r = Sr +
|Bn|√
ρ∗r
. (2.61)

The description of the HLLD intermediate states is completed by solving for v∗m = v∗2l = v∗2r

and B∗m = B∗2l = B∗2r. This is done using the integral conversation law over the Riemann

fan (Slδt, Srδt)× (0, δt) (Eq. (58) of [25]). They are given as

v∗m =

√
ρ∗l v
∗
nl +
√
ρ∗rv
∗
nr + (B∗r −B∗l )sign(Bn)√
ρ∗l +

√
ρ∗r

, (2.62)

B∗m ==

√
ρ∗lB

∗
r +
√
ρ∗rB

∗
l +

√
ρ∗l ρ
∗
r(v
∗
r − v∗l )sign(Bn)√

ρ∗l +
√
ρ∗r

, and (2.63)

E∗2j = E∗j ∓
√
ρ∗j (v

∗
j ·B∗j − v∗2j ·B∗2j)sign(Bn), (2.64)

where the minus (plus) sign corresponds to j = l (j = r). The HLLD fluxes are found by

applying the integral conservation laws over the left half or right half of the Riemann fan,

(Slδt, 0)× (0, δt) or (0, Srδt)× (0, δt), see Appendix A. The fluxes are given as

F(x, t) =



Fl if 0 < Sl,

F∗l = Fl + Sl(U
∗
l −Ul) if Sl ≤ 0 ≤ S∗l ,

F∗2l = F∗l + S∗l (U∗2l −U∗l ) if S∗l ≤ 0 ≤ Sm,

F∗2r = F∗r + S∗r (U∗2r −U∗r) if Sm ≤ 0 ≤ S∗r ,

F∗r = Fr + Sr(U
∗
r −Ur) if S∗r ≤ 0 ≤ Sr,

Fr if Sr < 0.

(2.65)
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The HLLD method is robust because it is positivity preserving and it is less compu-

tationally expensive than schemes such as Roe’s that require eigenvalue decomposition.

Results from MHD shock tube problems solved using the HLLD fluxes are given in Sec-

tions 3.3-3.6. However, scheme produces compound waves for coplanar and near coplanar

cases as demonstrated in Sections 3.3-3.6, an issue all approximate Riemann solvers suffer

from. In Chapter 4, a modification to the HLLD fluxes that removes compound waves from

the solution to coplanar and near coplanar Riemann problems of ideal is described.
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Chapter 3: Numerical solutions for Ideal

magnetohydrodynamics

Riemann problems and the different waves that compose the solution were described in

Chapter 2. The linear and nonlinear waves emitted by the equations of ideal MHD were

described. The linear waves are: the entropy wave that carries a CD and the Alfvén wave

that carries an RD. The nonlinear waves are: shocks and rarefactions.

This chapter applies the ideas developed in Chapter 2 and numerically solves Riemann

problems of ideal MHD. The finite volume discretization and Godunov’s method for com-

puting interface fluxes and the structure of the solution to the non-planar case are then

described. The jumps in ρ and Bt associated with each wave of the non-planar case is

discussed. Then the nonlinear solver developed for this dissertation is described. The exact

and approximate solution of non-planar and coplanar test cases are given to demonstrate

the accuracy of the solvers. The nonlinear solver is then used to provide new benchmarks

that can be used for the development of ideal MHD codes.

We show a limitation of FV schemes for ideal MHD, which is the appearance of non-

regular waves. The physicality of these waves has been debated. We confirm the ap-

pearance of non-regular waves in terms of Riemann problems with non-unique solutions.

Non-uniqueness is shown to occur when the initial transverse magnetic fields are coplanar,

i.e. anti-parallel. For initial conditions near those that produce a non-unique solution,

convergence is shown to be nonuniform consistent with [38]. Initially, convergence is to the

solution containing a non-regular wave; after heavy grid refinement, convergence is to the

solution containing only regular waves. In Chapter 4, we propose a new modification to the

HLLD flux that converges to the solution containing regular waves at all grid resolutions.
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3.1 Finite volume discretization and Godunov’s method

For the cell-centered FV discretization, the state is defined by the integral average of the

cell, given as

Ucell =
1

Vcell

∫
Ω

UdΩ, (3.1)

where Vcell is the volume of the cell. The volume integral of the fluxes can be rewritten

using the divergence theorem as

∫
Ω
∇ · FdΩ =

∫
Γ

F · ndΓ, (3.2)

where n is the unit normal vector. Integration in time, from t = n to t = n + 1, gives the

FV discretization as

Un+1
cell = Un

cell −
δt

Vcell

∑
faces

F · s, (3.3)

where F = 1
δt

∫
δt Fdt is the time averaged fluxes, s = An is the scaled face normal, and A

is the face area. The one-dimensional FV discretization for a cell center at i is

Un+1
i = Un

i −
δt

δx

(
Fn
i+1/2 − Fn

i−1/2

)
, (3.4)

where δx = xi+1−xi. The timestep δt must satisfy Courant-Friedrichs-Lewy (CLF) stability

condition that a wave cannot transverse more than one cell per timestep. An estimation

for the timestep is given by

δt = Crδx/λmax, (3.5)

where Cr ≤ 1 is the Courant number. In explicit schemes, Cr ≤ 1 is typically required.
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The flux can be evaluated in a variety of ways. The Rusanov flux, given as

Fi+1/2 =
1

2

(
F (Ui+1) + F (Ui)− |λmax| (Ui+1 −Ui)

)
(3.6)

where λmax is the maximum wave speed, is a stable and efficient method for flux evaluation.

It simplifies Roe’s method by substituting |λmax| = max{|λk|}, where k corresponds to the

characteristics of the solution, because the wave speed can then be factored out the last term

on the right hand side of (2.28). The summation reduces to Ui+1 −Ui, since lk · rl = δk,l

where δk,l is the Kronecker delta. The Rusanov flux produces a more diffuse solution than

Roe’s flux, especially at linear discontinuities where the maximum wave speed is greater

than the characteristic speed of the wave. As discussed in Section 3.2, the properties of the

Rusanov flux are desirable for a low-order scheme when used in conjunction with FCT.

i i+ 1/2 i+ 1

Ui

Ui+1

Figure 3.1: Piecewise constant (dotted line) and piecewise linear (solid line) reconstruction
of interface states that define the local Riemann problem for Godunov’s method.

Godunov’s method uses the solution to a local Riemann problem at cell interfaces to

calculate the time-averaged fluxes. The local Riemann problem is defined by reconstructing

the states of neighboring cells at the interface between the cells. The reconstruction process

using piecewise constant and piecewise linear interpolation is shown in Figure 3.1. Slope

limiters, see Section 3.2, are used during reconstruction to ensure new extrema are not

created. If the flow is not smooth, such as across a shock or discontinuity, the reconstructed
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states will not be equal, and a local Riemann problem at the interface is defined. The

approximate solution of to the local Riemann problem is used to calculate the time-averaged

fluxes. For the Euler equations, one of the schemes described in Section 2.5.2 can be used

to approximate the fluxes. For ideal MHD, the fluxes can be approximated with the HLLD

scheme described in Section 2.6.4.

3.2 Higher-order extensions

In this section, two high-order extensions to first-order monotonicity preserving schemes are

described. In Section 3.3 one-dimensional Riemann problems are solved using both higher

order extension. The first higher order extension is implemented in Athena. It is a total

variation diminishing (TVD) scheme, and uses the third order accurate piece-wise parabolic

method (PPM) [8] for reconstruction of the interface states. The second is an FCT scheme,

that was implemented for this dissertation available at: https://github.com/akercher/

dissertation.

TVD schemes preserve monotonicity by limiting the flux of a high-order scheme or

with slope limiters during interface reconstruction. To demonstrate this property, we out-

line the algorithm for second-order linear reconstruction of the primitive variable Wi =

(ρ, vx, vy, vz, pg, Bx, By, Bz) as implemented in Athena [34]. The reconstruction is done in

terms of characteristic variables, a, and projected onto the primitive variables. The differ-

ences in primitive variables are first projected to the characteristic variables

δal =
∑

lj · (Wi −Wi−1),

δac =
∑

lj · (Wi+1 −Wi−1),

δar =
∑

lj · (Wi+1 −Wi)

(3.7)
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Figure 3.2: (Top row) HLLE, (middle row) HLLC, and (bottom row) Roe approximate
solution to Sod shock tube problem computed using third-order parabolic interpolation.
Athena [32] was used to compute the approximate solutions. The exact solution was com-
puted with code written for this dissertation available at: https://github.com/akercher/
dissertation.
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where lj are left eigenvectors computed with the primitive variable at cell i. The mono-

tonicity constraints are then applied, ensuring the reconstructed states are TVD:

δa = sign(δac) min(2|δal|, 2|δar|, |δac|). (3.8)

The characteristic variables are then projected back to the primitive variables

δW =
∑

δa · rj , (3.9)

where where rj are right eigenvectors computed with the primitive variables at cell i. In-

terpolation to the left and right face is performed to reconstruct the interface states,

wi−1/2 = Wi −
(

1

2
−min(λmin, 0)

δt

2δx

)
δWi, (3.10)

wi+1/2 = Wi +

(
1

2
−max(λmax, 0)

δt

2δx

)
δWi, (3.11)

where λmin, and λmax are the minimum and maximum eigenvalue computed at cell i. Finally,

the influence of a wave that has not reached the face at the half timestep is removed from

the reconstructed value

wi−1/2 = wi−1/2 +
δt

2δx

∑
λj<0

((λmin − λj) lj · δWi) rj , (3.12)

wi+1/2 = wi+1/2 +
δt

2δx

∑
λj>0

((λmax − λj) lj · δWi) rj , (3.13)

where the sums include waves that propagate towards the face. The HLL solvers use

weighted averages of the flux in the left and right interfaces, and as such, a correction

must be added to (3.12) and (3.13) for waves that propagate away from the interface. The

42



correction is [8]

∆wi−1/2 = − δt

2δx

∑
λj>0

((λj − λmin) lj · δWi) rj , (3.14)

∆wi+1/2 = − δt

2δx

∑
λj<0

((λj − λmax) lj · δWi) rj . (3.15)

The Sod shock tube test of Section 2.5.2 using higher order reconstruction is shown in

Figure 3.2. The higher order extension is less diffuse than the low order counterparts shown

in Figure 2.10. The contact discontinuity and shock are much better resolved.

i i+ 1

Un
i

Ul
i

Ul
i+1

Un
i+1

Figure 3.3: The allowable range for the high order solution is defined such that monotonicity
is preserved.

The TVD scheme presented above preserves monotonicity by limiting the slope used for

interface reconstruction. With FCT, the high order fluxes are limited in order to preserve

monotonicity. Advancing the state variables in time with a low order scheme that preserves

monotonicity is the first step in applying FCT. The time-advanced low order solution is

denoted as Utd, where td stands for transported and diffused. The antidiffusive flux is

defined as the difference between the high and low order fluxes, Ai+1/2 = Fh
i+1/2 −Fl

i+1/2.

For the Rusanov flux, the antidiffusive flux is the second term on the right hand side of

(3.6), Ai+1/2 = 1
2 |λmax| (Ui+1 −Ui). Upper and lower limiting bounds are chosen at each

interface such that Utd lies between them. The allowable range of the high-order solution
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is shown in Figure 3.3. In this work, at the interface between i and i + 1, the limiter is

chosen as

Umax
i+1/2 = max(Ui+1,Ui,U

td
i+1,U

td
i ), (3.16)

Umin
i+1/2 = min(Ui+1,Ui,U

td
i+1,U

td
i ), (3.17)

that is, the minimum and maximum values on the solution at the previous step and the low

order solution. The maximum and minimum at each cell are

Umax
i = max(Umax

i+1/2,U
max
i−1/2), (3.18)

Umin
i = min(Umin

i+1/2,U
min
i−1/2). (3.19)

The positive and negative contributions of the antidiffusive fluxes are separated and limited.

