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ABSTRACT: Predicting tropical cyclone (TC) activity becomes more im-
portant every year while the understanding of what factors impact them con-
tinues to be complicated. El Nifio—Southern Oscillation (ENSO) is one of the
primary factors impacting the activities in both the Pacific and the Atlantic, but
an extensive examination of the fluctuation in this system has yet to be studied
in its entirety. This article analyzes the ENSO impacts on the Atlantic tropical
cyclone activity during the assessed warm and cold years to show the dominant
centennial-scale variation impact. This study looks to plausibly link this

*Corresponding author: Ruixin Yang, ryang@gmu.edu

DOI: 10.1175/EI-D-17-0006.1


mailto:ryang@gmu.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

Earth Interactions + Volume 22 (2018) + Paper No. 1 « Page 2

variation to the Southern Ocean centennial variability, which is rarely men-
tioned in any factors affecting the Atlantic tropical cyclone activity. This cen-
tennial variability could be used to enhance future work related to predicting
tropical cyclones.

KEYWORDS: Tropical cyclones; Atmosphere—ocean interaction; Climate
variability; El Nifio; ENSO; Time series

Tropical cyclones (TCs) in general, or hurricanes [TCs with wind speed higher
than 63kt (1kt = 0.51 ms™ ] in particular, are of significant interest to the sci-
entific community as well as the general public. Further understanding of what
causes TCs to develop, intensify, and change paths will continue to be of interest
to the general public as TCs continue to impact a large portion of the world
population. In an era of knowledge sharing and accessibility, continuing to de-
velop and aggregate information to make decisions is very important. Shedding
light on what could cause shifts in TC patterns (short or long scale) and further
enhancing the scientific community’s ability to understand the inner workings of
the TCs will enable the public to further understand TCs and make better deci-
sions such as locations of vacations and new homes. In addition to the short-time
TC forecasting as part of weather forecasting (e.g., real-time tropical weather
forecasting at http://www.nhc.noaa.gov/), seasonal forecasting also attracts the
attention of the TC researchers. Among most seasonal TC forecasting schemes,
the climate variability associated with the so-called El Nifio and La Nifia phenomena
plays an important role.

The indicator of El Nifio or La Nifa is the central and eastern Pacific sea surface
temperature (SST) fluctuation. When the 3-month average SST anomaly (SSTA)
over the Nino-3.4 region (5°N-5°S, 120°-170°W) is higher than 0.5°C in five
consecutive months, a warm episode, or El Nino, takes place. The opposite cold
episode, or La Niifia, corresponds to SSTA being less than —0.5°C in the same
condition [Climate Prediction Center (CPC) 2015].

Complimentary to these anomalous SST values, extreme fluctuations of atmo-
spheric pressure at sea level are also identified throughout the Pacific Ocean, which is
commonly known as the Southern Oscillation. These variations from the norm be-
tween the western and eastern Pacific are described by the Southern Oscillation index
(SOI). The variation of the Pacific SST and the fluctuation of the pressure difference
are highly correlated, and they are together called the El Nifio—Southern Oscillation
(ENSO). The periods of large negative values of SOI correspond to warm episodes in
the eastern Pacific (Philander 1990; Hanley et al. 2003).

Although ENSO is a phenomenon in the tropical Pacific, its impacts reach many
regions far from the Pacific. One commonly accepted and widely mentioned im-
pact is that El Nifio suppresses and La Nifia enhances the TC activities (seasonal
hurricane days and hurricane numbers) in the Atlantic basin (Gray 1984; Stevenson
2012; Patricola et al. 2015). The major mechanism for the ENSO role in the
Atlantic TC activities is that ENSO changes one of the most important factors
affecting TC development, the unfavorable vertical wind shear. El Nifo leads to
increased vertical wind shear in the Atlantic while La Nifia decreases the shear
(Gray 1984; Patricola et al. 2015).


