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Abstract

ALGEBRA, COMBINATORICS, AND COMPUTATION OF CERTAIN TIGHT CLO-
SURE INVARIANTS IN STANLEY-REISNER RINGS

Thomas M. Ales, PhD

George Mason University, 2019

Dissertation Director: Dr. Neil Epstein

Tight closure was first introduced in the 1980’s [12] by Hochster and Huneke to answer

questions about invariant theory and the Briançon-Skoda theorem. It has since come into

its own as a fairly robust theory. The tight closure I∗ of an ideal I is named as such because

it is, in general, contained in, but not equal to, the integral closure I− of the same ideal, so

it is a “tighter” closure operator than integral closure. Tight closure is notoriously difficult

to compute for an arbitary ideal, but with certain rings, this task is less arduous. In this

dissertation, we build a a bridge between tight closure theory and combinatorics by way

of simplicial complexes and Stanley-Reisner rings. We discuss the specifics of tight closure

theory and Stanley-Reisner rings and make special effort to focus on the standard results

of both topics that will be most useful to our purposes. We discuss the analogous notions

for ∗-reductions and reductions of ideals for tight and integral closure repectively. When

we focus our attention on the maximal ideal, m, of the Stanley-Reisner ring k[∆] that is

generated by the variables of the ring, we observe that if I is a reduction of m, then it

is also a ∗-reduction of m. We will determine the the minimal number of generaters of a

∗-reduction of m, called the ∗-spread of m, and the intersection of all minimally generated

∗-reductions of m, called the ∗ -core of m. These notions were introduced by Epstein [6] and



Fouli and Vassilev [7] respectively. We endeavor to describe both in terms of the Stanley-

Reisner ring and the simplicial complex of the Stanley-Reisner ring. Finally, we examine

∗ -corem in specific examples and in slightly more general cases of Stanley-Reisner rings.

These include dimension 1 Stanley-Reisner rings, Stanley-Reisner rings with disconnected

simplicial complexes, and Stanley-Reisner rings with a graph for a simplicial complex.



Chapter 1: Introduction

1.1 Preliminaries

In general, as per Dummit and Foote [4], a ring is a set R with two binary operations +

and × satisfying the following axioms:

i.) (R,+) is an abelian group,

ii.) × is associative: (a× b)× c = a× (b× c) for all a, b, c ∈ R,

iii.) the distributive laws hold in R: for all a, b, c ∈ R

(a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c)

The ring R is said to have identity if there is an element 1 ∈ R such that for all nonzero

a ∈ R,

1× a = a× 1 = a

and the ring R is said to be commutative if in addition to the above properties, a×b = b×a

for all a, b ∈ R. All rings in this dissertation are commutative with identity.

An ideal I of a commutative ring R is a subring that is closed under multiplication

by elements of R. An ideal P is said to be prime if when a and b are two elements in R

and ab ∈ P , then either a ∈ P or b ∈ P . A ring is said to be Noetherian if and only if

every ideal of R is finitely generated and a field is a commutative ring in which all nonzero

elements have a multiplicative inverse. All rings R in this dissertation are also Noetherian

and contain an infinite field.
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1.2 Motivation and History

Stanley-Reisner rings have been a topic of special interest in many fields since the 1970’s

when their properties were first studied by Hochster, Reisner, and Stanley [11][22][24].

They are of special interest because they bridge the gap between algebra and combinatorics

by using simplicial complexes to define a ring structure. Simplicial complexes and other

combinatorial structures are useful in describing phenomena in other fields. In particular,

many problems in algebraic geometry, algebraic statistics, or even bioinformatics can be

modeled by posets or simplicial complexes. By using such structures to define commutative

rings, we can use algebraic tools to analyze this encoded information.

Tight closure was developed in the 1980’s and 1990’s by Hochster and Huneke [12][13]

as a way to tackle problems in invariant theory and about the Briançon-Skoda theorem.

More recently, research in tight closure has shifted some focus to applications to algebraic

combinatorics and in particular Stanley- Reisner rings. Recent work along these lines can

be found from Enescu and Ilioaea [5] and from Goel, Mukundan, and Verma [9]. This

dissertation serves to add to this growing interest between tight closure and combinatorics.

1.3 Summary

In this section, we provide a summary of the remainder of the dissertation.

Chapter 2 presents the basic definitions of simplicial complexes and Stanley-Reisner rings

and focus on the interplay between the two. We describe the important characteristics of

Stanley-Reisner rings and make mention of some useful theorems that will pertain to the

later chapters of the dissertation. We conclude the section by outlining how Stanley-Reisner

rings can be viewed as fiber products [19] that use ring information to reflect the structure

of the simplicial complex as opposed to typical formulation of quotienting a polynomial ring

by a squarefree monomial ideal.

Chapter 3 focuses on closure operators of ideals I of a ring R. Special attention is paid

to integral closure, tight closure in characteristic p, and tight closure in equal characteristic

2



0. Standard first principles are mentioned and the main theorems necessary for the rest

of the dissertation are stated as well. The chapter includes definitions of reductions and

∗-reductions which are the primary objects of study in the original research portions of the

dissertation.

In chapter 4, we prove that for our primary focus, the graded maximal ideal m of a

Stanley-Reisner ring k[∆], the set of reductions and the set of ∗-reductions of m are the

same set of ideals. Therefore, we make the choice to prove all the following results in the

language of tight closure.

We next discuss how to generate ∗-reductions of m in a reliable way, and we make

mention of the some of the important linear algebra that can be preformed on the generators

of a ∗-reduction I of m in order to choose the most useful generating set of I. Specifically

we choose a generating set of I in relation to a chosen minimal prime ideal of k[∆]. If we

want I to be minimally generated, we also show that I must have a generating set of size

d = dim k[∆] = dim ∆ + 1. Namely, we have the following corollary:

Corollary 4.2.8. If I is a ∗-reduction of m in k[∆], then there exists an ideal J ⊆ I of

k[∆] with d generators such that J∗ = m i.e ∗-spread of m is d.

Equipped with an adequate description of minimal ∗-reductions I of m, we finish chapter

4 by exploring what elements all minimal ∗-reductions of m have in common. We call the

ideal generated by the common elements of the minimal ∗-reductions of m the ∗ -core of m.

We show ∗ -core(m) is generated by monomials, explore examples for particular choices of

∆, and show that for all ∆, d = dim k[∆], and τ the test ideal of k[∆], ∗ -core(m) is bounded

the following way:

Theorem 4.3.8. If ∆ is a simplicial complex of dimension d− 1 on n vertices, then for m

of k[∆],

md+1 + τm ⊆ ∗ -corem ⊆ m2.

In the last chapter, we explore ∗ -core(m) in special cases of k[∆]. We reduce the question

of exactly which monomials generate ∗ -core(m) to the case where ∆ is a connected simplicial

3



complex (i.e. for any choice of two vertices x and y there is an edge path from x to y). We

show that when dim k[∆] = 1 (i.e. ∆ is a discrete collection of points), ∗ -core(m) = m2 and

try to say as much as we can about the case where ∆ is a simple graph.
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Chapter 2: Stanley-Reisner Rings

In this chapter we outline the basics of Stanley-Reisner rings. In Section 2.1 we introduce

a combinatorial and set theoretic object called a simplicial complex. We can then use the

elements of the complement of the simplicial complex to construct what will be referred to

as a Stanley-Reisener ring or a square free monomial algebra. In Section 2.4 we recover

a result from Matsumura and Moore [19] that allows us to build a Stanley-Reisner ring

constructively in much the same way that we can construct a simplicial complex by its

facets.

2.1 Simplicial Complexes

Let V = {v1, . . . , vn} be a finite set. A simplicial complex ∆ on V is a collection of elements

from 2V , the power set of V , such that if F ∈ ∆ and G ⊂ F , then G ∈ ∆, and such that

{vi} ∈ ∆ for i = 1, . . . , n. For example, if V = {v1, v2, v3}, then

2V = {∅, {v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3}}

and if we know {v1} and {v2, v3} are in ∆, then the set

{∅, {v1}, {v2}, {v3}, {v2, v3}}

is also a subset of ∆. Further, if {v1, . . . , vn} ∈ ∆, then we define ∆ to be a simplex . Each

element of ∆ is called a face and a face F is called a facet if there exists no other face G in

∆ such that F ⊂ G. A simplicial complex ∆ can also be defined to be a set of simplices F

such that every face of F is also an element of ∆ and if F and G are both simplices in ∆,

their intersection is a face of both F and G.
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The dimension of a face F of ∆ is dimF = |F | − 1 where |F | is the number of elements

in the face F . The dimension of a simplicial complex is

dim ∆ = max{dimF : F ∈ ∆}.

Simplicial complexes can also be represented in a visual way that will be more useful

to later parts of this dissertation. If ∆ contains the one element set {vi}, we can represent

this face with a vertex and label it vi. If the two element set {vi, vj} is in ∆, we use an edge

with the end vertices labeled vi and vj . This allows to show that not only is the set {vi, vj}

in ∆, but also the sets {vi} and {vj}. For a set of size three, a shaded triangle with labeled

vertices is used. After this, presentation becomes a bit more difficult on a two dimensional

surface, but in general, if a face has dimension d, it will be represented as a d dimensional

triangule with d + 1 labeled vertices, i.e. a 0-dimensional face is a point, a 1-dimensional

face is an edge, a 2-dimensional face is a triangle, a 3-dimensional face is a tetrahedron, etc.

and a d-dimensional face includes every d− 1-dimensional face on the same d+ 1 vertices.

As an example, if ∆ is the simplicial complex with facets {v1, v2} and {v2, v3, v4}, the visual

presentation is

v1 v2

v3

v4

where the triangle corresponds to {v2, v3, v4} and the edge that is not part of the triangle

corresponds to {v1, v2}.

To conclude this section, we mention some definitions that are specific to this paper.

We define a simplicial complex ∆ to be proper if ∆ 6= 2V . Further for d < n, we define ∆d,n

to be the d− 1 dimensional (proper) simplicial complex on n vertices such that every facet

of ∆ is a set of size d and all size d subsets of V are facets. The distinction that d is strictly

less than n is important because if d = n, then ∆d,n is a simplex and d > n is impossible.

6



2.2 Defining Ideal of ∆

For this section, let k be any field and k[x1, . . . , xn] be a polynomial ring over k in n variables.

If ∆ is a simplicial complex over vertex set V = {v1, . . . , vn}, define I∆ to be the ideal of

k[x1, . . . , xn] generated by all monomials xi1xi2 · · ·xis such that {vi1 , vi2 , . . . , vis} /∈ ∆. If

we recall the previous example represented with the diagram

x1 x2

x3

x4 .

we see that ∆ does not contain the faces

{v1, v3}, {v1, v4}, {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v1, v2, v3, v4},

which correspond to the monomals x1x3, x1x4, x1x2x3, x1x2x4, x1x3x4, and x1x2x3x4 re-

spectively. The ideal I∆ will be generated by these six monomials. Some of these generators

are redundant though. In fact,

I∆ = (x1x3, x1x4, x1x2x3, x1x2x4, x1x3x4, x1x2x3x4)

= (x1x3, x1x4).

The ideal I∆ is an example of what is called a squarefree monomial ideal because all the

generators of I∆ are squarefree monomials. It should be noted that there exists a one-to-one

correspondence between all simplicial complexes on n vertices and all square free monomial

ideals of k[x1, . . . , xn] generated by nonlinear elements, so if we care about a particular set

of nonlinear squarefree monomials, we can always find a simplicial complex to represent this

set of monomials. Since this correspondence exists, we will drop the distinction between

7



vertices vi and variables xi, and label both with the same symbols, i.e. our diagram from

before can be labeled in the following way:

x1 x2

x3

x4 .

2.3 Stanley-Reisner Rings

Named for Richard Stanley and Gerald Reisner, who investigated their properties in the

1970’s [24][22] (a large debt is also owed to Mel Hochster [11]), we define the Stanley-Reisner

ring k[∆] to be the quotient ring k[x1, . . . , xn]/I∆. Since I∆ is generated by monomials of

at least degree two, k[∆] is never an integral domain if ∆ is proper. When ∆ is a simplex,

I∆ is (0) and k[∆] = k[x1, . . . , xn]. In fact, the ring k[∆] is a polynomial ring if and only if

∆ is a simplex.

Stanley-Reisner rings have a few useful and interesting properties. The first of these

can be found in [3], among other sources, and provides a characterization of all the minimal

primes of the ring k[∆] as well as the dimension of the ring:

Theorem 2.3.1 ([3], Theorem 5.1.4). Let ∆ be a simplicial complex and k a field then

I∆ =
⋂
F

BF

where the intersection is taken over all facets F of ∆, and BF denotes the prime ideal

generated by all xi such that vi /∈ F . In particular,

dim k[∆] = dim ∆ + 1.

