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Cloud is the carrier of precipitation and an important atmospheric factor that 

influence both the long-term climate change and short-term weather dynamics of the 

earth (Molinari and Dudek, 1992; Rossow and Schiffer, 1999; Hamilton, 2006). It 

substantially affects Earth’s energy budget by reflecting solar radiation back to space and 

by restricting emission of thermal radiation to space (Ramanathan et al. 1989), and is 

important regulator of the climate and earth-atmosphere system (Sassen et al., 2008). The 

profiles and types of clouds are also crucial parameters of global climate models (GCM) 

and numerical weather predictions (NWP). They are considered to be the largest 

uncertainty in the analysis and prediction of climate change, owning to the difference 

between climate models and observational datasets over the area where clouds occur 

(Dufresne and Bony, 2008). Cloud features such as cloud fractions and precipitation 

capabilities have significant different of impact on the earth system and are related to 

various natural disasters. The lack of complete knowledge concerning the complex 
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interactions among clouds, circulation, and climate hinders our ability to simulate the 

Earth’s climate correctly (Daloz et al., 2018). Furthermore, in the condition of climate 

change, many cloud-related procedures and changes occur in scales that is smaller than 

the climate model grids. It is impossible to include these sub-scale processes and their 

response to increasing temperature in current climate change simulations. As a 

conclusion, a comprehensive investigation of cloud distribution and classification in high 

resolution is essential for the research and analysis of the entire Earth system.  

Regarding the importance of cloud fraction in the performance of climate models 

and lack of cloud fraction estimation of hyperspectral IR sounders, a deep neural network 

model is created to retrieve the cloud fraction within the field of view (FOV) of Cross-

track Infrared Sounder (CrIS). To reduce the model input factors without losing spectral 

information thus increase the retrieval efficiency, principal component transformation is 

performed on the original CrIS spectrum and sensitivity tests are conducted to determine 

the best performing combination of PCs as model predictors. During the training 

procedure, the best-performed iteration and epoch numbers are also tested to avoid over 

fitting. In general, the cloud fraction retrieved from the proposed DNN model are 

consistent with truth values calculated from the VIIRS cloud mask product, resulting in a 

low Mean Square Error (MSE) of 0.021 and a high Pearson correlation coefficient (R) of 

0.924. 

Regarding the challenge of low spatiotemporal resolutions of microwave (MV) 

precipitation products and the relative low accuracy of infrared (IR) products, this study 

combines the information and takes advantages from both MW and IR data. A deep-
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learning-based rainy cloud detection and classification framework is developed using 

ABI spectrum as input predictors and IMERG precipitation estimates as learning target. 

With the high spatial-temporal resolution of ABI images, the proposed system will be of 

high performance in real-time regional and local precipitation monitoring. And to include 

full coverage of precipitation characteristics of the study area, IMERG is used as truth 

instead of discretely distributed ground observations. The assessment parameters indicate 

that the proposed models produce relatively accurate results with a critical success index 

(CSI) of 0.71 and a probability of detection (POD) of 0.86 for rainy cloud detection, and 

CSI of 0.58 and a POD of 0.72 for convective clouds delineation. 

Regarding the relatively low efficiencies of traditional algorithms in processing 

large remote sensing data, the study utilizes deep learning method to classify rainy cloud 

types and estimate cloud fractions. With the flourish of Artificial intelligence (AI) and 

big data techniques, AI methods such as machine and deep learning have been broadly 

adopted to investigate geospatial and climatological phenomena, as well as predict 

natural disasters, which triggers a new concept, GeoAI. Although traditional machine 

learning methods have shown their capability and potential in precipitation detection and 

monitoring, deep learning (DL) approaches are more accurate in processing big data with 

large volume and various features (LeCun et al., 2015), such as remote sensing images 

which contain an abundance of spatial, temporal and spectral information. The study 

proposes deep-learning based cloud classification and fraction retrieval framework using 

GEO and LEO satellite data, satellite precipitation product and cloud mask product to 

detect and classify the rainy clouds of Advanced Baseline Imager (ABI) into stratiform 



xv 
 

and convective, and estimate the cloud fractions in the field of views (FOVs) of 

hyperspectral sounder. 

This research is innovative for the following reasons: 1) cloud fractions of hyper-

spectral sounders have rarely been addressed but are important for most climate and 

weather forecast models, this study retrieve the real cloud fraction in each field of view 

(FOV) of hyper-spectral sounder; 2) most passive microwave (PMW) based satellite 

precipitation products are at low spatiotemporal resolutions and ground precipitation 

measurements are sparsely distributed, the study creates a high-resolution rainy cloud 

type product by combining PMW and geostationary satellite data, to support the 

precipitation disaster management; 3). After the models are successfully trained, the 

retrieval and detection results can be produced in high efficiency, which avoids the 

complex calculation in traditional algorithms; 4). The mature and advanced AI method in 

the computer science field is utilized to explore new application from the observations 

from the JPSS and GOES satellites. 
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CHAPTER ONE INTRODUCTION 

Section One Overview and Objectives 

Cloud is an important atmospheric factor that influence both the long-term 

climate change and short-term weather dynamics of the earth (Molinari and Dudek, 1992; 

Rossow and Schiffer, 1999; Hamilton, 2006) with a coverage of 50% of the earth surface. 

It substantially affects Earth’s energy budget by reflecting solar radiation back to space 

and by restricting emission of thermal radiation to space (Ramanathan et al. 1989), and is 

important regulator of the climate and earth-atmosphere system (Sassen et al., 2008). It is 

found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat 

fluxes have a clear dependence on cloud types and scale (Zhang et al., 1999). And due to 

their capabilities of producing precipitation (Liu et al., 2019) and mutual influence with 

aerosol particles (Xu et al., 2013), the structures, fractions and types of clouds are directly 

related to various kinds of atmospheric phenomena (Guzman et al., 2017). Take tropical 

cyclones (TC) as an example, the convective clouds embedded in TC systems play an 

important role in their sustenance and development, because the intensification and 

movement depend on the latent heat released in the clouds (Subrahmanyam et al., 2018). 

The fractions and types of clouds are also crucial parameters of climate models and 

numerical weather prediction (NWP). They are considered to be the largest uncertainty in 

the analysis and prediction of climate change, owning to the difference between climate 
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models and observational datasets over the area where clouds occur (Dufresne and Bony, 

2008). The lack of complete knowledge concerning the complex interactions among 

clouds, circulation, and climate hinders our ability to simulate the Earth’s climate 

correctly (Daloz et al., 2018). Therefore, the accuracies of model-based reanalysis data 

sets such as MERRA2 rely significantly on the performance of cloud detection, 

classification and segmentation.  As a conclusion, a comprehensive investigation of cloud 

fraction and classification are essential for the research and analysis of the entire climatic 

and atmospheric system. However, it is a challenging task to distinguish different clouds 

and estimate cloud coverage from satellite imagery because of intraclass spectral 

variations and interclass spectral similarities (Yu et al., 2018). Additional information 

from other sources such climate model reanalysis data, as well as a reliable, repaid and 

accurate methodology are needed to achieve a better result.  

Furthermore, many of the atmosphere’s most important processes occur on scales 

smaller than the grid resolution of current climate models. Physical processes relevant to 

cloud coverage, formation and life cycle can occur at scales as small as a few hundred 

meters and play a crucial role in determining the Earth’s climate by transporting heat and 

moisture, reflecting and absorbing radiation, and producing rainfall. It is impossible to 

include physical processes of these sub-scale processes in current climate change 

simulations. To represent the effects of such sub-grid processes on the resolved scales, 

physical approximations—called parameterizations—have been heuristically developed 

and tuned to observations over the last few decades. However, owing to the sheer 

complexity of the underlying physical system, significant inaccuracies persist in the 
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parameterization of clouds and their interaction with other processes, such as boundary-

layer turbulence and radiation (Stevens et al., 2013; Bony et al., 2015; Schneider et al., 

2017).  Therefore, sub-grid parameterization development is crucial to improve climate 

predictions (Rasp et al., 2017) and climatological applications.  

Among all the clouds, rainy cloud is critical for monitoring hydrological disaster, 

studying precipitation and water science, and developing climate model, however, there 

is no high resolution near-real-time rainy cloud product to support these studies. This 

dissertation proposes to fill this gap using deep learning methods to automatically classify 

rainy cloud in to convective, stratiform and non-rainy at 2km spatial resolution and 5 min 

temporal resolution using GOES-16 Advanced Baseline Imager (ABI) data. The results 

of this study will provide near-real time decision support for the warning and mitigation 

of natural disasters such as tropical cyclones and storms. The AI model will also help to 

increase the accuracy and efficiency compared to traditional detection methods. In light 

of the aforementioned aspects, this dissertation focuses on the following aspects:  

1). Fusion of different datasets sources. The input predictors and learning targets 

of the models proposed in this research have different spatiotemporal resolutions, data 

structures and storage formats. To integrate these datasets into the same AI models (rainy 

cloud classification and cloud fraction retrieval models), corresponding predictors and 

learning target should be preprocessed including initial quality control and spatiotemporal 

collocation. For cloud fraction retrieval, CrIS fields of view are collocated with VIIRS 

cloud mask; for rainy cloud classification, GOES-16 ABI pixels are collocated with 

IMERG grids. 
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2). Building a DNN model for cloud fraction retrieval in hyperspectral sounder 

FOVs using CrIS spectrum information and VIIRS cloud mask. Under the full spectral 

resolution mode, the CrIS measures 2211 radiance channels in total. If these original 

channels are all adopted as input predictor, the model efficiency will be significantly 

reduced. In order to retain all the spectral information of the channels and improve the 

calculation efficiency, the CrIS spectrum are firstly transferred to principal components 

(PC). Then the optimized PC number is determined through a series of sensitivity tests. 

The cloud fraction retrieval model is trained using these selected PC and VIIRS pairs. 

Model parameters such as iteration and node numbers are tuned to achieve optimized 

performance. To further validate the model accuracy, a set of independent data and use 

cases are tested. 

3). Building a deep-learning based rainy cloud detection and convective pixel 

delineation framework based on DNN model using GOES-ABI and IMERG precipitation 

estimate. The framework contains two models, a rainy cloud detection model which 

detect the pixels with rainfall rate > 0.1mm/hour; and a convective cloud delineation 

model which segment the pre-detected rainy clouds into convective and stratiform clouds. 

The input predictors are selected based on the knowledge of spectral features of cloud 

types. The performance of different machine-and deep-learning methods will be 

compared to confirm the superiority of the proposed DNN models. 

4). Exploring the feasibility of AI methodologies in natural phenomena analytics 

using cloud features as examples. 
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Section Two Cloud Fraction Retrieval 

Cloud fraction is defined as the proportion of cloud coverage in a satellite pixel or 

a weather or climate model grid box. It is one of the most crucial cloud parameters in 

modeling the downward radiation at both the Earth’s surface and at the top of the 

atmosphere (Dürr and Philipona, 2004; Chen et al., 2012), and also one of the largest 

sources of uncertainty in Global Climate Models (Mueller et al., 2011; Wang et al., 

2019). Since cloud fraction is a key factor in the climate models (Sekiguchi et al., 2003; 

Chuang et al., 2012), an accurate and reliable cloud coverage estimation is essential for 

climate studies.  

Among all the satellite data, infrared sounder is an important source of Global 

Climate Model (GCM) and Numerical Weather Prediction (NWP). Different cloud 

fractions have different effects on the atmospheric radiative transfer. Therefore, the 

quality of cloud fraction estimation is crucial for the accuracy of the predictions. There 

are generally three types of cloud fraction retrieval method for infrared sounders. The 

first one is using visible and infrared channels of satellite sensors to decide the cloud 

coverage based on the spectral features of cloudy pixels (Arking and Childs, 1985; ). 

