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UNSUPERVISED BAYESIAN MUSICAL KEY AND CHORD RECOGNITION 

Yun-Sheng Wang, Ph.D. 

George Mason University, 2014 

Dissertation Director: Dr. Harry Wechsler 

 

Butler Lampson once said “All problems in computer science can be solved by another 

level of indirection.” Many tasks in Music Information Retrieval can be approached using 

indirection in terms of data abstraction. Raw music signals can be abstracted and 

represented by using a combination of melody, harmony, or rhythm for musical structural 

analysis, emotion or mood projection, as well as efficient search of large collections of 

music. In this dissertation, we focus on two tasks: analyzing tonality and harmony of 

music signals. Tonality (keys) can be visualized as the “horizontal” aspect of a music 

piece covering extended portions of it while harmony (chords) can be envisioned as the 

“vertical” aspect of music in the score where multiple notes are being played or heard 

simultaneously. Our approach concentrates on transcribing western popular music into its 

tonal and harmonic content directly from the audio signals. While the majority of the 

proposed methods adopt the supervised approach which requires scarce manually-

transcribed training data, our approach is unsupervised where model parameters for 



 

 

tonality and harmony are directly estimated from the target audio data. Our approach 

accomplishes this goal using three novel steps. First, raw audio signals in the time 

domain are transformed using undecimated wavelet transform as a basis to build an 

enhanced 12-dimensional pitch class profile (PCP) in the frequency domain as features of 

the target music piece. Second, a bag of local keys are extracted from the frame-by-frame 

PCPs using an infinite Gaussian mixture which allows the audio data to “speak-for-itself” 

without pre-setting the number of Gaussian components to model the local keys. Third, 

the bag of local keys is applied to adjust the energy levels in the PCPs for chord 

extraction.  

The main argument for applying unsupervised machine learning paradigms for tonal and 

harmonic analysis on audio signals follows the principle of Einstein’s “as simple as 

possible, but not simpler” and David Wheeler’s corollary to Butler Lampson’s quote “…, 

except for the problem of too many layers of indirection.” From experimental results, we 

demonstrate that our approach – a much simpler one compared to most of the existing 

methods – performs just as well or outperforms many of the much more complex models 

for the two tasks without using any training data. We make four contributions to the 

music signal processing and music information processing communities:  

1. We have shown that using undecimated wavelet transform on the raw audio signals 

improves the quality of the pitch class profiles. 

2. We have demonstrated that an infinite Gaussian mixture can be used to efficiently 

generate a bag of local keys for a music piece. 



 

 

3. We have ascertained that the combination of well-known tonal profiles and a bag of 

local keys can be used to adjust the pitch class profiles for harmony analysis. 

4. We have shown that an unsupervised chord recognition system – without any training 

data or other musical elements – can perform as well, if not exceed, many of the 

supervised counterparts. 

 

  



1 

 

Chapter 1 Introduction 
 

 

 

The ability to use machines to understand music has many potential applications in the 

area of multimedia and music information retrieval. For most of us, at a high level and 

without formal musical training, we can recognize whether the music being played is 

classical or popular as well as the mood the music piece conveys. At the middle level, 

listeners can easily determine whether a part being played is the chorus or refrain even 

with little or no formal musical training. At a low level, our brain not only can easily 

distinguish whether a music piece contains instruments such as piano, strings, woodwind, 

or percussion but is also capable of getting our foot to tap along with the rhythm of the 

music piece. These tasks of recognizing certain properties of a music piece are seemingly 

simple tasks for humans, but they remain to be difficult problems for machines to achieve 

a high accuracy similar to that of humans’ ears and brains.  

In this dissertation, we focus on developing a new methodology for machines to 

extract tonality (keys) and harmony (chords) from both symbolic and audio wave music.  

On a small scale, due to the lack of music scores of most popular music, musicians often 

want to extract these two elements for their own play or transcribe the piece into some 

other form that can be more appropriately played by different instruments or singers with 

different vocal ranges. On a large scale, the ability to use machines to extract keys and 

chords can be used to perform music segmentation, an important intermediate step to 
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retrieve music using machines. However, manual transcription is often a very laborious 

process and therefore it would be desirable for machines to perform such tasks given the 

large quantity of music that is available to us. Recognizing keys and chords of a music 

piece are two very much related tasks since knowing one would greatly help the other. In 

this dissertation, we present our research in key and chord recognition for popular music.  

 

1.1 Motivation and Applications 

 

As an amateur musician playing with a band in the past and currently with young 

children playing different instruments in the household, I always have the need to extract 

keys and chords by ears so that a music piece can be played by various instruments after 

transposing music. Manual analysis of tonal harmony on a few pieces is enjoyable but 

using machines to perform automated transcription would be much more desirable for 

large quantities of music media. Furthermore, the advancement of the internet and mass 

availability of various hand-held devices create the demand to efficiently retrieve music 

for listeners under different circumstances. As described by Yang and Chen (2011, p. 

187), chord notations are one of the most important “mid-level” features of music and 

such representation can be used to identify and retrieve music with similarity. From the 

neuro-cognitive perspective of music perception, such “mid-level” features lay the 

foundations for our auditory systems and brain to interpret and analyze the structure of 

the music being played and move our emotions, as described in Figure 1 (Koelsch & 

Siebel, 2005).  
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Figure 1: Neuro-cognitive model of music perception (Koelsch & Siebel, 2005) 

 

 

 

Using machines to transcribe music with chord sequences and key information 

not only provides a useful compacted representation of a music piece but also facilitates 

upper-level analyses in the areas of summarization, segmentation, and classification 

(Chai, 2005). These three areas have implication in music searches and applications for 

music information retrieval (MIR). In the area of music classification, tonal structure and 

harmonic progression are strongly related to the perceived emotion while similar chord 

sequences are often observed in songs that are close in genre; therefore, they are good 

features for classifying music in terms of their emotion or genre (Cheng, et al., 2008; 

Anglade, et al., 2009). Koelsch and Siebel (2005) also state that “structurally irregular 

musical events, such as irregular chord functions, can elicit emotional (or affective) 

responses such as surprise; a fact that is used by composers as a means of expression.” 
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Summarization and segmentation are two sides of the same coin for music 

structural analysis where the summarized representation, as chord progressions, can also 

help segment a music piece into parts such as intro, chorus, refrain, bridge, and outro. 

Proper segmentation of a music piece can also improve the search process if the end user 

has high confidence in terms of the “segment” of his approximate query (Noland & 

Sandler, 2009). Following this train of thought, we propose a novel music segmentation 

mechanism in Chapter 5.  

   

1.2 Research Goals 

 

The tasks of analyzing tonality and harmony are very much related for tonal music since 

knowing the key of a music piece greatly helps the determination of chords and vice 

versa. We review this relationship in more detail in Chapter 2. However, analyses of keys 

and chords of a music piece are subjective and two analysts will not necessarily analyze a 

music piece exactly the same way (de Clercq & Temperley, 2011). With regard to key 

analysis, some musicians might hear a modulation in many sections of the piece while 

others might not. This kind of disagreement is even more pronounced in chord analysis – 

is it a major or minor triad when we can only detect the root and the fifth of a chord or 

should we label a section with a minor or seventh chord? Therefore, we propose to use a 

probabilistic framework to address uncertainties where latent variables – keys and chords 

– are estimated using a generative process and sampling techniques. Furthermore, we aim 

to bypass the model selection problem typically encountered in various machine learning 
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paradigms by having the target music “speak for itself” instead of using predetermined 

model parameters. 

We approach the two tasks (key and chord recognition) using machine learning 

techniques. In a supervised learning setting, properly labeled training data (annotated 

keys and chords, in our case) are used to train a classifier so that it is capable of giving 

labels, i.e., keys or chords, to a given music piece. For unsupervised learning, there is no 

training data involved; it simply clusters sections of musical notes with the same 

characteristics such as those belonging to the same modulations or chords without giving 

them specific labels. The main differentiators between these two paradigms are model 

training and specifics of output labels. In our case, we argue that supervised learning is 

not suitable for music due to the scarcity of labeled training data which leads to the high 

possibility of over-fitted supervised models. Therefore, it would be more desirable to 

directly perform the two tasks on a target music piece in an unsupervised manner. 

However, a pure clustering-based unsupervised learning method (clustering musical notes 

into key and chord segments) is also undesirable since the goal of analyzing the tonality 

and harmony of a target music piece is to output specific key and chord labels. Thus, a 

better fit for our purpose is unsupervised learning guided by constraints which, in our 

case, is to use the unsupervised learning as a framework but incorporating relevant music 

theory into the framework so that it is capable of outputting the correct key and chord 

labels.  
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We test the key and chord recognition algorithm of popular music in both 

symbolic form and real audio recordings. Symbolic music in the format of MIDI 

(Musical Instrument Digital Interface) is event-based which contains all information that 

is necessary for machines to communicate and hence, generate the prescribed music as 

specified in the symbolic format. Real audio recordings are those stored on CDs (compact 

discs) as musical albums which can be played by CD players. Music from audio CDs can 

be extracted and converted to Waveform Audio file format (WAV) which contains a 

sequence of samples of audio sound waves. We test our proposed key and chord 

recognition algorithm with the above two data formats.  

To summarize, our research goals are to develop a novel method to recognize 

keys and chords of symbolic and real music. Specifically, we aim to achieve the 

following: 

1. Simultaneously recognize keys and chords of a music piece 

2. Lay a foundation of using harmony for music segmentation and structural analysis 

3. Adopt an unsupervised learning method to avoid the use of labeled training data 

4. Use a probabilistic framework to address issues of uncertainties 

 

1.3 Thesis Organization 

 

Chapter 2: Background and Related Work  

We first review the fundamentals of music theory related to tonality and harmony as well 

as define musical terms that we use throughout this dissertation. Secondly, we review the 
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most commonly used signal processing techniques for extracting features that are useful 

for key and chord finding. Third, we discuss important previous work of key and chord 

recognition in symbolic and audio domain, concentrating on work after the year 2008. 

Finally, we review the concept and fundamentals of infinite mixtures, the basis for the 

infinite Gaussian mixtures that we employ to extract a bag of local keys. 

 

Chapter 3: Methodology 

In the beginning of Chapter 3, we provide a “roadmap” of the methodology that outlines 

the contribution of each component to the overall tasks of key and chord finding. Since, 

in our method, extracting a bag of local keys using an infinite Gaussian mixture is a 

common component for the symbolic and audio track, we first concentrate on discussing 

the specifications of the model in the musical context.  After the common thread is 

explored, we divide the discussion into two tracks – symbolic and audio – and provide 

specific treatment for each musical data format. In our discussion, we put more emphasis 

on the audio track due to its ubiquitous dominance in real audio recordings that we hear 

every day. Specifically, we discuss a wavelet based signal processing technique that we 

adopt in “regularizing” the raw audio signals before useful features are extracted. We 

conclude this chapter with a discussion on evaluation mechanisms for key and chord 

recognition in the symbolic and audio domains.  
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Chapter 4: Experimental Results 

The dataset that we use is from the Beatles’ 12 albums of 175 songs. Therefore, at the 

beginning of this chapter, we describe the characteristics of the recordings in terms of 

their keys and chords. We move on to discuss our experimental results for the symbolic 

and audio tracks, respectively. Since the symbolic versions of the Beatles’ music are 

certainly different from the original Beatles’ recordings in terms of their audio content 

and length, experiments performed on the MIDI files are primarily served to improve the 

extraction of local keys for real audio files. Emphasis is placed on the audio track and the 

performance of various audio features are analyzed and compared. 

 

Chapter 5: Applications and Extensions 

With the ability to extract keys and chords described in the previous chapters, we propose 

a segmentation method based on “harmonic rhythm” that only involves the extracted 

tonal and harmonic information. Five dimensions – texture, phenomenal, root, density, 

and function – of harmonic rhythm are discussed in terms of how they can be used as 

segmentation cues. We further discuss the possibility of turning the segmentation 

boundary recognition problem into a change detection using a non-parametric martingale 

based method.  

 

Chapter 6: Conclusions and Future Work 

In this final chapter, we summarize the work we performed and highlight the main 

contributions of this undertaking. Future direction of improving the framework to turn a 
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bag of local keys into local key recognition on a frame-by-frame basis as well as future 

work for music structural segmentation is discussed.  

 

1.4 Contributions and Publications 

 

The thesis is organized based on the following three publications: 

 

• Wang, Y.-S. & Wechsler, H. Musical keys and chords recognition using 

unsupervised learning with infinite Gaussian mixture. Proceedings of the 2nd 

ACM International Conference on Multimedia Retrieval, ICMR 2012, Hong 

Kong, China. 

• Wang, Y.-S.  Toward segmentation of popular music. Proceedings of the 3rd 

ACM International Conference on Multimedia Retrieval, ICMR 2013, Dallas, 

Texas, USA. 

• Wang, Y.-S. & Wechsler, H. Unsupervised Audio Key and Chord Recognition. 

Proceedings of the 16
th

 International Conference on Digital Audio Effects, DAFx 

2013, Maynooth, Ireland. 

 

Specifically, we make four contributions to the music signal processing and music 

information processing communities:  

1. We have shown that using undecimated wavelet transform on raw audio signals 

improves the quality of the pitch class profiles. 

2. We have demonstrated that an infinite Gaussian mixture can be used to efficiently 

generate a bag of local keys for a music piece. 
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3. We have ascertained that the combination of well-known tonal profiles and a bag of 

local keys can be used to adjust the pitch class profiles for harmony analysis. 

4. We have shown that an unsupervised chord recognition system – without any training 

data as well as other musical elements – can perform as well, if not exceed, many of 

its supervised counterparts.  
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Chapter 2 Background and Related Work 

 

 

In this chapter, we review the fundamentals of music theory and musical terms that are 

pertinent to the discussion of this dissertation as well as previous work in key and chord 

recognition. In Section 2.1, the relationship between frequency and pitch is covered, 

followed by the discussion of tonality (key) and how harmony (chord) is constructed 

under a tonal center. Section 2.2 reviews the most commonly used signal processing 

method for analyzing tonal harmony. Starting with one of the earliest models proposed by 

Jamshed Bharucha, we review, in Section 2.3, methods proposed in the literature while 

putting emphasis on more recent work since year 2008. In the last section of this chapter, 

we review early work of mixture models to lay the foundation for more in-depth model 

discussion at the beginning of Chapter 3. 

 

2.1 Musical Fundamentals 

 

2.1.1 Pitch and Frequency 

From the Columbia Electronic Encyclopedia, 6
th

 Edition, pitch is defined as the 

following: 
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Pitch, in music, the position of a tone in the musical scale, today designated by a 

letter name and determined by the frequency of vibration of the source of the tone. Pitch 

is an attribute of every musical tone; the fundamental or first harmonic, of any tone is 

perceived as its pitch. The earliest successful attempt to standardize pitch was made in 

1858, when a commission of musicians and scientists appointed by the French 

government settled upon an A of 435 cycles per second; this standard was adopted by an 

international conference at Vienna in 1889. In the United States, however, the prevailing 

standard is an A of 440 cycles per second.  

