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ABSTRACT 

DISCOVERING A COLLECTIVE SENSE OF PLACE THROUGH CROWD 
GENERATED CONTENT 

Andrew Jenkins, Ph.D 

George Mason University, 2016 

Dissertation Director: Dr. Anthony Stefanidis 

 

Place is generally defined as location given meaning through human experience. The 

topic of place has been widely debated and studied throughout geography and the social 

sciences as a theoretical construct. However, the rise and availability of user-generated 

content now affords new opportunities to computationally analyze and quantify the social 

meaning of place, but the question still remains of how well such content can be mined to 

discover place or so-called platial knowledge. This research investigates the question by 

focusing on the shared meaning of place by generalizing people’s collective sense of 

place. It is argued that taking a crowd-centric approach of collective and implicit sense of 

place meanings will lead to the discovery of emerging platial themes. Moreover, given 

the semantic-spatial-temporal characteristics of human activities within urban spaces, one 

can observe the emergence of unique themes that characterize different locations. In this 

dissertation, a novel quantitative approach is presented with statistical validation for 

deriving such platial themes from crowd-contributed content. This approach leverages 
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unsupervised probabilistic topical n-gram modelling for dimensionality reduction, 

knowledge base labelling using semantic association, and spatial clustering with iterative 

distance analysis. Experimental results are presented from four different study areas that 

depict the emergence of unique places, thematic alignment across different data sources, 

and co-occurrence trends.  The discovery and identification of locations that convey a 

collective sense of place contributes to the goal of observing how people transform a 

location to a place and shape its characteristics.   
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 
 

This dissertation seeks to contribute an approach to discover and represent the 

collective meaning of place from human centric views that emerge in user-generated 

content from the places themselves. As place is generally defined as location given 

meaning through human experience. The topic of place has been widely debated and 

studied throughout geography and the social sciences as a theoretical construct. The rise 

and availability of user-generated content continues to afford new opportunities to 

computationally analyze and quantify the social meaning of place, but the question still 

remains of how well such content can be mined to discover place or so-called platial 

knowledge.  

The view of place from a dynamic human centric approach has the advantage of 

offering new insights taken from the bottom-up (individuals or groups) instead of top-

down layering of static information. The traditional view of place has largely been an 

explicit geometric representation (i.e. place-name gazetteers) derived from authoritative 

processes that assumes the meaning rarely changes. Although this view of place has its 

utility, the challenge continues as to the discovery and representation of social meanings 

beyond these traditional space perspectives. An unanswered question remains as to 

whether geo-located crowd-contributed sources contain so-called platial knowledge?  
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Places are routinely represented as explicit locations (i.e. footprints) in place-

name gazetteers that use approaches that are committee centric, and often limited to 

administrative views of official place-names. Place-name gazetteers originating from 

different producers typically have similar schemas and category types in which feature 

matching and merging is relatively straightforward for comparison.  However, extracting 

place meanings from one crowd-contributed source, let alone multiple, remains a 

challenge. Nevertheless, it is still unknown whether different sources containing platial 

information are semantically consistent thus contributing to a unique identity of place? 

Current approaches to formulate and maintain place information are not equipped 

to handle evolving and bottom-up changes. For instance, take Central Park in New York 

City, a typical place-name gazetteer such as GeoNames.org or points of interest (POIs) 

provides a name, class or type, and locational footprint, but it does not express the 

collective social meaning at the time as to the crowd’s perceived meaning of the park. 

This human centric view is nevertheless a dynamic characteristic of a place, as expressed 

by the crowd that include changes in semantics, temporal variations, and spatial 

representation (footprint). 

A crowd-centric approach is warranted due to the problem of focusing solely on 

individual perspectives as to the meaning of place, which becomes highly subjective as 

interpretations and experiences can vary significantly. Crowds are used to derive implicit 

consensus as to the generally associated or lowest common denominator of place 

meaning. Given the notion of collective place meaning coupled with the vast amount and 

availability of crowd-contributed sources, the question still remains of how well such 
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content can be mined to discover place or so-called platial knowledge. This research 

investigates the question by focusing on the shared meaning of place by generalizing 

people’s collective sense of place. It is argued that taking a crowd-centric approach of 

collective and implicit sense of place meanings will lead to the discovery of emerging 

platial themes. Moreover, given the semantic-spatial-temporal characteristics of human 

activities within urban spaces, one can observe the emergence of unique themes that 

characterize different locations. 

The scale of place, whether at the building, neighbourhood, or city level can have 

a significant impact on the uniqueness and discernibility of place as social data sources 

are globally connected. Since place is inherently multi-scalar, is there a decaying effect or 

gradient of place meaning in crowd-contributed sources as some scholars have found in 

various studies using surveys and human subjects? This scale effect has not been 

exhaustively explored in social media in general and, Twitter and Wikipedia, in 

particular, and open questions still remain. This work explores such problem of place 

meaning to understand the changes between the neighbourhood and city scales and 

particularities of place emergence to discover that zooming out to the city scale reveals 

more of the medium. Undoubtedly, the aggregation of sources at varying scales of 

analysis will produce different results as the areal units change, which prompts separate 

investigations at different scales.  

As our world is becoming increasingly urbanized and dynamic, gaining an 

understanding of the building blocks of these urban environments is bringing forth the 

need for new approaches for sensing place. This dissertation contributes towards such 
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goal, as it provides a new lens to observe platial content as it emerges from the people 

themselves, and allows us to do so at levels of spatial and temporal granularity that far 

exceed our past capabilities.  

In order to discover emerging platial themes, a framework is developed to harvest 

implicit expressions of place using crowd-centric platial content by leveraging 

probabilistic topic modeling, semantic association, and platial clustering. The platial 

clusters are represented as one-to-one relationship of a single cluster mapped to a high-

level category. Moreover, the platial representation of place seeks to address the 

dynamics of place through multiple relationships or connections to alternate perceptions 

of meaning beyond top-down classification. This problem is evident in certain types of 

user-generated content that are uncurated (i.e. Twitter) and not designed to reach 

consensus, but nevertheless offer real-time streams of content for dynamic spatiotemporal 

reasoning. The challenge of consensus is overcome by using existing sources of curated 

user-generated content (i.e. Wikipedia), which are designed and structured for the crowd 

to achieve consensus.   

A significant challenge when considering platial thematics is the extraction of 

semantic content with both spatial and temporal attribution. To highlight the reasons, 

consider a simple scenario of a neighborhood that has undergone a renewal process and 

several buildings were torn down and new ones constructed that offer different 

affordances. Now consider two platial regions over the new construction that partially 

overlap spatially, have a temporal relation of before and after, and have a non-

overlapping semantic relation of textual content. Thus, understanding these types of 
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situations is essential for appropriately representing and eventually applying reasoning 

techniques.      

1.2 Motivation  
 

This research is motivated by the need to develop new methodologies and 

investigative approaches to study our urban places from the human perspective. As the 

study of places from this human-centric view will undoubtedly offer new insights into 

how we as humans assign perceive are environments and assign meanings. This 

democratized view of letting people assign meaning to places would have a profound 

affect on how urban planners and architectures design built spaces. In addition to human 

geographers and social scientists remotely sensing societal meanings from afar. And as 

Goodchild (2015) suggests the notion of a platial world is rich with hierarchies, 

associations and support for human perceptions and their impacts.  

Only recently with emergence of massive amounts of geotagged content (Croitoru 

et al., 2014) has continuous monitoring, observing and studying human perceptions 

remotely been possible. I now have access to real-time streams of worldwide crowd-

generated content, for example in the form of geotagged tweets and blog entries or flickr 

and instagram imagery. While it has been shown that such content can capture breaking 

events in the context of citizen journalism (see e.g. Goode, 2009; Kwak et al., 2010; 

Mathioudakis and Koudas, 2010; Bruns et al., 2012) an overall question and motivation 

for this research is how well such crowd-contributed content can be mined for platial 

knowledge. Some recent work has alluded to the fact that such platial knowledge 
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discovery is possible from crowd-contributed sources, but such work has only begun to 

investigate this potential (Adams and Janowicz, 2012; Adams and McKenzie, 2013). 

There exists a current lack of combined methods to utilize all available semantic and 

spatiotemporal information contained within platial data sources (Steiger et al., 2015). 

The spectrum of applications that may benefit from such an understanding of 

collective place meaning is broad, ranging from business (e.g. supporting location-based 

services) to security (e.g. detecting hotspots of unrest) and even health (e.g. studying 

health patterns not only as geometrical constructs, but also in association to underlying 

sociocultural data and attitudes). By moving from a geometrical view of the world around 

us to a platial view, we better support the quantitative study of the world’s character, in 

addition to its layout.  

One can consider a Geographer or, Social Scientist trying to determine whether a 

particular location is suitable for a place-based study on human behaviors or possibly 

agent-based modeling of social perceptions of place. Our current informational layers do 

little to represent such places as they change over time to satisfy more sophisticated 

inquiries. Thus researchers and analysts are forced to assimilate multiple sources of 

information and make inferences in order to develop a story of place. In essence, platial 

knowledge, built from collective crowd expressions from within spaces, should provide 

the essential components to construct bottom-up stories of place to help inform more 

rigorous investigation. 
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1.3 Research Hypothesis 
 

Given the above problem statement and motivation, the following hypothesis is 

formulated.  

Mining user-generated data leads to the characterization and localization of 

places.  

According to the hypothesis, this research addresses the following three 

components: 

• The algorithmic development of techniques for harvesting platial themes from 

crowd-contributed content based on topic modeling, knowledge base semantic 

reasoning, and spatial statistics.  

• An investigation into the thematic alignment of platial information through a 

quantitative assessment of neighborhoods and cities from multi-source data. 

• An assessment of how well such mined platial themes exhibit spatial and temporal 

alignment. 

1.4 Research Assumptions 
 

The proposed approach is based on the following key assumptions. 

• A significant volume of geo-located social media in the English language 

is available for a continuous month time period. 

• The linguistic style and character length of Twitter will cause erroneous 

results in some cases, to which the results will never be perfect. 
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• All information used from Wikipedia has an assumed state of assumed 

consensus derived from the crowd. 

• The notion of place and perceived meanings are imprecise making a 

rigorous accuracy assessment difficult. 

• The spatial representation of place, especially from implicit content, will 

be an imperfect approach as place boundaries are vague and incomplete. 

1.5 Intended Audience 
 

This work is applicable to anyone researching, studying, or engineering processes 

that involve an understanding of place and its collective representation in crowd-

generated data. Specifically, Geographers and Social Scientists will find particular 

resonance with this research, as the study of place and human interactions with it; have 

been the foci for decades. The hope is this work will contribute to recent calls for platial 

technology in GIScience that are human-centric and more readily suited to understanding 

human behaviors (Goodchild 2015).  

It is also intended that professionals working in consumer marketing will find 

interest in this work for tailoring ad-campaigns to specific places. The association 

between types of consumers with various place meanings could offer new verticals for 

mobile advertising revenue. Lastly, the representation of place has received much 

attention in the field of artificial intelligence, which has produced large volumes of work 

on spatial reasoning were researchers train robots to interpret the meaning of their 

environment (e.g. Rios-Martinez et al., 2015). The ability to capture collective meanings 
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of place provides a new means for acquiring training features and abilities for context 

awareness. 

1.6 Organization of Dissertation 
 

The organization of this dissertation is presented here and structured so that each 

chapter provides observations and findings to evaluate the hypothesis. Chapter 2 provides 

a review of background literature and the current state of the art as it applies to each 

subject area. A non-exhaustive review of place, considering the breadth of place research, 

beginning with early geographical thinking through qualitative and quantitative turns, 

technologies, and crowdsourcing; ending with present day thought and the renewed 

interest with the rise of platial content.  

Supporting work for crowdsourcing and consensus through the wisdom of the 

crowd are discussed as this forms the basis for the crowd-centric approach. Previous and 

current approaches to discovering platial information from crowdsourced content are 

reviewed with particular focus on spatio-temporal clustering, machine learning, and 

semantic methods. Current literature from the areas of semantic and spatio-temporal 

analysis is discussed with highlights on the importance of these approaches in 

discovering and quantifying platial information.  

Chapter 3 outlines the proposed framework for discovering and thematically 

labeling platial knowledge from crowd produced content. Each section of this chapter 

presents the theoretical foundations for the processes used to harvest, statistical 

validation, and spatial alignment. Specifically, the chapter starts with a brief description 
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and supporting claims for the chosen approach and selected methodology. The collection 

process is presented using Latent Dirichlet Allocation (LDA) topic modeling for 

dimensionally reduction with web-based semantic similarity and classification using 

Wikipedia. In addition, the spatial clustering with statistical significance checks is 

presented as the approach to detect clusters of semantic consensus from the crowd. The 

chapter concludes with two approaches are introduced for investigating the dynamic and 

evolving nature of platial knowledge through trend analysis and co-occurrence.  

Chapter 4 presents the application of the proposed framework for harvesting 

collective and crowd-centric platial content from Twitter and Wikipedia in the following 

study areas: New York City, Los Angeles, London, and Singapore. A subsequent study is 

performed for three different neighborhood areas in New York City in order to contrast 

the differences in scale. Results are presented based on semantic and spatial alignment of 

platial clusters to known points of interest that have common meanings (i.e. school). A 

cross-source analysis is conducted between Twitter and Wikipedia to investigate the 

emergence of unique platial knowledge.  

Chapter 5 extends on the findings from Chapter 4 by investigating the dynamic 

aspects of platial knowledge over time. The overall approach of topic modeling, semantic 

labeling, and finding significant hotspots is iterative applied at smaller temporal sizes by 

binning the data into one week intervals to investigate trends and polygon co-

occurrences. Additional techniques are applied to the resulting platial hotspots to 

programmatically identify hotspots and derive area features.  
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Chapter 6 concludes the dissertation by providing a summary of the tasks to 

include accomplishments and major findings. The most significant contribution of this 

work is discussed with proposed extensions for future work, research directions, and 

speculated outlook on platial research and technology. 
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CHAPTER 2: BACKGROUND & PREVIOUS WORK 

2.1 Place 
 

The topic of place has been extensively studied throughout multiple disciplines, 

from geography (e.g. Relph, 1976; Tuan, 1977) and planning (e.g. Graham and Healey, 

1999; Healey, 2004), to health informatics (e.g. Kearns and Joseph, 1993), sociology (e.g. 

Gieryn, 2000; Law and Urry, 2004), and psychology (e.g. Devine-Wright and Lyons, 

1997; Gustafson, 2000; Devine-Wright and Clayton, 2010).1 There exist volumes of 

literature concerning place as a social construct that interlaces geography and philosophy, 

but the definition most often used is Tuan’s (1977) “…places are spatial locations that 

have been given meaning by human experience.”  This definition implies that places can 

only exist where humans have manifested or established a connection to a physical 

location or space through events. Relph (1976) described place, as an object comprised of 

three dimensions: 

1. Observable activities that occur in relation to the place. 

2. The meanings that are created by a person in that location, and; 

3. The physical features that comprise the location’s concrete or tangible 

attributes. 

__________________________ 
1 A full discussion of place is beyond the scope of this dissertation. The purpose here in 
this chapter is to discuss place and how it relates to this dissertation 
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The combination of such characteristics of place, and in particular knowledge of 

people’s expressions and experiences, whether expressed explicitly or implicitly, gives 

rise to a common meaning or means of identifying with a location used by the crowd. So 

as Relph (1976) described the basic building blocks of place from the individual 

perspective, he further articulated that the aggregation from multiple people forms 

consensus and mass images of place as seen here:  

“Although one particular place may have quite different identities for different 

groups, there is nevertheless some common ground of agreement about the 

identity of that place. This is the consensus identity of a place, in effect its lowest 

common denominator.” (Relph 1976) 

Accordingly, place consensus, or what Relph (1976) refers to as consensus 

identity of place, is formed through the reoccurrence of shared experiences (by groups) 

through repeated activities at a certain location (Brandenburg and Carroll 1995; Williams 

and Stewart 1998). These experiences assign a common meaning to locations, 

transforming them from geometric concepts (the three dimensional space itself) to 

experiential constructs (places that convey public perceptions). Ultimately, the concept of 

place is constantly evolving, as over time places are reconstituted with new meaning, 

reflecting for example urban dynamics (Batty et al., 1999), evolving sociocultural 

perceptions (Salesses et al., 2013), or significant events (Crooks et al, 2015). 

Recently, the individual human centric expressions of place have been defined as 

platial information that is either expressed explicitly as place names or implicitly as 
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semantic associations (Goodchild 2015). The platial perspective is one of human 

discourse defined by textual place names, linguistic descriptions, and the semantic 

relationships between places (Janowicz 2009; Goodchild and Li 2012; Gao et al. 2013).  

Quesnot and Roche (2015) distinguished between explicit platial data and implicit platial 

data in the era of geospatial Big Data, whereby, explicit platial data contains coordinates 

and place name mentions that correspond to social media check-ins. The researchers refer 

to implicit platial data as similarly having coordinates and check-ins at specific locations, 

but the mentions refer to places or activities not semantically associated with their current 

place.  

Nevertheless, over time, place whether explicitly or implicitly characterized is 

reconstituted with new meaning, in the form of platial information, that in turn 

continuously reforms our sense of place making it a highly dynamic process.  The notion 

of sense of place is formed through the reoccurrence of experiences through repeated 

activities at a location developed by a person or group (Brandenburg and Carroll 1995; 

Williams and Stewart 1998). In this work, ‘sense of place’ is used as a means to frame 

the relationship between crowds of people, place, and events/activities.  