Another method is to estimate the effective cloud fraction by simulating the reflectance 

and transmittivity of cloudy/clear sky using window channel spectrum (Koelemeijer et 

al., 2001; Sihler et al., 2020). The third method is based on collocated data pairs and use 

the cloud mask of higher resolution data to decide the cloud coverage of lower resolution 

data (Huang et al, 2010).  
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Due to the low spatial resolution of infrared sounders, the last method is widely 

used based on the correspondence between infrared sounders and their same-platform 

imagers. Even though promising results have been achieved when using the imager’s 

information to identify infrared sounder’s cloud contamination, most of these results have 

mainly focused on the cloud and clear sky differentiation. The imager’s capability in 

checking sounder’s sub-pixel cloud coverage has not been well discussed and explored. 

With the rapid development of AI technologies, we now have more tools to conduct the 

cloud investigations. Therefore, this paper innovatively develops a DNN model to 

automatically estimate the cloud fraction in hyperspectral infrared sounder FOV 

observations, using the CrIS instrument as an example. The cloud mask of VIIRS, a high-

resolution imager onboard the same satellite platform with CrIS, is utilized as the truth to 

determine the cloud fraction in CrIS FOVs during the model training procedure. It is 

worth to note that the proposed method could be easily adopted by other hyperspectral 

infrared sounders. For example, AIRS could be trained using Moderate Resolution 

Imaging Spectroradiometer (MODIS) measurements, or IASI with Advanced Very-High-

Resolution Radiometer (AVHRR). The results from this study can be further used in 

partial cloud detection and improving other cloud parameter retrievals as well as climate 

models. 

Section Three Rainy Cloud Classification 

Precipitation is one of the most essential contributing factors to global 

hydrological circulation (Campoy et al., 2013) and destructive natural disasters globally 

including hurricanes, floods, and droughts. Convective precipitation with abnormal 
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activities of convective systems may lead to severe urban floods (Mason et al., 2009), 

landslides (Keefer et al., 1987), and flash floods (Alfieri et al., 2015), which cause 

devastating short-term and long-term impacts on people, economies, infrastructure, and 

ecosystems. To mitigate these negative impacts, precipitation detection and convective 

precipitation extraction data with high spatiotemporal resolution are essential in extreme 

precipitation monitoring, forecasting, and early warning systems. These data are also 

crucial for validating results and diagnosing problems in numerical weather forecast. 

Recently the increasing availability of high spatiotemporal resolution datasets is 

contributing to the real-time detection and monitoring of precipitation events in a limited 

fashion for various domains, including environmental science (Valipour, 2016), climate 

change (O’Gorman, 2015), the economy (Wang, 2018), and society (Skofronick-Jackson 

et al., 2017). For example, rain gauge data provide accurate measurements of 

precipitation rate (Karbalaee et al., 2017) while their discrete distributions are limited in 

both space and time. Passive Microwave (PMW) remote sensing is a widely-used 

technique to retrieve precipitation rate but is restricted in spatial-temporal resolutions and 

time effectiveness, limiting its resolution in fine-scale disaster warning and real-time 

precipitation monitoring. In contrast, optical sensors onboard geostationary satellites 

offer higher spatial and temporal resolutions (Hong et al., 2017).  The available spectral 

information and resolutions for extracting the properties of rainy clouds (e.g., cloud top 

height, cloud top temperature, cloud phase, cloud water path (Thies et al., 2008)) are 

increasingly more accurate. Infrared (IR) data are more widely used in authoritative 

precipitation products including the Tropical Rainfall Measuring Mission (TRMM) 3B42 
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(Huffman et al., 2007), Integrated Multi-satellitE Retrievals for Global Precipitation 

Measurement (IMERG) (Huffman et al., 2015), and Climate Prediction Center Morphing 

Technique (CMORPH) Global Precipitation Analyses (Joyce et al., 2004). Given the 

advantages of optical sensor data, this paper focuses on rainy cloud detection and 

convective precipitation delineation using images of IR and the visible spectrum 



9 
 

CHAPTER TWO LITERATURE REVIEW 

Section One Cloud Fraction Retrieval 

Traditionally, cloud parameters including cloud coverage in satellite FOVs can be 

estimated using the spectral information of visible and infrared channels, by calculating 

the reflection and transmission properties of cloud layers (Arking and Childs, 1985). 

Another method is developed to simultaneously retrieve the affective cloud fractions of 

Global Ozone Monitoring Experiment (GOME) pixels by simulating the spectrum of 

cloudy or partially cloudy pixels based on three ~1-nm-wide wavelength windows 

(Koelemeijer et al., 2001).  

Measurements from satellite infrared sounders provide valuable information for 

atmospheric profile retrievals, such as temperature, humidity, clouds, green gases, and so 

on. They are also directly assimilated into numerical weather prediction models (Jones et 

al., 2017; Li et al., 2016) and General Circulation models (Aumann et al., 2009) for 

weather forecasting, understanding the climate, and forecasting climate change. By 

design, the infrared sounders have a large footprint (greater than 10 km in diameter), 

resulting in their field of views (FOVs) often containing clouds, which can affect the 

atmospheric window channels. Many infrared sounder-based cloud cover retrieval 

algorithms have been developed in the past decades (McNally and Watts, 2003; Susskind 

et al., 2003; Smith and Taylor, 2004; Li et al, 2004; Eresmaa, 2013; Kahn et al., 2014; 
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Wang et al., 2014; Lin et al., 2017; Liu et al., 2020) for different purposes. A widely used 

cloud cover retrieval method was developed by Susskind et al., 2003, 2006, 2011, 2014, 

for the Atmospheric Infrared Sounder (AIRS). In this retrieval method, the clear and 

cloudy observations are first identified using a cloud clearing method (Susskind et al., 

2003). Later, the difference between the radiance of the satellite observations and that of 

selected channels in the model fit is used to estimate the effective cloud fraction. 

Assuming the cloud emissivity is spectrally flat, channels are selected that are most 

sensitive to clouds. This cloud cover retrieval method has been adopted in the AIRS 

cloud products (Kahn et al., 2014) and been further extended to the Infrared Atmospheric 

Sounding Interferometer (IASI), as well as the Cross-track Infrared Sounder (CrIS) 

(Susskind and Kouvaris, 2017; Christopher et al., 2021). It must be noted that the 

retrieved effective cloud fraction is the product of geometric fractional cloud cover and 

the cloud emissivity, rather than the real spatial cloud fraction within a sounder’s FOV 

(Kahn et al., 2014), as it is difficult to accurately distinguish them using sounder 

measurements alone.  

In addition to these approaches, the cloud coverage information of the 

hyperspectral infrared sounders can also be obtained from an accurate collocated imager. 

Li et al. (2004) developed an effective AIRS cloud detection method based on the cloud 

mask measured from MODIS. In their study, each AIRS FOV is separately checked by its 

collocated MODIS cloud mask to determine whether it is cloudy or not. Similar methods 

also have been developed for the IASI (Eresmaa, 2013) and the CrIS (Wang et al., 2014; 

Wang et al., 2016) instruments. Since the sounder’s cloud information is obtained from 
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the high spatial resolution (usually around 1 km) imager, the sub-pixel, or partially cloud 

detection, as well as the cloud fraction retrieval for the infrared sounders becomes 

available. However, it usually takes a considerable amount of data, time, and 

computational resources to complete their spatiotemporal data collocation. To solve this 

issue, Liu et al. (2020) recently developed a novel CrIS cloud detection method based on 

the deep neural network (DNN). Deep neural network is one of the most widely used 

artificial intelligence (AI, Antun et al., 2020) and big data technologies (Yang et al., 

2019) in the analytics of atmospheric phenomena (Liu et al., 2019; Schlef et al., 2019). 

Unlike all of the previous mentioned methods, the CrIS spectra are directly trained with 

VIIRS cloud mask for fast and accurate sounder cloud detection. After the DNN model is 

constructed, only the CrIS spectra is needed to determine its cloudy scene, avoiding the 

complex sounder-imager collocation pre-processing.  

 

 
Section Two Rainy Cloud Classification 

Rainy cloud detection is more complicated than merely extracting the cloud area, 

especially when different types of rainy clouds overlap. There are mainly two types of 

clouds that produce precipitation - nimbostratus and cumulonimbus clouds (Jensenius, 

2017; WMOI, 2019). A nimbostratus cloud is morphologically textureless, usually with a 

thick layer distributed from low to mid-level altitude. In the daytime, it often looks grey 

or dark as observed from the ground. This kind of cloud typically produces light or 

moderate precipitation of longer duration (i.e., stratiform precipitation). When the 

atmosphere is unstable enough to allow for significant vertical growth of a cumulus 
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cloud, cumulonimbus clouds form (Donald, 2018). This type of cloud also has typically 

low base heights at about 300 meters but with tops reaching 15 km. Cumulonimbus 

clouds produce more substantial and more intense precipitation than nimbostratus clouds, 

usually along with thunder and lightning due to the collisions between charged water 

droplets, graupel (ice-water mix), and ice crystal particles.  

Different kinds of rainy clouds have characteristic signatures in both reflectance 

and brightness temperature (BT). Rainy-cloud types are identified using properties that 

reflect these features, such as cloud height, optical thickness, cloud top temperature, and 

particle size. For example, differentiating rainy clouds from the non-rainy clouds is 

achieved using their lower temperature in IR spectrums and unique color and brightness 

in the visible (VIS) spectrum. Adler and Negri (1988) estimated both tropical convective 

precipitation and stratiform precipitation from satellite infrared data based on a brightness 

temperature threshold method. The estimation of precipitation volume can also be 

achieved by measuring the cloud’s time at a specific critical threshold temperature or 

Cold Cloud Duration (CCD) (Milford and Dugdale, 1990). To improve the CCD method 

in estimating convective precipitation, Lazri et al. (2014) proposed the Cold Cloud Phase 

Duration (CCPD). Using a thresholding approach, Arai (2016) detected rainy clouds with 

visible and thermal IR imageries of AVHRR data and compared the results with radar 

data for validation. Tebbi and Haddad (2016) trained a support vector machine (SVM) 

classifier using the BTD spectral parameters of Spinning Enhanced Visible and Infrared 

Imager (SEVIRI) to detect rainy clouds and extract convective clouds in the northern 

border of Algeria, and validated the results using observations from rain gauges. Using 
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SEVIRI data in northern Algeria, Mohia et al. (2017) trained a classifier based on the 

artificial neural multilayer perceptron network (MLP). Improved from AVHRR and 

SEVIRI, the new generation Advanced Baseline Imager (ABI) was developed with 

higher spatial, temporal, and spectral resolutions. The ABI provides images with more 

thermal and spectral bands and visible colors and brightness, resulting in more sensitive 

and accurate detection of different kinds of clouds. The high scanning frequency of ABI 

also allows expedient reactions to the precipitation related disasters, which is essential for 

the coastlines of the U.S. East Coast study area. 

On the other hand, the existence of rainy and convective clouds can be reflected 

by precipitation products and measurements. Global rain gauge data observe the rainfall 

rate from the Earth surface and provide available precipitation measurement routinely all 

over the world. However, these rain gauges distribute sparsely in many important regions 

such as the mountainous area and cannot be installed and operated over the oceans. 

Furthermore, many rain gauge data only record the 6 hourly or even daily precipitation 

amounts (Villarini et al., 2008). Satellite passive microwave (PMW) sensors measure the 

thermal emission raindrops using their low frequency signals, and sense the scattering of 

upwelling radiation from the earth to space due to ice particles in the rain layer and tops 

of convective systems based on their higher frequency bands (Evans et al., 1995). 