http://www.nhc.noaa.gov/
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Because of the important role of ENSO in Atlantic TC activities, most
seasonal prediction schemes of the Atlantic TC activities use ENSO compo-
nents as one of the predictors (Klotzbach 2007, 2011; Davis et al. 2015). Most
discussions on the trend changes of TC activities in perspective of climate
change is also in the context of ENSO and/or SST changes (Goldenberg et al.
2001; Webster et al. 2005; Emanuel 2005; Mann et al. 2009). Nevertheless, the
ENSO impact on the Atlantic TC activities is not uniform for long time periods.
For example, Gray (1984) did not find the same relationship between ENSO
and Atlantic TC activities for data covering the nineteenth century and attri-
butes that to data quality. Additionally, different ENSO influences on TC ac-
tivities for below-normal and above-normal periods have been identified, and it
was demonstrated that the ENSO impacts can be masked by multidecadal
signals (Bell and Chelliah 2006). Other studies modulate the ENSO impact
based on the phases of the Atlantic multidecadal oscillation (AMO; Davis et al.
2015).

Since the ENSO impact on the Atlantic TC activities is time dependent, the
impact itself may show certain variation. What is the quantitative description of
this impact as a function of time? Are there any patterns in the impact variation
with time? What causes this pattern? Here, we evaluate the historical ENSO data
and its impact on the Atlantic TC activity (defined by number of named storms) in
an innovative way to assess how the impact changes over time on a centennial time
scale and what possibly causes the variation. The results are potentially helpful for
long-term prediction of the Atlantic TC activity beyond seasonal and decadal
scales.

Several datasets are utilized for this study. The data of cold and warm epi-
sodes are given by the CPC of the U.S. National Oceanic and Atmospheric
Administration (NOAA) from 1950 to present based on the monthly SSTA in
the Nifo-3.4 region (CPC 2015). Although the CPC definition is the commonly
accepted standard for El Nino and La Nifia definitions, the covered time period
is too short for the intended analysis of long-term ENSO impact on the Atlantic
TC activity. To have a longer time series, the commonly used alternative SOI
dataset, from NOAA Earth System Research Laboratory (ESRL), is also used.
These data cover the period from 1866 to present with monthly temporal res-
olution (ESRL 2015). The TC activity dataset is the NOAA Atlantic hurricane
database (HURDAT) from 1851 to present, which records the number of named
storms, hurricanes, major hurricanes, and the accumulated cyclone energy
(ACE) for each year [Landsea et al. 2010; Hurricane Research Division (HRD)
2015]. As is widely known, the number of records for earlier years before the
availability of the satellite observations is lower than the reality (Landsea and
Franklin 2013). However, the main intent of using this data is to compare the
difference in similar time periods, and the undercounting will not be an issue
for this purpose (Klotzbach 2011). In this study, the cutoff time is December
2014.

The first task for utilizing a long time series is to use SOI data to define the
warm and cold episodes that are close to those defined by SSTA. Simply using
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threshold values to define warm and cold episodes based on SOI results in a large
discrepancy between the SOI-based definition and the definition by SSTA no
matter how the threshold values are adjusted. To improve the agreement of the
two definitions, we mimic the SSTA treatment by using a 3-month moving av-
erage and at least five consecutive-averaged SOI values lower (higher) than the
warm (cold) SOI threshold value to define a warm (cold) episode. The SOI values
are first filtered with a 3-month moving average. The smoothed data are checked
with a warm (cold) threshold value. If there are at least five consecutive-averaged
SOI values smaller (larger) than the warm (cold) threshold value, it is concluded
that there is a warm (cold) episode. If the August—October (ASO)-averaged SOI is
in the warm (cold) episode, the corresponding year is defined as a warm (cold)
season.

With the long-term warm and cold episodes defined with SOI values, the
numbers of named storms (tropical storms, hurricanes, and subtropical storms;
HRD 2015) in HURDAT are counted for warm and cold episodes. Basic statistics
including differencing, moving average, correlation, and Fourier analysis are ap-
plied to the counted numbers.

