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Abstract

SOME PROPERTIES OF SIMPLICIAL GEOMETRIES

Cynthia S. Merrick, PhD

George Mason University, 2013

Dissertation Director: Dr.James Lawrence

Simplicial geometries, whose points are the collection of all k-element subsets of a given

(finite) ground set, were described in 1970 by Crapo and Rota [5]. So far, only geometries

for which k ≤ 2 and their duals have been well-studied. In this paper, I address many

general questions about simplicial geometries on n vertices, via matroid properties such as

the structure of circuits, minors and orientability. I describe the smallest largely unstudied

simplicial geometry, on a ground set of six vertices, with k = 3, which I call G6
3. A

construction of the only (up to symmetry) non-contractible basis is given, as well as a

complete characterization of all circuits that can be built using six or fewer vertices. I prove

that the matroid of G6
3 is ternary, and give two large deleted minors which are regular.

I also explore more than one method for finding topes of the associated arrangement of

hyperplanes, and describe a specific construction for a simplicial tope.



Chapter 1: Introduction

1.1 Definition of a Simplicial Geometry

In 1970 Henry Crapo and Gian-Carlo Rota [5] described a method for interpreting simplicial

complexes as combinatorial geometries. In what they call a simplicial geometry, “points”

of the geometry are k-element subsets of a given underlying point-set, for some fixed value

of k, satisfying a specifically defined notion of set-closure. We interpret the more abstract

k-set as the simplex on k vertices.

In general, a combinatorial geometry is the structure gotten by taking a closure operator

defined on subsets of a set V that satisfies the exchange property. The closure operator has

the property that, for any A ⊆ V , A is a subset of its own closure (denoted A), and if A is

a subset of the closure of any B ⊆ V , then A ⊆ B. The exchange property ensures that for

any points a, b ∈ V , and A ⊆ V , if a ∈ A ∪ b, and a /∈ A, then b ∈ A ∪ a.

To obtain the combinatorial geometry known as a simplicial geometry, we define a rank

function based on the Betti numbers of a given simplicial complex. (The n-th Betti number

for a simplicial complex is the number of Z summands of the n-th Homology group for the

complex.) For a fixed vertex set V of size n, and a fixed number k, we consider all k-subsets

of V . We obtain a simplicial complex by associating a k-subset with the simplex with k

vertices. Let Vk be the collection of all k-simplexes that are associated with k-subsets of

V . Then for some sub-collection A ⊆ Vk, define the simplicial complex associated to A

as S(A) = V0 ∪ · · · ∪ Vk−1 ∪ A. Building simplicial complexes in this way means most

Betti numbers are zero. The rank of A is the difference r(A) = |A| − βk−1(S(A)), where

βk−1(S(A)) is the (k − 1)-th Betti number of S(A). Since all simplexes with fewer than k
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vertices are included in a complex, every cycle of simplexes with less than or equal to (k−1)

vertices bounds a face in the complex of size one larger. This places all such cycles in the

kernel of the respective boundary map. A basic introduction to obtaining Betti numbers is

found in the text by Hatcher [7].

This type of simplicial geometry has been extensively studied when k = 2 (they are

trivial when k = 1). When k > 2, much remains to be done. In this paper, we use oriented

matroids to study cases where k ≥ 3.

1.2 Recent Related Work

Many of the results in this paper stem from the existence of an independent set which is

not contractible as a simplicial complex. When n = 6, this non-contractible set is a basis

of the geometry (and the matroid). I show that this basis, which I call a special basis is

a triangulation of the real projective plane. Such objects have been of interest in recent

research.

In 1983, Kalai [8] generalized Cayley’s formula, which counts the number of trees in the

complete graph, to a formula that counts spanning trees of k-simplicial complexes. Klivans,

et al, [9] add to Kalai’s generalization by giving a simplicial version of the classical Matrix

Tree Theorem. Kirchhoff developed this theorem to apply to graphs in general, from which

Cayley derived his formula for complete graphs. The results on general simplicial complexes

account for the possibility of torsion in spanning trees of simplexes for k ≥ 3.

Cordovil [3] and Lindström [11] both settled the question of simplicial matroids being, a

priori, non-regular and non-binary, with different proofs. Cordovil [2] also wrote a proof of

Reid’s 3-Simplicial Matroid Theorem. This theorem states that if a matroid is representable

over a field F , then it is a minor of a simplicial matroid which is also representable over F ,

for which k = 3.
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All the foregoing results give tools for counting or using some of the structure of simplicial

matroids (which are the matroids of simplicial geometries), but thus far the literature does

not contain much description of the combinatorial structure of these simplicial matroids

themselves. This paper serves that purpose. For k = 3, I classify circuits of ranks up to

and including rank 10, the rank of the smallest non-binary circuit. I clarify the non-regular

nature of the matroid of G6
3, by showing the special basis to be the source of all non-

binary circuits, the key to finding the excluded minor U2,4 (contained in every non-binary

matroid), and a means to finding some of the simplicial topes of the associated hyperplane

arrangement. Also, using the unique characteristics of the special basis, I give two ways to

delete small sets of elements to create regular minors of G6
3.

1.3 The Geometry Gn
k

Working from Crapo and Rota’s original ideas, we give this definition of Gnk :

Definition 1.3.1 (The Simplicial Geometry Gnk). Let V = {v1, ..., vn} be a ground set of n

vertices, and Vk be the set {ti} of k-simplexes associated with all k-tuples of V , for a fixed

k ≤ n. For any subset S ⊆ Vk, the closure cl(S) = S ∪ {ti|ti ∈ Vk, r(S ∪ ti) = r(S)}. Then

Gnk is the simplicial geometry on vertices V with point set Vk.

Comment on Notation: In many examples and results, we have a small number of

vertices in mind, so that for readability we name vertices more specifically by lowercase

letters of the alphabet. For example, G6
3 has vertices V = {a, b, c, d, e, f} and a point is

abc, with boundary edges ab, ac and bc. When we wish to refer to an arbitrary k-tuple, for

brevity we write ti (suggestive of the case when k = 3 and our elements are thought of as

triangles) instead of using tuple notation.

G6
3 is the smallest largely unstudied simplicial geometry. We visualize this as the sim-

plicial complex whose 1-skeleton is the complete graph, K6. Many combinatorial facts and
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known properties of simplexes come into play as we describe the structure of simplicial ge-

ometries. For example, any two distinct simplexes share at most one facet. For Gn3 , points

are associated with 3-subsets, where two different 3-sets have no more than two vertices

from the ground set in common. Viewing the 3-set as the simplex on three vertices, a trian-

gle, this is equivalent to the property for simplexes that any two distinct triangles share no

more than one edge. For any n there are
(
n
3

)
points in the geometry, so that G6

3 has twenty

points. Also, each point of Gn3 is in n− 3 tetrahedra, and, more generally, any k-simplex of

the simplicial geometry Gnk is in n− k (k + 1)-simplexes.

1.4 Matrix Representation of Gn
k

Through an arbitrary choice of orientation for each element of Gnk , we can derive a matrix

representation of the points. Let V Se be the vector space comprised of all linear combi-

nations of (k − 1)-simplexes. Then each point of Gnk , regarded as a k-simplex bounded by

(k − 1)-simplexes, is represented as a column vector in V Se, with non-zero entries in the

coordinates which form the boundary of the k-simplex. We motivate our formal definitions

with an example, where n = 6 and k = 3, to build a matrix representation.

Example 1. The edges of the graph K6 are a basis for V Se, and index the coordinates of a

vector. K6 has fifteen edges, so the vectors in our vector space have fifteen coordinates. The

points of our geometry are triangles. Each point as a vector has three non-zero coordinates

corresponding to the edges from K6 which bound the triangle. Since there are twenty

triangles in the triangle complex, the matrix of all triangles will have twenty columns.

Let {a, b, c, d, e, f} label the vertices of K6. By arbitrarily choosing the lexicographic

ordering on vertices, we get an implicit ordering on the edges, so that, for example, ab is

the edge directed from a to b, and we write +ab. For the edge directed the other way,
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we write −ab. From edge orientations, we can define orientation on the triangles. Let

σ : ti 7→ {+ti,−ti} be an assignment on each triangle in the graph. The orientation of the

triangle is directly related to the orientations of the edges on its boundary via the boundary

map. For example, when σ(abc) = +abc, δ : abc 7→ +ab−ac+ bc, and when σ(abc) = −abc,

δ : abc 7→ −ab + ac − bc. Then, we express abc as a vector for which each coordinate

represents an edge of the graph.

For the remainder of this paper, except when otherwise explicitly stated, we choose the

lexicographic ordering on the edges of Kn. When n = 6, we have the ordered set:

{ab, ac, ad, ae, af, bc, bd, be, bf, cd, ce, cf, de, df, ef}.

Below is a list of the twenty triangles, which we designate as positively oriented:

abc ace bcd bef
abd acf bce cde
abe ade bcf cdf
abf adf bde cef
acd aef bdf def

Listing each column by a lexicographic ordering of the triangles, Figure 1.1 gives the

matrix representation of G6
3.
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1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 0 −1 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 −1 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 −1 0 −1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 −1 0 −1 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1



Figure 1.1: Matrix Representation for G6
3
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This 15× 20 matrix has rank 10, and so has a 10× 20 row-reduced form which we shall

sometimes find more convenient to use.

Let V Se = {Σαiei|αi ∈ R} be the vector space of all linear combinations of (k − 1)-

simplexes ei of Gnk . By making an arbitrary choice of orientation for each (k − 1)-simplex,

we have a notion of +ei,−ei. The non-empty support of {αiei} consists of precisely the

(k − 1)-tuples that form the boundary of the k-simplex t.

Definition 1.4.1 (Matrix Representation of Gnk). Let Gnk be a simplicial geometry with

points all k-tuples. Then Gnk is the simplicial complex on n vertices of all k-simplexes having

boundary elements (k− 1)-simplexes, ei. Let V Se = {Σαiei|αi ∈ R} be the vector space of

all linear combinations of (k − 1)-tuples.

M = [xij ] is a matrix representation of Gnk whose rows are indexed by the (k − 1)-

simplexes ei, and whose columns are indexed by the k-simplexes ti.

A vector of V Se is a column of the matrix when it has non-zero support in the coor-

dinates that represent (k − 1)-simplexes on its boundary. The ith coordinate of a column

corresponds to the coefficient αi ∈ {±1} from the linear expression Σαiei. In this way we

see the direct correspondence between points of the geometry and columns of the matrix.

With the matrix M we also define a second vector space, V St = {Σαiti|αi ∈ R} over the

columns ofM . The column space ofM we think of as the collection of all linear combinations

of k-tuples, which we in turn have defined as linear combinations of (k − 1)-tuples.

The matrix representation serves as a vector space interpretation of the structure of our

simplicial geometry. This is evident when we compare the rank function r as defined for

subsets of points of Gnk to the algebraic notion of rank for a vector space. We defined the

rank of a set of points A to be r(A) = |A| −βk−1(A). In a vector space, the rank of a set of
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vectors is essentially the same: the size of the set minus the number of distinct (up to scalar

multiples) linear combinations that sum to the zero vector. Because our coordinates in the

vector space represent boundary elements, a linear sum equalling zero in the geometry will

have a corresponding linear sum equalling zero in columns of the matrix.

1.5 The Matroid of Gn
k

Furnished with a vector space associated with Gnk , we can interpret the geometry as a

matroid, making use of constructs like dependence relations, bases, and rank, to describe

the structure of our geometry.

Definition 1.5.1 (The Matroid M(Gnk) of a Simplicial Geometry). Let E denote the set

of columns of a matrix representation of Gnk , and let C ⊆ E be a set whose corresponding

columns are a minimal linearly dependent set. Then C, the collection of all such subsets C,

is the set of circuits of the matroid M(Gnk). The rank of the matroid is r(M(Gnk)) = r(Gnk).

We discuss matroid properties by way of collections of column vectors from the matrix.

Maximal linearly independent sets of columns from the matrix are bases of the matroid.

Minimal linearly dependent sets from the matrix are circuits of the matroid, and so forth.

From the literature [3], we have the result that for k ≤ 2, the geometries Gnk and Gnn−k

have binary matroids. That is, they are representable as matrices with entries in Z2. This

implies that G5
2 is binary, and so is G5

3. In Chapter 2, we give a number of theorems

regarding the fact that G6
3 is not binary, and thus, Gn3 , when n ≥ 6, by containing G6

3

as a minor, is not binary. We prove that G6
3 actually has a ternary matroid: uniquely

representable as a matrix with entries in Z3.

From Definition 1.4.1 and the above definition, we know that the rank function r for

our simplicial geometry gives the same values as the rank function defined on the matroid

of the geometry’s matrix representation.
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As defined in [5], the geometry Gnk has an associated dual geometry, Gnn−k, a geometry

on the same ground set, for which the points are the set-complements of the k-sets in Gnk .

The dual geometry is defined by a dual rank function, r∗G.

Definition 1.5.2 (Nullity). The nullity of a set of points of Gnk is defined, for A ⊆ Vk, as

n(A) = |A| − r(A), the difference between the size of the set and its rank.

Definition 1.5.3 (Dual Rank Function (Geometry)). We define a new rank function r∗G

on the sets of points of Gnk . For a set A of points, and Vk the collection of all points of Gnk ,

the dual rank function is r∗G(A) = n(Vk)− n(Vk \A).

Crapo and Rota in [5] prove that not only is r∗G a rank function of a simplicial geometry,

but in particular that the result of applying r∗G to the points of Gnk is a geometry isomorphic

to Gnn−k.