However, PMW instruments can only be deployed on polar-orbiting satellite platforms 

(to date) due to the hardware technical challenges and they are too heavy to be carried by 

a geostationary satellites, which causes severe limitations for the spatiotemporal 
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resolutions of these PMW precipitation products unless the data are averaged 

substantially over time (Joyce et al., 2004). 

With the advancements of AI and Big Data techniques, machine and deep 

learning methods have been developed to investigate climatological phenomena and 

predicted natural disasters (Yang et al., 2019). McGovern et al. (2017) applied Gradient 

Boosted Regression Trees (GBRT), RF, and elastic nets techniques using physical 

features of the environment (e.g. condensation level, humidity, updraft speed) to improve 

the predictability of high-impact weather events (e.g, storm duration, severe wind, severe 

hail, precipitation classification, forecasting for renewable energy, aviation turbulence). 

Cloud and precipitation properties are non-linearly related to the information extracted 

from meteorological data, including satellite images (Engström et al., 2015). Meyer et al. 

(2016) compared four machine learning (ML) algorithms (random forests (RF), neural 

networks (NNET), averaged neural networks (AVNNET), and support vector machines 

(SVM)) in precipitation area detection and precipitation rate assignment using SEVIRI 

data over Germany. They concluded that no single method was better than others, and 

modification in spectral parameters was of greater necessity than the choice of ML 

algorithms.  

Although traditional machine learning methods have shown potential in 

precipitation detection and monitoring, deep learning (DL) approaches are more accurate 

in processing Big Data with various features (LeCun et al., 2015), most notably remote 

sensing images with better spatiotemporal resolution and more spectral information. To 

further examine the capability of deep neural networks (DNN), this paper proposes an 
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automatic rainy cloud detection system based on DNN models and compares the system 

performance with that of traditional machine learning methods (e.g., SVM, RF). With the 

high spatiotemporal resolution of ABI images, the proposed system has good 

performance in real-time regional and local precipitation monitoring. Including full 

coverage of precipitation characteristics of the study area, IMERG is a more accurate 

assessment of precipitation attributes in contrast to discretely distributed ground 

observations. This paper also evaluates the system in a hydrological extreme (e.g., 

hurricane) to provide a meaningful basis and reference for future studies. 
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CHAPTER THREE HYPERSPECTRAL INFRARED SOUNDER CLOUD 
FRACTION RETRIEVAL BASED ON DNN MODEL 

Section One Introduction 

The objective of this research is to retrieve cloud fraction within each Cross-track 

Infrared Sounder (CrIS) pixel based on deep learning method. The model used in this 

study is deep neural network (DNN). Compared to traditional artificial neural networks 

(ANN), it has multiple hidden layers which is suitable for large training data size with 

various input predictors. The input predictors of the model proposed by this research are 

derived from spectral information of CrIS observations. To reduce the number of 

predictors thus improve the calculation efficiency, the study performs Principal 

Component Analysis (PCA) and utilizes only the top 77 PCs as model predictors instead 

of the original 2211 bands of CrIS data. The PC number is optimized by a series of 

sensitivity tests, and the model parameters such as training iteration number, node 

number and learning rate are also tuned and optimized by conducting the sensitivity tests. 

The study seeks to contribute to the literatures on the cloud fraction retrieval topic in 

the following aspects: 1. the study utilizes AI-based method to improve the operation 

efficiency; 2. the study introduces PCA into the selection of model predictors to reduce 

the predictor number but retain the full spectral information of CrIS data as well; 3. the 

study introduce a method that uses the cloud mask of a higher-resolution sensor to decide 
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the cloud fractions of a lower-resolution hyperspectral sounder sensor. This method can 

be used to the cloud retrieval of other similar sensor pairs. 

 
Section Two Data 

3.2.1 Cross-track Infrared Sounder  

The CrIS is a Fourier transform spectrometer onboard the Suomi National Polar-

Orbiting Operational Environmental Satellite System (S-NPP) and Joint Polar Satellite 

System (JPSS-1) satellites, which has significantly enhanced performance over NOAA's 

legacy infrared sounder – the High Resolution Infrared Radiation Sounders (HIRS). The 

CrIS spectrum is measured in three infrared regions by a 3×3 gridded detectors with a 

nadir resolution of 13.5 km:  long-wave from 650 to 1095 cm-1, middle-wave from 1210 

to 1750 cm-1, and short-wave from 2155 to 2550 cm-1 (Han et al., 2013). The spectral 

information of CrIS channels is shown in Figure 1.  
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Figure 1. Spectral information of CrIS channels. 

 

 

 

There are 34 field of regards (FOR) in one cross-track scanline, with 30 of them are 

Earth views, 2 of them are deep space views and the other 2 are instrument calibration 

views. In the normal spectral resolution (NSR) mode, the CrIS collects 1305 radiance 

channels with different spectral resolutions at the three infrared bands: 0.625 cm-1 in 

long-wave,  1.25 cm-1 in middle-wave, and 2.5 cm-1 in short-wave.  The CrIS can also be 

operated in a full spectral resolution (FSR) mode. Under the FSR mode, the CrIS 

measures 2211 radiance channels over the three spectral regions with a spectral resolution 

of 0.625 cm-1 (Han and Chen, 2018). This study uses S-NPP CrIS FSR spectral 

information as the inputs and later performs a principal component (PC) transformation 
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on the original radiances to reduce the number of predictors and thus improve model 

efficiency.  

3.2.2 Visible Infrared Imaging Radiometer Suite  

The VIIRS, aboard the same platforms (S-NPP and JPSS-1) as CrIS, extends and 

improves upon a series of measurements initiated by certain legacy imagers, such as the 

AVHRR and MODIS. The VIIRS scans the earth spectrum in 22 radiance channels from 

visible (0.412 µm) to the thermal infrared (12.01 µm) bands (Cao et al., 2013), which 

includes 5 high spatial resolution bands (I-bands, 0.375 km at nadir), sixteen moderate 

spatial resolution bands (M-bands, 0.75 km at nadir), and one panchromatic day/night 

band (DNB, 0.75 km throughout the scan). In addition, it also provides various 

environmental products of the land, atmosphere, cryosphere, and ocean on a global scale 

with a higher spatial resolution and larger swath. As a key output from the VIIRS 

measurements, the VIIRS cloud mask (VCM) is now being widely used in different earth 

science studies. The VCM is determined by a series of strict checks (Kopp et al., 2014), 

with varying thresholds depending on different observational conditions. Its output has 

four flags, which are confidently clear, probably clear, probably cloudy, and confidently 

cloudy. The decimal values assigned to these four types are 0, 4, 8 and 12, respectively. 

The VCM has a much finer spatial resolution than that of CrIS (0.75 km v.s 13.5 km), 

providing us with the opportunity to check CrIS’s sub-pixel cloud coverage. In this study, 

the VCM is first collocated with CrIS FOV and then used to calculate the cloud fraction 

of CrIS which will be used as the learning target in the proposed model.  
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Section Three Method  

This study introduces a new CrIS cloud fraction retrieval method based on the DNN 

model. Fundamentally, the CrIS sub-pixel cloud information is trained from VIIRS, 

which requires the CrIS and VIIRS measurements to be collocated together. Then, a 

series of hidden layers with different neurons is built and connected between the 

collocated CrIS spectra and VIIRS cloud mask for CrIS cloud fraction retrieval. After the 

proposed model is built, the cloud fraction is directly predicted at each FOV with all the 

CrIS channel radiances. Details of each step are summarized as follows.   

3.3.1 Cloud fraction determination 

The key to this study is to build the relationship between CrIS spectra and the cloud 

fraction determined by the VIIRS cloud mask, which needs the VIIRS cloud mask to be 

collocated with CrIS FOVs. The collocation is a time-consuming process, as it must 

search all the VIIRS pixels one-by-one at each CrIS FOV for accurate spatial and 

temporal collocation. Wang et al. (2016) developed an accurate collocation algorithm for 

CrIS and VIIRS based on their line-of-sight (LOS) pointing vectors at each CrIS FOV. 

Moreover, it uses a KD-tree searching strategy during the CrIS and VIIRS data pairing 

step, to reduces the collocation time. Previous research has confirmed that both CrIS and 

VIIRS are well-geolocation-calibrated instruments (Cao et al., 2013; Wang et al., 2013; 

Wang et al., 2017). Their collocation accuracy is at sub-pixel level with error less than 20 

m (Wang et al., 2016). In this study, this collocation method is utilized to collocate CrIS 

spectra and the VIIRS cloud mask together.  
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After CrIS is collocated with VIIRS, the VIIRS pixels within CrIS FOV are then 

adopted to calculate the cloud fraction of CrIS using equation (1), 

 !"#$("#) =
&(%&'(),			#',	-../0("#$)12)	

&
  (1) 

In equation (1), !"#$("#) is the cloud fraction determined by the VIIRS cloud mask, 

&(%&'()) and  & are the number of VIIRS cloudy pixels and total number of VIIRS pixels 

within CrIS FOV, respectively.  Due to the geometric distortion caused by the scan 

mirror rotation, the total number of VIIRS pixels & in each CrIS FOV is not a constant. 

Instead, it changes with the scan mirror positions, ranging from around 200 to 1100 in 

every CrIS scanline. For the total number of cloudy scenes &(%&'()) determination, only 

confidently clear pixels are recognized as clear sky while the others are identified as 

cloudy in this study. Since VIIRS has a much finer spatial resolution than CrIS (which 

can be considered as a pure unit), the !"#$("#) estimated from VIIRS provides accurate 

subpixel cloud information for CrIS.   

Figure 2 shows an example of the CrIS and VIIRS collocation and the cloud fraction 

determination process.  As shown in Figure 2a with the three VIIRS reflectance channels 

composited true color image (R: 0.672 µm, G: 0.555 µm, B: 0.488 µm) as the 

background, CrIS FOV footprint circled in orange is larger at the limb and smaller at the 

nadir positions, which requires the geometric distortion effect to be precisely considered 

during the collocation procedure. Figure 2b shows the specific nine CrIS FOVs at the 17th 

FOR overlapping with the VIIRS true color image, and the corresponding collocated 

VIIRS cloud mask as well as the CrIS cloud fraction determined by equation (1) are 
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presented in Figure 2c and 2d, respectively. As clearly shown, only a portion of clouds 

enter into the above three CrIS FOVs, while the other six CrIS FOVs are completely 

covered the clouds. With assistance from the collocated high spatial resolution VIIRS, the 

CrIS cloud fraction information can be accurately estimated at every FOV. Figure 2e 

shows the estimated cloud fraction for a whole CrIS scanline. As compared with Figure 

2a, the estimated CrIS cloud fraction is generally consistent with the cloud distributions 

shown in the VIIRS true color image. 
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Figure 2. Example of the spatiotemporal data collocation between CrIS and VIIRS on 

Mar. 10, 2019: (a) The true color image of VIIRS overlapping with the footprints (orange 

circle) of CrIS in one selected cross-track scanline. Numbers in (a) represent the CrIS 

FOR position; (b) same as (a) but for the 17th CrIS FOR; (c) the collocated VIIRS cloud 

mask within 17th CrIS FOR; (d) the cloud fraction of CrIS calculated from VIIRS cloud 

mask at the 17th FOR with values ranging from 0 (clear sky) to 1 (completely cloudy); (e) 

same as (d) but for a whole CrIS scanline. 

