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The inability of investors and academics to consistently predict, and understand the behavior

of ¯nancial markets has forced the search for alternative analytical frameworks. Analyzing

¯nancial markets as complex systems is a framework that has demonstrated great promises,

with the use of agent-based models (ABMs) and the inclusion of network science playing an
important role in increasing the relevance of the framework. Using an arti¯cial stock market

created via an ABM, this paper provides a signi¯cant insight into the mechanisms that drive the

returns in ¯nancial markets, including periods of elevated prices and excess volatility. The paper

demonstrates that the network topology that investors form and the dividend policy of ¯rms
signi¯cantly a®ect the behavior of the market. However, if investors have a bias to following

their neighbors then the topology becomes redundant. By successfully addressing these issues

this paper helps re¯ne and shape a variety of additional research tasks for the use of ABMs in

uncovering the dynamics of ¯nancial markets.

Keywords: Agent-based model; arti¯cial stock market; networks; dividend policy.

1. Introduction

The E±cient Market Hypothesis (EMH) [8] underlies much of today's mainstream

¯nance theory and practices, a point rea±rmed by Summers [38] when he stated that

the assumption of market e±ciency \forms the basis for most research in ¯nancial

economics". Despite some empirical support for the EMH, and the models that

utilize its assumptions, the reality of continued episodes of extreme volatility, booms,

and crashes has led some to consider alternatives. The search for alternatives has

gained further impetus following the upheaval in global markets in 2007, which

plunged the world into the Global Financial Crisis (GFC) that, according to the

IMF, cost the global economy USD 11.9 trillion [6]. One theory that utilizes the EMH
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is the capital irrelevance theory [27], where it was initially proposed that the capital

structure, and therefore the dividend policy of a company was irrelevant in

determining a company's value, a claim tested in this paper.

To gain an understanding of why ¯nancial markets fail to comply to the pre-

scribed behavior, at least in terms of the EMH, the use of a complex systems

framework has become increasingly popular and relevant. For a system to be con-

sidered complex, it must contain some, if not all, of the following: feedback, non-

stationarity, many interacting agents, adaption, evolution, single realization, and be

open [15]. This position is consistent with the views of Sornette [37], who concluded

that to understand stock market returns, one must consider: imitation, herding, self-

organized co-operativity, and positive feedbacks. If one is to accept that ¯nancial

markets operate as a complex system, then one must accept that the behavior of the

system is an emergent process based on the self-organized behavior of independently

acting, self-motivated individuals [10].

An additional bene¯t of utilizing a complex systems framework is that it allows

networks to be included, something that has become an important consideration

with the growth of network science and the availability of data. The case for

the increasing utilization of network science within a complex system view of the

economy comes from the fact that due to the increasing dependency between eco-

nomic agents, it is becoming increasingly di±cult to predict and control the economy

[35]. In a more speci¯c application of networks to ¯nancial markets, they have been

able to explain trading decisions and portfolio performance [30] and networks have

been found to exist between investors [36].

The use of agent-based models (ABMs) has been become a primary tool in trying

to understand the dynamics of a complex system, and a large volume of work

utilizing ABMs to create arti¯cial stock markets has been developed (see [19, 37] for

extensive reviews of the application of ABMs to ¯nancial markets). The key rationale

for the use of ABMs is that they are not constrained to equilibrium conditions [37],

with the utilization of network structures between agents within these models

providing a fertile stream of research.

This paper implements an arti¯cial stock market ABM that not only makes use of

di®ering investor networks but also varies the dividend payout ratio of the risky asset

traded in that market, with the intent of understanding under what conditions,

if any, that the capital irrelevance theory accurately re°ects the outcome recorded by

the model. The various experiments employed to meet the research objective pro-

duces multiple considerations for management when implementing a dividend policy,

and for investors in general. These include the topology of the network their investors

are linked through, the need to appreciate what is driving the share price of a

company at any particular time, momentum or fundamentals, and how investors are

assessing the various sources of information available to them.

The remainder of this paper is structured in the following manner: the back-

ground to and the support for this paper (Sec. 2), followed by a review of the model

underlying this paper, including both the original model of Harras and Sornette [13]
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and the author's extensions (Sec. 2). The extensions cover the use of di®ering net-

work topologies (Sec. 3.2) and the introduction of dividends as determined by a user-

determined payout ratio (Sec. 3.1). The results of the various experiments are then

presented with the results from the di®erent experimental settings compared and

contrasted (Sec. 4). Conclusion and discussion (Sec. 5) are provided to review the

signi¯cance of the ¯ndings and highlight future research opportunities.

2. Background

While the origins of the EMH and the principle that stock prices are unpredictable

can be traced back to the early 1900's [3], it was not until the 1950's that it gained

traction in the broader economic community (see [24, 40] for a comprehensive

account of the development of the EMH and its application in modern ¯nance). For

the EMH, e±ciency refers to the fact that all information is rapidly re°ected in the

price and there is no information capable of moving the share price that is not

already incorporated in the price. In turn, because news arrives in a random un-

predictable fashion, prices will follow a similar pattern, resulting in returns and the

asset's price following a random walk. Further, returns are assumed to follow a

Gaussian distribution, noting that it was originally suggested that prices would

follow such a distribution [3]; however, this was revised when it was proposed that it

was returns [28], rather than prices that followed a Gaussian distribution [40]. Im-

plicit within this assumption is the fact that periods of extreme price volatility, asset

bubbles, and subsequent crashes, will not and cannot occur.

Due to there being no precise de¯nition for a ¯nancial bubble, nor consensus on

how to detect them, or the fundamentals that are responsible for creating them there

has much debate on whether they exist [41]. A straightforward de¯nition of a bubble

is a boom that ended with a crash, with a boom being de¯ned as a doubling of

a market's value within a year, and a crash a halving of its value within the same

time-period [11]. Periods of high price to earnings (PE ratio) is an alternate metric

associated with markets potentially being in a bubble [11], because it represents

a period where the assets' prices are not supported by their fundamental earnings.

However, not all periods of excessive asset valuations equate to a bubble because

a crash, the steep decline in prices, that is required to classify the period of high PE's

as a bubble, does not eventuate.

An alternative view to how ¯nancial markets have performed is that a Gaussian

model provides a rough approximation of ¯nancial market returns, but fails to

explain outlying events [17]. One such outlying event was the crash that occurred in

global markets in the October of 1987, when the Dow Jones index fell 22.6% in a day.

Under the assumptions underlying the random walk theory, the probability of such

an event is 1 in 50 billion [26]. It is the underestimation of such an event that has

driven the search for alternative theories to explain the outlying events.