Based on the above definition, we see that three musical terms – musical scale, 

fundamental frequency, and harmonic – play an integral role in defining pitch and its 

relationship to frequency. A musical scale, explained in detail in Section 2.1.2, is a set of 

musical notes ordered by fundamental frequency (f0) which is defined as the lowest 

frequency of a periodic waveform. The f0 of each piano note is depicted in the bottom of 

Figure 2. Since sounds generated by musical instruments or human voices are rarely pure 

tones – those with one sinusoidal waveform of a single frequency – but a mixture of 

harmonics or overtones of twice, three, or n times of the fundamental frequency, such 

mixture of harmonics give rise to “timbre.” Timbre, also known as tone color, 

characterizes a unique mix of harmonics which allows us to distinguish different voices 

or sound produced by human or musical instruments. In general, periodicity – a periodic 

acoustic pressure variation with time – is the most important determinant of whether a 

sound is perceived to have a pitch or not. Therefore, pitched sounds, when represented in 

waveform (time domain), are periodic with regular repetitions while non-pitched sounds 

http://ehis.ebscohost.com.mutex.gmu.edu/ehost/?sid=b7a3decb-5c3f-4ebb-9249-33fc7bddd024@sessionmgr4&vid=4&hid=5&db=a9h&ss=AN+%2239030606%22%09%09%09%09&sl=ll
http://ehis.ebscohost.com.mutex.gmu.edu/ehost/?sid=b7a3decb-5c3f-4ebb-9249-33fc7bddd024@sessionmgr4&vid=4&hid=5&db=a9h&ss=AN+%2239010440%22%09%09%09%09&sl=ll
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lack such property. On the other hand, when a sound is represented in their spectrum 

content (frequency domain), we typically see distinct lines which represent harmonic 

components while non-pitched sounds are continuous without harmonic components; see 

Figure 29 for an illustration. Figure 2 depicts the fundamental frequencies of pitches 

generated by pianos, human voices, and a variety of musical instruments as well as their 

overtones.  

 

 

 

Figure 2: Fundamental frequencies of human voices and musical instruments and 

their frequency range 

 

 

 

2.1.2 Tonality and Harmony 

From the Columbia Electronic Encyclopedia, 6th Edition, tonality and atonality are 

defined as the following:  

javascript:__doLinkPostBack('','mdb%7E%7Ea9h%7C%7Cjdb%7E%7Ea9hjnh%7C%7Css%7E%7EJN%20%22Columbia%20Electronic%20Encyclopedia%2C%206th%20Edition%22%7C%7Csl%7E%7Ejh','');
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Tonality, in music, quality by which all tones of a composition are heard in 

relation to a central tone called the keynote or tonic. In music that has harmony the terms 

key and tonality are practically synonymous, embracing a hierarchy of constituent 

chords, and a hierarchy of related keys.  

Atonality, in music, systematic avoidance of harmonic or melodic reference to 

tonal centers (see key). The term is used to designate a method of composition in which 

the composer has deliberately rejected the principle of tonality.  

From the above definitions, three terms – tonal center (central tone, tonic), 

hierarchy, and harmony (harmonic) – appear at least twice so we will first discuss them to 

see how they relate to tonality. A tonic is the most important and stable tone in which a 

music piece typically “resolves to” at the end or otherwise it gives the listeners the 

feeling of “unresolved” tension. Centering at the tonic, other tones form a hierarchy of 

pitches that are most frequently used and such hierarchy indicates the functions of 

different tones and their importance to the tonal center. Such musical relations within the 

hierarchy of pitches and tonal stability enable a listener to perceive and appreciate tension 

and release from a music piece. Harmony is the use of simultaneous tones which form 

varieties of chords and is one of the key ingredients in polyphonic music. Similar to the 

tonic of a music piece, chords and their progression create tension or resolution 

throughout the music piece. Though we have not finished the discussion of for key and 

chord, it should be clear that the tasks of extracting them (tonality and harmony) only 

apply to tonal music and therefore, we will not discuss atonality in this dissertation. The 
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remaining of the section provides more background information and concepts related to 

keys.   

The key of a music piece contains two elements: tonic (discussed above) and 

mode. The mode of a key -- major or minor – are frequently referred in the title of 

classical music such as “Minuet in G Major” by Bach where the tonic is G and mode is 

major so the overall key is G Major. The most important distinguishing factor between a 

major and minor mode is the presence of major-third or minor-third interval above the 

tonic. A major third interval spans four semitones while a minor third consists of three 

semitones. The concept of intervals and semitones in a major or minor mode can be fully 

explained through major or minor scales, respectively. A major scale is defined by the 

interval pattern of T-T-S-T-T-T-S where T stands for whole tones and S stands for 

semitones. A whole tone is comprised of two semitones. Figure 3 depicts the C-major 

scale where C is the tonic with a major third (four semitones from the tonic C to E).  

 

 

Figure 3: C major scale 
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There are three minor scales: natural, harmonic and melodic minor, all of which 

have a minor-third interval above the tonic. We summarize the interval patterns of the 

three minor scales in Table 1.  

 

Table 1: Natural, harmonic and melodic Minor scales 

C Minor 

Scale 
Staff Notation Intervals 

Natural 
 

T-S-T-T-S-T-T | T-T-S-T-T-S-T 

Harmonic 
 

T-S-T-T-S-T+S-S | 

S-T+S-S-T-T-S-T 

Melodic 
 

T-S-T-T-T-T-S | T-T-S-T-T-S-T 

 

 

 

A chord is a set of two or more notes that are played simultaneously or 

sequentially. The cardinality of chords, using C as the root, can be visualized in Figure 4. 

The most frequently used chords are triads which consist of three distinct pitch classes. A 

pitch class is a set of pitches or notes that are an integer number of octave apart. An 

example that two notes (C4 and C5) are one octave apart but belong to the same pitch 

class (C) is described in Figure 5. Since an octave contains 12 semitones, we use integer 

notation, starting from 1 to 12 where degree 1 indicates the root pitch class, to describe 

pitch classes as whole numbers. Such integer notation represents the scale degree of a 

particular note in relation to the tonic. The tonic is considered to be the first degree of the 

scale.  



17 

 

 

Figure 4: Cardinality of chords (Hewitt, 2010) 

 

 

Figure 5: Octave and pitch classes. Each letter on the keyboard represents the 

pitch class of the tone (Snoman, 2013). 
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Using the 12 semitones within an octave, an interval is the distance from the root 

to each semitone. The root of a chord is the pitch upon which other pitches are stacked 

against to form a chord. For example, the root of an F-major chord is F pitch while the 

root of E-minor chord is the E pitch. Figure 6 tabulates and gives names of all intervals 

within an octave that we use to discuss the formation of chords.   

 

 

Figure 6: Names of musical intervals (Hewitt, 2010) 

 

 

 

We will limit our review to five types of chords, namely, major, minor, 

diminished, augmented, and suspended (2
nd

 and 4
th

), which our chord detection task 

mostly focuses on in this dissertation. These five types of chords all consist of three pitch 

classes. Table 2 summarizes the intervals that make up the five types of chords and 
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illustrates examples with roots in C pitch class using staff notation. Figure 7 and Figure 8 

depict the five types of triads with C as root using piano roll, guitar fret board, and staff 

notation.  

 

Table 2: Formation of triads 

Name Intervals 

Major  Root, major 3
rd

, and perfect 5
th

 

Minor  Root, minor 3
rd

, and perfect 5
th

 

Diminished Root, minor 3
rd

, and diminished 5
th 

(augmented 4
th

) 

Augmented Root, major 3
rd

, and augmented 5
th

 

Suspended 4
th

 Root, perfect 4
th

, and perfect 5
th

 

Suspended 2
nd

 Root, 2
nd

, and perfect 5
th

 

 

 

Figure 7: Notation of C major, minor, diminished, augmented chords (Hewitt, 

2010) 
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Figure 8: Four types of suspended triads with c as the root (Hewitt, 2010) 

 

 

 

Other than the notations described above, musicians often use Roman numerals to 

denote triads within a major or minor key of their respective scale (collectively we denote 

as diatonic scales) as described in Figure 3 and Table 1. A triad is of the nth degree when 

the root of the chord is the nth degree note of the diatonic scale employed by the music 

piece. Therefore, triads formed within the diatonic scale are called in-key chords. For 

example, the C major and F major triads in a music piece with the key of C major is 

denoted as Roman numerals ‘I’ and ‘IV’ respectively since its root is the tonic and fourth 

degree of the C major scale. The most important in-key triad is the tonic chord which is 

the first degree chord (“I” chord) and it is the best representative chord of the key for 
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three reasons. First, the root tone of the chord is the also the root tone of the key. Second, 

the tonic chord contains the perfect fifth interval (such as the G in C major chord) which 

is also the third harmonics of the root tone of the key. Third, and most importantly, the 

tonic chord contains the third of the key – three intervals (minor third) or four intervals 

(major third) above the tonic – which determines the mode of the key (minor or major).  

  

2.1.3 Chroma and Key Profiles 

According to Revesz and Shepard, a pitch has two dimensions: tone height and chroma. 

Tone height is the sense of high and low pitch while chroma refers to the position of a 

tone within an octave (Loy, 2006, p. 163). Figure 9 (a) and (b) visualize the concept of 

tone height and chromatic circle (abbreviated chroma) where the chroma circle is the 

projection of tone height along the y-axis. The concept of chroma is the same as that of a 

Pitch Class depicted in Figure 5. Due to human ears’ logarithmic frequency sensitivity, 

the tone height component is represented using the logarithm of the frequency of a pitch. 

In the chroma circle, neighboring pitches are a tonal half step apart which we refer to as 

“semitone” in Figure 3. Circle of Fifth (CoF), as depicted in Figure 9 (c), represents 

musically significant intervals, such as perfect fifth (clock-wise) and perfect fourth 

(counter-clockwise). CoF is often used to measure “distances”, such as Lerdahl’s distance 

(Lerdahl, 2001), among different keys as well as explain the concept of consonance and 

dissonance for chord formations, dated back to as early as Pythagoras’ time (Benson, 
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2007).  Perfect fifth and perfect fourth have a frequency ratio -- all of them simple ratio -- 

of 3:2 and 4:3, respectively, while notes of an octave apart has a simple ratio of 2:1.  

 

Figure 9: (a) Pitch tone height; (b) Chroma circle; and (c) Circle of Fifth; ((a) 

and (b) are from Loy, D. (2006, pp. 164-165)) 

 

 

 

The most influential key-finding work was developed by Krumhansl and 

Schmuckler (Krumhansl, 1990) which is widely known as K-S key-finding algorithm. 

The algorithm uses a set of 12 major and 12 minor key profiles, depicted in Figure 10, 

developed by Krumhansl and Kessler (Krumhansl & Kessler, 1982). Ranking values of 

these profiles describe how well the probe-tone “fits” in the context on a scale of one to 

seven where higher values represent better goodness-of-fit in terms of stability and 

compatibility. Many key and chord finding implementations are based on the K-S 

algorithm and K-K profiles where target music pieces are encoded as a 12-dimensioned 
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vector to be compared with these 24 key profiles. The key profile that best correlates with 

the target 12-dimensioned vector is the found key.  

 

 

Figure 10: Krumhansl and Kessler major and minor profiles 

 

 

 

 Instead of gathering responses to the probe-tone from listeners as a way to 

represent each tone’s ranking in a tonal structure, Temperley (2007) uses the Kostka-

Payne corpus of 46 musical excerpts to determine each scale degree’s presence, using 

probability distributions, in major and minor scales in the corpus. For example, scale 

degree 1 (the tonic) and scale degree 7 occur in 74.8% and 40% of the segments in major 

scales, respectively. The Temperley tonal profile is depicted in Figure 11.  
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Figure 11: Temperley key profiles 

 

 

 

2.2 Music Signal Processing and Previous Work 

The symbolic representation (i.e. MIDI) of music, similar to a musical score composed 

by a composer, contains explicit information of musical notes played by computers. Since 

the 1970s, much of the tonal or harmonic analyses have been performed on the 

symbolically notated western classical music which we review in Section 2.3. Due to the 

differences between the data format of symbolic and waveform audio music, a signal 

processing front end is required to transform the raw audio waves into a format suitable 

for the tasks at hand. For key and chord analysis, the most popular format is a 

chromagram, also known as chroma vectors or Pitch Class Profile (PCP), which is a 

frame-by-frame chroma-based representation of the target music piece. In this section, we 
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review the most commonly used signal processing techniques to extract the PCP. Figure 

12 depicts the general framework of a two-stage process to convert waveform audio 

signals to a frame-by-frame chromagram. In our discussion of specific methods of the 

signal processing front end, we mainly follow the notation used in (Loy, 2007). 

 

Figure 12: Framework of chromagram transformation (diagram extracted from 

(Müller & Ewert, 2011)) 

 

 

 

The first stage transforms signals from the time domain into frequency domain 

using discrete Short-Time Fourier Transform (STFT) which splits the sampled input 

signals, 𝑥(𝑖), into successive block of frames of size N and hop size r. Equation 1 

describes the STFT and Table 3 lists a few commonly used STFP specifications.  

Audio Signals in 

wave from 

Pitch 

Representation 

Chroma 

Representation 

STFT or CQT with 

various resolution 

parameters 

Various resolution and 

transformation for 

spectral content 

summation 
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Equation 1: Short-term Fourier transform 

𝑋 
    (𝑠𝑅) =  ∑ 𝑥(𝑟)𝑤(𝑠𝑅 − 𝑟)𝑒        

 

    

 

 

where 𝑘 indexes discrete frequency over the range of 0 ≤ 𝑘 < 𝑁, 𝑠 denotes the index of 

the analysis frame, and w(.) is a suitable windowing function.  

 

Table 3: Previous work and commonly used STFT specification 

 Analysis Type Analysis 

Window 

Frame Size Sampling 

Rate 

Hop Size 

Sheh and 

Ellis (2003) 

Harmony and 

Segmentation 

Hann 4096 11025 Hz 100 ms 

Gomez 

(2006) 

Keys Blackman 

Harris 

4096 44.1 KHz 11 ms 

Khadkevich 

and 

Omologo 

(2009) 

Harmony and 

Segmentation 

Hamming 2048 11025 Hz 185.7 ms 

 

 

 

STFT is suitable for analyzing frequency resolution that is constant throughout 

the frequency range, i.e., it divides the spectrum of the sound into bins of constant 

bandwidth. However, due to human ears’ logarithmic frequency sensitivity, the pitch 

perception of the ear is proportional to the logarithm of frequency rather than to the 

frequency itself. Therefore, the constant bandwidth of STFT overspecifies high 
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frequencies and underspecifies low frequencies. A Constant Q Transform (Brown, 1991)  

is designed so that the bandwidths of analysis bins, denoted as 𝛿𝑓 , increase in constant 

proportion to the center frequency, 𝑓 , of each band which overcomes the insufficient 

frequency resolution for low frequencies. Quality Factor, abbreviated 𝑄 , is therefore 

defined as the ratio of the center frequency to the bandwidth of a bandpass filter. 

Furthermore, since a frequency ratio of two is a perceived pitch change of one octave and 

a semitone interval is √ 
  

, we can express 𝑓  in terms of the minimum center frequency 

𝑓    (such as C0 at 16.35Hz, see Figure 2) and the number of bins (𝛽) per octave. The 

last piece of information that is required to complete the specification of CQT is the 

length of the analysis frame, 𝑁(𝑘), which can be determined by the sampling rate 𝑓 , 𝑓 , 

and 𝑄. Equation 2, Equation 3, Equation 4, and Equation 5 describe CQT in a similar 

notation to that of STFT. Table 4 lists a few commonly used STFP specifications. 