8



Specifically, Theorem 2.3.1 states that the minimal prime ideals of k[∆] are the variable

complements of the facets of ∆ and that the Krull dimension, which can unambiguously

refer to as dimension, the supremum of the lengths of all chains of prime ideals in a ring R,

is equal to

dim ∆ + 1 = 1 + max{dimF : F ∈ ∆}.

For example, the ring k[∆] with I∆ = (x1x3, x1x4), which as we know corresponds to the

simplicial complex ∆ in the following figure with facets {x1, x2} and {x2, x3, x4}

x1 x2

x3

x4

has as its minimal primes P = (x3, x4) and Q = (x1) and dim k[∆] = 2 + 1 = 3. Further,

Theorem 2.3.1 states that I∆ is the intersection of the minimal prime ideals of k[∆], and

we see that

P ∩Q = (x3, x4) ∩ (x1) = (x1x3, x1x4).

2.4 Stanley-Reisner Rings as Fiber Products

It is natural to view a simplicial complex as a sum of its parts, namely its facets. If we refer

to the example we have been using throughout this section, ∆ can be viewed as a union of

two simplicies ∆1 and ∆2 where

∆1 = {∅, {x1}, {x2}, {x1, x2}}

∆2 = {∅, {x2}, {x3}, {x4}, {x2, x3}, {x2, x4}, {x3, x4}, {x2, x3, x4}}

9



and the intersection of the two simplicies is {∅, {x2}}. It is natural to wonder if the Stanley-

Reisner ring k[∆] of the whole simplicial complex can be viewed as some sort of sum of the

parts as well, the parts being k[∆1] and k[∆2].

If we suppose that ∆ = ∆1 ∪ ∆2, for simplicial complexes ∆1 and ∆2, we see the

following:

∆ = ∆1 ∪∆2

= (∆1 − (∆1 ∩∆2)) ∪ (∆2 − (∆1 ∩∆2)) ∪ (∆1 ∩∆2)

= (∆−∆2) ∪ (∆−∆1) ∪ (∆1 ∩∆2).

The last two lines both partition ∆ into a disjoint union of subsets. Specifically, each

element of ∆ is in one and only one of the three pieces.

Since each nonzero squarefree monomial in k[∆] can be associated to an element of ∆,

the set of nonzero square free monomials in k[∆] can be divided up into three disjoint sets

similar to the way the elements of ∆ are divided into disjoint sets. If a monomial m is

not squarefree, we can include it with the set that contains square free monomial of largest

degree that divides m. If we again refer to k[∆] = k[x1, x2, x3, x4]/(x1x3, x1x4), ∆ gets

divided in the following way:

∆−∆2 = {{x1}, {x1, x2}}

∆−∆1 = {{x3}, {x4}, {x2, x3}, {x2, x4}, {x3, x4}, {x2, x3, x4}}

∆1 ∩∆2 = {∅, {x2}}.

If we let D1,D2, and D∩ be the sets of monomomials that correspond to sets of faces ∆−∆2,

10



∆−∆1, and ∆1 ∩∆2 respectively,

D1 = {axt11 , ax
t1
1 x

t2
2 }

D2 = {axt33 , ax
t4
4 , ax

t2
2 x

t3
3 , ax

t2
2 x

t4
4 , ax

t3
3 x

t4
4 , ax

t2
2 x

t3
3 x

t4
4 }

D∩ = {a, axt22 }

where a ∈ k\{0} and ti ∈ N.

For any polynomial g ∈ k[∆], we can group the monomial terms of g according to which

set Di, i ∈ {1, 2,∩}, they fall into; i.e. g = g1 + g2 + g∩ with the monomials of gi associated

to elements of Di for i ∈ {1, 2,∩}.

If ∆ and Γ are simplicial complexes with ∆ ⊂ Γ, then there exists a natural surjection

β : k[Γ] � k[∆]. If we let ∆ = ∆1 ∪ ∆2, then ∆i ⊂ ∆ for i = 1, 2 and there exist

natural surjections βi : k[∆] � k[∆i] for i = 1, 2 such that β1(g1 + g2 + g∩) = g1 + g∩ and

β2(g1 + g2 + g∩) = g2 + g∩. Similarly, there exist surjective homomorphims fi : k[∆i] �

k[∆1 ∩∆2] for i = 1, 2 such that f1(g1 + g∩) = ¯̄g∩ and f2(g2 + g∩) = ¯̄g∩ i.e. the following

diagram commutes:

k[∆]

β1

��

β2 // k[∆2]

f2

��
k[∆1]

f1 // k[∆1 ∩∆2]

If we let R1, R2 and S be commutative rings and h1 and h2 be ring homomorphisms

such that hi : Ri → S, then the fiber product of R1 and R2 over S is the subring R1 ×S R2

of R1 ×R2 defined by

R1 ×S R2 = {(r1, r2) ∈ R1 ×R2|h1(r1) = h2(r2)}

11



with projection maps αi : R1×SR2 → Ri, i = 1, 2 such that αi(r1, r2) = ri and the diagram

R1 ×s R2

α1

��

α2 // R2

h2

��
R1

h1 // S

commutes. The work of Matsumura and Moore [19] tells us if Ri = k[∆i] and S = k[∆1∩∆2]

such a fiber product exists and it is isomorphic to k[∆] = k[∆1 ∪ ∆2] i.e there exists an

isomorphism u : k[∆]→ k[∆1]×k[∆1∩∆2] k[∆2] such that the diagram

k[∆]

β1

##

β2

((
u

((
k[∆1]×k[∆1∩∆2] k[∆2]

α1

��

α2

// k[∆2]

f2

��
k[∆1]

f1 // k[∆1 ∩∆2]

commutes.

Theorem 2.4.1 ([19], Theorem 3.4). Let ∆ be a simplicial complex, k a ring, and let ∆1

and ∆2 be simplicial complexes such that ∆ = ∆1 ∪∆2. Then

k[∆] ∼= k[∆1]×k[∆1∩∆2] k[∆2, ]

the fiber product of k[∆1] and k[∆2] over k[∆1 ∩∆2].

This theorem gives us the power to construct Stanley-Reisner rings facet by facet. As

an example, we will construct k[x, y, z]/(xyz) using fiber products. First we will construct

12



k[x, y, z]/(xz) by gluing at the dotted line

x z

y y

using the diagram

k[x, y]×k[y] k[y, z]

α1

��

α2 // k[y, z]

f2

��
k[x, y]

f1 // k[y].

We must next glue the remaining facet {x, z} to the simplicial complex to complete the

ring we are constructing. We will glue the edge on in the way depicted in the following

picture

x

y

z

x z

by using the diagram

k[x, y, z]/(xz)×k[x]×kk[z] k[x, z]

α1

��

α2 // k[x, z]

f2

��
k[x, y, z]/(xz)

f1 // k[x]×k k[z]
= // k[x, z]/(xz).
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Many of the statements proven in Chapter 5 will rely on this view of Stanley-Reisner

rings to make the statement of theorems easier. Much of that later work indicates that

the glue part of the diagram, i.e. k[∆1 ∩∆2], may play an important role in determining

∗ -corem, an invariant of a given Stanley-Reisner ring that is covered in depth in Chapters

4 and 5.

14



Chapter 3: Closure Operators

In this chapter we focus on two closure operators of ideals: integral closure and tight closure.

The former, according to Huneke and Swanson [17], has played a role in number theory and

algebraic geometry since the nineteenth centry, with the modern formulation arising in the

1930’s in the work of Krull and Zariski. The concept was later reimagined in terms of

reductions by Northcott and Rees in the 1950’s [20]. The latter was first described and

developed by Hochster and Huneke [13]. We define both operators and make mention of

the theorems pertaining to both that are either first principles or important to this paper.

3.1 Integral Closure

We begin this chapter by introducing the notion of closure of ideals. The following defini-

tions can be found in [17] and it should be noted that IJ = {Σajbj |aj ∈ I, bj ∈ J} and Ii

is this type of product of ideals corresponding to i copies of I:

Definition 3.1.1. Let I be an ideal of a ring R. An element r ∈ R is said to be integral

over I if there exists an integer n and elements ai ∈ Ii, i = 1, 2, . . . , n, such that

rn + a1r
n−1 + · · ·+ an−1r + an = 0.

The set of all elements of r that are integral over I is called the integral closure of I and

is denoted I−. If I = I−, then I is said to be integrally closed.

It is important to mention that in the majority of existing literature, the integral closure

of I is often denoted I, but the choice of I− in this dissertation is considered more modern.

We see easily that I ⊆ I− because if b ∈ I, let n = 1 and a1 = −b, then b + (−b) = 0

shows all elements of I are integral over I.
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As a more substantial example, let R = k[x, y] be the polynomial ring over the field k

in two variables and let I = (x2, y2). The element r = xy is in R but not I, however for

n = 2, a1 = 0 ∈ I1 and a2 = −x2y2 ∈ I2, r2 + a1r + a2 = 0, thus xy ∈ I−.

In the following theorem, various well known results about integral closure are compiled.

Many of the results have analogues in tight closure that will be mentioned in the sequel.

Theorem 3.1.2 (Remark 1.1.3, [17]). For a ring R be a ring and I, J ideals of R:

(a) I ⊆ I−.

(b) If I ⊆ J , then I− ⊆ J−.

(c) I− ⊆
√
I.

(d) Radical, hence prime, ideals are integrally closed.

(e) The nilradical
√

0 is contained in I− for every ideal I.

(f) Intersections of integrally closed ideals are integrally closed.

(g) The following property is called persistence: if ϕ : R → S is a ring homomorphism,

then ϕ(I−) ⊆ (ϕ(I)S)−.

The next theorem relates inclusion of elements in the integral closure of an ideal to

minimal prime ideals of the ring R. The theorem has an important analogue in tight

closure, which is mentioned in the next section and is also used in later results.

Theorem 3.1.3 (Proposition 1.1.5, [17]). Let R be a ring, not necessarily Noetherian. Let

I be an ideal of R. An element r ∈ R is in the integral closure of I if and only if for every

minimal prime ideal P in R, the image of r in R/P is in the integral closure of (I+P )P/P .

In this dissertation, it is less important to ask what is the integral closure of an ideal

I ⊂ R than it is to ask given an ideal I ⊂ R which ideals J ⊂ R are such that J− = I. To

that end, we use the following definition from the seminal work of Northcott and Rees [20].
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Definition 3.1.4 (Definition 1, [20]). If I and J are ideals of R then J will be called a

reduction of I if J ⊆ I and JIn = In+1 for at least one integer n.

This notion of reductions is linked to integral closure by the following theorem:

Theorem 3.1.5 (Corollary 1.2.5, [17]). Let J ⊂ I be ideals and let I be finitely generated.

Then J is a reduction of I if and only if I ⊆ J−.

By this theorem, the fact that (I−)− = I−,[17, Corollary 1.3.1], and Theorem3.1.2.(a)

we see that if J is a reduction of I, then

J ⊆ I ⊆ J− ⊆ I− ⊆ (J−)− = J−

which proves that J− = I− if and only if J is a reduction of I.

If we think about integral closure in the context of reductions, the following two theorems

are useful, though they are essentially re-imaginings of Theorem 3.1.2 (g) and Theorem 3.1.3.

Theorem 3.1.6 (Lemma 8.1.3 (1), [17]). Let R → S be a ring homomorphism and J ⊆ I

ideals of R. If J is a reduction of I, then JS is a reduction of IS.

Theorem 3.1.7 (Lemma 8.1.4, [17]). Let R be a Noetherian ring, J ⊆ I ideals in R. Then

J ⊆ I is a reduction if and only if for every minimal prime P of R, J(R/P ) ⊆ I(R/P ) is

a reduction

We will need the following two definitions in later sections. Both are from [20].

Definition 3.1.8 (Definition 2, [20]). A reduction J will be called a minimal reduction of

I if no ideal strictly contained in J is a reduction of I.

Definition 3.1.9 (Definition 3, [20]). An ideal that has no reduction other than itself will

be called a basic ideal.

We conclude this section with a lemma from Hays [10]. This lemma is the anchor of a

later result that gives added significance to this body of work.
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Lemma 3.1.10 (Example 2.8, [10]). Let k[x1, . . . , xn] with n ≥ 2 be a polynomial ring over

a field. Then the maximal ideal (x1, . . . , xn) is basic.

3.2 Tight Closure

In this section we define tight closure in both prime characteristic p and characteristic 0.

We also compile relevant results used in the later portions of this dissertation. The sections

for characteristic p and characteristic 0 are separated because tight closure is originally

a characteristic p notion [12],[13] and of full understanding of the characteristic p case is

required to understand the characteristic 0 case.