Definition 1.5.4 (Dual Rank Function (Matroid)). In matroid theory, a dual rank function

of a matroid M with set of elements E is defined on a set A ⊆ E this way:

r∗M (A) = r(E \ A) + |A| − r(E), where r is the familiar rank function (the same for

geometry, matrix and matroid).

Theorem 1.5.5. Gnk and Gnn−k have dual matroids and dual oriented matroids.

Proof. We show that the dual rank function r∗M for matroid, when applied to M(Gnk), yields

the matroid M(Gnn−k). As before, let Vk denote the set of points of Gnk , and A ⊆ Vk. We

can rewrite the definition of r∗G equivalently like this:

r∗G(A) = n(Vk)− n(Vk \A)

= |S| − r(Vk)− |Vk \A|+ r(Vk \A)

= |A| − r(Vk) + r(Vk \A).

By construction, the points of Vk are in bijective correspondence with columns of the

matrix representation, and therefore with the set E of elements of the matroid M(Gnk). Let
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φ : Vk 7→ E map a point of Gnk to its corresponding matroid element. Via the equality

shown above, we see that r∗G(A) = r∗M (φ(A)). Thus, the rank of a set of points of Gnn−k

is the same as the rank of a set of elements of M(Gnn−k), making the matroids of Gnk and

Gnn−k dual. Because rank is preserved by passing from matroid to oriented matroid, we

have M(Gnk) and M(Gnn−k) are dual oriented matroids.

Continuing with our example of G6
3, it is evident from the matrix in Figure 1.1 that

subsets of two or three columns are all linearly independent, but several subsets of four

columns have minimal dependence relations. When we view the members of such a 4-set as

triangles in the complex in K6, they can be seen to form the closed surface of a tetrahedron.

We can represent this dependence as a linear combination of column vectors that sum to

zero with the appropriate non-zero coefficients. We interpret this linear algebraic operation

in the geometry via the topological boundary map. When all edges “cancel,” this corre-

sponds to a linear expression summing to zero. Suppose we take the columns corresponding

to triangles abc, abd, acd and bcd. We show how to express the fact that these elements all

form a circuit of the matroid, using a linear expression:

δ(abc)− δ(abd) + δ(acd)− δ(bcd)

= +ab− ac+ bc− ab+ ad− bd+ ac− ad+ cd− bc+ bd− cd

= ~0

All elements have non-zero coefficients, and all boundary elements cancel after applying

the boundary map.

If we wrote our original expression this way:

δ(abc)− δ(abd) + δ(acd) = δ(bcd)

11



+ab− ac+ bc− ab+ ad− bd+ ac− ad+ cd = +bc− bd+ cd

then we would have a linear expression for one element, bcd, in terms of three others.

When we have a set of vectors that form a basis for the matroid, then every element of the

matroid is either in the basis, or expressible as a minimal linear combination of elements

from the basis.

Theorem 1.5.6. All elements sharing a particular vertex in common form a basis of the

matroid of Gnk .

Proof. LetBa be the set of all points ofGnk containing vertex a. In the matrix representation,

because the columns are indexed by k-simplexes and the rows are indexed by (k − 1)-

simplexes, the column vector for each member of Ba contains a non-zero entry in some

coordinate for which every other vector in the set is zero (this corresponds to the unshared

edge from each triangle in Gn3 ), making the set linearly independent. From Crapo and Rota

[5], we know that the rank of the matrix must be be
(
n−1
k−1
)
. Not coincidentally, this is the

number of elements containing any one vertex. More generally, any set of elements of Gnk

containing a vertex in common is an independent set.

1.6 The Oriented Matroid M(Gn
k)

The matrix representation also gives rise to an oriented matroid, by considering all columns

of the matrix, as well as their negations. That is, elements of the oriented matroid are gotten

from the set of all elements with both possible orientations. From [1], we know that every

oriented matroid realizable as a matrix over R is also representable as an arrangement of

hyperplanes. The arrangement is gotten by taking the collection of hyperplanes orthogonal

to each column of the matrix. Formally, we now regard the matrix representation of Gnk as

a real-valued matrix over R(n−1
k−1).

Definition 1.6.1 (Hyperplane Arrangement of a Realizable Matroid). A = {Hi|1 ≤ i ≤
(
n
k

)
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} is the arrangement of hyperplanes associated with M(Gnk), where Hi = {x ∈ R(n−1
k−1)|x·ci =

0}, and ci is the ith column of the matrix representation of Gnk . Hi is the hyperplane

orthogonal to the ith column of M , and is uniquely associated with the element ti of the

underlying (unoriented) matroid M(G6
3). Then H+

i = {x · ci > 0} is the positive side of

Hi, associated with the positively oriented element +ti in the oriented matroid M(Gnk), and

H−i = {x · ci < 0} is the negative side of Hi, associated with −ti ∈M(Gnk).

Note that
⋂
Hi =

−→
0 , and that A decomposes R(n−1

k−1) into open cells. We have a bijective

correspondence between H+
i → +ti and H−i → −ti. A point x in one of the full-dimensional

cells can be said to be on one side or the other of every hyperplane in the arrangement.

We can represent the location of x with an ordered listing of + or − for each hyperplane,

to denote which side the point x is on. In fact, such an ordered list of signs would be the

same for every point on the interior of the cell. We find these sign vectors, which have
(
n
k

)
coordinates (one for every hyperplane), are a unique description of the full-dimensional cells

of the arrangement. From [1], we know these sign vectors correspond to maximal covectors

of the oriented matroid, and are called topes. Topes are particularly noteworthy in our

research, as they designate the choices of element orientations that yield acyclic oriented

matroids.

Definition 1.6.2 (Tope). X = 〈x1, ..., x(nk)
〉, with xi ∈ {+,−}, is a tope of M(Gnk) if there

is an open full-dimensional cell of A so that a point in the interior of that cell is in H+
i if

xi = + and in H−i if xi = −.

Definition 1.6.3 (Acyclic Orientation). An oriented matroid has an acyclic orientation

when the given orientation of each element is such that no circuits can be written as linear

expressions summing to zero without negative coefficients (we say “there are no positive

circuits”).
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For a given acyclic orientation, often we can find some subset S of the signed elements so

that each element not in S “must” have a specific sign lest it upset our acyclic orientation.

In other words, the subset S has, in a sense, “enough” oriented elements to give us only

one way to orient the rest for an acyclic matroid. A minimal such set corresponds to the

set of hyperplanes that form the facets of the cell associated with that particular tope as a

signing of the elements.

When the elements of S are columns of the matrix representation of M(Gnk), we call the

basis a simplicial basis. We often blur the distinction between the tope as a sign vector and

the open cell which it represents, and speak of the cell itself as a tope.

Definition 1.6.4 (Simplicial Tope and Simplicial Basis). In Rd, a subset of an arrangement

A of hyperplanes consisting of d hyperplanes that forms the set of facets of a full-dimensional

cell is a simplicial tope. These d-many hyperplanes correspond to a set of vectors orthogonal

to them which form a basis for Rd, which we call a simplicial basis.

We can get a perspective of the matroid of Gnk as a convex polytope. A zonotope is the

convex polytope that results from taking a Minkowski sum of segments.

Definition 1.6.5 (Zonotope). Let {[−ti, ti]|1 ≤ i ≤ p}, p ∈ N be a set of intervals in

through the origin in Rd. A zonotope Z is defined to be

Z = Σp
i=1[−ti, ti],

a Minkowski sum of all points of every interval [−ti, ti].

We write [−ti,+ti] to denote intervals using the columns of our matrix M . Using the

zonotope definition above we obtain a special polytope associated with Gnk . According to

[1], the simplicial topes of the arrangement correspond to simple vertices of this zonotope.
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1.7 Circuits

In a matroid, a circuit is a minimal dependent set (the removal of any element leaves an

independent set), so the rank of a circuit is always one less than the number of elements it

contains. In our example of G6
3, it is possible upon inspection of the matrix representation

in Figure 1.1 to observe that the smallest dependent set of columns contains four elements.

The simplicial interpretation of this fact has a nice picture.

Because a triangle can share at most one edge with any other, a set of three triangles,

however arranged, cannot form a relation for which all edges will cancel. There must be an

edge on each triangle which is not shared with either of the other two.

Once again consider the elements abc, abd, acd and bcd. In the equations

δ(abc)−δ(abd)+δ(acd) = δ(bcd)⇔ +ab−ac+bc−ab+ad−bc+ac−ad+cd = +bc−bd+cd,

we observe that after applying the boundary map, the left-hand side of each equation shows

that the three elements sharing vertex a contain three uncanceled edges among them. These

are precisely the edges that form bcd. These four triangles can be arranged as the facets

of a tetrahedron, forming a closed surface in R3; many circuits of M(Gn3 ) form such nice

closed surfaces when viewed as simplicial complexes. The more interesting circuits do not.

For any basis of M(G6
3), any element not in the basis is expressible as a linear combina-

tion of the basis elements. Alternatively, we can say that any element is in some circuit all

of whose elements except one are in the basis. The set of circuits, each of which contains one

unique non-basis element, associated with a particular basis are known as the fundamental

circuits of that basis.

Recall the basis Ba, the set of all elements with vertex a in common. What are the

fundamental circuits associated with this basis? Any element not in Ba can be thought of

as the “base” of a tetrahedron with apex vertex a. This means that each such element has

a linear expression in terms of three members of Ba, similar to the example above. The
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fundamental circuits of M(Gn3 ) associated with the basis Ba are all the tetrahedra, or rank

3 circuits, which contain the vertex a.

Definition 1.7.1 (Binary Circuit). A circuit is binary when we can obtain a zero-boundary

expression by an appropriate choice of orientation of each element alone. That is, the unique

linear combination equal to the zero vector can be written with coefficients all in {±1}.

Once we consider large enough sets of minimal dependences, a curious object appears.

It is possible to find a set of eleven elements of M(Gn3 ) which form a circuit that is not

binary. For example,

{abc, abd, abe, acd, acf, aef, bce, bcf, bdf, cde, def}

is such a set. Any linear combination of this set that sums to the zero vector requires

that one element (in this example, the triangle abc), have a coefficient other than ±1.

We demonstrate:

δ(−2abc+ abd+ abe− acd− acf + aef + bce+ bcf − bdf + cde− def)

= −2ab+ 2ac− 2bc+ ab− ad+ bd+ ab− ae+ be− ac+ ad− cd− ac+ af − cf + ae

−af + ef + bc− be+ ce+ bc− bf + cf − bd+ bf − df + cd− ce+ de− de+ df − ef

= ~0

An inspection of this sum reveals that in the triangle complex, the boundary edges

of abc appear three times among the circuit’s elements, and we therefore must insert an

“extra” copy of these three edges in order for there to be the same number of positively as

negatively oriented boundary edges. A non-binary circuit is one for which orientations of

elements alone cannot give us zero on the boundary. Lemmas 2.3.17, 2.3.19, and 2.3.20 in
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Chapter 2 prove that circuits like the one just demonstrated have no orientation-only linear

combination giving a zero-sum of edges.
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Chapter 2: Matroid Properties

2.1 Connectedness of M(Gn
3)

Connectedness in a matroid is a generalization of the notion of connectedness in graphs.

Definition 2.1.1 (p-Separation). Let M be a matroid, with elements E. Let X ⊆ E(M),

Y = E \X and r denote the rank function of M . Then (X,Y ) is a p-separation of M if the

following conditions are satisfied:

min{|X|, |Y |} ≥ p

r(X) + r(Y )− r(M) ≤ p− 1

Definition 2.1.2 (p-Connected). We say a matroid M is p-connected if p is the least integer

for which M can be p-separated.

Theorem 2.1.3. M(Gn3 ) is 4-connected, for n ≥ 6.

Let n ≥ 6. The proof is by a series of Lemmas.

Lemma 2.1.4. For any subset S ⊂ E, with |S| = 3, we have rank r(E \ S) = r(E), the

rank of the matroid M(Gn3 ).

Proof. Let S = {ti, tj , tk} be an arbitrary set of three elements from E. S is a linearly

independent set: since two distinct triangles can share at most one edge, any complex of

three triangles will have each member sharing at most two of its edges. In the matrix

representation, this is a set of columns for which each column has one non-zero coordinate

where all the other columns in the set have zeroes.
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Let us extend our linearly independent set S to a basis BS of the matroid, denoting

BS = {ti, tj , tk, b1, ..., br−3}.

With n ≥ 6, every element of S is in at least three distinct rank 3 circuits. Each of

these circuits contains some element not in the basis BS .

Let one circuit containing ti be Ci = {ti, s1, tm, tn}, where s1 is not in BS . We can

express s1 = ±ti±tm±tn, where tm and tn are other elements of the matroid, to demonstrate

that s1 is not independent of a set containing ti.

There are three rank 3 circuits also containing tj , and each of those has at least one

element not in BS . So we can pick one non-basis element from among these which is distinct

from s1. Name this element s2, and write s2 = ±tj ± tp ± tq.

Likewise, tk is in three rank 3 circuits, so that we can choose s3 distinct from s1 and s2

to be an element not in BS , and expressible as s3 = ±tk ± tr ± ts, not independent of a set

containing tk.

Now we have a new set S′ = {s1, s2, s3} of distinct elements, not from BS , and each

of which is in a distinct dependence relation with ti, tj and tk, respectively. So we can

replace ti, tj and tk in BS and have B′S = {s1, s2, s3, b1, ..., br−3}, a basis for the matroid

not containing any elements of S. We conclude that E \ S has rank r(E).

Lemma 2.1.5. M(Gn3 ) has no 1-, 2- or 3-separation.