A further view of the return characteristics of ¯nancial markets, as summarized

by [5, 15], is that they demonstrate: excess volatility ��� the existence of large

Market Fluctuations Explained by Dividends and Investor Networks
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movements not supported by the arrival of new news; heavy tails ��� returns exhibit

\heavy-tail" or \fat-tail" indicating that returns deviate more than anticipated and

do not follow a Gaussian distribution; volatility clustering ��� large changes are

followed by further large changes; and volume/volatility clustering ��� trading

volumes and volatility show the same type of long memory. In addition, Mandelbrot

[25] ¯rst provided evidence that returns may follow a unique distribution, a power-

law distribution, see [22] for a detailed review of the empirical evidence supporting

the existence of power laws in ¯nancial markets. For investors, the main implication

of returns following a power-law is that the risk of large losses is much higher than

suggested by the EMH, and markets are more volatile. It is the existence of power-

law returns that provides the key insight that ¯nancial markets may operate as a

complex system.

To gain an understanding of the dynamics of a complex system, ABMs have

become a key tool as they allow for interaction between individual agents (investors,

in the case of ¯nancial markets) who act and undertake actions based on the context

of their environment while utilizing a basic set of rules. The agents' behavior is not

¯xed and can evolve in response to the behavior of other agents and their environ-

ment. Another advantage is that ABMs are not constrained to equilibrium condi-

tions [37], which is the key assumption underlying traditional neo-classical models of

¯nance and economics in general. ABMs also provide researchers with the option

of creating niche focused models to explore a speci¯c issue, such as the model pre-

sented in this paper, or a holistic economy wide model intended to explore the

implications of policy intervention, as demonstrated by the EURACE project [7].

Regardless of the modeling approach the focus of the research with regards to arti-

¯cial stock markets has been to reproduce the stylized facts of ¯nancial markets, and

identifying the conditions under which the return characteristics match the EMH or

models that utilize it.

Since the original ABM-based arti¯cial stock market (see [2]) there have been nu-

merous approaches employed to uncover the true dynamics of ¯nancial markets. The

various frameworks can be divided into four categories [5]: heterogeneous arrival of

information; evolutionary models; behavioral switching; and investor inertia. The dif-

ferentiating factors for each framework is how they handle agent preferences, the price-

settingmechanism, whether evolution is allowed, and how strategies are stored. Despite

the di®erences, each framework has the common theme of utilizing heterogeneous

agents in terms of both expectations and investment strategies with the intention of:

studying how the agents act and prices change; reproducing the stylized facts of the

markets, and most importantly understanding the in°uence of the market's micro-

structure. The models are not without issues, and in particular the early models as they

tended to be complex, making it di±cult to determine the in°uence of each of the inputs

andwhat the key determining factors were [20]. Further, the predictive power of a given

model can be constrained and it is unclear how to generalize a given result [37].

The inclusion of networks within the various ABM-based arti¯cial stock markets

is now a growing ¯eld of research. The belated use of this technique most likely
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resulted from the fact that the work on arti¯cial stock markets predated the meteoric

rise in the applications of network theory in the 2000s. Additionally, given the level of

computing power available at the time and the computational intensity required, the

inclusion of networks was not feasible. The bene¯ts of adding networks have since

been demonstrated when, the real-world market returns were replicated in a model

that utilized social interaction amongst investors [14]; the network structure of

investors was shown to in°uence the stability of, and the °uctuations of, an asset's

price [32]; and, it was demonstrated how bubbles can emerge because of agents

considering di®erent information sources, including the expected actions of their

neighbors [13].

Given the importance of dividends to the total return of a ¯nancial asset

(for example, for the S&P 500, dividends are responsible for 42% of total returns

[34]), it is important to gain a greater understanding into the possible a®ect they

have in the decision-making process of the investors. Regardless of the role dividends

play in the decision-making process of the investor, it should be noted that the reason

why ¯rms pay a dividend is an area of ongoing discussion, with no decisive evidence

supporting the argument that they are used to signal favorable information to the

market or to mitigate agency problems [21]. An alternative view has been provided

by ¯rstly [4] and supported by, [21], with the proposed dividend catering theory.

Under the theory, investors' demand for higher yield stocks, and therefore any

premium that the dividend paying ¯rms attract, is dependent on the investors'

appetite for dividends at any particular time, which in turn varies based on the

market conditions [21]. The model presented in this paper complements this theory

by presenting, and explaining, the dynamics of how the demand for yield is capable of

driving the prices of assets above what may be considered their fundamental level.

One interpretation of how investors should consider dividends is the capital-

structure irrelevance theory [27]. The underlying principle is that the market value of

a company comes from its earning power and the risk of its underlying assets,

therefore making its value independent of the way it ¯nances investments or dis-

tributes dividends. A further consideration is that if a company has high growth

prospects, its market value should be higher and hence its stock prices would be high.

In turn, if a company is lacking attractive growth prospects, the market value of

that company will be lower. The EMH is one of the key assumptions used to justify

this proposition, because for the theory to hold, all investors must have access to all

relevant information and the information is fully re°ected in the price of the asset.

The implication of these points being that if the theories hold true then the intro-

duction of a dividend should have no e®ect on the risky-asset's price, a point tested

in this paper.

The focus of this paper is to test the validity of the proposed behavior of the

investors under capital-structure irrelevance via an ABM-based arti¯cial stock that

has investors linked via varying network topologies. As such, the paper takes the

important step of fusing together the works of ABM-based arti¯cial stock markets

and corporate ¯nance literatures. The relevance being that while the use of dividends

Market Fluctuations Explained by Dividends and Investor Networks
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to invoke varying investor behavior is quite common in ABM-based arti¯cial stock

markets, the existing literature has tended to treat the dividend as an exogenous

variable generated through a stochastic process. In contrast, the current model

combines a stochastic earnings per share (EPS) variable, investor expectations

through an endogenous consensus forecasting process, and a user-determined divi-

dend payout ratio for the risky asset. The approach is justi¯ed as this dividend

payment process more closely resembles what occurs in the corporate world, thus

opening a new line of research, which is to understand if and how management can

manipulate its stock price using its dividend policy, given the underlying earnings'

potential of the company remaining comparable. This topic is particularly relevant

given the low central bank interest rates, and the subsequent search for alternative

yield by investors at the time of the research.

The model is also capable of analyzing the e®ect the alternative investor network

structures have on the performance of ¯nancial markets, with a focus on under-

standing whether certain network structures lead to greater volatility, and analyzing

the dynamics behind whether or not the population forms large common groups

(\herds") in terms of their investment strategies. Therefore, the causation of several

documented e®ects of the investor networks, including, how the topology of a social

network a®ects information e±ciency [30], and the role the centrality plays in

determining the dynamics of the market [29, 31] can be investigated. The relevance of

understanding the dynamics behind herd formation is that it provides insight into

how bubbles can form in ¯nancial markets.

3. Methodology

From the wide array of model frameworks that exist, the arti¯cial stock market as

detailed by Harras and Sornette [13] was used as the foundation for this paper.