Whilst numerous definitions exist, sense of place is perhaps most simply 

considered as an overarching concept that subsumes other concepts describing 

relationships between human beings and spatial settings (Shamai 1991, Jorgensen and 

Stedman 2001). Silver and Grek-Martin (2015) argued that relationships between people 

and their environment have been conceptualized in many ways, drawing on distinct but 

related concepts such as “sense of place” (Tuan, 1974), “placelessness” (Relph, 1976), 
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“insideness” (Relph, 1976), and “place attachment” (Altman and Low, 1992).  In 

particular, the conceptualization of sense of place is investigated here despite its 

multitheorectical, complex, and contested positions. The literature is often chaotic and 

‘sense of place’ may simultaneously appear ambiguous and distinct.  

  The study of place from a qualitative perspective has largely focused on both 

theoretical constructs and human subjects to understand behaviors towards assigning 

meanings to places. A sample of early work combined human subjectivity and cognitive 

maps as the primary tools for understanding place (Lynch 1960), but in a static 

representation. Pred (1984), proposed a theoretical framework that combined place and 

time-geography to account for the continuous reproduction of what the author called 

social and cultural forms of place. Ultimately, place remains complicated by the 

multitude of meanings individuals’ hold (Kridel 2010), which is evident in the breadth of 

field studies focusing on place (Lippard and Dawson 1997; Jordan et al. 1998; Zhao et al. 

2011; Jones and Evans 2012). 

  Notably, Golledge (1992) elicited place boundaries for downtown Santa Barbra, 

CA from participants and compared the variations in boundaries that were equated to 

different meanings of place. Similar approaches have elicited knowledge from human 

subjects to understand the social meanings of places through the drawing of home range 

boundaries (Purcell 1997; Gustafson 2001). Hidalgo and Hernandez (2001) measured and 

computed place attachment within three spatial ranges (house, neighborhood, and city) 

and two dimensions (physical and social) by interviewing 177 people from different areas 

of Santa Cruz de Tenerife (Spain).  
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  Aside from direct human subjects, and more recently, our highly networked urban 

environments have impelled the rate at which the meanings of places change through the 

connectedness of people, places, and devices in real-time (Crang and Graham 2007). 

Mobile computing has transformed our activities at spatial locations into connected 

activities thus making Tobler’s (1970) first law of geography literally true – everything is 

connected to everything else. This has prompted significant efforts toward georeferencing 

place descriptions and processing spatial queries, such as using ontologies of place (Jones 

et al. 2001), qualitative spatial reasoning frameworks (Yao and Thill, 2006), fuzzy 

objects (Montello et al. 2003), probability models in combination with uncertainty (Guo 

et al. 2008; Liu et al. 2009), kernel-density estimation (Jones et al. 2008), description 

logics (Bernad et al. 2013), as well as knowledge discovery from data techniques for 

platial search (Adams and McKenzie 2012).  

 Recently, a review by Vasardani et al. (2013) suggested that a synthesis approach 

would provide improvements in locating place descriptions, and that new opportunities 

exist in identifying places from public media and volunteered sources by using Web-

harvesting techniques. Similar to ontologies, the notion of geo-folksonomies, which are 

folksonomies of tagged places that have been used to encode relationships between 

humans and the places they label to (ElGindy and Abdelmoty 2014). 

Significant attention has been devoted to methods for addressing the spatial 

vagueness of place using anchor theory (Galton and Hood, 2005), fuzzy models with 

vector data representation (McIntosh and Tuan, 2005), and supervaluation theory (Kulik, 

2001). Other researchers have combined statistical machine learning with textual 
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narratives of place to extract meaning using named entity recognition (NER). Freksa and 

Barkowsky (1996) categorized places into entities and formed relationships with nearby 

geographical objects to form a network structure to model place dependencies and 

changes in relatedness.  

  The scale and granularity of place representation has an undoubting affect on the 

perceived human activities, which has a dependency on the types of places and their 

functions. For instance, Richter (2009), although an indoor study, distinguished a 

functional, a social, and a physical hierarchy of places using a lattice of spatial 

granularity.  Lewicka (2010) explored the relationship between place scale (apartment, 

neighborhood, city) and strength of place attachment with results showing the strongest 

tie at the neighborhood scale. Although this dissertation does not explore the emotional 

bond of people and place, the work of Lewicka (2010) does offer place scale insight at 

the neighborhood level that is also observed in this work.  

  The scale of sense of place is better viewed within social media as a spectrum of 

homogeneity and heterogeneity respectively from streets, neighborhoods, and city.  

Winter and Freksa (2015) determined that humans recognize and memorize places at 

different levels of granularity, and places at one level or scale of granularity can belong to 

places at coarser levels of granularity. This abstract concept runs in parallel with studying 

places at different scales. Still other scholars have noted, in the context of place, that 

relative position and structure in both large-scale spatial reasoning and small scale, will 

result in simpler or generalized relations that take the place of more precise 

representations (Cohn 1997).  
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2.2 Crowdsourcing Place  
 

As we now have access to continuous streams of worldwide crowd-generated content, 

for example in the form of geotagged tweets and blog entries or Flickr and Instagram 

imagery. The proliferation of Web 2.0 technologies to mobile devices has allowed users 

to freely explore social spaces and places. The innovations of Web 2.0 technologies allow 

for instantaneous uploads of crowd-generated content while physically present at places 

and communicating cyber-socially through message posts, check-ins, social linking, 

photos, movies, and audio files through web all the time (Beck 2008). The massive 

volumes of crowd-generated content have created new challenges in the form of 

geospatial big data, but subsequently offer new opportunities for harvesting and 

synthesizing such information to extract knowledge (Stefanidis et al., 2011).  

The use of Web 2.0 technologies has enabled the crowd to contribute vast quantities 

of spatial and place-based information explicitly in the form of volunteered geographic 

information (VGI) with sites like OpenStreetMap and Wikimapia, and implicitly with 

sites such as Foursquare and Twitter (Croitoru et al., 2014). Although important progress 

has been made in recent years in harvesting spatial and temporal data from social media, 

(Sui and Goodchild 2011) the quality and credibility of data for scientific research and 

decision-making still need further investigation. Croitoru et al., (2015) and Goodchild 

and Sui (2011) have articulated that new processes are needed for the fusion of GIS (i.e. 

mapping), social media, and social networks.  

The importance of developing new approaches to mining and reasoning with 

platial knowledge is evident (Goodchild and Li, 2012; Steiger et al., 2015; Roche 2015). 
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Recent research concerning spatial semantics, location modeling, and cognitive models 

can be interpreted as initial work towards place research in Geographic Information 

Science (GIScience) (Winter et al., 2009). However, the types of data sources (i.e. 

geotagged media) available for which to mine platial knowledge present their own 

inherent challenges with respect to dimensionality, spatial and temporal coverage, 

linguistic style, etc. Thus the use of combined techniques from across multiple disciplines 

(i.e. geography, computer science, social science) to study platial knowledge has proven 

most effective to date.  With the vast majority of social topics having a spatial footprint 

as described by Cano et al. (2011) provides us with unique opportunities to explore social 

activities at a single place. 

 Crowdsourcing the social meaning of places has been previously investigated 

using a variety of sources from location-based social networks, geotagged photos, and 

textual place descriptions to derive collective experiences. The closest with respect to this 

work presented here is the work of Steiger et al., (2015) that used a similar mixed 

approach to account for the spatial, temporal, and textual characteristics of crowd-

generated content. In particular, the researchers extracted spatiotemporal and semantic 

features from Twitter using a combination of spatial statistics, semantic modeling, and a 

neural network to detect human activity patterns from perceived platial content. 

Cranshaw et al. (2013) demonstrated the construction of social neighborhoods through 

the clustering of collective human activities using Foursquare check-ins to form what the 

authors called Livehoods. The discovered clusters represented the perceived boundaries 
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of neighborhoods that in some cases aligned with official boundaries and yet in others 

revealed entirely different areas influenced by demographics.  

Liu et al. (2015) presented an approach to mining human representations of place 

and social activities from taxi trajectories and social media check-ins using a remote 

sensing framework to create social images. The images provide arguably land-use 

representations of platial knowledge and also highlight the fusion of multiple data sources 

to derive such information. Adams and McKenzie (2015) evaluated platial content in 

travel blogs using topic modeling and spatiotemporal features to determine the thematic 

similarity between different places. This work highlights yet another dimension and data 

source of platial content, provided in this case, through tourist narratives at both an 

individual and collective event levels.  

 Lee et al. (2014) showed that collective urban experiences through so-called 

crowd lifelogs could be extracted from sites such as Twitter, Foursquare, and Facebook 

Places. This work investigated the particular movements of crowds through urban places 

by measuring cognitive distance of place related terms to the crowd’s physical clusters. 

However, this study did not include any semantic analysis on the implicit meaning of 

activities. Purves and Derungs (2015) combined crowd-contributed Flickr images with 

key terms, historical narratives of place, and kernel density analysis to investigate the 

dynamics of place over time by studying natural landmarks. Tammet et al. (2013) 

developed a process for mining popular sights or places using a platform called SightMap 

that linked POIs, Wikipedia places, and Panoramio photo densities. The researcher used 
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text similarity by applying Levenshtein edit distance to match key words and categories 

co-located near places. 

Keßler et al. (2009) described an agenda for a next generation gazetteer from 

user-contributed and vernacular geographic information with particular emphasis on 

harvesting implicit places. Goldber et al. (2009) used an agent-based semi-supervised 

learning approach with named entity recognition (NER) to extract place-name from 

webpages that were then geocoded using online white pages. Ivre and Machado (2011) 

developed an ontological approach to record semantic connections of places from 

webpages that they applied to news feeds.  Recently, Gao et al. (2014) implemented a 

distributed Hadoop based architecture to harvest place from geotagged datasets in Flickr. 

Although Gao et al. (2014) used a bottom-up approach to construct place-based content 

from crowdsourced data; they did not incorporate any semantic or temporal attributes.  

According to Elwood et al. (2013), volunteered geographic information (VGI) from 

the popular site OpenStreetMap (OSM) assumes the characteristics of human discourse 

(platial information) through user tags rather than scientific measurements and thus has 

strong links to the world of place. The concept of VGI has received much attention since 

its first introduction by Goodchild (2007). VGI has come to be defined as user-generated 

geographic information that is openly contributed conveying both space and place. The 

crowd-contributed concept seeks to harness the power of volunteers or the crowds to 

produce, assemble, and contribute geographic data in semi-structured formats that are 

curated by the crowd and remain relatively static in representation. VGI sources, such as 

OSM, have proved invaluable for humanitarian and disaster response situations like the 
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Haiti earthquake in 2010, in which large crowds of volunteer mappers from around the 

world contributed content that resulted in the most detailed GIS layers ever created 

within 24hrs after the initial event.  

 On the uncurated side of the spectrum, social media has grown to one of the 

central modes of implicit place communication while staying in touch with friends and 

family as well as sharing, coordinating, and commenting on socially relevant events and 

gatherings. The social context of multiple actors represented in a network allows for a 

more dynamic and event-based view of places, which ultimately convey patterns of life 

(Frank et al., 2013). Coupling this with the granularity of spatio-temporal information 

and social linking, social media data sources provide near real-time characteristics of 

place meaning. This is evident in studies showing the predictive mapping of human 

mobility between urban places (Noulas et al., 2012). More recent studies have 

investigated the characteristics of urban environments and perceptions of the places 

within it by using social media to construct sound maps (Aiello et al., 2016) and smell 

maps (Quercia et al., 2015).  

 

2.3 Crowds, Consensus, and Crowd Generated Data 
 

Crowdsourcing has emerged out of the need to combine, in the problem solving 

process, existing knowledge from several scientific and professional fields, with the 

“wisdom of the crowd” (Surowiecki, 2004). According to Surowiecki (2006), “under the 

right circumstances, groups are remarkably intelligent, and are often smarter than the 
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smartest people among them”. The principal axiom of this approach is that no one knows 

everything; everyone has a specific expertise, and therefore, solutions can be reached by 

combining everybody’s knowledge and experience (Papadopoulou and Giaoutzi 2014). 

As people communicate more about a place, social consensus will create increased 

similarity between and within people's judgments of it (Davies 2009).  

An early study on place consensus used local vernacular names for mapping, at 

least in countries like Great Britain (Harley 1971), and relied on attempts to identify and 

reflect local consensus: only so many names could be shown on a map or returned by a 

gazetteer. More recently, Haklay at el., (2010) concluded that given enough VGI 

contributors reviewing geographic data, Linus’ Law holds true and the accuracy and 

quality of the data increases. Linus’ Law originates from the software engineering field 

and more specifically states, “given enough people reviewing software code, issues will 

be quickly fixed or become shallow”. By juxtaposing Linus’s Law with the work of 

Davies (2009), it logically follows that given a large enough crowd of people conveying 

similar social meanings of place, the predominate consensus of place meaning should 

emerge. One such example of this concept is the work of Lamprianidis and Pfoser (2012), 

in which the authors constructed point-clouds from multiple Flickr users to form 

collective regions of colloquial meaning.  

A central focus of this research is to use crowdsourced content. In particular, 

Wikipedia and Twitter are used extensively, however; there design principles and 

intended uses vary according to levels of consensus. Wikipedia first launched in 2001, 

with the intent of expediting the creation of encyclopedic articles for another site called 
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Nupedia that relied solely on expert contributors. However, the experts working on 

Nupedia took months to create only several articles. Wikipedia’s founders, Jimmy Wales 

and Larry Sanger, had envisioned that contributors would quickly generate articles that 

experts could review and merge into Nupedia. Within the first year, contributors created 

more than 20,000 articles in 18 languages, and Wikipedia quickly became the flagship 

project.  

Initially, a handful of administrators and editors were put in place to apply a loose 

level of control over the site, but ultimately the community of contributors provided 

governance through a peer production model. The Wikimedia Foundation was formed in 

2003 by Wales to raise money for operating costs. By late 2005, the English version of 

Wikipedia along had more than 750,000 entries. Today, Wikipedia is the world’s largest 

collectively edited source of encyclopedic knowledge (Krötzsch et al. 2007). It is the 

sixth most widely used website in the world with more than 4.7M English articles and 

over 35.3M total pages in 262 languages. 

Wikipedia is the world’s largest collectively edited source of encyclopedic 

knowledge and the largest reference website on the Internet (Krötzsch et al. 2007). The 

content is collaboratively written and updated by volunteers (Wikipedia 2007); it is 

extremely useful as a resource due to its size, variation, accuracy and quantity of hyper‐

links and meta‐data (Kinzler 2005, Weaver et al. 2006). One of the strengths of 

Wikipedia is its continued rapid growth and ability to stay in sync with world events 

(Milne and Witten 2013). Kämpf et al. (2012) contend that a significant volume of 

Wikipedia contributions are motivated by news and mass media. The sheer number of 
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articles, linked structure, and openness of Wikipedia have made it an ideal source for text 

classification (Wang et al. 2009), semantic relatedness (Iosif and Potamianos 2010), and 

knowledge engineering (Baumeister et al. 2011) research.  

Chris Lüer (2006) identified disambiguation techniques used within Wikipedia as 

the mapping from a word to an article: disambiguation of polynyms is accomplished in 

Wikpedia by a combination of requiring every article to have a unique guessable name 

and explicit disambiguation pages. Disambiguation of synonyms is achieved through a 

network of redirect pages (Lüer 2006). The responsibility is then on a page author (and 

editors) to correctly link to the intended pages they reference.  

Wikipedia is being used more and more in geographic information retrieval: for 

corpus generation, ontology generation (Buscaldi et al. 2006), gazetteer generation (Silva 

et al. 2004, Buscaldi et al. 2006), query expansion (Hauff et al. 2006) and ground truth 

generation (Lüer 2006). The category and template meta‐data greatly simplifies article 

classification. Such projects as ‘WikiProject: Geographic Coordinates’ and ‘PlaceOpedia’ 

are currently underway allowing users to geographically tag Wikipedia (Wikipedia 2007, 

Steinberg 2007). Wikipedia’s category structure has been used to create massive ontology 

and linked knowledge base, integrated with WordNet, and GeoNames (Hoffart et al., 

2013) 

As Wikipedia represents a paradigm of digital crowd curation, the popular social 

media site Twitter is considered just the opposite with its freeform and uncurated style. 

The popularized microblogging and online social networking service has become 

ubiquitous with its 140 characters of free text and specialized symbols. Twitter has been 
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compared to news media and other real-time platforms because of its instantaneous 

streams of user reactions, opinions, and experiences related to events and places. 

Significant attention has been given to Twitter for events such as earthquakes (Earle et al. 

2012; Crooks et al. 2013), political elections (Tumasjan et al. 2010), and terrorist 

activities (Oh et al. 2011). Other Twitter research has focused on sentiment analysis 

related to geographic distribution (Mitchell et al. 2013), event types (Thelwall et al. 

2011), and topical categories (Tsytsarau and Palpanas 2012). 

The common theme throughout much of Twitter research is the sheer volume of 

tweets needed to derive some meaningful results. Unlike Wikipedia, Twitter was not 

designed to form consensus or to harness the crowd to perform tasks. Wikipedia is an 

example of collective intelligence harnessed by a specific design pattern that allows the 

crowd to contribute, but relies on administrators to make final judgments on whether to 

delete a challenged article. In Wikipedia, we already have a consensus, and its content is 

an expression of said consensus guided by editing rules much like the content of 

authoritative encyclopedias (Medelyan et al. 2009). Articles in Wikipedia reflect an 

experiential definition of places, as conveyed by the crowd, whereby; we have one 

contribution made by many. In Twitter we have many contributions made by individuals 

without a controlled design pattern. Despite its shortcomings, Twitter provides benefits 

over Wikipedia with respect to human activities and the “what’s happening now” mantra. 

Social media sources have inherent biases due to several factors. First, the design 

pattern and intended use of social media rarely account for notion of place or include it as 

core design principle. Most social media outlets, for instance Twitter, is meant to send 
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short messages or communications about lifestyle, entertainment, or the “what’s 

happening now” content in people’s personal lives. Notions of place within social media 

are more of by-product of humans discussing their experiences at a particular location, 

which may or may not, relate to their surrounding environment. With this in mind, 

content analysis studies have been performed to assess the degree of bias in social media, 

particularly Twitter, and found that majority of the content is personal narratives of 

lifestyle and entertainment topics (Zhao et al. 2011).  