3.1. Long-term warm and cold episodes defined with SOI

Unlike the fixed SSTA threshold values, £0.5°C used by CPC (2015) in the
warm/cold episode definition, the threshold values mentioned above for SOI are
adjusted to search for the best results, the least discrepancy between the SOI-based
episodes and the SSTA-based episodes. This research shows that the discrepancy is
sensitive for the cold threshold. The best result is obtained when the threshold
value is 0.42. That is, if the ASO-averaged SOI is higher than 0.42 within five
consecutive such ‘“high” months, that season is defined as the cold season. With
this definition, one can find that in the SOI and SSTA overlapping period 1950-
2014, there are 3 years being identified as cold years with SOI but not with SSTA.
On the other extreme, 4 years are missed, and this gives a total seven mismatches
for cold seasons. On the contrary, the impact of the warm threshold values is much
more stable. With all values between —0.54 and —0.39, the outcomes are the same.
When the threshold value is set to be —0.39, there are two extra warm seasons and
three missed seasons with a total of five mismatches. When the threshold values
change between —0.54 and —0.39, the specific mismatched years may be different
but the total number of mismatches remains at 5.

Figure 1 displays the time series of ASO SOI values and the warm (cold) seasons
defined above with —0.39 (0.42) as the warm (cold) threshold value. One can see
that there are roughly seven warm seasons in 20 years, consistent with the 2—7-yr
period of the ENSO phenomenon. From this figure, one can easily identify the
misses or ‘“‘false hits” when compared to the SSTA-based warm or cold seasons
after the 1950 season. For example, the two open circles represent the two seasons,
1992 and 1993, which are identified as warm seasons by SOI but not by SSTA.
These are the false hits. On the other hand, the three crosses without circles,
representing 1968, 1976, and 1986, denote warm seasons identified by SSTA but
failed to be selected by SOI. These are the misses. All other warm seasons are
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Figure 1. SOI values with warm and cold seasons. The SOI values displayed are the
3-month moving average value at September (ASO) for each year. The
vertical dashed line is the start year (1950) with Nino-3.4 SSTA defined
warm and cold episodes. The dashed horizontal is the maximmum threshold
values (—0.39) for defining the SOIl-based warm episodes, and the dotted
horizontal line is the minimum value (0.42) for defining the cold episode.

detected by both SOI and SSTA. The detection of cold seasons has a relatively
large difference with four misses (open diamonds for 1954, 1995, 1999, and 2007)
and three false hits (unenclosed X symbols for 1956, 1974, and 2008).

3.2. Variation of the ENSO impacts

With warm and cold episodes defined based on SOI values, long-term counts of
named storms for each category of the episodes become possible. Here, a 31-yr
moving average is used to smooth the results. That is, 31 years are selected to be the
time period, and the mean counts of named storms in all warm seasons and all cold
seasons during the selected 31 years are calculated.

Figure 2 gives the 31-yr moving average counts of named storms in the Atlantic
in warm and cold seasons. For example, in the 31-yr period 186696, denoted by
the midyear 1881, the average number of named storms is 6.7 in warm years and
9.8 in cold years. Since the 1-yr shift of the 31-yr window may not result in any
changes in the members of warm and cold groups, there are many short flat seg-
ments in the counts of the named storms. This figure clearly demonstrates the
commonly accepted relationship between ENSO and TC activity in the Atlantic,
cold episodes being favorable to TCs and warm episodes depressing TCs as the
cold average is always higher than the warm average. However, this relationship is
only significant for certain periods such as the most recent period starting in the
1980s. In the middle part of the whole study time range, from the early 1920s to
late 1970s, although the difference is evident with cold counts being larger than the
warm counts, it is difficult to say the difference is substantial. To quantify the
differences, the one-tail ¢ test for two means assuming unequal variances is carried
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Figure 2. Average counts of nhamed storms in warm and cold seasons and their
differences with a 31-yr moving window. The year in abscissa is the
middle year of the 31-yr period. The cold/warm difference is shifted by 6
(with CWD¢ = cold number — warm number + 6) for display purpose.

out for each period. As expected, the difference is significant at a 0.05 significance
level before 1902 and after 1984 only. In between, the p values (not shown) are
larger than 0.05. If the significance is set at 0.1, the middle insignificant period will
be reduced from 1902 to 1984 to 1908 to 1982 with two subperiods, 1950-53 and
1978-80, as exceptions.