Various extensions were then implemented to address the speci¯c research questions,

with the ¯nal model implemented in NetLogo 5.3. The justi¯cation for utilizing the

aforementioned model is that it was able to generate price movements that were

a®ected by investors who were in°uenced in their decision-making process by their

neighbors, and the asset returns matched the stylized facts of ¯nancial markets that

yet did not match the Gaussian distribution of the public and private information. In

addition, the model can generate a signi¯cant bubble as investors ¯rstly join a buying

herd, before switching to the selling herd, as the returns of the risky-asset no longer

justi¯ed an investment in it. The occurrence of the bubble is the result of a positive

feedback loop, with regard to investors adopting the actions of their neighbors,

becoming the dominate in°uence in the decision-making process of the investors [13].

However, the in°uence of the positive feedback is conditional on the initial bias that

investors have to trust the actions of their neighbors.

To maintain the focus of the paper on the results rather than the minutiae of

the model, a brief description of the original model and the author's extensions

follows. A more detailed description of the workings of the model via a design and
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details document (ODD), along with the source code, is available at www.openabm.

org/model/5203/. To replicate the results of this paper, when using the model, the

user should set the switches for the H&S and e® frontier parameters to o®, these

are found under the Output Options heading. Further settings relevant to this paper

are detailed in the results section (see Sec. 4).

The model is initialized with two classes: the risky asset and the investors. In turn,

when the investors are initialized they are connected in a network as determined by

the user, as discussed in Sec. 3.2. The key variables the asset owns are its payout

ratio, its price (initiated at 1), and the mean and standard deviation of its EPS,

the relevance of which is discussed in Sec. 3.1. The key investor variables include:

the in°uence of the various information sources, their transaction ratio (tr), and the

transaction threshold. The transaction threshold is heterogeneous across the popu-

lation and is drawn from a uniform distribution between 0 and the user-de¯ned value

at initiation. Separately, the market depth (�), which is used in the calculation of the

new asset price, is set at initiation. In terms of the repeated steps, Fig. 1. provides an

illustration of how the model operates at each step.

The basic premise behind the original model is that the boundedly rational

investors have access to three sources of information (the expected actions of their

neighbors (Eij½aikðtÞ�), public information (piiðtÞ), and private information (�ijðtÞ)
that they utilize to determine their propensity to invest (!ij) in a risky asset as per

Eq. (1). In terms of notation, i refers to the ith asset, j the jth investor, k the kth

neighbor of agent j, and K being the number of neighbors agent i has. To determine

the expected actions of their neighbors, each investor polls their neighbors' actions to

see if they are buying, selling, or holding their risky assets at each step. The other

information sources are generated by a random draw from a normally distributed

Step 1 - The 
information for the 

assets is updated

Step 2 - Agents 
analyze the updated 

information

Step 3 - Agents 
decide whether to 
buy, hold or sell

Step 4 - Agents orders 
are combined into the 

market order book

Step 5 - The market is 
cleared with a new 
price and returns 

calculated 

Step 6 - Agents judge 
and update their trust 

in the public 
information

Step 7 - Agents judge 
and update their trust 

in their neighbors

Step 8 - The model 
updates the agents' 
portfolio holdings 

Step 8 - Portfolio 
values and return 

characteristics 
updated 

Fig. 1. Flow diagram of the repeated steps in the implemented model.
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probability function. The investor then compares their transaction thresholds to

their resulting (!ij) to determine their actions.

!ij ¼ c1ij

XK
k¼1

ntjkðt� 1ÞEij½aikðtÞ�
 !

þ c2ijptiðt� 1ÞpiiðtÞ þ c2ij�ijðtÞ: ð1Þ

The level of in°uence of each information source is weighted by a combination of

up to two variables. For the c1ij, c2ij, and c3ij variables, investors are initiated with a

¯xed value that is drawn randomly from a uniform distribution between 0 and a user-

de¯ned value. With the variable being used to weight how the investor assesses the

relevant information source, an acceptable interpretation is that a higher value

(such as 4) indicates a higher initial bias towards the relevant information source.

As investors have a di®erent value for these variables a level of heterogeneity is

introduced within the population. It is by altering the c1ij, c2ij, and c3ij coe±cients

that di®erent dynamics are generated. In particular, when the upper limit for c1ij is

set at 4, bubbles in the risky asset's price appear. Hence, analyzing the e®ect of

di®erent levels for this variable and c2ij forms a key component of this paper and the

original paper [13].

An important consideration in designing an ABM-based arti¯cial stock market is

the mechanism under which the price is determined. Options include establishing

order books and ful¯lling those orders through an auction process, or making use of a

market-maker who co-ordinates the market. The early models tended to favor the

market-maker approach while the later models have turned to a formal auction

market. In what some may consider \hand waving", the market-maker can clear the

market by providing liquidity and standing on the other side of all trades at each

tick. This means that investors are guaranteed to have their trades executed and

allow for price determination to occur at each step. Therefore, the market will not

become frozen due to a lack of liquidity or an inability to match orders, something

that is a real-world consideration. In addition, returns are not a®ected by large

gaps in a discrete order book. The downside to this approach is that the model

loses the ability to assess what the investors were willing to pay and accept for the

asset. In the model utilized in this paper, the price of the risky-asset is endo-

genously determined via Eq. (4) (see Sec. 3.2 for an explanation) after each investor

makes their investment decisions, and submits their buy or sell orders (step 5

in Fig. 1).

Investors then use the subsequent asset returns to reassess and adjust the

trust they have in each of their information sources via the network trust (ntjk) and

public trust (pti) coe±cients (steps 6 and 7 in Fig. 1). These variables are initiated

at 0, with the investors' trust based on the ability of the information source to

predict an appropriate action, an appropriate action being when the information

tells the investor to buy and the price subsequently increases (and vice-versa for a

sell signal).
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3.1. Model extension ��� Dividends and earning expectations

To remove a level of abstraction in the original model a new source of public infor-

mation and dividend process were introduced. The ¯rst change was to include an

EPS value for the risky asset on the basis that it re°ects the income-generating

ability of the asset and is a key component in determining the fundamental value of

an asset. The EPS value at each step is drawn from a Gaussian distribution, in a

similar manner as the original model, but with the probability density function

(PDF) having a mean equal to the initial price of the asset divided by the model's

time-frame which is then further divided by an appropriate price earnings (PE) ratio.

The extended model uses a quarterly time-frame with an initial price and PE of 1

and 15. The standard deviation of the EPS is set by the user, and for the results of

this paper it was set at 50% of the mean. Based on this, the fundamental value of the

risky-asset remains at 1 throughout the life of the model, with any period of sustained

movement away from this price giving rise to a potential bubble.

A consensus earnings forecast is also included as in a given ¯nancial bubble, it is

the expectation of future earnings rather than present economic reality that moti-

vates the average investor [37]. The model computes the forecast by using a moving

average of the asset's EPS history with an exponentially decreasing kernel, as

determined by the memory weight parameter (�). The signi¯cance of the parameter

is that it sets the time scale over which past performance a®ects a variable's value,

which is given by (j1=ln(memory weight parameter)j).
To determine the value of public information, the extended model has the

investors assess the actual EPS for the asset at each tick against the consensus

forecast, as per Eq. (2). If the actual earnings exceed the consensus estimate

(piti > 0), this is considered an earnings' surprise, resulting in a buy signal, and vice-

versa for a miss. If earnings meet expectations, then the information adds no value

because the investor assumes the information is already re°ected in the price.