To overcome the problem of biases in social media, one could model the signal-to-

noise within the data to characterize what content has a relationship to a specific place. 

Additionally, although geographic coordinates make up a small percentage of social 

media content, ~2% (Burton et al. 2012), spatial clustering has shown the ability to reveal 

locations that describe similar human activities (i.e. political protests). In the specific case 

of Twitter, which has been compared to news media and other real-time platforms, 

instantaneous streams of user reactions, opinions, and experiences ultimately have some 

dependency or relatedness to place by virtue of a particular events or personal experience. 

Specific events with relations to place have been observed during earthquakes (Earle et 

al. 2012; Crooks et al. 2013), political elections (Tumasjan et al. 2010), and terrorist 

activities (Oh et al. 2011).  

Such events ultimately have an affect on the volume and content of social media 

and thus skewing the information towards a particular topic. In this case, the event should 

be considered sporadic, although specific place information could emerge in greater 

fidelity, it would not represent normal regularities of a particular area and thus create a 
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geographical unevenness (Graham et al. 2014). Additionally, social media is highly 

dependent on technological infrastructure and digital devices resulting in sparse 

representation of locations beyond the digital divide. These situations present problems 

for extracting place information, for which, other means and sources would have to be 

investigated. This is apparent from the work of Mislove et al. (2011) with their 

comparison of U.S. Census data and Twitter. U.S. population data correlates well with 

Twitter along the eastern and western seaboards, but diminishes in the Midwestern states 

due to low population densities. 

2.4 Probabilistic Topic Modeling 
 

Probabilistic topic models are a suite of algorithms whose aim is to discover the 

hidden thematic structure or topics in large volumes of documents (Blei 2011).  This is a 

classical problem in text mining and information retrieval using term frequency and co-

occurrence to form a bag-of-words structure. Latent Dirchlet Allocation (LDA) is 

probably the best-known approach in the field of topic modeling, which can be applied 

using either supervised or unsupervised models. It discovers latent structure in a 

collection of documents by representing each document as a mixture of latent topics, 

where a topic is itself represented as a distribution of words that tend to co-occur (Blei et 

al. 2003). In other words, the topics are essentially groups of correlated words and the 

correlation is revealed by word co-occurrence patterns in documents.  

LDA, and its many variants, have shown significant utility when used with short 

messages like tweets, tips, or reviews (e.g. Farrahi et al. 2011, Pozdnoukhov et al. 2011, 
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Ferrari et al. 2011, Hong et al. 2012). Topic models have shown advantage in activity 

modeling tasks due to their ability to effectively characterize discrete data represented by 

bags (i.e., histograms of discrete items) (Farrahi and Gatica-Perez 2011). Farrahi and 

Gatica-Perez used topic modeling to determine daily mobile user routines by designing a 

bag of location sequences based on cell tower locations and home (H), work (W), or 

other (or out) (O) location labels. Other researchers have attempted to predict Twitter 

user locations based on topics and known locations of those topics since most tweets have 

geographic location info (Hong et al., 2012).  

Lim et al. (2013) developed a Twitter-Network topic model to jointly model the text 

and social network information. He at el. (2014) proposed a dynamic joint sentiment-

topic model to detect and track current sentiment and key topic term. Li et al. (2014) 

developed a generative model approach they call author-topic-community (ATC) model 

for representing a corpus of linked documents. Interestingly, this approach works with 

social network and perceived hyperlink data in Wikipedia, although the authors did not 

try this, but nevertheless, this supervised approach jointly models author profile interests 

and linked community structure.  

Wu et al. (2016) proposed the combination of topic modeling and pointwise mutual 

information (PMI) (Turney 2001) to profile the social network of user contributions for 

personalized recommendations. This work interestingly uses the resulting topics and PMI 

to find associations, but like majority of topic modeling approaches it only uses single 

terms as topics that disregard collocation of others to produce phrases. For instance, the 

phrase “yearly egg hunt at the white house” would return separate terms such as “egg”, 
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“hunt”, “white”, and “house” as opposed to phrases such as “egg hunt” and “white 

house” that have more semantic meaning.  

Several variations of LDA have been proposed to address the unigram topic 

problems, which are referred to as n-gram based topic models. One of the first to explore 

word order or collocation using the LDA approach was Wallach (2006). This work 

extended Blei’s (2003) process by including n-gram statistics to produce bi-gram topic 

models. However, this approach only generates bi-grams and does not consider whether 

or not two terms should form a bi-gram or remain unigrams. Thus risking the grouping of 

terms together to form bi-grams that might not make sense. Griffiths et al. (2007) first 

proposed a method that added additional variables to not only include collocation to 

produce phrases, but also whether to produce a phrase or single word based on the 

dependencies or co-occurrence of the previous word.  

Wang et al. (2007) further extended the work of Wallach (2006) and Griffiths et al. 

(2007) by proposing the topical n-gram model (TNG). Hence, claiming their approach is 

more generalizable by combining both works, but with the inclusion of nearby context in 

the bi-gram or unigram determination. For example, their method could differentiate the 

phrase “white house” within the context of a real estate description of any arbitrary house 

versus a reference to the president’s home within a single corpus. Thus producing 

separate unigrams and bigrams within the same context compared to the other approaches 

that would create a single bi-gram or unigram. To this end, the TNG approach was 

utilized in this research and is later discussed in Section 3.2.  
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2.5 Web-based Semantic Similarity and Crowd Generated Data  
 

Semantic similarity measures are instrumental in the study of information 

retrieval (Srihari et al., 2000), ontologies (Sanchez et al., 2012), and the Semantic Web 

(Berners-Lee et al., 2001;Rettinger et al., 2012) to assess the association between two or 

more words or thematic categories. Ultimately, the semantic similarity between two 

terms or categories can change over time and across domains or geographic areas. The 

reasoning for the use of web-based or retrieval engine similarity measure is it best 

captures the current interests and dynamic volatility of the collective crowd (Li 2014;	

Franzoni and Milani 2012). Given that place meanings are highly fluid and event-based; a 

static knowledge base or lexical database would not have the most up-to-date meanings.  

Measures of web-based semantic similarity abound for determining numerically 

how similar or related two words are. Resnik (1995) first proposed an information theory-

based method for semantic similarity using a taxonomy hierarchy and frequency of 

occurrences of two concepts. More recently, page counts from search results have been 

used in conjunction with knowledge bases and search engines. Bollegala et al. (2007) 

presented several popular co-occurrence measures such as Jaccard (Jaccard 1912), 

Overlap (Simpson 1949), Dice (1945), and PMI (Turney 2001) in modified web-based 

form, denoted by the appending of “Web” to each name, to account for page counts 

presented in Table 1. Also included in Table 1 is the popular Normalized Google 

Distance (NGD) metric developed by Cilibrasi and Vitanyi (2004).  

To briefly describe the metrics in Table 1, the notation 𝑓 𝑤!  and 𝑓 𝑤!  denotes 

the page or article counts, depending on the knowledge base or search engine, 𝑤! and 𝑤! 
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denote the query terms or words. Bollegala et al., (2007) included 𝑐 as a threshold value 

and 𝑁 as the total number of articles or pages contained a search engine or knowledge 

base. For NGD, being a distance metric, the closer the resulting value is to zero, the more 

similar the terms. So calculating the score for the exact same terms would result in zero 

distance, compared to completely opposite terms resulting in one. 

 
 
 
Table 1 Selected semantic similarity equations for use with web-based page count. Content adapted from 
Bollegala et al., (2007) and Cilibrasi and Vitanyi (2004). 
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In the context of Wikipedia, there has been numerous semantic relatedness and 

entity disambiguation approaches proposed throughout the literature. WikiRelate (Strube 

and Ponzetto 2006), one of the first proposed, uses Wikipedia’s category structure to 

compute relatedness. The Wikipedia Link Vector Model (WLVM), proposed by Witten 
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and Milne (2008), calculates semantic relatedness based on the number of hyperlinks to a 

particular article divided by the total number of articles. Newman et al. (2010) 

determined similarity by treating Wikipedia as a meta-document to score n-gram pairs 

using term co-occurrence. Niraula et al. (2013) used semantic similarity measures and 

LDA to assess topic quality and found that PMI (Turney 2001) method was best when 

compared to human judgments of topic coherence. They counted the frequency of the co-

occurring words in a window of 10-word in Wikipedia corpus and 5 in case of Google 5-

grams.  

Genc et al. (2011) associated Twitter messages with their most similar Wikipedia 

pages and then used the network distances between the article pages as a proxy. 

Michelson and Macskassy (2010) showed that Wikipedia could be used to profile the 

topics of Twitter users into coherent categories. To briefly illustrate, Figure 1 shows their 

overall approach to discover the main topics of interest particular users. They start by 

extracting entities from Twitter using all capitalized and non-stop words, which they then 

send to Wikipedia to disambiguate the meanings and extract the categories. The last step 

involves a frequency rank metric calculated for each category per user. Although 

interesting, given millions of tweets, this approach would require a significant amount of 

computational time since the approach extracts all non-stop words. Plus, this approach 

suffers from a loss of meaning by only looking at single terms and not phrases such as bi-

grams. Nevertheless, it provides a bases for the approach proposed in this dissertation. 
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Figure 1 Sample architecture (source Michelson and Macskassy 2010). Illustrative example that combines 
Twitter messages with Wikipedia to semantically link entities to higher-level categories. 
 

2.6 Semantics, Topics, and Spatial Clusters 
 

Semantic similarity measures have been widely studied and applied in GIScience 

(Rodriguez and Egenhofer 2004; Schwering and Raubal 2005; Li and Fonseca 2006; 

Ahlqvist and Shortridge 2006). Most of these measures are hybrid in a sense that they 

combine different approaches to similarity, such as features, regions in a multi-

dimensional space, or network distances (Mülligann et al., 2011).  However, most of the 

aforementioned studies assume structured data with predefined schemas. And 

unfortunately, when dealing with crowd-contributed content, structured attributes and 

schemas are not the norm. In the case of Twitter, the semantic content is presented in 

freeform text that has to be mined for entities and meaning. As previously discussed, 

LDA and its variants, have been used considerably to extract semantic content and 

perform dimensionality reduction to find key components or the most frequent terms.  
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Given the extraction of semantic terms or topics, and embedded geo-location 

information within the data source, point pattern analysis statistics can then be applied to 

determine semantic-spatial clusters. Adams and McKenzie (2015) evaluated platial 

content in travel blogs using LDA and spatiotemporal clustering to determine the 

thematic similarity between different places. This work shows another dimension and 

data source of platial content, provided in this case, through tourist narratives at both an 

individual and collective event levels. 

Steiger et al. (2015) formed semantic and spatiotemporal clusters using Twitter 

data by applying LDA and two spatial statistics to discover frequencies of human 

activities, within places, that were then compared with census data for workplaces and 

residential areas. Figure 2 depicts the overall process the authors used to derive human 

activity clusters. However, there are significant differences from this approach to the 

research presented here in Chapter 3. The most notable being the use of Wikipedia as a 

knowledge base, the ability to select any high-level category or event (not just basic 

activity terms, “work”), and iterative distance analysis using Global Moran’s I to adjust 

for different geographies. 
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Figure 2 Sample process (source Steiger et al., 2015). Illustrative example that combines Twitter, LDA, and 
spatial statistics. 
 
 

Fan and Stewart (2015) combined LDA, Wikipedia, spatial interpolation, and 

Getis-Ord Gi* (Getis and Ord, 1992) to detect the spatial patterns of wildfires. The 

researchers used the supervised version of LDA that was trained on the entire Wikipedia 

corpus using both geo-located articles about wildfires and geo-located articles for places 

such as towns, landmarks, etc. to characterize the semantics of wildfire related articles. 

Interestingly, they calculated a spatial probability surface by applying Kriging, or spatial 

interpolation, that combines wildfire related terms such as dry, heat, etc. with geo-located 

places with similar terms. They finally used Getis-Ord Gi* statistic to assess spatial 

alignment of individual terms with places, and noted some ambiguity, particularity with 

the term “mobile” and Mobile County in Alabama. To build the classifier, they used a 

high performance-computing environment given the sheer volume of data, which does 

not scale well for other applications.  

Fuchs et al. (2013) investigated personal behavioural patterns in geo-located 

Twitter data by extracting knowledge about significant personal places and interests. The 

authors manually created topics and related terms, instead of using a machine learning 

approach, and then categorized the terms into higher-level categories. After assigning the 

tweets to a category, they then applied density based clustering using spatial proximity 

with an arbitrary distance threshold to data in hourly temporal slices. Once again, and in 

another paper by Steiger et al., (2015), they used LDA, Getis-Ord Gi*, and neural 

networks known as self-organizing maps (SOM), to extract spatiotemporal and semantic 
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features from Twitter to detect human activity patterns from perceived platial content. 

Similar to their previous work on human activity patterns, the researchers restricted the 

categories to terms regarding daily routines.  

To address the scale mixing of human activities found in crowd-sourced data, 

Westerholt et al., (2015) presented a modified scale-sensitive version of the Getis-Ord 

Gi* statistic that they combined with Latent Semantic Indexing (LSI). They used the 

resulting LSI values as inputs to their local spatial clusters analysis. To address the 

difference in scales, the researchers modified the spatial weights matrix by including 

scale-adjusted neighborhoods using a distance interval [dmin, dmax], as opposed to a fixed 

neighborhood distance. This approach has the advantage of detecting spatial clusters of 

different sizes within a single data source like Twitter. Although they provide a means to 

deal with varying scales, it still requires the distance values or interval to be produced 

much like the original Getis-Ord Gi* statistic.  

In this chapter, a background literature review and current state of the art was 

presented for each subject area. A non-exhaustive review of place, considering the 

breadth of place research, beginning with early geographical thinking through qualitative 

and quantitative turns, technologies, and crowdsourcing; ending with present day thought 

and the renewed interest with the rise of platial content. Supporting work for 

crowdsourcing and consensus through the wisdom of the crowd are discussed as this 

forms the basis for the crowd-centric approach. Previous and current approaches to 

discovering platial information from crowdsourced content are reviewed with particular 

focus on spatio-temporal clustering, machine learning, and semantic methods. Current 
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literature from the areas of semantic and spatio-temporal analysis is discussed with 

highlights on the importance of these approaches in discovering and quantifying platial 

information. The next chapter outlines the proposed framework for discovering and 

thematically labeling platial knowledge from crowd produced content. Each section of 

this chapter presents the theoretical foundations for the processes used to harvest, 

statistical validation, and spatial-temporal alignment. 
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CHAPTER 3: PROPOSED FRAMEWORK 

3.1 Introduction 
 

This chapter presents the proposed framework for extracting and classifying 

collective experiences from crowd contributions, spatial clustering with statistical 

validation, quantification of thematic alignment, and exploring thematic trends between 

platial content. A topic modeling approach using a variation of Latent Dirichlet 

Allocation (LDA), topical n-gram (TNG), is applied for dimensionally reduction of 

textual content. A web-based semantic labeling approach is applied to the resulting 

topical n-grams using a knowledgebase and a semantic similarity measure normalized by 

web article count. A spatial clustering approach using incremental spatial autocorrelation 

(Global Moran’s I) and hotspot analysis (Getis Ord Gi*) with statistical significance 

checks is presented. Thematic alignment is proposed using proportional indexing and 

non-metric multidimensional scaling. And lastly, an approach to explore localized platial 

trends is proposed using polygon co-occurrence and the Mann-Kendall statistic.  

3.2 The Approach 
 

The proposed approach is designed with the goal of first extracting platial themes 

from such crowd-contributions and secondly to allow for additional investigation on the 

resulting themes. As such, the basic components are presented to extract semantic terms, 
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thematically label the terms using a knowledge base, and spatially cluster. Once the 

clusters are formed and labeled, additional approaches are presented to investigate the 

semantic, spatial, and temporal alignment of the resulting platial themes.  

The combination of these two approaches allows for a quantitative assessment of 

the data to evaluate the hypothesis. The overall framework is grounded in theoretical 

thought and with practical design considerations in order to discover emerging platial 

themes and investigate dynamics through experimentation. Figure 3 presents an overview 

of the proposed framework with the core components being data collection, semantic 

topic extraction, thematic labeling, and spatial clustering. The thematic, spatial, and 

temporal alignment analysis is performed on the resulting spatial clusters through 

experimentation to test the hypothesis. 

 

 
Figure 3 Overview of proposed framework.  
 

3.3 Topical N-Gram Modeling  
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The specifics of the original LDA algorithm are presented to explain the process, 

flowed by the chosen topical n-gram approach and reasoning for its selection. Once 

again, and as discussed in Chapter 2, LDA is an unsupervised generative probabilistic 

model that discovers latent structure in a collection of documents by representing each 

document as a mixture of latent topics (unigrams), where a topic is itself represented as a 

distribution of words that tend to co-occur (Blei et al. 2003). LDA uses a bag-of-words 

assumption that does not preserve word order and only uses the frequency of co-

occurring words in a document.  

Blei (2003) described the use of LDA for dimensionality reduction for feature 

selection in supervised classifiers such as Support Vector Machine (SVM). Thus the 

application of LDA for dimensionality reduction is analogous to principal component 

analysis (PCA), albeit more complex, but nevertheless, useful for reducing large corpus 

of text to low-dimensional topic spaces. The algorithm converts the high-dimensional and 

noisy space of words and document allocations into a low dimensional topic and 

document allocations. This approach is applied to reduce the volume of unstructured 

crowd-contributed data into semantically coherent features. 

LDA defines the following generative process for each document.  

1. For each document, pick a topic from its distribution over topics. 

2. Sample a word from the distribution over the words associated with the 

chosen topic. 