Proof. It has been previously established that for every ti ∈ E, r(ti) = 1, and that pairwise,

r(ti, tj) = 2. Because any ti or any pair of elements ti, tj can be thought of as contained in

some set of size 3, we use the previous lemma to observe that if any 3-set {ti, tj , tk} satisfies

r(E \{ti, tj , tk}) = r(E), then r(E \{ti, tj}) ≥ r(E), and likewise for r(E \ti). Let us denote

r(E) = r(M(Gn3 )) = r.

Then, if X = ti, and Y = E \ ti, we have:
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r(X) + r(Y )− r(M(Gn3 )) = 1 + r − r = 1 � 0,

showing that M(Gn3 ) has no 1-separation (we also say M(Gn3 ) is “connected”).

If X = {ti, tj}, and Y = E \ {ti, tj}, then

r(X) + r(Y )− r(M(Gn3 )) = 2 + r − r = 2 � 1,

so Gn3 has no 2-separation.

If X = {ti, tj , tk}, from Lemma 2, we know that r(E \X) = r, and

r(X) + r(Y )− r(Gn3 ) = 3 + r − r = 3 � 3− 1 = 2,

so M(Gn3 ) has no 3-separation.

Lemma 2.1.6. M(Gn3 ) has a 4-separation.

Proof. Let a set X = {ti, tj , tk, tm} be chosen so that X forms a rank 3 circuit of the

matroid.

In the geometry, viewed as the triangle complex on Kn, we can see that such a rank 3

circuit, which forms the surface of a tetrahedron, contains exactly four of the vertices from

the ground set. Thus, for any n > 4, there is a vertex v not contained in any elements

from X. We recall from the Introduction that all elements on this vertex v form a basis for
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the matroid, and it is clear that they are all in the complement of the set X. So the set

Y = E \X has rank r.

So we have:

r(X) + r(Y )− r(M(Gn3 )) = 3 + r − r = 3 ≤ 4− 1 = 3,

showing X to be a 4-separation of M(Gn3 ).

Proof. (of Theorem 2.1.3)

We conclude that the matroid of Gn3 is 4-connected for n ≥ 6.

2.2 When M(Gn
3) Is Not Regular

Definition 2.2.1 (Regular Matroid). A matroid is regular if it can be represented with a

totally unimodular matrix.

Definition 2.2.2 (Binary Matroid). A matroid is binary if it can be represented by a

matrix with coefficients in GF (2).

Theorem 2.2.3. For n ≥ 6, M(Gn3 ) is not regular.

Proof. It is known that the class of regular matroids is properly contained in the class of

binary matroids. We show that M(Gn3 ) is not binary, and thus cannot be regular. Let

C1 be a rank 10 circuit. In Theorem 2.3.12 we establish the existence of such a circuit by

constructing one. In Lemmas 2.3.19 and 2.3.20 we prove that C1 contains a type of basis

B that forms a rank 10 circuit with every other element of E \B.

Let t1 be the point B\C1. Choose another element t2, with t2 /∈ C1, and let C2 = B∪t2.
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A property equivalent with being binary (see [12]) is that the symmetric difference of any

two circuits contains a circuit. Clearly this is not the case here, since C14C2 = {t1, t2}, and

all circuits of M(G6
3) contain four or more elements. It follows that M(G6

3) is not binary,

so we conclude that M(G6
3) is not regular. Furthermore, M(G6

3) is a minor of M(Gn3 ) for

every n ≥ 6, so that no matroid containing M(G6
3) is binary and hence not regular.

Definition 2.2.4 (Uniform Matroid). Let E be a set with n elements. Let B be the

collection of all m-element subsets of E, for m ≤ n. Then B is the set of bases on a uniform

matroid denoted Um,n.

It is known (see [12]) that the uniform matroid U2,4 is an excluded minor of any binary

matroid. We show that M(G6
3) contains U2,4 as a minor, and thus so does M(Gn3 ) for every

n ≥ 6.

Let N0 ⊂ M be a minor by deletion: E(N0) = B ∪ {t1, t2}. Since B is a basis, it has

rank 10, so that N0 has rank 10, and therefore ranks of sets in N0 are the same as they are

in M .

Any rank 2 set containing both t1 and t2 cannot contain more than two elements from

B, so we know there are b1, ..., b8 ∈ B which are not in the closure (t1 ∪ t2). Contract N0

by these eight elements of B, so that E(N1) = E(N0) \ {b1, ..., b8}. Four points remain in

this contraction: t1, t2, b9, b10. Let rN1 denote the rank function for the minor N1, and r

the rank function for N0. We have:

rN1(t1, t2, b9, b10) = r(t1, t2, b9, b10, b1, ..., b8)− r(b1, ..., b8)

= 10− 8

= 2.
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By construction, each of t1, t2, b9, b10 is pairwise independent of each of b1, ..., b8, so that:

rN1(t1) = r(t1, b1, ..., b8)− r(b1, ..., b8) = 1,

and likewise for each of t2, b9, b10.

Since C1 = B ∪ {t1} is a minimal dependence in N0, then C1 \ {b1, ..., b8} = {t1, b9, b10}

is a circuit in N1, and likewise for C2 \ {b1, ..., b8} = {t2, b9, b10}. It remains to show that

the sets {t1, t2, b9} and {t1, t2, b10} are also minimal dependences of N1.

Recall that in M(G6
3), the set {t1, t2} doesn’t contain a circuit, so that its rank in

M(G6
3) (and in N0) is 2. Also recall that none of {b1, ..., b8} is in the closure (t1 ∪ t2), so

r(t1, t2, b1, ..., b8) = 10. Then,

rN1(t1, t2) = r(t1, t2, b1, ..., b8)− r(b1, ..., b8)

= 10− 8

= 2.

Thus, any set subset of E(N1) containing both t1 and t2 has rank 2.

We have shown that every three elements of E(N1) form a circuit, implying that every

pair of elements is an independent set in N1. These properties describe N1 as the matroid

U2,4. Since N0 is a minor of M(G6
3), and N1 is a minor of N0, so that this instance of U2,4

is a minor of M(G6
3).

It is important to note that demonstrating the existence of U2,4 within M(G6
3) requires

the existence of what we term a non-binary circuit. In the construction, we begin with a

particular type of basis, B, with the property that B∪ t1 and B∪ t2 are minimal dependent

sets. If we had used a basis without this property, then there would be no way to contract

down to four elements and find that every three are minimal dependent sets. This type of

basis, which has non-binary circuits as its associated fundamental circuits, is the special
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impediment in M(G6
3) to the property of being regular. This is discussed in detail in the

following section.

2.3 Some Large Regular Minors M(G6
3)

In order to give some regular minors, we must first consider the size and construction of the

only type of circuit which fails to satisfy a necessary and sufficient condition for a matroid

to be binary, as set forth by Tuma in [14]:

“C is a cycle if and only if any (k − 1)-subset of [the vertex set] is contained in

an even number of k-sets of C. The set C of minimum non-empty cycles is the

set of [circuits] of [a] binary simplicial matroid.”

Definition 2.3.1 (Tuma’s Edge-evenness Condition). The matroid of G6
3 satifies Tuma’s

Edge-evenness Condition if every edge contained in a circuit is in the circuit an even number

of times.

Here, our vertex set is V = {a, b, c, d, e, f}, and k = 3, so that for a binary matroid, each

pair of vertices (which we think of as an edge) found in the circuit must be contained in

an even number of elements (or triangles) of the circuit. When this condition fails for some

circuit, we say the circuit is non-binary. Hence, so is the matroid. We show, by a series

of lemmas, that if there are any edges in a circuit an odd number of times, then there are

exactly three such edges, and that there is only one type of non-binary circuit in M(G6
3).

For C a circuit, every edge of C is in at least twice. Since the matroid contains only four

elements with any edge in common, we take “odd” to mean “three.”

Theorem 2.3.2. Let C be a circuit of M(G6
3). If C contains some edge an odd number of

times, then it contains exactly three such odd edges.

24



Proof. (Sketch) The proof goes as follows. We assume C has some number of odd edges,

so that it is non-binary. In the unique linear dependency for C, some triangles will have

even coefficients, some will have odd coefficients. An edge that is in C an odd number of

times must be in both types of triangles: one with an even coefficient (such as -2), and two

with odd coefficients (such as +1). The set of odd edges in C forms a closed perimeter

around the collection of even-coefficient triangles, and we use this perimeter, named L, to

determine what kind of set we must have among the odd coefficients in order to have two

odd-coefficient triangles on each edge of L, whilst somehow in the end forming a circuit.

Since L is limited by the fact that we have only six vertices to work with, we show that L

cannot have four, five, or six edges, and if it has any at all, it must have exactly three.

Lemma 2.3.3. Let C be a circuit of M(G6
3) containing at least one edge an odd number

of times. The unique linear dependency for C contains a term with an even coefficient.

Proof. Let the three elements of C containing the odd edge be t1, t2 and t3. Up to scalar

multiples, there is a unique linear expression for C. Let the coefficients associated with

t1, t2 and t3 in the expression be α, β and γ, respectively. Since the linear expression sums

to zero under the boundary map, it must be that α + β + γ = 0. The sum of two odd

numbers is even, so either all three coefficients are even, or without loss of generality, we

can say α and β are odd, and γ is even.

Let X be the set of elements in C that have even coefficient ±γ in the linear dependency.

Consider the partial sum of edges of X under the boundary map. It is non-zero (C cannot

properly contain a circuit). Let L be the set of remainder edges from X. All edges of X

which are not in L are in an even number of triangles of X. This is evident from the fact

that they are not in the remainder set L - that is, they canceled out in the partial sum of

edges from X. So it must be that |L| ≥ 3.

We take the simplicial complex of triangles of X to be one edge-connected component,
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with every element sharing one or more edge with another, so that L forms the perimeter

of the complex, and is a closed loop in the graph of edges of X. If X had more than one

edge-disjoint component, because G6
3 has only six vertices, at least one component would

be all three edges of some triangle of X. In such a case, Lemma 2.3.14 establishes the only

way for a circuit to contain all three edges of a triangle, and these are the only odd edges

of C.

The set C \X is the collection of all triangles with coefficients α or β. In case α 6= β,

C \ X must contain one triangle with the coefficient α and one with the coefficient β for

each edge of L, in order to obtain zero in the boundary sum for C. In case α = β, we

simply require C \X to have two triangles containing each edge of L. Evidently, L consists

of the set of odd edges of C. X contains one copy of each of the edges of L, all with even

coefficients, and C \X contains two of copies each edge of L having odd coefficients.

Lemma 2.3.4. α = β

Proof. Suppose α 6= β. Let A be the set of triangles in C \X having coefficient α. Since

A is disjoint from X, any edge in A that is not in L is in an even number of triangles of

A. Consider the set X ∪ A. By construction, every edge is in this set an even number of

times. By Tuma’s edge-evenness property, X ∪A is a circuit of M(G6
3). But C is a circuit,

and does not properly contain a circuit, so A = C \X, and α = β.

Lemma 2.3.5. α = β = 1, and γ = −2.

Proof. Necessarily, α+ β + γ = 0, and γ is even. The linear expression for C is unique up

to scalar multiples, so we conlcude that the most reduced integer form for the expression

has coefficients all in {±1,±2}.

Lemma 2.3.6. (Triangulation Lemma) C \X does not properly contain a set of triangles

that form a triangulation of the polygon formed by L.
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Figure 2.1: Four Odd Edges

Proof. Let T ⊆ C \X be a set of triangles that triangulate the polygon with perimeter L.

The edges of T ∪X are each in an even number of triangles. Then, by the previously quoted

Tuma’s edge-evenness property, T ∪X is a circuit. C cannot properly contain a circuit, so

C \X does not contain a triangulation of L.

Lemma 2.3.7. C cannot contain four odd edges.

Proof. Suppose |L| = 4. Then X must contain a minimum of two triangles. We show

that even with this minimal requirement for X, a construction of C \X requires too many

triangles. Recall that the rank of the matroid M(G6
3) is ten, so that the largest possible

circuit can have no more than eleven elements.

Suppose X = {abc, acd}. These two triangles share edge ac, so L consists of edges

ab, bc, cd and ad. Refer to Figure 2.1. Since X is the set of triangles with even coefficients,

the edges of L must appear in C \X twice each. Here is a listing of our possible choices for

each edge of L:

ab : abd, abe, abf

bc : bcd, bce, bcf

cd : bcd, cde, cdf

ad : abd, ade, adf .

We need to choose two for each edge of L, and in particular we cannot choose both

of abd and bcd. These violate the Triangulation Lemma (Lemma 2.3.6), and combined
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with X would give us the four elements of a rank 3 circuit, and C cannot properly contain

another circuit. On the other hand, if we choose for each edge only the pair containing

vertices e and f , we find that C contains the rank 5 circuits {abc, acd, abf, bcf, cdf, adf}

and {abc, acd, abe, bce, cde, ade}. So we must have one of abd or bcd in C \ X. We can

without loss of generality suppose that C \X contains abd and not bcd. A symmetric result

happens when we choose bcd and not abd.

Then our choices for edges bc and cd are determined for us - we need two triangles for

each, and can’t choose bcd. Having chosen abd, which contains both ab and ad, we need to

make one more triangle choice for each of these edges. Note that if we choose abe, we must

have adf , or choosing abf means we must have ade, in order to avoid including the rank 5

circuits previously mentioned. Again, we get symmetric results from either choice.

Thus far, we have the following seven triangles in C\X: {abd, abe, bce, bcf, cde, cdf, adf}.