 

 

 

3.3.2 DNN model building 

After the CrIS cloud fraction is determined, the next objective is to develop an 

accurate relationship between the CrIS spectra and the cloud fraction. To establish this 

connection, a data ensemble with sufficient samples is required. In order to include the 

general features and conditions of clouds, twelve days of the CrIS and VIIRS matched 

full orbit data pairs, covering every month (01/12, 02/07, 03/20, 04/03, 05/09, 06/27, 

07/12, 08/16, 09/05, 10/22, 11/15, and 12/10) of 2018, are selected as the training dataset 

in this study. In addition to the training dataset, an optimized 5-layer neural network, 

including one input layer, one principal component (PC) transformation layer, three fully 

connected hidden layers, and one output layer, is built to train the CrIS spectra for cloud 

fraction estimation. The VIIRS determined CrIS cloud fraction is used as the learning 

target for the training as well as the accuracy evaluation.  
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For the input layer, all the CrIS FSR 2211 channel radiances are used as the 

predictors. As the radiances measured from hyperspectral infrared sounders are highly 

correlated, a de-correlation needs to be performed on the original CrIS spectra before 

sending them to the hidden layers for the purpose of better regression, convergence, and 

faster prediction. As such, a PC transformation layer is added between the input and 

hidden layers, and the CrIS channel radiances are then converted into the PC scores 

!"#$3"4 through equation (2) (Xu et al., 2019), 

 !"#$3"4 = (!"#$435" − !"#$435"***********+ × &67 × -8 (2) 

where !"#$435" is the CrIS measured spectral radiances, 	!"#$435"*********** is the mean radiances 

of the CrIS channels of the training dataset and & is the instrument noises. - are the 

eigenvectors decomposed from equation (3) with the training dataset: 

 $ = - × . × -8 (3) 

where $ is the covariance matrix of the noise normalized radiances and . is the diagonal 

eigenvalue matrix. The symbol × indicates matrix manipulation. By combining all the 

above matrices together, equation (2) finally becomes (4), 

 !"#$3"4 = !"#$435" × /9 +19 (4) 

where /9 is the PC transformation coefficients and 19 is the channel dependent bias. The 

PC scores are a set of linearly uncorrelated new predictors that describe the same 

variances of the original dataset, and most of the effective Earth spectral variances are 

mainly distributed in the first few principal component scores. By only using the top 2 

principal components as further predictors, one can greatly reduce the dimension and 
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noise of the original inputs. Sensitivity tests and discussion for the selection of !"#$3"4 

are conducted in Section 3.3.  

The hidden layer using the PC scores as the inputs and further transform them into the 

intermediate results for the output layer using the learnable parameters (weights and 

biases). Three fully connected hidden layers with 64, 128, and 32 neurons in each layer 

respectively are used in the DNN model to yield the most accurate prediction. All of the 

three hidden layers are activated with the Rectified Linear Unit (ReLU) activation 

function for non-linear training, 

 3456(8) = :
0, =>"	8 < 0
8, =>"	8 ≥ 0 (5) 

where 8 in equation (5) is the input to a neuron. 3456 is a very simple function that 

returns the value directly if it is positive and otherwise returns zero. This activation 

function is considered a significant milestone in the field of deep learning and is proven 

to be an efficient way to develop very deep neutral networks (Agostinelli et al., 2014). 

The neurons within the hidden layers are used to calculate the weights and biases to 

minimize the difference between the predictand and the truth value through forward and 

backward propagations during the training process. The output layer is also activated 

with a 3456 function but was slightly modified, to correctly map the intermediate results 

produced by last hidden layers to the final cloud fraction with values ranging from 0 to 1. 

The modified 3456 function 3456:');#;5) is similar to the original but restricts the 

value to 1 if the input is higher than 1, because a cloud fraction output higher than 1.0 is 

physically unreasonable.  
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Finally, a total of 3,663,777 CrIS and VIIRS paired data samples are selected from 

2018 and taken as training data, with a third randomly selected as the validation data to 

estimate model skill while tuning its hyperparameter. After the DNN model is 

successfully constructed, only the CrIS spectra is needed to estimate cloud fraction, 

avoiding the time intensive pre-processing steps and the data collocation. Equation (6) 

shows how the cloud fraction value is estimated by the DNN model using CrIS FSR 

spectra, 

 !"#$"# = 3456:');#;5)(3456(3456(3456(!"#$435" × /9 +19) × /7

+17) × /< +1<)) × /= +1=) × /2 +12) 
(6) 

In equation (6), a CrIS spectrum !"#$435" is first converted to its !"#$3"4 with /9 and 

19. Then the !"#$3"4 is further transformed to the intermediate results through three 

3456 activated hidden layers using the model trained coefficients /7, /<, /=	 and 

17,1<,1=. The outputs from last hidden layer are finally converted to the cloud fraction 

using /2  and 12 and the modified 3456. All these model coefficients are determined by 

the training dataset during the training process. The proposed CrIS cloud fraction 

retrieval framework is illustrated in Figure 3. 
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Figure 3. Flow chart of CrIS cloud fraction retrieval framework based on DNN model. 

 

 

 

3.3.3 Model optimization 

The adaptive moment estimation (Adam) and batch gradient descent (BGD) searching 

strategy are adopted to optimize the loss function of the neural network during the model 

training procedure. As mentioned in section 3.2, the PC scores of the raw CrIS spectral 

data are firstly calculated before being entered into the hidden layers, in order to optimize 

the model (e.g., de-correlation, dimensionality reduction, fast convergence and 

predication). A two-step sensitivity analysis is performed to determine the optimized PC 

predictors for the DNN model. Firstly, the model is trained and validated with different 

numbers of PC predictors ranging in increments of 10 from 10 to 150. As the 10-step 
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sensitivity test line demonstrates in Figure 4, the best performing PC number producing 

the lowest mean square error (MSE), calculated from the differences of model predicted 

and the truth cloud fraction values of the training dataset based on one BGD iteration, 

falls between 60 and 90. After that, the model MSE shows a slightly increasing trend, 

which suggests that adding more PCs as model predictors would not improve the training 

accuracy. Based on the 10-step sensitivity test result, a further investigation is conducted 

by changing the PC numbers from 60 to 90 with a 1-step equal interval, to find the final 

PC predictors for the DNN model. Due to the stochastic characteristic of deep learning 

models, the optimized PC number with lowest MSE varies slightly in different set of 

training experiments even with the exact same parameters. Therefore, the sensitivity test 

repeats the second step 20 times (blue dish lines in the sub-plot of Figure 4) and uses 

their mean value (black solid lines in the sub-plot of Figure 4) to determine the best 

number of PC predictors. As the results show, a PC number of 77 produces the lowest 

MSE on average. Therefore, this study cuts off the CrIS principal component scores at 77 

(red arrow line in the sub-plot of Figure 4), and only the top 77 !"#$3"4 are used as the 

final predictors of the DNN model.  
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Figure 4. Sensitivity test result on the input PC number. 

 

 

 

The DNN model is then trained with the selected PC predictors on a series of epochs 

until the MSE levels off, after the lowest point of MSE. To achieve this goal, this study 

adopts an adaptive learning rate strategy. Using 100 epochs as a training group, the model 

yielding the lowest MSE within the group is chosen. After one training group is finished, 

the model is further trained based on the best result (lowest MSE) of last training group, 

with an adjusted learning rate decayed by half of the previous one. The training 

procedure is finally terminated when the MSE of the validation plateaus. The choice of 
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the starting learning rate is arbitrary.  In this study, it is set as 0.001 at the beginning. 

Figure 5 shows the lowest model MSE as a function of the training group on the training 

data (red line) and validation (blue line) data separately. As clearly shown, the training 

MSE keeps decreasing as more training is conducted. However, the validation MSE stays 

relatively consistent after 6th training group. This suggests that the model may have 

learned the training dataset after the 6th training group, and additional training has no 

significant improvement upon the validation dataset. It is therefore unnecessary to 

conduct more training after this point. In addition, it is reasonable to see a lower 

validation MSE as compared with the training result, since the model uses a dropout 

regularization (the neuron dropout rate is 5%) at each hidden layer to avoid potential 

over-fitting. The dropout is only activated during the training phase but deactivated when 

evaluating on the validation data, resulting in a better function in the latter case. Finally, 

the model is determined at the 60th epoch of the 8th training group which yields the lowest 

validation MSE of 0.0152 among all of the total 800 training epochs.  
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Figure 5. The lowest model MSE per training group on the training and validation 

datasets. 

 

 

 

3.3.4 Model accuracy analysis 

The accuracy of the proposed DNN model is analyzed based on a test (or holdout) 

dataset with 1,242,720 data samples in total selected from four different seasons of Feb. 

15, May 15, Jul. 10 and Nov. 10 of 2018. The test data for this accuracy analysis is 

different from the validation data mentioned in previous sections. It is an independent 

dataset which has not been used during the model training, and it can thus produce an 
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unbiased estimate of final DNN model’s performance. In addition to the MSE discussed 

at the training stage, the Pearson’s correlation coefficient (R) is also adopted as a metric 

to evaluate the model accuracy by measuring the correlation between the model 

prediction and truth.  

As shown in Figure 6, the predicted CrIS cloud fraction is mostly distributed near the 

1:1 diagonal line (black dish line) with high probability density. The fitting line (solid red 

line) with a slope of 1.002 and very tiny bias of 0.007, nearly overlaps the diagonal line, 

indicating a very solid correlation between the model prediction and truth. Additionally, 

the reliable performance of the DNN model can be illustrated due its low MSE of 0.021 

and high R value of 0.924. As compared with Figure 6, the MSE calculated from the test 

data is only slightly higher than that calculated from both the training and validation data 

during the training process, indicating that the model is well trained with neither 

significant under-fitting nor over-fitting. 
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Figure 6. Probability density plot of the DNN model predicted and truth cloud fractions. 

The red solid line and black dish line are the fitting line and 1:1 diagonal line, 

respectively. 

 

 

 

Figure 7 shows the differences between DNN predicted cloud fraction and the truth 

cloud fraction. The blue dot and vertical error bar represent the mean and standard 

deviation of their differences in the corresponding bins (the bin size is 0.05), respectively.  

As shown, the 1-sigma uncertainty at each bin is not identical, ranging from 0.108 to 

0.182. The uncertainty in the low cloud fraction regions (partially thin cloudy scenes) is 

overall slightly higher than that in the high cloud fraction, where the scenes are almost 
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fully covered by clouds. This is because the spectral features of thin cloud and clear sky 

are very similar to each other. Moreover, the mixed strong surface signals can increase 

the complexity of the spectra observed in the thin partially cloudy scenes, which may 

result in a higher retrieval uncertainty in these areas. Another point that can be identified 

from Figure 7 is that the DNN model tends to overestimate the cloud fraction with values 

less than 0.5, especially for those very thin partially cloudy scenes. The average 

overestimation is around 0.078 for cloud fraction less than 0.1. On the other hand, cloud 

fraction with values over 0.5 are likely to be underestimated. The largest negative 

difference between model predictions and the truth values are located near 1.0 with an 

average underestimation of 0.085. The main explanation for this is that the relationship 

between CrIS spectra and the cloud fraction is nonlinear, which results in the predictions 

from the DNN model to systematically overestimate the actual values for one range and 

underestimate them for another. We should also be aware that cutting off PCs may 

potentially reduce the model accuracy, because the abandoned PCs may also contain 

some cloud fraction related information. However, considering the effectiveness of PCA 

on reducing the data complexity of hyperspectral infrared sounders, conducting PC 

transformation is worthwhile as it indeed optimizes the model inputs. Nevertheless, the 

predictions overall agree well with the considered truth values with a high correlation 

coefficient of 0.924, as shown in Figure 5.  
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Figure 7. Distribution of difference between predicted and truth cloud fractions as a 

function of cloud fraction. Blue dot and error bar indicates the mean bias and standard 

deviation of the difference in the corresponding interval (0.05), respectively. 

 

 

 

 
Section Four Use Case Study 

The performance of the proposed cloud fraction retrieval model is investigated on a 

series of independent use cases selected from 2018 and 2019, all of which are excluded 

from the training dataset to prevent bias in error estimates.  