 

Equation 2: Constant Q transform 

𝑋 
   (𝑠𝑅) =  ∑ 𝑥(𝑟)𝑤(𝑘, 𝑟)𝑒       

 ( )  

   

 

 

Equation 3: Sampling rate determination  

𝑓 =    ⁄ 𝑓    
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Equation 4: Q determination 

𝑄 =
𝑓 
𝛿𝑓 

 

Equation 5: Size of analysis frame 

𝑁(𝑘) =
𝑓 
𝑓 

𝑄 

 

Table 4: Previous work and commonly used CQT specification 

 Analysis 

Type 
𝒇    𝒇    𝜷 Q Sampling Rate Hop  

Size 

Bello and 

Pickens 

Harmony and 

Segmentation 

98 Hz 5250 Hz 36 51 11025Hz 1/8 

Harte 

(2005) 

Chord 110 Hz 

(A2) 

1760 Hz 

(A6) 

36 51 11025 Hz 1/8 

Muller 

(2011) 

Harmony 27.5 Hz 

(A0) 

4186 Hz 

(C8) 

72 25 High: 22050 Hz 

Middle:4410 Hz 

Low: 882 Hz 

1/2 

 

 

 

The second stage is to sum up the energy level of pitch representation from the 

first stage into a two-dimensional chromagram based on Equation 6 (Lerch, 2012) where 

  represents the index of chroma (0 ~ 11) and   denotes the index of each analysis frame 

in Equation 7. They are frequently normed as described in Equation 8. 
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Equation 6: Chroma summation 

 ( ,  ) =  ∑(
 

𝑘 ( ,  ) − 𝑘 ( ,  )   
∑  𝑋(𝑘,  )

  ( , )

    ( , )

)

  

    

 

 

Equation 7: Chroma vector 

 ( ) =   (0,  ),  ( ,  ),  ( ,  ), ,  (  ,  )   

 

Equation 8: Normalized chroma vector  

  ( ) =  ( )  √
 

∑  ( ,  )   
   

 

 

where in Equation 6,    and    designate the indices of the first and last octaves in the 

pitch representation while 𝑘 ( ,  ) and 𝑘 ( ,  )  represent the low and high cut-off 

frequencies of a pitch band.  

 

2.3 Previous Keys and Chords Analysis 

Bharucha (1991), in the mid-1980s, proposed the earliest complete system, an artificial 

neural network (ANN) called MUSACT, to extract tonality and harmonic content from 

audio signals. Specifically, it extracts chords from tones and keys from chords. Since the 

majority of systems proposed in recent years and those in the past decade exhibit similar 
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components and characteristics, we will use Bharucha’s model, to be discussed in Section 

2.3.1, as a baseline in reviewing recent work. Section 2.3.2 summarizes important work 

since the late 1990s.  In Section 2.3.3, we concentrate our review on relevant research 

published after 2008 and draw commonalities and differences based on the Bharucha’s 

model when pertinent.    

 

2.3.1 Bharucha’s Model 

Figure 13 depicts Bharucha’s model where Spectral Representation (component a) is 

reviewed in Sections 2.1.1 and 2.2, Pitch Height (component b) and Pitch Class 

(component c) are discussed in Section 2.1.3, and Pitch Class Clusters (component d) and 

Tonal Centers (component e) are described in Section 2.1.2. The Gating mechanism 

(component f) takes pitch-class information and tonal center (key) to transform them into 

a pitch-invariant representation so that the tonic is always “0” in a 12-dimensioned vector 

representing a musical sequence. The invariant pitch-class representation supports the 

encoding of sequences into a sequential memory (component h). In other words, all 

musical sequences are normalized into a common set of invariant pitch categories 

indexed by a chroma vector {0, 1, 2, 3, …, 10, 11} where the first index denotes the tonic 

or key.  Figure 13 depicts the network of tones, chords, and keys in his model while 

Figure 15 describes the gating mechanism. 



31 

 

 

Figure 13: Bharucha’s model (1991, p. 93) 

 

 

 

Figure 14: Network of tones, chords, and keys (Bharucha, 1991, p. 97) 
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Figure 15: Gating mechanism to derive pitch invariant representation (Bharucha, 

1991, p. 97) 

 

 

 

According to Bharucha and Todd (1991, p. 128), two forms of tonal expectancy – 

schematic and veridical – can be modeled by the sequential memory (component h in 

Figure 13). Schematic expectancies are “culturally based structures which indicate events 

typically following familiar contexts,” while veridical expectancies are “instance-based 

structures indicating the particular event that follows a particular known context.” The 

schematic and veridical expectancies correspond, more or less, to the cultural and sensory 

aspects of tonal semantics – a system of relations and meanings between tones within a 

context – as described by Leman (1991, p. 100). The sensory aspect relates to the sounds 

and acoustical stimulus processed by our auditory system where as the cultural aspect 

“captures what is added by the cultural character of the music and by learning processes 

of the listener with respect to this character.” Furthermore, Bharucha and Todd describe 

the potential conflicts between the two expectancies as the following.  
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  “Schematic and veridical may conflict, since a specific piece of music may 

contain atypical events that do not match the more common cultural expectations. This 

conflict, which was attributed to Wittgenstein by Dowling and Harwood (1985), underlies 

the tension between what one expects and what one hears, and this tension plays a salient 

role in the aesthetics of music (Meyer 1956). Schematic expectancies are driven by 

structures that have abstracted regularities from a large number of specific sequences. 

Veridical expectancies are driven by encodings of specific sequences.” 

 Transition probabilities for the schematic and veridical expectancies of chord 

functions are embodied in the sequential memory. Bharucha and Todd further stated that 

“the net will learn to match the conditional probability distributions of the sequence set 

to which it is exposed ... an example of such expectancy is that a tonic context chord 

generates strong expectation for the dominant and subdominant while supertonic context 

chord induces resolution to the dominant and submediant progressions.”  Though tonal 

expectancy, in terms of harmonic progressions, for common-practice music (European art 

music from 18
th

 to 19
th

 centuries) are generally agreeable among musicologists, the “rule” 

or “common pattern” of chord progression may not be readily available in pop or rock 

music which we will discuss in detail in Section 4.5. 

 

2.3.2 Summary of Previous Work 

We summarize previous work based on three characteristics: format of music data, 

supervised vs. unsupervised, and types of output. The approach of using machines to 
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extract keys and chords are typically categorized based on the format of the music data: 

raw audio signals or symbolic event-based signals. The former category requires signal 

processing techniques, which we reviewed in Section 2.2, to extract low-level features 

such as Pitch Class Profiles (PCP) or chroma vectors from the raw audio signals as a 

front end. The latter format contains discrete events such as MIDI that can be directly 

used for key and chord recognition. Since one of the distinguishing characteristics of our 

approach is the unsupervised machine learning approach, we categorize, rather loosely, 

previous literature into the two machine learning paradigms – supervised and 

unsupervised – in terms of their requirements on the use of training data. In other words, 

we categorize approaches that require training data as supervised methods while those 

that do not, including knowledge-based systems, as unsupervised. The third characteristic 

we examine in the proposed methods is whether keys (local vs. global) and chords are 

estimated simultaneously as well as the chord vocabulary involved in the recognition. 

Based on the above categorization, we enumerate previous relevant work in Table 5.  
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Table 5: Previous work of key and chord analysis 

Y
ear 

R
esearch

ers 
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n
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p
es in

 

p
aren

th
esis 

P
re-2

0
0
5
 

Fujishima 

(1999)  

Wakefield 

(1999) 

A Two earliest work in proposing transforming audio 

signals into pitch-chroma representation 

(chromagram ) 

 

 Raphael and 

Stoddard 

(2003) 

  Use HMM to label 

segments of MIDI music 

piece with keys and 

chords where they are 

simultaneously estimated; 

model parameters were 

trained from unlabeled 

MIDI files with rhythm 

and pitch C(2) 

 Sheh and Ellis 

(2003) 

A HMM-based chord 

model trained using 

EM; single 24- 

dimension Gaussian; 

Viterbi algorithm for 

chord labeling 

 

C(2) 

 Pauws (2004) A  Key profile matching & 

human auditory modeling GK 
2
0

0
5
 

Zhu, 

Kankanhalli, 

and Gao 

(2005) 

A  Apply tone structures and 

clustering to estimate 

diatonic scale root and 

keys from extracted pitch 

profile GK 

 Chuan and 

Chew (2005) 

A  Spiral Array model and 

Center of Effect 

Generator (CEG) GK 

 Chai and 

Vercoe (2005) 

A  12-state HMM for key 

2-state HMM for mode; 

Relative keys grouped 

first; detect modes 

second; Music theory 

based HMM parameter 

specification LK 
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 Bello and 

Pickens 

(2005) 

A HMM-based method; 

mid-level 

representation of 

harmonic and rhythmic 

information 

 

C(2) 

2
0

0
6
 

Gómez  

(2006) 

A  Introduced Harmonic PCP 

(HPCP) which increases 

resolution in frequency 

bins with weighted 

harmonic content;  

Employed K&K and 

Temperley key profiles GK 

2
0

0
7
 

Izmirli (2007) A  Extracted chromagram are 

segmented using non-

negative matrix 

factorization; global and 

local keys are found using 

K-S key finding  LK 

 Rhodes, 

Lewis, and 

Mullensiefen 

(2007) 

S Bayesian based model 

selection  and Dirichlet 

distributions for pitch-

class proportions in 

chords 

 

C(5) 

2
0
0
8
 

Ryynanen and 

Klapuri 

(2008) 

A Chord model: 24-state 

HMM; Note model: 3-

state HMM; noise-or-

silence model: 3-state 

HMM; Viterbi 

algorithm is used to 

determine note and 

chord transition; 

Melody and bass notes 

are estimated 

 

GK + C(2) 
 Weil, Sikora, 

Durrieu, and 

Richard 

(2009)  

A 24-state HMM as 

chord model; employ a 

beat-synchronous 

framework; also 

estimate melody  

 

GK + C(2) 

 Cheng, Yang, 

Lin, Liao, and 

Chen (2008) 

 Acoustic modeling: 

HMM; Language 

modeling: N-gram; 

Chord decoding: 

calculate maximum 

likelihood against 

chord templates  

 

 

 Lee and 

Slaney (2008) 

 Use synthesized 

symbolic data to train 

key-dependent HMM; 

 

GK + C(2) 
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a global key is 

estimated; chord 

sequence is obtained 

by Viterbi algorithm 

2
0

0
9
 

Khadkevich 

and Omologo 

(2009) 

A PCP features are used 

to train 24-state HMM; 

labeled chord sequence 

are used to train N-

gram language model; 

beat tracking utilized  

 

C(2) 

 Hu and Saul 

(2009) (Hu, 

2012) 

S/

A 

 Latent Dirichlet 

Allocation (LDA) for both 

symbolic and audio data; 

use Mauch’ NNLS 

chroma features; audio 

data is synthesized from 

MIDI  LK+C(2) 

 Weller, Ellis, 

and Jebara 

(2009) 

A Replace a generative 

HMM with a 

discriminative SVM 

 

C(3) 

2
0
1
0
 

Mauch and 

Dixon (2010) 

A  Dynamic Bayesian 

network / GMM for 

features; all parameters 

and conditional 

probability distributions 

are manually specified GK + C(4) 

 Ueda, 

Uchiyama, 

Ono, and 

Sagayam 

(2010) 

A Use harmonic / 

percussive sound 

separation (HPSS) to 

suppress percussive 

sound;  

 

LK + C(2) 

 Rocher, 

Robine, 

Hanna, and 

Oudre (2010) 

A  Harmonic candidates 

consist of chord/key pairs; 

use binary chord 

templates and Temperley 

key templates;  Use 

Lerdahl’s distance and 

weighted acyclic 

harmonic graph to select 

best candidate; Dynamic 

programming involved LK + C(2) 

2
0

1
1
 

Cho and Bello 

(2011) 

A Smooth DCT-based  

chromagram by time-

delay embedding and 

recurrence plot; GMM 

and binary chord 

template are used  

 

C(3) 

 Oudre, A  Template (binary) based C(3) 
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Fevotte, and 

Grenier 

(2011) 

probabilistic framework 

using EM;  used 

Kullback-Leibler 

divergence to measure the 

similarity between 

chromagram and chord 

templates 

 Pauwels, 

Martens, and 

Peeters (2011) 

A  Knowledge based: Local 

key acoustic model + 

binary chord template;  

Lerdahl’ tonal distance 

metric; Dynamic 

programming search LK + C(4) 

 Lin, Lee, and 

Peng (2011) 

S Use Artificial Neural 

Networks (ANN) 

trained by Particle 

Swarm Optimization 

(PSO) and 

Backpropagation (BP) 

 

C(1):3 maj 

chord 

2
0
1
2
 

Itoyama, 

Ogata, and 

Okuno (2012) 

A Adopt Markov process 

for chord sequence, 

Gaussian mixture for 

feature distribution, 

and Pitman-Yor 

language model for 

chord transition; Joint 

posterior probability of 

chord sequence, key, 

and bass pitch 

estimated  

 

C(4) 

 Papadopoulos 

and Peeters 

(2012) 

A HMM based;  key 

progression is 

estimated from chord 

progression and 

metrical structure; 

analysis window length 

is adapted to the target 

music piece  

 

LK 

 de Haas, 

Magalhaes, 

and Wiering 

(de Haas, et 

al., 2012) 

  Knowledge-based tonal 

harmony model; Use 

Mauch’s beat-

synchronized NNLS 

chroma; Use K-S key 

profiles for key finding 

and involve dynamic 

programming LK + C(3) 

 Ni, Mcvicar, 

Stantos-

A Beat tracking + 

Loudness based treble 

 

GK + C(11) 
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 MIREX
1
 (Music Information Retrieval Evaluation eXchange) formalized the 

chord audio detection test in 2008 and many significant work of key and chord 

recognition have been published through different channels. Since not all proposed 

systems in the literature participated in MIREX’s tasks and many of those who 

participated submitted multiple versions for competition, it is difficult to determine the 

exact number of publications. However, to gain a basic understanding of different 

methods as well as types of keys or chords they aim to estimate, we broadly survey the 

existing literature after 2008 and categorize them in Table 6. Though we do not claim that 

the table includes an exhaustive and complete categorization of the existing literature, we 

do see certain subcategories that are more popular than others. First, the supervised 

methods are more popular than their unsupervised counterpart. Second, the majority of 

chord estimation covers only the major and minor chord types. Third, though keys and 

chords are closely related aspects of tonal harmony, the majority of the proposed methods 

do not estimate them simultaneously. 

  

                                                 

1
 http://music-ir.org/mirex/wiki/MIREX_HOME 

Rodriguez, 

and De Bie 

(2012) 

and bass chroma + 

HMM 
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Table 6: Publication count for key and chord analysis since 2008 

Category Sub category # of Publication 

Machine Learning Supervised 29 

 Unsupervised 21 

Signals Audio  43 

 Symbolic  7 

Keys Global 14 

 Local 10 

Triad Chords major + minor 21 

 major + minor + N 10 

 major + minor + augmented + suspended 5 

 major + minor + augmented + suspended + N 2 

Key + Chords Global key + chords 8 

 Local keys + chords 7 

 

 

 

In the above summary of previous work, we purposely concentrate only on 

comparing and contrasting mechanisms proposed in the literature, not their performance 

in terms of recognition rates of keys and chords nor the data sets employed in their 

experiments. This is due to the fact that many experimental results are obtained from 

datasets that, in many cases, are very different in terms of the number of musical pieces, 

type of music, as well as the types of keys or chords these proposed systems aim to 

recognize. Therefore, it is rather meaningless to report recognition rates that cannot be 

objectively compared. However, for methods that aim to estimate chords for pop music, 

the majority of them use the same training (for supervised approaches) and testing dataset 

– a collection of at most 217 popular songs – which is relatively small and highly 

unlikely representative of popular music. It is also unclear how much of these supervised 

mechanisms have been overfitted using the said dataset (de Haas, et al., 2012). However, 

in Section 4.4 Performance Comparison, we will provide details of more recent 
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experimental results which employ similar test dataset to that of ours; moreover, we will 

elaborate on the possibility of overfitting in supervised machine learning in Section 4.4.   