Each edge of L is now in the set twice, but we have some unpaired edges which must be in

C \X twice to complete C. These edges are ae, bd, af, be and de. On the other hand, we

can only include two more triangles in our set, based on our size constraint for C (X has

two elements, so C \X can contain at most nine). No three of our remaining edges are in

any one triangle together, so that we would need at least three new triangles to pair them

all.

We conclude that it is not possible to have a circuit with four odd edges.

Lemma 2.3.8. C cannot contain five odd edges.

Proof. Suppose |L| = 5. Then X must contain at least three triangles. Up to a permutation

of vertices, there is only one configuration of three triangles that gives a perimeter of five

edges.

Let X = {abe, bcd, bde}. By our maximum circuit size constraint, C \X must contain no

more than eight triangles. But to have each of five edges in two triangles of C \X implies
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Figure 2.2: Five Odd Edges

ten triangles, so we must have two triangles of C \X containing two edges of L. Since X

and C \X are disjoint, there are three such possibilities: abc, cde and ade.

Here is our list of choices for each edge of L:

ab : abc, abd, abf

bc : abc, bce, bcf

cd : acd, cde, cdf

de : ade, cde, def

ae : ace, ade, aef .

If we use all three of abc, cde and ade, observe that the Triangulation Lemma implies

that we must exclude acd and ace from C \X so as not to include the set {abc, ade, acd}

or the set {abc, ace, cde}, both triangulations of L.

Case 1: The choice of all three of abc, cde and ade gives us our choice of two triangles

on edge de, and one on each of the other edges L. However, excluding acd forces us to

include cdf as the second triangle on edge cd, and excluding ace forces the choice of aef on

edge ae. We must choose one more triangle for edge ab, and one more for edge bc. So far,

C \X contains the five elements abc, cde, ade, cdf and aef . We must use only three triangles

to pair edges ab, bc, cf, df, af and ef , which are all in C \X once so far. Each triangle we

choose must contain two of these edges (there are none that contain three). Our choices for

ab and bc would be abf and bcf . But def is the only choice for the remaining two edges -

giving us a copy of edge de in C \X. This edge would not be zero in the boundary sum for
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C.

We conclude from this case that we cannot include all three of abc, cde and ade in C \X.

Case 2: We consider the choice of triangle abc with either cde or ade and not both.

Recall that including abc and cde meant we must exclude ace from C \ X. When we do

this, we find that there are only two remaining choices for edge ae: ade and aef . In other

words, choosing cde means we must have ade anyway, and we have Case 1 again. Similarly,

when we choose abc and ade, we exclude acd, so that we are forced to choose cde and cdf

for edge cd. We see that triangle abc must be the bad choice.

Case 3: Suppose we choose ade and cde to be in C \X. From the first two cases, we

learned that abc must be excluded. Then for edge ab, we must have abd and abf , and for

edge bc we must have bce and bcf . Now C \X contains six triangles, and we can only have

eight total in this set. The unpaired edges so far are ae, cd, af, cf and be. No three are in

a triangle together, so we still cannot construct C \X with eight or fewer triangles.

Now suppose we still have |L| = 5, but |X| > 3. The size of X cannot be four - all edges

must be paired in X, except for the five in L. X would have 4 · 3 = 12 edges, with 7 of

them required to be paired in X. In general, for |L| = 5, |X| must be odd.

If |X| = 5, we would be required to build C \X with at most six triangles. This means

that four triangles must have two edges of L in them. Here are the five possible triangles

from which we must pick four: abc, bcd, cde, ade and abe. Suppose we choose the first four.

Then there will be four edges in the set once so far: ac, bd, ce and ad, and we still need

second triangles for edges ab and ae in L. Only one pair of triangles can pair all of these

edges - any other choice would require three or more triangles. This pair is ace and abd.

But including these means that C \X contains {abc, ace, cde}, a triangulation of L.

Clearly, for any odd number larger than 5, X is too big for us to find enough triangles

for C \X.

We conclude that a circuit C of M(G6
3) cannot contain five odd edges.
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Figure 2.3: Six Odd Edges

Lemma 2.3.9. C cannot contain six odd edges.

Proof. Suppose |L| = 6. Then X must contain at least four triangles, so C \X contains at

most seven triangles, implying that at least five triangles of C \X contain two edges of L.

Suppose |X| = 4. Then as a simplicial complex, X has 4 · 3 = 12 edges, six of which

are on L, and the others all paired. Then at least two triangles in X have two edges in L.

Since there are only six total triangles that contain two edges of L, we do not have five of

them available to construct C \X.

If |X| > 4, even if we had all six triangles having two edges in L to build C \X with, we

are constrained by the size of C, which has at most eleven triangles, that the other edges

of these six triangles cannot be paired.

We conclude that C cannot have six odd edges.

We have shown that C cannot contain four, five or six odd edges. If we consider |L| > 6,

we find that, having used all six vertices, L is no longer a simple loop. This case is subsumed

by the foregoing cases, since L is now composed of two or more loops of sizes three, four,

five or six.

We conclude that C contains exactly three odd edges.

Lemma 2.3.10. If L contains exactly three edges, then C \X is the special basis described

in Definition 2.3.18.
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Proof. C \X contains two copies of each of three edges that form a closed loop. Then there

is some triangle t whose edges are the edges of L. By construction, (C \ X) ∪ t forms a

circuit for which all edges of t are in three times. This is the circuit described in subsequent

Lemma 2.3.14 and Theorem 2.3.12.

Lemma 2.3.11. If C \X is a special basis, then |X| = 1.

Proof. C \X contains ten triangles and is a linearly independent set. C contains at most

eleven elements, so |X| = 1.

Now we show that a non-binary circuit exists.

Theorem 2.3.12. The matroid M(G6
3) contains a non-binary circuit.

The proof is by a series of lemmas.

Lemma 2.3.13. If a circuit C contains exactly one element whose edges are all in the set

an odd number of times, then C has an odd number of elements.

Proof. Let C be a circuit with m elements. Then there are 3m boundary edges in the set.

There are 3(m−1) edges in the set an even number of times. Then 2|3(m−1), so 2|(m−1).

Thus, m− 1 + 1 = m is odd.

Lemma 2.3.14. If a circuit C contains an element whose edges are all in the set an odd

number of times, then C must contain at least ten elements.

Proof. Let T be the element whose edges are in the circuit three times, and let its vertices

be {a, b, c}. Since our elements are triangles, and any two triangles share at most one edge,

we only have three copies of T ’s edges in the circuit if two new elements of C are appended

to each edge of T .

Let these six new elements be {t1, ..., t6}, where t1 and t2 share edge ab with T ; t3 and

t4 share edge bc with T ; and t5 and t6 share edge ac with T . Figure 2.4 depicts such a

construction.
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Figure 2.4: Edges in a Circuit An Odd Number of Times

Observe that with only six vertices, the set {t1, ..., t6} will not all be edge-disjoint. The

element T uses three vertices; t1 and t2 have two of the other three vertices at their apexes,

say d and e. Elements t3 and t4 must use the sixth vertex, f .

To show why, suppose we “reuse” vertices d and e to form t3 and t4. Then,

T = abc

t1 = abd

t2 = abe

t3 = bcd

t4 = bce

Now we must form t5 and t6 using edge ac. At least one of these two elements must use d

or e as well, so that t5 or t6 is acd or ace. But the elements {T = abc, t1 = abd, t3 = bcd, acd}

form a rank 3 circuit, abcd. And T = abc, t2 = abe, t4 = bce, ace comprise the rank 3

circuit abce. Since circuits cannot properly contain other circuits, such an arrangement is

impossible.

We avoid this problem if when forming t1 and t2 with vertices d and e, then for edge bc

we form t3 and t4 with vertices e and f , then for edge ac we form t5 and t6 with vertices d

and f , we have:
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T = abc

t1 = abd

t2 = abe

t3 = bce

t4 = bcf

t5 = acd

t6 = acf

and find we still have an independent set. Such an assignation is unique up to a per-

mutation of our arbitrary labeling. The property that no two edges of T can have new

elements using only five of the six vertices among them is necessary.

It also means that each ti shares only one of its edges with another tj but not the other.

In all, six edges still appear in our partially constructed circuit only one time. In order to

be able to obtain zero on the boundary of the circuit, these edges must all be present in the

set more than once.

New elements are required, sharing these six edges, in order to complete the circuit.

Since the edges of T are already present in the circuit three times, we see each new

element must contain exactly one of the vertices {a, b, c}, and two from the set {d, e, f}.

Thus, any new element can share at most two of its edges among t1, ..., t6. In the optimal

situation, a minimum of three new elements are required to share two edges each with

t1, ..., t6. Then, along with T , these three new elements bring our minimum circuit size to

ten.
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Proof. (of Theorem 2.3.12)

We complete the construction from the previous lemma.

Consider the last (at least three) elements {si} added to the circuit in Lemma 2.3.14.

Together with Lemma 2.3.13, we conclude that the circuit we wish to build must have at

least 11 elements, and be of rank at least 10. Since M(G6
3) has rank 10, our circuit must

have exactly eleven elements. The elements {si} that we add to share edges with the tj

must have one vertex among {a, b, c} and one edge among {de, df, ef}. We observe that

none of {de, df, ef} has yet been present in the set. Then it is necessary for |{si}| = 3,

each having one of {a, b, c} for an apex and one of {de, df, ef} for a base. Then an eleventh

element, def ensures that all three base edges of s1, s2 and s3 are in the set twice.

Such an arrangement is possible, and forms a circuit. Recall that up to relabeling, the

arrangement of T, t1, ..., t6 is unique.

If T = abc, we can say without loss of generality that:

t1 = abd

t2 = abe

t3 = bce

t4 = bcf

t5 = acd

t6 = acf,

whereby the edges of T are all in the set three times. This will cause three edges to

appear twice: ad, be, cf ; and six edges to appear once each: bd, ae, ce, bf, cd, af .

By construction, the six edges that appear only once will be uniquely paired by their

common vertex of a, b or c. Thus we have the pairs {ae, af}, {bd, bf}, and {ce, cd}. Then
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our choice of elements {s1, s2, s3} to share these six edges is dictated for us: aef, bdf, cde.

Observe that edges {de, df, ef} now are the only remaining edges in the set at most once.

The eleventh element must be def .

Such an arrangement forms a circuit, with the following linear combination of elements

yielding zero under the boundary map:

δ(2abc− abd− abe− bce− bcf + acd+ acf − aef + bdf − cde+ def) = 0.

Every circuit C like the one we just constructed is said to be non-binary, due to the

fact that one of its elements does not have its edges in the set an even number of times.

Any choice of orientation of the elements will yield under the boundary map, for each of

these edges, either two positive and one negative copy of the edge, or two negative and one

positive. So we cannot obtain zero on the boundary through orientation (i.e. choices of ±1

as coefficients in the linear combination) alone.

Definition 2.3.15 (Boundary Set). For a fixed k, the boundary set of Gnk is the collection

of all (k − 1)-simplexes on n vertices. We denote this set by Eδ.

Lemma 2.3.16. If a circuit C of M(G6
3) has an odd-edged element, then C contains every

edge from every member of Eδ at least twice.

Proof. C has rank 10, and so contains a basis, which must contain every edge. C is a circuit,

and so we only obtain a linear combination of boundary edges equal to zero if each edge is

in the circuit more than once.
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Lemma 2.3.17. In M(G6
3), a circuit can have at most one odd-edged element, and such a

circuit must have rank 10.

Proof. The construction from Lemmas 2.3.14 and 2.3.12 demonstrate a minimum require-

ment for one odd-edged element. At the same time, it is evident that new elements are

required for any more edges to be tripled. The rank of M(G6
3) constrains us from building

any larger circuit.

Now we look at the independent set responsible for the non-binary circuits. Its charac-

teristics suggest methods for finding regular minors.

Definition 2.3.18 (Special Basis). We define a basis of M(G6
3 for which every member of

Eδ of the matroid elements appears exactly twice to be a special basis. In Lemma 2.3.14

and Theorem 2.3.12, C minus its distinguished triple-edged element, T , is a special basis.

C \ T has rank 10 and is linearly independent and therefore a basis. Every basis must

contain every edge from every element. By construction, this basis C \ T has each edge

exactly twice.

We make the observation that for any special basis B, and any element ti /∈ B, the

set B ∪ ti is a non-binary circuit. Such a set contains eleven elements, making it linearly

dependent, and so it contains a circuit. But the element ti now has all of its edges in the

set three times, which forces us to conclude that B ∪ ti is a non-binary circuit.

Lemma 2.3.19. Every circuit C of M(G6
3) with an odd-edged element contains a unique

special basis.

Proof. This is evident by choosing the ten elements C \T , where T is the one element whose

edges are in the circuit three times.
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Figure 2.5: Special Basis as a Triangulation of RP 2

Lemma 2.3.20. A special basis B forms a non-binary circuit with each distinct element

of E \B.

Proof. The basis B contains every edge twice, so for ti ∈ E \ B, B ∪ t1 contains the edges

of ti three times each. Thus, B ∪ ti is a non-binary circuit.

A special basis and the circuits that can be formed from it have a direct relationship

with the real projective plane, RP 2, a non-orientable manifold. The simplicial complex of

ten triangles with six vertices forming a special basis forms a well-known triangulation of

RP 2. Figure 2.5 shows this triangulation with one possible labeling of the vertices. The

ten triangles whose interiors are contained within the perimeter of the triangulation are a

special basis. Observe that the perimeter of the image contains two copies each of vertices

a, b and c. We identify each of the same-named vertices, and the edges containing identical

endpoints, to form a closed surface. The triangle abc, with edges all along the perimeter, is

not a member of the triangulation, and is seen “twice” to indicate that its edges all appear

twice among the elements of the special basis. This image is not unique in its depiction of

a particular special basis. It is possible to rearrange some of the vertices, and find that the

same ten triangles form the triangulation. We show such a rearrangement in Figure 2.6.
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Figure 2.6: A Perimeter Transformation

We think of this vertex rearrangement in terms of a symmetry of the manifold. We

describe what we term a perimeter transformation of T. From our original image, if we

identify the perimeter edges as indicated, and cut along the edge-path forming the boundary

of adf , we form the new image with perimeter adf by unfolding RP 2 along this new cut.