3.4.1 Oct. 30, 2018 

 Figure 8 shows the daytime global cloud distribution maps of Oct. 30, 2018. As 

presented in the VIIRS true color image (Figure 8a), more than 60% of the global land 
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and ocean areas are covered by clouds. This can also be identified in Figure 8b, the truth 

CrIS cloud fraction map, that was determined by the VIIRS cloud mask. The purely clear 

sky and partially thin cloudy scenes (blue areas with cloud fraction less than 0.2) are 

mainly located over the land part of the coastal areas of United States, southern Argentina, 

Sahara Desert, southern Africa, southwest Asia, north India, northwest China, and large 

portions of Australia and Antarctica. Given the retrieval results produced by the proposed 

DNN model (shown in Figure 8c) compared to that of Figure 8b, the DNN model 

accurately predicts the majority of the cloud fraction. Their difference map shown in 

Figure 8d further confirms that the cloud fraction retrieved from the DNN model agree 

well with the truth values on a global scale. Moreover, their residuals are almost 

uniformly distributed around the zero line, with a mean of -0.007 and standard deviation 

of 0.134, and most of them are less than 0.2 (~91%) and 0.1 (~74%), as evidently shown 

in Figure 8e. However, relatively larger difference values are observed over the partially 

thin cloudy areas, especially over high latitude areas (Figure 8d). As mentioned, this is 

possibly due to the strong surface signals, which makes it hard for the model to correctly 

classify thin clouds. This may also be attributed to the relatively low accuracy of cloud 

mask product of VIIRS (which is adopted as the learning target) over high latitude areas, 

which are ~88% in snow covered land and 72% in Antarctic and Greenland (Zhou et al, 

2019). The inaccurate inputs from VIIRS in these scenarios will introduce inaccuracy to 

the model during training, thus reducing the model’s ability to correctly estimate cloud 

fraction over these areas. In addition, both VIIRS and CrIS have larger instrument noises 

over the cold scenes, which may also reduce the accuracy over the high latitude regions. 
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Figure 8f illustrates the quantitative relationship between the model predictions and truth. 

A favorable correlation of 0.929 between the CrIS predicted and VIIRS determined cloud 

fraction is obtained for this particular case. The daytime MSE is 0.018, which is slightly 

lower than that of the model value as discussed in section 3.4. All these statistics 

demonstrate that the proposed DNN model works very well for the daytime cloud 

fraction retrievals.  

 

Figure 8. Daytime of Oct. 30, 2018. (a) The VIIRS true color imagery; (b) Truth CrIS 

cloud fraction calculated using VIIRS cloud mask; (c) CrIS cloud fraction predicted by 

the proposed model; (d) Difference between (c) and (b); (e) the histogram of (d); (f) 
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Probability density plot of the model prediction and truth. The “D/O+L” in (e) and (f) 

represents all of the daytime (D) ocean (O) and land (L) data. The red solid line and black 

dish line in (f) are the fitting line and 1:1 diagonal line. 

 

 

 

The investigation on the model nighttime performance is also conducted in this study, 

and the results are presented in Figure 9. Since the reflectance channels are not available 

at night, the VIIRS moderate resolution band 14 (M14 at 8.55 µm) brightness 

temperature is used as the reference image (Figure 9a) for this discussion. Essentially, the 

lower the brightness temperature, the more likely the scene is contaminated by clouds, 

especially over low latitude regions, such as those in tropical areas which might be 

covered by deep convective clouds. As indicated by the truth CrIS cloud fraction in 

Figure 9b and compared with the model prediction in Figure 9c, it is encouraging to see 

that the results retrieved from the DNN model are consistent with the truth values over 

nighttime observations. Similar to the daytime case, their larger differences are mainly 

observed over the poles and other snow-covered regions (as shown in Figure 9d), 

partially due to the relatively poor performance of VIIRS cloud mask. The statistical 

result in Figure 9e show a tiny negative bias of -0.013, suggesting that the nighttime 

retrieval result is slightly underestimated. This can also be identified from the positive 

offset of the fitting line (solid red line) shown in Figure 9f. The standard deviation is 

0.151 also implies that the overall uncertainty of the nighttime retrieval results is slightly 
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higher than that of the daytime (0.134). Regardless, the metrics shown in Figure 9f still 

suggest a high similarity between the model predictions and truth. According to the 

colored probability density plot, the fitting line is nearly coincident with the 1:1 line, 

revealing a relatively accurate estimation from the DNN model as compared with truth. 

The low MSE (0.023) and high R (0.914) further confirms that the model is performs 

very well for nighttime observations.  

 

Figure 9. same as Figure 8 but for the nighttime of Oct. 30, 2018. Particularly, the VIIRS 

M14 brightness temperature is used as the reference image in (a) instead of the true color 
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image, as the reflectance channels are not available at night. The “N/O+L” in (e) and (f) 

represents all of the nighttime (N) ocean (O) and land (L) data. 

Table 1 presents detailed quantitative comparisons between results calculated from 

the daytime and nighttime data. In general, the DNN model achieves a higher accuracy 

over daytime than nighttime, with a lower MSE (0.018 vs 0.023) and higher R (0.929 vs 

0.914). The lower accuracy observed in the nighttime case is likely due to the weaker 

signal received by CrIS at nighttime, which makes the spectral contrast among FOVs 

much smaller. A similar mechanism can occur in the VIIRS instrument, leading to a 

relatively lower accuracy of the nighttime cloud mask as well as truth cloud fraction. 

Furthermore, the model tends to exhibit better performance over the ocean than the land 

areas. The averaged (day and night) MSE and correlation coefficient over ocean are 

0.015 and 0.930, respectively, while over land they are 0.032 and 0.902, respectively. 

The main explanation for this is that the surface cover over land is more heterogenous 

than that of ocean, which increases the complexity of the satellite observed spectra over 

land. In addition, the mixed-pixel issue (inhomogeneous scene) over land also increases 

the difficulty of accurate cloud identification.  

 

 

 

Table 1. Test metrics of the model accuracy on Oct. 30, 2018. 

Date Metrics 
Daytime Nighttime 

Total 
Land Ocean Globe Land Ocean Globe 
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10/30

/2018 

MSE 0.029 0.011 0.018 0.035 0.018 0.023 0.020 

R 0.908 0.944 0.929 0.896 0.916 0.914 0.922 

 

 

 

3.4.2 Jun. 1 to Jun. 7, 2020 

One week of the global CrIS and VIIRS data selected from Jun 1 to Jun. 7, 2020, are 

further analyzed in the following study, to evaluate the robust performance of the DNN 

model, with results summarized in Table 2.  

The accuracy metrics shown in Table 1 demonstrate that the proposed cloud fraction 

retrieval model produces reliable and robust predictions for a continuous seven days. For 

the daytime, the model MSE has little fluctuation, with values ranging from 0.015 to 

0.018 over land, and from 0.012 to 0.014 over ocean in this one-week analysis. The cloud 

fraction correlation coefficient between DNN model predictions and the truth values is 

relatively high and stable for all the daytime cases, averaging 0.944. The model MSE at 

nighttime has a slightly larger variation than the daytime MSE, fluctuating between 0.040 

to 0.053 over land, and between 0.019 and 0.023 over ocean. The mean correlation 

coefficient at nighttime is 0.904 with values ranging from 0.889 to 0.913. On the whole, 

the global (all ocean, land, daytime, and nighttime) mean MSE and correlation coefficient 

are 0.021 and 0.922 respectively for these selected continuous use cases, which are 

comparable to the model metrics (0.021 and 0.924) as discussed in the previous section. 
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All tests demonstrate the stability of the DNN model and illustrate its potential to be an 

effective tool for cloud fraction retrieval.  

 

 

 

Table 2. Test metrics of the model accuracy from Jun. 01 2020 to Jun. 07 2020. 

Date Metrics 
Daytime Nighttime 

Total 
Land Ocean Globe Land Ocean Globe 

06/01

/2020 

MSE 0.015 0.014 0.014 0.044 0.023 0.030 0.022 

R 0.951 0.934 0.944 0.875 0.902 0.897 0.920 

06/02

/2020 
 

MSE 0.016 0.014 0.014 0.052 0.022 0.033 0.023 

R 0.949 0.930 0.942 0.842 0.905 0.889 0.915 

06/03

/2020 

MSE 0.017 0.013 0.014 0.048 0.019 0.029 0.021 

R 0.944 0.935 0.943 0.854 0.918 0.902 0.923 

06/04

/2020 

MSE 0.017 0.012 0.014 0.04 0.019 0.025 0.019 

R 0.943 0.937 0.944 0.881 0.921 0.913 0.929 

06/05

/2020 

MSE 0.018 0.013 0.014 0.050 0.019 0.029 0.021 

R 0.943 0.938 0.945 0.851 0.921 0.900 0.922 

06/06

/2020 

MSE 0.016 0.013 0.014 0.048 0.019 0.029 0.021 

R 0.950 0.937 0.946 0.861 0.921 0.903 0.924 

06/07

/2020 

MSE 0.017 0.013 0.014 0.053 0.019 0.030 0.022 

R 0.947 0.937 0.945 0.844 0.924 0.900 0.922 

Mean MSE 0.017 0.013 0.014 0.048 0.020 0.030 0.021 
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CHAPTER FOUR RAINY CLOUD CLASSIFICATION 

Section One Introduction 

This research proposes an automatic rainy cloud detection system based on DNN 

models and compares the system’s performance with that of traditional machine learning 

methods (e.g., SVM, RF). The new Advanced Baseline Imager (ABI) onboard the 

GOES-16 satellite is adopted to classify rainy and non-rainy clouds based on the 

brightness temperature differences (BTDs) and reflectances (Ref) derived from ABI. 

Convective and stratiform rain clouds are also separated using similar spectral parameters 

expressing the characteristics of cloud properties. The precipitation events used for 

training and validation are obtained from the IMERG V05B data, covering the 

southeastern coast of the U.S. during the 2018 rainy season.  

With the high spatiotemporal resolution of ABI images, the proposed system has 

good performance in real-time regional and local precipitation monitoring. Including full 

coverage of precipitation characteristics of the study area, IMERG is a more accurate 

assessment of precipitation attributes in contrast to discretely distributed ground 

observations. This paper also evaluates the system in a hydrological extreme (e.g., 

hurricane) to provide a meaningful basis and reference for future studies. 
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Section Two Data and Spectral Parameters 

4.2.1. Study area  

The study focuses on a rectangular area of the U.S. east coast (32°N to 39°N, 

80°W to 75°W) crossing Pennsylvania, Delaware, Maryland, Washington DC, Virginia, 

and North and South Carolina (Figure 10). The study area’s climate is characterized by 

cool to cold winters and hot, humid summers. Precipitation volume, frequency, and 

density are significantly higher in all seasons than in other parts of the U.S. (Liu et al., 

2017). A plethora of training and testing samples for both stratiform and convective 

precipitation are extractable to build the classification models and making the area 

suitable for the study of precipitation. A large number of hurricanes and tropical cyclones 

made landfall in this area in the past 100 years, making the rainy cloud classification 

system practical on hydrological disasters such as hurricanes.  
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Figure 10. Geographic coverage of study area 

 

 

 

4.2.2. GPM-IMERG precipitation estimates  

Instead of rain gauge data that are commonly used in precipitation detection 

research, Integrated Multi-satellite Retrievals for the GPM (IMERG) V5B precipitation 

product is used in this research to distinguish rainy/non-rainy areas and 

convective/stratiform areas. The IMERG has a spatiotemporal resolution of 0.1° and 30-
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minutes, respectively. The precipitation product is generated based on five steps: 1) 

retrieval algorithm produces and inter-calibrates the Passive Microwave (PMW) 

estimates; 2) spatiotemporal interpolations are carried out to obtain adequate sampling; 3) 

holes are filled in PMW constellation using microwave-calibrated IR estimates; 4) gauge 

observations are adopted to control bias; and 5) error estimates and product delivery are 

accomplished (Huffman et al, 2018). The IMERG is a series of state-of-the-art high-

resolution QPE (Quantitative Precipitation Estimation) products, higher in spatial and 

temporal resolutions, and lower in bias with ground truth compared to the former TRMM 

series. It is a merged dataset that makes full use of various global scale PMW and IR 

constellations and is one of the most accurate and popular precipitation products (Rios et 

a., 2017; Wei et al., 2018). It has relatively high accuracy in deciding the rainy areas and 

convective areas. 