 

2.3.3 Recent Work After 2008 

Examining Bharucha’s model and previous work in Table 5, we notice that the majority 

of recently proposed methods highly resemble the Bharucha’s model. First, for proposed 

methods involving audio data, all have a spectral processing front end using one of the 

transformations described in Section 2.2. Second, extracted spectral content is 

transformed into Pitch Class representation and variants of the gating mechanism might 

be applied to produce invariant representation of pitch classes. Third, for the majority of 

the supervised learning approach summarized in Table 5, the prevalent HMM component 

is more or less similar to the Bharucha’s Sequential Memory component where 

conditional probabilities are obtained through learning.  

In the system proposed by Ryynanen and Klapuri (2008), there are two major 

components – a chord transcription module and a note module. The chord transcription 

module uses a 24-state HMM for major and minor triads. Trained profiles for major and 

minor chords are used to compute the observation likelihood given those profiles. 

Between-chords transition probabilities are estimated from training data and Viterbi 

decoding is used to find the most likely chord progression. The note module utilizes three 

HMMs to model the three acoustic aspects – target notes, other notes, and noise-or-

silence – of the music data. Melody and bass lines are modeled through the target-notes 
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module; the noise-or-silence models the ADSR (attack, decay, sustain, release) envelope 

which we explain in Section 3.4.1; all other sounds are modeled in the other-notes 

module. Conceptually, these two components are similar to the more simplified system 

proposed by Cheng et.al (2008) utilizing acoustic and language components. The acoustic 

component uses a 24-state HMM to model the low-level PCP feature vector to find a 

chord that best fits the perceived music in a short time interval. The language component 

employs an N-gram model to determine the best chord progression following the rules of 

harmony from the commonly-used progression patterns. One distinguishing characteristic 

of Cheng’s system is that the Viterbi algorithm is not used in the chord decoding phase. 

Instead, the chosen chord and progression are determined by the maximum likelihood 

principle combining the language and acoustic components.  Very similar to Cheng’s 

system, the following year, Khadkevich and Omologo (2009) also proposed a system 

using HMM and language model (such as N-gram or factored language model, FLM) in 

which chord sequence is obtained by running a Viterbi decoder on trained HMM while 

taking the weight of the language model into consideration. Examining the three systems 

from a high level, the two components in each system appear to correspond quite nicely 

to Bharucha’s schematic and veridical expectancies as described in Section 2.3.1. 
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Figure 16: System developed by Ryynanen and Klapuri (2008) 

 

 

 

Mauch and Dixon (2010) divide spectral content into bass and treble 

chromagrams as input to a dynamic Bayesian network (DBN) – a Bayesian network 

models event of time series – to simultaneously model many aspects of music. The DBN 

is constructed with six layers where the two observed layers model the bass and treble 

chroma vectors while the other four hidden source layers jointly model metric position, 

key, chord, and bass pitch classes. Figure 17 (a) depicts “two slices” of the model. In a 

typical scenario uisng the DBN, the conditional probability distribution for each node is 

estimated from the training data; however, even with simplified scenarios such as 4 

metric positions, 12 unique key signatures, 48 chord types, and 12 bass pitch classes, the 

estimation and specification of the conditional probability distributions (CPD) – through 

training – for all the nodes in the network quickly becomes infeasible. As stated by 

Mauch (2010), “… we choose to map expert musical knowledge onto a probabilistic 

framework, rather than learning parameters from a specific data set. In a complex model 

such as the one presented in this section, the decisions regarding parameter binding 
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during learning, and even the choice of the parameters to be learned pose challenging 

research questions, …” Due to the infeasibility of training the DBN, all CPDs are 

manually specified in this method. The other challenging aspect of utilizing such a model 

is the specification of the model structure which could be learned from adequate amount 

of training data to understand if there is any causal relationship between, for example, the 

metrical position and key or other nodes in the DBN. Since the model structure and CPDs 

are manually specified, we categorize this method as an unsupervised knowledge-based 

system.  

 

 

Figure 17: (a) Dynamic Bayesian network developed Mauch & Sandler (2010); 

(b) DBN modified by Ni et al. (2012) 

 

 

  

 Ni et al. (2012) improved Mauch’s work in two ways. First, they extracted treble 

and bass chromagrams by taking human perception of loudness into account. Second, 

metric 

position 

 

 

key 

 

 

chord 

 

 

 

bass 

 

 

bass 

chroma 

 

treble 

chroma 
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instead of using expert knowledge for the specification of model parameters, the 

probabilities of key chord, bass and conditional probabilities specified in Figure 17 (b) 

are learned from the training dataset using maximum likelihood. However, in Ni’s HMM, 

the metric position is not modeled. Furthermore, similar to Bharucha’s model, they also 

adopted the technique of using pitch invariant representation, with the assumption that 

chord transitions are dependent on the tonal center, to increase the effective training data 

by 12 folds.   

de Haas et al. (2012) proposed a system which uses Mauch’s NNLS chroma 

features as input to a complete knowledge-based subsystem for local key finding and 

chord transcription without using any training data. The Euclidean distance between 

chroma features and a chord dictionary, consisting of major, minor, and dominant 

seventh, is calculated for each beat. If the distance between one particular chord 

candidate and the chroma frame is sufficiently shorter than other candidates, the 

candidate chord is assigned as the label. Otherwise, a formal model of tonal harmony, a 

tree-based rule, depicted in Figure 18, is consulted to select the most harmonically 

sensible sequence among a list of chord candidates.  
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Figure 18: Rule-based tonal harmony by de Hass (de Haas, 2012) 

 

 

 

Hu and Saul (2009; Hu, 2012) employed unsupervised learning technique using a 

Latent Dirichlet Allocation (LDA) probabilistic model to determine keys and chords for 

symbolic and real audio music. In their application of LDA, musical notes (u) play the 

role of words and a music song (s) is part of M songs in a corpus S = {s1, s2, …, sM}.  

Each music document consists of a sequence of N segments (denoted u) so that s = {u1, 

u2, …, uN}. Musical keys (z) play the role of hidden topics so that z = {z1, z2, …, zN}. 

The graphical model is depicted in Figure 19 where α, β, and θ are parameters that govern 

the generative process. In their experiment, however, they did not use audio recordings 



47 

 

from the CD albums but used only MIDI-synthesized audio files which can potentially be 

very different from the original recordings. 

 

 

Figure 19: Latent Dirichlet allocation for key and chord recognition (Hu, 2012). 

Left model: symbolic music; right model: real audio music 

 

 

 

Lin et al. (2011) proposed a system, trained and tested with MIDI symbolic 

music, using a three-layer feed-forward Artificial Neural Network (ANN) trained by 

Particle Swam Optimization (PSO) and Backpropagation (BP). In this work, only 

successions of single tones in melody are considered for both training and testing. 

Furthermore, a metrical structure of 4-4 (quarter-note as a beat and 4 beats per measure) 

is assumed as well as the six types of cadence numbers that are used to cover conclusive 

and inconclusive phrases in the melody. Only three major chords – C, F, and G – are 

included in the training and testing datasets.  

 In the supervised machine learning paradigm of tonality and harmony estimation, 

most methods summarized in Table 5 use a generative process with the assumption that 

latent, or hidden, sources are responsible for generating pitches, pitch clusters (chords), or 
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tonal centers as described in Bharucha’s model. Weller et al. (2009), on the other hand, 

employed a discriminative Support Vector Machine (SVM) which avoided density 

modeling in a generative setting commonly found in HMMs. Specifically, the existing 

2008 LabROSA Supervised Chord Recognition System is modified by replacing the 

HMM with a large margin structured prediction approach (SVMstruct) using an enlarged 

feature space which improved the performance significantly.  

MIDI synthesized audio have the potential to be used as training data for 

supervised learning methods in key and chord recognition as proposed by Lee and Slaney 

(2008). The lack of manually expert-transcribed pop music as training data for the two 

tasks is widely documented for the past decade which we review in Section 4.4. In their 

approach, they use the Melisma Music Analyzer developed by Sleator and Temperley 

(2001) to obtain chord labels along with other information such as meter and key from 

the MIDI files. With chord labels and their timing boundaries, these MIDI files are 

converted to the WAV format using a variety of computer instruments as training data. A 

24-state and 36-state HMMs, are constructed for the Beatles and classical music, 

respectively; each state represents a chord using a single multivariate Gaussian 

component. Furthermore, Lee and Slaney developed 24-state key-dependent HMMs so 

that a specific HMM is chosen for chord recognition based on the most probable global 

key identified. Using the Viterbi decoder, the chord sequence is obtained from the 

optimal state path of the corresponding key model.  Their model is described in Figure 

20. 
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Figure 20: Chord recognition model developed by Lee and Slaney (2008) 

 

 

 

 Rocher et al (2010) proposed an unsupervised concurrent estimation of chords 

and keys from audio which involve four steps. First, chroma vectors are extracted from 

audio signals. Second, a set of key-chord candidate pairs are established for each frame. 

Third, a weighted acyclic graph is constructed using candidate pairs as vertices and 

Lerdahl’s distance (Lerdahl, 2001) as edges. Fourth, the best key-chord candidate 

sequence is computed using dynamic programming technique that minimizes the total 

cost along the edges of the graph. Pauwels et al. (2011) also developed a very similar 

system which largely follows the four steps described earlier.  

Another notable unsupervised approach is by Odure et al. (2011) which only takes 

chroma features and a user-defined dictionary of chord templates to estimate chords of a 

music piece in a probabilistic framework without using other music information such as 

key, rhythm, or chord transition. Candidate chords for each frame are treated as 
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probabilistic events and the fitness of each chord candidate is measured by the Kullback-

Leibler divergence between the chroma feature and candidate chord templates.  

 

2.4 Mixture Models 

In our work, we use an infinite Gaussian mixture model (IGMM) (Rasmussen, 2000; 

Wood & Black, 2008), a specific instantiation of Dirichlet Process Mixture model 

(DPMM), as a probabilistic framework to model the uncertainties for key and chord 

analysis. In this section, we review the fundamentals and specifications of a generic 

DPMM to facilitate the discussion of IGMM in Section 3.2.  

To use a traditional mixture model, as a prerequisite, the number of mixture 

component needs to be specified prior to the modeling effort; however, such information 

is usually not available. Therefore, the use of a finite mixture model is not suitable in our 

application. A DPMM was first proposed by Ferguson (1973) and Antoniak (1974) which 

eliminated this need by treating the number of mixture component as part of the unknown 

parameters to be estimated.  

Figure 21 depicts the simplest form of a DPMM which we call a basic DPMM to 

differentiate it from other forms of DPMM.  
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Figure 21: A basic Dirichlet Process Mixture Model  

 

 

 

Parameters in Figure 21 are defined below: 

  =    ,   ,  ,     denotes the   observed data points. 

 𝐺 is drawn from a Dirichlet Process (DP) with a base (arbitrary) distribution 𝐺  

and a concentration parameter   . We denote 𝐺     (𝐺 ,  ) .   ’s are random 

samples generated from 𝐺. We denote      𝐺   𝐺 and  =    ,   ,  ,    .    may 

repeat due to discreetness. Distinct values of    𝑠  are represented by  =

   ,   ,  ,     .  

    is generated by a mixture of distribution  ( ). We denote          (  ). Each 

Fi has a density fi(.). 

 Define  ( ) =    ,  ,     ,     ,  ,    .  

 

         (  ) 

     𝐺   𝐺 

𝐺     (𝐺 ,  ) 

 

   

   

𝐺 

Keys or 

chords 

Musical 

notes 

Prior (musical) 

knowledge 



52 

 

We will elaborate the use of parameter 𝐺 in the context of a Dirichlet distribution 

and a Dirichlet Process. A Dirichlet distribution, often denoted  𝑖𝑟( ),is the multivariate 

generalization of the beta distribution. A beta distribution can be used to model events 

bounded by a pair of minimum and maximum values while a Dirichlet distribution 

typically models a set of categorical-valued observations where the size of the vector   

determines the number of categories and the values of   represent the concentration of 

each category. A Dirichlet Process, denoted as   (𝐺 ,  ), is a stochastic process which 

generates an infinite stream of parameter values drawn from the base distribution 𝐺  and 

the concentration vector parameter  ; i.e., a draw from a DP produces a random 

distribution. Based on the above specifications, we can immediately write down the 

posterior distribution in Equation 9 which is the product of likelihood and prior: 

 

Equation 9: Posterior distribution of Gaussian parameter  

 (   |  )    ∏𝑓 (     )  (𝐺 𝐺 ,  ) for j = 1 … k 

 

Integrating out 𝐺, from Blackwell and MacQueen (1973), we have the following 

distribution of     given  ( ): 

 

Equation 10: Sampling function 1 

      
( )   

 𝐺 

(   −  )
 

 

(   −  )
∑ 𝛿(   )         
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Equation 11: Sampling function 2 

       
( )  

 𝐺 

(   −  )
 

 

(   −  )
∑   𝛿(   )

     
 

 

where 𝛿(𝑥)  is a Dirac delta function. Equation 10 and Equation 11 state the most 

important results of a DPMM which characterizes the fact that given all previously 

obtained θ’s, the next θ will be based on the following: 

 A new    , i.e., the value of     that was not seen before, will be generated with a 

probability proportional to  .  

 A repeated    , i.e., the value of     seen before, will be generated with a 

probability proportional to how many times it was generated before in relation to 

other θ’s. 

 

Equation 10 and Equation 11 give the theoretical footing for the sampling process 

to generate localized candidate keys and chords in a music piece.  This sampling process 

has the same form as that of a Chinese Restaurant Process (CRP) which enables us to 

generate infinite number of samples. Imagine there is a Chinese restaurant with an 

infinite number of tables and each table also has the potential to seat unlimited number of 

customers. The owner of the restaurant uses Equation 10 and Equation 11 as the seating 

rule to seat his customers as below: 

 The first customer may pick any table of his liking. 

 The following customer may pick an empty table with the probability proportion 
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to   or one of the occupied tables with a probability proportion to the number of 

customers already occupied at that table. 

 To make sure empty tables are picked so that tables with large number of 

customers do not get over crowded, the owner uses another sampling process to 

determine α probabilistically. 

 

The sampling process described in Equation 10 and Equation 11 are intuitively 

simple but inefficient as suggested by Neal (2000); therefore a different form of the 

Dirichlet process mixture model is in order which is specified in Figure 22. 

 

     ,       (  ) 

                (  ) 

             

               ( 
 

 
, ,

 

  
) 

 

Figure 22: A standard DPMM for key and chord modeling 
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 The first question that comes to mind regarding the standard DPMM is the 

disappearance of the DP from the basic DPMM. Instead, the components of the DP are 

decoupled into two places – the base measure 𝐺 is being used solely to generate   while 

the concentration parameter( )  is used in the Dirichlet distribution as a prior for a 

discrete distribution of the mixture proportions  ( ). Notice the difference between a 

Dirichlet distribution and a DP is that the Dirichlet distribution has a fixed dimension 

while the DP is infinite in terms of its measure space. Therefore, it would be apparent 

that, in the current model, when we take k to infinity, we would immediately have a DP. 

Now we formally define the new parameters used in the standard DPMM: 

 Parameter   is the prior for a discrete distribution for mixture proportions    

where 𝑖 =  , , 𝑘. 

 The class indicator  =    ,   ,  ,     establishes a mapping between Y and  . 

Therefore,   =   if   =   .  

 Define  ( ) =    ,  ,     ,     ,  ,    . 