Observe the set of triangles in the triangulation are the same. This is the case for any

ti that, like adf , is not in the triangulation.

Lemma 2.3.21. Regarded as a simplicial complex, a special basis is a triangulation of

RP 2.

Proof. Let B be a special basis. Since it is a basis, all edges and vertices are in B, and B has

ten triangles. We have V −E +F = 6− 15 + 10 = 1, and 2E = 30 = 3F . The construction

of the non-binary circuit showed the structure of B to be unique up to symmetry, so that

the depiction of a special basis as in Figure 2.6 is also unique up to symmetry.

It is also clear that in the above representation of the triangulation, we can surround

any vertex with a neighborhood homeomorphic to a disc. Three of the vertices are always

in the center, and we can perform a perimeter transformations to view any of them this

way. We conclude that a special basis triangulates the non-orientable 2-manifold RP 2.
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Lemma 2.3.22. All circuits of M(G6
3) with rank less than ten satisfy Tuma’s edge-evenness

property.

Proof. Suppose C contains one member of Eδ three times. Then it is not possible to obtain

zero with a linear combination of elements from Eδ only by choosing orientations of the

elements of C. Orientation alone can do this only when, after applying the boundary map,

every edge is directed one way the same number of times as it is directed the opposite way.

We must conclude from this that C is not binary.

Using the characteristics of the special basis, we can show how to delete very few elements

to define large regular minors of M(G6
3). Let M1 be the deleted minor of M(G6

3) from which

three elements all sharing a common edge have been removed.

Lemma 2.3.23. The deleted minor M1 contains no special bases.

Proof. Since M1 contains only one element containing a particular edge, it is not possible

to have any set of elements in which this edge appears more than once. Thus, we are unable

to form a special basis in M1.

Theorem 2.3.24. M1 is a regular matroid.

Proof. Since there are no special bases in M1, there can be no non-binary circuits. In other

words, every circuit of M1 satisfies Tuma’s edge-evenness condition, and there is no U2,4

minor. We conclude that M1 is a regular matroid.

Definition 2.3.25 (Complementary Pair). We define a complementary pair of elements to

be two elements of G6
3 which are vertex-disjoint. For example, {abc, def} and {bdf, ace} are

two such pairs.

Let M2 be the deleted minor of M(G6
3) from which one complementary pair of elements

has been removed.
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Theorem 2.3.26. M2 is a regular matroid.

Lemma 2.3.27. A special basis contains at most one of a complementary pair.

Proof. Let B be a special basis of M(G6
3). Then B contains every boundary edge of each

matroid element exactly twice. Suppose B contains two complementary elements. Every

other element of G6
3 shares an edge with one member of the pair and a vertex with the

other.

Let abc, def label our complementary pair. Element abc has three edges, so we can add

three elements that share one edge each with abc. Likewise, we can add three elements that

share one edge with each in def . This gives us eight elements so far. Any ninth and tenth

element will share a third copy of some edge from abc or def .

This contradiction proves the Lemma.

Lemma 2.3.28. A special basis contains ten linearly independent elements, each being

exactly one of any complementary pair.

Proof. Since there are ten such pairs in our set of matroid elements, we see that a special

basis is comprised of exactly one of every complementary pair.

Proof. (of Theorem)

Let M2 be the deleted minor defined above. No basis of M2 can contain ten elements

without two of the same complementary pair. Thus, we can no longer form a special basis,

and so M2 contains only circuits which satisfy Tuma’s edge-evenness property, and does not

contain U2,4 as a minor. M2 is therefore regular.

2.4 The Special Bases of M(G6
3)

Theorem 2.4.1. The matroid of G6
3 has twelve special bases.
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Figure 2.7: A Triangulation of RP 2

Proof. In Lemma 2.3.21, we showed a special basis to be a triangulation of RP 2, so it suffices

to show that there are twelve inequivalent triangulations of the non-orientable surface RP 2

with six vertices. We consider permutations of the six vertices in the ground set. There are

a total of 6! = 720 permutations of six vertices.

The perimeter transformation we showed in Figure 2.6 shows that any triangulation of

RP 2 has ten transformations which yield the same set of triangles in the triangulation, one

for each of the ten elements of the matroid which are not in the triangulation. There are

six more equivalent permutations of vertices, all of which give us the same triangulation.

In Figure 2.7, we show another triangulation of RP 2, with vertices named {1, 2, 3, 4, 5, 6}

in order to demonstrate the permutations.

The ten triangles in the triangulation are 124, 245, 235, 135, 156, 126, 236, 346, 134,

and 456.

By considering each possible permutation of vertices 1, 2 and 3, we find there is a

companion permutation of 4, 5 and 6 preserving the triangulation:

(123)(456)

(21)(64)(3)(5)

(31)(54)(2)(6)

(32)(65)(1)(4)
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(312)(564)

(231)(645)

The above permutations are also easy to see by looking at the visible rotational symmetry

in the image: in the top left of the image, the vertex 1 is attached by a single edge to vertex

4 in the central triangle. There are similar circumstances for vertices 2 and 3. The other

vertex identified with 1 is attached to the central triangle by two edges, going to vertex

5 and vertex 6. If we move vertex 1, we can move 4, 5, and 6 in order to preserve the

connections just described. The permutations above are six ways to do this. We have

shown that every triangulation of RP 2 with six vertices and ten triangles has 60 equivalent

vertex permutations that preserve the triangulation. Thus there are at most 720
60 = 12

distinct triangulations.

Below, we list twelve known special bases, using our usual naming scheme of {a, b, c, d, e, f}

for the vertices, to conclude that there are exactly twelve of them:

{abc, abd, acf, ade, aef, bce, bdf, bef, cde, cdf}, {abe, abf, acd, ace, adf, bcd, bcf, bde, cef, def},

{abc, abe, acd, adf, aef, bcf, bde, bdf, cde, cef}, {abd, abf, ace, acf, ade, bcd, bce, bef, cdf, def},

{abc, abf, ace, ade, adf, bcd, bde, bef, cdf, cef}, {abd, abe, acd, acf, aef, bce, bcf, bdf, cde, def},

{abc, abf, acd, ade, aef, bce, bde, bdf, cdf, cef}, {abd, abe, ace, acf, adf, bcd, bdf, bef, cde, def},

{abc, abe, acf, ade, adf, bcd, bdf, bef, cde, cef}, {abd, abf, acd, ace, aef, bce, bcf, bde, cdf, def},

{abc, abd, ace, adf, aef, bdf, bde, bef, cde, cdf}, {abe, abf, acd, acf, ade, bcd, bce, bdf, cef, def}.

2.5 A Classification of Circuits on Six Vertices

Theorem 2.5.1. The smallest circuit of M(Gnk), for k < n, contains k + 1 elements.

Proof. Viewing elements of M(Gnk) as k-simplexes, we know that a k-simplex can share

at most one (k − 1)-face with another k-simplex. If a k-simplex is in a circuit, all of its
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(k − 1)-faces must be in the circuit at least twice, since we must be able to obtain ~0 with

the δ map. This means we have a minimum of k + 1 k-simplexes in a circuit. There are

(k+ 1)-many k-simplexes forming the boundary of every (k+ 1)-simplex, a k-polytope with

k + 1 vertices. Since the (k + 1)-simplex is orientable, we can write a linear combination

of these k-simplexes with coefficients all ±1 that, under the δ map, sums to ~0. Thus, there

exists a circuit of M(Gnk) containing exactly k + 1 elements.

A tetrahedron, which contains four triangles, represents the smallest circuit of M(Gn3 ).

Every four vertices give a unique tetrahedron, so we can say that every matroid of Gn3 has(
n
4

)
rank 3 circuits.

Theorem 2.5.2. M(G6
3) has 10 · 12 = 120 non-binary circuits.

Proof. In Definition 2.3.18 we observed that the non-binary circuits are those for which we

have B ∪ ti, for B a special basis and ti and element not in B. There are always ten such

ti not in a basis. In Theorem 2.4.1 we showed that there are twelve such special bases.

Theorem 2.5.3. In M(Gn3 ), there are
(
n
6

)
·12 · 10 non-binary circuits.

Proof. From Theorem 2.5.2, we know that are 120 non-binary circuits on six vertices. Then

for n vertices, there are
(
n
6

)
·12 · 10 rank 10 non-binary circuits.

Recalling Definition 1.7.1 of a binary circuit from the Introduction, we prove the follow-

ing property.

Theorem 2.5.4. Every binary circuit of Gn3 contains an even number of elements.

Proof. Let C ⊆ E be a binary circuit of M(Gn3 ) containing m elements. Each element of C

has three edges, so C contains a total of 3m edges (not all distinct).
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Let Σδ(±ti) = 0 be a linear expression witnessing a choice of orientation for each of the

elements of C so that boundaries sum to zero. This expression exists because the circuit

is binary; orientation alone (coefficients of ±1) is enough to obtain zero. Then each edge

appears in C an even number of times, since the orientations direct each edge positively the

same number of times as negatively. Thus 2|3m, so that m is even.

Example 2. Binary circuits of other even sizes include:

(1) {abc, abd, acd, bcd, bde, cde}

(2) {abf, bcf, acf, abd, acd, bcd, bde, cde}

(3) {abc, abd, abe, abf, bcd, bef, ace, adf, cde, def}.

Observe that a circuit of rank 5 requires five vertices (with four vertices, we obtain only

four possible triangles). A circuit of rank 7 requires six vertices: with only five vertices, we

obtain the geometry G5
3, which has rank

(
5−1
3−1
)

= 6. Thus, there is no circuit with eight

elements (which would have rank 7) with fewer than six vertices.

The third item in the above example is a rank 9 circuit, with 10 elements. Since the

rank of this circuit is less than ten, by Lemma 2.3.22, we conclude that it is binary. This

type of circuit is unique in that it contains all four elements sharing a common edge (in this

case, edge ab). This type of circuit is the smallest possible having this characteristic.

Theorem 2.5.5. The smallest circuit in which an edge is used four times has ten elements.

Proof. Let the elements sharing an edge be named abc, abd, abe, and abf . Each has two

other edges that must also be shared with another element in the circuit in order to be able

to obtain zero in a linear sum. These eight other edges are {ac, ad, ae, af, bc, bd, bd, bf}.
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Figure 2.8: Four Triangles Sharing a Common Edge

Since every pair of our original four elements contains exactly four vertices, a unique

four element circuit (a tetrahedron) contains each pair. Any element added to the first four

can share at most two vertices with any of the four already in the set, so our construction

already requires that a fifth element share at most two of its edges with two elements in

the set. We seek to minimize the size of this circuit, so we wish to add elements that share

as many edges already in the circuit as possible. Four new elements that each share two of

their edges with some pair from abc, abc, abe and abf must be added.

However we choose four new elements, we must be sure that they themselves do not

share an edge among them - this would complete a four element circuit with a pair of the

original four elements. From this we see that eight elements are insufficient to construct

this circuit, and, needing an even number of elements for a binary circuit, we conclude that

at least ten elements are necessary.

It also turns out that when we have exactly six vertices with which to construct circuits,

then if there is an edge for which all four elements containing that edge are in a circuit,

there is only one such edge in that circuit. That is, every other edge in the circuit is shared

by exactly two elements in the circuit.

Theorem 2.5.6. A circuit C of M(G6
3) contains at most one set of all four triangles sharing

46



an edge.

Proof. Suppose C contains two edges for which all four triangles containing each edge are

in C.

Case 1: The two edges are vertex disjoint.

Let one edge be ab, and the other cd. With six vertices, each edge is contained in exactly

four triangles, so when C has four copies of some edge, this means every triangle of the

matroid with that edge is in the circuit. However, now our construction properly contains

a circuit: two triangles containing ab are abc and abd; two triangles that contain cd are acd

and bcd. These four triangles form a rank 3 circuit within our set. By the circuit axioms

for matroids, a circuit cannot properly contain another circuit. We cannot create a rank 9

circuit with such a set.

Case 2: The two edges share a vertex.

Let the two edges be ab and bc. Then C contains these seven elements so far: abc, abd,

abe, abf, bcd, bce, and bcf . We know C is binary, so every edge that occurs in C occurs

an even number of times. The edges from the seven elements listed above which are still

unpaired are ac, ad, ae, af, cd, ce, cf . But we observe now that every element which is not

yet in C that contains these edges will create a rank 3 circuit within C. For example, edge

ac is in three other elements of the matroid: acd, ace, acf . Any one of these in C will result

in a rank 3 circuit: {abc, abc, acd, bcd}, {abc, abe, ace, bce} or {abc, abf, acf, bcf}. We are

also unable to create a circuit with this set.

We conclude that it is not possible to have more than one edge that has all four copies

in M(G6
3).
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Theorem 2.5.7. Any rank 9 circuit C on six vertices contains all four elements that share

a common edge.

Proof. Let C be a rank 9 circuit. Suppose C does not contain all four elements sharing an

edge in common. First we observe that there are no triangulations of the 2-sphere with six

vertices and ten triangles. C has ten triangles and six vertices. To triangulate the 2-sphere,

its Euler characteristic would have to be 2. The V − E + F = 6 − E + 10 = 2, implying

that E = 6, and C has 14 edges. But a triangulation also satisfies the relation 2E = 3F ,

and in this case 2 · 14 6= 3 · 10.