3.2.1 Tight Closure in Prime Characteristic p

For this section, let R be a ring of characteristic p. For our purposes, these will be quotients

of k[x1, . . . , xn], the polynomial ring in n variables over a field k of characteristic p. Our

preference is for k to be infinite. An infinite field of characteristic p can be found by taking

the fraction field of a polynomial ring over Fp. We will let R◦ be the set of elements of R

not contained in any minimal prime of R.

If we let I be an ideal of R, we define the q-th Frobenius power of I, I [q], to be the ideal

of R generated by the q-th powers of the elements of I where q = pe with e ∈ N� 0. This

is not to be confused with Iq = 〈{
∏q
i=1 ai : ai ∈ I}〉.

We will now define tight closure of an ideal I of R. A definition can be found in any

work about tight closure, for example [12],[13],[16], or [23], but we are using the version

found in [3].

Definition 3.2.1. Let I ⊂ R be an ideal. The tight closure I∗ of I is the set of all elements

x ∈ R for which there exists c ∈ R◦ with cxp
e ∈ I [pe] for pe � 0. One says I is tightly closed

if I = I∗.

The following theorem, found in [3], but compiled from other sources, lists many of the

basic properties of tight closure. Many of the results are tight closure analogues of integral
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closure items in Theorem 3.1.2 and Theorem 3.1.3.

Theorem 3.2.2 (Proposition 10.1.2, [3]). Let I and J be ideals in R of characteristic p.

Then the following hold:

(a) I∗ is an ideal and I ⊂ J ⇒ I∗ ⊂ J∗;

(b) there exists c ∈ R◦ with c(I∗)[q] ⊂ I [q] for q � 0;

(c) I ⊂ I∗ = I∗∗;

(d) x ∈ I∗ if and only if the residue class of x lies in ((I +P )/P )∗ for all minimal prime

ideals P of R.

For our purposes, the most useful of these items is Theorem3.2.2.(d) for which the

original source is [1, Lemma 2.10(c)(1)]. Specifically for any Stanley-Reisner ring k[∆]

and all minimal primes Pi of k[∆], k[∆]/Pi will be a polynomial ring. We will pair this

with the following theorem, which states that all ideals in a polynomial ring over a field of

characteristic p are tightly closed.

Theorem 3.2.3 (Theorem 4.4, [13]). If R is a polynomial ring over a field k and I is an

ideal of R, then I∗ = I.

To determine if x ∈ k[∆] is in I∗, for all minimal primes P , we pass to k[∆]/P , and

x ∈ I∗ if and only if x ∈ (I + Pi)/Pi for all i.

Since simplicial complexes are at their basest levels sets, set containment will play a

large role in this dissertation. If ∆ ⊆ ∆′ are simplicial complexes, there exists a natural

surjection f : k[∆′] � k[∆]. It will be important to know how tight closure of an ideal is

affected by such a map. For this we turn to the following theorem:

Theorem 3.2.4 (Theorem 6.24, [14]). If f : R→ S is a map of finitely generated algebras

over a field, I an ideal of R, and x ∈ I∗, then f(x) ∈ (f(I)S)∗.
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3.2.2 Tight Closure in Equal Characteristic 0

When R is a finitely generated algebra over a field k of characteristic 0, one passes to

characteristic p models of R and x ∈ I∗ if and only if true for almost all characteristic p

models.

All of the results in the previous section have analogues for tight closure in equal charac-

teristic 0. We provide statements and sources for teh most important ones to this research.

The following result for tight closure in equal characteristic 0 is analogous to Theorem3.2.2.(d):

Theorem 3.2.5 (Theorem 2.5.5(n), [15]). Let I ⊂ R be an ideal of a ring of equal char-

acteristic 0. Then x ∈ I∗ if and only if the residue class of x lies in ((I + P )/P )∗ for all

minimal prime ideals P of R.

We also retain the fact that ideals of polynomial rings are tightly closed mentioned in

3.2.3 when we pass to characteristic 0. The version of the theorem for characteristic 0 can

be found in [15, Theorem 4.1.1].

Theorem 3.2.6. If R is a polynomial ring over a field k of characteristic 0 and I is an

ideal of R, then I∗ = I.

The third important theorem is that of persistence of tight closure. The characteristic

0 version is found at [15, Theorem 2.5.5(k)].

Theorem 3.2.7. If f : R → S is a map of finitely generated algebras over a field of

characteristic 0, I an ideal of R, and x ∈ I∗, then f(x) ∈ (f(I)S)∗.

Because all of these theorems carry over to the characteristic 0 case from the character-

istic p case, we no longer need to make special mention of characteristic when referring to

tight closure. Therefore, for the rest of the paper, any statement about tight closure is true

for both the characteristic 0 and characteristic p cases.

Now that the basics of tight closure are outlined, the following theorem shows how the

tight closure and the integral closure of an ideal I are related. In characteristic p, the
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statement can be found at [13, Theorem 5.2] and for equal characteristic 0, the result is

located at [16, Corollary 6.3, Appendix 1]

Theorem 3.2.8. Let I be any ideal of the ring R. Then

I∗ ⊆ I−.

We conclude this section with another useful result about tight closure in both types of

characteristic. Though it is difficult to believe that the following result is first mentioned

here, no source could be found. This may be due to the simplistic nature of statement and

the fact that it follows easily from early theorems in integral and tight closures. To that

end, a proof is provided.

Observation 3.2.9. Let P be a prime ideal of R. Then

P ∗ = P.

Proof. The tight closure of an ideal I is contained in integral closure of I [13]. All prime

ideals are integrally closed by Theorem 3.1.2 (d). If P− represents the integral closure of a

prime ideal P , then

P ⊆ P ∗ ⊆ P− = P.

Thus P ∗ = P .

3.2.3 ∗-reductions

We concluded our discussion of integral closure with the definition and some results about

reductions of an ideal I in R. The following notion is first described in [6] and is the tight

closure analog of a reduction.

Definition 3.2.10. Given ideals J ⊆ I, we say J is a ∗-reduction of I if I ⊆ J∗ (equivalently

I∗ = J∗). A ∗-reduction J is minimal if for all ideals K ( J , I 6⊂ K∗.
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The remainder of this paper is concerned with ∗-reductions of the maximal ideal m in

k[∆]. In the next chapter, we will see that in this case, ∗-reductions and reductions of m are

identical notions, which renders the need to distinguish between integral and tight closures

moot for our purposes.
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Chapter 4: ∗-reductions and ∗-core

In this chapter, we will examine the notions of reductions and ∗-reductions more closely.

We focus our attention to the maximal ideal m = (x1, . . . , xn) of the Stanley-Reisner ring

R = k[∆] = k[x1, . . . , xn]/I∆. In this situation, it turns out that reductions and ∗-reductions

of m are the same ideals. We then describe ∗-reductions (and reductions) of m in as much

generality as possible, paying special attention to the number of generators of a ∗-reduction,

the internal linear algebra that occurs between the generators, and monomials that are

common between all ∗-reductions of m in a given Stanley-Reisner ring.

4.1 Reductions and ∗-reductions

In the previous chapter, we defined both reductions and ∗-reductions of ideals. Epstein

observed that any ∗-reduction of an ideal I is also a reduction [6]. In general, however, the

reverse is not true. For example, let R = k[x, y] and let I = (x2, y2). Since R is a polynomial

ring over a field, all ideals are tightly closed by Theorem 3.2.3, so I = I∗ = (x2, y2). When

we attempt to find the integral closure of I, we see that xy ∈ (x2, y2)− because

(xy)2 + a1(xy) + a2 = 0

when a1 = 0 ∈ I and a2 = −x2y2 ∈ I2. Hence, I is a reduction of m2 = (x2, xy, y2), but

not a ∗-reduction of it.

4.1.1 Equality of Reductions and ∗-reductions of m in k[∆]

The example that was just covered is not considered a Stanley-Reisner ring as we are defining

them, though most sources allow polynomial rings to be considered Stanley-Reisner. In
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those cases, a polynomial ring in n variables is the Stanley-Reisner ring associated to the

n− 1 dimensional simplex on n vertices. The result featured in this section applies to these

cases, though over all we do not pay much attention to them.

As it turns out, if we keep our focus to the maximal ideals m of Stanley-Reisner rings,

∗-reductions and reductions of m are the same thing. In the case of k[∆] being a polynomial

ring, this is easy to see as a direct consequence of Lemma 3.1.10 and Theorem 3.2.3.

If we focus on our definition of a Stanley-Reisner ring, it is beneficial to first look at

an example. Let k[∆] be the Stanley-Reisner ring corresponding to the simplicial complex

consisting of only two vertices:

x

y

k[∆] = k[x, y]/(xy).

The set of minimal primes is {(x), (y)}. Let I = (x+ y) be an ideal of k[∆]. Then,

Ik[∆]/(x) = yk[y] = (yk[y])∗

Ik[∆]/(y) = xk[x] = (xk[x])∗

by Theorem 3.2.3. In Ik[∆]/(x), x = 0 and in Ik[∆]/(y), x = x+ y, so by Theorem

3.2.2.(d), x ∈ (x+ y)∗. Similarly, y ∈ (x+ y)∗. Thus,

(x, y) ⊆ (x+ y)∗ ⊆ (x, y)∗ = (x, y)

and the tight closure of (x+ y) is (x, y).

If we want to determine I− in the same ring, by Theorem 3.1.7 the equalities,

Ik[∆]/(x) = yk[y] = mk[∆]/(x)
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Ik[∆]/(y) = xk[x] = mk[∆]/(y)

tell us that I− = m i.e. I is a reduction of m. Thus in the case of k[∆] = k[x, y]/(xy),

I = (x+ y) is both a reduction and a ∗-reduction of m.

When concerned with Stanley-Reisner rings, the following theorem provides proof that,

in general, if A is the set of reductions of m and B is the set of ∗-reductions of m, then

A ⊆ B (or more importantly A = B).

Theorem 4.1.1. Let k[∆] be a Stanley-Reisner ring and m the maximal ideal of k[∆]

generated by the images of the variables. Then every reduction of m is a ∗-reduction of m.

Proof. Let I be a reduction of m. Then for all minimal primes P in k[∆], (I + P )/P is a

reduction of (m+P )/P . Since k[∆]/P is a polynomial ring, (m+P )/P is basic by Lemma

3.1.10 and therefore (I+P )/P = (m+P )/P by Definition 3.1.9. Thus I is also a ∗-reduction

of m.

From this point forward, all results will apply to both integral closure and tight closure

because of Theorem 4.1.1. All theorems will be stated and proven in terms of tight closure

because although mentioned first, Theorem 4.1.1 was discovered late in the research. All

work prior to this discovery was done in the language of tight closure.

4.1.2 Generating Examples of ∗-reductions of m

As mentioned above, we will now focus solely on ∗-reductions of m. If we let m = (x1, . . . , xn)

in the Stanley-Reisner ring k[∆] = k[x1, . . . , xn]/I∆ we can find useful and effective descrip-

tions of the minimal ∗-reductions of m.

When determining what a ∗-reduction I of m must look like, it is best to work backwards

and build such an ideal based on what must necessarily be true in order for the given ideal

to be a ∗-reduction of m. By Theorem 3.2.2.(d), it must be true that for a every minimal

prime P = (r1, . . . , rt) of k[∆] and a ∗-reduction I of m with s generators that

(I + P )/P = (m + P )/P.
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So if f1, . . . , fs are the generators of I, and fi = gi + hi where gi is the sum of linear

summands of fi and hi is the sum of the nonlinear summands of fi, we know

(m + P )/P = (I + P )/P = ((f1, . . . , fs) + P )/P = ((g1, . . . , gs) + P )/P,

this last equivalence coming from Theorem 4.1.2 i.e. (g1, . . . , gs) is a ∗-reduction of m and

the coefficients of g1, . . . , gs, the linear generators of (I +P )/P , form an s× (n− t) matrix

that can reduced to row echelon form. Alternatively, g1, . . . , gn form a solvable system

of linear equations. When considering all minimal primes of a Stanley-Reisner ring in n

variables, the coefficients of the linear terms form an s× n matrix of values representing a

linear system such that for each specific minimal prime P , the columns of the matrix that

represent the variables outside of P must on their own form a matrix that can be converted

to reduced row echelon form with a leading entry in each column.

For an example, consider the ring R[x, y, z]/(xz) and the ideal I = (x+y+z, x+2y+z).