In addition to the warm and cold mean counts in Figure 2, the difference between
the cold means and the warm means [cold warm difference (CWD)] is also dis-
played. This shows that the difference changes in a very low frequency, and along
the large-scale variation, there are relative high-frequency but small-amplitude
oscillations. The entire dataset seems to cover only one oscillation period, from
1881 to 1999, giving an oscillation with the longest period of 118 years. When
longer time series of TC activity are available, this variation should be revisited
carefully. Figure 3 shows spectral power based on Fourier analysis of the CWD
values and confirms the observation. The Fourier components are converted into
percentage of the total power in the plot. The dominant component with the 118-yr
period has 58.8% of all power, and the component with the second (third) highest
power is the one with the 39.3-yr (19.7 yr) period and 11.9% (6.40%) of the power.
There are only five other components with larger than 1% of the total power but all
less than 4%.

3.3. Driving factor(s)

What causes the low-frequency changes of ENSO impact to the Atlantic TC
activity? First, we turned to well-known existing climate indices. Many climate
indices are created to represent various types of climate variability. For example,
ESRL listed many such indices from popular SOI and North Atlantic Oscillation
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Figure 3. Spectral power of CWD. The power values displayed are normalized to
make the total power be one.

(NAO) to regional specific northeast Brazil rainfall anomaly to even solar flux
(ESRL 2017). Many natural phenomena and their changes including TC activ-
ities are correlated to those climate indices (Goldenberg et al. 2001; Cobb et al.
2013). Most of these indices demonstrate variability in seasonal to interannual or
decadal scales. Commonly mentioned climate indices with low frequency from
decadal to centennial scales include AMO (Enfield et al. 2001), NAO (Hurrell
1995; Jones et al. 1997), Pacific decadal oscillation (PDO; Zhang et al. 1997),
and the tripole index for the interdecadal Pacific oscillation (TPI; Henley et al.
2015), and those indices are related to the Atlantic TC activity. For example,
Biondi et al. (2001) used tree-ring data to investigate the PDO variability and
identified a bidecadal mode. Interestingly, the dominant negative phase identified
by their first principal component (1945-70 in their Figure 3) is partially coin-
cident with the lowest TC count difference between the warm and cold episodes
(1918-71 by using 2 as the threshold for the count difference except for a sub-
period 1948-54), but the overall trends in the nearby periods are quite different.
Moreover, no single index, among those commonly studied, actually shows
variability with such a low frequency for a period longer than a century.

Climate indicators with a longer time scale also exist. Minobe (1997) inves-
tigated instrumental spring air temperature in western North America, winter—
spring sea level pressure (SLP) in the central North Pacific and SST in various
regions and found climate regime shifts in the 1940s and 1970s. Earlier shifts also
appear in some but not all of the data. Using the multitaper method (MTM), Minobe
(1997) found the periods of those time series are between 50 to 70 years. Further-
more, Minobe (1997) used the tree-ring-based constructed data in North America to
confirm the findings in regime shifts and the 50-70 oscillation periods with the first
EOF mode.

The climate index with the lowest frequency other than those on proxy data
of paleoclimate scales in literature is possibly the Southern Ocean centennial
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variability (SOCV) index identified by Latif et al. (2013). SOCYV, representing
the centennial-scale internal variability in the Southern Ocean, is based on the
Southern Ocean SST anomaly averaged over the latitude band 50°-70°S. Latif et al.
(2013) attribute the centennial variability to deep-ocean convection and link Arctic
and Antarctic sea ice extent phase discrepancy, recent slowing of mean global air
temperature increase, and even the change of the southern annular mode (SAM) to
SOCV. The SOCV shows a 100-yr period (Figure 2a in Latif et al. 2013), although
the simulation results and tree-ring-based proxy data indicate a period ranging
from 200 to 500 years.