But C is binary, and thus every edge must be in the circuit twice (since we’ve already

characterized the case where an edge is in four times). So 2E = 3F forces us to conclude

that all 15 edges of Eδ are in C.

If there are ten elements in C, then there are ten elements excluded from C. We choose

one excluded element, T . While T is not in C, each of its edges is in C twice. In fact, we can

refer to the construction of the non-binary circuit to see how to build an object for which

all edges are in the circuit exactly twice. In Figure 2.9, let us consider T to be an element

excluded from the circuit. The construction of the object in Lemma 2.3.14, which is shown

to be unique up to permutation of vertices, turns out to be a ten-element independent set

(a special basis), and only forms a circuit with the addition of an eleventh element. Since

this is the only result of our condition that we use every one of the 15 edges exactly twice

each, we are forced to conclude that it is not possible to construct a rank 9 circuit with this

property. Thus, the only rank 9 circuits in M(G6
3) are those which contain all four elements

sharing an edge in common.

Theorem 2.5.8. In Gn3 there are
(
n
6

)
·180 rank 9 circuits.

Proof. Let us begin the construction of C again. Suppose the four triangles with a common
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Figure 2.9: Attempting to Construct Another Binary Rank 9 Circuit

V ertex a Choice V ertex b Choice 1 V ertex b Choice 2
acd, acf bce, bdf (1.1) bcf, bde (1.2)
ade, adf bcd, bef (2.1) bce, bdf (2.2)
ace, adf bcd, bef (3.1) bcf, bde (3.2)

Figure 2.10: First Set of Choices In Constructing A Rank 9 Circuit

edge in C are abc, abd, abe and abf . Eight edges (two from each of these four) must be

paired, and as we saw in the previous theorems, this implies a need for at least four more

elements, no two of which share an edge.

Three remaining elements which contain edge ac are acd, ace and acf . If we choose acd,

then we are forbidden from choosing bcd in order to pair edge bc. There are many such

restrictions, giving us a methodical way to count inequivalent formulations of the rank 9

circuit.

Here is an enumeration of our choices for the next four elements in C. We begin

by picking a pair of elements that cover the four edges containing vertex a, and list our

remaining choices for the edges on vertex b. Refer to Figure 2.10.

This gives us six possible configurations so far for C, given our original four elements

on edge ab. Now for each of the choices we make for the first eight elements, we enumerate

the options for completing C with a final pair of elements.
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Configuration F inal Pair 1 Final Pair 2
(1.1) cdf, cef cde, def
(1.2) cde, cef cdf, def
(2.1) cde, cef cdf, def
(2.2) cde, cdf cef, def
(3.1) cde, cef cde, def
(3.2) cde, cdf cef, def

Figure 2.11: Second Set of Choices In Constructing A Rank 9 Circuit

Suppose we choose configuration (1.1) from Figure 2.10. Then C contains these eight

elements: abc, abd, abe, abf, acd, aef, bce, and bdf . Unpaired edges in this set are cd, ce, df

and ef . Two elements which pair these edges and complete C are cdf and cef . We could

also choose cde and def . No other two elements contain these four edges among them, while

completing C.

An analogous thing happens with each configuration from Figure 2.10. In Figure 2.11

we enumerate the “final pair” options for each of the six configurations above.

Having begun with the four elements containing edge ab, we count twelve distinct circuits

containing them. Recognizing that any of the 15 edges on the elements of our geometry

could serve as the unique one in a circuit four times, we count 12 · 15 = 180 such circuits

containing any six vertices. For general Gn3 , there are
(
n
6

)
·180 such circuits.

The circuits of smaller ranks are easier to describe, classify and count, because we can

picture them as 3-dimensional polytopes, which are triangulations of the two-sphere S2.

The rank 3 circuit regarded as a polytope is a tetrahedron. With this type of circuit in

mind, we can construct a rank 5 circuit that also triangulates S2. Beginning with the

tetrahedron, we place a fifth vertex in the barycenter of one facet, and join it to the three
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Figure 2.12: Beginning to construct the rank 5 circuit

vertices of the facet with edges. In the circuit, we replace the subdivided facet with the

three smaller triangles of the barycentric subdivision, to make a total of six facets. One

more such barycentric subdivision substituting a facet of this set will give us a rank 7 circuit

also.

Obviously we can continue in this fashion to create binary circuits of arbitrary even size,

given an unlimited supply of vertices. Not every circuit of Gn3 can be constructed in this

manner, the rank 9 circuit described above being one example.

Lemma 2.5.9. A rank 5 circuit in the matroid of Gn3 has exactly five vertices.

Proof. We know that a rank 5 circuit with five vertices exists (see Example 2). We show

that a rank 5 circuit has no more than five vertices.

A rank 5 circuit C must contain six elements. From Lemma 2.3.17 and the above

theorem regarding circuits with four copies of an edge, we know that C is binary, and each

edge of an element in C occurs exactly twice.

Then six elements have eighteen edges, which are all paired, giving us nine distinct edges

in C. Let one element of C be t1 = abc. We must also have t2, t3 and t4 each sharing an

edge with t1. If each of t2, t3 and t4 has one new vertex, then we must add at least three new

elements to pair all of these edges, requiring this circuit to contain at least seven elements.

C must contain more than four vertices, since four vertices can determine at most four

51



triangles. So we suppose without loss of generality that t2 = acd and t3 = abd share a

fourth vertex, d, and t4 = bce contains a fifth vertex, e. Now we have the following eight

edges in our complex: ab, ac, ad, bd, cd, be, ce. In order for us to complete C and include a

sixth vertex, there must be a t5 or t6 containing a vertex f . Then there will be two edges

containing this vertex, increasing our number of edges thus far to ten. This makes our

construction of a circuit containing six triangles on six vertices impossible.

Theorem 2.5.10. Circuits of rank 5 and rank 7 form triangulations of the 2-sphere.

Proof.

Claim 2.5.11. There is exactly one type of rank 5 circuit, and it has a planar one-skeleton.

Let C be a rank 5 circuit. From Lemma 2.3.22 and Theorem 2.5.5 we know that C

is binary, and each edge in the circuit appears exactly twice. Then, because C has six

elements, there are 6·3
2 = 9 distinct edges in C. Let us consider the one-skeleton formed

by these nine edges of C. Kuratowski’s Theorem [12] tells us that a graph is planar if and

only if it does not contain K5 or K3,3 as minors. Since K5 has ten edges, clearly C’s one

skeleton does not contain it. And since K3,3 has six vertices, it is no less immediate that

the one-skeleton of C does not contain it either. Then we apply Steinitz’ Theorem [6],

which says that a simple, planar, 3-connected graph is the one-skeleton of a 3-dimensional

polytope. In this case, the one-skeleton is 3-connected because it is a triangulation, so the

polytope is actually simplicial. There is a unique simplicial 3-polytope with five vertices

[6], and we thus know that C represents the only type of rank 5 circuit.

Since C is a simplicial 3-polytope, it is a triangulation of S2.

Claim 2.5.12. There are exactly two types of rank 7 circuits, and they both have planar

one-skeletons.
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Figure 2.13: Looking For A K3,3 Subgraph

Let D be a rank 7 circuit. As with rank 5, we know that a rank 7 circuit must be

binary and that each edge is in D exactly twice. Thus, D has 8·3
2 = 12 distinct edges. We

also must assume that D has six vertices: every circuit with only 5 vertices is a circuit of

M(G5
3), which only has rank 6. Referring again to Kuratowski’s Theorem, suppose D has

a one-skeleton that contains K5 as a subgraph. K5 has ten edges, so five vertices of D are

contained in four edges each, while a sixth vertex is contained in only two edges. If this is

true, then the sixth vertex is contained in only one element of the circuit. In such a case,

the two edges containing the sixth vertex are in D only once, contradicting the fact that D

is a circuit. We can conclude that the one-skeleton of D does not contain K5 as a subgraph.

Suppose the one-skeleton of D contains K3,3 as a subgraph. Then among the twelve

edges of D’s one-skeleton, we can find the complete bipartite graph on six vertices. When

we consider any three edges added to K3,3 in configurations that might represent D, we

find that however we choose three edges, two of them will contain a common vertex.

We arbitrarily choose two such edges for demonstration (dotted lines ab and ac in Figure

2.13), recognizing that because of the symmetry of the graph, any other choice of two edges

sharing a vertex would yield equivalent results. So far, we can discern the following elements

whose boundaries are in the graph, as possible elements of D: abc, abd, abe, abf , acd, ace,

acf , bcd, bce and bcf . But we recall that every edge is in the circuit exactly two times, and

we see upon inspection of the list that there is no way to pare it down to eight elements with
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Figure 2.14: One-skeleton of the rank 5 circuit

that property. Adding a twelfth edge will only increase this list and yield more duplicate

edges. We conclude that the one-skeleton of D does not contain K3,3 as a subgraph either.

Thus, D has a planar one-skeleton. It is also 3-connected as a triangulation, and by

Steinitz is also the graph of a simplicial 3-polytope. From [6], we know there are two

3-dimensional simplicial polytopes, the cross-polytope and the cyclic polytope.

Thus, every rank 7 circuit is a triangulation of S2.

In fact, regarding low-rank circuits as simplicial 3-polytopes makes them easy to visualize

and count.

Theorem 2.5.13. The matroid of Gn3 contains
(
n
5

)
·10 rank 5 circuits.

Proof. There is a unique three-dimensional simplicial polytope P with six facets and five

vertices (refer to [6]). We can easily count the triangulations of P by permuting the vertices

and then looking for the distinct ones (we obtain many identical ones due to symmetry).

Since a 3-polytope always has a planar graph that represents its one-skeleton, we can use

such a graph to understand the symmetries of the polytope. Figure 2.14 shows the one-

skeleton of P . For each choice of the center vertex labeled a there are two triangulations:

the one pictured, and one in which we switch b with c and d with e. Since any one of the

five vertices can be put in the center, there are 5 · 2 = 10 distinct triangulations of P .
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Figure 2.15: P1, the one-skeleton of the 3-dimensional crosspolytope

Figure 2.16: P2, the one-skeleton of the 3-dimensional cyclic polytope

From [5], we know that G5
3, which has five vertices and has rank 6, so there are no rank

7 circuits on five vertices. We have also shown that the smallest non-binary circuit has rank

10, so we know that there are no circuits of rank 6. We use these facts to see that rank 7

circuits must use six or more vertices.

Theorem 2.5.14. The matroid of Gn3 contains
(
n
6

)
·45 rank 7 circuits, for n ≥ 6.

Proof. There are exactly two three-dimensional simplicial polytopes (refer to [6]), P1 and

P2, having six vertices and eight faces. P1 is a crosspolytope (the octahedron), which is

known to have 48 symmetries [4]. Figure 2.15 shows its one-skeleton.

Since there are 6! permutations of six vertices, we have 6!
48 = 15 distinct triangulations

of P1. Thus, 15 circuits with eight faces on six vertices form octahedra.

P2 is a cyclic 3-polytope with the one-skeleton shown in Figure 2.16.
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For each of the six choices of center vertex, there are five distinct triangulations. We

can think of the vertex labeled a as the apex of P2, having a base that is a triangulated

pentagon. There are five ways to triangulate the pentagon, so we have 6 · 5 = 30 circuits

forming this type of polytope on six vertices.

Thus, for n vertices, there are
(
n
6

)
·(15 + 30) rank 7 circuits.

Theorem 2.5.15. Every circuit of M(G6
3) can be expressed as a linear sum of tetrahedra.

Proof. We define a linear sum of tetrahedra by way of recursive applications of the bound-

ary map. Just as δ applied to a triangle yields a sum of edges (its boundary), δ applied to

a tetrahedron yields a sum of the triangles forming its boundary.

For circuits which are triangulations of S2, we demonstrate labelings of the polytopes’

vertices which can be shown to be the result of linear sums of tetrahedra.

(1) Rank 3 circuits, already described as tetrahedra, are simply expressed by an ordered

listing of their four vertices (with either sign). For example, we write abcd to denote

the tetrahedron on those four vertices. Then the boundary map gives δ(+abcd) =

+abc− abd+ acd− bcd. This tells us what the triangles are forming the boundary of

the tetrahedron, as well as giving us a signing that will, with one more application of

δ, yield a zero sum. Note that the sign reversal −abcd results in the complete sign

reversal of the boundary also, so that δ(−abcd) = −abc+ abd− acd+ bcd.

(2) Rank 5 circuits we see as the 3-polytope with one-skeleton in Figure 2.14. A linear

sum of tetrahedra that result in the set of triangles in this polytope is +abcd+ bcde,

where
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δ(+abcd+ bcde)

= +abc− abd+ acd− bce+ bcd− bce+ bde− cde

= +abc− abd+ ace− bce+ bde− cde.

(3) Rank 7 circuits have two types: a crosspolytope (octahedron) and a cyclic polytope.

Refer to Figures 2.15 and 2.16. The crosspolytope, which we named P1, can be written

as the sum +abce+ acde+ bcef + cdef , where

δ(+abce+ acde+ bcef + cdef)

= +abc−abe+ace−bce+acd−ace+ade−cde+bce−bcf+bef−cef+def−cdf+cef−def

= +abc− abe+ acd− ace+ ade− bcf + bef − def .

The cyclic polytope can be written +abcd+ abde+ abef , so that

δ(+abcd+ abde+ abef)

= +abc− abd+ acd− bcd+ abd− abe+ ade− bde+ abe− abf + aef − bef

= +abc+ acd− bcd+ ade− bde− abf + aef − bef .