Gauge data are not used in this study for the following reasons: 1) Gauge 

observations are distributed sparsely in our study area with the density of 0.035 gauge per 

100 km2 (122 gauges in the study area of 350,000 km2), and the sparseness of this 

distribution does not provide enough training and testing samples for the models and is 

insufficient in reflecting sky conditions; 2) publicly-accessible gauge observations are 

usually non-uniform in temporal resolution resulting in the samples being distributed 

unevenly in a different time and introducing bias to the models. For example, some of the 

gauge records are at an hourly time step, while others have a time step of 30 or 15 

minutes; this feature might not capture short-temporal convective precipitation events. 
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4.2.3. GOES-16 ABI data 

The Geostationary Operational Environmental Satellite (GOES)-16 is the current 

operational geostationary satellite operated by National Oceanic and Atmospheric 

Administration (NOAA) and National Aeronautics and Space Administration (NASA) 

and is also known as GOES-East member of the GOES-West and GOES-East NOAA 

system. It was launched on November 9, 2016, and has provided data since November 

2017. The Advanced Baseline Imager (ABI) instrument onboard GOES-16 provides 16 

spectral bands, including two VIS, four near-infrared (NIR), and ten IR channels. Due to 

the lack of the three VIS and NIR bands during nighttime, this research focuses on the 

rainy cloud detection and convective area delineation in the daytime. Eleven bands are 

used to calculate the spectral parameters in the detection and delineation procedure (i.e., 

2, 3, 6, 8, 10, 11, 12, 13, 14, 15,16). Detailed information regarding the central 

wavelengths and spatial resolutions for each band are available in Table 3 (Benz et al., 

2018). The ABI generates an image of the Contiguous U.S. (CONUS) every five minutes, 

and its L1b data used in the study are accurately registered (resampled) to a fixed grid 

(angle-angle coordinate system) with three different spatial resolutions at nadir (GOES-R 

Series Program Office, 2019) ranging from 0.5 to 1 km and 2 km for different bands. 

Since it has different spatial and temporal resolutions from that of IMERG, collocating 

the ABI and IMERG data in both space and time dimensions is needed (Section 3.1). 
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Table 3. ABI Band Characteristics 

Band 

Number 

Central 

Wavelength 

(µm) 

Spatial 

Resolution 

at nadir 

(km) 

k-factor 

(W-1*m 

*µm) 

Used 

in 

study 

Primary Application 

1 0.47 1.0 1.5177-3  Aerosols 

2 0.64 0.5 1.8767-3 Ö Clouds 

3 0.865 1.0 3.1988-3 Ö Vegetation 

4 1.378 2.0 8.4828-3  Cirrus 

5 1.61 1.0 1.26225-2  
Snow/ice discrimination, 

cloud phase 

6 2.24 2.0 3.98109-2 Ö 
Cloud particle size, snow 

cloud phase 

7 3.9 2.0 -  
Fog, stratus, fire, 

volcanism 

8 6.19 2.0 - Ö 
Various atmospheric 

features 

9 6.95 2.0 -  
Middle-level water 

vapor features 

10 7.34 2.0 - Ö 
Lower-level water vapor 

features 
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11 8.5 2.0 - Ö Cloud-top phase 

12 9.61 2.0 - Ö Total column of ozone 

13 10.35 2.0 - Ö Clouds 

14 11.2 2.0 - Ö Clouds 

15 12.3 2.0 - Ö Clouds 

16 13.3 2.0 - Ö Air temperature, clouds 

 

 

 

4.2.4. Spectral parameters 

The ability of a particular kind of cloud to produce precipitation and develop heavy 

rate convective precipitation depends on the altitude of the cloud top and the thickness of 

the cloud (Cotton et al., 2010). If a cloud is high enough in altitude, thick enough to carry 

a large volume of water vapor, and contains ice particles in its upper cloud layers, the 

chance of producing precipitation increases. The measurement of the vertically-integrated 

liquid water content in clouds is expressed as the Liquid Water Path (LWP) as shown in 

Equation (7), an effective measurement of the potential for precipitation to form in the 

clouds (Reid et al., 1999; Chen et al., 2018; Han et al., 1994; Nakajima et al., 1995): 

 
LWP = 	

5
9
ρ>τr?(h) (7) 

where ρ> (g/J=) is the density of liquid water, τ is the optical thickness, and "5(ℎ) is 

the cloud effective radius determined by the cloud thickness (h). The 2.24 µm channel 



50 
 

reflects cloud particle size, especially for those below the cloud top (Lindstrom et al., 

2017); therefore, it reflects the LWP and thereby provides useful information in rainy 

cloud identification. 

To classify different types of sky conditions and clouds according to the precipitation 
properties, the LWP is reflected by the spectral parameters. Cloud top temperature (CTT) 
is a direct indicator of parameters in LWP and reflecting cloud altitude. The CTT is 
related to the intensity of precipitation with colder cloud tops being more likely to 
produce heavier precipitation (Vijaykumar et al., 2017). The IR channels of ABI provide 
CTT information in different spectral ranges. The VIS and NIR bands reflect the unique 
color and brightness of rainy clouds in the daytime (Scofield, 1987). Effective spectral 
parameters of the classification system are created and calculated from the combinations 
of these bands from VIS to far IR. Due to the lack of VIS and NIR information in the 
nighttime, this research focuses on daytime rain cloud monitoring. In total 15 spectral 
parameters are selected to optimize the detection accuracy and include BT10.35, △BT6.19-

10.35, △BT7.34-12.3, △BT6.19-7.34, △BT13.3-10.35, △BT9.61-13.3, △BT8.5-10.35, △BT8.5-12.3, BT6.19, 
△BT7.34-8.5, △BT7.34-11.2, △BT11.2-12.3, and Reflectance (Ref) of 3 VIS and NIR bands, Ref0.64, 
Ref0.865 and Ref2.24. For BT and Ref, the subscript number is the central wavelength of the 
band, and for BTD (△BT) the subscript numbers indicate the central wavelengths ( 

Table 4).  

 

Table 4. Spectral parameters used in the models, with the subscript number 

being the central wavelength (µm). 
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Spectral 

parameters 
Cloud Features reflected by the parameter 

Ref0.64 Cloud brightness 

Ref0.865 Cloud brightness 

Ref2.24 Cloud particle size 

BT10.35 Cloud particle size, cloud top temperature 

△BT6.19-10.35 Cloud top temperature, convective level 

△BT7.34-12.3 Cloud top temperature, convective level 

△BT6.19-7.34 Cloud height and thickness 

△BT13.3-10.35 Cloud top height 

△BT9.61-13.3 Cloud top height 

△BT8.5-10.35 
Cloud phase (positive for thick ice clouds, negative 

for thin low-level water clouds) 

△BT8.5-12.3 
Optical thickness (negative values for thin optical 

thickness) 

BT6.19 Upper-level tropospheric water vapor 

△BT7.34-8.5 Cloud optical thickness 

△BT7.34-11.2 Cloud top temperature and height 

△BT11.2-12.3 Cloud thickness, particle size 
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The 10.35µm channel is an atmospheric window channel providing the rich CTT 

information. It is effective in precipitation estimation and especially for convective areas 

(Giannakos and Feidas, 2013). The low temperature in this band indicates a high cloud with a 

higher probability of producing precipitation and developing into a convective event. The 

13.3 µm is the CO2 absorption channel, and CO2 decreases with altitude. Therefore, this 

channel’s temperature is smaller for lower-level versus higher-level clouds. Since the 

temperature in 10.35 µm has an inverse relationship with height, △BT13.3-10.35 is useful in 

estimating cloud top height. 

The 6.19 µm and 7.34 µm are water vapor channels; the differences between their 

brightness temperatures and those observed in the longwave IR bands (i.e., 

10.35µm,12.3µm) represent the summit altitude of the cloud. These BTDs are accurate 

indicators about whether the cloud level is high enough to become convective areas. At 

low altitudes, cloud temperature in water vapor channels is lower than that in 10.35 and 

12.3 µm bands due to the water vapor absorption. As a result, △BT6.19-10.35 and BT7.34-12.3 

return negative values for low clouds and slightly negative values for rainy clouds, 

especially convective clouds. The △BT6.19-7.34 is also adopted because it reflects cloud 

height and thickness with significantly negative values for mid-level clouds and small 

negative values for the high thick clouds (Feidas and Giannakos, 2012). Additionally, the BT 

of the upper-level water vapor channel (6.19 µm) is an independent parameter due to its 

capability to detect rainy and convective clouds. 
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The information derived from the 11.2 µm channel is similar to that of 10.35 µm 

channel, so △BT7.34-11.2 reflects the CTT and cloud height. The BTD between 10.35 and 

12.3 µm is effective in estimating low-level moisture and cloud particle size (Schmit et 

al., 2017). 

The △BT9.61-13.3 is another indicator of cloud top height. The 9.61 and 13.3 µm 

wavelengths are the ozone and CO2 absorption channels, respectively. The temperature 

of 9.61 µm channel is higher for high-altitude clouds because of the warming effect of 

ozone. Therefore, positive values of △BT9.61-13.3 represent high-level clouds, while 

negative values represent low-level clouds. 

The △BT8.5-10.35 is used to extract information of the cloud phase and the partitioning 

of cloud into “water” or “ice” (Thies et al., 2008b) because water versus ice absorption 

differs in these two channels (Baum et al., 2000) as witnessed by a positive value for ice 

clouds and a small negative value for low-level water clouds. Convective precipitation is 

more related to ice clouds (Baum et al., 2006). 

The △BT8.5-12.3 indicates the optical thickness of clouds, returning positive values for 

high clouds, which are relatively thick with larger particle sizes. Negative values result 

from low-level water clouds due to the low temperature of water vapor in 8.5 µm. The 

△BT7.34-8.5 also indicates the cloud optical thickness, which is adopted in the precipitation 

rate retrieval algorithm of ABI (Kuligowski, 2010). 

Three additional parameters are selected from the ABI’s VIS and NIR channels to 

optimize accuracy. Refs of 0.64 µm and 0.865 µm provide cloud brightness. Clouds with 

higher reflectance in the VIS bands tend to have more water or ice contents, which 
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potentially results in more rainfall and vice versa (Nakajima and Nakajma, 1995). And 

Ref of 2.24 µm reflects the LWP. 

Section Three Methodology 

4.3.1. Data processing 

The goals of the automatic rainy cloud monitoring system are to detect the rainy area 

and delineate the convective areas. These two goals are met through the following steps: 

1. Data preprocessing. First, the 16 bands of ABI radiance are gridded to the spatial 

resolution of 0.1°, the same as IMERG precipitation estimates. Second, six individual 

ABI data with scanning time ranges included in one IMERG time step are averaged to 

complete the spatial and temporal collocation between the two datasets. Third, Ref, BT, 

and Sun Zenith angle (z) are calculated with Reflectance being derived as follows 

(Equation (8): 

 MNOl = Pl ∗ k (8) 

where l is the central wavelength of the channel, Pl is the radiance value, and k is the 

reflectance conversion factor. The BT is derived from Equation (9) as follows: 

 
RS = T

OUV

WXYZ [
OU\
Pl

+ \]
− ^_\` /^_V (9) 

where fk1, fk2, bc1, and bc2 are the Planck Function constants. Sun zenith angle (z) is 

calculated through the variables in the ABI data file and pixel locations. 