3. The process is repeated for all the words in the document.  
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LDA is briefly presented using more formal notation from Newman et al. (2009). 

LDA models each of the D documents in a collection as a mixture over K latent topics, or 

topics not directly observed but rather inferred from observed words within a document, 

with each topic being a multinomial distribution over a vocabulary of W words. For 

document j, we first draw a mixing proportion θj from a Dirichlet with parameter α. For 

the ith word in the document, a topic zij = k is drawn with probability θk|j. Word xij is then 

drawn from topic zij with xij taking on value w with probability φw|zij. A Dirichlet prior 

with parameter β is placed on the word-topic distribution φk. Given the observed words x 

= { xij }, the task of Bayesian inference for LDA is to compute the posterior distribution 

over the latent topic assignments z = { zij }, the mixing proportions θj , and the topics φk. 

Given the formal explanation of LDA, this generative approach seeks to learn the 

structure of words, by making assumptions of structure, and in this case a mixture of 

topics within a document, to determine the probability of a word belonging to one or 

more categories or topics based only on the data itself. This has the advantage over 

discriminative approaches, or at least in this application, that seek to determine a decision 

boundary between categories (Jordan 2002). The traditional LDA approach only looks at 

single words as part of a topic. This works well given a document with formal grammar, 

sentence structure, and higher word counts.  

On the other hand, this approach does not produce coherent results on short text 

messages that typically refer to a single topic. In this case, a corpus of text (i.e. Twitter) 

can contain thousands of different topics for which the co-occurrence of words, 

regardless of the message context, can be grouped together to form topics. Thus the use 
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of only unigrams, without longer phrases, can lead to disambiguation problems given 

polysemous words (Omar and Najib 2013). For example, Table 2 presents sample results 

showing generated topics using single words from newspaper articles and a collection of 

Twitter messages. 

 

Table 2 Sample topics from original LDA model 
Newspaper Twitter 

music 
band 
song 
rock 
album 
jazz 
singer 

stock 
market 
percent 
fund 
investors 
companies 
trading 

theater 
play 
production 
show 
stage 
director 
broadway 

park 
large 
night 
noisy 
quiet 
music 
day 

 
 

 In Table 2, I observe more coherent topics from the newspaper articles with clear 

groupings between music, business, and theater. These topics are formed from structured 

text that has logical order and separation of topics into paragraphs or sections. The 

newspaper topics also present terms using a linguistic style that gives formal descriptions 

that convey context. Conversely, the Twitter topics are less formal and convey more 

experience and activities since the terms forming the topic have come from different 

tweets and thus contain a grouping of terms from various contexts. So the semantic 

meaning of the topic is somewhat difficult to interpret, much less assign the topical terms 

to a collective theme.  

To overcome the described issues, the topical n-gram model (TNG) (Wang et al., 

2007) was selected over the original LDA model, and previously discussed models in 
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Chapter 2, to provide a higher degree of topical term coherence (i.e. bi-gram) given the 

short 140-character limit of tweets. Thus allowing for the formation of bi-grams using 

collocation discovery so that terms contained within the learned topics express greater 

meaning individually from the context in which they are used. As previously discussed, 

TNG can discover unigrams, bi-grams, and longer phrases simultaneously, while 

allowing a single topical term to appear in multiple topics.  

TNG is an extension to the original LDA model that captures the word-to-word or 

collocation dependencies directly in the generative process. So in essences, TNG infers 

both the per-topic word distribution using the standard LDA model and, for each word in 

the vocabulary, a distribution over the words that follow it (Wang et al. 2007). A bi-gram 

is formed through the co-occurrence frequency of two terms.  

TNG forms longer phrases by appending to existing bi-grams by using the last word 

in the bi-gram in the same manner as bi-gram construction. Unsurprisingly, longer 

phrases produced by TNG using Twitter data were very incoherent given the shortness of 

the text. And notably, Ciaramite et al., (2015) remarked on the incoherence of TNG 

phrases using different data sources. For the purposes of this research only bi-grams were 

used. Figure 3 presents a graphical representation of the bi-gram process and sample 

topical n-gram outputs with color-coding. 
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Figure 4 Graphical representation of the topical n-gram modelling process.  
 
 

Lastly, an important parameter in any unsupervised topic modeling process is setting 

the number of topics. According to Arun et al. (2010), finding the right number of latent 

topics in a given corpus has remained an open-ended question. However, while 

investigating Wikipedia articles, Arun et al. (2010) found a lower Kullback-Leibler 

divergence value when the number of topics ranged from 15 to 30 for a single article. For 

Twitter, TNG was executed on 24-hour time periods forming documents and running 

1000 iterations of Gibbs sampling with the number of topics set at 700. This number of 

topics was determined qualitatively by assessing the specificity of topic outputs using 

multiple trials. Stopwords (i.e. and) and special symbols were removed during each trial 

using a standard list initially that was iteratively modified with common words specific to 

Twitter.  

3.4 Web-Based PMI 
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PMI is a measure of association originating from information theory and statistics 

that calculates the probability of two events occurring given their individual and joint 

distributions (Turney 2001). The measure has been applied in the field linguistics, from 

which I use here, to find associations between words using an online knowledge base. 

Recchia and Jones (2009) compared PMI with Latent Semantic Analysis (LSA) using 

Wikipedia and Spearman rank correlation between human judgments of semantic 

similarity.  

Recchia and Jones (2009) reported correlations ranging between 0.73 and 0.86, 

and concluded that the simple PMI metric with large volumes of data correlates more 

closely with human semantic similarities ratings than more complex models. The 

selection of PMI was based solely on empirical evidence and some exploratory analysis 

of different metrics as the contribution of this research is discovering platial themes and 

not an exhaust inquiry into the optimal metric. 

The PMI calculation used is adapted from Matsuo et al., (2006) with the notation 

shown in Equation 1. The probability p(w1) is estimated by fw1/N, where fw1 is the 

Wikipedia web count of topic term w1 and N is total number of Wikipedia articles. The 

probability p(w2) is estimated by fw2/N, where fw2 is the Wikipedia web count of theme w2 

and N is total number of Wikipedia articles. The probability of co-occurrence p(w1,w2) is 

calculated by fw1,w2/N, where fw1,w2 is the Wikipedia web count of w1 AND w2 and N is the 

constant total number of Wikipedia articles.    
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Equation 1 web-based pointwise mutual information. 

 

PMI(w1,w2) = log!(
𝑝(𝑤1, 𝑤2)

𝑁
𝑝(𝑤1)
𝑁  𝑝(𝑤2)𝑁

)  (1) 

 

PMI values are inferred using the following conditions: 

• If PMI(w1,w2) > 0, then topic term w1 and category term w2 are correlated 

with high probability within Wikipedia and the larger the value the higher 

the probability. 

• If PMI(w1,w2) = 0, then topic term w1 and topic term w2 are isolated from 

each other within Wikipedia. 

Given the resulting PMI values for each of the six categories per topic term w1; 

the category with the largest PMI value is assigned to the single topic term. The thematic 

assignment of a category to a term is performed despite the level of correlation with one 

exception. The largest PMI value must be greater than zero for assignment, otherwise no 

assignment will occur. The rationale for this, and previously mentioned, is that the topic 

term and categorical term are isolated within Wikipedia. Given the linguistic style of 

Twitter containing grammatical errors, abbreviations, and short messages that are 

aggregated to form documents in the topic modeling process, erroneous and highly 

ambiguous terms arise frequently. Applying this condition filters noisy terms that 

Wikipedia cannot disambiguate.     

Algorithm 1 below presents the approach for using topical n-gram terms from the 

crowd-contributed data sources with PMI. The code is initiated with a corpus of text that 
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could be Twitter data divided into temporal bins or Wikipedia articles. High-level 

categories such as Sports, Entertainment, etc. are provided as inputs for calculating PMI. 

An empty list, maxList, is provided for storing the maximum PMI per topic and high-

level category. The algorithm iterates through the documents and calculates topics for 

each. It then loops through the results topics and high-level categories using PMI and 

Wikipedia article counts to determine the category with the highest PMI value, which is 

then returned. 

 

Algorithm 1 Thematically labelling topics using TNG and PMI.  
 

Input:  
T ← textDocuments()                                 // Twitter or Wikipedia article. 
L ← l1,l2…ln                                               // High-level categories (i.e. Sports). 
maxList ← ∅                                             //Empty list for calculated returns. 
for all d in T do 
        tng ← TNG(d)                                    //Calculate topical bi-grams. 

                   for all t in tng do 
   topicLabels ← ∅ 
              for all l in L do 
                     p ← PMI(t,l)                          //Calculate PMI using Wikipedia. 
                     topicLabels.add({t,l,p}) 
    topic, label, pmi ← maxPMI(topicLabels)   //Calculate maximum PMI. 
              maxList.add({topic, label, pmi}) 
return maxList 

 

3.5 Incremental Distance Analysis and Local Spatial Clustering 
 

Turning to the spatial aspect of the approach, this section builds on the previous, 

in that, the topics, labels, and PMI features generated are spatially clustered.  In doing so, 

simply observing spatial or platial processes using a single distance value across multiple 
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locations will produce undesirable results as geographies vary considerably (Lewicka, 

2010). This is particularly evident in crowd-contributed content were events and activities 

can occur at varying scales (Westerholt et al., 2015). To account for the differences in 

scale and distance for which spatial clustering occurs regionally or at the city scale, 

incremental distance analysis using Global Moran’s I (Odland, 1988; Paez and Scott, 

2005) is used.  

The spatial statistic tests for spatial autocorrelation based on both feature 

locations and feature values simultaneously using a spatial weights matrix.  Moreover, 

this classic spatial statistic assesses whether patterns within a data source are clustered, 

dispersed, or random. The statistic outputs three measures that include Moran’s I index, a 

z score, and p-value.  

The resulting index value is assessed on a range from -1 to 1, where negative 

values indicate neighboring points have different values, values near zero indicate 

random neighboring values, and positive values indicate similar neighboring values. The 

process is an inferential statistic whereby the results are interpreted using the null 

hypothesis that states that the spatial pattern is random, compared to the alternate 

hypothesis that the underlying pattern is more clustered than expected. When the 

resulting p-value and z score are significant, and the null hypothesis is rejected, the 

direction of the z score is used to determine whether the pattern is dispersed or clustered.  

The formula for calculating Global Moran’s I is provided in Equation 2 (Odland, 

1988). Where 𝑁 is the total number of locations, 𝑥! is value of the variable (i.e. PMI) at 

location 𝑖, 𝑥! is the value at location 𝑗, 𝑥 is the mean for the variable across all locations, 
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and 𝑤!" is the value of the spatial weighting function to assess location 𝑥! and 𝑥! based on 

proximity. To determine statistical significance, from a computed value for Moran’s I, a 

standardized z score is obtained under the assumption of randomization (see Odland, 

1988). A significant positive z score indicates that neighboring locations, in this case geo-

located and thematically labeled tweets have similar PMI values than expected. 

 

Equation 2 Global Moran’s I statistic for spatial autocorrelation. 

 

I = 𝑁
𝑤𝑖𝑗𝑗𝑖

 𝑤𝑖𝑗(𝑥𝑖−𝑥)(𝑥𝑗−𝑥)𝑗𝑖

(𝑥𝑖−𝑥)
2

𝑖
  (2) 

 

 

Once again, the Global Moran’s I statistic is used to assess regional patterns using 

a spatial weights matrix based on proximity and a selected feature attribute. As such, 

testing for patterns as varying distances in crowd-contributed content becomes 

problematic, as the distance is typically unknown and differs depending on the location. 

To overcome this limitation, Global Moran’s I is calculated incrementally over a 

specified distance interval to determine the most appropriate value that corresponds to the 

highest statistical significance using the reported z scores. The graph in Figure 4 provides 

an example of spatial autocorrelation incrementally run over varying distances to find the 

peak. Such analysis is performed on each of the high-level categories individually and at 

each study location to account for multi-scale activities.  
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Figure 5 Incremental spatial autocorrelation by distance using Global Moran’s I and thematically labelled 
Twitter data for Los Angeles, CA.  

 
 

Once the analysis distance is determined, a local spatial autocorrelation statistic is 

needed to find areas that exhibit clustering of high values. Even more, and to assess the 

hypothesis of this work, the local statistic has to calculate not only high values of PMI 

per category, but high values surrounded by other high values to form a collective cluster. 

Given this, the Getis-Ord Gi* (Getis and Ord, 1992) statistic is used to discover local 

spatial clusters with high semantic values within the boundaries of each. Grieve (2012) 

showed the use of combining both Global Moran’s I and Getis-Ord Gi* to study regional 

linguistic variations by looking at key words found in a corpus of letters to the editor. The 

research presented in this dissertation is closely aligned with the work of Grieve, as 
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discussed in section 2.6, but differs in that incremental spatial autocorrelation is 

calculated here. 

To describe the Getis-Ord Gi* statistic provided in Equation 3 (Getis and Ord, 

1992) where 𝑁 is the total number of locations, 𝑥! is value of the variable (i.e. PMI) at 

location 𝑖, 𝑥! is the value at location 𝑗, 𝑥 is the mean for the variable across all locations, 

and 𝑤!" is the value of the spatial weighting function to assess location 𝑥! and 𝑥! based on 

proximity. The local statistic produces z-scores and p-values for each feature by looking 

at neighbouring features given a weighting, in this case distance is used as the weight, to 

determine spatial clusters of high or low values. The statistic is calculated by taking the 

sum of PMI values combined with its neighbours within the set distance, and compared 

this to the expected local sum from all PMI values combined. When the difference 

between these two proportions is considerable and not by random chance, the single 

tweet is labelled as significant. 

 

Equation 3 Getis-Ord Gi* statistic for local spatial autocorrelation. 

 
 
=  

𝑤𝑖𝑗𝑥𝑖−𝑥 𝑤𝑖𝑗𝑗𝑗

𝑥𝑗
2

𝑗
𝑁  − 𝑥2 

𝑁 𝑤𝑖𝑗
2−( 𝑤𝑖𝑗)𝑗

2
𝑗

𝑁−1   

  
(3) 

𝐺!∗ 

 
 

Given the definitions of Global Moran’s I and Getis-Ord Gi*, the two statistics 

are combined using Algorithm 2. The inputs include a spatial dataset that is thematically 

labeled and contains PMI values for each feature and minimum, maximum, and 
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increment distances. The algorithm iterates through the range of distances and at each 

step calculates Global Moran’s I, in which the resulting distance and z score is recorded. 

Once complete, the maximum z score and corresponding distance are determined from all 

the values as in Figure 4.  

The resulting distance is then used to compute the Getis-Ord Gi* statistic were the 

output is filtered to only return statistically significant points with z score greater than or 

equal to 1.96 representing high-values. In doing so, a feature with a high PMI similarity 

score is interesting, but may not be a statistically significant hot spot or a place with 

nearby features with similar place expressions. Moreover, a feature (i.e. single geo-

located tweet) will have a high PMI similarity value and be surrounded by other features 

with high values as well.  

 

Algorithm 2 Combining Incremental Global Moran’s I and Getis-Ord Gi*.  
 

Input:  
D ← getThematicSpatialData()                 // Shapefile or PostGIS with PMI 
I ← [dmin,dmax]                                           // Min and max distance range. 
Step ← number                                         // Increment value. 
maxDistList ← ∅                                      // Empty set for results. 
for all d in range(I[dmin], I[dmax],Step) 
       w_Moran ← SpatialWeightMatrix(D[x,y],d)    
        dist,z ← GlobalMoranI(w_Moran,D[pmi])       //Calculate Moran’s I. 
       maxDistList.append({dist,z}) 
distMaxZscore ← max(maxDistList)                      //Get distance with max zscore. 
w_Getis ← SpatialWeightMatrix(D[x,y], distMaxZscore)       
G ← GetisOrdGi*(w_Getis,D[pmi])                      //Calculate Getis-Ord Gi*.    
return {zscore ∈ G | zscore ≥ 1.96}                       //Only return points z  ≥  1.96. 
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3.6 Multi-Source Semantic Alignment 
 

One approach to evaluate the hypothesis regarding emerging and unique platial 

themes is to test the similarity of crowd-contributed content from multiple sources is to 

assess thematic proportional alignment. Since platial themes are formed through human 

activities, and crowd-contributed content is formed through different means and 

platforms (i.e. Twitter and Wikipedia), it stands to reason that unique places should 

exhibit similarities regardless of the medium. As such, the Renkonen (1938) percentage 

similarity index, Equation 4, was selected to assess proportional alignment of high-level 

categories due to the minimal affect of sample size differences (Wolda 1981).  

The Renkonen similarity measure is traditionally used in computing the 

proportional abundances of species between communities and habitats, which is 

analogously applied here between cities and neighbourhoods. The variables 𝑝!,! and 𝑝!,! 

in Equation 4 are determined by the total sum of entities assigned to a thematic category, 

which are then transformed into percentages. When comparing multi-sources over the 

same geographic locations, the minimum percentage from the same thematic category in 

both sources is determined and then the minimum sum from all the categories forms the 

final similarity value. The resulting percentage value is reported between 0 and 1.  

 

Equation 4 Renkonen percentage similarity. 

 
 

=  min (𝑝!,! ,𝑝!,!)!
!   (4) 𝑃𝑆 
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To visualize collective uniqueness of places, non-metric multidimensional scaling 

(NMDS) is used by taking the Renkonen similarities as distances of dissimilarity using 

the rank order of the data (Kenkel and Orloci 1986). The combination of NMDS and 

Renkonen similarity has previously been used to investigate and visualize percentage 

similarities of habitat abundances (Janáč and Jurajda 2013) and categorical abundance 

(de Mattos et al. 2013). Both works cite this approach as having low sensibility to a 

limited number of high-level categories, which makes this appropriate for this 

framework.  Given the Renkonen similarities values expressed between 0 and 1, I first 

converted these values to dissimilarities by subtracting each value by 1 to form our 

matrix.  