 

  and   are the two model parameters that we need to use as the vehicle to 

recognize keys and chords. From Equation 10 and Equation 11, we immediately deduce 

that   has the same prior predictive distribution as that of   since  (     
( ),  ,  , 𝑘) is 

proportional only to either the counts of observations generated by   for a repeated value 

which was seen before (an occupied table) or α for a new value (an empty table). 
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Therefore, the predictive (or prior) distribution of ci given all other variables  (  =

    ( ),  ,   , 𝑘)  can be expressed below: 

 

Equation 12: Sampling function for an existing index variable  

 (  = 𝑒𝑥𝑖𝑠 𝑖        ,  ) =  (  = 𝑒𝑥𝑖𝑠 𝑖        )       

 

Equation 13: Sampling function for a new index variable  

 (  =  𝑒𝑤    ,  ) =  (  =  𝑒𝑤    )      

 

From Figure 22 and Equation 13, we see that hyperparameter   serves as a prior 

to the mixture proportions as well as a probabilistic event to introduce a new θ into the 

mixture of local keys. To sample hyperparameter   from the generative process depicted 

in Figure 22, we follow the sampling process proposed by (West, et al., 1994) as 

described in Equation 14. The idea is to draw a new value for   at the end of each 

iteration (after processing all n  data points) based on the most recent values of   and 𝑘 

(number of Gaussian components) using Gamma(1, 1) as the prior for  . 

 

Equation 14: Sampling function for alpha 

 (    𝑘,  ,  ) =  (    𝑘)    ( )  (𝑘    )  
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Chapter 3 Methodology 

 

Two principles guide our development of the methodology. The first is Einstein’s “Make 

everything as simple as possible, but not simpler.” The second principle attributes to 

Butler Lampson’s quote and David Wheeler’s corollary “All problems in computer 

science can be solved by another level of indirection, except for the problem of too many 

layers of indirection.”  

Due to the scarcity of manually transcribed training data, we choose to directly 

estimate local keys and chords from the target music data without using any training data; 

therefore, our overarching approach is unsupervised machine learning in contrast to the 

more popular supervised learning methods we reviewed in Chapter 2. In Section 3.1, we 

provide an overview of the methodology and how each component contributes to the 

extraction and recognition of keys and chords for music in symbolic and audio formats. 

Since the infinite Gaussian mixture model (IGMM) plays an important role in extracting 

a bag of local keys (BOK), a common thread in our approach for both symbolic and 

audio formats, in Section 3.2, we review the general specification of an IGMM and how 

it is constructed as a generative process to extract a BOK. In Sections 3.3 and 3.4, we 

provide treatment that is specific to the symbolic and audio domains, respectively.  In the 

last section, we discuss performance metric that we employ in evaluating our proposed 

method.    
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3.1 Overview of the Methodology 

The core components of the methodology are depicted in Figure 23 in which the 

horizontal dimension covers modules used in the symbolic and audio domains while the 

vertical dimension depicts the processing flow from signal processing, key and chord 

recognition, and validation.  Since the data format of symbolic and audio signals are 

drastically different, as described in Sections 1.2 and 2.2, the signal processing 

mechanisms used in extracting keys and chords for each data format is expected to be 

different. For symbolic music (MIDI), features such as musical notes and their duration 

of play can be easily extracted. However, for real audio signals, the task of extracting 

clean pitch information remains a difficult research problem since the 1970s (Lerch, 

2012, p. 94). Therefore, in the signal processing step, we propose to employ an 

undecimated wavelet transform on the raw audio signals to produce cleaner and smoother 

signals by reducing transient noise and filtering out higher harmonics.  
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Figure 23: Methodology overview 

 

The main approach that we adopt in key and chord recognition is to extract a bag 

of local keys first and then use the extracted key information to improve the recognition 

of chords. A bag of local keys is extracted from an Infinite Gaussian Mixture model 

(IGMM) without training data. Since an unsupervised machine learning approach 

typically is employed to perform clustering without training data, our method uses 

IGMM to find “clusters” as tonal centers, directly from the musical piece. The IGMM is 

a generative process which we depict in Figure 24.  
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Figure 24: A conceptual generative process for keys and chords.  

 

 

 

There are three main distinguishing ideas in our methodology. First, we use one 

generative model to determine what keys (or chords, for symbolic music) generated the 

overall and localized set of musical notes. Second, since the judgment of keys and chords 

are subjective as described in the Introduction section, our technique models extracted 

keys and chords as probability distributions. Third, our technique directly estimates keys 

and chords without using any training data. We discuss the detail specifications of the 

generative model – IGMM, a specific instantiation of a Dirichlet Process Mixture Model 

– in the next section.  
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3.2 Infinite Gaussian Mixture Model 

We use the Infinite Gaussian Mixture Model (IGMM) to model the generative process of 

musical data as well as the musical knowledge related to keys and chords. When 

presented with a music piece, without any prior knowledge of the piece, we do not know 

if there are any key modulations or the number of chord types involved. Without such 

precise knowledge, it is not ideal to use a mixture model pre-specified with a fixed 

number of components such as GMM and Bayesian GMM. Following Wood’s depiction 

(Wood & Black, 2008), Figure 25 provides a hierarchical specification – a plate notation 

– of traditional GMM, Bayesian GMM, and IGMM. In the plate notation, we note the 

difference between a traditional and Bayesian mixture is the addition of prior knowledge 

(𝐺 ,  ) in the Bayesian mixture while the infinite Bayesian mixture employs potentially 

infinite number of model parameters ( ,  ) in which the exact number of components are 

fully determined by the observed data. 
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Figure 25: Types of mixture models (Wood & Black, 2008). (a) Traditional 

mixture, (b) Bayesian mixture, and (c) Infinite Bayesian mixture. The numbers at 

the bottom right corner represent the number of repetitions of the sub-graph in 

the plate.  
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𝐺 :Hyper-parameters for Gaussian 

mean (µi) and covariance (∑i) 
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Figure 26: Specification of Infinite Gaussian Mixture Model 

 

 

 

Since IGMM is a specific instantiation of DPMM, its model parameters are 

similar to DPMM. For easier reference and discussion in the context of using IGMM for 

extracting a bag of local keys, we repeat some of the definitions described in Section 2.4 

and provide a complete definition of the IGMM parameter below: 

 

  =    ,   ,  ,     denotes the n groups of musical data. 

 Music theory 𝐺  governs the generation process of    =    ,    . 

   ’s (keys or chords) are random samples generated from G. We denote    | G ~ G 

and  = {  ,   ,  ,   }.    may repeat due to discreetness. Distinct values of   ’s 

are represented by  =    ,   ,  ,     . 

    is generated by a mixture of distribution F(θ). We denote  

     ,       (  ). Each Fi has a density fi(.). 
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 Define  ( ) =    ,  ,     ,     ,  ,    .  

   is the prior for a discrete distribution for mixture proportions    where i = 1 … 

k. 

 The class indicator  =    ,   ,  ,     establishes a mapping between the 

observed music   and the generating keys or chords  .  Therefore,   =   if 

  =   .   

 Define  ( ) =    ,  ,     ,     ,  ,    . 

 

Musical notes   are generated by a mixture of multivariate Gaussian components 

with Gaussian parameters  .    is represented as an n × 12 matrix. The prior knowledge 

over class (keys or chords) assignments specify how likely a set of musical notes would 

belong to (or be generated by) a key or chord. The mixing proportions ( ) are modeled as 

a Dirichlet distribution which serves as a prior for multinomial component indicators (  ). 

Since Dirichlet distribution is a conjugate prior to the multinomial distribution, the 

posterior of    is also Dirichlet. They are represented as the following: 

 

Equation 15: Distribution for the proportional variable  

       𝑖𝑟𝑖   𝑒 ( 
 

𝑘
, ,

 

𝑘 
) 

 

Equation 16: Distribution for the indexing variable 

            𝑖   𝑖  (  ) 
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We note that the structure of IGMM is identical to a standard DPMM and 

therefore the sampling process of a new θi (keys or chords) in an IGMM can be expressed 

in Equation 12 and Equation 13 as described in Section 2.4.  Furthermore, in the context 

of key finding using a Chinese Restaurant Process with a mixture model, we can think of 

each table as a key or chord and each customer as a group of simultaneously played 

notes. As each musical note (or a group of notes) arrives, we probabilistically assign it to 

a key that most likely generated it, given the knowledge that we have obtained up to the 

arrival of that data point; we repeat this sampling process until the assignment of all 

musical notes converges. The same can be imagined for the context of chord recognition. 

For both tasks, we generate possible keys and chords based on a CRP to best fit the entire 

(or segment of) music piece, without setting the number of such tables a priori. If we 

repeat such sampling process Nwarm-up  + N iterations and discard the samples generated 

by the first Nwarm-up iterations, we have collected N samples or keys or chords. Such 

samples represent our belief of what keys or chords generated each localized segment (of 

various lengths) of the music piece.  

 Given the observed music  =    ,   ,  ,    , the joint posterior distribution of 

the model parameters is described in Equation 17. Since the indicator variable c 

associates each chroma vector to key θ, together they completely determine what local 

key generated each chroma vector. Therefore, as described in Section 2.4, our goal is to 

use an iterative sampling process to obtain c (Equation 12 and Equation 13) and   

(Equation 10 and Equation 11). 
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Equation 17: IGMM joint distribution 

 ( ,  ,  ,    )   (   ,  ) (  𝐺)∏ (    ) (   ) ( )

 

   

 

 

Music theory (𝐺 ) consists of a set of hyperparameters to form distributions that 

govern the generation of candidate keys and chords for the given music piece  =

   ,   ,  ,    .  Specifically for IGMM, the relationship between 𝐺  and   =    ,     

can be described below. 

 

Equation 18: Prior for Gaussian covariance 

        𝑒𝑟𝑠𝑒 −  𝑖𝑠  𝑟 (  
  ,   ) 

 

Equation 19: Prior for Gaussian mean 

     𝐺  𝑠𝑠𝑖  (  ,   ) 

 

where the Inverse-Wishart distribution is the conjugate prior for the covariance matrix of 

the multivariate Gaussian.  

In Figure 26,    is a Gaussian component with mean (  ) and covariance (  ). 

 =    ,   ,  ,     is an indicator variable establishing  a mapping between each chroma 

vector in   and  . Hyperparameter   is the prior for a discrete distribution for mixture 

proportions (  ) where 𝑖 =     𝑘. A GMM would have a set value of 𝑘, but in the case 
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of an IGMM, 𝑘 is completely determined by the generative process which allows it to go 

into infinity. The mixing proportions (  ) are modeled as a Dirichlet distribution which 

serves as a conjugate prior for multinomial component indicators ( ). A similar infinite 

mixture called Infinite Latent Harmonic Allocation has been recently proposed by 

(Yoshii & Goto, 2012) as a multipitch analyzer which estimates multiple fundamental 

frequencies (F0) from audio signals. 

 

Table 7: Gaussian coding examples for IGMM  

Examples [C, C#/Db, …, A#/Bb, B] 

C Major Key Profile [5 0 3 0 3 3 0 3 0 3 0 3] 

C (harmonic) Minor Key Profile [5 0 3 3 0 3 0 3 3 0 0 3] 

C Major Key Covariance Matrix A 12x12 matrix where 1 is assigned to notes with 

> 0 values in the C Major key profile 

C Major Chord Profile [5 0 3 0 3 0 0 3 0 0 0 0] 

C Major Key Covariance Matrix A 12x12 identity matrix 

 

 

 

Table 7 describes how we encode musical notes (  ), means of Gaussian key and 

chords (  ), and covariances of Gaussian keys and chords (  ). For    and   , we follow 

closely with the encoding profile proposed by Lerdahl (2001). We implement    as an 

identity matrix. These encodings are the constraints used to guide the unsupervised 
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learning of IGMM to efficiently recognize latent keys and chords which generated the 

observed musical notes through the CRP. 

 

3.3 Symbolic Domain 

Symbolic music such as MIDI (Musical Instrument Digital Interface) contains all the data 

necessary for computers to play the music prescribed in the MIDI file. Extracting useful 

features from MIDI for the two tasks (key and chord recognition) are straightforward as 

described in the first subsection. The second subsection discusses the details of how to 

use an IGMM to model a music piece which leads to effective recognition of keys and 

chords.   

 

3.3.1 Feature Extraction 

 

A MIDI file stores musical performance information to be played by a MIDI device or a 

computer that connects to a MIDI interface. A MIDI file does not contain any recording 

of music performed by musicians but instead instructions to a MIDI-equipped device on 

how to play it.  A sound synthesizer is one example of such device that is capable of 

imitating timbres of different musical instruments.  Similar to a composer of classical 

music putting musical notes on a score for different instruments of an orchestra, a MIDI 

composer uses a host of software and hardware to produce music that closely mimics the 

performance of an orchestra in a concert hall. Similar to the staff notation of music score 
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consumed by musicians, the MIDI specification defines the format of MIDI music, stored 

in a MIDI file, to be read and played by a MIDI device.   

A MIDI file contains a sequence of commands, also known as events, regarding 

the timbre as well as note pitches and their starting and ending times. A MIDI device 

turns these sequences into signals consumed by the sound cards to produce the intended 

music. We use Toiviainen and Eerola’s MIDI Toolbox (2004) to read a MIDI file into a 

matrix where features and sequence of events are represented by columns and rows, 

respectively. The toolbox extracts seven features for each event: onset (in beats), duration 

(in beats), MIDI channel, MIDI pitch, velocity, onset (in seconds), and duration (in 

seconds). The onset and duration indicates the starting time or beat of the MIDI pitch 

specified in the event and the length of such event. A MIDI channel can be thought of as 

the timbre generated by different instruments while the velocity indicates how forceful a 

note should be played. MIDI channels can be used to filter out sounds produced by 

percussion instruments since such sounds do not directly contribute to the recognition of 

keys and chords. Though the information of how fast or forceful a note is played in a 

piece can be useful in aiding the two tasks that we have at hand, we discard this 

information to simplify the modeling effort. Figure 27 depicts these seven features in the 

MIDI representation for the Beatles’ song “Let it be.” 
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Figure 27: MIDI representation of "Let It Be" 

 

 

 

Four features – onset time, duration, MIDI channel, and MIDI pitch – are first 

extracted to obtain groups of simultaneously-played musical notes. After the extraction, 

we convert the extracted MIDI pitches to pitch classes as a sequence of data points. We 

denote them as  =    ,   ,  ,     where    represents the ith group of pitch classes that 

are played together. As described earlier, percussion sound is treated as noise and filtered 

out through the proper MIDI channel. Note that, however, unlike most of the profile-

based key-finding algorithms, we do not use the time duration of each data point to 

recognize keys and chords. In other words, we hypothesize that the duration of each set 
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of notes played in the music piece has minimal impact on the key and chord finding 

activities.  

 

3.3.2 Keys and Chords Recognition 

 

The first data point is denoted as    and the last group is denoted as   . We feed  =

   ,   ,  ,     into the IGMM to iteratively generate key and chord samples that most 

likely produced  . We arbitrarily generate the first key sample, Keysample
1
, which is in 

turn used to help generate the first sample of chords, Chordsample
1
. After some burn-in 

iterations, these samples start to converge to the estimated keys and chords. Note that a 

sample generated from an iteration, say Keysample
i 
or Chordsample

i+1
, contains all possible 

keys (due to modulations) or chords used in the entire music piece. In other words, a key 

sample is a time series of keys and a chord sample is a time series of chords for the entire 

target music piece. We iterate 2s times until we have generated s samples of keys and 

chords. In our implementation, we model 24 types of keys (12 tonic x 2 modes) and 13 

types of chords (power, major, minor, diminished, augmented, suspended, 7
th

, major 7
th

, 

minor 7
th

, diminished 7
th

, major 6
th

, first inversions of major and minor triads) for each 

key. Table 8 depicts the algorithm for key and chord recognition using IGMM. 
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Table 8: Sampling algorithm using IGMM for symbolic key and chord 

recognition 

 

Preprocess the MIDI file to extract a four-dimensioned feature {onset time, duration, 

MIDI channel, and MIDI pitch} and store them as input data  =    ,   ,  ,     

Initialize G; Initialize c1 and θ1 to random values. 