2. Spectral parameters are calculated and normalized. 
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3. Each set of parameters is sorted to rainy and non-rainy clouds according to the 

associated IMERG rain rate (r). If r < 0.1 mm/hr, the sample is classified as non-rainy; 

otherwise, it is labeled as rainy. The rainy cloud detection models are built using DNN 

models, through which rainy samples are separated automatically from non-rainy ones. 

 

4. After rainy or non-rainy samples are distinguished, the convective and stratiform 

rain clouds are split based on their rain rates. The adopted threshold to discriminate 

convection or stratus cloud is calculated through the Z-r relation (Hunter, 1996) as shown 

in Equation 10: 

 b = 300"7.2 (10) 

 dBZ=10*log79Z  

where Z (JJA	J6=) is the reflectivity factor of the radar, r (mm/hr) is the correspondent 

rain rate, and dBZ is the decibel relative to Z. Lazri (Lazri, 2014) uses dBZ = 40 as the 

threshold of Z for convective precipitation. Then r is 12.24 mm/hr according to equation 

(4). As precipitation rates measured by meteorological radar tend to be overestimated due 

to anomalous propagation of the radar beam (Islam, 2012), a lower threshold for r is more 

reasonable. This research uses r=10 mm/hr as the final threshold because it is adopted 

frequently and has worked well in previous studies (Baquero et al., 2005; Maeso et al., 

2005):  
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5. Convective precipitation delineation models are built using training samples 

derived from step 4 with DNN models.  

6. Accuracy is evaluated using validation data and case studies.  

A flow chart of this procedure is illustrated in Figure 11. 

 

 

 

 

Figure 11. Workflow of the automatic rainy cloud classification system 

 

 

 

4.3.2. Model development 

Following the data processing steps, the classification system contains two types of 

models: the rainy area detection and convective precipitation delineation models. This 

research adopts DNN methods to build both types of models and compares the 

performance with SVM and RF methods.  
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The DNN is a feed-forward artificial neural network with multiple hidden layers 

between the input and output (Qian et al., 2014). The schematic workflow of the 

proposed DNN model (Figure 3) depicted in the input, hidden, and output layers forming 

a bipartite structure with all these layers fully connected. The goal of this research is to 

detect the rainy cloud pixels and further classify them into two classes for each step. The 

DNN estimates the posteriors of each class given the input cloud features x which refer to 

the spectral parameters. The activation functions used in each neuron of the hidden layers 

are Rectified Linear Units (ReLUs) function, which has the following advantages: 1) 

faster computation; and 2) more efficient gradient propagation (Dahl et al., 2013). The 

output is computed via the normalized exponential function to force the target label to 

have the maximum posterior estimation. The objective is to minimize the cross-entropy 

between the predictions of DNN p = [p1, p2, … pJ]T and the target probabilities d = [d1, d2, 

..., dJ ]T (Xu et al., 2016). The loss function is defined in Equation (11): 

 
5 = 	−ghB ∗ log	(iB)

C

BD7
 

(11) 

The back-propagation (BP) algorithm (Hinton et al., 2012) is adopted to update the 

weights and bias of DNN based on the calculated loss. 

The models achieve the optimal results when three hidden layers are embedded, and 

the numbers of neurons are 30, 20, and 20 for each hidden layer. For the rainy cloud 

detection models, ‘Yes’ is returned when the pixel is identified as rainy and ‘No’ for non-

rainy. For the convective area, delineation models ‘Yes’ is returned for convective pixels 
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and ‘No’ for stratiform. In applications, the non-rainy, stratiform, and convective pixels 

are labeled as -1, 0, and 1 in series. 

 

 

 

 

Figure 12. Flowchart of DNN model for cloud classification and delineation 

 

 

 

Section Four Model Performance Evaluation 

To include enough rainy and convective samples, training data are selected during 

rainy days from June to September of 2018, which contain at least one precipitation event 

in each date and have a large ensemble of different rain conditions. Eleven rainy days are 
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selected as testing samples that do not overlap with training events (Table 5). Samples 

are randomly split into training (70%) sets and validation (30%) sets. The total number of 

pixels is 1,044,072. 

 

 

 

Table 5. Dates of precipitation events in training and testing data 

Training and validation samples Testing samples 

3-5,17, 22 June;  

4, 7, 30-31 July;  

2-4, 8-12, 18-20, 22 August;  

7-8,14,17, 25 September 

1, 10, 24 June;  

11, 26 July;  

5-7 August;  

4-6 September 

 

 

 

4.4.1. Evaluation metrics 

 
 
 

Table 6. Contingency parameters of the statistical assessors. 

 
By IMERG 

Yes No (Non-
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(Rainy/Convective) rainy/Stratiform) 

By models 

Yes (Rainy/Convective) a b 

No (Non-

rainy/Stratiform) 
c d 

 

 

 

This research uses the following statistical assessors to evaluate model accuracy, 

which are calculated in Equations (12)-(17): 

1. The probability of detection (POD). The POD is the rate of testing samples 

correctly recognized as rainy/convective by the model: 

 /jk =	
l

l + m
 (12) 

2. The probability of false detection (POFD). The POFD indicates the fraction of 

rainy/convective events incorrectly predicted by the model: 

 
/jnk = 	

o
o + h

 (13) 

3. The False Alarm Ratio (FAR). The FAR is the ratio of the incorrect detection of 

rainy/convective pixels and the total pixels recognized as rainy/convective:  

 np3 = 	
o

l + o
 

(14) 

4. The bias. Bias represents model over- or underestimates of reality:  



61 
 

 
qrls = 	

l + o
l + m

 
(15) 

5. The Critical Success Index (CSI). The CSI is the fraction between the correct 

prediction of rainy/convective pixels by the model and the total number of pixels detected 

as rainy/convective by both IMERG and the model: 

 
!$# = 	

l
l + o + m

 
(16) 

6. The Model Accuracy (MA). The MA is the probability of a correct prediction of 

both rainy/convective and non-rainy/stratiform pixels by the model:  

 
tp =	

l + h
l + o + m + h

 (17) 

where the contingency parameters a, b, c, and d are summarized (Table 6). 

4.4.2. Comparison of DNN, SVM, and RF performance on testing data 

According to the assessors’ accuracies, the DNN system correctly detected most of 

the rainy areas (POD = 0.86 and CSI = 0.71) and convective areas (POD = 0.72 and CSI 

= 0.58) with relatively high overall accuracies (0.87 and 0.74, respectively). The research 

compared the performance of the DNN method with other two machine learning methods, 

SVM and RF, and found that DNN performs better on the testing sets, especially in the 

delineation of convective precipitation.  

For rainy area detection (Table 7), all three methods slightly overestimate the rainy 

pixels, while DNN achieved the highest accuracy in all the assessors. Overall the 

performance of the three methods is similar, with no more than a 0.03 difference. 
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Table 7. Validation of rainy cloud detection model on testing data. The best 

result for each assessor is shown in bold. 

Model 
POD  

(ideal 1) 

POFD 

(ideal 0) 

FAR 

(ideal 0) 

Bias 

(ideal 1) 

CSI 

(ideal 1) 

MA 

(ideal 1) 

DNN 0.86 0.13 0.20 1.07 0.71 0.87 

SVM 0.85 0.13 0.21 1.07 0.69 0.86 

RF 0.85 0.14 0.21 1.09 0.70 0.86 

 

 

 

For convective precipitation delineation (Table 8) the advantage of DNN is even 

more evident, but all models overestimated the convective areas except the DNN model. 

The DNN achieves the highest accuracy for almost all the assessors except POD (0.72 vs. 

0.86 and 0.78). The DNN performed much better than RF and SVM with a 0.20 lower 

FAR and 0.07~0.09 higher CSI. The SVM and RF significantly overestimated the 

convective pixels with FAR larger than 0.40. 
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Table 8. Validation of convective precipitation delineation model on testing 

data. The best result for each assessor is shown in bold. 

Model 
POD  

(ideal 1) 

POFD 

(ideal 0) 

FAR 

(ideal 0) 

Bias 

(ideal 1) 

CSI 

(ideal 1) 

MA 

(ideal 1) 

DNN 0.72 0.23 0.24 0.94 0.58 0.74 

SVM 0.86 0.40 0.44 1.55 0.51 0.69 

RF 0.78 0.35 0.43 1.37 0.49 0.70 

 

 

 

The errors are mainly introduced by two sources. First, the acquisition time and 

frequency are different for ABI images and IMERG estimations. There are differences 

and gaps in scanning periods between ABI and the instruments used in IMERG data, 

precipitation distribution, and density may change and evolve in the period. Second, since 

the ABI data have 0.5, 1, and 2 km spatial resolutions originally and are gridded to 0.1°, 

the spatial coverage is not the same for each set of spectral parameters and their associate 

rain rate. Errors also occur in the averaging process for spatial-temporal collocation. 

Overall, the classification system efficiently detected the rainy area and extracted the 

convective areas from the testing dataset. In addition, most of the highest accuracies were 

observed in the proposed DNN models, being better performers than traditional machine 

learning when the data are complicated and sparsely distributed with a relatively large 
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size (Caruana and Niculescu-Mizil, 2006). The training and testing sample sizes are more 

than 500,000 and 50,000; on the other hand, there are 15 spectral parameters for each 

pixel with different values.  

Section Five Case study 

Two case studies, a normal one and an extreme precipitation one (Hurricane 

Florence in 2018), are used to validate the performance of the classification system. 

Validation is carried out using only the DNN method due to its superior performance. 

4.5.1. Normal precipitation events 

The comparisons are shown between the predictions of the system and IMERG 

estimation of normal precipitation events for July 9, 2018 (Figure 13). The system 

accurately detects the rainy and convective area but slightly overestimates both. One 

possible reason is the temporal difference between the IMERG estimates and the ABI 

predicted results. The ABI data are temporally averaged from 13:30~14:00 UTC, 

whereas the IMERG data are retrieved at 14:00 UTC. Another reason is that the samples 

used in the training dataset are insufficient, which could be improved with the 

accumulation of the ABI data. Lastly, the thresholds that determine rainy clouds are 

arbitrary, resulting in biases to their intercomparison result. Despite this shortcoming, the 

spatial distribution patterns of the predicted result and the IMERG data are congruent.  
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a) b) 

Figure 13. Cloud classification results and IMERG estimations on normal 

precipitation: a) ABI Prediction; and b) IMERG estimation on July 9, 2018, at 

13:30~14:00 UTC. 

 

 

 

The results of a second case study of a normal precipitation event (September 9, 

2018) show the system effectively identified the rainy areas and convective areas with a 

minor underestimation on the rainy area and a minor overestimation on the convective 

areas (Figure 5). 
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a) b) 

Figure 14. Cloud classification results and IMERG estimations on normal 

precipitation: a) ABI Prediction; and b) IMERG estimation on September 19, 

2018, at 18:00~18:30 UTC. 

 

 

 

4.5.2. Hurricane Florence 

The comparisons between the predictions of the system and IMERG estimations of 

Hurricane Florence demonstrate that the system detected most of the rainy areas, and the 

results clearly show the hurricane’s shape and area of influence (Figure 6). For the 

convective precipitation delineation, the models identify almost all the convective areas. 
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The system accurately detected the convective areas over the ocean with a slight 

overestimation and missed some pixels over land. Overall, the system performs better 

over the ocean than land in the Hurricane Florence case study. Precipitation on the land is 

influenced by more factors than that over the ocean, including topography, land use, and 

vegetation (Rodgers et al., 1979). The precipitation estimations of IMERG were 

calibrated by ground-based rain gauge data, and the measurements differ from those of 

the satellite-based system. In addition, different from normal precipitation events, 

hurricanes are extreme events where the clouds having more complicated air motion in 

both the horizontal and vertical dimensions. However, as most samples used to train the 

models are normal precipitation, Florence is the only hurricane event during the available 

period of ABI data in the study area. It is proposed that the models do not learn well 

about extreme events through the current data source.  
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a) b) 

Figure 15. Cloud classification results and IMERG estimations of Hurricane 

Florence: a) ABI; and b) IMERG estimation on September 15, 2018, at 

18:00~18:30 UTC. 