NMDS seeks an ordination of the data in which the distances between all pairs of 

data points, in this case the places from Twitter and Wikipedia, are at the greatest 

distance apart, while maintaining rank-order agreement with their dissimilarities. 

Meaning data pairs with dissimilarity less than other data pairs will have a shorter 

distance apart in the visualization from other data pairs with greater dissimilarity values. 

NMDS uses an iterative process to decrease the stress of rank-order agreement between 

distances and dissimilarity values; as such, I explored various iteration values to 

minimize the stress to a near 0 value as described in (Kenkel and Orloci, 1986) 

3.7 Spatiotemporal Alignment  

This section presents an approach to investigate the research component of how 

well such mined platial themes exhibit spatiotemporal alignment. Since the human 
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activities that form collective platial content are highly dynamic and place meanings 

evolve over time it’s only appropriate to investigate the emergence of such phenomena. 

Given that crowd-contributed content, in the form of Twitter data, affords both spatial 

and temporal attributes, that when combined with thematic labeling, has the potential to 

show both the emergence of new places and more established places that frequently 

emerge within the data. To assess if spatiotemporal alignment exists, a general 

framework is proposed that uses the thematically labeled Getis-Ord Gi* output, Density-

based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996), and 

convex hulls to form polygon representations of place.  

In regards to the geometric representation of place, and to reiterate from Chapter 

2, the literature makes clear the difficulties in assigning any geometric shape to places of 

social meanings, as the boundaries are indeterminate and vague. The framework 

presented here is general so as to assess co-occurrence and alignment with the 

understanding that using even more elaborate approaches remain problematic.  Numerous 

studies exist that suggest more elaborate methods when addressing the uncertainty and 

shapes of place, for example, using the point-radius method (Wieczorek et al. 2004), 

probabilistic methods (e.g., Liu et al. 2009), or fuzzy-set approaches (Zadeh 1975). 

Schlieder et al. (2001) developed a spatial footprint representation, in the form of 

connection graphs derived from a qualitative abstraction of tessellation polygons. Gao et 

al. (2014) introduced a fuzzy-set-based method to extract geographic footprints of 

polygonal places based on a distance-decay function between a geotagged photo and the 

centroid point of the cluster.  
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The framework presented here is similar to that of Pillai et al. (2012), who used 

polygon representations of solar flares and sun spots to find spatiotemporal co-occurrence 

patterns. The authors proposed an apriori algorithm approach to mine the frequent 

patterns, which is not used in this framework. However, the use of polygon intersection 

and overlap is adapted and later implemented as a database query.  

To assess the spatiotemporal alignment using polygon representations the 

resulting Geits-Ord Gi* spatial hotspots have to be uniquely identified as clusters. Getis-

Ord Gi* outputs statistically significant points within a neighborhood of high values, but 

the neighborhood is not identified as a single cluster, just individual points. To unique 

identify each cluster, DBSCAN (Ester et al., 1996) is proposed since the number of 

clusters is not known, but the distance is using iterative Global Moran’s I. Different 

clustering algorithms abound, the density-based clustering approach, DBSCAN, was 

selected over k-means type approaches as they require the user to specify the number of 

clusters, which in this application is not known. Numerous other density-based clustering 

algorithms exist in the literature and in practice, such as OPTICS (Ankerst et al., 1999), 

DenClue (Hinneburg and Keim, 1998), and CLIQUE (Agrawal et al., 1998), which offer 

various advantages over DBSCAN, however, an investigation into this is reserved for 

future research. 

DBSCAN locates regions of high density that are separated from one another by 

regions of low-density using points within a specified radius (Ester et al., 1996). This is 

accomplished given the two parameters, epsilon and minPoints. The algorithm starts by 

picking a random point in the dataset and determining if the total number of points 
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surrounding the chosen point, within the distance of epsilon, is greater than minPoints. If 

the criteria is satisfied, the reachable points form a cluster, the cluster is then expanded 

recursively until no other points meet the criteria, in which case a new point that has not 

been visited is selected and the process is repeated. When a single point is selected that 

does not meet the criteria to form a cluster, the point is labeled as noise and become an 

outlier. 

The DBSCAN process outputs clusters of points, in this case the Getis-Ord Gi* 

results, of dense regions that are converted into convex hulls to form polygons. Convex 

hull is a shape given by the convex closure of the set of points (Berg et al., 2000). It is the 

smallest convex polygon shape or bounding region that encloses a set of points. The input 

geometry to a convex hull operation can be points, lines, or polygons. More 

simplistically, the elastic band analogy is often used for visualization by imagining a 

band stretched around the outermost part of a set of points, and creates straight lines 

between the outermost features resulting in a convex hull. Figure 5 gives an example of a 

simple convex hull. 

 

 
Figure 6 Sample convex hull. (Image from 

http://mathworld.wolfram.com/ConvexHull.html.) 
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The process for deriving polygons is presented in Algorithm 3 below. Once again, 

the statistically significant points from Algorithm 2 are taken as input. The epsilon value 

is specified by the distance with the highest z score using Global Moran’s I 

incrementally. The number of minPoints is heuristically set to three to allow for the 

formation of polygon regions that are later investigated using overlap and intersect. The 

DBSCAN algorithm is then executed on the data and clusters are returned. A convex hull 

is then created for each cluster iteratively. 

 

Algorithm 3 Forming polygons using DBSCAN and Convex Hull.  
 

Input:  
P ← getGetisOrdGiPnts()                                 // Thematic Getis-Ord Gi* points 
Eps ← getIncrMoranIdist()                          // Use max incremental distance value. 
minPnts ← 3                                              
clusters ← DBSCAN(P,Eps,minPnts)       
polygons ← ∅ 
for all c in clusters do 
        p ← ConvexHull(c)                                     
       polygons.add(p) 
return polygons 
 

 

3.8 Summary  

In summary, this chapter presented the proposed framework for discovering and 

thematically labeling platial knowledge from crowd produced content. Each section of 

this chapter presents the theoretical foundations for the processes used to harvest, 

statistical validation, and spatial alignment. Specifically, the chapter starts with a brief 

description and supporting claims for the chosen approach and selected methodology. 
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The collection process is presented using topical n-gram modeling for dimensionally 

reduction with web-based semantic similarity and classification using Wikipedia. In 

addition, the spatial clustering with statistical significance checks is presented as the 

approach to detect clusters of semantic consensus from the crowd. The chapter concludes 

with two approaches are introduced for investigating the dynamic and evolving nature of 

platial knowledge through trend analysis and co-occurrence. In the following Chapter 4, I 

present the application of the proposed framework for harvesting collective and crowd-

centric platial content from Twitter and Wikipedia.  
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CHAPTER 4: A FRAMEWORK FOR ASSESSING SPATIAL AND THEMATIC 
ALIGNMENT 

4.1 Introduction 
 

This chapter presents a framework in which the approaches in Chapter 3 are 

applied to crowd-contributed data to address the research question of discovering and 

alignment of platial content. Specifically, this Chapter focuses on two distinct crowd-

contributed sources: the consensus expressing crowd-curated Wikipedia content, and the 

uncurated content of individual tweets. While they are both expressions of crowd views 

they differ substantially in their purpose (Kaplan and Haenlein, 2010).  

The former, i.e. Wikipedia entries, captures platial knowledge in the form of place 

entries, whose content is the outcome of a collaboratively-derived consensus on the main 

characteristics of such locations. Accordingly it can be viewed as an expression of the 

collective perception of such places. The latter, i.e. individual geotagged tweets made 

from such locations, simply express individuals’ concerns, observations, or interests 

while they are there. More specifically, research question pursued here is how to extract 

platial content from such crowd contributions, capturing the sociocultural characteristics 

of a place, and to quantify the alignment of these two sources with respect to platial 

content.  
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4.2 Gathering Crowd Generated Content 
 

The first steps in addressing the research questions is the collection of Wikipedia 

entries and semantic access statistics for various locations and Twitter streams originating 

from these locations as well. Four major cities are selected for the study areas, namely 

New York City (NYC), Los Angeles (LA), Singapore (SG), and London (LDN). These 

locations were chosen because of Twitter volume, population, and number of English 

speakers from different countries around the world. In order to highlight the research 

question at a finer geographical scale, three additional study areas are selected at the 

neighbourhood scale from NYC (Lower Manhattan, Central Park, and Theatre District). 

It should be noted here that in the context of this paper the term neighbourhood is used to 

refer to such sub-city level areas. Considering that the notion of place is inherently 

multiscalar, such a study at both scales is necessary, as cities encompass a broad, diverse 

geographic area of affordances for human activities compared to neighborhoods that our 

more homogenous (Lewicka 2010). Additionally, the selected neighborhood locations 

were chosen because each contains popular landmarks (i.e. Wall Street, Broadway, 

Central Park) that relate to one of the selected high-level categories, which contributes to 

the validation of the discovered platial clusters and cross-source consensus.  

Each single Wikipedia entry was accessed programmatically using the article’s 

webpage address. Geo-located Wikipedia articles were also investigated as an additional 

crowd-contributed data source, along with their associated online semantic access 

statistics that are spatially contained with each study area. The rational for inclusion of 

this data is that Twitter is highly dynamic and event driven, and a single Wikipedia article 
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(e.g. NYC), although derived from collective consensus, is comparatively more static. 

Hence, by thematically classifying each geo-located article using its title as the topic and 

the number of online page accesses from the same month as the categorical proportions, I 

extract a more dynamic representation of place from Wikipedia.  

DBPedia (Auer et al., 2007) which offers a more structured means to access 

Wikipedia content, was used to collect titles and geographic coordinates from geotagged 

articles using the methodology adapted from (Popescu and Grefenstette, 2010). The 

official boundaries of each study were used as before with Twitter to spatially filter the 

geotagged Wikipedia articles. A Wikipedia statistics site (Stats.grok.se, 2015) was used 

to gather the number of page accesses for each article title over the same time period as 

the Twitter data was collected (i.e. April 2014). 

Geotagged tweets were collected from each of the study areas using Twitter’s 

streaming Application Programming Interface (API) that returns a sample of 1% of all 

tweets. Previous studies have shown that such precisely geotagged tweets typically reflect 

a sample of approximately 2% (Burton et al., 2012) of the entire Twitter API traffic. 

Twitter data was gathered continuously for an entire month (April 2014), resulting in 

approximately 4.5 million tweets for NYC, 4.3 million for LA, 821,000 for SG, and 1.3 

million for LDN. City boundaries for each location were downloaded from the local city 

governments to include the sub districts for NYC. The tweets were further filtered by 

English language and spatially using the geographic boundaries of each city and stored in 

a relational database.  
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An additional data input to this study is the selection of thematic categories used 

to semantically related topics to collective grouping. The following were selected 

politics, business, education, recreation, sports, and entertainment as high-level 

categories. These particular categories were chosen because they have been shown to be 

dominant in both Wikipedia and Twitter (Kittur et al., 2009; Zhao et al., 2011), with 

entertainment in particular having a disproportionately strong presence in user-generated 

media (Shao, 2009; Hargittai and Litt, 2011). Each of the above-listed high-level 

categories is an explicit category in Wikipedia and appears in over 50,000 articles. 

Previous studies have demonstrated content alignment with said categories for classifying 

trending topics (Lee et al., 2011) filtering tweets into new groups (Dilrukshi et al., 2013), 

and categorizing the professions of users (Wagner et al., 2013).   

 

4.3 Mining Platial Content From Twitter and Wikipedia 
 

The overall approach is presented in Figure 6, for which the Twitter processing is 

briefly described first. In order to extract and label topics from our data corpus I applied a 

variation of the probabilistic topic model LDA (Blei et al., 2003), known as the topical n-

gram model (TNG) (Wang et al., 2007), treating 24-hour subsets of our data corpus as the 

equivalent of individual documents for the TNG analysis (see Algorithm 1). Each 

detected bi-gram is considered part of a topic of discussion. Discussion topics may be 

classified linguistically as belonging to multiple high-level categories by considering 

their PMI value (Turney, 2001).  In the context of this research I thematically classify 
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each topic as belonging to the high-level category that corresponds to its highest PMI 

value, which are estimated using the entire online Wikipedia corpus and comparing the 

frequencies of topic and category co-occurrences.  

 
 
Figure 7 Flowchart describing overall process used to discover platial alignment. Step 1: sequential ingestion of 
Twitter, and Wikipedia article representing each spatial location, and all geo-located Wikipedia article titles 
spatially and semantic access statistics contained within the same location. Step 2: unsupervised topic discovery 
using topical n-grams. Step 3: determine the semantic overlap of topical n-grams and defined categories using 
Wikipedia search counts and PMI. Step 4: determine the statistical significance of each platial category and 
compare proportional alignment between Twitter and Wikipedia. 
 

 
For this particular study, bi-grams perform better than unigrams or phrases, when 

it comes to their thematic classification. This is consistent with studies addressing the 

performance of n-gram classification in Twitter, which also supported the notion that bi-

grams outperform other alternatives (Pak and Paroubek, 2010). This is not surprising, as 

given the brief nature of tweets (at only 140 characters per tweet), unigrams are 

ambiguous, while meaningful longer phrases tend to be scarce. Based on the labelling of 

the bi-grams contained within them, individual tweets were classified under the 6 top-

level categories as shown in Table 2.   
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Table 2 demonstrates the dominance of entertainment content in Twitter data. The 

results of this Table were obtained by setting a maximum value of 700 to the number of 

bi-gram topics that were extracted from our data corpus. In our studies we also compared 

the effect of varying the number of topics (i.e. from 100 to 700 in increments of 100) and 

found that the proportional allocations to high-level themes were consistent.    

 

Table 3 Total count of tweets per high-level category containing a semantically related topical n-gram. 
 

Cities High-level Categories 
Politics Education Entertainment Sports Business Recreation 

NYC 12,893 27,122 242,226 34,998 32,060 55,832 
LA 11,207 28,258 281,556 32,412 42,264 57,390 

LDN 3,697 5,765 52,412 6,227 10,613 21,711 
SG 2,207 5,717 28,863 3,621 6,247 7,363 
 

 
To recall from Arun et al. (2010), finding the right number of latent topics in a 

given corpus has remained an open-ended question. In which case, the numbers of topics 

were iteratively in Figure 7. The purpose of this approach was to determine at what point 

topic coherence might become so degraded that Wikipedia would have trouble 

disambiguating the terms and thus the categorical counts would exhibit a downward 

trend. It was observed that in each location the topic proportions per category followed an 

upward linear trend for each increment.  
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A) 

 

B)	

	

C) 

 

	 	

Figure 8 Graph of k-topic iterations with categorical similarity count. (A) Singapore (B) NYC (C) LA 
 
 
 

The discovered trend depicted a linear relationship in the semantic counts per 

category as the number of topics increase, but also a significant bias of entertainment 

related tweets within the data. The graphs were produced using additional thematic 

categories initially to get a sense of content, but those such as health and technology were 

determined to have excessive semantic overlap with other categories. 
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For single Wikipedia articles (Figure 6), I applied the same approach to analyzing 

individual article content, and more specifically the single entry for each city and 

neighbourhood that are subjects to our study. Each single Wikipedia entry was accessed 

programmatically using the article’s webpage address. I extracted topical bi-grams from 

these entries, and allowed for up to 30 topics per document, with up to 10 bi-grams per 

topic, reflecting the smaller size of these documents, compared to our Twitter data 

corpus. The number of topics was based on the empirical evidence from (Arun et al., 

2010), as 30 was shown to optimize the Kullback-Leibler (1951) divergence value. Bi-

grams within each topic were thematically classified against each of the six high-level 

categories using the aforementioned PMI process. 

I also investigate geo-located Wikipedia articles and their associated online 

semantic access statistics that are spatially contained with each study area. The rational 

for inclusion of this data is that Twitter is highly dynamic and event driven, and a single 

Wikipedia article (e.g. NYC), although derived from collective consensus, is 

comparatively more static. Hence, by thematically classifying each geo-located article 

using its title as the topic and the number of online page accesses from the same month as 

the categorical proportions, we extract a more dynamic representation of place from 

Wikipedia.  

I used DBPedia (Auer et al., 2007), which offers a more structured means to 

access Wikipedia content, to collect titles and geographic coordinates from geotagged 

articles (Popescu and Grefenstette, 2010). The official boundaries of each study were 

used as before with Twitter to spatially filter the geotagged Wikipedia articles. I then 
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used a Wikipedia statistics site (Stats.grok.se, 2015) to gather the number of page 

accesses for each article title over the same time period as the Twitter data was collected 

(i.e. April 2014).  

As shown in Figure 6, the title of each article is processed using the same 

thematic classification approach as the topical n-grams. Instead of using topic counts to 

calculate category proportions (see Table 2), the number of page accesses was used. To 

illustrate, take for example the geo-tagged Wikipedia article entitled “Roseland 

Ballroom”, the article was thematically classified as entertainment and accessed 21,492 

times in the month of April 2014. The process is repeated for all articles within the same 

boundaries and the total proportions for each category are calculated. Figure 8, provides 

the semantic page view statistics for Roseland Ballroom for the entire month of April 

2014 with the total views. 

 

 

Figure 9 Wikipedia page view statistics for Roseland Ballroom. Image taken from Stats.grok.se.  
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I selected a variation of LDA, topical n-gram model (i.e. bi-grams), given the 

short 140-character limit of tweets to achieve higher topic coherence. LDA is an 

unsupervised generative probabilistic model that discovers latent structure in a collection 

of documents by representing each document as a mixture of latent topics (unigrams), 

where a topic is itself represented as a distribution of words that tend to co-occur (Blei et 

al., 2003). In general, topic modelling enables the conversion of high-dimensional and 

noisy spaces of words and document allocations into a low-dimensional topic and 

document allocations.  Blei et al. (2003) described the use of LDA for dimensionality 

reduction for feature selection in supervised classifiers such as Support Vector Machine 

(SVM).  