It is not to hard to check that I is a ∗-reduction of m. The minimal primes of this ring

are P = (x) and Q = (z). If we focus on P , (I + P )/P provides a 2× (3− 1) matrix that

reduces as follows:

1 1

2 1

→
1 1

0 −1

→
1 1

0 1

→
1 0

0 1



where the first column is for the variable y and the second column is for z. Similarly, for Q

the resulting matrix of coefficients of the generators of I +Q/Q reduces as such

1 1

1 2

→
1 1

0 1

→
1 0

0 1



for x in the first column and y in the second column.
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Because it will be useful in the next section, we provide a second example in the same

ring, R[x, y, z]/(xz), and let the ideal J = (x+ y + 2z, x+ 2y + z). We will check that J is

a ∗-reduction of m. This time, the ideal P provides the following matrix reduction:

1 2

2 1

→
1 2

0 −3

→
1 2

0 1

→
1 0

0 1



where the first column is for the variable y and the second column is for z. Similarly, for Q

the matrix reduces as such

1 1

1 2

→
1 1

0 1

→
1 0

0 1



for x in the first column and y in the second column.

The method for finding (linear) examples is surprisingly not complicated. If we continue

to focus on k[∆] = R[x, y, z]/(xy), we can observe that the variable complement of P = (x)

is the set {y, z}. The work above tells us that for any ∗-reduction I of k[∆], (I + P )/P ∼=

(y, z)k[y, z]. Therefore, it must at least be true that I = (y+ϕ1, z+ϕ2, . . . , ϕs) where ϕi is

a polynomial in k[∆] such that ϕ1 and ϕ2 have no linear y or z summand respectively. The

second minimal prime Q = (z) hints that in I, we must at least be able to find an x term

and a y term in distinct generators. If these generators are y + ϕ1 and z + ϕ2 respectively,

we can say

I = (y + αx+ ϕ′1, z + βy + ϕ′2, . . . , ϕs)

where α and β are nonzero elements of R.

We claim that the ideal I ′ = (y + αx, z + βy) is a ∗-reduction of m in most (here all)
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cases. We will prove a general version of this claim later, but here

(I ′ + (x))/(x) = (y, z + βy)k[y, z] = (y, z)k[y, z]

because z = −βy + (z + βy) and

(I ′ + (z))/(z) = (y + αx, βy)k[x, y] = (x, y)k[x, y]

because

x = α−1(y + αx)− (αβ)−1(βy)

y = 0(y + αx) + β−1(βy)

which shows that I ′ is a ∗-reduction of m.

It is beneficial to have an example for which the minimal primes do not all have the

same number of generators. Let k[∆] = k[x1, x2, x3, x4, x5]/I∆ where

I∆ = (x1x2, x1x3, x1x4, x1x5, x2x4, x2x5),

the Stanley-Reisner ring of the simplicial complex

x1

x2

x3

x4

x5

which has three minimal primes: P1 = (x2, x3, x4, x5), P2 = (x1, x4, x5), and P3 = (x1, x2).

We start with the prime P3 because it has the largest variable complement. It implies that

x3, x4, and x5 must be a summand of different generators. In k[∆], the simplest ideal that

fits this description is I = (x3, x4, x5). The ideal with the next largest complement is P2.

This prime says x2 and x3 must be summands in separate generators. We will redefine I

with this fact. There are six good ways to do this with nonzero α1, α2:
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1. (x3 + α1x2, x4 + α2x3, x5)

2. (x3 + α1x2, x4, x5 + α2x3)

3. (x3, x4 + α1x2, x5 + α2x3)

4. (x3, x4 + α1x2, x5)

5. (x3, x4 + α2x3, x5 + α1x2)

6. (x3, x4, x5 + α1x2)

We can now incorporate information from P1. For nonzero β ∈ k, add βx1 to one of

the generators of one of the above ideals. For example, (x3 + α1x2 + βx1, x4 + α2x3, x5).

No matter which choice of the above six ideals or which of the three generators in that

ideal is chosen to and βx1 to, the resulting ideal will be a (minimal) ∗-reduction of m.

It is interesting to note given one of the listed six ideals (f1, f2, f3) and any choice of

β1, β2, β3 ∈ k, at least one of which is nonzero, (f1 + β1x1, f2 + β2x1, f3 + β3x1) is a

(minimal)∗-reduction of m.

4.1.3 Echelonization of ∗-reductions

Given a Stanley-Reisner ring k[∆] and a ∗-reduction I of m there is useful linear algebra

we can do on the generating set of I to present the generators of I in the must useful

fashion given a particular context. In the previous section, we applied row reductions to

the matrices of coefficients of a subset of the variables chosen with respect to the minimal

primes of k[∆]. We will apply the same row reductions on the generators of I without

passing to k[∆]/P for a minimal prime P . This will give a new generating set of I such

that if y, z are distinct variables outside of P , then y and z are summands of different

generators of I and if y is a summand of a generator f , then z is not. We will call this

process echelonization with respect to P .

As an example, let I = (x+y+2z, x+2y+z) be an ideal of R[x, y, z]/(xy) with minimal

primes P = (x) and Q = (z). We have previously shown that I is a ∗-reduction of m. If we
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borrow the row reductions for this example from the previous section, for the ideal P our

generating set changes in the following way:

1 1 2

1 2 1

→
 1 1 2

−1 0 −3

→
1 1 2

1
3 0 1

→
1

3 1 0

1
3 0 1

 .

For the ideal Q, the generators echelonize in the following way:

1 1 2

1 2 1

→
1 1 2

0 1 −1

→
1 0 3

0 1 −1

 .

The echelonization process has given us two alternate ways to generate I: (x3 +y, x3 +z) and

(x+ 3z, y − z) respectively. We will use echelonization with respect to a chosen P in later

results. Because this echelonization process exists, we will often choose to generate a ∗-

reduction I = (f1, . . . , fs) of m ,with respect to a chosen prime P , by the set of polynomials

{x1 + g1, . . . , xr + gr, gr+1, . . . , gs} where x1, . . . , xr are the variables outside of P and the

gi are polynomials that exist in P for 1 ≤ i ≤ s.

In the previous examples, the ∗-reductions of m that were given or determined were

generated by linear polynomials. It is important to note that a ∗-reduction of m may be

generated by polynomials that are not linear. For example, the ideal J = (x+y+xz, y+ z)

in k[x, y, z]/(xyz) is a ∗-reduction of m and is not generated by linear polynomials. If we

let I be an ideal in the same ring generated by the linear parts of the generators of I, i.e.

I = (x+ y, y + z), we see that I is also a ∗-reduction of m.

Theorem 4.1.2. Let J = (f1, . . . , fs) be a ∗-reduction of m in k[∆]. Let fi = gi + hi for

1 ≤ i ≤ s where gi is the polynomial of linear summands of fi and hi is the polynomial of

nonlinear summands of fi. If I = (g1, . . . , gs), then I∗ = m.

Proof. Let P be a minimal prime of k[∆]. Then (J + P )/P = (m + P )/P . Let f i be the
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image of fi in (J + P )/P and let xj be the image of xj in (m + P )/P . Then there exist

polynomials a1, . . . , as in k[∆]/P such that

xj = a1f1 + · · ·+ asfs

in (J + P )/P . Let each ai = ci + bi where ci is the constant term of ai and bi is the sum of

every other term. Then

xj =
∑

cigi +
∑

bigi +
∑

aihi

and since all the terms of
∑
bigi +

∑
aihi are of degree greater than one, it must be true

that
∑
bigi +

∑
aihi = 0. Thus for all minimal primes P of k[∆],

I + P/P = J + P/P = m/P

and I∗ = m.

4.2 Analytic Spread and ∗-spread of m

In the previous section we examined the relationships between the generators of a ∗-

reduction of m. Our aim is try and work exclusively with minimal ∗-reductions of m for

the rest of the dissertation. To narrow our focus, we need to know the minimal number of

generators there are in minimal ∗-reduction of m in a given Stanley-Reisner ring k[∆]. To

this end, we make mention of ∗-spread of m which was first defined by Epstein [6].

Definition 4.2.1. Let I be an ideal of R. Suppose that all minimal ∗-reductions of I have

the same number of generators. This number is called the ∗-spread of I.

The ∗-spread of an ideal I in R is tight closure analogous to the integral closure notion

of analytic spread, which is the minimal number of generators of a minimal reduction of

I. Information about analytic spread can be found in [20]. Because of Theorem 4.1.1, by
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finding information about ∗-spread of m in k[∆], we know the corresponding information

about analytic spread of m. This is described in the following corollary to Theorem 4.1.1.

Corollary 4.2.2. The analytic spread of m is equal to ∗ -spreadm.

By this Corollary and Corollary 4.2.8, the analytic spread of m is

d = dim k[∆] = dim ∆ + 1.

The rest of this section is devoted to proving that ∗-spread of m is equal to the dimension

of the ring. To that end, we start with an easy observation based on Krull’s height theorem.

For convenience, we will first restate Krull’s height theorem. It can be found in most sources

on Noetherian commutative algebra, a couple of which are [3, Theorem A.2] [2, Corollary

11.16]

Theorem 4.2.3 (Krull’s height theorem). Let R be a Noetherian ring, and I a proper ideal

of height n. Then there exist x1, . . . , xn ∈ I such that height (x1, . . . , xi) = i for i = 1, . . . , n.

Observation 4.2.4. The ∗ -spread of m is at least d = dim k[∆].

Proof. Let I be a ∗-reduction of m in k[∆] and let d = dim k[∆]. Suppose P is a prime of

k[∆] such that I ⊆ P . Then m = I∗ ⊆ P ∗ = P . Since m is maximal, m = P . Thus m is the

only prime containing I. The height of I is therefore d. By Krull’s height theorem, I has

at least d generators.

Though we now know a lower bound for ∗-spread of m, this does not mean that d =

dim k[∆] is for sure the value of ∗-spread of m. However, the examples of ∗-reductions

we have seen so far in this chapter have all been minimal and have all had d = dim k[∆]

generators.

Recall that ∆d,n is the complete d − 1 dimensional simplicial complex on n variables.

Every proper simplicial complex ∆ is a subcomplex of ∆d,n for d = dim ∆ + 1 and n equal

to the number of vertices of ∆. The ∗-spread of m in k[∆d,n] ends up being exactly d and

because of the relationship between ∆ and ∆d,n, ∗-spread of m in k[∆] is d as well.
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Theorem 4.2.5. The ideal m in k[∆d,n] has minimal ∗-reductions with d generators.

Proof. For almost every choice of coefficients a(i,j) ∈ k, we want to show that there exists

an ideal I = (f1, . . . , fd) with

f1 = a(1,1)x1 + · · ·+ a(1,n)xn

f2 = a(2,1)x1 + · · ·+ a(2,n)xn

...

fd = a(d,1)x1 + · · ·+ a(d,n)xn

such that I∗ = m. Let X be the set of variables of k[∆d,n]. For any minimal prime

P = (X − {xi1 , . . . , xid}) of k[∆d,n], I is a ∗-reduction of m if IR/P ∼= (xi1 , . . . , xid) in

the ring k[xi1 , . . . , xid ]. Therefore if we have d generators of I, for any choice of d of the

variables, we get a square matrix with the first column corresponding to the coefficients on

xi1 across the d linear polynomial generators of I. In all cases, this square matrix must be

nonsingular.

Let γj1,...,jd be the determinant of the matrix of coefficients for columns j1, . . . , jd. These

are all nonzero if and only if

γ =
∏

γj1,...,jd 6= 0.

The product γ is a polynomial in n ·d variables and its vanishing cuts out a hypersurface in

affine n× d space. Therefore by [18, Proposition 1.3.], almost any choice of values for a(i,j)

will give us the desired ideal I.

The last part of the above proof states that almost every linearly generated ideal with

d = dim k[∆] generators is a ∗-reduction of m. Therefore, for any Stanley-Reisner ring of

the form k[∆d,n], examples of minimal ∗-reductions are very easy to find.

The ideals constructed in Theorem 4.2.5 can also be used to find the ∗-spread of m in
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an arbitrary Stanley-Reisner ring k[∆]:

Theorem 4.2.6. If ∆d,n is the smallest complete simplicial complex for which ∆ is a proper

subcomplex i.e ∆ has n vertices and dim ∆ = d− 1, then the maximal ideal m in k[∆] has

minimal ∗-reductions with d generators. The ∗-reduction is minimal by Observation 4.2.4.

Proof. Since ∆ ⊂ ∆d,n, there exists a natural surjection

ϕ : k[∆d,n] � k[∆].

If we define I to be as in Theorem 4.2.5, then ϕ(I) is an ideal of k[∆]. If n is the maximal

ideal of k[∆d,n] generated by the images of the variables, then

m = ϕ(n) = ϕ(I∗) ⊆ ϕ(I)∗ ⊆ m,

where the first inclusion follows from Theorem 3.2.4. Hence ϕ(I)∗ = m which means m

has a ∗-reduction with d generators. Thus the ∗ -spreadm ≤ d. But by Observation 4.2.4

dim k[∆] = d, so ∗ -spreadm ≥ d as well. Hence ∗ -spreadm = d.