Because of the similar periodicities between SOCV and the TC count difference
in warm and cold eastern Pacific episodes, it is hypothesized that the two phe-
nomena are correlated to each other. To quantify the relationship, correlation
analysis is conducted between the count difference and SOCV as well as other
climate indices mentioned above. SOI is also included in the correlation analysis,
although it actually shows mainly seasonal to interannual variability. Initially,
Pearson’s r correlation was employed. However, the Shapiro—Wilks test results
show that the CWD values do not follow a normal distribution. Therefore,
Spearman’s rank correlation is utilized in this study.

The correlation coefficient values between the count differences and other in-
dices are listed in Table 1 with the corresponding p values. The concurrent cor-
relation values show only AMO, PDO, and SOCV are significantly (at 0.05
significance level) correlated with the count difference, and the correlation for
AMO and PDO are only around 0.2 (absolute value). Since the count is a low-
frequency signal, the impact from other climate phenomena may not be concurrent.
As aresult, we also calculate the correlation with time lags [CWD(?) vs Index(z + lag)]
and identify the largest correlation with a specific lag. Those maximum correlation
values and the associated time lags in years are also shown in Table 1. Except for
SOI, all other indices demonstrate significant correlations at various lags. The
initial maximum time lag is set at 15 years since the count is calculated in durations
with 15 years as its half-length. If that maximum lag is increased to 20, the only
change to the maximum correlation is that of the NAO from 0.13 to —0.19 with lag
changes from lag —3 to lag —20.

The correlation results can also be demonstrated via the time series plots. Figure 4a
displays CWD and SOCV values with the annual average values of other climate
indices. To make the values in a similar range, the CWD values are normalized by
taking zero mean and scaling by 3 times the standard deviation. Except for the
original annual-based values of CWD and SOCY, oscillations with decadal or
multidecadal scales are dominant. However, the oscillations of relatively high
frequencies make it very difficult to see the relationships among those time series.
To have a clearer picture of the impacts of the climate indices on the count dif-
ference, a moving average with the same time interval, 31 years as for CWD, is
utilized. The results with a moving average are displayed in Figure 4b, and one
can see the simple correlation relationship much easier with the smoothed data
than with the original annual values. For example, the trend of PDO (green line) is
coincident with the trend of CWD since around 1950. This coincidence cannot
be identified with the unsmoothed data. After smoothing, lag —1 results in the
highest correlation. The negative 1-yr lag means that we should shift the PDO
right by 1 year to make the two time series coincident. The curves after 1950 in
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Table 1. Correlation values between CWD and climate indices. The second and
third columns are values of concurrent correlation coefficient (cc) and the corre-
sponding p values. The fourth and fifth columns are for the maximum cc values
among dll lags with the Maxlag limit and the corresponding p values. The last
column is the year shift of the climate indices for achieving the maximum cc.

Index cc p value Max cc p value Lag
Original data: Maxlag = 15
AMO -2.0x107" 3.0 X 1072 -27 %x107" 28X 1073 -6
NAO 1.1 107! 2.4 x107! 1.3 x107" 14 x107" -3
PDO 2.1 x107" 3.3 %1072 3.4 x 107101 3.0 Xx107* 7
SOl —-1.1x107! 23 x107! —1.6 X107! 8.1 X102 —4
TPI 1.2 107! 1.9 107! 23 %x107! 1.1 X102 7
socv 43 x 107! 1.1 X107 7.5 X 107! 14 X 10722 —14

Original data: Maxlag = 20

AMO —2.0 %107} 3.0x 1072 —27%107! 28 %1073 -6
NAO 1.1 x107! 24 x107! —-1.9x107! 4.0 %1072 -20
PDO 2.1 %107} 33 X102 34 x107! 3.0x 1074 7
SOI —-1.1x107! 23 x107" -1.6 x107! 8.1 X102 —4
TPI 1.2 x107! 1.9 x 107! 23%x107! 1.1 X102 7
SOCV 43 %1071 1.1 x10°¢ 75 x107! 14 X102 —14