For the upper bounds

P+
i = max(Ai−1/2, 0)−min(Ai+1/2, 0), (3.20)

Q+
i = Umax

i −Utd
i , (3.21)

R+
i = min(1,Q+/P+), for P+

i > 0, and 0, otherwise.. (3.22)

For the lower bounds

P−i = max(Ai+1/2, 0)−min(Ai−1/2, 0), (3.23)

Q−i = Utd
i −Umin

i , (3.24)

R−i = min(1,Q−/P−), for P−i > 0, and 0 otherwise. (3.25)
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The coefficient for limiting the antidiffusive fluxes is

Ci+1/2 = min(R−i+1,R
−
i ,R

+
i+1,R

+
i ). (3.26)

The fluxes are synchronized by taking the minimum between the coefficients of energy and

density, i.e., Ci+1/2 = min(Ci+1/2(ρ),Ci+1/2(E)). The high order solution is then given by

Un+1
i = Utd

i −
δt

δx

(
Ci+1/2A

n
i+1/2 − Ci−1/2A

n
i−1/2

)
. (3.27)
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Figure 3.4: (Top row) Rusanov without FCT , and (bottom row) with FCT, approximate
solutions to Sod shock tube problem on a grid of 512 points. Solutions computed with code
written for this dissertation available at: https://github.com/akercher/dissertation.

The low order solution and high order extension using FCT for the Sod shock tube

problem is shown in Figure 3.4. The low order solution is excessively diffuse, especially at

the CD. FCT produces a much less diffuse solution, resolving shocks in two or three cells.

In Section 3.3 the high order extensions are used to approximate the solutions to Rie-

mann problems of ideal MHD. For ideal MHD, the Rusanov flux is replaced by the HLLD
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flux as the low order scheme in the FCT algorithm.

3.3 Riemann problems of ideal magnetohydrodynamics

The initial state of one-dimensional Riemann problems of ideal MHD are of the form

Ul = (ρl, vnl,vtl, pgl,Btl),

Ur = (ρr, vnr,vtr, pgr,Btr),

(3.28)

where Bn is a parameter, Bt = (Bt cosψ,Bt sinψ), ψ is the rotation angle, defined by

tanψ = Bz/By. The problem is called planar if the tangential components are parallel,

i.e. ψl = ψr, and it is called coplanar if the tangential magnetic fields are anti-parallel,

i.e. ψr = ψl + nπ for {n ∈ Z+and n odd}. If the magnetic fields do not lie in the same

plane then the problem is called non-planar. The initial configuration of the magnetic field

of a non-planar problem is shown in Figure 3.5. The twist angle α = ψr − ψl gives the

total change in orientation of the transverse magnetic field produced by the two rotational

discontinuities.

As time evolves, the waves associated with each characteristic separate and distinct

regions with constant states can be identified. This is shown in Figure 3.6, for the ρ and Bt

solutions of the non-planar Riemann problem (3.28). The evolution of Bt across the regular

waves of the solution is shown in Figure 3.7. The left-going fast wave is a rarefaction,

across which, ρ and Bt decrease. The right-going fast wave is a shock, across which both

ρ and Bt increase. The rotation angle, ψ, is modified across each rotational discontinuities

to produce downstream tangential magnetic fields with the same orientation. Both ρ, and

Bt remain unchanged across the rotational discontinuities. The left-going slow wave is a

rarefaction, across which, ρ and Bt decrease. The right-going slow wave is a shock, across

which, both ρ and Bt increase. Between the states downstream of the left- and right-going

slow waves, only a discontinuity in ρ is present at the location of the CD. The CD separates
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ψrψl
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Bnl

Figure 3.5: Initial configuration of magnetic field on both sides of the discontinuity. The
initial twist angle α = ψr − ψl is the difference in rotation angles of the left and right
tangential field.

intermediate states U∗3l and U∗3r of Figure 2.11. The CD is also known as the entropy wave,

because it carries a jump in entropy.

3.4 Numerical tests

In this section we solve test cases that do and do not exhibit the uniqueness problem, in

which more than one solution exists. Solutions to the first four test cases are comprised of

only regular waves. The last two test cases involve compound waves. A slow compound

wave (SCW) is present in test 5, a fast compound wave (FCW) is present in test 6, and two

fast compound waves are present in Test 7. Unless otherwise stated, the domain is x ∈ [0, 1]

and the initial discontinuity is located at x = 0.5. In Chapter 4, tests 5, 6, and 7 are solved

using a new modified flux method, and we show that only regular waves are present.

The results of several ideal MHD shock tube problems are given below. The exact so-

lution was calculated with the nonlinear solver developed for this thesis and described in

Section 2.6.3. Three different approximation methods were used: a low order base scheme,

a higher order TVD scheme, and a higher order FCT scheme. All three schemes use a cell
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Figure 3.6: The density and tangential magnetic field of the solution to a Riemann problem
of ideal MHD. All rotations are about the x-axis. In the reference frame of the CD, the
direction of each wave w.r.t. the x-axis is positive for those under the solid blue line, and
negative for those under the solid red line.
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Figure 3.7: A view in the positive x-direction of Figure 3.6. The influence of regular waves
on the tangential magnetic field for a non-planar Riemann problem of ideal MHD. The
orientation of the tangential magnetic field is given by the angle ψ = tanBz/By. Regular
waves only influence the magnitude or orientation of the tangential magnetic field. The
intermediate states are defined in Figure 2.11, with B∗t3l = B∗t3r denoted by the CD.
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centered finite volume discretization and HLLD to approximate the interface flux. The base

scheme, which was implemented for this dissertation, uses piece-constant interpolation for

interface reconstruction and a two-stage Runge-Kutta time integration. The TVD extension

to the base scheme is implemented in Athena. Interfaces are reconstructed with PPM, and

the corner transport upwind (CTU) plus constrained transport (CT) integrator is used to

advance the solution in time. The FCT extension to the base scheme was also implemented

for this dissertation. The algorithms of the base scheme and the FCT extention are imple-

mented for general geometries, but structured grids were used for comparison with Athena.

Unless otherwise stated, the following values are used throughout the calculations, the gas

constant γ = 5/3, the Courant number Cr = 0.8, and relaxation factor rk = 0.5.

The initial conditions of the first shock tube test are

(ρl, vnl,vtl, pgl,Btl) =
(

1.08, 1.2, (0.01, 0.5), 0.95, (3.6, 2.0)/
√

4π
)
,

(ρr, vnr,vtr, pgr,Btr) =
(

1.0, 0.0, (0.0, 0.0), 1.0, (4.0, 2.0)/
√

4π
)
.

(3.29)

The solution with Bn = 2/
√

4π and γ = 5/3 is given in Table 3.1, and is shown in Figure 3.8

at time tf = 0.2. From left to right, the waves of the solution are: FS, RD SS, CD, SS,

RD, and FS. The solution can be compared with Table 2a of [30], and Table 1a of [9]. The

nonlinear solver displays quadratic convergence, as shown in Table 3.2, where the residual,

as well as the fast and slow waves speeds are listed for a sequence of iterations. The wave

speeds are consistent with the result given in Table 1b of [9].

The second shock tube test for ideal MHD has initial conditions

(ρl, vnl,vtl, pgl,Btl) = (3.0, 0.0, (0.0, 0.0), 3.0, (cosαl, sinαl)) ,

(ρr, vnr,vtr, pgr,Btr) = (1.0, 0.0, (0.0, 0.0), 1.0, (cosαr, sinαr)) ,

(3.30)

where αl = 2.0, αr = 1.0, Bn = 3/2, and γ = 5/3. The solution is given in Table 3.3, and is

shown in Figure 3.9 at time tf = 0.2. From left to right the waves of the solution are: FR,
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RD SR, CD, SS, RD, and FS. The residual, as well as the fast and slow waves speeds, are

listed for a sequence of iterations in Table 3.4.

The third test problem involves states of high density and low pressure. The initial

conditions are

(ρl, vnl,vtl, pgl,Btl) = (10.0.0, 0.0, (1.0, 0.0), 0.2, (2.0, 2.0)) ,

(ρr, vnr,vtr, pgr,Btr) = (5.0, 0.0, (−1.0,−0.5), 0.2, 2.0(cos(π/4), sin(π/4))) ,

(3.31)

where Bn = 2.0, and γ = 5/3. The solution is given in Table 3.5, and is shown in Figure 3.10

at time tf = 0.3. From left to right, the waves of the solution are: FR, RD SS, CD, SS,

and FR. The residual, as well as the fast and slow waves speeds are listed for a sequence of

iterations in Table 3.6. The contact discontinuity speed is stationary. No scheme was able

to accurately capture the transition across the CD. HLLD-TVD is the most accurate to the

left of the CD, but like the other schemes, produces significant error to the right of the CD.

The velocities of the left- and right-going slow shocks are −0.1013 and 0.1433 respectively.

The error is caused by the fact that the waves have not had enough time to separate.

The forth test retains the initial conditions of test 3, except the densities are reduced

by an order of magnitude, the magnetic field components are reduced by one half, and

vyr = −1.0. The initial conditions are

(ρl, vnl,vtl, pgl,Btl) = (1.0.0, 0.0, (1.0, 0.0), 0.5, (1.0, 0.0)) ,

(ρr, vnr,vtr, pgr,Btr) = (0.5, 0.0, (−1.0,−0.5), 0.5, (cos(π/4), sin(π/4))) ,

(3.32)

where Bn = 1, and γ = 5/3. The solution is given in Table 3.7, and is shown in Figure 3.11

at time tf = 0.2. The same waves that comprise the solution to test 3 are also comprise the

solution of this test. From left to right, the waves of the solution are: FR, RD SS, CD, SS,

and FR. Unlike test 3, there is no noticeable difference between the exact and approximate

solutions in the states directly upstream and downstream of the contact discontinuity. The

50



residual, as well as the fast and slow waves speeds are listed for a sequence of iterations in

Table 3.8. As in test 3, the contact discontinuity is stationary, but the waves have separated

enough to avoid the error observed in test 3.

The final three tests demonstrate non-uniqueness of solutions to certain Riemann prob-

lems of ideal MHD. For test 5 and 6, we consider two cases: one coplanar and one near

coplanar. For the coplanar case, the initial perpendicular magnetic field is anti-parallel, i.e.,

α = π. For the near coplanar case, the twist angle is reduced so that the initial tangential

magnetic fields do not lie in the same plane. In the near coplanar case, we set α = 3.0..

Test 7 is a non-planar problem. The solution the includes a left-going RD that rotates the

tangential magnetic field by 2.95 radians. Riemann problems of ideal MHD with non-unique

solutions are discussed in greater detail next section where the problem of non-uniform con-

vergence is described. In Section 3.5, the problems related to non-uniqueness are overcome

with a new modification to the flux calculation.

Test 5 involves a SCW comprised of a intermediate shock and fast rarefaction. It was

originally considered by Torrilhon [38]. The conversion between the parameters used below

and those used in [38] is given by (3.36). The initial conditions are

(ρl, vnl,vtl, pgl,Btl) = (1.0.0, 0.0, (0.0, 0.0), 0.5, (0.7746, 0.0)) ,

(ρr, vnr,vtr, pgr,Btr) = (0.2, 0.0, (0.0, 0.0), 0.12, 0.7746(cosα, sinα)) ,

(3.33)

where Bn = 0.7746, and γ = 5/3, and α = 3.0, π. In this test, the initial discontinuity is

located at x = 0.4 for comparison with the results in [38]. Only the exact values of ρ and By

are given in [38]. We give the complete solution so that it can be used as a benchmark. The

exact solution for α = π (3.0) is listed in Table 3.9 (3.11), and is shown in Figure 3.12 (3.13)

at time tf = 0.20656. For both the coplanar and near coplanar cases, the structure of the

approximate solution from left to right is: FR, SCW, CD, SS, FR. An RD and SS are

found in the exact solution instead of a slow compound wave. For the near coplanar case,

two rotational discontinuities are present. The residual, as well as the fast and slow waves
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speeds are listed for a sequence of iterations is listed in Table 3.10 (3.12), for α = π (3.0).

Test 6 involves a FCW comprised of a fast rarefaction and intermediate shock. The

initial conditions are

(ρl, vnl,vtl, pgl,Btl) = (1.0.0, 0.0, (0.0, 0.0), 0.5, (1.0, 0.0)) ,

(ρr, vnr,vtr, pgr,Btr) = (0.2, 0.0, (0.0, 0.0), 0.12, (cosα, sinα)) ,

(3.34)

where Bn = 1.25, γ = 5/3, and α = 3.0, π. The exact solution for α = π (3.0) is listed

in Table 3.13 (3.15), and is shown in Figure 3.14 (3.15) at time tf = 0.15. For both the

coplanar and near coplanar cases, the structure of the approximate solution from left to

right is: FCW SS, CD, SS, FR. A FR and RD is found in the exact solution instead of a

fast compound wave. For the near coplanar case, two rotational discontinuities are present.

The residual, as well as the fast and slow waves speeds are listed for a sequence of iterations

is listed in Table 3.14 (3.16), for α = π (3.0).