Even though the ∗-spread of m is at least d, there do exist ∗-reductions with minimal

generating sets of more than d generators. We will show that such a reduction is not

minimal. Using iterations of the following theorem we can show that given a ∗-reduction J

of m with more than d generators, we can find an ideal I ⊆ J that is a minimal ∗-reduction

of m. The following result is analogous to a result of Epstein [6, Theorem 5.1], though his

result is for excellent analytically irreducible local domains of characteristic p > 0 and the

method of proof is different.

Theorem 4.2.7. Let d = dim k[∆] and let J = (f1, . . . , fc) with c ≥ d+ 1. If J∗ = m, then

there exists I = (g1, . . . , gc−1) such that I ⊂ J and I∗ = m.

Proof. Let P1, . . . , Ps be the minimal primes of k[∆] ordered such that for r ≤ s and
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1 ≤ i ≤ r, if J is as defined above,

(f1, . . . , fc−1)k[∆]/Pi ∼= Jk[∆]/Pi ∼= mk[∆]/Pi

and if i > r, then

(f1, . . . , fc−1)k[∆]/Pi � Jk[∆]/Pi ∼= mk[∆]/Pi.

Let Q = (xt+1, . . . , xn) ∈ {Pr+1, . . . , Ps}. Then there exists f ′1, . . . , f
′
c ∈ k[∆] such that the

linear part of each of these polynomials only include variables from {xt+1, . . . , xn} such that

J = (x1 + a1xt + f ′1, . . . , xt−1 + at−1xt + f ′t−1, f
′
t , . . . , f

′
c−1, xt + f ′c)

and

(f1, . . . , fc−1) = (x1 + a1xt + f ′1, . . . , xt−1 + at−1xt + f ′t−1, f
′
t , . . . , f

′
c−1)

for some a1, . . . , at ∈ k. Then letting gi = aixt + f ′i , 1 ≤ i ≤ t− 1,

(x1 + g1, . . . , xt−1 + gt−1, α(xt + f ′c) + f ′t , . . . , f
′
c−1)k[∆]/Q ∼= mk[∆]/Q

for any nonzero α ∈ k.

We want to show that we can choose the above α in such a way that for J ′ = (x1 +

g1, . . . , xt−1 + gt−1, α(xt + f ′c) + f ′t , . . . , f
′
c−1),

J ′k[∆]/Pi ∼= mk[∆]/Pi

for all 1 ≤ i ≤ r

For each Pi ∈ {P1, . . . , Pr} attempt to echelonize the generators of J ′ as in the beginning

of the section except for α(xt+f ′c)+f ′t , leave that generator untouched. The echelonization

of the other c − 2 generators will include a leading term in the column for each variable

outside of Pi with the exception of at most one of the variables. If every necessary column
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has a leading term after the echelonization process, then

J ′k[∆]/Pi ∼= mk[∆]/Pi

no matter the choice of α. Otherwise, the echelonization misses exactly one column. In this

case we need the generator α(xt + f ′c) + f ′t to accommodate this column. This depends on

the choice of α.

Assume that the column this generator is needed to accommodate is the one for the

variable y and that β is the coefficient on y and that αj is the coefficient on xj in α(xt+f
′
c)+

f ′t . Part of the echelonization process includes performing a row operation to remove αjxj

as part of this sum, which potentially alters the coefficients on the terms of α(xt + f ′c) + f ′t ,

including β. It is therefore necessary for β to not be both equal in magnitude and opposite

in sign to the cumulative effect of these row operations i.e. for each γj , the coefficient on y

in the generator with leading term in the xj column, 0 6= β−
∑
αjγj . Since α only appears

once in this equation as part of the construction of β, only at most one value of α will not

work for each Pi. Therefore since there are r minimal primes Pi that we need to check,

there are at most r values of α that will not work. Since k is infinite, almost any value of

α will work.

Repeat this process from the beginning of the proof until r = s and let final resulting

J ′ = I. Thus there exists an ideal I ⊂ J with one less generator than J such that I∗ =

m.

Corollary 4.2.8. If I is a ∗-reduction of m in k[∆], then there exists an ideal J ⊆ I of

k[∆] with d generators such that J∗ = m i.e ∗-spread of m is d.

Proof. This follows naturally by reverse induction on c.
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4.3 corem and ∗ -corem

At this point, we have a working knowledge about minimal reductions and minimal ∗-

reductions of m in k[∆]. Specifically we know that they all have the same number of

generators. It is tempting to examine what other characteristics all minimal reductions and

minimal ∗-reductions have in common. For this, we turn to Rees and Sally [21]. They had

the idea to intersect all minimal reductions of an ideal I in R to see which elements were

common to all reductions. For this they defined the core of I, denoted core(I), to be the

intersections of all reductions of I (this definition was sourced from [17, Definition 17.8.8]).

In this section, we will examine the notion of core, but for ∗-reductions of m.

4.3.1 Definition and Examples

We begin with the definition of ∗ -core(I) for an ideal I ⊂ R. This notion is introduced in

[7] and is analogous to the notion of core.

Definition 4.3.1. Let I be an ideal of a Noetherian ring R. The ∗ -core of I, denoted

∗ -core(I) is the intersection of all (minimal) ∗-reductions of I.

If we return to the ring k[∆] = k[x, y]/(xy) for infinite field k, we saw that (x+ y) was

a (minimal) ∗-reduction of m. In fact, all minimal ∗-reductions of m in this ring are of the

form (x+ λy), where λ is any nonzero element of k. Then,

∗ -corem =
⋂
λ

(x+ λy) = (x2, y2).

The fact that (x2, y2) ⊆
⋂
λ

(x+λy) is easy to show: x2 = x(x+λy) and y2 = 1
λy(x+λy). The

containment
⋂
λ

(x+λy) ⊆ (x2, y2) is not as easy to show. It relies on the facts that ∗ -core(m)

is generated by monomials and if x, y ∈ (x + λy) for all λ, then the only ∗-reduction of m

is m itself.
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The importance of using an infinite field k in the above example cannot be overstated.

For example, if R = k[∆1,2] = k[x, y]/(xy) where k = F2, then the only minimal ∗-reduction

of m is (x+y), which means that the intersection of all minimal ∗-reductions of m is (x+y).

The upper and lower bound for ∗ -core(m) we introduce in the following sections are only

guaranteed when k is infinite.

In [7], the authors show that core and ∗ -core agree if analytic spread is equal to ∗ -spread

for normal local domains of characteristic p > 0 with infinite perfect residue fields. This fact

inspired the following result, though we present it as a corollary to Theorem 4.1.1. Indeed,

for any Stanley-Reisner ring k[∆], an analogous result is true for the core and ∗ -core of m.

Corollary 4.3.2. For the maximal ideal m of k[∆],

corem = ∗ -corem.

In particular, we will show in Theorem 4.3.8 that

md+1 + τm ⊆ corem ⊆ m2

and in Chapter 5, we will explore ∗ -corem in different cases. Once again, the results in this

section will be valid for core(m) as well as ∗ -core(m), though the proofs are done in the

language of tight closure.

As mentioned in the above example, ∗ -core(m) is generated by monomials. This is due

to the following result:

Theorem 4.3.3. Suppose I ⊆ k[∆] is an ideal generated by monomials and that I = I∗.

Then ∗ -core I is generated by monomials.

Proof. Let S = k[x1, . . . , xn], a polynomial ring in n variables over an infinite field k and

let I∆ be the defining ideal of a simplicial complex such that k[∆] = S/I∆. There exists

a group action of G = (k×)n on S, where k× is the largest multiplicative subgroup of k,
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defined by

(λ1, . . . , λn) · f(x1, . . . , xn) := f(λ1x1, . . . , λnxn).

The fixed ideals of S under G are the monomial ideals. The action of G on S induces an

action on k[∆] since I∆ is a monomial ideal. Let J be an ideal of k[∆] such that J∗ = I.

Then for any g ∈ G, g · J = {g · a | a ∈ J} is an ideal and (g · J)∗ = I by Theorems 3.2.4

and 3.2.7. Thus

∗ -core I =
⋂

{J |J∗=I}

J =
⋂

{J |J∗=I}

g · J = g ·
⋂

{J |J∗=I}

J = g · ∗ -core I.

Since the group action fixes ∗ -core I, ∗ -core I must be generated by monomials.

4.3.2 Lower Bound of ∗ -core(m) in k[∆d,n]

Calculating the ∗ -core of any ideal can be difficult, so we want to have a better idea of

where we should look for the monomials that generate the ∗ -core. The first place we look

is to the test ideal τ of the ring R. The test ideal τ is defined by Hochster and Huneke [14]

the following way:

τ :=
⋂

I ideal of R

(I : I∗)

which by Vassilev [25, Theorem 3.7] can also be defined to be the sum of the annihilating

ideals of the minimal primes in a Stanley-Reisner ring k[∆]. The test ideal is not hard

to find in the setting of Stanley-Reisner rings, especially since the minimal primes of a

Stanley-Reisner ring k[∆] are easy to describe. In our example of k[∆] = k[x, y]/(xy), the

annihilator of (x) is (y) and the annihilator of (y) is (x), therefore τ = (x, y).
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For a more interesting example, let k[∆] = k[w, x, y, z]/(wy,wz, xyz), the Stanley Reis-

ner ring of the simplicial complex

w x

y

z

where {x, y, z} is not a face of ∆. The minimal primes of ∆ are (w, x), (w, y), (w, z), and

(y, z). The annihilators of these ideals are

ann(w, x) = (y, z) ∩ (yz) = (yz)

ann(w, y) = (y, z) ∩ (xz,w) = (xz)

ann(w, z) = (y, z) ∩ (xy,w) = (xy)

ann(y, z) = (xz,w) ∩ (xy,w) = (w)

Thus τ = (yz, xz, xy, w).

The following observation about the test ideal τ from [8, Observation 3.1] provides a

computationally based lower bound for the ∗ -core of an ideal.

Observation 4.3.4. Let R be a ring of any equal characteristic with test ideal τ . Let I be

an ideal of R. Then τI ⊆ ∗ -core I.

In simple cases, τI is exactly the ∗ -core I. For example, in k[x, y]/(xy), τm = (x, y)2 =

(x2, y2) = ∗ -corem. As the dimension of Stanley-Reisner rings increases, this lower bound

does not capture all the information about ∗ -core I. The ring k[x, y, z]/(xy) has test ideal

τ = (x, y) and

τm = (x, y) · (x, y, z) = (x2, xz, y2, yz),

but the monomial z2 is also easily computed to be in ∗ -corem. The difficulty of computation
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also tends to increase as simplicial complexes get more complicated. Because of this, we

provide a different lower bound for ∗ -corem, namely md+1 ⊆ ∗ -corem. Often, this lower

bound is exactly ∗ -corem. To show this we need the following lemma.

Lemma 4.3.5. Let ∆ be a d − 1 dimensional simplicial complex on n vertices. Let

α1, α2, . . . , αs, s < t, be a partition of the positive integer t ≤ d+ 1 with

α1 ≥ α2 ≥ · · · ≥ αs ≥ 1;α1 ≥ 2

Then all monomials of the form xα1
i1
xα2
i2
· · ·xαs

is
(with i1, . . . , is distinct) are in the ∗ -corem if

all monomials of the form xα1−1
j1

xα2
j2
· · ·xαs

js
xjs+1 (with j1, . . . , js+1 distinct) are in ∗ -corem.

Proof. By making no assumptions about the location of the vertex xi1 in the simplicial

complex, it is enough to show that a single monomial of the form xα1
i1
xα2
i2
· · ·xαs

is
is in ∗-

core(m). If so, then we have shown they all are in ∗-core(m). We therefore will let i1 = 1,

i2 = 2,. . . , is = s. If
s∏
i=1

xi is in I∆, we are done. Otherwise, {v1, . . . , vs} is a face of

∆. Therefore there exists a prime P of k[∆] such that for any minimal ∗-reduction of

I = (f1, . . . , fd) of m, we know by Theorem 4.2.5 and Corollary 4.2.8 that I = (x1 +

g1, . . . , xs + gs, gs+1, . . . , gd) where each gr, 1 ≤ r ≤ d, is a polynomial with no linear terms

in the variables x1, . . . , xs and every nonlinear term of gi is divisible by a variable not

from {x1, . . . , xs}. Multiply x1 + g1 by xα1−1
1 xα2

2 · · ·xαs
s . Then xα1−1

1 xα2
2 · · ·xαs

s · g1 is a

polynomial in which all the terms are divisible by a monomial of the form xα1−1
1 xα2

2 · · ·xαs
s y

for y /∈ {x1, . . . , xs}. Since x1 + g1 ∈ I and each term of xα1−1
1 xα2

2 · · ·xαs
s · g1 is, by

assumption, in ∗-core(m)⊆ I, xα1
1 xα2

2 · · ·xαs
s must also be in I. Since I and x1 were arbitrary,

xα1
1 xα2

2 · · ·xαs
s is in every minimal ∗-reduction of m and is therefore in ∗-core(m).