With MA: Maxlag = 15

AMO —25%x107! 53 %1073 —27%x107! 27 %1073 -5
NAO 1.7 X107 ! 5.7 X 1072 44 x107" 29 X107°° 15
PDO 46 x107" 8.6 X 107° 47 %X 107! 83 x107° -1
SOI -53%x107! 43 x 10710 —58x107! 6.2 X 10712 -2
TPI 3.7 x 107! 45x%x107° 54 x107! 2.6 10710 15
SOCV 5.1 X107} 22%107° 8.0 X 107! 20 x107% -15

With MA: Maxlag = 20

AMO —-25%x107" 53 X103 —27x107! 2.7 X 1073 -5
NAO 1.7 107! 5.7 X102 48 X 107! 4.0 X107 20
PDO 4.6 X 107! 8.6 X107° 47 x 107" 83 X 10°° -1
SOl -53x107" 43 x 10710 —58x107! 6.2 X 10712 -2
TPI 3.7 x 107! 45%107° 56 x107! 25 %10 18
SOCvV 5.1 x107" 22%x107° 83 x 107! 1.8 1073 -18

Figure 4b clearly demonstrate this effect. In this case, the highest correlation
between CWD and PDO is 0.47, higher than the 0.34 achieved without smoothing at
lag 7 (Table 1).

The correlation improving with smoothed data is not a surprise. All correlation
coefficients with the moving average values are higher (in absolute values) than those
with the original annual values because the smoothing effects filter out the high-
frequency oscillations and introduce/enhance autocorrelation. It is interesting to note
that SOI results in higher correlation than SOCV after smoothing. However, the
maximum correlations with optimal lags show that a leading SOCV with —18 lag
leads to the highest correlation, as high as 0.83, among all indices. The correlation
strength with SOI increases less than that for SOCV from 0.53 (negative) to 0.58
(negative) with lag —2. Nevertheless, the correlation with SOI is possibly an artifact.
Before the smoothing, the SOI oscillates around zero with relatively high frequencies,
and the amplitude is large. The smoothed SOI is of small amplitude in the oscillation
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Figure 4. Time series of normalized CWD (with three std dev) and other climate in-
dices. (a) Indices with original temporal annual resolution. (b) Smoothed
index values with 31-yr moving average. (¢) CWD and SOCYV only. Both
original annual SOCV and the smoothed SOCV are included. The SOCV are
shifted right 18 years in (c).
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except for the most recent 30 years and is of relatively high frequency. So, the high
correlation is mainly due to the small-amplitude oscillations in the smoothed
SOI, which does not make much sense. In contrast, the variability of the smoothed
PDO is more prominent because of its high amplitude and low frequency, illustrating
similar variability compared with CWD. Nevertheless, the amplitude modulation of
SOI does increase and is consistent with the large ENSO impact in most recent years
(Li et al. 2011; Burn and Palmer 2015).

With that said, the most interesting correlation result is that with SOCV, which
not only gives the highest value but also demonstrates consistency with the lag.
With the original annual SOCV values, the correlation is 0.43, which is much
higher than the correlation with all other climate indices. After smoothing, the
correlation is increased to 0.51, which is not much gain because the original SOCV
is mainly for low-frequency variability, and it is much smoother than other cli-
mate indices. In searching for the optimal lag with the original data, the maximum
correlation is 0.75 with a —14 lag. Similarly, the largest correlation detected from
the smoothed data is 0.80 at —15 lag when the maximum lag is limited to 15.
Since the lag is on the preset limit, the maximum lag is extended to 20, and the
optimal lag is pinpointed at —18, at which the correlation is 0.83. If we use the
concept of coefficient of determination R*, we can say that SOCV can explain
69% change in CWD with an 18-yr lag. More importantly, the negative lag means
that SOCV leads the CWD, and the change of SOCV can be used for the prediction
of CWD and therefore the TC activity in the Atlantic. To see the lag impact, the
SOCV is shifted by 18 years to the right and the result is displayed in Figure 4c. This
figure exhibits strong consistent variability between CWD and SOCV.