Individual bi-grams within each topic were programmatically sent to Wikipedia’s 

search engine to capture the search count (total number of articles containing the terms). 

This process was repeated for each high-level category and finally the joint count of each 

bi-gram and high-level category. I normalized each search count over the total number of 

articles in Wikipedia, which at the time of this study was N = 4,502,037. A PMI value 

was calculated for every bi-gram for each of the six high-level categories.  

The equation 𝑃𝑀𝐼 𝑤!,𝑤! = log!(
𝑝(𝑤1, 𝑤2)

𝑁
𝑝(𝑤1)
𝑁  𝑝(𝑤2)𝑁

)  depicts the PMI calculation 

adapted from (Matsuo et al., 2006). The probability 𝑝 𝑤!  is estimated by 𝑓!! 𝑁, where 

is the Wikipedia web count of topic term 𝑤! and N is total number of Wikipedia articles. 

The probability 𝑝 𝑤! is estimated by 𝑓!! 𝑁, where 𝑓!!  is the Wikipedia web count of 

theme 𝑤! and N is total number of Wikipedia articles. The probability of co-occurrence 
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𝑝 𝑤1,𝑤2  is calculated by 𝑓!!𝑓!! 𝑁, where 𝑓!!𝑓!!  is the Wikipedia web count of 𝑤! 

and 𝑤!, and N is the total number of Wikipedia articles.  

In order to assess the PMI of the topical n-gram results related to the high-level 

categories I performed a manual assessment of a random subset of our Twitter data and 

found a nominal F1 score of 0.70. The bi-grams that Wikipedia could not disambiguate or 

interpret, thus resulting in a search count of zero, were not included in the results. This 

accuracy is consistent with similar studies using PMI, albeit without Twitter (Iosif and 

Potamianos, 2010). Recchia and Jones (2009) compared PMI with Latent Semantic 

Analysis (LSA) using Wikipedia and Spearman rank correlation between human 

judgments of semantic similarity. These researchers reported correlations ranging 

between 0.73 and 0.86, and concluded that the simple PMI metric with large volumes of 

data correlates more closely with human semantic similarities ratings than more complex 

models.  

I used Global Moran’s I (Páez and Scott, 2005) to find an appropriate analysis 

distance per location by incrementally checking for spatial statistical significance at 

incremented distances using Global Moran’s I to test for spatial autocorrelation and the 

distance with the highest significance value. The distance was recorded for each of the 

four cities and parameterized as the fixed distance threshold in the local Getis-Ord Gi* 

(Getis and Ord, 1992) along with the PMI values for each category. A feature with a high 

PMI similarity score is interesting, but may not be a statistically significant hot spot or a 

place with nearby features with similar place expressions. Moreover, a feature (i.e. single 
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geotagged tweet) will have a high PMI similarity value and be surrounded by other 

features with high values as well.  

I determined the Getis-Ord distance parameter by observing the spatial 

autocorrelation using Global Moran’s I statistic at a series of distances. Using the 

geotagged tweets and their PMI values per high-level category, I found the prominent 

distance with a statistically significant z-score (z > 1.96, P < 0.05), and detected the 

following measures: LA 701.3m, NYC 619.2m, SG 1,334.9m, LDN 731.4m. I applied 

each distance and the PMI values as weights in computing Getis-Ord Gi* statistic to 

discover local spatial clusters with high semantic values within the boundaries of each 

city. I determined statistical significance at the P < 0.05 level and considered only z-

scores greater than +1.96.  

I selected the Renkonen (1938), percentage similarity index (PS = Σ min(p1i, p2i)) 

to assess proportional alignment of high-level categories due to the minimal affect of 

sample size differences (Wolda, 1981). The similarity measure is traditionally used in 

measuring the proportional abundances of species between communities and habitats. I 

used the counts per high-level category to calculate percentages between each individual 

source at different locations (i.e. just Twitter or Wikipedia) and then a cross-source 

comparison (i.e. Twitter and Wikipedia) to determine a similarity score between 0 and 1 

reported as a percentage.  

I used non-metric multidimensional scaling (MDS) to visualize the Renkonen 

similarities as distances of dissimilarity using the rank order of the data (Kenkel and 

Orlóci, 1986). The combination of non-metric MDS and Renkonen similarity has 
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previously been used to investigate and visualize percentage similarities of habitat 

abundances (Janáč and Diel, 2013) and categorical abundance (de Mattos et al., 2013). 

Both works cite this approach as having low sensibility to a limited number of high-level 

categories, which makes this appropriate for my work.   

 

4.4 Evaluation and Results 
 
 In order to test the proposed approach for discovering platial content in crowd-

contributed content it is necessary to present a formal assessment of the results. Within 

this section, the spatial alignment of the resulting thematic hotspots is investigated in 

detail with places of known affordances and understood meanings. Additionally, the 

proportional alignment of each thematic category and study area is assessed using the 

individual data source and across multiple sources and locations.  

 

4.4.1 Assessing Spatial Alignment 
 
 

In order to assess the degree to which Twitter content originating from various 

locations reflects the characteristics of these locations, I compare spatial clusters of 

thematic content in Twitter data to the corresponding physical neighbourhoods and their 

thematic characteristics as reflected in Wikipedia. Figure 10 shows the resulting high 

value clusters for two categories, namely entertainment (red) and recreation (blue) in a 

subset of Manhattan, NYC.  

In this Figure I show the spatial distribution in finer resolution in order to better 

communicate the level of alignment between Twitter clusters and corresponding physical 
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places: green clusters align at, or near, known areas of recreational affordances such as 

parks and squares, with the most notable cluster spatially aligned with Central Park. 

Similarly, the entertainment clusters align with established local entertainment hubs such 

as Times Square, Madison Square Garden, and the most notable cluster being at 

Broadway in the Theatre Sub District, just southwest of Central Park. 
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Figure 10 Statistically significant clusters of recreation and entertainment categories concentrated over 
Manhattan, NYC.  For reference, the following sample places are labelled in the map with colour coded borders 
based on the legend features: (1) Central Park, (2) Broadway,  (3) Times Square, (4) Madison Square Garden, 
(5) High Line Park, (6) Battery Park, and (7) Brooklyn Bridge Park. 
 
 
 

Once these clusters are aggregated locally I have an even clearer view of this 

thematic alignment. These clusters are visualized in Figure 11, showing that the 

recreational clusters of Twitter content are overlapping not just with Central Park, but 

also with multiple parks throughout the city, including Battery Park, Brooklyn Bridge 
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Park, High Line Park, etc. This supports the argument that at this scale of analysis Twitter 

content is reflective of the local platial characteristics. In the same figure, the pie chart on 

its right-hand side shows the relative portion of Twitter content that is considered as 

recreation within our Twitter data corpus for this area (namely 13.7%, second to the 

dominant entertainment category).  

Of course, as we see in Figure 11, I also receive few false positives (e.g. spots that 

are not aligned with parks in that figure). This is due to two reasons. First, there is some 

inherent fuzziness in the use of various terms, which may have multiple meanings in 

various contexts, yet are assigned their primary label in our clustering. For example, I 

often encounter the term read in tweets originating in the vicinity of airports, leading to 

the detection of local educational hotspots (as the term is primarily considered indicative 

of educational activities), even though in that case it is simply used by passengers who 

read books or periodicals while awaiting their plane. Second, the social media data may 

often indicate need rather than support for a certain type of activity. A small local square 

for example, may be serving as an informal recreational spot, even though formally it 

may not be recognized as such. 
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Figure 11 Spatially significant high value recreation clusters over NYC. The hexagon map depicts the 
statistically significant spatial clusters by point count coloured in blue. The results show a significant spatial 
alignment with prominent parks in NYC. The pie chart (right) shows that 13.7% of the total topics discovered 
from the entire NYC Twitter resulted in the highest semantic similarity with recreation out of the other five 
categories. Large clusters are annotated with location names to show spatial alignment. 
 
 
 

While the above results show the overall alignment of thematic hotspots, I also 

compared the extent to which the crowdsourced spatial footprint of a thematic place 

aligns with its formally-defined extent. In Figure 12 I show the spatial extent of 

entertainment Twitter clusters (red dots) at the neighbourhood level for the Theatre Sub 

District, NYC. Beyond the spatial alignment, this Fig also illustrates how a place 

affordance extends beyond the formal boundary of that place due to human activity 

and/or expression: as the public moves to or from the Theatre District, it remains 
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immersed in the thematic character of that place. As a result of this process, I have a 

collective reconfiguration of the platial boundary, shifting it westwards of its formal 

outline. Thus, social media content can capture places not just as the aggregate of their 

form and functions (Crooks et al. 2014), but also by revealing the transitional immersion 

into the themes that these functions enable.  
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Figure 12 Depiction of spatially significant clusters and the Theatre Sub District, NYC. The spatial 
concentration of entertainment tweet clusters (red dots) contained within, and nearby, the Theatre Sub District 
(dark brown polygon with hash outline) show the alignment of platial expressions with local affordances (i.e. 
theatres around Broadway). I observe the dynamics of platial expressions with spaces adjacent to the official 
boundary being reconstituted with entertainment expressions. Additionally, the word cloud is shown to depict 
the topical terms semantically linked to entertainment. 
 
 
 

I ascertained similar spatial alignment in SG, LA, and LDN for business, 

education, and sports categories using the aforementioned methods. Fig 13 provides 

overview maps containing the statistically significant clusters per category. Here I briefly 
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highlight some specific physical features in each area that have common affordances of 

either shared activities or experiences, to further demonstrate spatial alignment. In SG 

sports clusters were detected in the western portion of the city near Jurong West Stadium 

and the Golazo Futsal Singapore.  

Additional alignment was observed in the central part of the city near Clementi 

Stadium as well as to the north near Yishun Stadium. Majority of the education clusters 

were found near schools and universities as expected with notable locations as the United 

World College of South East Asia, Nanyang Polytechnic, and Temasek Polytechnic. 

Business clusters were detected in the Yishun district primarily in the central business 

district. Additional clusters are observed in the southern portion of the city near the 

Orchard Road location, which is a popular shopping area according to Wikipedia, and a 

large tourist attraction.  

For LDN, I found overlapping thematic clusters of business, politics, and 

entertainment concentrated in the West End of London area. The location contains 

numerous government buildings, businesses, and theatres. I observed sports clusters near 

both Emirates and Olympic Stadiums, and also near restaurants and sports pubs. For 

recreation, our results indicated strong spatial alignment with parks and mostly notably 

LDN’s largest, Richmond Park. In LA, significant clusters in the business category were 

observed near outdoor and indoor malls, shopping centres, and restaurants. However, I 

must note that I did not find a significant business cluster in LA’s Financial District. 

Comparing our results against geographic data from the LA city government, I observed 

clustering in the education category near such example locations as the University of 
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Southern California, California State University Los Angeles, and California Lutheran 

University. 
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Figure 13 Maps depict significant hotspots for each of the high-level categories for (A) Singapore, (B) London, 
(C) Los Angeles, and (D) New York City. Additionally, the maps are annotated with sample locations were the 
hotspot aligns with a place with common meaning such as a school or stadium.  The outlines of the numbered 
boxes correspond to the map legend colours. In map (A) Singapore, 1) Jurong West Stadium 2) Golazo Futsal 
Singapore 3) Clementi Stadium 4) Yishun Stadium 5) United World College of South East Asia 6) Nanyang 
Polytechnic 7) Temasek Polytechnic 8) Yishun District and 9) Orchard Road. In map (B) London, 10-12) West 
End of London 13) Emirates Stadium 14) Olympic Stadium and 15) Richmond Park. In map (C) Los Angeles, 
16) University of Southern California 17) California State University Los Angeles and 18) California Lutheran 
University. 

 
 
 
To further investigate the relationship between thematic hotspots and 

corresponding locations of interest, I analyzed the Euclidean distance between thematic 

hotspots relating to education and sports and corresponding facilities in LA using average 

nearest neighbour and proximity analysis. I first used average nearest neighbour analysis 

to understand the spatial distribution of facilities and then calculated the proximity of 

thematic hotspot points to these locations.  

To briefly describe average nearest neighbour analysis, the process calculates the 

minimum distance between a point and its closest neighbour, and repeats the process for 

all points to derive a mean distance that is compared to an expected mean random nearest 

neighbour distance (Clark and Evans, 1954). This process produces the average nearest 

neighbour distance and gives a measure as to whether the points are spatially clustered or 

dispersed. I then subsequently looked at the average proximity of tweets to said facilities 

to get a relative indication of the distance between the two sources.  

In doing so, I focused on LA due to the accessibility of a GIS database, and chose 

education and sports because these are themes that have facilities with understood 

meanings. I first calculated an average nearest neighbour distance of 1298.6m for official 

sports facilities using LA city government data (Cityplanning.lacity.org), and a nearest 
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neighbour index of 0.43 and z-score of -16.67. With an index value less than 1 and a 

significant z-score, this result indicates the spatial distribution of sports facilities within 

the city are clustered. I then calculated the average proximity distance between all sports 

hotspot points to their nearest sports facility. I found that distance to have a mean value 

of 158.6 m, which is less then the average nearest neighbour distance and indicates an 

overall closeness in proximity between sports related tweets and facilities such as 

stadiums and athletic fields. 

This also suggests that tweets conveying an athletic theme tend to originate in the 

vicinity of such facilities, conveying the platial nature of such locations. Accordingly, the 

mean distance of 158.6 m can be viewed as a measure of the extent of this particular 

theme’s immersion potential. Similarly, I calculated an average nearest neighbour 

distance among all schools, colleges, and universities in LA and found it to be 956.7 m 

with a nearest neighbour index of 0.75 and z-score of -10.13.  

As before, this result indicates the educational facilities are also spatially clustered 

within the city boundary. The corresponding average proximity between education-

related tweets and the nearest educational facility had a mean value of 406.1 m. This 

pattern is consistent with the above-made observations regarding sports facilities and 

their relation to thematically-focused Twitter content.  

4.4.2 Assessing Thematic Alignment 
 

Above I discussed the spatial alignment of Twitter thematic clusters with 

corresponding facilities and neighbourhoods to show how thematic hotspots tend to 

coincide with relevant physical locations and their characteristics. I now turn to assessing 
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the thematic alignment among the uncurated content of individual tweets and the 

consensus expressing crowd-curated Wikipedia platial content. In that sense, each 

neighbourhood can be seen as having a sociocultural signature, expressing the ensemble 

of themes that assign it a particular character.  

Our objective is to compare such signatures as they emerge in Twitter traffic to 

the corresponding content as it is harvested from Wikipedia. I do so by studying the 

various percentages of different thematic categories as they are used to describe various 

neighbourhoods in Wikipedia and compare them to the corresponding percentages of 

Twitter traffic originating from these locations. In order to pursue this objective I present 

our results first at the neighbourhood level, and then aggregating up to the city level.  

In order to highlight platial themes as they emerge at the neighbourhood level of 

analysis, I present results from NYC’s Theatre District, Central Park, and the Lower 

Manhattan Financial District in Figure 14. Each figure is a composite view of the 

proportions from Twitter and both Wikipedia topics and semantic page accesses by title. 

The outer pie chart on each graphic represents Wikipedia topics, the middle shows 

Twitter topics, and the inner depicts Wikipedia page accesses. In the Figure I have 

summarized the degree to which various themes express the particular nature of each 

neighbourhood, capturing for example the more recreational nature of Central Park and 

the more entertainment-oriented character of the Theatre District.   

For the pair-wise comparison of such data I use the Renkonen index of similarity, 

whereby 100% similarity would indicate perfect thematic alignment, whereas 0% would 

reflect no alignment. Using this metric, the average similarity among the Twitter 
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signatures (as shown in Figure 14) of the three locations was found to be 7%. The three 

locations have significantly low proportional alignment and thus indicate a uniqueness of 

each location amongst collective Twitter content.  

This is visually evident in Figure 14 with the Theatre Sub District comprised 

almost entirely of entertainment related content at 88%. The Theatre District contains 

numerous entertainment establishments, to include Broadway. Conversely, and as one 

would expect, 99% of the statistically significant content in Central Park is recreation 

related. As Central Park is one of the most well known parks in one of the largest cities in 

the world.  For Lower Manhattan, I find business as the largest proportion at 78%, which 

is home to Wall Street and the most powerful financial district in the world. Ultimately, 

these findings highlight the differences in human experiences and activities at each 

location, and more importantly that unique expressions of place emerge from Twitter 

through uncurated processes.  
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Figure 14 Percentages for each category, data source, and location in New York City neighbourhoods. The bar 
chart labels are presented in <Location> <Data Source> form. The locations are Theatre Sub District (TSD), 
Central Park (CP), Lower Manhattan District (LM). The data sources are Wikipedia Article Topics (Wiki), 
Spatial Twitter Topics (Twitter), and Wikipedia Semantic Accesses (WikiViews).  
 
 
 

I assessed the single Wikipedia articles for each location (Figure 14). The average 

overall Renkonen similarity of this content for these three locations is 64%, which shows 

that single Wikipedia articles have higher proportional alignment and less uniqueness of 

place compared to Twitter. Central Park and the Theatre District resulted in the highest 

pairwise similarity of 87% compared to Lower Manhattan similarities of 49% (Central 

Park) and 57% (Theatre District).  

Considering the nature of Wikipedia entries as a reflection of crowd consensus, 

these similarity values can be viewed as an indicative reflection of the thematic 
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variability among these locations.  Regarding individual neighbourhoods, in the Theatre 

Sub District, entertainment is clearly dominant (37%), followed by recreation (27%). For 

Central Park, I found near the largest division between recreation (43%) and recreation 

(35%). In the Lower Manhattan District, home of City Hall and the financial district, 

proportions differ significantly from the other two locations with politics leading (38%), 

followed by entertainment (25%), and business (19%).  