This lemma will be used inductively in the proof of the following theorem:

Theorem 4.3.6. Let ∆d,n be the complete d − 1 dimensional simplicial complex on n
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vertices, and m the maximal ideal of k[∆d,n]. Then

md+1 ⊆ ∗ -corem.

Proof. The ideal md+1 is generated by all monomials of degree d + 1 over the variables

x1, . . . , xn. If we can show all such monomials of are in ∗ -corem, then ∗ -corem is bounded

below by md+1. The degree distribution on any monomial corresponds to a partition of

d + 1. The length of a partition, s, is 1 ≤ s ≤ d + 1. In k[∆d,n], any product of d + 1

distinct variables is 0. Therefore, all products of d + 1 distinct variables are in ∗ -corem.

These correspond to the only partition of length d+ 1.

Suppose that all monomials corresponding to partitions of d + 1 of length s are in

∗ -corem, s > 1. Let xα1
i1
· · ·xαs−1

is−1
be a monomial corresponding to a partition of length

s − 1 with α1 ≥ α2 ≥ . . . ≥ αs ≥ 1. The exponent α1 ≥ 2 by the pigeonhole princi-

ple. Then by Lemma 4.3.5, xα1
i1
· · ·xαs−1

is−1
∈ ∗ -corem because all monomials of the form

xα1−1
j1

· · ·xαs−1

js−1
xjs ∈ ∗ -corem. Thus by induction, md+1 ⊆ ∗ -corem.

4.3.3 Upper Bound of ∗ -core(m) in k[∆d,n]

Unlike the lower bound for ∗ -core(m), there does not appear to be an existing upper bound

other that m itself. However, we did see an example earlier in k[x, y]/(xy) where ∗ -core(m) ⊆

(x2, y2) = m2. This result holds in general for k[∆d,n].

Theorem 4.3.7. Let ∆d,n be the complete d−1 dimensional simplical complex on n vertices

where d < n, and m the maximal ideal of k[∆d,n] generated by the variables. Then

∗ -corem ⊆ m2.

Proof. Since a simplicial complex of the form ∆d,n is symmetric in the sense that all vertices

are exactly identical except for their name, if one variable xi is in ∗ -corem, all variables
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are in ∗ -corem, which forces every minimal ∗-reduction of m to be exactly equal to m.

Since d < n, this is an impossibility. Thus ∗ -corem contains no degree one monomials. But

∗ -corem is generated by monomials and the smallest possible remaining monomial members

of ∗ -corem are the degree two monomials. Thus ∗ -corem ⊆ m2.

4.3.4 Bounds for ∗ -core(m) in k[∆]

We conclude this chapter by establishing bounds for ∗ -core(m) for general k[∆]. The bounds

are established by the previously discussed relationship between ∆ of dimension d− 1 on n

vertices and ∆d,n.

Theorem 4.3.8. If ∆ is a simplicial complex of dimension d− 1 on n vertices, then for m

of k[∆],

md+1 + τm ⊆ ∗ -corem ⊆ m2.

Proof. We want to show that no variable of the Stanley-Reisner ring k[∆] is in the ∗ -core

of the maximal ideal n of k[∆] generated by the variables. Showing this will confirm that

∗ -core(n) ⊆ n2.

Let I represent a linearly generated minimal ∗-reduction of m in k[∆d,n] of the type

crafted in Theorem 4.2.5. Let f : k[∆d,n] � k[∆] be the natural surjection between the

Stanley-Reisner ring of ∆d,n and the Stanley-Reisner ring associated to ∆, a proper sim-

plicial subcomplex of ∆d,n of dimension d − 1 on n vertices, then f(I) is a ∗-reduction of

f(m) = n, the maximal ideal generated by the variables in k[∆]. Without loss of generality,

suppose the variable x1 is in ∗ -core(n). Then x1 ∈ f(I). All ideals generated by n − d of

the variables k[∆d,n] are minimal primes of k[∆d,n. Define P = (xd+1, . . . , xn) to be one

such prime of k[∆d,n], then we can echelonize the matrix of coefficients of the linear terms
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of the generators of I to get the matrix

A =



1 0 0 · · · 0 a1,d+1 a1,d+2 · · · a1,n

0 1 0 · · · 0 a2,d+1 a2,d+2 · · · a2,n

0 0 1 · · · 0 a3,d+1 a3,d+2 · · · a3,n

...
...

...
. . .

...
...

...
...

...

0 0 0 · · · 1 ad,d+1 ad,d+2 · · · ad,n



where the coefficient of xj in the ith row is 1 when i = j and 0 in all other rows for 1 ≤ j ≤ d,

and for d+ 1 ≤ j ≤ n, ai,j is the coefficient on xj in the ith row.

The surjection f preserves the elements of k, so f(A) is the same matrix as A. For

simplicity, let g1, . . . , gd be the generators of f(I) as they are presented as rows in f(A).

Since x1 ∈ f(I), there exist r1, . . . , rd such that x1 = r1gq + · · ·+ rdgd.

Note that in all the gi, x1, ..., xd only appear as a summand in one generator, so for

2 ≤ i ≤ d, ri is responsible for eliminating xi in the above equation. This can only happen

if ri = 0. Thus x1 = r1gq. Since x1 is a summand of g1 with coefficient 1, r1 is forced to be

1, so x1 = g1. Thus it must be the case that a1,j = 0 for all j ≥ d+ 1, and thus a1,j = 0 in

k[∆d,n] as well.

Let Q = (xd+2, . . . , xn, x1) be a minimal prime of k[∆d,n]. Then I +Q/Q produces the

d× d square matrix 

0 0 · · · 0 a1,d+1

1 0 · · · 0 a2,d+1

0 1 · · · 0 a3,d+1

...
...

. . .
...

...

0 0 · · · 1 ad,d+1
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where a1,d+1 = 0. However,

I +Q/Q = m +Q/Q = (x2, . . . , xd+1),

which means a1,d+1 must be a value other than 0. Thus x1, and by symmetry any other

variable, is not a element of ∗ -core(n)

Preserving the lower bound only requires using Lemma 4.3.5 because the lemma is true

for all ∆. All monomials corresponding to the length d + 1 partition of d + 1 are zero in

k[∆], so they are, by default, in every ideal of k[∆], including ∗ -core n. If we want to show

the monomial xα1
1 · · ·xαs

s such that α1 + · · · + αt = d + 1 and αi ≥ αi+1 is in ∗ -core n,

choose a minimal prime P = (y1, . . . , yt) of k[∆] such that {x1, . . . , xs} ∩ {y1, . . . , yt} = ∅.

If no such ideal exists, xα1
1 · · ·xαs

s = 0. Echelonize and reduce the linear variables of the

generators of an arbitrary minimal ∗-reduction J and then manipulate the generators so

that the nonlinear terms are all divisible by a variable in P . One of the generators of J will

be of the form x1+g where g is a sum consisting of linear terms in the prime P and nonlinear

terms divisible by variables in the prime P . Then if all the terms of xα1−1
1 xα2

2 · · ·xαs
s · g are

in ∗ -core n, then so is xα1
1 · · ·xαs

s . All these terms are in ∗ -core n by the same induction as

in Theorem 4.3.6.
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Chapter 5: Special Cases

Using the techniques and machinery built in previous sections, we can calculate ∗ -corem

for many classes of Stanley-Reisner rings without intersecting every minimal ∗-reduction of

m. What these calculations suggest is that the structure of the simplicial complex plays a

significant role in determining the ∗ -core of m. We will first look at what happens when

the simplicial complex consists of disjoint components.

5.1 Disconnected Simplicial Complexes

In what may be considered the simplest form, the disconnected components of a simplicial

complex are all simplices when considered individually, such as the example k[x, y]/(xy),

which is a disjoint union of two 0-faces. It turns out that no matter the dimension of ∆, if

∆ is a disjoint union of simplices, then ∗ -core(m) is always m2.

Proposition 5.1.1. If ∆ is a disjoint union of two or more simplices, then ∗ -corem = m2.

Proof. For simplices ∆i with 1 ≤ i ≤ r, let

∆ =
r⋃
i=1

∆i

such that ∆i ∩ ∆j = ∅ for any choice of i and j, i 6= j. Let the vertices of ∆i be the set

{vi,1, . . . , vi,ni}. Then

k[∆] = k[x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2 , . . . , xr,1, . . . , xr,nr ]/I∆
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where I∆ is generated by all degree two monomials xi,sxj,t, with i 6= j, 1 ≤ s ≤ ni, and

1 ≤ t ≤ nj .

Let X be the set of all variables. The ring k[∆] has r minimal primes P1, . . . , Pr such that

Pi = (X − {xi,1i , . . . , xi,ni}). The annihilator of Pi is the ideal (xi,1i , . . . , xi,ni). Therefore

the test ideal τ = m and

τ ·m = m2 ⊆ ∗ -corem.

Since we have shown in Theorem 4.3.8 that an upper bound for ∗ -corem is always m2,

∗ -corem = m2.

As a corollary to this theorem, the ∗ -corem in k[∆] when dim ∆ = 0 is m2. This fact

can also be inferred from the previously established bounds for the ∗ -corem in Theorem

4.3.8 because in any one dimensional ring, md+1 = m2.

Corollary 5.1.2. Let k[∆] be a Stanley-Reisner ring of dimension 1. Then ∗ -core(m) = m2.

We will now begin to relax the condition that that the disjoint pieces of the simplicial

complex are simplices. We will first look at rings where the complex is a disjoint union be-

tween a proper simplicial complex and a simplex such as the ring k[w, x, y, z]/(xy,wz, xz, yz)

which is the Stanley-Reisner ring for the simplicial complex

w x

z

y

which is the disjoint union of the 0-simplex {∅, {z}} and the simplicial complex

{∅, {w}, {x}, {y}, {w, x}, {w, y}}.

Proposition 5.1.3. Let ∆ = ∆1 ∪ ∆2 where ∆1 is a proper simplicial complex on the

variable set {x1, . . . , xn} and ∆2 is a simplex on the variable set {y1, . . . , ym} that is disjoint
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from ∆1. Let m be an ideal of k[∆]. Then

∗ -corem = ϕ−1(∗ -corem1) + (y1, . . . , ym)2,

where ϕ is the natural surjection from k[∆] to k[∆1] and m1 is the maximal ideal generated

by the images of the variables in k[∆1].

Proof. Let P1, . . . , Ps be the minimal primes of the ring k[∆1]. Then the ideals Qi =

Pik[∆] + (y1, . . . , ym) are minimal primes of k[∆] for 1 ≤ i ≤ s. In addition to the ideals

Qi, the ideal (x1, . . . , xn) is the only other minimal prime of k[∆]. If we compute the test

ideal τ , we see

ann (Qi) = ann (Pi) · k[∆] ∩ (x1, . . . , xn) = ann (Pi) · k[∆]

and

ann (x1, . . . , xn) = (y1, . . . , ym)

so

τ =
s∑
i=1

ann (Pi) · k[∆] + (y1, . . . , ym).

The lower bound we get for the ∗ -corem by computing τ ·m is

τ ·m =
s∑
i=1

ann (Pi) · k[∆] · (x1, . . . , xn) + (y1, . . . , ym)2

which shows that inclusion of ∆2 in the simplicial complex ∆ results in the inclusion of

the degree two monomials in the variables y1, . . . , ym as generators of ∗ -corem. Since any

product xiyj is in I∆, we need only determine which monomials in the variables x1, . . . , xn

are generators of the ∗ -corem.

For d = dim k[∆], let J = (f1, . . . , fd) be a linearly generated minimal ∗-reduction of m
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in k[∆]. Each generator fi of J can be written fi = gi + hi where gi is a linear polynomial

in the variables x1, . . . , xn and hi is a linear polynomial in the variables y1, . . . , ym. Let

ϕ be the natural surjection from k[∆] to k[∆1] and let m1 be the maximal ideal of k[∆1]

generated by the images of the variables. As we have seen previously,

m1 = ϕ(m) = ϕ(J∗) ⊆ ϕ(J)∗ ⊆ m1,

so the ideal ϕ(J) = (g1, . . . , gd) is a ∗-reduction of m1. Let α be a monomial in ∗ -corem1,

then for some β1, . . . , βd in k[∆1], α = β1g1 + · · ·+βdgd. If βi represents the element in the

inverse image of βi in only the variables x1, . . . , xn, then in the ideal J ,

β1f1 + · · ·+ βdfd = β1g1 + · · ·+ βdgd

is equal to the element of the preimage of α that has no terms in the variables y1, . . . , ym.