Test 7 is the final test given in this section. It involves a left-going and right-going FCW.

The initial conditions are

(ρl, vnl,vtl, pgl,Btl) = (1.0.0, 0.0, (5.0, 0.0), 0.6, (3.25, 0.0)) ,

(ρr, vnr,vtr, pgr,Btr) = (0.5, 0.0, (−5.0,−2.5), 0.3, 3.25(cosα, sinα)) ,

(3.35)

where Bn = 3.25, γ = 5/3, and α = π/4. The exact solution is listed in Table 3.17, and is

shown in Figure 3.16 at time tf = 0.05. From left to right is: FCW SS, CD, SS, FCW. An

RD and SS are found in the exact solution instead of a fast compound wave. The left-going

RD rotates the transverse magnetic field by 2.9442 radians, and the right-going RD rotates

the transverse magnetic field by 2.1588 rad. The residual, as well as the fast and slow waves

speeds are listed for a sequence of iterations is listed in Table 3.18. The CD is not accurately

captured due to the lack of separation between the waves.

Further analysis has been performed for the coplanar case of tests 5 and 6 in order
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Table 3.1: Exact solution of MHD shock tube test 1 (solid black line of Figure 3.8)

ρ vn vy vz pg Bt ψ

1.0800e+0 1.2000e+0 1.0000e-2 5.0000e-1 9.5000e-1 1.1617e+0 5.0710e-1
1.4903e+0 6.0588e-1 1.1235e-1 5.5686e-1 1.6558e+0 1.6454e+0 5.0710e-1
1.4903e+0 6.0588e-1 2.2157e-1 3.0125e-1 1.6558e+0 1.6454e+0 3.0049e-1
1.6343e+0 5.7538e-1 4.7601e-2 2.4734e-1 1.9317e+0 1.4788e+0 3.0049e-1
1.4735e+0 5.7538e-1 4.7601e-2 2.4734e-1 1.9317e+0 1.4788e+0 3.0049e-1
1.3090e+0 5.3432e-1 −1.8411e-1 1.7554e-1 1.5844e+0 1.6858e+0 3.0049e-1
1.3090e+0 5.3432e-1 −9.4572e-2 −4.7286e-2 1.5844e+0 1.6858e+0 4.6365e-1
1.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 1.0000e+0 1.2616e+0 4.6365e-1

Bn = 2/
√
4π

Table 3.2: Residual and wave speeds of MHD shock tube test 1

Iteration Residual Wfl Wsl Wsr Wfr

1 1.4158e-1 −2.1318e+0 −4.8002e-1 4.7319e-1 2.1593e+0
2 6.7029e-2 −2.2313e+0 −4.9869e-1 4.7655e-1 2.2080e+0
3 1.6193e-2 −2.3060e+0 −5.1186e-1 4.7997e-1 2.2487e+0
4 1.2220e-4 −2.3305e+0 −5.1595e-1 4.8142e-1 2.2637e+0
5 2.4803e-9 −2.3305e+0 −5.1594e-1 4.8144e-1 2.2638e+0

Table 3.3: Exact solution of MHD shock tube test 2 (solid black line of Figure 3.9)

ρ vn vy vz pg Bt ψ

3.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 3.0000e+0 1.0000e+0 7.5000e-1
2.3769e+0 3.2826e-1 −9.8310e-2 −9.1585e-2 2.0355e+0 6.6359e-1 7.5000e-1
2.3769e+0 3.2826e-1 −4.1499e-1 4.5442e-2 2.0355e+0 6.6359e-1 1.5748e+0
2.1762e+0 4.0294e-1 −4.1555e-1 1.8398e-1 1.7572e+0 8.4200e-1 1.5748e+0
1.3956e+0 4.0294e-1 −4.1555e-1 1.8398e-1 1.7572e+0 8.4200e-1 1.5748e+0
1.0705e+0 1.3795e-1 −4.1398e-1 −2.0305e-1 1.1206e+0 1.1562e+0 1.5748e+0
1.0705e+0 1.3795e-1 4.6543e-2 −1.0170e-1 1.1206e+0 1.1562e+0 2.0000e+0
1.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 1.0000e+0 1.0000e+0 2.0000e+0

Bn = 3/2

Table 3.4: Residual and wave speeds of MHD shock tube test 2

Iteration Residual Wfl Wsl Wsr Wfr

1 1.7426e-1 −4.1594e+0 −2.1840e+0 1.3605e+0 2.2743e+0
2 9.2424e-2 −3.9516e+0 −2.0543e+0 1.2849e+0 2.1747e+0
3 3.4289e-2 −3.8486e+0 −1.9887e+0 1.2307e+0 2.1075e+0
4 8.5406e-4 −3.7741e+0 −1.9297e+0 1.2170e+0 2.0944e+0
5 4.9495e-7 −3.7751e+0 −1.9306e+0 1.2178e+0 2.0950e+0
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Table 3.5: Exact solution of MHD shock tube test 3 (solid black line of Figure 3.10)

ρ vn vy vz pg Bt ψ

10.0000e+0 0.0000e+0 1.0000e+0 0.0000e+0 1.0000e-1 2.0000e+0 0.0000e+0
8.0436e+0 1.8548e-1 7.6189e-1 0.0000e+0 6.9573e-2 1.0984e+0 0.0000e+0
8.0436e+0 1.8548e-1 5.1875e-1 3.5945e-1 6.9573e-2 1.0984e+0 1.1894e+0
22.7720e+0 0.0000e+0 4.7849e-1 2.5904e-1 6.2668e-1 9.7360e-1 1.1894e+0
11.3860e+0 0.0000e+0 4.7849e-1 2.5904e-1 6.2668e-1 9.7360e-1 1.1894e+0
4.0218e+0 −2.6231e-1 4.2155e-1 1.1705e-1 6.9573e-2 1.0984e+0 1.1894e+0
4.0218e+0 −2.6231e-1 2.3811e-1 2.3811e-1 6.9573e-2 1.0984e+0 7.8540e-1
5.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 1.0000e-1 2.0000e+0 7.8540e-1

Bn = 2

Table 3.6: Residual and wave speeds of MHD shock tube test 3

Iteration Residual Wfl Wsl Wsr Wfr

1 1.1022e-1 −8.9912e+0 −5.0557e+0 3.5749e+0 6.3578e+0
2 4.8038e-2 −7.8456e+0 −3.2734e+0 2.3146e+0 5.5476e+0
3 6.7930e-4 −7.6052e+0 −2.3089e+0 1.6326e+0 5.3777e+0
4 9.8061e-6 −7.5967e+0 −2.3065e+0 1.6310e+0 5.3717e+0
5 1.8021e-8 −7.5967e+0 −2.3067e+0 1.6311e+0 5.3717e+0

Table 3.7: Exact solution of MHD shock tube test 4 (solid black line of Figure 3.11)

ρ vn vy vz pg Bt ψ

1.0000e+0 0.0000e+0 1.0000e+0 0.0000e+0 5.0000e-1 1.0000e+0 0.0000e+0
7.6442e-1 3.9924e-1 6.5790e-1 0.0000e+0 3.1961e-1 5.5891e-1 0.0000e+0
7.6442e-1 3.9924e-1 −3.0735e-2 6.3734e-1 3.1961e-1 5.5891e-1 1.6481e+0
1.2511e+0 0.0000e+0 3.1995e-3 1.9938e-1 7.6608e-1 2.1426e-1 1.6481e+0
6.2553e-1 0.0000e+0 3.1995e-3 1.9938e-1 7.6608e-1 2.1426e-1 1.6481e+0
3.8221e-1 −5.6462e-1 5.1189e-2 −4.1999e-1 3.1961e-1 5.5891e-1 1.6481e+0
3.8221e-1 −5.6462e-1 −6.5790e-1 −1.5790e-1 3.1961e-1 5.5891e-1 7.8540e-1
5.0000e-1 0.0000e+0 −1.0000e+0 −5.0000e-1 5.0000e-1 1.0000e+0 7.8540e-1

Bn = 1

Table 3.8: Residual and wave speeds of MHD shock tube test 4

Iteration Residual Wfl Wsl Wsr Wfr

1 6.9725e-1 −1.5811e+0 −9.5039e-1 6.7203e-1 1.1180e+0
2 4.2530e-1 −1.4315e+0 −8.7056e-1 6.1558e-1 1.0122e+0
3 1.1822e-1 −1.3273e+0 −8.0577e-1 5.6976e-1 9.3852e-1
4 1.8737e-3 −1.2963e+0 −7.8425e-1 5.5455e-1 9.1665e-1
5 1.1392e-7 −1.2968e+0 −7.8458e-1 5.5478e-1 9.1696e-1
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Table 3.9: Exact solution of MHD shock tube test 5a (solid black line of Figure 3.12)

ρ vn vy vz pg Bt ψ

1.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 6.0000e-1 7.7460e-1 0.0000e+0
6.9269e-1 4.6523e-1 −2.8989e-1 0.0000e+0 3.2580e-1 3.8383e-1 0.0000e+0
6.9269e-1 4.6523e-1 −1.2122e+0 0.0000e+0 3.2580e-1 3.8383e-1 3.1416e+0
7.6860e-1 3.9016e-1 −1.1190e+0 0.0000e+0 3.8764e-1 3.2045e-1 3.1416e+0
3.6449e-1 3.9016e-1 −1.1190e+0 0.0000e+0 3.8764e-1 3.2045e-1 3.1416e+0
1.7257e-1 −3.6407e-1 −3.5772e-1 0.0000e+0 9.3845e-2 5.6339e-1 3.1416e+0
1.7257e-1 −3.6407e-1 −3.5772e-1 0.0000e+0 9.3845e-2 5.6339e-1 3.1416e+0
2.0000e-1 0.0000e+0 0.0000e+0 0.0000e+0 1.2000e-1 7.7460e-1 3.1416e+0

Bn = 0.7746

Table 3.10: Residual and wave speeds of MHD shock tube test 5a

Iteration Residual Wfl Wsl Wsr Wfr

1 6.9910e-1 −1.1838e+0 −6.1464e-1 2.7543e-1 4.8956e-1
2 1.8204e-1 −1.0818e+0 −5.4525e-1 2.5301e-1 4.6546e-1
3 5.0966e-3 −1.0546e+0 −5.2609e-1 2.4697e-1 4.5808e-1
4 1.8624e-6 −1.0550e+0 −5.2649e-1 2.4719e-1 4.5829e-1
5 1.9670e-9 −1.0550e+0 −5.2649e-1 2.4719e-1 4.5829e-1

Table 3.11: Exact solution of MHD shock tube test 5b (solid black line of Figure 3.13)

ρ vn vy vz pg Bt ψ

1.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 6.0000e-1 7.7460e-1 0.0000e+0
6.9410e-1 4.6286e-1 −2.8778e-1 0.0000e+0 3.2690e-1 3.8603e-1 0.0000e+0
6.9410e-1 4.6286e-1 −1.2000e+0 1.1481e-1 3.2690e-1 3.8603e-1 2.8912e+0
7.6755e-1 3.9041e-1 −1.1126e+0 9.2456e-2 3.8673e-1 3.2483e-1 2.8912e+0
3.6442e-1 3.9041e-1 −1.1126e+0 9.2456e-2 3.8673e-1 3.2483e-1 2.8912e+0
1.7295e-1 −3.5886e-1 −3.7704e-1 −9.5671e-2 9.4188e-2 5.6658e-1 2.8912e+0
1.7295e-1 −3.5886e-1 −3.4819e-1 4.9634e-2 9.4188e-2 5.6658e-1 3.0000e+0
2.0000e-1 0.0000e+0 0.0000e+0 0.0000e+0 1.2000e-1 7.7460e-1 3.0000e+0

Bn = 0.7746

Table 3.12: Residual and wave speeds of MHD shock tube test 5b

Iteration Residual Wfl Wsl Wsr Wfr

1 6.9522e-1 −1.1844e+0 −6.1355e-1 2.7471e-1 4.8993e-1
2 1.7943e-1 −1.0832e+0 −5.4425e-1 2.5233e-1 4.6603e-1
3 5.0732e-3 −1.0562e+0 −5.2513e-1 2.4641e-1 4.5885e-1
4 1.8160e-6 −1.0567e+0 −5.2554e-1 2.4663e-1 4.5905e-1
5 1.9769e-9 −1.0567e+0 −5.2554e-1 2.4663e-1 4.5905e-1
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Table 3.13: Exact solution of MHD shock tube test 6a (solid black line of Figure 3.14)