(4) Rank 9 circuits we classified as those for which all four elements containing a common

edge are found in the circuit. Here is a linear expression of tetrahedra that represents

the rank 9 circuit from our example (3): +abcd−acde+adef−abef , with the boundary

map giving us

δ(+abcd− acde+ adef − abef)

= +abc − abd + abd − bcd − acd + ace − ade + cde + ade − adf + aef − def − abe +

abf − aef + bef
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= +abc− abd− bcd+ ace+ cde− adf − def − abe+ abf + bef .

(5) We can even construct the one type of non-binary circuit from M(G6
3) with a linear

sum of tetrahedra. Here is one that represents the non-binary circuit we gave at the

end of chapter 1: +abcd+ bcdf − cdef − acef + abce. With the δ map, we have

δ(+abcd+ bcdf − cdef − acef + abce)

= +abc−abd+acd− bcd+ bcd− bcf + bdf − cdf − cde+ cdf − cef +def −ace+acf −

aef + cef + abc− abe+ ace− bce

= 2abc− abd+ acd− bcf + bdf − cde+ acf − aef − abe− bce.

2.6 M(G6
3) Is Ternary

Recall that a ternary matroid is representable over the field GF (3).

Theorem 2.6.1. M(G6
3) is a ternary matroid.

Proof. Let B be a basis for M(G6
3), and ti an element not in B. The determinant of B is

non-zero, but suppose 3| det(B).

Let ~x be the unique solution for the equation B~x = ti. If ~x contains zeroes, then B ∪ ti

properly contains a unique circuit, C, which must have rank less than 10 in this case, and

by Lemma 2.3.22 is binary. This means that there is a linear combination of elements from

B ∪ ti which sums to ~0 using only ±1 for coefficients. Thus, ~x has entries all in {0,±1}.

If ~x contains no zeroes, then B ∪ ti = C is a rank 10 circuit.

Lemma 2.3.17 and Theorem 2.5.4 allow us to assume that if B∪ti = C is a rank 10 circuit

containing eleven elements, then it is non-binary. Such a circuit has a linear combination

summing to ~0 with coefficients in {±1,±2}, so that ~x has entries in {±1,±2}.

58



Let det(B) = 3m, for some m ∈ Z. Cramer’s Rule tells us that for each entry xj

of ~x, we have xj =
det(Mj)
det(B) , where Mj is the matrix B with the column for ti replacing

the jth column of B. Since xj ∈ {0,±1,±2}, it must be the case that 3| det(Mj). We

observe that since B is a basis, we can write the matrix [B|ti] in a row-reduced form, so

that [B|ti] ∼ [I|r], where I is the identity matrix, and r has non-zero entries from {±1,±2}

in the coordinates corresponding to the elements of B which form the circuit C with ti.

Then Mj ∼ [i1, i2, ..., ik−1, r, ik+1, ..., i10], the modified identity matrix into which the vector

r has replaced the kth column. We can then pivot along a column with only one nonzero

entry, so that the determinant of Mj is always determined by a 2× 2 matrix with at most

three non-zero entries from {±1,±2}. Such a matrix can never have non-zero determinant

divisible by 3.

This contradiction forces us to conclude that 3 - det(B).

A result from Lee and Scobee [10] tells us that, because M(G6
3) is ternary, it is dyadic.

That is, it has a matrix representation whose coefficients are rational, such that all non-zero

sub-determinants are in {2k, k ∈ Z}.
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Chapter 3: Zonotope Properties

In the introduction, we defined a zonotope as the convex polytope obtained by a Minkowski

sum of segments in a real vector space. The dimension of the zonotope is the same as the

rank of the set of vectors forming the segments. The zonotope obtained from the matrix

representation of Gnk is directly related to the hyperplane arrangement. Their face lattices

are inversely isomorphic, so that vertices of the zonotope correspond to the full-dimensional

cells, which we call topes, of the hyperplane arrangement. It is worthwhile to describe

various features of the zonotope (or arrangement), and to look for generalizable methods of

identifying them.

In Definition 1.6.4, we described a simplicial tope of a hyperplane arrangement in Rd

as a full-dimensional cell formed by d-many hyperplanes. That is, it has exactly the same

number of facets as the dimension of the space. Such a tope corresponds to a simple

vertex of the zonotope, a vertex where a minimal number of facets intersect. The set of

columns corresponding to the simplicial tope in the matrix forms an oriented basis: the

size of the set must be at least full-rank to make a full-dimensional cell, and the signs of

the columns are the signs (positive or negative) that indicate the interior points of the

cone with respect to each facet; the set is linearly independent because any acyclic minimal

dependence relation can be determined by all but one element (recall from Definitions 1.6.3

and 1.6.2 the relationship between a tope and an acyclic orientation). It is equivalent to

think of a simplicial basis as one for which there is a fixed signing of the elements of the

basis such that every distinct linear expression in the basis for an element of E is positive

(that is, there is a choice of sign for each basis member so that we can write any linear
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expression in terms of addition only).

In this chapter, we discuss some methods for finding topes and simplicial topes.

3.1 Simplicial Bases From Special Bases

Let B be a special basis of M(G6
3). For any element t1 ∈ B and t0 ∈ E \ B, the set

B′ = (B \ t1) ∪ t0 is a simplicial basis. We demonstrate how this works with an example,

then restate this claim as a theorem and give a proof.

First, we convince ourselves that the special basis itself is not simplicial. For example,

suppose B = {abf, bcf, cdf, acd, ade, abe, bce, ace, acf, def}. The element abc is not in B, so

it has a linear expression using elements in B. Below, (1) is one of them (the other would

be the same except for a complete reversal of signs).

(1) 2(−abc) = (−abf) + (−bcf) + (−cdf) + (+acd) + (+ade) + (−abe) + (−bce) +

(+ace) + (+aef) + (−def)

If B were simplicial, we would be able to use B to write a linear expression for any other

element not in B without changing the signs on any of these elements, using only addition.

The element adf is not in B, so let us check its linear expression in B:

(2) 2(−adf) = (−abf) + (−bcf) + (−cdf) + (+acd) + (−ade) + (+abe) + (+bce) +

(−ace) + (−aef) + (+def).

Notice that some of the signs (like −abf and −bcf) are the same as in (1), and some

are not (+aef changed to −aef , and −def changed to +def). So even an expression for

+adf would require us to change some of the basis signs we see in (1). Clearly, B is not

simplicial.

However, we can make a single change to B to obtain a basis which is simplicial. Suppose

we put abc in the basis, and remove ade. Let B′ = (B \ ade) ∪ abc. B′ is a basis: the set

B ∪ abc is a (non-binary) circuit, which has eleven elements, and rank 10. We can remove

any element from a circuit and be left with a linearly independent set, which in this case is
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a linearly independent set containing ten elements - a basis.

We first rewrite (1):

(1)’ 0 = (−abf) + (−bcf) + (−cdf) + (+acd) + (+ade) + (−abe) + (−bce) + (+ace) +

(+aef) + (−def) + 2(+abc).

This takes our expression for abc in the basis B, and displays it as a minimal dependent

set. Observe that the right hand side contains all the elements of B, as well as all the

elements of B′. Let’s fix the signs on the elements of B′ (that is everything on the right

hand side except for ade), and see what happens.

There is an expression in B′ with these signs for ade:

(3) (−ade) = (−abf)+(−bcf)+(−cdf)+(+acd)+(−abe)+(−bce)+(+ace)+(+aef)+

(−def) + 2(+abc).

We got this just by moving +ade to the left hand side. Can we use these signs of B′ to

express any other elements from E \ B′? Choose adf : notice that if we take (2) for adf in

the basis B, and add it to equation (1)’, we will be left with

(4) 2(−adf) = 2[(−abf) + (−bcf) + (−cdf) + (acd)] + 2(+abc),

an equation with adf on one side, and elements from B′ on the other. The term with

ade, an element of B but not of B′, canceled, giving us an expression for adf in the basis

B′. What’s more, the signs of elements in B′ are the same in (4) as they were in (1)’. This

is not a coincidence. The proof of the theorem describes why this works in general. Any

element of E \ B′ that we picked would have a positive expression using the same signs as

in equation (1)’.

Theorem 3.1.1. Let B be a special basis, t1 ∈ B, and t0 ∈ E \B. Then B′ = (B \ t1)∪ t0

is a simplicial basis.

Proof. Let B, t1, t0 and B′ be as stated. Consider (5), the equation expressing the funda-

mental circuit of B associated with the element t0.
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(5) 0 = Σiαiti + (+2t0)

Denote σ(t1) ∈ {+,−} to be the sign of t1’s coefficient in (5). Fix the signs of elements

in B′ to be those attributed to them in equation (5).

Choose tj ∈ E \B′. If tj = t1, then we take the linear expression in (5) and subtract the

term containing t1 from both sides, so that we have a linear expression for t1 in the basis

B′. If tj 6= t1, then it has a linear expression in the special basis B - in fact it has two,

one that is equal to +2tj , and one that is equal to −2tj . Both of these expressions contain

t1 with a non-zero coefficient (because B is a special basis, and so every basis element is

in every such linear expression), but in one of these two t1 is positive, and in the other t1

is negative. Let (6) give the expression in B for ±tj that has a sign for t1 equal to −σ(t1)

(that is, so that t1 has a sign in (6) opposite to its sign in (5)).

(6) ±2tj = Σiβiti.

We add equations (5) and (6), see that (as was our intent) the term t1 cancels, and

we have a positive expression for tj in terms of B′ with its fixed signing. Thus, there is a

signing of B′ such that for every element tj ∈ E \B′ we can express tj as a positive linear

expression of the elements of B′ with the signing fixed. B′ is a simplicial basis.

3.2 The Lexicographic Method

We describe a method for orienting the triangle elements of M(Gn3 ) which results in an

acyclic orientation (a tope). We continue to use our usual ordering on vertices, edges and

triangles.

To use the lexicographic method, we orient triangles by choosing appropriate weights for

the edges, so that when the sum of the weights is positive, the orientation of the triangle is

positive, and when the sum is negative, the triangle’s orientation is negative. Obviously, it

is important to choose weights that cannot sum to zero. Figure 3.1 gives two examples.
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Figure 3.1: Two Different Orientations of G3
3

In the example on the left, edge ab is weighted 4, bc is 2, and ac is 1. Then the sum

+ab − ac + bc = 4 − 1 + 2 = 5 is positive. We write +abc. The example on the right has

+de− df + ef = 1− 4 + 2 = −1, and we write −def .

To proceed to orienting a complex of triangles, we need a systematic way to choose

weights. Because one edge may be shared among several triangles, we must have a way to

ensure we will always be able to obtain an orientation - that is, that no sum of edge weights

will ever be zero. We will make use of an infinite sequence {an} having the property that

an > an−1 + an−2. One obvious sequence is an = 2n. Another, which we use here, is

an = an−1 +an−2 + 1. If we start with an = 1, our first several terms are 1, 2, 4, 7, 12, 20, 33.

But since the actual values are less important than their specified property, we will often

denote them with suggestive placeholder notation (to be defined).

Theorem 3.2.1. The orientation of M(G6
3) resulting from using the lexicographic method

is acyclic.

Proof. Let ψ : Eδ 7→ {ai}
(n2)
i=1 be an assignment of weights to the edges Eδ of elements of

M(G6
3). Let A = [ψ(e1), ψ(e2), . . . , ψ(e(n2)

)], with ei ∈ Eδ, be the row vector of all the

assigned edge weights. Then the sum of edge weights for a particular triangle ti can be

seen as the inner product of A with the column vector associated with ti in the matrix

representation for M(Gn3 ).

Let C ⊆ E be a set of elements of M(G6
3) that form a circuit. Then some edge ej has
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ψ(ej) = amax, where amax is the highest weight value among all the edges of elements of C.

The value amax must determine the orientation of every element of C that contains edge ej ,

by being the dominant value in every sum. If a column vector associated with an element

of C has +1 in the ej coordinate, then the inner product will have a positive value, and we

give the element a positive orientation. If there is −1 in the ej coordinate, the inner product

will have a negative value, and the associated element is given a negative orientation. This

means that every non-zero value for coordinate ej in the newly oriented columns will be

positive. No linear combination of these columns can result in the zero vector unless we

have at least one negative coefficient, so that the values in the ej coordinate can sum to

zero.

This proves that orientations of elements given by the lexicographic method are acyclic.

We have shown that we can obtain an acyclic orientation for all triangles by arbitrarily

assigning values from the sequence to all edges in a triangle complex. However, we proceed

in an even more methodical way. In what we call a strict lexicographic method, we orient

all the elements of M(Gm3 ) for each m ≤ n, beginning with m = 3, building the complex of

triangles up one vertex at a time.

Giving edge ab weight 1, the first term of our sequence, we then give edges bc and ac

weights corresponding to the next two terms of the sequence. Which edge gets which weight

will determine if abc is positively or negatively oriented. In adding a fourth vertex, d, we

attach it with three new edges, and weight them with the next three values in the sequence

in some order, and continue in this way with the next vertex.

We can record these weight assignments efficiently in a matrix, with rows and columns

labeled by the vertices. Each entry xij denotes the weight of the edge with endpoints i

and j, where i < j. Since there are no loops in our complex, and since the weight of xij is
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Figure 3.2: M(G4
3) With Weighted Edges


a b c d

a| 0 1 2 12
b| − 0 4 7
c| − − 0 20
d| − − − 0

.

Figure 3.3: A Lexicographic Matrix for M(G4
3)

equal to -1 times the weight of xji, we need only consider the part of the matrix above the

diagonal.