The only such element that exists is the monomial α itself in k[∆]. Thus every monomial

in ∗ -corem1 is in ∗ -corem.

The last thing we must show is that if α is a monomial in the variables x1, . . . , xn and

α ∈ ∗ -corem, then α is also in ∗ -corem1. Let d1 = dim k[∆1] and let J = (g1, . . . , gd1) be a

minimal ∗-reduction of m1. One of the following two things is true about d1: d1 < d = m or

d1 = d. To extend J to a minimal ∗-reduction of m, it is important to note that J · k[∆] is

such that J ·k[∆]/Qj = m/Qj for all j. So J ·k[∆] meets all the criteria to be a ∗-reduction

of m except for the requirement that J · k[∆]/(x1, . . . , xn) = (y1, . . . , ym). In both cases, we

can extend J to a minimal ∗-reduction J ′ = (f1, . . . , fd) of m by adding yi, for 1 ≤ i ≤ m,

to the ith generator of J , and using 0 as for all possible generators gd1+1, . . . , gd = gm if

d1 < d. Let α be a monomial in ∗ -corem consisting of only variables x1, . . . , xn. Then there

exist β1, . . . , βd in k[∆] such that α = β1f1 · · · + βdfd. Each βi can be written βi = bi + b′i

such that the bi are the terms of βi in the variables x1, . . . , xn and the b′i are the terms in
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variables y1, . . . , ym. Then

α = β1f1 + · · ·+ βdfd = b1g1 + · · ·+ b1gd1 ∈ J.

Thus α is in all minimal ∗-reductions of m1 and therefore, is in ∗ -corem1.

We no describe ∗ -corem when ∆ is the union of at least two disjoint proper simplicial

complexes. In short, lift the ∗ -core of the maximal ideal in the Stanley-Reisner rings of the

indvidual pieces to k[∆] and ∗ -corem is equal to the sum of these liftings.

Proposition 5.1.4. Let ∆ = ∆1 ∪∆2 be the disjoint union of two proper simplicial com-

plexes ∆1 and ∆2. Let m1 be the maximal ideal generated by the images of the variables in

k[∆1] and let m2 be defined analogously for k[∆2]. Then

∗ -corem = ϕ−1
1 (∗ -corem1) + ϕ−1

2 (∗ -corem2).

Proof. Let k[∆1] = k[x1, . . . , xn]/I∆1 and k[∆2] = k[y1, . . . , ym]/I∆2 and let d1 = dim k[∆1]

and d2 = dim k[∆2]. Without loss of generality suppose d = d1 ≥ d2. Let P1, . . . , Ps be

the minimal primes of k[∆1] and Q1, . . . , Qt be the minimal primes of k[∆2]. The minimal

primes of k[∆] are therefore Pik[∆]+(y1, . . . , ym) for 1 ≤ i ≤ s and Qjk[∆]+(x1, . . . , xn) for

1 ≤ j ≤ t. If I1 = (g1, . . . , gd) is a minimal ∗-reduction of m1 in k[∆1] and I2 = (h1, . . . , hd2)

is a minimal ∗-reduction of m2 in k[∆2], we can make a minimal ∗-reduction in k[∆] the

following way: let gi be the preimage of gi in the natural surjection ϕ1 : k[∆] � k[∆1] that

has no additional monomials as terms and let hj be defined analogously for hj across the

surjection ϕ2 : k[∆] � k[∆2]. Define polyonomials f1, . . . , fd of k[∆] the following way:

fi =


gi + hi for 1 ≤ i ≤ d2

gi for d2 + 1 < i ≤ d.
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Then I = (f1, . . . , fd) is a minimal ∗-reduction of m in k[∆].

Let α be a nonzero monomial in ∗ -corem and let I be a minimal ∗-reduction of m of

the type defined above. Either α is a product of the xi variables or it is a product of the

yj variables. Suppose the former. Then for the ideal I = (f1, . . . , fd) of k[∆], there exist

a1, . . . , ad in k[∆] such that

α = a1f1 + · · ·+ adfd.

Since any product of an x and a y is 0, we can assume the individual monomials of all the

f and g polynomials are of one of the two types of variables. Since α is all x variables,

the sum of the y variables in a1f1 + · · · adfd is 0. Specifically if gi is the part of fi with x

variables and bi is the part of ai with x variables,

α = b1g1 · · ·+ bdgd

which shows α to be in the ideal I ′ = (g1, . . . , gd) of k[∆] and the image of α in k[∆1] is

in the minimal ∗-reduction I1 = (g1, . . . , gd) of k[∆1]. Since this works for all such I1, α is

a monomial in ∗ -corem1. Similarly, if β ∈ ∗ -corem is a monomial in only the y variables,

the image of ϕ2(β) ∈ ∗ -corem2. Thus

∗ -corem ⊆ ϕ−1
1 (∗ -corem1) + ϕ−1

2 (∗ -corem2).

Let I = (f1, . . . , fd) be a minimal ∗-reduction of m in k[∆]. Then ϕ1(I) is a minimal

∗-reduction of m1 in k[∆1] and ϕ2(I) is a ∗-reduction of m2 in k[∆2]. Let ϕ1(fi) = gi and

ϕ2(fi) = hi and let α be a monomial in ∗ -corem1. Then there exist polynomial a1, . . . , ad

in k[∆1] such that α = a1g1 + · · · + adgd. Let ai be the preimage of ai in k[∆] with no

additional monomial terms. Then a1f1 + · · ·+ adfd is the monomial preimage of α in k[∆].

Thus ϕ−1
1 (∗ -corem1) ⊆ ∗ -corem. Similarly, ϕ−1

2 (∗ -corem2) ⊆ ∗ -corem. Hence

ϕ−1
1 (∗ -corem1) + (ϕ−1

2 ∗ -corem2) ⊆ ∗ -corem,
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which means

∗ -corem = ϕ−1
1 (∗ -corem1) + ϕ−1

2 (∗ -corem2).

We can infer from propositions 5.1.1, 5.1.3, and 5.1.4 that we now need only explicitly

calculate the ∗ -corem when a simplicial complex is connected. This statement is best

summarized through the language of fiber products, i.e. we know how gluing two Stanley-

Reisner rings at the field k affects ∗ -core(m) in every case.

Theorem 5.1.5. Let k[∆] ∼= k[∆1] ×k k[∆2] with m1 and m2 the maximal ideals of k[∆1]

and k[∆2] respectively. Then,

a. If ∆1 and ∆2 are simplices, ∗ -core(m) = m2

b. If ∆1 is a simplex and ∆2 is proper, then ∗ -core(m) = m2
1k[∆] + ∗ -core(m2)k[∆].

c. If both ∆1 and ∆2 are proper, then ∗ -core(m) = ∗ -core(m1)k[∆] + ∗ -core(m2)k[∆].

For example, if we revisit the ring k[x1, x2, x3, x4, x5]/I∆ where ∆ is

x1

x2

x3

x4

x5

let ∆1 the 0 dimensional simplex of the point x1 and let ∆2 be the simplicial complex

x2 x3

x4

x5

then Theorem 5.1.5 b. says ∗ -core(m) = (x1)2 + m2
2k[∆] where Proposition 5.2.1 gives

∗ -core(m2) in k[∆2].
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For the rest of this dissertation, we will assume that no simplicial complexes contain

disjoint elements unless otherwise stated.

5.2 Connected Simplicial Complexes

In the above section, we handled both Stanley-Reisner rings of dimension 1 and disjoint

simplicial complexes. Therefore, it is tempting to next examine Stanley-Reisner rings of

dimension 2 over connected simplicial complexes i.e. simple connected graphs. To this end,

we first discover what happens for the fiber product k[x, z] ×k[z] k[y, z], where x,y, and z

are the string of variables on a simplex i.e. when two simplices are glued together at another

simplex

Proposition 5.2.1. Let ∆ be a simplicial complex with exactly two distinct facets. Then

∗ -corem = m2.

Proof. Let ∆ = ∆1 ∪∆2 with the vertices of ∆1 associated to the variable set

{x1, . . . , xn, z1, . . . , zr}

and the vertices of ∆2 associated to the variable set {y1, . . . , ym, z1, . . . , zr} where {z1, . . . , zr}

is the set of variables associated to the face ∆1 ∩∆2. The defining ideal of the simplicial

complex is I∆ = ({xiyj : 1 ≤ i ≤ n and 1 ≤ j ≤ m}). The ring k[∆] has two minimal

primes: P = (y1, . . . , ym) and Q = (x1, . . . , xn). Therefore, the annihilator of P is Q and

the annihilator of Q is P .

The test ideal τ is generated by the generators of the two annihilators of the minimal

primes i.e. τ = (x1, . . . , xn, y1, . . . , ym). Thus

τ ·m = (P +Q) ·m = P 2 + P ·Q+Q2 + P · (z1, . . . , zr) +Q · (z1, . . . , zr)

is contained in ∗ -corem. To show that m2 ⊆ ∗ -corem, we need only show that (z1, . . . , zr)
2 ⊆

∗ -corem.
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Without loss of generality, we may assume that dim ∆1 ≥ dim ∆2. Then the dimension

of ∆ is n+ r − 1. Then for any minimal ∗-reduction I of m,

I = (x1 + g1, . . . , xn + gn, z1 + h1, . . . , zr + hr)

where each g and each h are polynomials with linear terms in y1, . . . , ym and non linear

terms divisible by at least one yi. Since P · (z1, . . . , zr) ⊆ ∗ -corem, For any choice of i, j

between 1 and r, zihj ∈ I, so

zizj = zizj + zihj − zihj = zi(zj + hj)− zihj ∈ I.

Thus (z1, . . . , zr)
2 ⊆ ∗ -corem and ∗ -corem = m2.

At this point we must introduce a new notion which we will call the linear ∗ -core of a

linearly generated ideal, which we will be denoted `∗ -core:

Definition 5.2.2. We define the linear ∗ -core of the ideal I in R to be the intersection of

all linearly generated minimal ∗-reductions of I.

The reason we are introducing this notion is that the nonlinear parts of the generators of

a ∗-reduction add a level of complexity that we can avoid using only linear generators. What

should be immediately clear is that ∗ -core I ⊆ `∗ -core I. The motivation for introducing this

idea is if in any ring R the reverse containment is true, we can discard the nonlinearly gen-

erated reductions when calculating ∗ -core I. An example of when ∗ -core(m) = `∗ -core(m)

is the ring k[x, y]/(xy), but this is not surprising because there are no ∗-reductions of m

generated by nonlinear generators.

For this discussion, let R = k[∆] be a Stanley-Reisner ring of dimension d. Let J =

(f1, . . . , fd) be linearly generated and I = (f1 +g1, . . . , fd+gd) where gi has no linear terms,

such that I∗ = J∗ = m. Until stated otherwise, this is how I and J will be defined. It is

important to remember here that by Theorem 4.1.2, the linear parts of the generators of

a minimal ∗-reduction themselves generate a minimal ∗-reduction. For any minimal prime
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P = (xm+1, . . . , xn), we can rewrite the generators of J and I to be

J = (x1 + f ′1, x2 + f ′2, . . . , xm + f ′m, . . . , f
′
d)

I = (x1 + f ′1 + g′1, x2 + f ′2 + f ′2, . . . , xm + f ′m + g′m, . . . , f
′
d + g′d)

and we will rename xi + f ′i for 1 ≤ i ≤ m and f ′i for m + 1 ≤ j ≤ d to be hi. If a is

a monomial of degree q in `∗ -corem then a = b1h1 + · · · + bdhd for b1, . . . , bd which are

individually either 0 or homogenous of degree q − 1. If we carry the same bi over to I, we

get that

b1(h1 + g′1) + · · ·+ bd(hd + g′d) = a+ b1g
′
1 + · · ·+ bdg

′
d

where each big
′
i is a polynomial with terms of degree q+1 or larger. Without knowing much

specifically about the big
′
i we get the following lemma and two corollaries:

Lemma 5.2.3. If I contains all monomials of degree q+ 1, then I also contains all mono-

mials of degree q that are in J .

Corollary 5.2.4. All monomials of degree d that are in J are also in I.

Proof. This is a direct consequence of ∗ -corem being bound below by md+1 and the lemma.

Corollary 5.2.5. If dim k[∆] ≤ 2, then ∗ -corem = `∗ -corem.