Climate model simulations suggest the SOCV is generated in the Southern
Ocean. Its mechanism is distinct from other longer time-scale variability, such as
AMO. Park and Latif (2008) argue that the multidecadal variability in the At-
lantic sector is generated in the North Atlantic, while the SOCV is driven in the
Southern Ocean where sea ice change is considerably involved. Martin et al.
(2013) further show that building up of heat in the middepth and its release to the
atmosphere is a key to generate the SOCV. The source of heat is inflow of the North
Atlantic Deep Water (NADW), which indicates a large-scale link between the Northern
and Southern Hemispheres. The SOCV signal generated in the South Atlantic
also propagates to the North Atlantic via different processes. Swingedouw et al.
(2009) proposed three ways of connections: deep-water adjustment via oceanic
waves, salinity anomaly advection, and wind impact on the NADW cell. Each
has different response time scales in the model, of which the precise time scale
may differ in the observation.

The physical link between the SOCV and TCs may be explained with one or a
combination of these propagation dynamics. One strong candidate is the advective
process, as illustrated by climate models (Vellinga and Wu 2004; Menary et al.
2012). In the advective processes, a strengthened NADW cell, or Atlantic merid-
ional overturning circulation (MOC), linked to the SOCYV, transports more heat to
the Northern Hemisphere from the Southern Hemisphere and increases SST over
the tropical and subtropical Atlantic, where development of TCs is active.

It must be pointed out that the correlation analysis above really shows that the
variation in CWD is of long time scale, and its correlation with commonly used
climate indices is weak. The correlation with SOCV is the only one showing a
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strong relationship. Because any two time series of similar periods would result in
high-correlation values because of the strong autocorrelation, the impact of the
autocorrelation on the significance of the correlation is estimated. We used the
widely accepted correction formula (Bretherton et al. 1999; McCarthy et al. 2015)

l—a]az
Neff = N
1+Cl16[2’

where n is the number of observations of time series and a; and a, are the
lag-1 autocorrelation of each of the two time series, respectively, and find that the
effective size of the data n.i for the correlation between CWD and SOCV is
reduced from 119 to 9.25. Nevertheless, the lagged correlation is so strong that
even after the correction, the p value is still less than 0.05.

This work demonstrates how a centennial cycle of ENSO impacts the Atlantic TC
activity and how this century-scale variation can be plausibly linked to the SOCV. To
the best knowledge of the authors, this is the first study to reveal TC-related variation
in centennial scale with nonproxy data, although this variation is not directly on TC
activities. This work sheds light on two aspects of long-term TC prediction. One of
them is on seasonal prediction. Right now, there are many efforts focused on seasonal
predictions for the Atlantic hurricane activities, such as those by Colorado State
University, the NOAA CPC, and the private British forecasting firm Tropical Storm
Risk (http://www.tropicalstormrisk.com/forecasts.html). Among them, ENSO is an
important predictor. The work showed above clearly reveals that the ENSO impact
on the Atlantic TC activity is complicated, and the ENSO factor in the seasonal
prediction should be modulated. An example of such work is the conditional ENSO
impact on seasonal Atlantic TC prediction by Davis et al. (2015) in which the ENSO
contribution is conditioned by AMO. This work suggests long-term variation such as
SOCYV could be used for the condition.

Another motivation for this work is for enhancing longer than seasonal TC
prediction. Multiyear TC prediction should be more useful for insurance purposes
and long-term disaster mitigation. Similar topics are investigated in several studies
(e.g., Vecchi et al. 2013; Smith et al. 2010). Vecchi et al. (2013) investigated the
multiyear prediction of TC frequency in the North Atlantic with climate models for
SSTs and a statistical emulator for TC frequency, which is a function of some
aggregated SSTs (Vecchi et al. 2011). As in other studies on long-term TC activity
changes, the majority of the work is based on outputs from climate models, and the
focus is on long-term climate changes as well as the associated changes in the
Atlantic TC activities (e.g., Dunstone et al. 2011; Dunstone et al. 2013: Caron et al.
2014; Caron et al. 2015). This study and the corresponding SOCV data could be
used for even longer-term forecasting of the Atlantic TC activity.
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