ρ vn vy vz pg Bt ψ

1.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 1.0000e+0 1.0000e+0 0.0000e+0
7.1386e-1 5.8342e-1 −5.6703e-1 0.0000e+0 5.6951e-1 3.5206e-1 0.0000e+0
7.1386e-1 5.8342e-1 −1.4004e+0 0.0000e+0 5.6951e-1 3.5206e-1 3.1416e+0
8.8546e-1 3.4177e-1 −1.2411e+0 0.0000e+0 8.1810e-1 2.3864e-1 3.1416e+0
6.4157e-1 3.4177e-1 −1.2411e+0 0.0000e+0 8.1810e-1 2.3864e-1 3.1416e+0
3.2226e-1 −5.4352e-1 −7.5467e-1 0.0000e+0 2.3251e-1 4.6173e-1 3.1416e+0
3.2226e-1 −5.4352e-1 −7.5467e-1 0.0000e+0 2.3251e-1 4.6173e-1 3.1416e+0
4.0000e-1 0.0000e+0 0.0000e+0 0.0000e+0 3.3333e-1 1.0000e+0 3.1416e+0

Bn = 1.25

Table 3.14: Residual and wave speeds of MHD shock tube test 6a

Iteration Residual Wfl Wsl Wsr Wfr

1 6.2482e-1 −1.5971e+0 −1.0287e+0 6.7702e-1 9.9144e-1
2 1.6930e-1 −1.4511e+0 −8.8359e-1 6.1508e-1 9.3479e-1
3 1.7080e-2 −1.4356e+0 −8.8885e-1 5.6970e-1 8.9181e-1
4 1.5478e-4 −1.4371e+0 −8.9012e-1 5.7320e-1 8.9403e-1
5 3.2059e-7 −1.4371e+0 −8.9013e-1 5.7323e-1 8.9405e-1

Table 3.15: Exact solution of MHD shock tube test 6b (solid black line of Figure 3.15)

ρ vn vy vz pg Bt ψ

1.0000e+0 0.0000e+0 0.0000e+0 0.0000e+0 1.0000e+0 1.0000e+0 0.0000e+0
7.1663e-1 5.7721e-1 −5.5635e-1 0.0000e+0 5.7331e-1 3.6182e-1 0.0000e+0
7.1663e-1 5.7721e-1 −1.3821e+0 1.5500e-1 5.7331e-1 3.6182e-1 2.7705e+0
8.8441e-1 3.4211e-1 −1.2343e+0 9.7515e-2 8.1650e-1 2.4919e-1 2.7705e+0
6.4152e-1 3.4211e-1 −1.2343e+0 9.7515e-2 8.1650e-1 2.4919e-1 2.7705e+0
3.2365e-1 −5.3327e-1 −7.7425e-1 −8.1532e-2 2.3419e-1 4.7503e-1 2.7705e+0
3.2365e-1 −5.3327e-1 −7.2576e-1 1.0345e-1 2.3419e-1 4.7503e-1 3.0000e+0
4.0000e-1 0.0000e+0 0.0000e+0 0.0000e+0 3.3333e-1 1.0000e+0 3.0000e+0

Bn = 1.25

Table 3.16: Residual and wave speeds of MHD shock tube test 6b

Iteration Residual Wfl Wsl Wsr Wfr

1 6.1805e-1 −1.5989e+0 −1.0254e+0 6.7442e-1 9.9270e-1
2 1.6641e-1 −1.4563e+0 −8.8308e-1 6.1248e-1 9.3639e-1
3 1.6370e-2 −1.4413e+0 −8.8680e-1 5.6843e-1 8.9546e-1
4 1.3366e-4 −1.4427e+0 −8.8806e-1 5.7177e-1 8.9759e-1
5 2.7676e-7 −1.4427e+0 −8.8807e-1 5.7180e-1 8.9760e-1
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Table 3.17: Exact solution of MHD shock tube test 7 (solid black line of Figure 3.16)

ρ vn vy vz pg Bt ψ

1.0000e+0 0.0000e+0 5.0000e+0 0.0000e+0 6.0000e-1 3.2500e+0 0.0000e+0
8.0908e-1 9.3535e-1 3.8493e+0 0.0000e+0 4.2152e-1 1.8551e+0 0.0000e+0
8.0908e-1 9.3535e-1 −2.3529e-1 4.0446e-1 4.2152e-1 1.8551e+0 2.9442e+0
1.7694e+0 9.9120e-2 2.7519e-1 3.0237e-1 1.8144e+0 1.6554e+0 2.9442e+0
1.1339e+0 9.9120e-2 2.7519e-1 3.0237e-1 1.8144e+0 1.6554e+0 2.9442e+0
4.0738e-1 −1.2734e+0 1.1081e+0 1.3579e-1 2.1323e-1 1.8834e+0 2.9442e+0
4.0738e-1 −1.2734e+0 −3.8721e+0 −1.3721e+0 2.1323e-1 1.8834e+0 7.8540e-1
5.0000e-1 0.0000e+0 −5.0000e+0 −2.5000e+0 3.0000e-1 3.2500e+0 7.8540e-1

Bn = 3.25

Table 3.18: Residual and wave speeds of MHD shock tube test 7

Iteration Residual Wfl Wsl Wsr Wfr

1 5.7203e-1 −4.0762e+0 −1.5950e+0 1.3839e+0 2.9997e+0
2 1.8913e-1 −3.9828e+0 −1.3063e+0 1.0509e+0 2.8512e+0
3 8.6393e-3 −3.9542e+0 −1.2395e+0 8.8355e-1 2.7973e+0
4 1.7363e-4 −3.9524e+0 −1.2465e+0 8.7248e-1 2.7925e+0
5 1.2942e-7 −3.9524e+0 −1.2466e+0 8.7262e-1 2.7925e+0

to determine the type of intermediate shock produced by the approximate solutions. The

states directly upstream and downstream of the intermediate shock were approximated with

the HLLD-FCT code developed for this dissertation, on a grid consisting of 2048 cells.

For coplanar case of test 5, the intermediate shock is traveling with a velocity of S =

−0.46546. The state variables directly upstream are: ρu = 0.6428, vnu = 0.5520, vyu =

−0.3723, vzu = 0.0, pgu = 0.2873, Btu = 0.3027, cfu = 1.1295, cau = 0.9661, csu = 0.7382,

c0u = 0.8630, and vsu = 1.0174 is the flow velocity in the shock reference frame. The state

variables directly upstream are: ρd = 0.8876, vnd = 0.2686, vyd = −0.8935, vzd = 0.0,

pgd = 0.5152, Btd = −0.1168, cfd = 1.0067, cad = 0.8222, csd = 0.8033, c0d = 0.9835, and

vsd = 0.7341. The Mach number w.r.t. the Alfvén speed is, Mau = 1.0531 upstream and

Mad = 0.8928 downstream. The flow upstream is subfast, and super-Alfvénic , cau < vsu <

cfu, while downstream it is subslow, and sub-Alfvénic, vsd < csd, cad. Thus, the compound

wave is composed of a 2-4 intermediate shock followed by a SR.

For the coplanar case of test 6, the intermediate shock is traveling with a velocity of
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S = −0.8961. The state variables directly upstream are: ρu = 0.6671, vnu = 0.6908, vyu =

−0.8670, vzu = 0.0, pgu = 0.5102, Btu = 0.09560, cfu = 1.5401, cau = 1.5301, csu = 1.1220,

c0u = 1.1290, and vsu = 1.5868 is the flow velocity in the shock reference frame. The state

variables directly upstream are: ρd = 0.7232, vnd = 0.5677, vyd = −1.3912, vzd = 0.0,

pgd = 0.5862, Btd = −0.3462, cfd = 1.5868, cad = 1.4698, csd = 1.0766, c0d = 1.1622,

and vsd = 1.4638. The Mach number w.r.t. the Alfvén speed is, Mau = 1.0369 upstream

and Mad = 0.9959 downstream. The flow upstream is superfast, and super-Alfvénic ,

cau, cfu < vsu, while downstream it is superslow, and sub-Alfvénic, csd < vsd < cad. Thus,

the compound wave is composed of a FR followed by a 1-3 intermediate shock.

Tests 5a and 6a are examples of Riemann problems with non-unique solutions. Both

the exact and approximate solutions satisfy the jump conditions of the shock because the

tangential magnetic fields are exactly coplanar. Approximate solutions for Tests 5b and

6b give similar results, but are incorrect since the tangential magnetic field are only close

to, but not exactly coplanar, the intermediate shock does not satisfy the jump conditions

and should be considered unphysical. A more detailed explanation of non-unique solutions

and numerical complications in problems close to non-uniqueness is given next section. In

Chapter 4, a new method for removing the ambiguity, i.e., the solution the approximation

converges to, is described.

3.5 Non-unique solutions to Riemann problems of ideal mag-

netohydrodynamics

Unique solutions to Riemann problems of ideal MHD are not guaranteed. For certain initial

conditions, the Riemann problem will have non-unique solutions. Non-unique solutions will

occur for problems with coplanar (anti-parallel) magnetic fields [2]. One solution has a

180◦ rotational discontinuity and slow shock and the other solution has a compound wave.

A method for constructing Riemann problems with non-unique solutions and non-planar

initial conditions is given by Torrilhon [39]. As with the coplanar case, one solution consists
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of a 180◦ rotational discontinuity and a slow shock and the other solution has a compound

wave. As discussed in this section, for cases with a 180◦ rotation in the solution (either

a compound wave or rotational discontinuity), convergence to the solution containing only

a rotational discontinuity is impossible with numerical approximations based on the finite

volume method.

Bn

By

Bz

Btr

Btl

α

Bnr

Bnl

Figure 3.17: Initial configuration for a coplanar magnetic field on both sides of the discon-
tinuity.

Using the same terminology and notation as Torrilhon [38], intermediate shocks and

compound waves are referred to as non-regular structures. Regular structures include rar-

efactions, linear discontinuities, and Lax shocks. The solution of the ideal MHD Riemann

problem that includes only regular structures is referred to as the r-solution. The solution

that contains a compound wave is referred to as the c-solution.

In this work, we use the coplanar and near coplanar cases of Test 5 and 6. Test 5 was

considered by Torrilhon [38]. The initial conditions (3.33) and parameters used here are

equivalent but have been scaled to the unit interval [0, 1] using

ρ̂ =
ρ

ρl
, v̂ =

v

al
, B̂ =

B
√
γpgl

, p̂g =
pg
γpgl

, L̂x = 1, and t̂f =
altf
Lx

. (3.36)
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Figure 3.18: Non-convergence for the coplanar case. A non-regular structure (compound
wave) in the approximate solution exists in place of the rotational discontinuity in the exact
solution at x = 0.303. The domain used for error analysis is x = [0.254, 0.481].

The initial discontinuity is located at x = 0.4, the final time is tf = 0.207. The exact solution

containing only regular structures and the approximate solution containing a compound

wave for ρ and By are shown in Figure 3.18. For a numerical scheme to converge to the

r-solution, the density and the magnitude of the transverse magnetic field must remain

constant between the left-going fast and slow structures, shown in Figure 3.18 at x = 0.254

and x = 0.339 respectively, otherwise a compound wave will appear.

The coplanar case of Test 6 is was considered in [30], except we have used pgr = 1/3,

and Bn = 1.25. The initial conditions are given by (3.34). The initial discontinuity is

located at x = 0.5, the final time is tf = 0.15. The exact solution containing only regular

structures and the approximate solution containing a compound wave for ρ and By are

shown in Figure 3.18. The density and the magnitude of the transverse magnetic field must

remain constant between the left-going fast and slow structures, shown in Figure 3.19 at

x = 0.347 and x = 0.401 respectively, otherwise a compound wave will appear.

Falle and Komissarov [16] described the appearance of compound waves in numerical

simulations in terms of the properties of the planar ideal MHD equations. In this case,

the system of equations is reduced from seven to five by removing the equations for the

69



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

x

ρ α = π

-0.8

-0.4

0

0.4

0.8

0 0.2 0.4 0.6 0.8 1

x

By α = π

exact
non-converging

Figure 3.19: Non-convergence for the coplanar case. A non-regular structure (compound
wave) in the approximate solution exists in place of the rotational discontinuity in the exact
solution at x = 0.365. The domain used for error analysis is x = [0.346, 0.551].

z-component of the velocity and magnetic field. In the reduced system, the Alfvén waves

are lost but the other characteristic fields are unchanged. The Alfvén velocity is no longer

a characteristic speed of the system but rotational discontinuities still satisfy the jump

conditions and propagate at that velocity. In planar ideal MHD, a rotational discontinuity

can only rotate the perpendicular magnetic field by 180◦ because it is restricted to a single

plane.