Support for the extension comes from the volume of work that shows stock prices

that react positively to positive earnings' news, yet it takes time for this information

to be re°ected in the price of the asset [18].

piiðtÞ ¼
epsiðtÞ � epsfiðtÞ

epsfiðtÞ
: ð2Þ

In a further extension, the risky asset returns a dividend [DPS as de¯ned by diðtÞ]
if the EPS for a period is greater than 0. The extended model determines the assets'

dividend as per Eq. (3). The justi¯cation for the use of a payout ratio, as opposed to

an absolute dividend is that a ¯rms payout ratio is dependent on a combination of

various accounting metrics including pro¯tability, cash °ow, and debt to equity ratio

[11]. The payout ratio is set by the user at initiation.

diðtÞ ¼ epsiðtÞ � pay out ratioi: ð3Þ

Market Fluctuations Explained by Dividends and Investor Networks
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Equation (4) provides an explanation of how the inclusion of a dividend a®ects the

return of the asset in any given time period (riðtÞ). The ¯rst half of Eq. (4)

( 1
��J

PN
j¼1 aijðtÞ � vijðtÞ)deals with how an excess or de¯ciency in demand, as given

by
PN

j¼1 aijðtÞ, for the asset a®ects its price when the market clears. The role of the �

term is to weigh the investors' actions by the market depth, where � is de¯ned as

liquidity and J is the total number of investors. The justi¯cation for the approach is

that while it is only an approximation compared to the use of an actual order book, it

provides a reasonable result [9]. The greatest downside is that the process assumes a

permanent market e®ect between the clearing processes.

The second half of Eq. (4) (logððdiðtÞ þ piðtÞÞ=piðtÞ) is the mechanism by which

the inclusion of the dividend a®ects the return. Unsurprisingly, the presence of the

dividend will boost the returns for investors. Therefore, when investors reassess their

trust based on the returns of the asset if the price increased, the level by which the

trust is reassessed is ampli¯ed upwards due to the dividend. However, if the price

declines after a negative news, the signal is suppressed due to the dividend (on the

condition that the EPS was > 0). Therefore, investors will tend to revise upwards

their trust at a faster rate than they revise it downwards. The rami¯cations of this

are assessed in Sec. 4. Despite receiving a dividend, investors do not have access to

those funds for reinvesting. This ensures that the extended model remained consis-

tent with the original model, which was closed to new funds.

riðtÞ ¼
1

� � J
XN
j¼1

aijðtÞ � vijðtÞ þ logððdiðtÞ þ piðtÞÞ=piðtÞÞ: ð4Þ

The relevance of Eq. (4) to the dynamics of the model is shown through Eq. (5)

(noting that this equation relates solely to a single risky asset implementation of the

model). The equation relates to Step 7 in Fig. 1, and shows how the agents update

their trust in each of their neighbors (ntjkðtÞ) in each period. A similar equation is

also used for the updating of the trust the agents have in their public information,

and this is updated in Step 6 of Fig. 1.

ntjkðtÞ ¼ � � ntjkðt� 1Þ þ ð1� �ÞEij½aikðt� 1Þ� � riðtÞ
�irðtÞ

: ð5Þ

The ¯rst part of the above equation discounts the previous value of the trust by

the variable (�), which is set by the memory weight parameter. The signi¯cance of

the � variable (the default setting in the model is 0.95, which equates to a memory of

20 periods), is that it dictates the length of time that the value of the the \scaling

term" at time t continues to a®ect the level of the trust variable. The role of the

\scaling term" ( riðtÞ
�irðtÞ) is to normalize the past return of the asset by the standard

deviation of its past returns. The rationale is that a larger return scaled by its

volatility (�irðtÞ) will enhance the trust to a greater degree[13]. It should be clear to

the reader that the inclusion of the dividend, as seen in Eq. (4), will in°ate the

`scaling term" resulting in an accelerated increase in either of the trust variables

M. Oldham
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when they have provided correct advice in the past. This is a very important point

because it should amplify the speed at which investors will increase the trust they

have in an information source. Therefore, the speed at which the population herds,

resulting in a bubble or crash, will increase.

3.2. Model extensions ��� Networks

The rationale for utilizing networks is that across a variety of research ¯elds it has

been proven that the behavior of a system can vary greatly depending on the network

topology by which its agents are connected. However, while actual investor networks

and their behaviors have been successfully uncovered [26], or implied through data

analysis [31], it is an extremely di±cult task to do so, thus providing the justi¯cations

for utilizing simulations, such as the one as provided in this paper, to investigate the

possible underlying relationship between the investor networks and the behavior of

¯nancial markets. By using simulations, the claims about how the social network of

the investors a®ects the information e±ciency of markets [30] and how the resulting

centrality characteristic a®ects the dynamics of a ¯nancial market [29, 31], can be

more thoroughly examined. These works provide the motivation and reference points

for the network extensions made to the implemented model, that is the model is

designed to assess the e®ect on the pricing behavior of a risky asset resulting from

changing the topology of the network that connects the investor population.

Within the network science literature there are four general types of network:

regular/lattice, random/Erdos–Renyi, small-world, and scale-free, all of which are

initially assessed in this paper. In high-level terms, the di®erences relate to how each

agent is assigned neighbors and the number of neighbors they have. The di®erences

are evident through various network speci¯c metrics such as: degree distribution

(the number of neighbors an agent has), centrality (where an agent is located in the

network), and clustering coe±cient (how the agents are grouped), and the diameter

of the network (the steps required to reach other agents). It is the di®erences in

these variables that are likely to be contributors as to why the pricing behavior

may change for the di®erent topologies. The model used in this paper has the

°exibility to consider these networks, with a range of settings including: the number

of neighbors an investor has and the probability that the investors connect to

each other.

A lattice network has agents joined to a given number of agents that immediately

surround them. This means that lattice networks are characterized by their agents

being highly clustered but within the diameter of the network, that is the maximum

number of steps required for any agent to reach another agent being high. In addi-

tion, each agent has the same number of neighbors, that is the degree distribution is

uniform. While lattice networks are not common in the real world, they may be

relevant to ¯nancial markets given the location of investors on trading desks. Despite

its abstract nature, a lattice network provides a meaningful baseline by which the

Market Fluctuations Explained by Dividends and Investor Networks
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researchers can investigate the dynamics of a system, and in particular how the

agents' behaviors change as a given shock di®uses through the population.

A small-world network is more consistent with the social networks of people, and

is premised on the fact that the geographical proximity plays an important role in the

formation of social networks. Agents are mainly linked to those agents immediately

around them but importantly they are linked to a small number of long-distance

neighbors. This distinction from the lattice network sees the small-world network

maintain a high degree of clustering but due to the long-distance connections the

overall diameter of the network is much smaller, meaning that in general it takes less

number of steps for a given agent to reach another agent within the population.