For i = 1: 2s samples do 

For j = 1: n sets of musical notes do 

Sample a new c based on Equation 12 and Equation 13 

If a new    is required 

Sample a new θ based on Equation 18 and Equation 19 

Update α based on   ’s distribution from iteration i-1 

End 

End 

Regroup   based on all sampled  ; For each cluster generated by   , find 

the closest key/chord profile as the output label 

End 

 

  Given  , we use a generative process to determine what local keys (latent variable 

 ) generated   without any training data. Our emphasis is on finding the most likely local 

keys that are present in the target music piece but ignore their sequence and precise 

modulation points. Each    in   is modeled as a Gaussian component, specified by its 

mean and covariance. To bypass the requirement of specifying the number of local keys 

in a Gaussian mixture, we use an infinite Gaussian mixture model (IGMM) depicted in 

Figure 26.  
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3.4 Audio Domain 

In the acoustic audio domain, we perform key and chord recognition on music 

recordings, such as albums on compact disks (CDs), of sound waves produced by 

instruments or human singing. We extract music directly from CDs and convert it to the 

.WAV file format. Different from a midi file containing commands to instruct midi 

devices how to play the music, a wav file contains encoded acoustic sound waves to be 

decoded by computers when played. Due to the drastic differences between midi and wav 

files, we approach the two tasks in this section differently but still aim to use the same 

probabilistic framework as described in the previous section. Table 9 describes the four 

stages of our system for the audio domain which corresponds to the audio track in Figure 

23.  

 

Table 9: Four stages of extracting keys and chords from audio  

Stage I Undecimated wavelet transform on WAV audio 

Stage II Extract chroma features from wavelet approximation 

Stage III Extract a bag of local keys from chromagram using infinite Gaussian mixture 

Stage IV Adjust chromagram using KK tonal profiles based on extracted local keys to 

determine chords 

 

 

 

Stage I denoises the audio file using undecimated wavelet transform. The 

denoised wavelet approximations are fed into Stage II - a MATLAB Chroma Toolbox - 

developed by Müller and Ewert (2011) to extract frame-based chromagrams. Using a 

simple peak-picking algorithm, the chromagram is converted into an integer-based 12-bin 
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representation to extract a bag of local keys using a generative process in Stage III. Using 

the extracted keys, we further transform the wavelet-based chromagram to recognize 

chords in Stage IV. The following sections describe each stage in detail. 

 

3.4.1 Wavelet Transformation 

 

Audio CD recordings are typically consumed by CD players, not computers. To process 

audio files on a computer, especially Windows platform or MATLAB program, we 

extract audio tracks from CDs to convert to WAV form in mono channel with 

uncompressed PCM (Pulse Code Modulation) at 11,025 Hertz sampling rate and 8 bits 

per sample. PCM is a common method of storing and transmitting uncompressed digital 

audio. A typical audio CD has two channels (stereo) with 16-bit PCM encoding at a 

44.1k Hz sampling rate per channel. The WAV file format is commonly used for digital 

audio files on Microsoft Windows platform. Unlike MIDI music whose percussive sound 

can be easily filtered out by MIDI channels, a WAV audio is a direct representation of 

sounds from all participating instruments and vocals and the sound produced by 

percussion instruments is much harder to separate from the rest of the sound in the mix.  

In this wavelet preprocessing step, we aim to reduce two types of sound – attack 

transients and high harmonics – that negatively impact the tasks of key and chord 

recognition. An attack transient is short-duration high-amplitude sound at the beginning 

of a sound wave which are part of an ADSR (attack, decay, sustain, release) envelope in 

real audio music signals (Cavaliere & Piccialli, 1997). Examples of such transient noises 
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are the excitement when a string is bowed or plucked, the air leakage of blowing a 

trumpet’s mouthpiece, or when a piano key is struck. Decay transients, such as the 

diminishing sound of a plucked string, are very important in many instruments, 

particularly those that are struck or plucked. Though transients are considered “noises” 

for our tasks, the overall characteristics of ADSR envelope, depicted in Figure 28 are 

great features for instrument recognition. In rock or popular music, one of the most 

prominent instruments is the guitar and each tone played on such plucked instrument 

generates an initial transient “noise” within about the first 50 ms (Bader, 2013, p. 164) 

when the string is struck. Therefore, when the music is played by different instruments, 

the noise generated by transients can be significant, especially in popular or rock music. 

Similar to timbre enabling us to differentiate instruments playing two notes with the same 

frequency and loudness, the ADSR envelope can be used to classify different music 

instruments from audio signals (Li, et al., 2011). In audio recording and production 

application, the “attack” characteristics can be edited so that a piano can be made to 

sound like an organ, a French horn to sound similar to a saxophone, or an oboe to sound 

like a trumpet (Alten, 2011, p. 16). In other words, removing the initial transient from a 

musical sound significantly strips the characteristics of a musical instrument. Similar to 

percussion sounds, attack transients are not periodic waves; therefore they need to be 

minimized so that we can perform key and chord recognition more effectively. 
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Figure 28: ADSR envelop (Alten, 2011, p. 16) 

 

 

 

Higher harmonics are the second type of “noise” that we aim to decrease. In 

Section 2.1, we briefly review the unique tonal mix of fundamental and harmonic 

frequencies that distinguishes an instrument from others, even if the sounds have the 

same pitch, loudness, and duration. Since no real music contains only pure tones (sine 

waves) and the fundamental frequencies are the greatest contributor to extract tonality 

and harmony content, it is reasonable to seek ways to remove higher harmonics that 

negatively impact the two tasks.  

Figure 29 illustrates the fundamental frequencies and their high harmonics of 

notes produced by a piano, violin, and flute. In the figure, though the piano and violin 

both play the same C4 note, we see that the violin has many more significant upper 

harmonics than that of the piano. In other words, if we can successfully remove all higher 

harmonics but keep only the fundamental frequency – in our case, C4 – the tasks of key 

and chord recognition would be much simpler.  In the same figure, we also see many 

distinct higher harmonics produced by the flute as well as non-periodic white noise.  
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Figure 29: Fundamental frequency and harmonics of piano, violin, and flute  

(Alten, 2011, p. 15). 

 

 

 

Since we aim to reduce the two types of “noise” – attack transients and high 

harmonics – for key and chord recognition, we have a dilemma at hand in selecting a tool 

that can reduce both of them – one aperiodic, the other one periodic – simultaneously.  

Fortunately, these two seemingly contradicting “noises” can be approached by “period 

regularization” using wavelet transformation. As suggested by (Cavaliere & Piccialli, 

1997), one can build a two-channel system so that the output of the first channel 

represents period-regularized version of the input while the other channel outputs period-

to-period fluctuations, transients, and noises as discussed earlier. In our case, the period-

regularized output from the first channel can be used to reduce higher harmonics while 

the attack transient can be located in the second channel. A good candidate to perform 

such two-channel transformation is a wavelet transform where variable analysis window 
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sizes are employed in analyzing different frequency components within a signal as 

supposed to the fixed window size of a STFT discussed in Section 2.2. The basic idea of 

a wavelet transform is to apply scaling (dilation and contraction) and shift (time 

transition) on a base wavelet  ( ) to find similarities between the target signals and  ( ). 

Figure 30 depicts such transformation. 

 

 

Figure 30: Wavelet transform with scaling and shift (Yan, 2007, p. 28) 

 

 

 

Since our target music contains discrete digital signals, we will concentrate our 

discussion on the discrete version of the wavelet transform where the scaling and shifting 

can be realized using a pair of low-pass and high-pass wavelet filters. A discrete wavelet 

transform decomposes the input signal into two parts using a highpass and a lowpass 

filter – so that the lowpass filter outputs a smoother approximation of the original signals 
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while the high pass filter produces the residual noises. Figure 31 depicts the operations of 

the widely known discrete wavelet transform (DWT) and Figure 32 describes the less 

known undecimated discrete wavelet transform (UWT). For easier comparison, both 

transformation decompose the signal S at three levels; H and L represent high-pass and 

low-pass filters, respectively, while 2 with an arrow pointing down (in a circle) denotes 

“down sampling by 2.” To reconstruct the signals from the coefficients from 

decomposition, we reverse transform the coefficients by upsampling cA3 and cD3, 

passing through L’ (low-pass reconstruction filter) and H’ (high-pass reconstruction 

filter) respectively, and combining them to form cA2’. In both figures, the difference 

between the conventional DWT and UWT is the lack of down sampling processes in the 

UWT and hence the term “undecimated.”  Figure 33 depicts a four-level wavelet 

transform (only the decomposition part). Furthermore, since our signal preprocessing step 

involves only using the approximated signals from the wavelet transform, we will 

concentrate our discussion on the decomposition part of the discrete wavelet transform.  

 

Figure 31: Discrete Wavelet Transform (DWT) 
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Figure 32: Undecimated Discrete Wavelet Transform (UWT) 

 

 

 

 

Figure 33: Four-level discrete wavelet transform (Yan, 2007, p. 36) 

 

 

 

Regardless of how the raw audio signals – using DWT or UWT – are regularized 

by the wavelet transform, the first step of such transform is to select appropriate 
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“families” of wavelets by stretching and shifting the selected wavelet to match the target 

signals to discover its frequency and location in time. Therefore, the rule of thumb for 

selecting a proper wavelet family for transformation is to choose wavelets that match the 

general shape of the raw audio signals. Since the continuous versions of wavelet 

representation can be more easily examined in terms of their shapes than the discrete 

counterpart which is characterized by a high-pass wavelet filter (mother wavelet) and a 

low-pass scaling function (father wavelet), we inspect the shape of some well-known 

continuous wavelets. Figure 34 and Figure 35 illustrate order-4 and order-8 Daubachies 

(db) and Symlet (sym) wavelets, respectively. We see that the wave shape of the db and 

sym wavelets generally match that of raw audio signals within a short time span. 

Furthermore, as the order of the wavelet increases, the wavelet becomes smoother.  

 

 

Figure 34: Daubachies scaling functions 
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Figure 35: Symlet scaling functions 

 

 

 

On the discrete side, a decomposing wavelet, is characterized by a pair of low-

pass and high-pass filters as discussed earlier. Figure 36 depicts two pairs of 

decomposition filters for db8 and sym8 wavelets.  

 

 

 

Figure 36: Decomposition wavelets. Top two: Low-pass and high-pass filters for 

db8; Bottom two: Low-pass and high-pass filters for sym8.  
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Once a wavelet and its order, such as db4, is chosen and the level of 

decomposition is determined, a typical denoising process using a DWT or UWT is to 

manipulate the decomposed signals (such as the approximation coefficients cA1 ~ cA3 

or, especially for the purpose of denoising, detailed coefficients cD1 ~ cD3, as described 

in Figure 33) within a certain time window for certain frequency ranges before the 

reconstruction stage. Figure 37 illustrates the general relationship between the 

coefficients and frequency allocation for three levels of signal decomposition. 

 

Figure 37: Frequency allocation of wavelet transform.  

 

 

 

Figure 38 and Figure 39 depict the decomposition of the signals in waveform and 

spectrogram, respectively, using 1.5 seconds of the Beatles’ song “Let It Be” (starts from 

13.5 seconds and ends at 15 seconds; sampling rate 22050Hz) to demonstrate the four-

level UWT using db4.  
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Figure 38: Amplitude and time representation of 1.5 seconds of “Let it be.” Top 

row represents the original signal.   
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Figure 39: Frequency and time representation of 1.5 seconds of “Let it be.” Top 

row represents the original signal.  

 

From Figure 38 (waveform), we notice that the general waveform of A1 is similar 

to the raw signals but the amplitude appears to be slightly higher. However, as the level 
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of decomposition increases, the similarity in shape between approximation and raw 

signals as well as the amplitude, for both the approximation and detail components, 

drastically decreases. From the perspective of a spectrogram depicted in Figure 39, we 

note that high frequency components are filtered out in the approximation coefficients as 

the level of decomposition increases which coincides nicely with the frequency allocation 

scheme depicted in Figure 38. Since human vocal frequency has a ceiling of 

approximately 1500 Hz while high-pitched musical instruments, such as a piccolo or 

violin, whose fundamental frequencies of high notes are in the range of 2000 Hz to 4000 

Hz, we hypothesize that using certain level of approximation coefficients to represent the 

raw audio signals would improve the tasks of key and chord recognition.  

To perform a wavelet transformation, we first choose an appropriate base wavelet 

which matches the shape of the target audio signals. This is usually done by visual 

comparison and thus subjective in nature. Therefore, among families of wavelet, such as 

Daubechies, Symlet, Haar, Coiflet, and Biorthogonal, we choose Daubechies (db) and 

Symlet (sym) as our candidates for UWT. Both wavelet families have an order range 

from 2 to 20 which are denoted as Db2 ~ Db20 and Sym2 ~ Sym20. Once a family of 

base wavelets is selected, we need to determine the level of wavelet decomposition. A 

higher order base wavelet is generally smoother than a lower order one while wavelet 

decomposition at a higher level also gives a smoother representation of the raw audio 

signals. Due to the large number of combinations from nineteen orders of db and sym 

wavelet families as well as different levels of approximations, we randomly picked one 

song from each of the 12 Beatles’ albums to test what combinations work well so we can 
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narrow down the number of order and approximation levels. From the preliminary 

experiment, we determined that orders 4 ~ 8 of Db and Sym with decomposition levels 3 

~ 4 had potential to produce good results for the two tasks. Therefore, we have a total of 

2 (base wavelets) x 5 (orders) x 2 (levels) wavelet configurations for the UWT. A 

selection criterion is in order so that the best set of approximation coefficients is used to 

represent the raw signals.  

Many wavelet selection criteria, such as maximum-energy and minimum Shannon 

entropy based criteria as well as correlation and information-theoretic based criteria, have 

been proposed by Yan (2007). Recall that our goal of this wavelet preprocessing step is to 

obtain smoother approximations of the raw signals by removing non-periodic 

components such as transients or percussion sounds as well as high order harmonics that 

do not positively contribute to the recognition of keys and chords. From this perspective, 

it suggests that selecting wavelet approximation with minimum Shannon entropy would 

be a good selection criterion. The Shannon entropy of the approximation coefficients is 

defined as Equation 20: 

 

Equation 20: Shannon entropy 

Eentropy(S) = - ∑   
   pi ·log2 pi 

 

where S is the signal and p is the energy probability distribution of n wavelet 

approximation coefficients. 



88 

 

However, from the insight that we gain from Figure 38 and Figure 39, we notice 

that as the level of approximation increases, higher frequency components are discarded 

which result in the overall waveform to deviate severely from the raw signals. In other 

words, employing entropy-based criterion alone tends to produce unwanted or overly 

smoothed results since such criterion is solely based on the content of the coefficients. 

Therefore, a similarity-based criterion should also be employed so that our search for the 

best approximation also takes the raw audio signals into consideration. Equation 21 

depicts how similarity is measured between a wavelet approximation and raw signals 

using a correlation coefficient.  

 

Equation 21: Wavelet similarity measure 

C(S,A) = 
   

    
 

 

where S is the signal and A is wavelet approximation.     denotes their covariance.    

and    are the standard deviation of S and A, respectively.  

  Since the length of the raw audio signals must be a multiple of 2
N
 for UWT, we 

satisfy this requirement by removing the last 2
N
 sampled raw data points, i.e., we remove 

at most (2
N
 -1) samples for the N-level UWT from the raw signals. Removal of up to 7 or 

15 trailing samples has virtually no impact on chroma representation since the wavelet 

transformation maintains the original sampling rate of 22050 Hz. Therefore, the removed 

trailing samples represent a duration of at most 7×10
-4

 seconds. In other words, the 
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dimensions of the denoised signals will remain the same for each song regardless of the 

values of N (=3~4) under UWT.  