Finite volume methods have no way of compensating for the reduction in dimension

in the planar case. If one of the perpendicular components of velocity and magnetic field

vanish, there is no mechanism to transfer energy between the perpendicular field components

across the rotational discontinuity. The field in a cell would need to undergo a full 180◦

rotation in one time step in order for the magnitude of the perpendicular magnetic field

to remain constant. Numerical diffusion and stability constraints prohibit the full rotation

from being realized in one time step. In addition, any interpolation with order greater

than piecewise constant will produce a magnetic field at the cell interface (where the flux

is calculated) with a magnitude that is less than that in the center of the adjoining cells.

From (2.38), any change in kinetic or magnetic energy will result in an increase in gas
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Figure 3.20: Top: initial state of left-going rotational discontinuity for the coplanar case of
Test 5. Middle: the left-going rotational discontinuity for the coplanar case of Test 5 after
onetime step. The gas pressure is increased as a result of the decrease in Bt. Bottom: the
left-going rotational discontinuity for the coplanar case of Test 5 after two time steps. The
artificial increase in pressure creates the compound wave.

pressure that is connected to the upstream state through a shock and the downstream

state through a rarefaction wave (i.e., a compound wave). Thus, conservative finite volume

schemes cannot converge to the r-solution for cases involving a 180◦, or near 180◦ rotation.

The formation of the compound wave is shown in Figure 3.20. This is especially problematic

for low-resolution grids because a greater amount of numerical diffusion is expected [2, 38].
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3.6 Nonuniform convergence

Numerical diffusion also produces compound waves in Riemann problems with initial con-

ditions near a critical state with a non-unique solution [38]. For these problems, the angle

between the perpendicular magnetic fields separated by the initial discontinuity, called the

twist angle α, determines uniqueness. Solutions for α 6= nπ, with n ∈ Z are unique. Com-

pound waves appear in numerical solutions on coarse grids as α approaches nπ [38]. A

compound wave connecting non-planar states, i.e. α 6= nπ, does not satisfy the Rankine-

Hugoniot equations (2.39)-(2.43) and a numerical solution containing one is therefore not

correct. As numerical diffusion is decreased through grid refinement, the compound wave

loses its structure and the regular waves emerge. Torrilhon [38] called this property pseudo-

convergence because convergence is initially towards the c-solution; divergence from the

c-solution only occurs when enough diffusion is eliminated through grid refinement. The

solution for various levels of grid refinement are shown for a near-coplanar cases of Test 5

and Test 6 in Figure 3.21 and Figure 3.22 respectively. Torrilhon [38] reported that a sim-

ulation using 20,000 grid points had not completely converged to the r-solution. Pseudo-

convergence also occurs in non-planar MHD Riemann problems with initial conditions near

a critical state with a non-unique solution. The new CWM technique for removing pseudo-

convergence is described in the following chapter. The technique is demonstrated on copla-

nar, near coplanar, and non-planar cases.
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Figure 3.21: Pseudo-convergence for a near-coplanar case. As the grid is refined from 1024
and 2048 points, the solution begins to diverge from the c-solution.
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Figure 3.22: Pseudo-convergence for a near-coplanar case. As the grid is refined from 1024
and 2048 points, the solution begins to diverge from the c-solution.
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Chapter 4: Compound wave modification

In Chapter 3, it was shown that FV schemes exhibit pseudo-convergence, where convergence

to the solution containing regular waves only occurs at higher grid resolutions, for near

coplanar case, and not at all for the coplanar case of a Riemann problem of ideal MHD. This

chapter gives a detailed explanation of the formation of a compound wave and purposes a

new method that involves modifying HLLD flux, which produces solutions with only regular

waves at all grid resolution for coplanar and non-planar cases. The process, referred to as

compound wave modification (CWM), approximates the flux associated with the compound

wave and removes it from the HLLD flux before the solution is advanced in time. The

performance increase from the new HLLD-CWM is demonstrated with root-square-mean-

error (RMSE) calculations.

4.1 Convergence with finite volume schemes

The influence of a compound wave on the numerical solution can be minimized by limiting

the artificial perturbation in pressure caused by numerical diffusion. We do this by sub-

tracting flux so that only the tangential components of momentum and the magnetic field

are affected and thus the upstream and downstream states will still satisfy the jump condi-

tions for a rotational discontinuity. The subtracted flux is chosen to be proportional to the

flux contribution of the compound wave. We refer to this as compound wave modification

(CWM) and its use in conjunction with HLLD as HLLD-CWM. The flux responsible for

the formation of the compound wave is calculated by solving a reduced Riemann problem

with initial conditions set to the upstream and downstream states of the 180◦ rotational

discontinuity. These intermediate states correspond to regions U∗l and U∗2l of Figure 2.11

for the coplanar (near-coplanar) problem shown in Figure 3.18 (3.21). For test 5a, the exact
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values in the intermediate region are given by rows 2 and 3 of Table 3.9. The exact values

are generally not known, so they are approximated with HLLD. If the wave is traveling

in the positive direction, i.e., the direction of the outward face normal, then intermediate

states correspond to regions U∗2r and U∗r of Figure 2.11. The direction of the wave is deter-

mined by the wave speeds, Sm (2.51), and S∗r (2.61). The interface state are U∗l and U∗2l,

if Sm > 0, and U∗2r and U∗r , if S∗r > 0.
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Figure 4.1: The slow compound wave of Test 5a, approximate non-converging c-solution,
and exact r-solution for the coplanar case.

The solution to the reduced coplanar Riemann problem as well as the solution to the full

coplanar Riemann problem are shown in Figure 4.1. Three left-going structures are visible

in the solution to the reduced Riemann problem. The intermediate shock at x ≈ 0.3 is

directly followed by a slow rarefaction whose head is located at x ≈ 0.3 and tail at x ≈ 0.32.

The speed at the head of the slow rarefaction equals the speed of the intermediate wave,

v−ca, and the two structures move together forming a compound wave. The third structure

in the compound wave solution is a fast rarefaction that connects the upstream state of the

intermediate shock to the initial conditions. The speed at the head of the fast rarefaction

(dotted black line in Figure 4.1) is equal to the speed at the tail of the fast rarefaction in

the solution to the full coplanar Riemann problem (solid black line in Figure 4.1). These

two fast rarefactions, one in the regular solution to the full Riemann problem and one in
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Figure 4.2: The fast compound wave of Test 6a, approximate non-converging c-solution,
and exact r-solution for the coplanar case.

the compound wave, form a single structure in the compound wave solution to the full

coplanar Riemann problem. The compound wave solution also produces a right-going slow

rarefaction wave that connects the state downstream of the left-going slow rarefaction wave

to the initial right-state. The change in density through the right-going slow rarefaction is

equal to the difference in density between the exact solution and compound wave solution

downstream (left) of the contact discontinuity, at x ≈ 0.48 in Figure 4.1. The compound

wave solution requires four structures, as opposed to one in the regular solution (i.e., the

rotational discontinuity), to connect two intermediate states in full Riemann problem.

The intermediate states are calculated with the nonlinear solver described in Section 2.6.3.

The accuracy is determined by the number of iterations. If the number of iterations is not

restricted, the jump conditions can be satisfied to near machine precision. This precision

was not used in the solutions presented here, but may be used when the solution is known

to contain at most one non-regular structure. In that case, the exact solution only needs

to be calculated once (at the beginning) and the intermediate states can be used for the

remainder of the calculation. If the number of iterations is set to zero, the intermediate

states are those found from the HLLD approximate Riemann solver. We have found con-

vergence to the correct solution to be independent of the number of iterations used in the
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exact solver. This is important because it eliminates the need of a nonlinear solver. Their

implementation can be complex and they have the potential to diverge because of the use

of Newton’s method. The implementation of CWM is simplified because it uses the HLLD

intermediate states.

It is important to limit the removal of the flux responsible for producing the compound

wave in a way that does not affect the solution in other parts of the domain. In CWM,

the flux is modified if the cell is located in a discontinuity region with a near-180◦ rotation.

Cell i is considered to be in such a discontinuity region when |ψi+1 − ψi−1| > βT where

βT is a threshold value. Unless otherwise stated, a value of βT = 2.0 radians was used.

This criteria ensures that the flux across regular shocks, waves, or contact discontinuities is

unchanged and only rotational discontinuities with a large change in α are affected. Only

rotational discontinuities can change the orientation of the tangential magnetic field if the

normal component of the magnetic field is nonzero. If this criteria is met, the intercell flux

at i is modified according to Fr
i = Fr

i − AFc
i , where Fr is the flux for the full Riemann

problem, Fc is the flux due to the compound wave, and A is a user-specified constant. The

value of A determines the states upstream and downstream of the rotational discontinuity.

We set A = 0.1 in the near-coplanar and coplanar problems shown in Figures 4.3 and 4.8

and set the Courant number less than 0.4 is used in order to limit oscillations downstream

of the rotational discontinuity.

As shown in Figure 4.3, the transition across the rotational discontinuity is initially

unresolved. The CWM procedure removes the compound wave from the solution except

in this layer and leaves a deviation from the exact solution as the rotational discontinuity

is crossed. Because the deviation occurs where there is a change in sign of the tangential

magnetic field, it needs to be detected, unless an exact solver is used, in which case the

location is determined from the wave speed.

A point is considered to be within the transition region of a 180 rotation if |αi+2−αi−2| >

2.5 rad. The state variables at these points must be adjusted in order to satisfy the jump

conditions of a rotational discontinuity: [ρ] = [vn] = [pg] = [B2
⊥] = 0, ±√ρ[vy] = [By],
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Figure 4.3: The approximate solution after the first flux correction of HLLD-CWM and
exact r-solution to the full Riemann problem for the near-coplanar case with 4096 grid
points. The compound wave is almost completely removed, except near x = 0.303 where a
weak intermediate shock remains.
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Figure 4.4: The approximate solution after the first flux correction of HLLD-CWM and
exact r-solution to the full Riemann problem for the near-coplanar case with 2048 grid
points. The compound wave is almost completely removed, except near x = 0.365 a weak
intermediate shock remains.
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Figure 4.5: The approximate solution after the first flux correction of HLLD-CWM and
exact r-solution to the full Riemann problem for the near-coplanar case with 2048 grid
points. The compound wave is almost completely removed, except near x = 0.365 where a
weak intermediate shock remains.
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Figure 4.6: The approximate solution after the first flux correction of HLLD-CWM and
exact r-solution to the full Riemann problem for the near-coplanar case of Test 5 with 4096
grid points. The compound wave is almost completely removed, except near x = 0.366 and
x = 0.691 where weak intermediate shocks remain.
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±√ρ[vy] = [By] ±√ρ[vz] = [Bz], and [E] = ±√ρ[v ·B]. A straight-forward adjustment is

to have points with a rotation angle less (greater) than π/2 be assigned the value of the

upstream (downstream) value outside of the transition. Although this approach produces

acceptable results for the considered one-dimensional cases, it is not conservative because

mass, momentum, and energy are removed. However, the magnetic energy in the transition

can be transferred from one tangential component to the other while maintaining conser-

vation and satisfying the jump conditions. We also note that the goal is to produce the

correct states upstream and downstream of the rotational discontinuity, not to describe how

energy is stored throughout the transition across the rotational discontinuity.
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Figure 4.7: The rotational discontinuity and slow shock solution found using HLLD-CWM
without the (optional) flux redistribution step, HLLD, and the exact solver using 512 grid
points for (top) a near-coplanar and pseudo-converging case and (bottom) the planar and
non-converging (bottom) case.
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Figure 4.8: The rotational discontinuity and slow shock solution found using HLLD-CWM
after the (optional) flux redistribution step, HLLD, and the exact solver using 2048 grid
points for (top) a near-coplanar and pseudo-converging case and (bottom) the planar and
non-converging (bottom) case.