Additionally, I evaluated the Wikipedia titles with page accesses using Renkonen 

similarity from the percentages in Figure 14 and assessed the average overall similarity 

for these three locations at 40%.  Thus indicating less proportional alignment and more 

uniqueness of place between the neighbourhoods.  Although the uniqueness is not as 

distinct as Twitter at 7%, I do see a reduction in alignment compared to the individual 

Wikipedia articles taken from the same data source. Looking at the most prominent 

proportions in each neighbourhood from Figure 14; the Theatre District is 64% 

entertainment, Central Park 51% recreation, and Lower Manhattan 39% business 

followed by 35% sports.  

I compared the thematic content of Wikipedia (single articles and geo-located 

semantic access) and Twitter per location to assess proportional alignment by looking at 

Figure 15. Our findings show that for the Theatre District the highest similarity between 

Twitter and the geo-located article access at 66% followed by the single article and 

Twitter at 57%. The neighbourhood displays more pronounced particularities, namely its 

entertainment orientation. For Central Park, we have very high thematic alignment, 
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compared to the other areas, between Twitter and Wikipedia (both single and geo-located 

page views) content (53% and 39% respectively). 

Conversely, in the Lower Manhattan District, which is home to diverse 

affordances and therefore more multifaceted, the thematic alignment between Twitter and 

the neighbourhood single Wikipedia article was lower (36%). The comparison Twitter 

and geo-located page access resulted in higher alignment at 50%. Interestingly, our 

findings show the highest proportional alignment between two different neighbourhoods, 

Central Park and Theatre District, but using the single Wikipedia article for each area. 

This results points to homogeneity of Wikipedia, referring to its content and afforded 

activities, but also that these two neighbourhoods are spatially joined. Meaning the 

descriptions and expressions of place within Wikipedia for these two places share 

common semantics and lineages.  
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Figure 15 Renkonen similarity matrix for all three locations and data sources. The matrix schema shows a 
gradient between 1 (red) and 0 (white).  The neighbourhoods are abbreviated as follows: Theatre District (TSD), 
Central Park (CP), and Lower Manhattan (LM). The data sources are differentiated as Twitter, single 
Wikipedia articles (Wiki), and geo-located Wikipedia article with semantic accesses (WikiAccess).  

 
 

In Figure 16, I visualize the neighbourhoods using non-metric multidimensional 

scaling to better understand the proportional similarities. As previously discussed, the 

process of ordination uses the Renkonen dissimilarities derived from Figure 15. The 

distance between data points in Figure 16 is determined from the rank-ordering of 

dissimilarity values and distance values in ordination space for each pair of data points. 

From this I see two visual trends emerge from Figure 16. The first trend is the closeness 

of Twitter and Wikipedia semantic access proportions for each location, which indicates 
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that at the neighbourhood scale a relative uniqueness of place, is revealed across these 

two different dynamic sources. Conversely, the second trend is the relative grouping of 

Wikipedia articles from different locations thus representing more homogeneity of the 

data source vice uniqueness of the places.    

 

 

Figure 16 Non-metric multi-dimensional scaling of each neighbourhood and data source. The first and second 
dimensions of the ordination are represented with distances computed by rank-ordering between Renkonen 
dissimilarity values and distances in ordination space. The neighbourhoods are abbreviated as follows: Theatre 
District (TSD), Central Park (CP), and Lower Manhattan (LM). The data sources are differentiated as Twitter, 
single Wikipedia articles (Wiki), and geo-located Wikipedia article with semantic access (WikiAccess).  
 

 
I performed the same analysis at the city level, aggregating all results within the 

city boundaries, for NYC, LA, SG, and LDN. Focusing on Twitter, percentage data in 

Figure 17 and Renkonen similarities in Figure 18, our results show similar proportional 

distributions across the four cities with an overall average similarity of 69%. When 

compared to Twitter at the neighbourhood scale this result indicates a loss of locational 
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uniqueness. This further suggests that aggregating social media content at the city level of 

analysis has a smoothing effect on thematic content, removing the fine level platial 

characteristics that I observed at the neighbourhood level. Moreover, one could make the 

argument that at this level of analysis the platial character dissipates, and I observe 

Twitter at large rather than particulars.  

Comparing the Wikipedia articles (Figures 17 and 18) produced an average 

similarity of 76% across the four cities. Our findings show that NYC and LA have the 

highest pairwise similarity (Figure 10) of 94% with entertainment as the dominant 

category. The results for Wikipedia semantic accesses are somewhat alike the Wikipedia 

articles with an average similarity of 80%, with NYC and LA having 93% proportional 

alignment. Like our neighbourhood findings, I see strong similarity between Wikipedia 

articles and semantic accesses for different areas, pointing to the homogeneity of the 

source as opposed to locational distinction or scale. 
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Figure 17 Percentages for each category and data source by city. The bar chart labels are presented in 
<Location> <Data Source> form. Locations include London (LDN), New York City (NYC), Los Angeles (LA), 
and Singapore (SG) and data sources are Wikipedia article topics (Wiki), spatial Twitter topics (Twitter), and 
geo-located Wikipedia semantic accesses (WikiViews).  
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Figure 18 Renkonen similarity matrix for all three locations and data sources. The matrix schema shows a 
gradient between 1 (red) and 0 (white).  The cities are abbreviated as follows: London (LDN), New York City 
(NYC), Los Angeles (LA), and Singapore (SG). The data sources are differentiated as Twitter, single Wikipedia 
articles (Wiki), and geo-located Wikipedia article with semantic accesses (WikiAccess).  
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Figure 19 Non-metric multi-dimensional scaling of each city with data source. The first and second dimensions 
of the ordination are represented with distances computed using rank-ordering of Renkonen dissimilarities. The 
cities are abbreviated as follows: London (LDN), New York City (NYC), Los Angeles (LA), and Singapore (SG) 
The data sources are differentiated as Twitter, single Wikipedia articles (Wiki), and geo-located Wikipedia 
articles with semantic access (WikiAccess).  
 
 

In Figure 19, I view the cities using non-metric multidimensional scaling as 

previously shown with the neighbourhoods to better understand the proportional 

similarities across the all data sources and cities. Once again, the Renkonen percentage 

similarities from Figure 18 are converted to dissimilarity values and visualized so that the 

data points are in rank-order agreement between distance and dissimilarity.  As 

previously discussed, I explored various iteration values to minimize the stress or fit 

between distance and dissimilarity in the visualization. The apparent smoothing effect of 

scale and aggregation is further revealed at this level with the notable grouping of 

Wikipedia articles, minus LDN, and lack of clear groupings of Twitter and semantic 
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accesses by location. The distances of dynamic content, Twitter and Wikipedia access, 

are tempered by the lack of a unique single category for any one location.  

4.5 Summary 
 

This chapter presented the application of the proposed framework for harvesting 

collective and crowd-centric platial content from Twitter and Wikipedia in the following 

study areas: New York City, Los Angeles, London, and Singapore. A subsequent study 

was performed for three different neighborhood areas in New York City in order to 

contrast the differences in scale and investigate aggregation of content for cross-source 

consensus. The results presented are based on semantic and spatial alignment of platial 

clusters to known points of interest that have common meanings (i.e. school). In 

particular, the high-level categories of recreation, entertainment, sports, and education 

demonstrated spatial alignment with locations with understood meaning such as parks, 

theatres, stadiums, and universities respectively.  

A cross-source analysis was conducted between Twitter and Wikipedia to 

investigate the emergence of unique platial knowledge. The findings showed that the 

aggregation of content at different scales exhibits varying levels of uniqueness. It was 

shown that at the neighborhood level, in particular, the collective human activities in 

these places share common and semantically similar meanings. On the other hand, a 

collective sense of place or collective place meaning is not observed at the city scale 

because of the aggregation of dissimilar human activities.  
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CHAPTER 5: A FRAMEWORK FOR ASSESSING PLATIAL 
REOCCURRENCES AND CO-OCCURRENCES 

5.1 Introduction 
 

This Chapter presents an assessment of how well such mined platial themes 

exhibit spatiotemporal alignment by extending the work of Chapter 4. In the previous 

Chapter, Twitter and Wikipedia were investigated to discover socio-cultural signatures of 

place that emerge, and to what extent they align, from each crowd-contributed source 

from particular places. The work showed that place meaning is multiscalar, and that 

investigating places at the neighborhood scale conveyed greater uniqueness of place 

given a single month of data. However, collective places formed through social activities 

are highly dynamic and constantly change with events, weather, and temporal cycles. The 

focus in this Chapter is to better understand the spatio-temporal dynamics of these 

collective thematic activities through the reoccurrence and co-occurrence of such platial 

clusters.  

 Ultimately, place meaning is formed through the reoccurrence of shared 

experiences (by groups) through repeated activities at a certain location (Brandenburg 

and Carroll 1995; Williams and Stewart 1998). In the context of sense of place, looking 

at reoccurrences and co-occurrences allows for the emergence of what Granham et al. 

(2009) referred to as place dependences. Meaning, certain locales are predisposed to 
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common physical or social affordances that allow individuals or groups to carry out 

specific activities. These places can have dual purposes such as a stadium for sports and 

entertainment venues that reoccur. Places also afford multiple activities that can happen 

at the same time such as parks for recreational biking or relaxing while reading a book, 

which conveys an implicit educational meaning for those escaping to the park. 

Nevertheless, the intent here is to investigate whether or not these activities (i.e. platial 

themes) exhibit a reoccurrence pattern over time for single or multiple thematic clusters 

and/or co-occurrence pattern whereby different thematic clusters intersect.  

The investigation into reoccurrence and co-occurrence alignment is best described 

using a subset of Allen’s (1983) temporal relations, specifically precedes, preceded by, 

equals and meets and the spatial predicate intersects. These predicates are appropriate 

given that the data is spatially clustered and, more specifically, temporally binned in such 

a way that only these types of relationships can exist. Similar approaches have been used 

in mining spatio-temporal co-occurrence patterns (STCOPS) to discover evolving regions 

(Pillai et al. 2012), co-location patterns (Shekhar and Huang, 2001), and spatiotemporal 

databases (Pfoser et al., 2011). Although the algorithms presented in the cited literature 

are beyond the scope of this research, they do offer considerable insights for robust 

methodologies that are useful in assessing reoccurrence and co-occurrence of thematic 

platial clusters. 

A subset of the LA Twitter data presented in the previous Chapter is selected due 

to spatial alignment of high-level categories. Although spatial alignment was discovered 

in each of the cities presented in Chapter 3, the purpose here is to showcase another city 
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in detail and LA accounted for the second largest number of clusters compared to NYC. 

However, the temporal period is extended to three months and reprocessed at both single 

month and weekly increments. The Twitter data is assembled concurrently for LA using 

the publicly available streaming API for the months of March (3.1M), April (4.4M), and 

May (3.5M) of 2014. The collection is once again filtered on tweets with geolocation and 

the English language. The tweets were further filtered spatially using the geographic 

boundaries from the LA city government website. Similar to the city and neighborhood 

comparison in Chapter 4, a finer temporal scale is additionally pursued to investigate the 

affect of dividing the LA data into 13-week intervals.  

5.2 Discovering Platial Themes Over Time 
 

Figure 20 provides an overview of the process similar to Figure 7, except step 4 is 

now a spatiotemporal evaluation of reoccurrence and co-occurrence alignment, unlike the 

spatial and thematic alignment investigated previously. To briefly describe the approach, 

the tweets were grouped into 24hr time periods to form documents using the entire three 

months of data and processed using topical n-gram modeling to extract bi-grams (see 

Algorithm 1). The extracted terms were then thematically labeled using the entire 

Wikipedia knowledge base and PMI that were finally stored in a relational database.  
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Figure 20 Flowchart describing overall process used to discover platial alignment. Step 1: sequential ingestion of 
Twitter, and Wikipedia article representing each spatial location, and all geo-located Wikipedia article titles 
spatially and semantic access statistics contained within the same location. Step 2: unsupervised topic discovery 
using topical n-grams. Step 3: determine the semantic overlap of topical n-grams and defined categories using 
Wikipedia search counts and PMI. Step 4: determine the statistical significance of each platial category and 
compare recurrence and co-occurrence alignment over three months for three cities and 13 weeks for one city. 
 

 
A subset of the original six high-level categories used in Chapter 4, namely 

sports, recreation, and education, were chosen here due to the complexity and data 

volume incurred with additional temporal bins. Another factor for the selection of 

categories was the degree to which they spatially aligned with places of known 

affordances as seen in Chapter 4. Using places of known affordances, such as stadiums, 

schools, and parks offer a means of asserted ground truth for evaluation.  

Given the thematically labeled tweets, the data is temporally divided into three 

month and 13 week intervals. Figure 22 shows the number of thematically labeled tweets 

per category for each of the months. Interestingly, the total collected number of tweets for 

April was 4.4M, almost a 1M higher than May and 1.5M over March, yet this time period 

has the least amount of labeled tweets. Conversely, the lowest number of tweets was 

collected in March, which has the highest thematic counts. It is perceived, although not 
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known, that more events occurred in this month since Twitter is highly event-based 

(Croitoru et al., 2013). 

 

 
Figure 21 Bar chart depicts the total thematically labelled counts for LA by month. 

 
 

Similarly, the per category counts are shown in Figure 23 for each of the 13 weeks 

and unsurprisingly follow downward trend in April. Another observation from both 

Figure 22 and 23 is the proportionally high number of thematically labelled recreational 

tweets. As seen in Chapter 4, with respect to the large portion of entertainment tweets, the 

content in Twitter is uncurated and unfortunately biased towards certain topics of 

discussion. With this in mind, content analysis studies have been performed to assess the 

degree of bias in social media, particularly Twitter, and found that majority of the content 

centers on personal narratives of lifestyle and entertainment topics (Zhao et al. 2011). 

Notions of place within social media are more of a by-product of humans discussing their 
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experiences at a particular location, which may or may not, relate to their surrounding 

environment.  

 

 
Figure 22 Bar chart depicts the total thematically labelled counts for LA for 13 weeks. 

 

 
Using the labelled tweets per category, the next step is to find an appropriate 

analysis distance for each category and temporal bin (months and weeks). This is 

accomplished by incrementally checking for spatial statistical significance at incremented 

distances using Global Moran’s I  (Páez and Scott, 2005) to test for spatial 

autocorrelation and the distance with the highest significance value. The following 

distances were observed by iterating from 100m to 3000m using 50m increments for each 

month and by category in order of education, sports, and recreation respectively: March 

(840m, 723m, 976m), April (948m, 893m, 1052m), and May (786m, 834m, 872m). 



102 
 

The distances for the 13-weeks were additionally determined to find the max 

statistically significant z score. Figure 23 presents the distances plotted for the education 

category from 100m to 3000m (x-axis) for each of the 13-weeks (y-axis) and z scores (z-

axis). Both sports and recreation were calculated using the same method (see Algorithm 

3). 

 

 

Figure 23 LA education incremental Global Moran’s I for each of the 13 weeks.  
 
 

Using the highest z score (see Algorithm 2), the distance was recorded for each of 

the time periods and parameterized as the fixed distance threshold in the local Getis-Ord 

Gi* (Getis and Ord, 1992) along with the PMI values for each category. The PMI values 

were applied as weights in computing Getis-Ord Gi* statistic to discover local spatial 
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clusters with high semantic values within the boundaries of LA. The statistical 

significance at the P < 0.05 level and considered only z-scores greater than +1.96.  

Figure 23 depicts week 13 below the +1.96 threshold, which either means the data 

was random or the data clustered outside of the min/max interval values. In either case, 

the highest z score was still used to determine the distance value, for which Getis-Ord 

Gi* would determine the final statistically significant clusters. It is understood that this is 

not the optimal approach, although several clusters were still discovered for week 13, 

future versions of Algorithm 2 will check for this condition and rerun at different 

intervals. As a feature with a high PMI similarity score is interesting, it may not be a 

statistically significant hot spot or a place with nearby features with similar place 

expressions. Moreover, a feature (i.e. single geotagged tweet) will have a high PMI 

similarity value and be surrounded by other features with high values as well.  

The resulting spatial clusters from the 13-week periods per category were further 

clustered using DBSCAN and transformed into polygons by creating convex hulls. This 

step is performed because assessing the reoccurrence and co-occurrence of platial clusters 

as point data for 13-weeks is difficult to visually interpret. Although using a convex hull 

can misrepresent the area, majority of the clusters are small, given the time period, which 

reduces obvious region errors and ultimately place is vague and has indeterminate 

boundaries.  

DBSCAN locates regions of high density that are separated from one another by 

regions of low-density using points within a specified radius (Ester et al., 1996). This is 

accomplished given the two parameters, epsilon and minPoints. The algorithm starts by 
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picking a random point in the dataset and determining if the total number of points 

surrounding the chosen point, within the distance of epsilon, is greater than minPoints. 

DBSCAN is used because the resulting Getis-Ord Gi* clusters are not individually 

identified so that each can be turned into a polygon (see Algorithm 3). The parameter 

inputs for DBSCAN are epilson and minPnts. The same distance values used for Getis-

Ord Gi* were assigned to epilson and the minPnts was heuristically set to three to 

minimally form triangles. The DBSCAN and convex hull process was not applied to the 

results from the monthly time period since an assessment using the just the point was 

feasible. 

 

5.4 Evaluation and Results 
 

 To test the proposed approach for discovering the reoccurrence and co-occurrence 

of platial content in crowd-contributed content it is necessary to present a formal 

assessment of the results. Within this section, the spatiotemporal alignment of the 

resulting thematic clusters for each of the time periods is investigated in detail with 

places of known affordances and understood meanings. The section proceeds by 

assessing the data from LA on a monthly frequency followed by weekly.  

 

5.4.1 Assessing Monthly Recurrences and Co-occurrences 
 

In order to assess the degree to which Twitter content originating from various 

locations exhibits reoccurrence and/or co-occurrence patterns, I compare the spatial 
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clusters by first looking at within theme reoccurrences followed by cross theme 

categories for co-occurrence. Since the within theme clusters are temporally binned into 

discrete one month increments, the following observations and assessment is made using 

the temporal relations of meets and precedes, or preceded by and spatial intersection. 