The rami¯cation for ¯nancial markets being that if investors are linked through a

small-world network it will take lesser time for a rumor or a change in a stock

recommendation to spread through the network in comparison to a lattice network.

Whether the di®erences in these networks a®ects the pricing behavior of the system

is assessed in Sec. 4.

A random network, which consists of N agents with each agent pair connected

with probability p, has an abstract nature, and therefore generally serves as a the-

oretical base line only. However, a special form of a random network, the scale-free

network, provides a unique network structure that can a®ect the dynamics of a

system. A popular mechanism for generating a scale-free network is through pref-

erential attachment ��� a process where an agent chooses their neighbors based on

how many neighbors the potential neighbor already has. This process delivers a \the

rich get richer" outcome, which results in the degree distribution of the network

following a power-law, or at the very least a heavily skewed distribution. This dis-

tribution contrasts with the Erdos–Renyi network, where the degree distribution

follows a Gaussian distribution. For ¯nancial markets this structure would be seen

when a large proportion of investors are linked through only a few important

investors, for example a Warren Bu®et or a rating agency. The implication for the

markets and this paper, being that if investors trust these key investors then the

volatility of the market can potentially increase as the actions of investors

become more aligned as they follow the key investors without considering other

information sources.

The ¯rst step in generating the lattice network in the implemented model is for

the user to set the number of neighbors each investor is to have via the Ring M

parameter. As undirected links are being formed by the investors, the parameter is

set as half the number of required neighbors because an investor becomes a neighbor

with another investor regardless of whether they create the link or the neighbor

creates the link with them. The results for the lattice network were generated with

each investor having 4 neighbors, so the parameter is set at 2. The algorithm places

each investor into a list, which is sorted by the investor's numerical identi¯cation

number. Each investor is then asked to form an undirected link with the next highest

investor in the list. The process is repeated for the investor by value of the Ring M

parameter, with the following link being formed with the next highest neighbor.

M. Oldham
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The small-world network is formed in a similar manner to the lattice network,

with the exception being that based on a given probability an agent will re-wire an

existing connection to another agent selected randomly from the population. For low

probabilities of re-wiring (5%) the resulting network will exhibit a high level of

clustering, similar to a lattice network, yet a small overall network diameter, as

discussed previously. The probability of an agent re-wiring is set at 10%

(prob of rewire parameter) for this model. The Erdos–Renyi network is created by

providing a probability by which an agent connects to another agent. For this model

the this was set at 0.16% (prob of link parameter). Therefore, the average number of

neighbors in the population is 4, with the some agents having up to 13 neighbors,

while some agents have no neighbors.

To create a heavily skewed degree distribution for the scale-free network, the user

needs to decide on the number of hubs (set by the Ring M parameter) and the

probability (prob of link parameter) of an investor connecting to each of those hubs.

The algorithm operates with each investor identifying the hubs, which is achieved by

the investor searching the population and forming a list with the investors with

the highest number of neighbors. The number of investors in the list is determined

by the Ring M parameter. Next, each investor with a probability determined by the

prob of link parameter links with each of the investors in the list. This process is

su±cient to create a scale-free network via a preferential attachment process. This

paper uses the following settings: number of hubs (set by the Ring M para-

meterÞ ¼ 10 and probability of connection (prob of link parameterÞ ¼ 0:20. There-

fore, the average number of neighbors in the investor population equals 4, which is

comparable with the lattice network, noting that the lattice network has a uniform

degree distribution while the scale-free is skewed.

In creating the various network topologies, the ability to have the average number

of edges and the average number of neighbors consistent across the di®erent network

structures was a key consideration. This meant that any di®erence in the outcome

across the networks was not in°uenced by the number of edges, but solely by the

degree distribution of the network, thus relating any ¯ndings back to the proposi-

tions presented in [30]. The signi¯cance of the di®ering degree distribution is that if

an investor only has one neighbor they will have an initial bias toward public and

private information, as they collect less opinions, and if they have a lot of neighbors

there will be an initial bias towards the information coming from their networks as

they collect more opinions. Consideration was given to normalizing the network

information but this would have minimized the e®ect of the di®erent network

structures. With investors continually reassessing their trust in each information

source, it does not preclude a single neighbor becoming very persuasive. Conversely,

an investor with many neighbors may end up having very little trust in them.

To illustrate the di®erent characteristics of the various network topologies, Fig. 2.

(all ¯gures in this paper have been produced using [33]) plots the clustering coe±-

cient against the average closeness centrality for each of the networks based on the

variables described previously. The key observation is that the scale-free network's

Market Fluctuations Explained by Dividends and Investor Networks
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clustering coe±cient is in the middle of the sample, while the lattice and Erdos–Renyi

networks are at either end of the spectrum, and its average closeness is the highest.

This ¯nding supports the hypothesis that the scale-free network is potentially the

most volatile because the opinions of the key investors have su±cient clusters to

in°uence, and their neighbors on average are closer, as indicated by the closeness

centrality metric, thereby allowing their in°uences to spread quickly. Alternatively,

while the small-world and lattice networks have a higher clustering coe±cient, these

clusters may not be large enough nor close enough to form a common herd. There-

fore, in these markets the volatility should be lower due to a greater number of

competing opinions. The Erdos–Renyi appears to lack both the closeness and clus-

tering of neighbors for a common decision to propagate across the population.

Additionally, consistent with the previous description of the network characteristics,

while the average number of neighbors in each network is 4, the degree distribution

varies greatly with it being uniform for the lattice network while for the scale-free

network it has heavily skewed distribution with a small number of agents linked to

many other agents.

4. Results

To meet the objective of this paper ��� to understand if, and how the network

topology of investors, and the presence of a dividend a®ects the behavior of the

market, a wide range of parameter settings and experiments were utilized. Firstly, a

sensitivity analysis was undertaken to assess the e®ect on the pricing behavior of the

model resulting from varying the initial bias towards listening to one's neighbor (c1),

with 1, 2, 3, and 4 used, the network topology and the dividend payout ratio (ratios

of: 0, 33%, 66%, and 100% were used). The relevance of varying c1 is ¯rstly, to allow

the presented model to be veri¯ed against original model [13], and whether with

similar initial settings (that is no dividend) the model produces the comparable

pricing behavior, and secondly to serve as a baseline to compare the results once a

dividend is introduced. The parameters chosen for the analysis, which are consistent

Fig. 2. The clustering coe±cient and closeness centrality measures for each of the networks, as per the

setting described in Sec. 3.2. The measures are representative of the connectedness of the networks and

illustrate the key di®erences in various topologies.
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with those used in [13] were: 2,500 investors, 2,500 steps per run, 30 runs per setting,

a conviction threshold of 2, a market depth (�) of 0.25, a transaction ratio (tr) of

0.02, and a memory length (�) of 0.95.