Solutions obtained using HLLD-CWM, without any additional artificial viscosity, and

HLLD for a near-coplanar case and the coplanar case of Test 5 with A = 0.1 for 512 grid

points are shown in Figure 4.7, and for 2048 grid points are shown in Figure 4.8. The

solutions now include a left-going rotational discontinuity and slow shock. This is the

correct solution for ideal MHD. Pseudo-convergence does not occur in the coplanar case –

successive give refinement only reduces the error w.r.t. the r-solution. For the near-coplanar

case, pseudo-convergence occurs – the compound wave structure is lost as the grid is refined

from 1024 to 2048 points.
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In the unmodified solution for the near-coplanar case of Test 5, the state between the

left-going slow shock and the contact discontinuity slowly converges to the exact solution,

but at different rates. The state should be constant throughout the region, but directly

behind the left-going slow shock, the solution differs from the exact by ≈ 0.7% and the

difference behind the contact discontinuity is ≈ 2%. For the coplanar case, the solution

in this region remains constant, but differs from the exact solution by ≈ 3%. These issues

are eliminated with HLLD-CWM. The appearance of the rotational discontinuity and slow

shock is independent of the value of α and the regular structures are present and have

correct values for the state variables in both cases.
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Figure 4.9: The fast rarefaction and rotational discontinuity solution found using HLLD-
CWM without the (optional) flux redistribution step, HLLD, and the exact solver using 512
grid points for (top) a near-coplanar and pseudo-converging case and (bottom) the planar
and non-converging (bottom) case.
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Figure 4.10: The fast rarefaction and rotational discontinuity solution found using HLLD-
CWM without the (optional) flux redistribution step, HLLD, and the exact solver using
2048 grid points for (top) a near-coplanar and pseudo-converging case and (bottom) the
planar and non-converging (bottom) case.

For Test 6, the solutions of the coplanar and near coplanar cases obtained with A = 0.05

using HLLD, and HLLD-CWM without any additional artificial viscosity for 512 grid points

are shown in Figure 4.9, and for 2048 grid points are shown in Figure 4.10. The approximate

position of the left-going SS is improved with HLLD-CWM for both levels of grid refinement.

This test indicates HLLD-CWM performs extremely well for weak intermediate shocks, with

minimal error through the transition.

The solution of Test 7 with A = −0.1 and 4096 grid points using HLLD, and HLLD-

CWM without any additional artificial viscosity is shown in Figure 4.11. The right-going
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Figure 4.11: Solution consisting of two fast rarefactions and two rotational discontinuities
found using HLLD-CWM without the (optional) flux redistribution step, HLLD, and the
exact solver using 2048 grid points for the non-planar case.

compound wave is no longer present in either the HLLD or HLLD-CWM solution. A small

deviation at x ≈ 0.691 is present in the CWM solution. This can be eliminated by increasing

the threshold value βT for when CWM is applied. However, if βT were increased so that

CWM was not applied to the right-going compound wave, the error in the approximate

solution at the tail of the right-going rarefaction located at x ≈ 0.732 would increase. This

is a desirable property of the CWM method, the adjustment applied is reduced as the

compound wave disappears. The jump across the CD is still incorrect with and without

CWM, however, the state downstream of the CD is better approximated with CWM because

the jump across the left-going SS at x ≈ 0.47 is more accurate. The maximum value of

ρ approximated with CWM is 1.7657 and 1.5596 without it. The percent difference form

the exact solution downstream of the CD (row 4 of Table 3.17) is reduce from 12% to 0.2%

when CWM is enabled.

Test 7 differs from Tests 5 and 6 in that the base scheme does not approximate the

positions of the SS downstream of a CW correctly. The SCW of Tests 5a and 5b removed

the SS from the approximate solution. In Tests 6a and 6b, the approximated position of the

SS is relatively accurate, although slight improvement is seen when CWM is enabled. In
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Test 7, the position of both the left- and right-going SS is incorrect. Although still incorrect,

when CWM is enabled, the approximation of the shock positions improves.

The increase in accuracy obtained with CWM was demonstrated with three different

test problems. In each case, when CWM was enabled, the jump across and position of each

wave affected by pseudo-convergence was more accurately captured. In the next section,

the increase in accuracy provided by CWM is quantified with RMSE calculations where

CWM is shown to reduce the RMSE for both coplanar and near coplanar cases.
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Figure 4.12: The approximate solution after the first flux correction of HLLD-CWM and
exact r-solution to the full Riemann problem for the near-coplanar case with 2048 grid
points. The compound wave is almost completely removed, except near x = 0.365 where a
weak intermediate shock remains.

4.2 Error analysis

The appearance of regular structures in the approximate solution is also independent of grid

refinement in the region x = [0.254, 0.481] of Figure 4.8 for Test 5 and x = [0.348, 0.551]

of Figure 4.10, where the c-solution differs form the r-solution. This is the region between

the tail of the left-going fast rarefaction and the right-going contact discontinuity (CD).

The region includes either a left-going slow shock and rotational discontinuity or, a slow

compound wave for Test 5 or a fast compound wave and slow shock for Test 6.
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The RMSE was computed using

RMSE =

√√√√ M∑
i=1

E2
i ,

and

E =
1

N

N∑
i=1

|Ui − Uex(xi)|

where M is the number of conservative state variables, N is the number of grid points,

Ui is an approximated conservative state variable, and Uex is the exact solution for the

conservative state variable.
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Figure 4.13: RMSE in x = [0.254, 0.481] using HLLD (blue) and HLLD-CWM (red) for
Tests (left) 5a and (right) 5b.

The RMSEs of the original HLLD scheme and the modified HLLD-CWM scheme for

both the coplanar and near-coplanar cases of Test 5 are shown in Figure 4.13. For the

near-coplanar case, a reduction in RMSE through grid refinement occurs with both HLLD

and HLLD-CWM. Initially convergence is much quicker with HLLD-CWM. As numerical

diffusion is decreased through grid refinement, the compound wave breaks apart and the
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convergence rate using HLLD increases at about 210 grid points. For the coplanar case,

the RMSE is reduced through grid refinement only when the HLLD-CWM flux is used.

Note that the domain used in this analysis differs slightly from x = [0.2, 0.4] used in [38];

the domain used here covers the largest differences between the exact and non-converging

solution.
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Figure 4.14: RMSE in x = [0.348, 0.551] using HLLD (blue) and HLLD-CWM (red) for
Tests (left) 6a and (right) 6b.

The RMSEs of the original HLLD scheme and the modified HLLD-CWM scheme for

both the coplanar and near-coplanar cases of Test 6 are shown in Figure 4.14. Unlike Test 5,

a regular slow shock is located in the domain in which the RMSEs were computed. The

presence of the regular shock is the reason for the initial reduction in error with HLLD

for the coplanar case. For the near-coplanar case, a reduction in RMSE through grid

refinement occurs with both HLLD and HLLD-CWM. As with Test 5, convergence is faster

with HLLD-CWM until between 210 and 211 grid points at which point the rate using HLLD

increases at about. For the coplanar case, after the initial convergence, between 28 and 29

grid points, only HLLD-CWM is able to reduce the RMSE. The CWM should be tested

with high order WENO schemes. This has the potential to reduce the need for artificial

viscosity downstream of the rotational discontinuity at higher Courant numbers.
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The new method known as CWM, which eliminated the compound wave from the so-

lution to coplanar and near coplanar cases at all grid resolutions. The CWM method was

shown to localize the effects of a compound wave to the transition layer of a rotational

discontinuity while maintaining conservation for a multiple of test problems. For weak

intermediate shocks, as in Test 6, the compound wave was removed with minimal error

through the transition. In Test 7, CWM was shown to drastically reduce the effects of a

compound wave in the presence of other numerical inaccuracies. These results have never

been achieved prior to CWM without an exact solver. In the next section, a description of

numerical methods for two-dimensional HD and MHD is given. CT is incorporated into the

ideal MHD solver to maintain ∇·B = 0 the machine precision. The process of implementing

the solvers for shared memory parallelism is described. Results concluding the GPU out

preforms the CPU by two to three times are reported.
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Chapter 5: Parallel processing

A description of a new method, known as CWM, which produces an approximate solution

to Riemann problems of ideal MHD that contain only regular waves without knowledge of

the exact solution was completed in the last chapter. The final chapter of this dissertation

describes the implementation of a multidimensional flow solver for HD and MHD capable of

shared memory parallelism on both a CPU and GPU. An overview of the multidimensional

algorithms and grid structure is given. Although the HD solver is relatively unchanged,

CT [15] is incorporated into the MHD solver to ensure that ∇ · B = 0 throughout the

simulation (assuming it was initially zero). Important concepts for parallel programming

on shared memory devices, e.g., avoiding memory contention, are described. A performance

comparison of parallel execution for three multidimensional test problems of HD and MHD

is given. We find a performance increase of seven times for the GPU over the CPU when

measured by cells per second.

5.1 Methods for ideal MHD in higher dimensions

Care must be taken in multidimensional MHD simulations to ensure errors associated with

∇ ·B do not grow large enough to introduce numerical instabilities. A number of different

approaches have been devised to contain the growth of ∇ ·B. A brief description of a few

of the more popular approaches is given below. For a thorough review and a performance

comparison of the schemes discussed below, see [40].
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Powell et al. [27] derived the following non-conservative form of (2.34) - (2.37) where

source terms proportional to ∇ ·B are added to the right-hand side

∂ρ

∂t
+∇ · (ρv) = 0 , (5.1)

∂(ρv)

∂t
+∇ ·

[
ρv ⊗ v +

(
pg +

B2

2

)
I−B⊗B

]
= −B(∇ ·B) , (5.2)

∂E

∂t
+∇ ·

[(
E + pg +

B2

2

)
v − v ·B⊗B

]
= −v ·B(∇ ·B) , and (5.3)

∂B

∂t
+∇ · [v ⊗B−B⊗ v] = −v(∇ ·B). (5.4)

It is known as the eight-wave scheme with the eighth wave corresponding to the propagation

of ∇ ·B.

Brackbill and Barnes [4] introduced a corrective step for B where the updated solution

is projected to one that is divergence free. The so-called projection scheme corrects the

updated magnetic field by subtracting the scalar potential associated with the updated

field. This is done by writing the updated solution B∗ as the sum of the curl and gradient

of the vector and scalar potentials,

B∗ = ∇×A +∇φ. (5.5)

The correction of (5.5) is found by taking the curl of both sides and solving the resulting

Poisson equation

∇2φ = ∇ ·B∗. (5.6)

The solution of (5.6) is then subtracted from B∗ to give the time advanced magnetic field

as

Bn+1 = B∗ −∇φ. (5.7)
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In order for ∇ · Bn+1 = 0, the Laplacian of (5.6) must be calculated as the divergence of

the gradient.

Ui,j
Bx,i+1/2,jBx,i−1/2,j

By,i,j+1/2

By,i,j−1/2ξz,i−1/2,j−1/2 ξz,i+1/2,j−1/2

ξz,i−1/2,j+1/2 ξz,i+1/2,j+1/2

Figure 5.1: Staggered field geometry of the constrained transport scheme. The components
of the magnetic field are located at the cell interfaces, and ξz is located at the cell corners.

The final approach discussed here, and the one implemented for this dissertation, is the

CT method of Evans and Hawley [15]. For CT, the ∇ ·B = 0 is maintained by staggering

the grid with the magnetic field components placed at the cell interfaces. The electromotive

force E = −v ×B is defined along the edges in three-dimensions and at the cell corners in

two-dimensions. Following the notation of [34], the z-component of the electromotive force

is denoted ξz. The placement of B and ξz in two-dimensions is shown in Figure 5.1, with

Bx placed at xi+1/2, yj and By place at xi, yj+1/2. The integration is done along cell edges

in terms of finite areas instead of finite volumes. The updated magnetic field components

are

Bn+1
x,i+1/2,j = Bn

x,i+1/2,j −
δt

δy

(
ξz,i+1/2,j+1/2 − ξz,i+1/2,j−1/2

)
, and (5.8)

Bn+1
y,i,j+1/2 = Bn

y,i,j+1/2 +
δt

δx

(
ξz,i+1/2,j+1/2 − ξz,i−1/2,j−1/2

)
. (5.9)
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Due to perfect cancellation, the numerical divergence in the cell

(∇ ·B)i,j =
1

δx

(
Bx,i+1/2,j −Bx,i−1/2,j

)
+

1

δy

(
By,i,j+1/2 −By,i,j−1/2

)
(5.10)

remains zero after the solution is updated.