Proof. We know the case for dim k[∆] = 1 already, and when dim k[∆] = 2, we have all the

degree 3 monomials and we get the degree 2 monomials we need from Corollary 5.2.4.

What Corollary 5.2.5 says is that we can compute the ∗ -corem of any simple graph by

intersecting only the linearly generated minimal ∗-reductions of m.

Proposition 5.2.6. Let the simplicial complex ∆ be a cycle graph. Then ∗ -corem = m3.
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Proof. Let V = {v1, . . . , vn} for n ≥ 3 be the vertex set of the one dimensional simplicial

complex

∆ = {{vi} : 1 ≤ i ≤ n} ∪ {{vi, vi+1} : 1 ≤ i ≤ n− 1} ∪ {{v1, vn}}

and let k[∆] = k[x1, . . . , xn]/I∆ be the Stanley-Reisner ring associated to ∆. Then I∆ is

generated by all square free degree two monomials not representing edges in ∆. In all cases,

we know that m3 ⊆ ∗ -corem by Theorem 4.3.8. We will show that ∗ -corem contains no

degree two monomials. To do this, we rely on the obvious symmetry of a cycle graph and

the contrapositive to Lemma 4.3.5.

Case 1: n is odd. Let I ⊂ k[∆] be the ideal generated by the linear polynomials f1 and

f2 such that

f1 = x1 + x3 + · · ·+ xn−2 + xn

f2 = x2 + x4 + · · ·+ xn−1 + xn

i.e. f1 is the sum of the odd number variables and f2 is the sum of the even number variables

plus xn. By Theorem 3.2.2.(d), I∗ = m. Then by definition, ∗ -corem ⊆ I. We will show

x2
1 /∈ I and is therefore not in ∗ -corem.

Suppose there exist polynomials g1 and g2 in k[∆] such that x2
1 = g1f1 + g2f2. We can

suppose g1 and g2 are linear because all homogeneous degree two polynomials in I will come

from products of linear polynomials. Therefore, let

g1 = a1x1 + · · ·+ anxn

g2 = b1x1 + · · ·+ bnxn

and we will find values for the coefficients in these two polynomials. In the product f1g1 +
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f2g2, we get the following set of linear equations to help find the coefficients of g1 and g2:

x2
1 : a1 = 1

x2
i :


ai = 0 i is odd and i 6= 1, n

bi = 0 i is even

x2
n : an + bn = 0

xixi+1 :


ai + bi−1 = 0 i is even

ai−1 + bi = 0 i is odd, 1 < i < n

xn−1xn : an−1 + bn−1 + bn = 0⇒ an−1 + bn = 0

x1xn : a1 + an + b1 = 0⇒ an + b1 = −1

The last two equations we change because we know a1 = 1 and bn−1 = 0. The last n + 1

equations listed represent a linear system in n + 1 variables. The system of equations is

inconsistent, which implies that no such coefficients exist. Thus, x2
1 /∈ I and therefore

x2
1 /∈ ∗ -corem. Because of symmetry of the graph, x2

i /∈ ∗ -corem for 1 ≤ i ≤ n. By the

contrapositive of Lemma 4.3.5, this implies that not all monomials of the form xixj , i 6= j

are in ∗ -corem. This can only mean the nonzero monomials, and by rotational symmetry,

we can say that the nonzero monomials of the form xixj , i 6= j are not in ∗ -corem. Thus

as ideals of k[∆], ∗ -corem ⊆ m3.

Case 2: n is even. The proof of this similar to the case when n is odd. Number the

variables of the ring in order around the cycle. Let I be the ideal generated by f1 and f2

such that

f1 = x1 + x3 + · · ·+ xn−1 + xn

f2 = x2 + x4 + · · ·+ xn−2 + xn.
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Similar to before, f1 is the sum of the odd numbered variables plus xn and f2 is the sum

of the even numbered variables. This ideal is a minimal ∗-reduction of m. It can be shown

that x2
1 is not in this ideal, and consequently, there are no nonzero degree two monomials

in ∗ -corem and ∗ -corem ⊆ m3 in both cases.

The next few results will show that a graph in the absence of cycles will be at the

upper bound of ∗ -corem instead of the lower. Namely Corollary 5.2.10 will show that if ∆

is an acyclic proper simplicial complex of dimension 1 (an acyclic graph on at least three

vertices), then ∗ -corem = m2. First we must introduce two lemmas. The first lemma deals

with leaves and their incident edges in a simplicial complex. The second lemma shows that

the presence of specific squarefree degree two monomials in ∗ -corem allows for the square

of certain variables to be in ∗ -corem. Depending on the point of view, Lemma 5.2.8 can

be seen as either a weaker or stronger version Lemma 4.3.5. On one hand, Lemma 5.2.8

focuses on dimension two rings,and on the other, fewer squarefree monomials are required

than in Lemma4.3.5.

Lemma 5.2.7. Let y be a leaf of the simplicial complex ∆ and {x, y} be the edge incident

with y. Then (y)(x, y) ⊂ ∗ -corem in k[∆].

Proof. Let I = (f1, . . . , fd) be a minimal ∗-reduction of m. Then since {x, y} is a facet of ∆,

there exists, by echelonization, a presentation of I such that I = (x+ g1, y + g2, g3, . . . , gd)

where gi has no x or y term. Since y is a leaf and incident with the edge {x, y} , the only

nonzero monomials divisible by y in k[∆] are of the form xt1yt2 for non negative integer t1

and positive integer t2. Thus y(y + g2) = y2 and y(x+ g1) = xy.

Lemma 5.2.8. Let ∆ be a proper simplicial complex on vertex set {y, x1, . . . , xn−1}. If

every monomial xiy ∈ ∗ -corem for 1 ≤ i ≤ n− 1, then so is y2.

Proof. For a minimal prime ideal P of k[∆] not containing y, echelonize a minimal ∗-

reduction I = (f1, . . . , fd). By echelonizing, we find an element y + g of I such that every

summand of g is divisible by at least of the variables xi. Multiply y + g by y to obtain
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y2 + yg. Since each summand of g is divisible by some variable xi, each summand of yg

is divisible by xiy for some i ≤ n − 1. Since xiy ∈ ∗ -corem for all i ∈ {1, 2, . . . , n − 1},

xiy ∈ I. Hence yg ∈ I and y2 = y(y + g)− yg ∈ I. Thus y2 ∈ ∗ -corem.

Using the two lemmas above, the following theorem shows how ∗ -corem is affected when

k[∆] = k[∆1]×k[∆1∩∆2] k[∆] is such that ∆1 is an acyclic graph, ∆1 ∩∆2 is a single vertex,

and in ∆1 that single vertex is a leaf of the graph.

Theorem 5.2.9. Let ∆ = ∆1 ∪ ∆2 be a simplicial complex such that ∆1 is a connected

acyclic graph (a tree) on vertex set {x, y, z1, . . . , zt}, ∆1 ∩∆2 = {∅, {x}}, and as a vertex

of ∆1, x has degree 1. Then (x, y, z1, . . . , zt)(y, z1, . . . , zt) ⊂ ∗ -corem for maximal ideal m

of k[∆].

Proof. Since x as degree 1 in ∆1, suppose that {x, y} is the edge of ∆1 that lies incident with

x. With the exception of the product xy, every product of a variable w of k[∆2] with any of

the variables of k[∆1] is an element of I∆ and thus in ∗ -corem. We will show by induction

on the length s of a path in ∆1 starting at x, that the product of any two distinct variables

of k[∆1] is also ∗ -corem. Once this established, by Lemma 5.2.8, for each of the variables

z ∈ {y, z1, . . . , zt}, z2 ∈ ∗ -corem and hence (x, y, z1, . . . , zt)(y, z1, . . . , zt) ⊂ ∗ -corem.

For the base case of our induction, let the longest path starting at x in ∆1 be equal

to 1. Then the path starts at x and ends at y. Thus y is a leaf and by Lemma 5.2.7,

xy ∈ ∗ -corem.

Suppose that the path of maximal length starting at x in ∆1 is s and that the theorem

is true for all paths of up to length s−1. Let I be a minimal ∗-reduction of m in k[∆]. Since

{x, y} is a facet of ∆, there exists a prime P generated by all other variables. Echelonize I

with respect to this prime. Thus I = (x+g1, y+g2, g3, . . . , gd) such that for 1 ≤ i ≤ d, every

summand of gi is divisible by at least one variable that is not x or y. Therefore if we multiply

x+g1 by y, every summand of yg1 is either in I∆ and is therefore equal to 0 or divisible by yzi

for 1 ≤ i ≤ t. If yzi is nonzero, then the edge incident with both variables exists. This edge

lies on a path of length no more than s− 1 starting at y. By the inductive hypothesis, yzi
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is therefore an element of ∗ -corem. Hence yg1 ∈ ∗ -corem ⊂ I and xy = y(x+g1)−yg1 ∈ I

for all minimal ∗-reductions I of m. Thus (x, y, z1, . . . , zt)(y, z1, . . . , zt) ⊂ ∗ -corem.

By making ∆2 in the previous theorem the same as ∆1 ∩∆2, we find that ∗ -corem in

acyclic graphs is m2.

Corollary 5.2.10. If ∆ is an acyclic graph on n vertices {x1, . . . , xn} with leaf x1, then

∗ -corem = m2 in k[∆].

Proof. We need only show that m2 ⊆ ∗ -corem. Let ∆1 = ∆ and ∆2 = {∅, {x}}. By

Theorem 5.2.9 (x2, . . . , xn) · m ⊂ ∗ -corem. By Lemma 5.2.7, x2 ∈ ∗ -corem. Thus m2 ⊆

∗ -corem.

There is still work to be done on the case where ∆ is a graph. For example, the

ring k[w, x, y, z]/(wxy,wz, yz) is the Stanley-Reisner ring of a graph, but ∗ -corem =

m3 + (z)(y, z), which at the moment can only be confirmed with Macaulay2 (though the

containment ⊇ is confirmed by Theorem 5.2.9 and Theorem 4.3.8.

We close with a conjecture about ∗ -core(m) in k[∆] when ∆ is a simple graph and a

conjecture about the relationship between `∗ -core(m) and ∗ -core(m).

Conjecture 5.2.11. Let ∆ be a simple connected graph.

a. For any edge {x, y} of ∆, xy ∈ ∗ -core(m) if and only if {x, y} and one of x or y are

not in a cycle.

b. For any vertex x of ∆, x2 ∈ ∗ -core(m) if and only if x is not part of a cycle.

In particular, if ∆ is a simple connected graph and e = {x, y} is an edge of ∆ such that e

and x are not in a cycle, then

∗ -core(m) = m3 +
∑
e

(x2, xy).

Conjecture 5.2.12. For all Stanley-Reisner rings k[∆], ∗ -core(m) = `∗ -core(m).
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This conjecture, if true, would make the computation of ∗ -core and core of m easier

because we could ignore any ∗-reductions of m not generated by linear polynomials.
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Appendix A: Future Work

There is still much work to be done on this problem. As of the time of writing, it is still a

bit of a mystery what ∗ -corem is when ∆ is a graph that is neither tree nor cycle. We can

also hope to achieve success in determining ∗ -corem when dim k[∆] > 2. It is my belief

that the techniques and machinery developed in this dissertation will help answer these

questions.

Tweaking conditions used throughout this dissertation also yields interesting questions.

We can relax the condition that the defining ideal of the ring we are working in be generated

by squarefree monomials i.e. given an infinite field k and an ideal I of S = k[x1, . . . , xn]

generated by not necessarily squarefree monomials, determine ∗-reductions, ∗-spread, and

∗-core of m in S/I. Such rings behave similarly to Stanley-Reisner rings largely as a result

of I decomposing into an intersection of monomial primary ideals. These similarities to

Stanley-Reisner rings imply that we can apply a lot of the machinery built in the Stanley-

Reisner ring case to describe the aforementioned tight closure invariants in the general

monomial algebra case.

We may also ask what happens when we examine reductions of an ideal that is not m.

This line of questioning wass inspired by a question posed to me from Florian Enescu of

Georgia State University. He asked what would happen to the aforementioned invariants if

we looked at reductions of m2. That question resulted in the following theorem:

Theorem A.0.13. Let k[∆] be Stanley-Reisner ring of dimension d. Then the ∗-spread of

mc is
(
d+(c−1)

c

)
and

md+c ⊆ ∗ − core mc.

In general, we can ask what the invariants ∗-core and ∗-spread of an ideal J are when

J is generated by monomials.

One question we had early on was happens when the defining ideal is generated by

binomials. This is an interesting question because rings defined in this way have many
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applicaltions to subjects like algebraic geometry and algebraic statistics. Once the monomial

cases are resolved, this would be the next natural step to take in research. One of the major

hurdles here that we were unable to resolve is when exactly such a ring is normal.
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