To highlight the di®erences across the various parameter settings, Fig. 3 provides

heat maps that illustrate the average standard deviation in the asset's returns across

the 30 runs for each of the di®erent payout ratios, network topologies, and levels

of c1. The standard deviation of returns was chosen as that which can capture the

volatility of the system. Utilizing the standard deviation in the price, or mean of the

price was also assessed, and produced a similar conclusion, which is that the scale-

free network produces results which are inconsistent with the other 3 topologies.

From the bottom land hand corners of each of heat maps in Fig. 3, it is evident

that the scale-free network has higher levels of volatility for the lower levels of c1,

thus distinguishing itself from the other 3 networks. The other 3 networks exhibit

similar characteristics in that it is only when c1 is greater than 2 does the volatility

increase. Thus, implying that it is the highly skewed degree distribution of the scale-

network that is responsible for the contrasting outcome. However, in a key ¯nding,

the e®ect of the network topology becomes somewhat redundant once the bias

increases. On this basis, and in the interest of maintaining the readability of the

paper, from this point onwards, the analysis is restricted to the lattice network, as it

allows for a direct comparison with the ¯ndings of the original paper [13], and the

Fig. 3. Heat maps illustrating the sensitivity in the volatility of the risky-asset's returns to the varying
network topologies, the dividend payout ratio, and the initial bias that the investors have towards listening

to their neighbors. The scale-free network (see Graph (d)) can be di®erentiated from the other 3 networks

based on its higher volatility when there is no dividend paid and when investors have no disposition to

following their neighbors, as seen in the bottom left-hand corner of Graph (d).

Market Fluctuations Explained by Dividends and Investor Networks
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scale-free network because it is produces the greatest variation. 2 additional points of

interest that are investigated in the remainder of this section, are that as c1 increases

the volatility of the systems all increase, and with the exception of the scale-free

network, as the payout ratio increases so does the volatility of the system.

Having identi¯ed the initial e®ects of changing the payout ratio, network topol-

ogy, and the level of network in°uence, the next step was to analysis the e®ect of

increasing the in°uence of the public information source ðc2Þ. The intention being to

test whether investors having a higher initial faith in the value of public information

can prevent the positive feedback loop that results in investors following their

neighbors' behaviors, thus ensuring that the risky-asset's price remains in a range

closer to its fundamental value. The importance of this step being that the use of

public information (the EPS result for the quarter) is a proxy for the fundamental

analysis, meaning that if investors have greater trust in this information source, then

the asset's price should move in a manner closer to a random walk, as investors

receive this information in a random fashion as prescribed by the EMH.

Fig. 4. Boxplots illustrating the mean price of the risky asset over 2,500 for the lattice and scale-free

networks with varying payout ratios and public information bias, with the y-axis representing the price,

with the x-axis presenting the various combinations of the initial bias investors have to the public

information source, and the chosen payout ratios.
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To gain a greater understanding of variation in the behavior of the asset's price

across the various parameters, for the lattice and scale-free networks, Fig. 4 provides

boxplots which summarize the behavior of the mean price (the price of the asset

across the 2,500 steps) for each of the settings in the parameter sweep. It is evident

that there is both a large variation within and between the various networks and the

payout ratios. In terms of the lattice network, once the initial bias to listening to your

neighbors (the c1 variable) is set at 4 then the mean price is greater than 8 once the

dividend payout ratio is increased to 33% (top right of Fig. 4). For the scale-free

network, the c1 variable does not need to be increased to 4 for the mean to move

away from 1 (bottom left of Fig. 4). The other point to note is that the scale-free

network maintains a higher degree of variability in general across the various

settings.

To appreciate why the price di®erences occur, an analysis of how the time series

evolved is required. The movement of the price of the asset utilizing the 2 network

topologies, varying levels of c1ij (as detailed in the heading by the c1 value), and the

payout ratio results are illustrated in the fan plots [1] in Figs. 5–8. Fanplots were

selected as they e®ectively illustrate the distribution of the asset's prices resulting

from changes to various parameters. By way of explanation, the plots overlay the

results of each run with the price plotted against the y-axis, with the relevant time

Fig. 5. Fan plots that illustrate the e®ect, over the length of the simulation run, of varying the dividend

payout ratio over time for the lattice network, with the initial bias towards public ðc2Þ and network

information ðc1Þ equal to 1. The plots display the density of the price distribution at each step, with a

higher density represented by a darker shading.
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Fig. 7. The relevant fan plots demonstrating the e®ect of varying the payout ratio over time for the scale-

free network, with the initial bias towards public ðc2Þ and network information ðc1Þ equal to 1.

Fig. 6. The e®ect of varying the payout ratio over time for the lattice network, with the initial bias

towards public ðc2Þ set to 1 and the bias towards network information ðc1Þ equal to 4, a setting that is

su±cient to have the price move materially from its fundamental value.
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step for the given run plotted on the x-axis. This allows the shading to show the

density of the distribution, with a darker shading representing a higher density of the

price distribution at a given step. The plots were formed from 30 runs for each of

the parameter settings noted in the heading. To provide a clear picture in terms of

the expected dynamics for each of the scenarios, the median price with the line

marked with 50% is also provided. The lattice network results are seen in Figs. 5

and 6 and the scale-free network results in Figs. 7 and 8.

The upper left-hand corner of Fig. 5 shows the setting of c1 ¼ c2 ¼ 1 and no

dividend. These settings see no volatile price movements with the price series con-

¯ned to a narrow bound around 1. This result e®ectively replicates the results from

the original model with similar settings thus supporting the use of the extended

model. While the price band is narrower than the original model, tests con¯rmed that

the distribution of the returns did not ¯t a Gaussian distribution. Further veri¯ca-

tion of the extended model is illustrated in the top left-hand corner of Fig. 6 where

the settings are changed to c1 ¼ 4 with no dividend. Now bubbles, that are com-

parable in size to the original model [13], appear.

The introduction of a dividend a®ects the price series in several ways. Firstly,

from Fig. 5, where the payout ratio is increased from 0 to 1, it can be seen the median

and the volatility of the price series increase. At this point it is worth remembering

Fig. 8. The relevant fan plots demonstrating the e®ect of varying the payout ratio over time for the scale-

free network, with the initial bias towards public ðc2Þ set to 1 and the bias towards network information

ðc1Þ equal to 4.
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the key characteristic of the model, namely, that a dividend is only paid when the

EPS for a period is greater than 0 and the investors cannot reinvest the proceeds.

Also, a sell signal is generated when the EPS result for the asset is lesser than the

consensus forecast for the asset, which occurs approximately 50% of the time. In the

instance that EPS< 0 and the result is below the consensus, the sell signal will not be

diluted by the payment of the dividend. However, if the EPS result is positive,

a dividend is paid which will boost the returns thus reducing the power of the sell

signal, which in turn may limit the growth in trust for the public information. The

anticipated e®ect of this is that the trust that investors generate in the information

from their networks is likely to go unchecked by the public information. This in turn

will result in the formation of more herds as investors tend to follow the actions of

their neighbors rather than act on public information or even their private infor-

mation. The consequence of the formation of more herds is that the price will increase

in range and volatility based on the size of the herd.