The electromotive forces (EMFs) are initially calculated at the faces and must be in-

tegrated to the corners. Gardiner and Stone [18] argued that simple averaging across the

faces will produce incorrect results for plane-parallel grid-aligned flows and proposed an

upwind method. They gave the EMFs at the cell corners as

ξz,i+1/2,j+1/2 =
1

4
(ξz,i+1/2,j + ξz,i+1/2,j+1 + ξz,i,j+1/2 + ξz,i+1,j+1/2) (5.11)

+
δy

8

((
∂ξz
∂y

)
i+1/2,j+1/4

−
(
∂ξz
∂y

)
i+1/2,j+3/4

)
(5.12)

+
δx

8

((
∂ξz
∂x

)
i+1/4,j+1/2

−
(
∂ξz
∂y

)
i+3/4,j+1/2

)
. (5.13)

The derivatives of the EMF, ∂ξz/∂y (∂ξz/∂x) , at the x (y) interfaces are upwinded

based on the contact mode. In [18], they are given as

(
∂ξz
∂y

)
i+1/2,j+1/4

=



(
∂ξz
∂y

)
i,j+1/4

if vn,i−+1/2,j > 0,(
∂ξz
∂y

)
i+1,j+1/4

if vn,i+1/2,j < 0,

1
2

((
∂ξz
∂y

)
i,j+1/4

+
(
∂ξz
∂y

)
i+1,j+1/4

)
otherwise.

(5.14)

The derivatives are

(
∂ξz
∂y

)
i,j−1/4

= 2

(
ξrz,i,j − ξz,i,j−1/2

δy

)
. (5.15)

where ξrz,i,j is a reference EMF computed at the cell center, see Figure 5 of [34]. Similar
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expressions can be obtained for ∂ξz/∂x.

The steps of the two-dimensional algorithm are given as follows:

1. Calculate the fluxes at each interface replacing the normal component of the magnetic

field at cell center with the value at the interface.

2. Calculate the EMFs at the cell corners using the algorithm described above.

3. Calculate the reference field ξri,j at the cell centers.

4. Update the hydrodynamical conserved variables and Bz at the cell centers.

5. Update the magnetic field at each interface using CT.

6. Calculate the normal and tangential components of the cell-centered magnetic field

as the average of the interface values.

7. Advance the solution in time.

8. Apply higher order extension.

9. Update the solution.

10. Calculate new time step and repeat steps 1-9 until stopping criteria is met.

In the next section, a detailed description is given of the parallel implementations of the

one- and two-dimensional algorithms of this dissertation.

5.2 Shared memory parallelism

Shared memory parallelism refers to simultaneous execution on a common section of mem-

ory. It was implemented for this dissertations using Thrust, a C++ parallel template library

based on the Standard Template Library (STL). It supports four device backends: CUDA,

OMP, TBB, and the standard C++ device for serial runs. The CUDA backend utilizes the

GPU, while the OMP and TBB backends utilize multi-core processing on the CPU. This

dissertation compares the performance of the the CUDA and OMP backends.
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It is essential that there is no overlap of memory access of the different threads. In

fluid dynamics, this is achieved by coloring the faces/edges. Coloring refers to grouping the

faces/edges, i.e., coloring them, so that no two members of the group need to access the

same memory space for the calculations. For FV schemes, an iteration over the faces in

serial becomes an iteration over the colors and the corresponding faces in parallel.
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Figure 5.2: Colored grouping of interior faces for avoiding memory contention with cell
centered finite volume schemes. Four groups, labeled 1-4, are required.

A possible coloring, and the one implemented for this dissertation, of the interior faces

for cell-centered FV schemes is shown in Figure 5.2. For each loop, the flux at the face

is calculated and the residual at the cells is built by adding the contribution of each face.

Coloring ensures two faces will not attempt to update the residual of a cell simultaneously.

Coloring is more complicated when CT is used in conjunction with a cell-centered FV

scheme. In this case, each loop over the faces consists of a contribution to the residual at the

cell center and a contribution to the EMF at the cell corner. Not only accessing the same

cell, but also the same point must be avoided. The coloring scheme shown in Figure 5.2

only avoids one of these potential pitfalls, because the faces/edges of each group can access

the same point simultaneously. An alternative coloring scheme is shown in Figure 5.3 where

eight colors are used instead of four. In this case, the faces and the edges are colored. This

94



1

3

1

3

2

4

2

4

1

3

1

3

2

4

2

4

1

3

1

3

5 6 5 6

7 8 7 8

5 6 5 6

7 8 7 8

5 6 5 6

Figure 5.3: Colored grouping of interior faces for avoiding memory contention with cell
centered finite volume schemes plus constrained transport. Eight groups, labeled 1-8, are
required.

is equivalent to doubling the amount of colors for the faces since edges and faces are the

same in two-dimensions.

5.3 Efficient algorithms

This section discusses increasing parallel performance with efficient data storage and proper

utilization of computational power. Two types of data storage are AoS and SoA. With

limited memory available on the GPU, it is important to limit data storage. This is achieved

through function composition, or operator fusion.

The goal of operator fusion is to reduce storage of temporary data for similar operations.

As an example, consider the two transformations, f(x) and g(f(x)) [19].

thrust :: device_vector <float > x(n); // independent variable

thrust :: device_vector <float > y(n); // y = f(x)

thrust :: device_vector <float > z(n); // z = g(y)

// compute y = f(x)

thrust :: transform(x.begin (),x.end(),y.begin (),f());

// compute z = g(y)
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thrust :: transform(y.begin (),y.end(),z.begin (),g());

The above example requires storage of 3n floats, 2n reads, 2n writes, and uses n temporary

floats. The operations can be fused by using transform iterators.

thrust :: device_vector <float > x(n); // independent variable

thrust :: device_vector <float > z(n); // z = g(y) = g(f(x))

// compute z = g(f(x))

thrust :: transform(make_transform_iterator(x.begin (),f()),

make_transform_iterator(x.end(),f()),

z.begin(),

g());

Using transform_iterators reduces the storage requirements to 2n floats, n reads, n

writes, and no temporary storage. As another example, consider initializing the cell-centered

variables for an HD shock tube problem in one-dimension. The initial discontinuity is given

by discontinuity_position and the initial left and right states are given in primitive

variables by the tuples of floats state_l and state_r respectively. The inefficient method

for initializing the cell centers with conservative state variables is given below.

// type definitions

typedef thrust :: device_vector <float ,float > Point; // (x,y)

typedef thrust :: device_vector <float ,float ,float > Vector;// (d, mx, E)

typedef thrust :: device_vector <Point > PointArray; // SoA

typedef thrust :: device_vector <Vector > VectorArray; // SoA

int n; // number of cells

float discontinuity_postion;

PointArray cell_positions(n);

VectorArray primitive_states(ncell);

VectorArray conservative_states(n);

// compute cell positions

thrust :: transform_n(thrust :: make_counting_iterator (0),

n,

cell_positions.begin (),

cells_initialize ());

// set state of cell based on position

thrust :: transform_n(cell_positions.begin (),

cell_positions.size(),

primitive_states.begin(),

shock_tube_initialize(discontinuity_postion ,

state_l ,
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state_r));

// convert primitive variables to conservative variables

thrust :: transform_n(primitive_states.begin (),

primitive_states.size(),

conservative_states.begin(),

convert_primitive_to_conservative ());

The storage of the cell positions and primitive variables is eliminated using the

make_transform_iterator as follows

// type definitions

typedef thrust :: device_vector <float ,float ,float > Vector;// (d, mx, E)

typedef thrust :: device_vector <Vector > VectorArray; // SoA

int n;

float discontinuity_postion;

VectorArray conservative_states(n);

// set conservative state at cell center based on position

thrust :: transform_n(make_transform_iterator(

make_transform_iterator(

make_device_counting_iterator (),

cells_initialize ()),

shock_tube_initialize(discontinuity_postion ,

state_l ,

state_r)),

ncell(),

conservative_states.begin(),

convert_primitive_to_conservative ());

see Appendix B for the definitions of transform_n and make_device_counting_iterator.

By fusing the transformations, the need to store 5n floats was eliminated, the number

of reads and writes was reduced by 5n, and no temporaries were stored. The storage

requirements are reduced by 10n in the case of multi-dimensional MHD. Transform iterators

help reduce the amount of stored data, however, it is important to properly store the

remaining data to achieve memory coalescing.

Memory coalescing occurs when multiple memory addresses are accessed with a single

transaction. A warp is 32 consecutive threads on the GPU. It can access 128 bytes, i.e., 32

single precision values, with one transaction. If memory is uncoalesced, multiple transac-

tions are required to load 128 bytes. Coalescing does not occur when data is stored with AoS,

it will however, with SoA. Below is an example of a structure containing one-dimensional
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hydrodynamic state variables.

struc conservative_variables{

float density;

float momentum_x;

float energy;

}

conservative_variables *state; // AoS

state[i]. density = some_number;

state[i]. momentum_x = another_number;

state[i]. energy = one_more_number;

To ensure memory is coalesced, the variables need to be stored in an SoA, as shown

below.

struc conservative_variables{

float *density;

float *momentum_x;

float *energy;

}

conservative_variables state; // SoA

state.density[i] = some_number;

state.momentum_x[i] = another_number;

state.energy[i] = one_more_number;

Memory coalescing can be achieved with thrust through the use of the zip_iteraor. It

creates tuples from arrays on the fly. Converting from primitive variables to conservative

variables using the slower AoS approach is shown below.

struc convert_primitive_to_conservative

: public thrust :: unary_function <primitive_variables ,

conservative_variables >

{

float _gamma;

convert_primitive_to_conservative(float gamma)

: _gamma(gamma) {}

__host__ __device__

conservative_variables operator ()(const primitive_variables& pstate)

float half = 1.0f/2.0f;

float d = pstate.density;

float vx = pstate.velocity_x;

float pg = pstate.pressure_gas;
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float density = d;

float momentum_x = d*vx;

float energy = pg /(1.0f - this ->_gamma) + half*d*vx*vx;

return make_conservative_variables(density ,momentum_x ,energy);

}

thrust :: device_vector <primitive_variables > pstate(n); // AoS

thrust :: device_vector <conservative_variables > state(n); // AoS

thrust :: transform_n(pstate.begin (),

pstate.size(),

state.begin(),

convert_primitive_to_conservative(gamma));

The faster SoA approach using the zip_operator is shown below.

struc convert_primitive_to_conservative

: public thrust :: unary_function <tuple <float ,float ,float >,

tuple <float ,float ,float >>

{

float _gamma;

convert_primitive_to_conservative(float gamma)

: _gamma(gamma) {}

__host__ __device__

tuple <float ,float ,float >operator ()(const tuple <float ,float ,float >& pstate)

float half = 1.0f/2.0f;

float d = thrust ::get <0>( pstate);

float vx = thrust ::get <1>( pstate);

float pg = thrust ::get <2>( pstate);

float density = d;

float momentum_x = d*vx;

float energy = pg /(1.0f - this ->_gamma) + half*d*vx*vx;

return make_tuple(density ,momentum_x ,energy);

}

thrust :: device_vector <float > d(n),vx(n),pg(n);

thrust :: device_vector <float > mx(n),en(n);

thrust :: transform_n(thrust :: make_zip_iterator(make_tuple(d.begin (),

vx.begin (),

pg.begin ())),

n,

thrust :: make_zip_iterator(make_tuple(d.begin (),

mx.begin (),

en.begin ())),

convert_primitive_to_conservative(gamma));
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The algorithms and techniques discussed above have been implemented in a multidi-

mensional hydrodynamic and ideal magnetohydrodynamic solver capable of shared memory

parallelism. In the following section, the accuracy and performance of the code is demon-

strated on some well known test problems, namely Kelvin-Helmholtz instability, spherical

blast waves, and Orzag-Tang vortex.

5.4 Performance results

In Section 5.2 performance enhancing techniques such as operator fusion and SoA data

storage were described. The algorithms described in Section 5.1 were implemented in an

edge-based finite-volume flow solver. The performance results on a Dell Precision 7500

workstation with a (Dual CPU) Intel Xeon E5645 @ 2.40 Ghz and a GeFroce GTX TITAN

GPU with a memory bandwidth of 288.4 GB/sec and 2688 CUDA cores are given for three

test cases, the Kelvin-Helmholtz instability, spherical blast waves, and Orzag-Tang vortex.

In all three tests, we use the initial conditions of [32] for comparison purposes.

The Kelvin-Helmholtz instability [6] considers a slip surface, i.e., a discontinuity between

oppositely directed flows. The version of the test considered here is identical to the version

given by Stone et al. [32]. The simulation is performed on a square domain, [0, 1] × [0, 1],

with periodic boundaries everywhere. The flow speed is 0.5; it is in the −x direction for

y < 0.25 and y > 0.75, where ρ = 1, and in the x direction for 0.25 ≤ y ≤ 0.75, where

ρ = 2. The gas pressure is initially 2.5 everywhere and the ratio of specific heats is γ = 1.4.