 

3.4.2 Chroma Extraction and Variants 

 

As discussed in Section 3.4.1, to reduce transients and higher harmonics, we apply a 

novel approach by employing undecimated wavelet transform on the raw audio signals 

and use the wavelet approximation to extract the chroma feature. This is in contrast to 

most of the methods proposed in the literature which apply low-pass or median filters on 

the pitch (Fujishima, 1999; Peeters, 2006; Varewyck, et al., 2008) or chroma 

representations (Oudre, et al., 2011), or both representations (Bello & Pickens, 2005; 

Mauch & Dixon, 2010) as a smoothing technique for noise and transient reduction. In 

other words, the low-pass or median filters operate on the magnitude spectrum, under the 

assumption that peaks of frequency magnitude concentrate on a handful of frequency bins 

to filter out noises and transients. Therefore, this is in contrast to our wavelet-based 

transform operating on wave signals in the time domain. The second novelty of our 

approach is the employment of the two wavelet selection criteria to reduce attack 

transients and higher harmonics, as described in Equation 20 and Equation 21 by 

dynamically selecting the best wavelet approximation. In the literature, many of the 

proposed methods simply cut off frequencies above certain arbitrary levels. For instance, 

Khadkevich and Omologo (2009) extract chroma vectors between 100 Hz and 2k Hz for 

chroma vectors while Pauws (2004) cuts off frequencies above 5 kHz.  
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 Since the wavelet transform is undecimated, the UWT approximation coefficients 

represent the signal with the same sampling rate as the original WAV signal. The 

wavelet-transformed signals are used for chroma feature extraction. We input these 

wavelet coefficients as denoised signals into the Chroma Toolbox (Müller & Ewert, 

2011) where a Constant Q Transform (CQT), which we reviewed in Section 2.2.1, with a 

multi-rate filterbank is used. Table 10 displays the sampling rates for ranges of pitches 

and hop size in terms of fractions of analysis frame length while Table 11 shows a partial 

list of frequencies, bandwidths, and quality factor Q.  

 

Table 10: Sampling rate for CQT 

MIDI Pitch Piano Note Sampling Rate (𝒇 ) Hop Size 

21 – 59 C0 – B3 882 1/2 

60 – 95 C4 – B6 4410 1/2 

96 – 108 C7 – E8 22050 1/2 

 

Table 11: Specification of frequency, bandwidth, and Q 

Note MIDI 

# 

Frequency Bandwidth 

(Hz) 

Sampling 

Rate (Hz) 

Bandwidth / 

Sampling rate 

Q 

Factor 

A3 57 220.00 8.80 882 .0100 25 

A#3 58 233.08 9.32 882 .0106 25 

B3 59 246.94 9.88 882 .0112 25 

C4 60 261.63 10.47 4410 .0024 25 

C#4 61 277.18 11.09 4410 .0025 25 

D4 62 293.66 11.75 4410 .0027 25 
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To understand the effects of using wavelet denoised audio signals in the 

performance key and chord recognition, we also employed three variants of chroma 

features – CLP, CENS, and CRP – for performance comparison. These chromagrams are 

extracted using the Constant Q transform using the parameter specification described in 

Table 10 and Table 11. Therefore, their differences all lie in the selection and further 

transformation of the spectral content determined from the CQT.  

CLP, Chroma Log Pitch, is a chroma feature with logarithmic compression. The 

energy 𝑒  in each frequency bin is first transformed with     (  𝑒   )  where   is a 

suitable positive constant and then normalized using Equation 8. CENS, Chroma Energy 

Normalized Statistics, considers short-time statistics over energy distribution within the 

chroma bands using a quantization function which assigns discrete values (0 ~ 4) based 

on the energy level of each pitch class. Subsequently, the quantized values are convolved 

with a Hann window which results in a weighted statistics of energy distribution. CRP, 

Chroma DCT-Reduced log Pitch, is obtained from the CQT by applying a logarithmic 

compression similar to that of CLP followed by a discrete cosine transform (DCT). 

Finally, our undecimated wavelet transformed with N-level approximation, CUWT-N, is 

fully described in Section 3.3.1. Table 12 summarizes all variant chromagrams that we 

use in our experiments.  
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Table 12: Variants of chroma features used in experiments  

Name Feature Description 

CLP  Chroma Log Pitch  

CENS Chroma Energy Normalized Stats (no log) 

CRP
 

Chroma DCT-Reduced log Pitch 

CUWT-N UWT on raw signals to produce CLP 

 

In the following discussion, we use these specific names to address different 

variants of chroma features for performance comparison. However, for a general 

discussion of chroma features without the need to address a specific variant, we use CFi 

to denote the chroma feature of the ith frame. 

 

3.4.3 Local Keys Recognition 

 

To achieve higher performance of chord recognition, we first extract a bag of local keys 

(BOK) of a music piece for two reasons. First, since a key typically covers wider 

segments of the music piece than a chord, we assume that extracting local keys from a 

chromagram is less impacted by noises (such as percussion) due to their wider coverage 

than that of chords in a music piece. Second, given local keys of a music piece, we can 

predict prominent pitches that reside within the key; therefore we have a higher chance of 

extracting the correct chords from a noisy chromagram.  
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 Our estimation of BOK uses bag of frames (BOF) as the data source. The BOF 

approach has been used as a global musical descriptor for several audio classification 

problems involving timbre, instrument recognition, mood detection, and genre 

classification (Pachet & Roy, 2008).  In BOF, each acoustic frame obtained from the 

signal processing methods, like the ones we discussed in Section 2.2, is considered a 

word using Latent Dirichlet Allocation (LDA) for document classification. An 

application of LDA in chord and key extraction, by Hu and Saul (Hu & Saul, 2009), is 

briefly described in Section 2.3. In the BOF approach, as the name “bag” suggests, 

acoustic frames are not treated as time series but are often aggregated together to be 

analyzed using various statistical methods for computing statistics such as means or 

variance across all frames. Also reported by Pachet and Roy (2008), BOF serves as a data 

source for Gaussian Mixture Models (GMM) for more complex modeling in supervised 

classification context to train a classifier. In our application, we feed BOF into the IGMM 

to produce BOK (bag of local keys).  For the remainder of the section, we discuss how 

the IGMM, discussed in Section 3.2, is used to generate a bag of local keys.  

Equation 12 and Equation 13 govern how to sample a new (or existing) 

configuration    for data point   . The idea is that for each    in  =    ,   ,  ,     that 

we process iteratively, we first use Equation 12 and Equation 13 to probabilistically 

determine whether it was generated by a local key that was not seen before or by one of 

the existing local keys; based on the determination, we generate a new θ as the new 

unseen local key for    or associate    to an existing local key. Therefore, if    is obtained 

by Equation 12, we simply associate    with an existing θj. If    is obtained through 
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Equation 13, we sample a new   from 𝐺 as described in Figure 26 using Equation 18 and 

Equation 19. Mean (  ) and covariance (  ) of Gaussian key, using a mix of harmonic 

and natural minor scales, are encoded the same as that of the symbolic domain which is 

described in Table 7.  We implement    as a diagonal matrix and assign a value of 1 for 

notes present in the key. 

We input   into the IGMM to iteratively generate local key samples that most 

likely produced  . We arbitrarily generate the first key sample and after four burn-in 

iterations, these samples start to converge to the estimated local keys very quickly, 

usually in less than 12 iterations. Note that a sample generated from an iteration contains 

all possible local keys used in the entire music piece. We iterate s times to obtain s 

samples of local keys and discard those that cover less than 10% of the chromagram.  

Table 13 summarizes the algorithm. 
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Table 13: Key sampling algorithm using IGMM (audio) 

Obtain peak pitches   (triad peak-picking) 

Initialize 𝐺; Initialize    and    to random values. 

For i = 1: s samples  

For j=1: n   (n = size of  ) 

Sample a new    based on Equation 12 and Equation 13  

If a new    is required 

Sample a new     

Update α  based from iteration (i-1) using Equation 14  

Regroup   based on all sampled   ;  

Discard    𝑠 that cover less than 10% of the chromagram; output   as a bag of 

local keys 

 

Each frame of the chromagram represents the energy level of 12 pitch classes and 

we want to use prominent pitches to quickly estimate keys within the whole music piece. 

Since triads (major and minor) are the most prevalent chords in pop music, we apply a 

simple peak-picking algorithm on each frame to choose the most likely major or minor 

triad to represent the frame for key recognition. The most likely preliminary triad is the 

one, among 24 triads, that possesses the highest energy. We denote    as the triad 

representing frame i and denote  =    ,   ,  ,     for n frames of a music piece. Note 

that   is a series of preliminary triads that we use to estimate local keys and therefore not 

the results of chord recognition. 

Based on Equation 12, Equation 13 and the sampling process described in Table 

13, we see that data points in   are assumed to be exchangeable which is a prerequisite of 
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a Dirichlet mixture model. In our case, it means that for every finite subset of  , the joint 

distribution of them is invariant under any permutation of the   indicator variable. 

Obviously, exchangeability does not exist in music since musical notes contained therein 

are products of careful orchestration by composers and performers and random exchange 

of them within the piece render them unrecognizable to listeners. However, for tonal 

music, its tonal centers (keys) dominate the use of specific pitch hierarchy of the tonic, so 

the random exchange, in terms of their placement in the music piece, of pitches would 

have minimal effect in our estimation of BOKs. In other words, since our goal is not to 

extract local keys on a frame-by-frame basis but to quickly estimate what local keys are 

present in the target music piece, we can uphold the presumption of exchangeability in 

the IGMM. 

 

3.4.4 Chord Recognition 

 

The goal of this component is to recognize six chord types (maj, min, aug, dim, sus, and 

none) by taking advantage of the key information obtained in Section 3.3 to transform the 

chromagrams extracted from Section 3.4.3 to mimic human perception of keys and 

chords. The idea is that once we have the keys extracted, we consider only pitch energy 

of diatonic tones and further adjust chroma energy using the K-K profiles described in 

Section 2.1.3. 

We use binary templates TKey to represent the keys that we have determined in 

Section 3.4.3. Specifically, for C major key, TKeymaj = [1 0 1 0 1 1 0 1 0 1 0 1]; for C 
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minor key, we use a mix of harmonic minor and natural minor scales so that TKeymin = [1 

0 1 1 0 1 0 1 1 0 1]. Similarly, binary templates are used for chord classes. Therefore, a C 

major chord has a template TChordmaj = [1 0 0 0 1 0 0 1 0 0 0 0].  

Given the key information, the two K-K profiles can be adopted to promote 

prominent while suppress less prominent pitches in a CFi extracted from Section 3.4.1. 

The K-K profile for the C major key has the format of KKmaj = [6.35 2.23 3.48 2.33 4.38 

4.09 2.52 5.19 2.39 3.66 2.29 2.88]; for the C minor key, KKmin = [6.33 2.68 3.52 5.38 

2.6 3.53 2.54 4.75 3.98 2.69 3.34 3.17]. We denote KKdetermined as the key profile for the 

key(s) determined from Stage III, as described in Table 9, by circular shifting either 

KKmaj  orKKmin. 

Each time we circular shift TChordc, we compute the following dot product to 

obtain the adjusted chroma energy for frame i:  

 

Equation 22: Adjusted chroma energy 

CFi_adjusted  =  CFi · TKey · KKdetermined · TChordc 

 

where TChordc template corresponds to the highest energy sum, CFi_adjusted, of the above 

dot product is the recognized chord for frame i.  

After each frame is assigned a chord label as described above, we perform one 

smoothing step to erase sporadic chord labels due to the unavoidable noise in a 

chromagram. A sporadic chord label, in our case, is defined as a chord assignment that 

lasts only one frame among its neighboring frames while a stable chord label spans at 
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least two frames. Assuming we have a segment of chord labels ‘PQR’ where ‘Q’ is a 

sporadic chord label while ‘P’ and ‘R’ are stable ones before and after Q, respectively, 

we adopt the following rules to correct a sporadic ‘Q.’ 

 For P = R, we change Q to P.  

 For P ≠ R, we adjust Q to either P or R by examining the duration of chords P and 

R in the entire music piece. We denote the number of occurrences for P, Q, and R 

as p, q, and r, respectively. The principal idea is that a chord label with lower 

occurrences in the whole music piece tends to move to chords with more popular 

chords but not the other way around. Table 14 depicts the rule. 

 

Table 14: Correction rule for sporadic chord labels 

Given P ≠ R and (p,q,r)  Adjust PQR to 

p > q > r 

 PPR 

q > p > r 

 PPR 

r > p > q 

 PPR 

p > r > q 

 PRR 

q > r > p 

 PPR 

r > q > p 

 PRR 

 

 

3.5 Evaluation Metrics 

For local key recognition, we use precision, recall, and F-measure. These metrics are 

based on conditional probabilities and widely used in information retrieval tasks. We 
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follow the definition provided by Roelleke (2013). For document retrieval tasks, 

precision and recall are described as the following. Given a set of retrieved documents 

and a set of relevant documents,  

 Precision: the portion of retrieved documents that are relevant 

 Recall: the portion of relevant documents that are retrieved  

We give a formal definition of precision and recall based on conditional 

probabilities, in the context of local key recognition with query q. 

 

Equation 23: Precision 

 𝑟𝑒 𝑖𝑠𝑖  ( )   (𝑟𝑒 𝑒      𝑟𝑒 𝑟𝑖𝑒 𝑒 ,  )

=  
 (𝑟𝑒 𝑟𝑖𝑒 𝑒 , 𝑟𝑒 𝑒        )

 (𝑟𝑒 𝑟𝑖𝑒 𝑒     )
 

 

Equation 24: Recall 

𝑟𝑒    ( )   (𝑟𝑒 𝑟𝑖𝑒 𝑒   𝑟𝑒 𝑒    ,  )

=  
 (𝑟𝑒 𝑟𝑖𝑒 𝑒 , 𝑟𝑒 𝑒        )

 (𝑟𝑒 𝑒        )
 

 

The F-measure is the harmonic mean of precision and recall. It is defined as the 

following. 
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Equation 25: F-measure 

 =   
 𝑟𝑒 𝑖𝑠𝑖   𝑅𝑒    

( 𝑟𝑒 𝑖𝑠𝑖  𝑖  𝑅𝑒    )
 

 

For chord recognition, there are many different terms used such as average 

overlap score, proposed by Oudre (2011), relative correct overlap, described by Mauch 

and Dixon (2010), and Harte’s chord symbol recall (Harte & Sandler, 2005), which are 

essentially recall measure defined in Equation 24. 

Since we use Harte’s chord transcription as the ground truth (GT), we follow his 

definition of chord symbol recall which is defined as the summed duration of time 

periods where the correct chord has been identified, normalized by the total duration of 

the evaluation data. The CSR is formally defined below: 

 
Equation 26: Chord symbol recall  

   𝑟         𝑅𝑒     (  𝑅)

=
  𝑒𝑠 𝑖   𝑒  𝑠𝑒  𝑒  𝑠         𝑒  𝑠𝑒  𝑒  𝑠  

        𝑒  𝑠𝑒  𝑒  𝑠  
 

 

where     represents the duration of a set of chord segments.  

  



101 

 

Chapter 4 Experimental Results 
 

 

 

In this chapter, we discuss experimental results of applying the method of recognizing 

keys and chords from two musical data formats – symbolic (MIDI) or real audio (WAV) 

– of songs from the Beatles. The Beatles’ 12 albums (thirteen CDs) were converted into 

the WAV format for audio key and chord recognition. Among the 180 songs from the CD 

albums, we are able to find 159 in the MIDI format from the Internet which we use as the 

symbolic dataset for the two tasks. Section 4.1 describes the characteristics of the 

Beatles’ albums. Experimental results from the symbolic and acoustic audio domains are 

discussed in Sections 4.2 and 4.3, respectively. In Section 4.4, we provide a detailed 

comparison, taking different experimental setting proposed in the literature, of our 

experimental results with that of reported state-of-the-art methods. In the last section, as a 

concluding remark, we provide a high-level pro-and-con analysis of supervised, 

unsupervised, and knowledge-based systems that we discussed in Chapters 2, 3, and 4.  