From Fig. 5 it was evident that the introduction of a dividend under a regime

where there was no initial bias to any information source ðc1 ¼ c2 ¼ 1Þ had a mild

a®ect. However, the results in Fig. 6, which illustrate the outcome of setting c1 to 4

(a setting that is responsible for the creation of a bubble [13]), are far more explosive.

The most telling result is that once the dividend is introduced the behavior post the

in°ation of the bubble is very di®erent. In particular, the price of the risky-asset

remains materially elevated above its fundamental once the payout ratio is greater

than 33%. Even with a payout ratio of 33%, the median price remains in a zone that

could be justi¯ed as bubble territory (i.e., the median PE ratio is in excess of 140),

but the investors experience a high degree of volatility as the boom crashes in

some instances, albeit it is not su±cient to move the median price materially from its

upper limit.

The signi¯cance of these ¯ndings is that if there is a high initial bias amongst

investors toward listening to your neighbors ðc1 ¼ 4Þ, the introduction of a dividend

sees investors form a buying herd and they can never be persuaded to switch (by

analyzing the intentions of the population this process was con¯rmed). The herding

occurs regardless of what the investors' public and private information sources are

telling them, including the fact that the EPS of the asset will miss the consensus on

average 50% of the time, thus creating a negative score for public information and

providing a sell signal. This phenomenon occurs because the trust the investors place

in the actions of their neighbors dominates the decision-making process and the trust

does not subside nor can the trust in the other sources build su±ciently to displace it.

A more detailed discussion of this point is provided at the end of this section.

To test the null hypothesis that dividends have no e®ect on price, Kruskal–Wallis

rank sum tests were utilized given the nonnormal distribution of the asset's prices.

Table 1 reports the mean prices for each of the permutations used in the experiment.

The null hypothesis, that for a given level of initial public ðc2Þ and network trust ðc1Þ
that increasing the payout ratio has no e®ect, is rejected in all instances ��� see (a) in

Table 1. The inference being that increasing the payout has a positive e®ect on the
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price for an asset despite the asset having a similar earnings pro¯le. To determine the

exact relationship and to test its signi¯cance, more data points would need to be

generated. The table also provides statistical support that in most cases if the initial

bias to public information is increased, then the mean price is lower for a given

payout ratio ��� see (b) in Table 1. Therefore, if investors follow fundamental

information over following their neighbors then the market will behave in a manner

closer to what is prescribed by the EMH.

The results of the utilization of a scale-free network are shown in Figs. 7 and 8,

and con¯rm the initial ¯ndings seen in Fig. 3, which is the scale-free network gen-

erates results that are signi¯cantly di®erent from the lattice network. The key dif-

ference, as seen in the top left of Fig. 7. is that a bubble is generated despite there

being no dividend, and the investors having no initial bias for listening to their

neighbors ðc1 ¼ 1Þ. A similar result is also generated when the original source of

public information is utilized in combination with a scale-free network. This provides

another key ¯nding of the extended model, which is if investors are linked in a scale-

free network, the market will be more volatile, regardless of the bias that the

investors may or may not have towards the information coming from their neighbors.

It has been proposed that the price volatility will be highest in markets with an

intermediate level of connectedness yet lower in markets with higher or lower con-

nectedness provides a possible explanation for this result [30]. Indeed, while the scale-

free network does have a lower average betweenness measure than the other topol-

ogies, it does have intermediate clustering when compared to other network topol-

ogies. Importantly, this ¯nding becomes irrelevant once the initial bias to listening to

one's neighbors increases, that is the network topology is only important when the

investors consider all information sources equally.

Returning to Fig. 7, we can see that as the dividend payout ratio is increased,

there are two points of interest. The ¯rst is that the median price is greater than 1 in

the earlier time periods and the second being that the volatility of the system appears

to increase. The median price series also behaves in a contrasting manner to the

lattice network, as it appears to revert to 1 (or at least trend down) in all cases except

Table 1. The mean prices of the risky-asset resulting from the various experimental

settings.

Dividend payout ratio

c1 c2 0.00 0.33 0.66 1.0 Ave.price p-Value

1 1 1.000 1.133 1.474 1.785 1.348 (a) < 0.01

2 0.999 1.024 1.155 1.360 1.134 (a) < 0.01

Ave. 0.999 1.078 1.315 1.573 1.241
p-Value 0.060 (b) < 0.01 (b) < 0.01 (b) < 0.01

4 1 1.350 8.111 8.937 8.979 6.844 (a) < 0.01

2 1.393 7.287 8.892 8.953 6.631 (a) < 0.01

Ave. 1.371 7.699 8.915 8.966 6.738

p-Value 0.204 (b) 0.013 (b) 0.012 (b) 0.035

Market Fluctuations Explained by Dividends and Investor Networks
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the 100% payout scenario. Interestingly, in the 0% payout case, the median price

drops well below 1 following the initial crash of the bubble, before trending up to 1.

This occurs because the investors continue to sell all the way to the bottom as they

remain in a selling herd until the price hits the bottom. The positive payout scenarios

still experience the initial crash but the dividend cushions the fall, and the selling

herd dissipates earlier in the cycle. Given the contrasting ¯ndings for the lattice

network, it appears that the e®ectiveness of a company's management to support

their share price via a dividend will be in°uenced by the network that their investors

have formed, thus providing a key insight produced by this paper.

The result of increasing c1 to 4 for the scale-free network, as per Fig. 8, produces a

diverse set of ¯ndings in comparison to the lattice network. Firstly, the median price

only remains elevated once the payout ratio is 66% or greater. For anything less, the

bubble will de°ate and the price returns to its fundamental level. Even at the 66%

payout ratio, while the median price remains high, there is far more volatility in the

series. The other point is that the bubbles do not reach the same level as the lattice

network and there appears a minor downward trend over time, something not seen in

the lattice model.

The e®ect of increasing c2 (the initial bias to public information) provided several

interesting insights. From Fig. 4 the initial impression is that while the movement of

the median price away from 1 still occurs, it is more gradual and does not reach the

same level achieved by c1 ¼ c2 ¼ 1. A possible explanation, as highlighted in

Table 1, is that the e®ect of higher initial bias to public information is to slow the

growth in the trust among neighbors, which in turn diminishes the probability of a

herd forming. This occurs because under this regime the in°uence of the fundamental

analysis is not diluted to the same extent in the decision-making process. Therefore

this result identi¯es a mechanism that can prevent the in°ation of a bubble, namely,

investors having a stronger initial faith in their public information source. The im-

plication is that the use of fundamental information must remain in the population if

excessive price movements are to be avoided.