Figure 3.2 gives an example of M(G4
3) with weighted edges, and figure 3.3 gives its

corresponding strict lexicographic matrix.

From the diagram or from the matrix we can derive the orientations of the four triangles

by observing inequalities in the weights, such as ac being weighted less than bc, or, with an

abuse of notation, ac < bc. This tells us that abc is oriented positively, so we write +abc.

The final column gives us inequalities like bd < ad, so that we get −abd; ad < cd so we

write +acd; and bd < cd, so we write +bcd.

This is easily seen to be an acyclic orientation of M(G4
3). In M(G4

3) there is only one

circuit, involving all four triangles (a tetrahedron). Of all possible orientations of the four

triangles, only two are cyclic, or what we call “good” orientations of the circuit (where we

can obtain zero on the boundary without changing any signs). The two good signings of
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Figure 3.4: A Lexicographic Orientation of M(G5
3)



a b c d e

a| 0 1 2 12 54
b| − 0 4 7 33
c| − − 0 20 88
d| − − − 0 133
e| − − − − 0



Figure 3.5: A Lexicographic Matrix for M(G5
3)

the above tetrahedron are +abc,−abd,+acd,−bcd, and its reverse, −abc,+abd,−acd,+bcd.

Our construction gave us neither of these.

Let us continue our example by extending the complex with one more vertex.

Observe that the final column of the matrix in Figure 3.5 gives us relations for orienting

the new triangles containing the vertex e. We get ae < be, so triangle abe is negative;

ae < ce, so we have +ace; ac < de so we have +ade; be < ce and be < de, so we get +bce

and +bde; cd < de so we have +cde.

The strict lexicographic method gives us acyclic orientations of all the elements of

M(Gn3 ), although not every such acyclic orientation, or tope, of these matroids arises this
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Figure 3.6: A Non-Lexicographic Orientation of M(G4
3)

way. In fact, here is a very small example of a tope which is not obtainable using the strict

lexicographic method: {+abc,+abd,−acd,+bcd}. Figure 3.6 illustrates the problem.

In order to weight ad, it must be greater than cd to obtain −acd. Then to get +bcd,

we must have bd < cd, and +abd implies that ad < bd. So we require the (impossible)

inequality ad < bd < cd < ad.

We noted earlier that, while it was important to have a sequence of weights with the

property that an > an−1 + an−2, the actual values in the sequence are insignificant. In

subsequent discussions involving the strict lexicographic method, of primary importance

(besides the above property) is that in the matrix, all values in a column are strictly

ordered, and all are larger than every value in the previous columns. We then improve

readability with the following notation for the weights in a matrix.

For nth vertex v, the weights associated with v’s column in the matrix will be v1, v2, ..., vn−1,

where v1 < v2 < · · · < vn−1. So, for example, the previous 5-vertex matrix looks like Figure

3.7 in our new notation.

3.3 Chirotopes

It will be useful to define a new perspective of the triangles of our complex on the complete

graph. Going back to our original view of triangles as 3-sets on a ground set of vertices
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a b c d e

a| 0 b1 c2 d2 e2
b| − 0 c1 d1 e1
c| − − 0 d3 e3
d| − − − 0 e4
e| − − − − 0



Figure 3.7: Relative Weights in the Lexicographic Matrix

{v1, ..., vn}, we define a function χ : (vivjvk) 7→ {+,−} that sends each 3-set to one of two

signs. This corresponds nicely with our notion of orienting the triangles of M(Gn3 ).

If χ satisfies the two properties below, then we actually have defined a new oriented

matroid, which we denote G3,n, on the ground set of vertices. Each 3-set (triangle) is a

basis for this matroid, so that G3,n is a uniform matroid, and we call χ a chirotope.

Definition 3.3.1 (Chirotope). The function χ : (vivjvk) ∈ {+,−} is a chirotope if it

satisfies the following two properties.

Property 1 : χ must be alternating. That is, χ(vπ(1)vπ(2)vπ(3)) = sign(π)χ(v1v2v3) for

any permutation π of the vertices of a triangle. This is particularly easy to see for triangles:

if χ(abc) = +, then χ(acb) = χ(−abc) = −, for example. Such changes in orientation

are already natural to us under our consistent use of lexicographic orderings. In fact, any

orientation of the triangles automatically satisfies this condition.

Property 2 : χmust satisfy the Grassmann-Plücker relation (a reference for this definition

is [1]). For any five of the n ≥ 5 vertices v1, ..., v5, we must be able to find positive scalars

α, β, γ so that the following equality holds:

αχ(v1v2v3)χ(v1v4v5)− βχ(v1v2v4)χ(v1v3v5) + γχ(v1v2v5)χ(v1v3v4) = 0.

For readability, we denote χ(vivjvk) with brackets [vivjvk].
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a b c

a| 0 b1 c2
b| − 0 c1
c| − − 0



Figure 3.8: M(G3
3)

With this new perspective of the triangle orientations of M(Gn3 ), we can ask questions

like “when are chirotopes also topes of M(Gn3 )?” and “can a simplicial tope of M(Gn3 ) rep-

resent a chirotope?”

Theorem 3.3.2. A simplicial tope of M(Gn3 ), where n ≥ 5, built with the strict lexico-

graphic method is never a chirotope.

Proof. We start as indicated by our discussion of the lexicographical method with triangle

abc. At this stage, the orientation of the first triangle is arbitrary: a simplicial tope in which

abc is positive implies the existence of a simplicial tope in which abc is negative through a

complete reversal of all other signs.

So without loss of generality we write +abc, or rather, we weight the edges according to

the matrix (see Figure 3.8).

In extending to a fourth vertex we must recall what makes a tope simplicial. An acyclic

tope for M(G4
3) that is simplicial has a basis all of whose elements correspond to a “good”

signing (one for which the boundary elements shared among all the basis elements cancel

each other) of the one circuit in the matroid - the tetrahedron containing all four elements.

The fourth element, not in the basis, is the only element whose sign makes the circuit

acyclic. Additionally, any simplicial tope we use must now have +abc, based on our choice

of starting orientation.

Suppose we choose the simplicial tope {+abc,−abd,+acd,+bcd}. The simplicial basis
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a b c d

a| 0 b1 c1 d2
b| − 0 c2 d1
c| − − 0 d3
d| − − − 0



Figure 3.9: Simplicial Orientation for M(G4
3)

for this tope is {+abc,−abd,+acd}. We continue our proof using this example, and show

at the end why we would obtain an analogous result regardless of which simplicial tope of

M(G4
3) we had chosen.

We extend our matrix to include the fourth vertex. Knowing what signs the elements

must have tells us how to order the fifth column (refer to Figure 3.9).

This matrix tells us, for example, that the weights on the edges of the vertex e have

the inequality cd > ad > bd, so that bcd, the fourth triangle (not in the basis) must be

positively oriented.

We must now see if we can extend our simplicial tope in M(G4
3) to a simplicial tope in

M(G5
3) while satisfying the Grassmann-Plücker relation. So let us label a fifth vertex e, and

let our vertices a through e correspond directly to the numbers 1 through 5 as given in the

Grassmann-Plücker relation. Then we must sign the elements to get [abc][ade]− [abd][ace]+

[abe][acd] = 0. Three signs were fixed in M(G4
3), and we fill those in: [+][ade]− [−][ace] +

[abe][+] = 0. We need to give signs + or − to ade, ace, and abe so that it is possible for the

equation to hold. The table in Figure 3.10 gives the acceptable signs for each of the three

terms on the left hand side of the equality, and the signs that are necessarily implied for

the remaining three triangles. In the Term Sequence column, the first term is the sign of

[+][ade], the second term is the sign of −[−][ace], and the third term is the sign of [abe][+].

This column lists all the ways that 0 can be obtained with an appropriate choice of scalars.
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TermSequence [ade] [ace] [abe]

+−+ + − +
−+− − + −
+ +− + + −
+−− + − −
−−+ − − +
−+ + − + +

Figure 3.10: Signings Satisfying Grassmann-Plücker Relations on M(G5
3)



a b c d e

a| 0 b1 c2 d2 e2
b| − 0 c1 d1 e4
c| − − 0 d3 e1
d| − − − 0 e3
e| − − − − 0

 OR



a b c d e

a| 0 b1 c2 d2 e2
b| − 0 c1 d1 e3
c| − − 0 d3 e1
d| − − − 0 e4
e| − − − − 0



Figure 3.11: Lexicographic Matrices for Two Chirotopes

As we can see, we must have one positive and two negative, or two positive and one

negative among the orientations of the three indicated elements on the fifth vertex in order

to satisfy the Grassmann-Plücker relation. The signs of ade, ace, and abe indicate the

inequalities we use to determine the weights of the edges on the fifth vertex. For example,

if the term sequence is + − +, this forces the three remaining triangles to be signed as

+ade,−ace,+abe. When ade is positive, this means that the weight on edge de is greater

than the weight on edge ae, or, for short, de > ae. From the set of inequalities we obtain

this way, we find that either be > de > ae > ce or de > be > ae > ce. Then the term

sequence + − + corresponds to one of the two matrices in Figure 3.11, where the fifth

columns satisfy the inequalities.

Unfortunately, the following Lemma shows why none of the signings given in the table

allow for a tope to be simplicial.

Lemma 3.3.3. To extend a simplicial tope in M(G4
3) to one in M(G5

3) using the strict

72



lexicographic method, all three new triangles on the first and fifth vertex (sharing edge ae)

must have the same orientation.

Proof. Suppose two of the triangles, t1 and t2, sharing edge ae have different signs, with t3

having the same sign as t1. Then edge ae is differently directed under the boundary map.

We require that a simplicial tope contain a simplicial basis - a basis that can give positive

linear expressions for every element not in the basis. This means that no element of the

basis can “change sign” between two different fundamental circuits. So triangle t2 cannot

have a positive linear expression containing either t1 or t3. This means that t2 must be in a

simplicial basis. Likewise, neither t1 nor t3 can have a positive linear expression containing

t2, so one of these must be in a simplicial basis also.

Now we observe that there are five triangles in our basis for M(G5
3) that contain the same

vertex a. We demonstrate why this is not simplicial. Suppose we have some assignment

of the vertices a through e to the numbers 1 through 5, and have a basis for which some

vertex appears five times. Up to a reassignment of the vertices, we can show what happens

by choosing the first five elements of the basis to be {124, 124, 125, 134, 135}. From the

remaining elements, we have three choices to extend this set to a basis (two of the elements

give us dependent sets). Our options are to complete the basis with 145, 245 or 345.

Suppose we put 145 in the basis. Now we attempt to create positive linear expressions

for the remaining four elements. Our first choice of signs is arbitrary, but the rest necessarily

follow. Since {123, 124, 134, 234} is an unoriented fundamental circuit, we write the positive

linear expression:

+123 -124 +134 = +234.

There is another fundamental circuit containing the basis element 123, so we must write:

+123 -125 +135 = +235.

There is another fundamental circuit containing basis elements 124 and 125, but we
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have a problem:

-124 - (-125) -145 = -245 is not a positive linear expression for 245. One of 124 or

125 must change sign. Such a change then obviously disagrees with one of the previous

fundamental circuits.

Suppose instead we include 245 in the basis, rather than 145. The first two positive

linear expressions are the same, but then we need a positive linear expression for 145:

-124 - (-125) -245 = -145 is not a positive linear expression for 145. Again, one or 124

or 125 must change sign. An analogous result occurs when we use 345 for our sixth basis

element.

We conclude that any basis for which some vertex occurs five times cannot be simplicial.

Because all of the signings which satisfy the Grassmann-Plücker relation have this prop-

erty, we find that for our example to be simplicial, it cannot satisfy the Grassmann-Plücker

condition, and so cannot be a chirotope.

Now recall that we began with an arbitrary example of a simplicial tope for M(G4
3),

and showed that with the basis of this tope having signs + − + (recall the first basis

was {+abc,−abd,+acd}), and where vertices a, b, c, d, e mapped directly to 1, 2, 3, 4, 5,

we couldn’t extend to a simplicial basis for M(G5
3) while simultaneously satisfying the

Grassmann-Plücker condition.

If we had chosen a different simplicial tope, we can show similarly that we have the

same problem satsifying the condition. Assuming all our results could be obtained using

full sign reversals, we leave those trivial cases aside.

Suppose we chose the simplicial tope {+abc,+abd,+acd,−bcd}. This has simplicial

basis {+abc,+acd,−bcd}. We would like to know what happens with the Grassmann-

Plücker condition, preferably without having to recompute the whole sign table. This is as
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TermSequence [cde] [cbe] [cae]

+−+ + − +
−+− − + −
+ +− + + −
+−− + − −
−−+ − − +
−+ + − + +

Figure 3.12: Signings Satisfying the Grassmann-Plücker Relation on a Permutation of the

Vertices

easy as changing our mapping of the vertices to the numbers. Since the condition to be

satisfied is a condition on six triangles containing a vertex in common (for the first example

this was vertex a), we can check the condition on the vertex in common for our new choice

of basis, which is c. If we map c 7→ 1, a 7→ 2, b 7→ 3, d 7→ 4, e 7→ 5, then our basis maps this

way: +abc 7→ +cab,+acd 7→ −cad,−bcd 7→ +cbd, and the basis now has the same three

ordered signs as in our first example. The three new triangles on c are cae, cbe and cde. The

Grassmann-Plücker condition now looks like this: [+][cde]− [−][cbe] + [cae][+] = 0, giving

us the same sign table, but with new column labels.

This fails to be simplicial for the same reason as our previous example. In other words,

the proof for our first example holds for any permutation of the vertices, therefore for any

simplicial tope of M(G4
3).
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