Additionally, prominent physical features such as stadiums, park, etc., that are overlapped 

by the spatial clusters are used as references.  

Figure 24 shows the resulting high value clusters for each of the three categories, 

namely education (blue), recreation (green), and sports (red). The Figure is presented as 

an overview of clusters discovered at the city level for each of the three months. As noted 

earlier in Figure 21, the reduced number of thematically labelled tweets for the month of 

April obviously produced less spatial clusters. Although the collection of tweets for the 

months of March and May resulted in less totals compared to April, the number of 

observable unique clusters is greater for these months. From Figure 24 I also observe 

clustering in each of the categories in Downtown LA, which is explored next in greater 

detail for reoccurrences and co-occurrence. 

 



106 
 

Figure 24 City level overview map showing thematic platial clusters for three different months. 

   

Figure 25 provides a focused view of Downtown LA to better assess the 

reoccurrence and co-occurrences across each of the three months. I proceed by assessing 

the individual categories first for reoccurrence and then an aggregated view of all the 

categories for co-occurrences. Starting with the Downtown LA Sports map (top-left), I 

observe a reoccurrence of clusters (A) from March and May, but not April, located in 

residential areas within the vicinity of Koreatown and Mid City.  A similar reoccurrence 

of clusters (C) appear once again between March and May, and to some degree April, 

near the numerous downtown restaurants and shopping areas. Surprisingly, reoccurrence 

is not observed for clusters B (Staples Center) and D (Dodger Stadium) appearing only in 

April, despite these places having known affordances for sports activities.  
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 Looking at Downtown LA Recreation map (Figure 25 top-right), reoccurrence is 

once again observed in clusters (E) from March and May, but not April, located in 

residential areas within the vicinity of Koreatown and Mid City. A recurrence clusters (F) 

at the Staples Center are seen concurrently from March to April. Additionally, a single 

cluster (G) for the month of April emerged for recreational activities at Dodger Stadium, 

but did not include over months. Overall, smaller reoccurrence clusters that are not 

labelled were found in residential areas and indicate people discussing topics related to 

recreation possibly from watching TV or the Internet.  

 For the education results (Figure 25 bottom-left), reoccurrence clusters (H and I) 

appear for each of the three months at the annotated locations. The first cluster (H), is a 

residential neighbourhood consisting of several elementary schools, middle schools, and 

high schools all in close proximity, while the other cluster (I), is the University of 

Southern California (USC).  
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Figure 25 Quad maps show clusters of sports, recreation, and education categories over Downtown LA for three 
consecutive months. The different maps are depicted as follows: Downtown LA Sports, Downtown LA 
Recreation, Downtown LA Education, and Downtown LA All Categories. A description of each map and letter 
callout is given within the body of text. Note: the legend for the Downtown LA All Categories map is not 
provided as it is consolidated map of the other three. 
  

 
Given the reoccurrence assessment of the individual categories, I now turn to the co-

occurrence or mixing of multiple categories that appear at the same location within the 

same month or over the entire three-month period. Looking the All Categories map 

(Figure 25 bottom-right), I observed the most prominent co-occurrences in clusters K and 

L emerging from the neighbourhood areas previously mentioned. The intersection of 

multiple thematic clusters over these areas indicate that people are discussing multiple 

topics, and suggests arguably greater personal uniqueness of place (meaning homes), 

whereby there is less of a crowd connection or attachment of place meaning, other than 
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general homes, compared to public parks or stadiums. In this case, the proximity factor of 

people living closely within a neighbourhood, and in general, suggests similar experience 

of daily routines and activities causing semantically similar content to emerge from social 

places and not traditional physical places.  

 For the clusters M, overlapping USC, I observed co-occurrence between 

education (dominate category), recreation, and sports, which makes sense since USC is a 

major university with multiple sports teams and a large student body. Clusters N and O 

depict co-occurrence of sports, recreation, and limited education themes that appear 

within the month of May. Given the concentration of cluster in a relatively small area 

these are perceived as scheduled events taking place at the Staples Center and Dodger 

Stadium. The mixing of education clusters at location O either represents the repeated use 

of a bi-gram that has higher semantic similarity with education in Wikipedia or possibly 

ambiguous terms taken out of context and mislabelled. 

 

5.4.2 Assessing Weekly Recurrences and Co-occurrences 
 
 
 I now turn to the assessment of recurrences and co-occurrence using a weekly 

interval. As previously discussed, the weekly clusters were further processed using 

DBSCAN and converted to convex hull polygons to more easily assess the intersection of 

13 different time periods. This section provides a focused assessment of selected 

locations for the reoccurrences of individual thematic clusters and then proceeds with 

another assessment of Downtown LA. I start by looking at the map of Dodger Stadium in 
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Figure 26 for sports clusters. The physical location of the stadium is located in the center 

of the map, which also contains the highest concentration of intersecting and overlapping 

polygons.  

 

Figure 26 LA convex hulls representing sports hotspots near Dodger Stadium (A) using 13-week temporal bins.  

 

Out of 13 weeks, in Figure 26, 5 different polygons reoccur over this location and 

ultimately correspond temporally with the major league baseball team’s home and away 

schedule. The team played away games from the beginning of the season in March to the 

first part of April. Then they played several away games mid April and another set of 

home games at the end of April. This cycle continued for the month of May, which aligns 

with the reoccurrence of clusters seen in the map. The reoccurrence clusters observed 

A 
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away from the stadium align with both away and home games, indicating sports bars and 

restaurants that are frequented by fans regardless of where the game is actually played. 

In the Figure 27 map, educational clusters are shown over USC. Compared to the 

dense reoccurrence clustering in the previous stadium map, Figure 26, the polygons here 

encompass larger areas suggesting the physical layout and form of the USC campus and 

nearby neighborhoods has an affect on the footprints. Of particular note here is the lack 

of clusters in the beginning of March when the school is in spring recess. The 

reoccurrence of clusters does not appear to follow cycle similar to that of the sporting 

event with regularly scheduled games. Of the 13 weeks, only 3 intersect the campus 

boundary, while the other near polygons could represent student housing or other nearby 

schools. 

 
Figure 27 LA convex hulls representing education hotspots for University of Southern California (A) using 13-
week temporal bins. 

A 
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The map in Figure 28 depicts recreational clusters over Downtown LA with the 

following feature labeled: (A) Staples Center (B) downtown restaurants (C) Pershing 

Square. Surprisingly, only a single polygon is observed over the Staples Center for the 5th 

week. The highest number of intersection of cluster reoccurrences is seen overlapping the 

downtown restaurants (B). However, the reoccurrences are not continuous over the 13 

weeks with only 5 different weeks that emerge at different times. Along with its 

numerous restaurants, multiple hotels and outdoor courtyards are located within this area 

to accommodate tourists visiting the city. Lastly, a three recreation clusters form over 

Pershing Square (C) representing weeks 2, 4, and 12. The park like square holds 

numerous outdoor art showings and venues. 
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Figure 28 LA convex hulls representing recreation hotspots in Downtown LA using 13-week temporal bins; (A) 
LA Convention Center and Staples Center, (B) numerous restaurants, (C) Pershing Square. The map depicts 
locations of recurrence and the popular (A) LA Convention Center and Staples Center where only a single 
polygon emerged.  
 
 
 

The map in Figure 29 provides a visual for assessing the combined co-

occurrences for each of the three categories. In doing so, each map presents a single 

thematic category, but zoomed further out to include some of the surrounding areas. The 

repeated letters show selected locations were two or more categories intersect. Location 

A depicts the co-occurrence of both a sports and recreation polygons during week 4 near 

the downtown restaurants and hotels.   

I observed that at location B, residential neighborhood, sports and recreation 

intersect at two different time periods, 2 and 5, over the same location. The co-occurrence 

B 

A 

C 
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of sports and recreation is once again discovered at location C during week 12. And 

lastly, an intersection during week 13 is observed for sports and education at the Dodger 

Stadium (C). The overall co-occurrence trend in Figure 29 is that of sports clusters, which 

appeared in each case being the most frequent. This co-occurrence trend is closely 

followed by recreational that coincided with sports, which is not overly surprising given 

the semantic similarity of the two categories and the frequency of their appearances 

together.  

It’s not difficult to imagine the relationship between these two categories as one 

could consider the watching of a sporting event to be a recreational activity. The 

appearance of sport and education was previously discussed as to the different meanings 

of words and their semantic interpretation without the full context of the message. 

Although only three categories were chosen for this assessment, they nevertheless 

revealed, to a degree, the semantic composition of places and their uniqueness that result 

in repeated emerges at particular locations. 
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Figure 29 LA convex hulls representing recreation, sports, and education hotspots in Downtown LA using 13-
week temporal bins. The duplicate letters signify spatial and temporal overlap discovered within the maps. 
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CHAPTER 6: CONCLUSION AND FUTURE RESEARCH 

6.1 Summary and Conclusion 
 

It was hypothesized that taking a crowd-centric approach towards the mining of 

people’s collective sense of place would lead to the discovery, extraction, and alignment 

of platial content. It was formally posited that mining user-generated data leads to the 

characterization and localization of places. To address the hypothesis, an algorithmic 

approach was developed and proposed that combined probabilistic topic modelling, 

semantic association, and spatial clustering to identify locations of collective sense of 

place. The proposed framework was applied to crowd-contributed content in the form of 

Twitter and Wikipedia to assess the semantic, spatial, and temporal alignment of the 

resulting platial clusters. The findings demonstrate how the meaning of place can be 

harvested through the analysis of crowd-generated content as thematic groupings. 

In Chapter 4, a framework was presented to assess the spatial and thematic 

alignment of platial content produced the proposed approach. By contrasting such 

locations with the corresponding Wikipedia entries and semantic access, it demonstrated 

for the first time the thematic and spatial alignment between these two sources, 

supporting the argument that such content can be analyzed to reveal the shared meaning 

of place, as it emerges through human activities and perception. Of course, the approach 

also revealed few questionable clusters as to their semantic labelling and spatial 
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alignment to places of unknown affordances. In these situations, it is difficult to fully 

assess whether the sensed platial content is truly characteristic of the physical place, as 

ground truth is hard to acquire and place meaning can be vague. For this reason, the 

assessments of alignment, whether semantic, spatial, or temporal, were conducted using 

locations of understood and general collective meanings. Moreover, the results 

demonstrated that the approach does address a significant portion of the signal-to-noise 

problem found in Twitter, whereby, people may be in a place physically, but not 

necessarily participating or contributing to the shared meaning of a place. The results 

indicate this to be the case in light of questionable clusters.  

Another contributing factor of the demonstrated results was the selection of high-

level categories that minimize semantic overlap without becoming too narrow, but still 

remain broad enough to relate many concepts in a meaningful way. The NYC results 

make this clear with the recreational and entertainment clusters that emerged with 

discernable spatial alignment with many parks and theatres. Moreover, the proportional 

alignment of semantic content between Twitter and Wikipedia demonstrated not only the 

uniqueness of places, specifically at the neighbourhood scale, but the importance of 

selecting high-level categories to differentiate platial content. 

Ultimately, the scale of place has a significant impact on its discernibility within 

sources as shown in our findings of neighbourhoods and cities. At the neighbourhood 

scale the particularities of place emerge, whereas zooming out to the city scale reveals 

more of the medium such as Twitter and Wikipedia instead of a particular location as one 

would expect with aggregation. Undoubtedly, the aggregation of sources at varying 
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scales of analysis will produce different results, which is why I separately investigated 

cities and neighbourhoods. This is also true of temporal scales demonstrated in Chapter 5. 

Whereby, the thematically labelled platial content was separated into monthly and weekly 

intervals that changed the neighbourhood densities of points to form different clusters. To 

deal with scale, the approach of incrementally checking for statistical significance at 

varying distances to determine the appropriate scale per location and thematic category. 

The results of apply incremental spatial autocorrelation at the weekly time period 

underscored the need for rigours distance analysis as the distances varied considerably. 

Thus highlighting the fact that Twitter and other crowd-contributed content are composed 

of events and other human activities at varying scales (stadium vs. park) all within a 

single data source.  

Concerning Chapter 5, the results from assessing reoccurrence and co-occurrences 

of platial clusters demonstrated once again the uniqueness of particular locations and the 

mixing affect of others. By extending the proposed framework approach into the 

temporal dimension, this demonstrated the utility of such combined approaches to not 

only investigate the static representation of place meaning, but over time as well.  

Investigating the intersection of platial clusters and physical places of known affordances 

together, at varying time periods, showed that platial content remerges over time as 

activities are repeated and collective place meanings are implicitly reaffirmed.  

As our world is becoming increasingly urbanized and dynamic, gaining an 

understanding of the building blocks of these urban environments is bringing forth the 

need for a new science of cities (Batty, 2013). The work that I presented here is 
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contributing towards this goal, as it provides a new lens to observe platial content as it 

emerges from the people themselves, and allows us to do so at levels of spatial and 

temporal granularity that far exceed our past capabilities.    

6.2 Future Research 
 

The frameworks introduced in this dissertation provide a natural starting point for 

future platial information research. Ultimately, there are many directions that could be 

taken to improve upon this work from both an investigation into platial content within 

other crowd-contributed data sources and development of new quantitative methods. 

Ultimately, the platial world is rich with human perspectives and discourses based on 

places that the spatial world is not able to describe (Goodchild 2014). Although place 

research is nothing new, as seen in the literature review, the proliferations of Web 2.0 

technologies to produce crowd-contributed content in real-time and advances in data 

discovery techniques offer a renewed focus whereby the early social constructs and 

theories of place are now observable at scales never before imaginable. Thus making the 

outlook on new platial research extremely promising.  

In reflecting on the proposed approach, and looking to the future, there are several 

directions that become clear for mining platial content. One future research direction is 

the investigation of other topic modeling variations to improve not only topic coherence, 

but also using online processing methods vice the chosen batch approach. This would 

allow processing of platial content in real-time as the data is streaming directly from the 

APIs. In particular, the more recent developments of Cheng et al., (2014) use of a biterm 
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topic model (BTM) to address the document level word co-occurrence pattern issues 

found in tweets. Their results show increased topic coherence over vanilla LDA by using 

global word co-occurrence patterns from an entire corpus of tweets vice dividing the 

corpus into smaller groups or documents that model terms locally. Additionally, they 

proposed online algorithms to store a small fraction of data on the fly for model update, 

which are much more efficient than the batch algorithm on large scale data set (Cheng et 

al., 2014) 

In addition to future work in extracting meaningful phrases from text is alternate or 

improved methods for thematic labeling. The proposed approach used Wikipedia and 

PMI with selected high-level categories. There exist a plethora of other ways to calculate 

semantic similarity to include network-based approaches (Li et al., 2015). For which, 

semantic similarity is calculated based on the network distance between two different 

concepts.  

The proposed approached performed a one-to-one mapping between bi-gram and 

high-level categories, which generalized the thematic clusters into a single class. 

Although this demonstrated the emergence of platial content, new research is needed to 

represent multiple themes simultaneous as seen from the co-occurrence results showing 

intersecting clusters that in some case could represent multiple activities within the 

context of a single event. In which case, spatio-temporal data mining approaches are 

needed to find frequent patterns that are difficult to visually synthesis given large 

volumes of highly linked data.  
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One obvious finding from this platial research is that combining locational, temporal, 

and textual context are paramount. However, there are sources of information that could 

provide context to improve the thematic labeling of platial clusters. One of those being 

location-based social networks, whereby the clustering of friends in network space could 

further validate or add confidence to observations the platial information. A future 

research endeavor could include the construction of an ensemble-based approach that 

combines observations from each dimension to boost the thematic classification results or 

perform soft voting. In either case, there exists a significant amount of research to be 

done on approaches to enhance the semantic meaning of platial content.  

The use of incremental spatial autocorrelation at varying distances was proposed 

to address changes in scale due to events and general unevenness of the spatial 

distribution of tweets. Future research is proposed to investigate the combination of 

incremental spatial autocorrelation, local scale-sensitive indicators, and temporal space-

time interactions tailored for crowd-contributed data. Westerholt et al., (2015) presented a 

modified scale-sensitive version of the Getis-Ord Gi* statistic to address the scale mixing 

of human activities found in crowd-sourced data.  

To address the difference in scales, the researchers modified the spatial weights 

matrix by including scale-adjusted neighborhoods using a distance interval [dmin, dmax], as 

opposed to a fixed neighborhood distance. This approach has the advantage of detecting 

spatial clusters of different sizes within a single data source like Twitter. However, their 

approach does not address the generation of distance intervals or account for varying time 

periods. 
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Lastly, Twitter and Wikipedia were the only crowd-contributed data sources 

investigated in this study. The demonstrated results from these sources are promising, but 

at the same time beg the question of whether similar findings would emerge in other data 

sources and other languages. Ultimately, platial information is formed through textual 

descriptions that explicitly or implicitly describe a location, which broadly encompasses 

many crowd derived data sources. Some of these data sources include Foursquare, Flickr, 

Yelp, and Facebook Places, and sources predominately not the English such as Sina-

Weibo from China and CKontakte (VK) from Russia to name a few. The use of 

knowledge base for determining semantic similarity between categories and phrases 

offers the added flexibility of being able to work with different languages. Although, a 

different language tokenizer would be necessary for using the topic modeling approach, 

however, must language tokenizer are freely available on the internet.  

Lastly, this research contributed an algorithmic technique for harvesting platial 

themes from social media and Wikipedia, which had not been previously explored 

together in the context of collective meanings of place. The goal of validating results at 

multiple scales using cross-source consensus was accomplished to discover the 

uniqueness of place at the neighborhood scale and lack of uniqueness at the city scale. 

The accomplishments presented in this work provide a foundation for future research to 

further investigate the dynamics of collective place meanings and the inherent dynamics.  
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