To answer why the di®erent network topologies and payout ratios create such

di®erent results, one needs to look at the dynamics regarding the trust that the

investors have in the information coming from their neighbors. Noting that bubbles

result when the positive feedback mechanism with regard to investors adopting the

actions of their neighbors becomes the dominant in°uence in the decision-making

process, Fig. 9 provides boxplots for the average network trust, in the same manner

that Fig. 4 did for the prices. What becomes apparent is that the level and deviation

of the network trust in each of the scenarios matches the price series, thus providing

support to the argument that it is the level of trust investors have in their neighbors

that is primarily responsible for driving the market volatility. Of note is the lattice

network where c1 is set to 4. This scenario, which is responsible for an inde¯nite

period of the risky-asset's price remaining well in excess of its fundamental value

(when the payout ratio was greater than 33%), has the highest level of trust and a

lower deviation in trust once the payout ratio increases above 33%. In summary from
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Fig. 9, it is apparent that the level of trust can be a®ected by the network topology

that investors form, the dividend that companies pay, or the level of bias investors

have to public information.

To gain a greater understanding of how and why the network trust varies under

the di®erent levels of initial bias, Figs. 10 and 11 are provided. These fanplots are for

the price time series pro¯le of the asset, returns, the \scaling factor" (as de¯ned in

Eq. (5) and its utility explained in Sec. 3.1), and the network trust. Looking at

Fig. 10, which shows the results from a lattice network with c1 set at 1, and a 100%

payout ratio, the key observations are that: the price (Graph (a)) grows at a similar

rate as the average level of trust that the population has in its neighbor's advice

(Graph (d)); the return pro¯le declines over the length of the run (Graph (b)), as

percentage price increases become subsequently smaller; and the \scaling factor"

accelerates very early in the run (Graph (c)), thus updating the trust at higher rate,

before eventually remaining stable. It is important to note that under the scenario of

Fig. 10, the agents do not have an initial bias towards listening to their neighbors, so

despite the high scaling factor, it takes time for the population to fall into the buying

Fig. 9. Boxplots illustrating the mean level of trust that investors have in the information originating

from the network. The plots are for the lattice and scale-free networks with varying payout ratios and
public information bias, with the y-axis representing the level of trust, with the x-axis presenting the

various combinations of the initial bias investors have to the public information source, and the chosen

payout ratios.

Market Fluctuations Explained by Dividends and Investor Networks
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herd because the investors are more balanced in their assessment of the various

information sources.

The results seen in Fig. 11, which is from a lattice network topology with c1 set at

4 and a 100% payout ratio, contrasts signi¯cantly to Fig. 10. Apart from the fact that

the price rises well in excess of its fundamental value (a price of 1) and never returns,

the key ¯nding is that the population takes less time to build trust in the actions of

their neighbors, with this resulting in the earlier formation of a material buying herd,

resulting in the asset returns being signi¯cantly higher in the early periods. In turn,

this sees the factor variable peak, and reaches a much higher value in the earlier

periods. These observations reveal the process that is responsible for the price of the

asset remaining well in excess of its fundamental value inde¯nitely ��� a perpetual

bubble; that is, it is the rapid growth in trust amongst neighbors as a result of the

higher returns due to the combination of a high initial bias to listening to one's

(a) (b)

(c) (d)

Fig. 10. The evolution of key variables throughout the simulation with an initial setting of no bias

ðc1 ¼ c2 ¼ 1Þ to the information sources using the lattice network. Graph (a) shows the price series while

an illustration of the associated returns is shown in Graph (b). Graph (c) shows the change in the scaling

factor, which is used to update the trust parameters. Graph (d) plots the average network trust across the
population, which grows in a similar fashion to the price of the risky asset.
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neighbors, and the introduction of a dividend sees the positive feedback cycle gain

su±cient velocity to force the entire population into a buying herd early in the cycle.

However, one must remember that it does require an initial bias to listen to your

neighbors, and therefore ignoring the fundamental analysis for this dynamic to appear.

Figure 11 does provide evidence that once the initial returns slow the scaling

variable and the level of the network trust declines, but not to a level that sees the

boom de°ate, which would occur once the members of the population left the buying

herd. It should also become apparent that the price is in danger of collapsing if the

dividend payout ratio is reduced. Parallels to this are evident with the ¯rst global

¯nancial crisis, as documented in the Extraordinary Popular Delusions and the

Madness of Crowds [23]. During the South Sea bubble investors rushed into

the market, hoping to replicate the returns of their neighbors and attracted by the

(a) (b)

(c) (d)

Fig. 11. The evolution of key variables throughout the simulation with an initial bias to listening to your

neighbor ðc1 ¼ 4Þ using the lattice network. Graph (a) shows the price of the asset rising, and remaining

well in excess of its fundamental value, while Graph (b) shows how the returns evolve. Graph (c) shows

that the scaling factor, which is used to update the trust parameters, has an initial peak before settling into
a constant range. Graph (d) plots the average network trust across the population, which has a similar

early spike in its value.
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promise of dividends provided by the likes of the South Sea Company. While there

were other contributing factors to implosion of the South Sea bubble, once companies

were unable to meet the promised dividend payments the justi¯cation for maintaining

an investment in them evaporated, and the boom ended in a spectacular crash.

5. Summary and Conclusion

The conclusion that can be drawn from this paper is that dividends can make an

important contribution to the price of the risky-asset being maintained above its

fundamental level as they underwrite returns, which in turn supports the positive

feedback process of investors imitating their neighbors. This ¯nding provides evi-

dence that management does have the ability to in°uence their share prices through

their dividend policies, which contrasts with the capital structure irrelevance theory.

In reality this may be a short-term view because increasing the payout ratio comes at

a cost, namely, a lack of investment in future growth. Therefore, the earnings pro¯le

of the company will quite possibly be unsustainable if the dividends remain high. It is

this point that provides an obvious extension for this paper, which is to make the

payout ratio an endogenous variable within the model and assess the trade-o® be-

tween future growth and current dividends.

Another implication for a company's management stemming from this paper is

that if they are to maximize the positive e®ect of paying a dividend, they must

understand how, and if their shareholders are connected, and whether they have a

positive bias to a certain information source. In the instance that a company's

shareholders are connected through a few in°uential investors, as per the scale-free

network, then regardless of the actions of management the company's stock price will

be more volatile, and, a dividend has limited e®ect. If investors are more evenly linked,

then management has a greater ability to increase the share price of their company by

providing a dividend that underwrites the returns for investors. If investors are more

inclined to follow their neighbors than the fundamental analysis, then a dividend can

help maintain this behavior regardless of the topology of the investor network.

As for the e®ect of investors being more susceptible to following their neighbors, it

was observed by Keynes [16] that markets tended to be more e±cient when pro-

fessional investors, using fundamental analysis, controlled them, and it had been the

result of \uneducated" investors, who tended to follow the crowd entering the

market, that created the greater volatility. The implication for management from

this ¯nding is that if their investors are more inclined to follow the herd then they can

expect to see their share prices exhibit greater volatility.

The ¯ndings from this paper provide further points of research, namely, adding

further dynamics to the model, such as new investors entering the market, how

investors attach to their neighbors, and gaining a greater understanding of the

networks underlying the real-world investors. All of which support the argument

that ABMs and network science still have a considerable contribution to make in

understanding the dynamics of ¯nancial markets.
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