 

 

 

Section Six Discussion 

This research explores the performance of rainy cloud detection and convective 

precipitation delineation based on GOES-ABI data using the DNN method. The system 

detected the rainy cloud with relatively high accuracy and is reliable in the convective 
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area extraction. However, overestimation is observed in the identification of convective 

precipitation, especially over land areas. 

Due to the limitations of passive instrumentation, one of the recognized weaknesses 

in extracting cloud information from brightness temperature is that it only provides the 

vertical column-integrated cloud information. Although the spectral parameters adopted 

in this research were effective in reflecting the information of LWP by using the 

differences of BTs, they do not measure raindrops in the cloud directly as done by the 

PMW data. Therefore, the IR-BTD based method does not perform well enough in 

deciding the rain rates. Overestimation of convective rain areas occurred in the 

validations and case studies.  

However, the ABI data surpasses the PMW data in both spatial and temporal 

resolution and provides real-time monitoring and detection. The ABI’s temporal 

resolution is 5 minutes, and after the system is constructed, classification results are 

produced in the same interval. Conversely, the temporal resolution of IMERG is 30 

minutes, six times less frequent than ABI. The system provides rainy cloud classification 

results in a spatial resolution of 2 km, five times greater than that of the IMERG data. It 

functions in the prediction of convective precipitation in both urgent precipitation hazards 

and routine weather forecasts and is an alternative when PMW data are unavailable.  

Radar-based QPE offers a high-quality estimation of precipitation. However, ground-

based radar is sparsely distributed and not available over the ocean, which has a high 

percentage of the heavy precipitation events (i.e., open ocean) and areas with the most 

significant economic impact (i.e., coasts). The GOES-ABI has a full and continuous 
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coverage of northern and southern America and large areas of the ocean. The system 

proposed herein complements the Radar-based QPE over areas in which ground-based 

radar is unavailable.  

To improve the performance of the proposed automatic detection system, several 

initiatives are envisioned. First, more spectral information is needed, primarily reflecting 

the features inside the clouds. This could be accomplished by adding an IR sounder, 

Microwave images, and re-analysis of data like ECMWF (European Centre for Medium-

Range Weather Forecasts) and MERRA2 (Modern-Era Retrospective analysis for 

Research and Applications, Version 2). The second is better quality control in selecting 

rainy and convective pixels for training models. This is addressed by adding more 

thresholds to the spectral parameters to further filter errors and bias. The third is that to 

distinguish stratiform and convective precipitation using solely a fixed precipitation rate 

is quite arbitrary. This is addressed by including more variables (e.g., pressure and 

temperature). The fourth is to extend the research to precipitation rate estimation and 

introduce AI methods, especially DL, to the transformation of statistical knowledge about 

meteorological phenomena into numerical models. This helps improve the accuracy of 

numerical weather predictions (NWP). The fifth is that the precipitation product of Next 

Generation Weather Radar (NEXRAD) needs to be considered as validation data. The 

sixth focuses on the cloud types and precipitation conditions that differ under other 

climate regimes (Berg et al., 2002). The models and system constructed in this research 

address only the daytime of the East Coast of the U.S. Future investigations need to 
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address separate classification systems for different areas of the U.S. and those happening 

during the nighttime. 
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CHAPTER FIVE CONCLUSIONS AND FUTURE WORK 

Section One Cloud Fraction Retrieval 

While cloud fraction information is critical for climate models as well as various 

meteorological applications, an efficient cloud fraction retrieval method is still needed. 

Therefore, this paper proposes a novel cloud fraction retrieval framework by leveraging 

the state-to-art AI deep neural network models, to estimate the cloud fraction within a 

single FOV of the infrared hyperspectral sounder (CrIS) at high efficiency and 

automation. Through analysis of model performance on a test dataset covering all 

seasonal conditions and several other individual use cases, the proposed model is proven 

to accurately retrieve cloud fraction under different spatiotemporal domains.  

In general, the model achieves a high cloud fraction retrieval accuracy, with a low 

MSE of 0.02 and high R of 0.924, as compared with the truth calculated from the VIIRS 

cloud mask. Moreover, the model tends to have better results during daytime than 

nighttime with MSE values of 0.014 vs 0.030. The better performance in the daytime is 

because the signal received by the instrument in the daytime is much stronger than that of 

the nighttime, enabling both the CrIS and VIIRS to capture more information of the clear 

sky as well as cloud features, and thus making their spectra are much easier to be 

distinguished during the daytime. Furthermore, the model performs better over ocean 

than land with MSE values of 0.017 vs 0.033, which can be attributed to simpler surface 
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coverage and less signal disturbance from the surrounding environment. The DNN model 

overestimates the cloud fraction over areas with low cloud coverage and underestimates 

those over areas with high cloud coverage. This is because the relationship between the 

model predictors (CrIS spectra) and the cloud fraction values is nonlinear. In addition, 

larger uncertainty is observed over thin cloudy areas, possibly since the spectra of clear 

sky and thin cloud are similar with each other, making it hard for the model to correctly 

predict these two scenarios. Moreover, a lower model accuracy is also observed over 

high-latitude regions covered by snow or ice. The main explanation for this is that the 

accuracy of VIIRS cloud mask is relatively low over these areas, therefore, reducing the 

model’s ability to retrieve cloud fraction over these areas.  

Following the work presented in this paper, future work will focus on improving the 

following aspects to increase the model’s performance: 

1). Improving the training dataset. More training data will be added such that the 

experiments are more representative of the many global atmospheric and surface states. 

In addition, the CrIS and VIIRS data has been reprocessed with optimal algorithms 

through their life cycle recently (Zou et al., 2020; Chen et al., 2021), and both the 

accuracy of both datasets has been improved. Therefore, the model will be retrained with 

updated data in the near future to see if its performance can be further improved.   

2). Improving the model. First of all, more sensitivity tests will be conducted to tune 

the parameters and optimize the model, such as the use of a more complex neural 

network during training or different combinations of neurons, PC numbers and epochs. 

Additionally, the model will be trained under different situations so that the model 
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performance will be improved over low accuracy areas. This can be achieved, for 

example, by training the model for land, ocean, daytime, and nighttime scenarios 

separately.  

3). Focusing on improving the model performance of partially thin clouds which is 

hard to be distinguished from clear-sky pixels. 

4). Exploring the object-based methods such as CNN using the morphological 

characteristics of clouds.  

Lastly, the methodology described in this study can be easily adapted to other similar 

instruments (such as AIRS and IASI). Additionally, this methodology can be utilized for 

other non-hyperspectral satellite instrument pairs as well, provided that the lower and 

higher spatial resolution instruments could be accurately collocated together in a similar 

way as described in this paper. The retrieval model detailed in this paper can be 

particularly useful in partial cloud detection. Currently, the infrared sounder data serving 

in NWPs and GCMs can be classified as clear sky or cloudy, whereas partially cloudy 

scenes are undeterminable. However, this information is crucial for climate models, as 

the influence of partially cloudy scenes produces very different radiative forcing effects 

of the atmosphere than that of totally cloudy scenes. Further investigation of the partial 

cloud detection method could promote the application of the proposed cloud retrieval 

methodology in an operational mode for various applications, such as big spatiotemporal 

remote sensing data analytics and prediction accuracies improvement for GCMs and 

NWPs.  
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Section Two Rainy Cloud Classification 

This research explores the performance of rainy cloud detection and convective 

precipitation delineation based on GOES-ABI data using the DNN method. The system 

detected the rainy cloud with relatively high accuracy and is reliable in the convective 

area extraction. However, overestimation is observed in the identification of convective 

precipitation, especially over land areas. 

Due to the limitations of passive instrumentation, one of the recognized weaknesses 

in extracting cloud information from brightness temperature is that it only provides the 

vertical column-integrated cloud information. Although the spectral parameters adopted 

in this research were effective in reflecting the information of LWP by using the 

differences of BTs, they do not measure raindrops in the cloud directly as done by the 

PMW data. Therefore, the IR-BTD based method does not perform well enough in 

deciding the rain rates. Overestimation of convective rain areas occurred in the 

validations and case studies.  

However, the ABI data surpasses the PMW data in both spatial and temporal 

resolution and provides real-time monitoring and detection. The ABI’s temporal 

resolution is 5 minutes, and after the system is constructed, classification results are 

produced in the same interval. Conversely, the temporal resolution of IMERG is 30 

minutes, six times less frequent than ABI. The system provides rainy cloud classification 

results in a spatial resolution of 2 km, five times greater than that of the IMERG data. It 

functions in the prediction of convective precipitation in both urgent precipitation hazards 

and routine weather forecasts and is an alternative when PMW data are unavailable.  
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Radar-based QPE offers a high-quality estimation of precipitation. However, ground-

based radar is sparsely distributed and not available over the ocean, which has a high 

percentage of the heavy precipitation events (i.e., open ocean) and areas with the most 

significant economic impact (i.e., coasts). The GOES-ABI has a full and continuous 

coverage of northern and southern America and large areas of the ocean. The system 

proposed herein complements the Radar-based QPE over areas in which ground-based 

radar is unavailable.  

To improve the performance of the proposed automatic detection system, several 

initiatives are envisioned. First, more spectral information is needed, primarily reflecting 

the features inside the clouds. This could be accomplished by adding an IR sounder, 

Microwave images, and re-analysis of data like ECMWF (European Centre for Medium-

Range Weather Forecasts) and MERRA2 (Modern-Era Retrospective analysis for 

Research and Applications, Version 2). The second is better quality control in selecting 

rainy and convective pixels for training models. This is addressed by adding more 

thresholds to the spectral parameters to further filter errors and bias. The third is that to 

distinguish stratiform and convective precipitation using solely a fixed precipitation rate 

is quite arbitrary. This is addressed by including more variables (e.g., pressure and 

temperature). The fourth is to extend the research to precipitation rate estimation and 

introduce AI methods, especially DL, to the transformation of statistical knowledge about 

meteorological phenomena into numerical models. This helps improve the accuracy of 

numerical weather predictions (NWP). The fifth is that the precipitation product of Next 

Generation Weather Radar (NEXRAD) needs to be considered as validation data. The 
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sixth focuses on the cloud types and precipitation conditions that differ under other 

climate regimes (Berg et al., 2002). The models and system constructed in this research 

address only the daytime of the East Coast of the U.S. Future investigations need to 

address separate classification systems for different areas of the U.S. and those happening 

during the nighttime. 

This research proposes an automatic system of cloud classification based on the 

precipitation-producing capability to detect rainy clouds and delineate convective 

precipitation in real-time, based on DNN technologies. The proposed DNN model returns 

better accuracies on the validation dataset, especially for the convective precipitation 

delineation.  

From the experiments and analysis, this research offers the following conclusions: 

1). In the detection of rainy areas, the system provides reliable results of normal 

precipitation events and precipitation extremes such as hurricanes with a tendency toward 

overestimation;  

2). The DNN achieves better performance than the two ML methods with higher 

accuracies of the assessors on testing data;  

3). The system performs better over the ocean versus land; and 

4). This study is offered as a contribution to combine the advantage of AI 

methodology with the modeling of atmospheric phenomena, a relatively innovative 

domain needing more exploration. More specifically, the system combines DNN-

classifier and spectral features of rainy clouds to investigate precipitation properties. This 

research establishes an essential step with which to estimate precipitation rates further. 
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