The instability is produced by adding random perturbations with a peak amplitude of 0.01

to both the x and y velocities. In the case of ideal MHD, the initial magnetic field is

Bx/
√

4π = 0.5.

The density at times t = 1 and t = 5 is shown in the top and bottom panels of Figure 5.4

respectively. The initial conditions are shown in Figure C of Appendix C. The boundary

between the two fluids is well resolved at later times. This indicates numerical diffusion

is not excessive. If excessive numerical diffusion were present, the instability would be
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Figure 5.4: The Kelvin-Helmoltz instability, ρ at times: t = 1 (top) and t = 5 (bottom).
Simulation performed on a 400× 400 grid of triangular elements with code written for this
dissertation available at: https://github.com/akercher/dissertation.
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Figure 5.5: The MHD Kelvin-Helmoltz instability, ρ (top) and |B| (bottom) at t = 1.0.
Simulation performed on a 400 × 400 grid of quadrilateral elements with code written for
this dissertation available at: https://github.com/akercher/dissertation.
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Figure 5.6: The MHD Kelvin-Helmoltz instability, ρ (top) and |B| (bottom) at t = 2.0.
Simulation performed on a 400 × 400 grid of quadrilateral elements with code written for
this dissertation available at: https://github.com/akercher/dissertation.
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suppressed [32].

Figure 5.7: Spherical blast wave: ρ at time: t = 0.2 (left) and t = 1.5 (right). Simulation
performed on a 400×600 grid of quadrilateral elements with code written for this dissertation
available at: https://github.com/akercher/dissertation.

For the second case, a spherical blast wave is simulated on a rectangular domain with

Ly = 3Lx/2 and periodic boundary conditions [41, 1, 23]. The problem is initialized with

a high pressure region corresponding to r < 0.1 where the gas pressure is two orders of

magnitude greater than the background pressure. A uniform density of ρ = 1 is used

throughout the domain; the background gas pressure is 0.1; the ratio of specific heats is

γ = 5/3. For the MHD problem, the initial magnetic field is uniform with a magnitude of

|B|/
√

4π = 1 and orientated at a angle of π/4 radians w.r.t. the x-axis.
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Figure 5.8: Spherical blast wave in a strong magnetic field: ρ at time: t = 0.2 (left) and
t = 1.0 (right). Simulation performed on a 400×600 grid of quadrilateral elements with code
written for this dissertation available at: https://github.com/akercher/dissertation.
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The density at times t = 0.2 and t = 1.5 is shown on a linear color map between 0.08

and 6.5 in the left and right panels of Figure 5.7 respectively. The blast wave is initially

spherical as there are no effects due to grid alignment. As the blast reaches the boundaries,

complex interactions between linear and nonlinear waves trigger the Richtmeyer-Meshkov

instability [28, 24] producing dense filaments at the edge of the bubble. The solutions

remains symmetric across both the x and y axis before and after the onset of the instability.

The density at times t = 0.2 and t = 1.0 in shown in Figure 5.8 for the MHD problem. The

instability is suppressed by the magnetic field.

The Orszag-Tang vortex [26] has been extensively studied and used for comparisons

to previous results. The simulation is performed on a square domain, [0, 1] × [0, 1], with

periodic boundaries everywhere. The density, ρ = 25/(36π) and pressure, 5/(12π) are

constant throughout the domain. The initial velocities are vx = − sin (2πy) and vy =

sin (2πx); the initial magnetic field is defined in terms of the magnetic vector potential,

Az = B0 (cos (4πx)/(4π) + cos (2πx)/(2π)), where B0 = 1/
√

4π; the ratio of specific heats

is γ = 5/3. The gas pressure at t = 0.1 and t = 1.0 is shown in Figure 5.4.

Table 5.1: Performance comparison of GPU and CPU (Ratio of cells/sec.).

grid size KH-Instability Blast Waves Orszag-Tang

64× 64 5 5 5
128× 128 19 19 22
256× 256 58 58 60
512× 512 75 75 79

1024× 1024 81 81 86

Performance comparisons between the GPU and CPU for the three test cases described

above are listed in Table 5.1. The CPU has six physical cores and two logical cores per phys-

ical core, making 12 cores available with hyper-threading enabled. Assuming near perfect

scaling, running on the GPU is approximately seven times faster than running in parallel
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Figure 5.9: Orszag-Tang vortex: pg at t = 0.1 (top) and t = 1.0 (bottom). Simulation
performed on a 400×400 grid of quadrilateral elements with code written for this dissertation
available at: https://github.com/akercher/dissertation.
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on the CPU. A larger increase in performance of the GPU over the CPU is observed in the

MHD test as compared to the HD tests. The MHD equations are more complex than the

HD equations and more calculations are required per time step. The performance increase

demonstrates the superior ability of the GPU to process many operations simultaneously.

The results indicate that the cost to performance ratio for a GPUs such as NVIDIAs

GTX Titan, which retails for about $1000.00, is such that they are an ideal choice for

shared memory processors, if the limited memory is managed properly. The relatively large

memory capacity of 6 GB on the GTX Titan is around 6.5% of the 92 GB available on the

Xeon E5. For the equivalent memory of one Xeon E5, fifteen GPUs are required, costing

nearly three times that of one Xeon E5. In order for GPUs to be worth the investment,

computations on the fly must be maximized and data storage minimized.
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Chapter 6: Conclusion

This dissertation contributed to the computational physics and space weather communi-

ties in numerous ways. New benchmarks for ideal MHD code validation were provided in

Section 3.3. The benchmarks were produced with code written for this dissertation which

implemented the method described in Section 2.6.3. The availability of a nonlinear solver

is a significant contribution to the computational physics and space weather communities

since it can be used for benchmarking or incorporated into flow solvers for flux evaluations.

Entirely new work was presented in Chapter 4. A modification to the finite volume

method can be used to produce the correct solutions to non-unique Riemann problems

of ideal MHD equations. The properties of the planar ideal MHD equations discussed in

[16] were used to describe the appearance of compound wave structures in finite volume

approximations. The solution can be modified near a large rotation (βT > 2.0) in order

for the upstream and downstream states to satisfy the jump conditions of a rotational

discontinuity. The method may be well suited for simulations in two- and three-dimensions

because it does not track the rotational discontinuity.

The CWM method also achieves true convergence for problems with initial conditions

near those with a non-unique solution. It is the first flux approximation for a dissipative

finite volume scheme that does not exhibit pseudo-convergence. The number of grid points

required to obtain RMSEs on the order of 10−2 is reduced by nearly two orders of magnitude

for both the near coplanar case containing a SCW and the case containing a FCW.

The CWM method can be applied in simulations on a wide range of spatial scales, but

it is best suited for large-scale simulations for two reasons: smoothing oscillations caused

by over-shoots downstream of the Alfvén wave is required for small scale simulations and

the greatest reduction in L1-errors are achieved at lower resolutions.
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The CWM method should be tested with other methods of approximating numerical

fluxes in FVMs. For Roe-type methods that use solutions to the linearized system of equa-

tions, the intermediate states can be approximated as linear combinations of the eigenvalues

and eigenvectors of the Jacobian (Eq. 3.19, [30]). The HLLD method is convenient to use

with the CWM method because it gives the exact solution to an isolated rotational discon-

tinuity [25] and its intermediate states provide an initial guess that results in a high rate

of convergence when a nonlinear solver is used. If a nonlinear solver is used, more frequent

calls may be required for problems in two- and three- dimensions. In this case, reducing

the number of iterations can decrease computational costs without a loss in accuracy of the

final solution. It is important to stress that the results of Chapter 4 were obtained exclu-

sively with the HLLD approximate Riemann solver in conjunction with CWM. Although a

nonlinear solver may potentially improve the accuracy of CWM, it is not required. That is

a unique property of CWM and another reason why, along with improved accuracy and the

potential for simulations in higher dimension, its development is a substantial contribution

to the computational physics and space weather communities.

The new results of Section 3.3 and Chapter 4 were bookended by the development of a

multidimensional fluid solver capable of running in parallel on shared memory processors.

This code was developed to test the viability of using a GPU as the primary device for

shared memory parallelism in place of the CPU. The GPU was shown to outperform the

CPU by two to three times. Essential algorithms such as face coloring were explained for

cell center FV with and without CT. It was argued that the cost to performance ratio for

a GPUs such as NVIDIAs GTX Titan is worth the investment as long as the reduction

in available memory from the CPU is handled effectively. This dissertation described and

implemented operator fusion to reduce memory requirements and SoA data storage to

increase performance on the GPU. This fluid solver, which is capable of shared memory

parallelism along with the accompanying description within this dissertation can be used

as a blueprint or benchmark by anyone looking to incorporate GPUs to increase solver

performance, making it a significant contribution to the computational physics and space
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weather communities.
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Appendix A: Derivation of HLL fluxes

The integral average over the Riemann fan: [xl, xr] × [0, t] if found with the conservation

law

∫ xr

xl

U(x, t)dx−
∫ xr

xl

U(x, 0)dx+

∫ t

0
F(U(xr, t

′))dt′ −
∫ t

0
F(U(xl, t

′))dt′ = 0. (A.1)

Integrating and subtracting the last terms of equation (A.1) gives

∫ xr

xl

U(x, t)dx = xrUr − xlUl + t(Fl − Fr). (A.2)

Substituting xl = tSl, xr = tSr, into (A.2) and dividing it by t(Sr − Sl), gives the integral

average

1

t(Sr − Sl)

∫ xr

xl

U(x, t)dx =
SrUr − SlUl + Fl − Fr

Sr − Sl
. (A.3)

The HLL intermediate state, U∗, is defined as the intergral average given above in (A.3).

The HLL fluxes are found by integrating over the left or right half of the Riemann fan.

Integration over the right half, [0, xr]× [0, t], and dividing by t, gives

1

t

∫ xr

0
U(x, t)dx = SrUr + Fr − F∗. (A.4)

Rearranging (A.4), and approximating the integral of the left hand side with (A.4), gives

F∗ =
SrFl − SlFr + SrSl(Ul −Ur)

Sr − Sl
. (A.5)

.
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Appendix B: Thrust templates

Below are transform_n templates for unary and binary functors, as well as the inline func-

tion make_device_counting_iterator [A. Corrigan, private correspondence]. The type

Struct is being iterated over when used in conjunction with make_device_counting_iterator.

namespace thrust

{

template <typename InputIterator ,

typename Size ,

typename OutputIterator ,

typename UnaryFunction >

OutputIterator transform_n(InputIterator first , Size n,

OutputIterator result ,

UnaryFunction op)

{

return transform(first , first+n, result , op);

}

template <typename InputIterator1 ,

typename Size ,

typename InputIterator2 ,

typename OutputIterator ,

typename BinaryFunction >

OutputIterator transform_n(InputIterator1 first1 , Size n,

InputIterator2 first2 ,

OutputIterator result ,

BinaryFunction op)

{

return transform(first1 , first1+n, first2 , result , op);

}

} //end namespace

typedef int Index;

typedef thrust :: device_vector <Struct >:: iterator StructIterator;

typedef thrust :: iterator_system <StructIterator >:: type device_iterator_system

;

typedef thr:: counting_iterator <Index ,device_iterator_system >

device_counting_iterator;

inline device_counting_iterator make_device_counting_iterator(Index start=

Index (0)) { return device_counting_iterator(start); }
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Appendix C: Kelvin-Helmholtz instability initial conditions

Figure C.1: Initial conditions of the Kelvin-Helmoltz instability problem. See Section 5.4
for solutions at times t=1 and t=5.
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[40] G. Tóth, J. Comp. Phys. 161 (2000) 605–652.

[41] A. Zachary, A. Malagoli, P. Colella, SIAM Journal Scientific Computing 15 (1994)

263–284.

117



Curriculum Vitae

Andrew Kercher was born in New York. He graduated from George Mason University
with a Bachelor’s degree in Mathematics in 2008. He was fellow of the National Science
Foundation sponsored Undergraduate Research in Computational Mathematics his final
year of undergraduate studies at George Mason. During the fellowship he studied diffusion
in space plasma under Dr. Robert Weigel. In 2008, he began graduate studies in Computa-
tional Sciences at George Mason University where he was employed as a research assistant
by Dr. Robert Weigel. His research includes numerical solutions to Riemann problems
of ideal magnetohydrodynamics. He and Anne Kercher were married in 2012, and their
daughter Abigail was born later that year.

118