 

4.1 The Beatles Albums 

We exclusively use the Beatles’ as our dataset in this experiment for three reasons.  First, 

their music is widely regarded as the era’s most influential force which, as described by 

Schinder (2008, p. 159), “revolutionized the sound, style and attitude of popular music 
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and opened rock and roll’s doors to a tidal wave of British rock acts.” Schinder further 

stated that, “The band’s increasingly sophisticated experimentation encompassed a 

variety of genres, including folk-rock, country, psychedelia, and baroque pop, without 

sacrificing the effortless mass appeal of their early work.” They produced 12 albums with 

a total of 180 songs over three decades and many MIDI composers have made MIDI 

versions of the Beatles’ collection available over the internet. Second, due to their 

popularity, full score of their songs are in print (Lowry, 1988) as well as detailed analyses 

of each song are on the internet (Pollack, n.d.) which can readily serve as the ground truth 

(GT) to understand the performance of a computerized key and chord recognizer. Third 

and most importantly, Harte’s transcription project (Harte, et al., 2005) annotated all 180 

songs with precise time information (start and end time) for chords. Table 15 and Figure 

40 provide the basic timing information and chord type distribution (Harte, 2010), 

respectively, for the Beatles’ 12 albums (13 CDs).  
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Table 15: 12 albums of the Beatles 

Album Name # of Songs Time (mins:secs) 

Please Please Me 14 32:45 

With the Beatles 14 33:24 

A Hard Day’s Night 13 30:30 

Beatles for Sale 14 34:13 

Help! 14 34:21 

Rubber Soul 14 35:48 

Revolver 14 34:59 

Sgt. Pepper’s Lonely Hearts Club Band 13 39:50 

Magical Mystery Tour 11 36:49 

The Beatles (the white album; CD1 / CD2) 17 / 13 46:21 / 47:14 

Abby Road 17 47:24 

Let It Be 12 35:10 

Total 180 8 h: 8 min: 48 secs 
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Figure 40: Chord type distribution for the Beatles' 12 albums (Harte, 2010) 

 

 

 

4.2 Symbolic Domain 

One hundred fifty nine MIDI-based songs mimicking the Beatles’ collections were 

downloaded from the internet for the two tasks. 

  

4.2.1 Keys Recognition 

For key recognition, we use Pollack’s notes (Pollack, n.d.) as the ground truth to judge 

the effectiveness of the IGMM key-finding algorithm since his notes have detailed 

information regarding each song’s home key as well as modulations. However, since his 



105 

 

notes do not have the complete sequence for key modulations, we simply gather the home 

key and all modulations described in his notes and compare them with the results 

obtained from the IGMM. In other words, we treat keys obtained from IGMM and 

Pollack’s notes as a bag of local keys and compare them as such.   

One interesting and challenging aspect of using MIDI files for model validation 

(both keys and chords) is the need to detect if a target MIDI file has been transposed to a 

different key since the detected key of a transposed piece is, by definition, different from 

the original key and the certainty (or lack) of transposition help us determine whether the 

algorithm has correctly detected the key. Musicians very often transpose songs to be sung 

by different vocalists with different vocal ranges or the original chords are difficult to 

perform by their instruments. It is obvious that the key samples obtained from the IGMM 

iterations or any key-finding algorithms alone cannot detect and confirm the presence of 

key transposition. However, since we determine keys and chords in an iterative fashion in 

the IGMM, we can transpose a Chordsample
·
 (a sequence of chords for the entire target 

piece) based on the chromatic scale and see if a transposed Chordsample
· 
is closer to the GT 

chords.  Specifically, we circular shift each Chordsample
·
 to find a best match between the 

chord samples and Harte’s GT. Such shifts are only performed when there is a 

disagreement among the key samples generated by IGMM, K-S key-finding algorithm, 

and all published GT. For example, for the song “Hold Me Tight,” the IGMM determines 

it as C Major which is the same as the K-S key-finding algorithm, but Pollack’s notes 

ascertain it as F Major. Since the keys disagree, we circular shift the Gaussian chords 1 ~ 

11 positions which results in the fifth position producing a drastic shorter Euclidean 
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distance between Chordsample
· 
and Harte’s annotation. Therefore, we determine that the 

MIDI file is transposed from the key of F Major to C Major and confirm that the key 

determined by IGMM is correct.  

To get a baseline understanding of how the IGMM performs in key finding, we 

first compare the performance of the IGMM with that of the K-S algorithm (implemented 

in Toiviainen and Eerola’ MIDI Toolbox (2004)) in finding “home” keys. In the K-S 

algorithm, a home key is the key profile that produces the highest correlation with the 

given MIDI. In IGMM, similarly, we designate the key that has the highest percentage of 

notes assigned to it as the home key. Note that the K-S algorithm is not designed to detect 

songs with key modulations and there are 26 songs (out of 159) with multiple keys. We 

further categorize songs into single and multiple keys to better understand the 

performance of the two methods. For a fair comparison, if Pollack’s GT does not specify 

a “home” key for a song with multiple keys, we award one point to algorithms that 

produced a key with the highest correlation (for K-S) or percentage (for IGMM) which is 

part of the GT multiple keys. The results are depicted in Table 16. We note that IGMM 

outperforms the K-S algorithm for both categories of songs.  

A more reasonable performance measure for the key information retrieval task is 

to use precision and recall. Since the K-S key-finding algorithm is not designed to 

recognize keys for songs with modulations but the IGMM is capable of doing so, it is 

impossible to apply such measure on the two algorithms for fair comparison. Therefore, 
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we only report such measure for the IGMM key-finding task which is described in Table 

17.  

 

 

Table 16: Experimental results of key finding using K-S and IGMM 

Ground Truth (Pollack’s notes) # of 

songs 

K-S key finding IGMM key-

finding 

# of 

songs 

correct 

% of 

songs 

correct 

# of 

songs 

correct 

% of 

songs 

correct 

Single key 133 92 69.2% 101 75.9% 

Multiple keys 

(2 ~ 4 key modulation) 
26 16 61.5% 20 76.9% 

Overall 159 108 67.9% 121 76.1% 

 

 

Table 17: Precision, recall, and F-measure for the IGMM key-finding task 

 # of songs Precision Recall F-Measure 

Single key 133 .752 .865 .804 

Multiple keys 

(2 ~ 4 key modulation) 

26 .718 .587 .646 

Overall 159 .742 .814 .776 

 

 

 

We notice that the precision for songs with modulations is just slightly lower than 

songs with single keys. The low recall for songs with multiple keys (58.7%) indicates that 

IGMM tends to retrieve fewer relevant keys than that of the GT. This phenomenon can be 

explained by the crowded-tables-get-more-crowded property of the CRP sampling 

process in IGMM.  
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4.2.2 Chords Recognition 

 

In contrast to the lack of timing information for keys, Harte’s annotations contain a 

sequence of chords with exact start and end times for each song. However, since MIDI 

music are not an exact replica of the original in terms of length and timing, it would be 

impossible to perform comparisons based on the timings of chords between the MIDIs 

and the originals. Therefore, we employ the technique of dynamic time warping (DTW) 

to compare IGMM’s annotation with Harte’s GT. DTW uses a similarity matrix (SM) to 

determine the similarity between two given sequences. Since we use a 12 dimension 

Gaussian to represent a chord in IGMM, we convert Harte’s chord annotations into the 

same 12-dimensioned Gaussian format and inject a Euclidean distance into each cell in 

the SM as the basis for finding the similarity between the two chordal sequences. We 

follow Paiement (2005) to employ the Euclidean distance as a way to represent the 

psychoacoustic dissimilarity between the two sequences. Table 18 depicts a sample 

Euclidean distance between two sets of chords based on the encoding profiles described 

in Table 7. We denote the Euclidean distance for Chordsample
j 
as DistChordsample

j
.  
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Table 18: Sample Euclidean distance of chords 

  N G D:7 C:7 D B: 

min 

A A:7 E: 

min 

G 6.6 0 8.1 8.1 7.5 6.2 9.3 8.1 6.2 

C:maj7 6 5.6 8.4 4.7 8.9 7 7.8 7.2 3.6 

D:7 7.2 8.1 0 8.6 3 6.9 8.1 8.6 9.7 

C:7 7.2 8.1 8.6 0 9.7 9.7 8.8 8.2 6.9 

C 6.6 7.5 8.1 3 9.3 9.3 8.2 7.7 6.2 

E:min 6.6 6.2 9.7 6.9 9.3 7.5 7.5 6.9 0 

B:min 6.6 6.2 6.9 9.7 6.2 0 9.3 9.7 7.5 

A:7 7.2 8.1 8.6 8.2 8.1 9.7 3 0 6.9 

D 6.6 7.5 3 9.7 0 6.2 7.5 8.1 9.3 

 

 

Apparently the Euclidean distances such as those described in Table 18 are 

entirely dependent on the encoding profiles depicted in Table 7. An identical match 

between a chord generated by IGMM and the GT has an Euclidean distance of zero. The 

second shortest Euclidean distance has a value of 3 if the two chords are one note apart 

such as the C major chord and the C7 chord. Using the chord sequences produced by 

IGMM and the GT, we can construct an SM based on their Euclidean distances. Figure 

41 shows a set of 12 grayscale images where each image represents one SM for the song 

titled “Hold Me Tight.” Zero Euclidean distance is represented by a white color cell 

while the largest distance is represented as black cell. Recall that we generate an SM for 

each Chordsample
·
 and we circular shift Chordsample

· 
11 times to check for the presence of 

key so there are a total of 12 images in the plot where the top left image, which we will 

call the original MIDI chords, represents the SM between the IGMM chord sequences 

and Harte’s GT. The first upward shift of one interval is to the immediate right of the 

original chords and the fourth shift is the one immediately below the original. The 
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starting point of the two sequences is on the top left corner of each image. The GT 

sequence is from left to right for a total of 85 chords while the IGMM sequence is from 

top to bottom for a total of 537 chords (n=537 as the size of Y). The red line indicates the 

best matched path between the two sequences so that a diagonal straight red line indicates 

a good match between the determined chords produced by IGMM and the GT. The sum 

of the Euclidean distance along the red line is displayed on top of each image. In this 

example, we see that the original MIDI and the GT has a Euclidean distance of 1555.2. 

However, a 5-interval shift produced a Euclidean distance of 734.5 which is a sharp drop 

from the original MIDI. Therefore, we conclude that the MIDI is transposed downward 5 

intervals from the original recording (from F major to C major).  In this case, the K-S 

key-finding algorithm also determines that the MIDI file has a key of C major which 

corroborates our finding. 
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Figure 41: Similarity matrix for the song titled “Hold Me Tight”  

 

 

 

Figure 42 shows the Euclidean distances, in 10 bins, between IGMM chords and 

the GT. We define the shortest Euclidean distance among the 11 circular shifts as 

DistChordsample
j_min

 and the length of such best path for Chordsample
i
 as 

length(DistChordsample
j_min

). Therefore, the Euclidean distance is calculated using 

[∑jDistChordsample
j_min

 / ∑jlength(DistChordsample
j_min

)]. Recall that since the IGMM 

generates s Chordsample
·
 and each Chordsample

·
 represents a sequence of chords with a 

length very close to the length of Y. The similarity measure has 

∑jlength(DistChordsample
j_min

) in the denominator, which, in most cases, is very close to 

length(Y) × s. We see that 115 songs have a Euclidean distance less than three and the 

overall average distance is 2.43. The results are encouraging since the shortest Euclidean 
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distance is 3 (such as dist(Gmajor, G7)) for any chord mismatch using the profiles 

illustrated in Table 7. 

 

 

 

 
 

Figure 42: Euclidean distance of IGMM chords to ground truth 

 

 

 

Recall the iterative characteristics of our IGMM implementation – a Keysample
· 
is 

served as prior knowledge for generating a new Chordsample
· 
.
 
We hypothesized that a 

positive recognition of key leads to a more accurate extraction of chords and vice versa. 

Figure 43 displays the box-and-whisker plot of the Euclidean distance between the 

IGMM chords and the GT categorized by whether their keys are correctly identified. We 

see that the average Euclidean distances are 2.48 for songs with their keys correctly 

identified and 2.91 for the other case. This result is encouraging since the shortest 

misclassification has a distance of 3 given the large number of chord vocabulary used in 

both the IGMM and the GT. It is also interesting to see that the chord Euclidean distance 
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difference between the two categories presented in Figure 43 is not large. Specifically, 

the majority of misclassified keys are closely related to the GT keys such as Major G in 

GT but minor E from the IGMM, which allows the IGMM to label notes with near-

correct chord labels. 

 

 

 

 

Figure 43: Average chord Euclidean distances between IGMM and GT.  

 

4.3 Audio Domain 

We tested the performance of this new approach using 175 songs
2
 from the Beatles’ 12 

albums.  

 

                                                 

2
 We exclude 5 songs out of 180 due to ambiguous tunings. They are: Revolution 9, Love 

You Too, Wild Honey Pie, Don’t Pass Me By, and The Continuing Story of Bungalow 

Bill. 
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4.3.1 Key Recognition 

 

Similar to symbolic key recognition, we use musicologist Allan Pollack’s complete 

annotation of all Beatles’ recordings as the ground truth for the 175 songs in our 

experiment. Different from the key recognition task using the symbolic MIDI music 

which differs from the Beatles’ original recordings, Pollack’s annotation faithfully 

coincides with the 12 albums of recordings in our experiments. Since his notes do not 

have the complete sequences for key modulations and their timings, we simply collect all 

keys described in his notes to compare with recognized keys as described in Section 

4.2.1. Figure 44 depicts the overall distribution of local keys for the 175 songs. Figure 45 

and Figure 46 show the key distribution for songs without key modulations and those 

with multiple local keys, respectively.  

 

 

Figure 44: Overall keys distribution 
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Figure 45: Distribution of global keys 

 

 

Figure 46: Distribution of local keys 

 

 

As described in Section 3.4.2 and Table 12, four types of chroma features – CLP, 

CENS, CRP, and CUWT-n – are extracted from audio signals. Recognized keys that 

cover less than 10% of the total frames are discarded. Moreover, we strictly compare our 

results with Pollack’s notes – i.e., related keys (parallel, fifth, relative major/minor) are 

not counted as correct recognition. We categorize songs into single and multiple keys and 

C C# D D# E F F# G G# A A# B c c# d d# e f f# g g# a a# b
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compute their precision, recall, and F-measure values. Figure 47 depicts the overall 

recognition rates for the five chromagrams used in the experiment.  To understand each 

chromagram’s performance due to the presence of multiple local keys, we use Figure 48 

and Figure 49 to show the key finding results for songs with one global key and those 

with multiple local keys, respectively. 

 

 

Figure 47: Overall key finding 

 

CENS CLP CRP CUWT-3 CUWT-4

Precision 0.544 0.622 0.690 0.695 0.690
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Figure 48: Single key finding 

 

 

Figure 49: Multiple key finding 

 

 

  

Two observations can be made from the above three figures. 

 For songs with only global keys, the recall statistic is about 15% ~ 20% higher 

than the precision statistic. This is in line with our expectation since multiple keys 

CENS CLP CRP CUWT-3 CUWT-4

Precision 0.564 0.618 0.695 0.685 0.698

Recall 0.752 0.814 0.755 0.834 0.866

F-Measure 0.645 0.703 0.724 0.752 0.773
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extracted for songs with only one global key can still have a recall value of one if 

the global key from the ground truth is part of the set of extracted local keys. 

 For songs with multiple local keys, on the other hand, the precision statistic 

appears to have higher values than that of the recall counterpart, with the 

exception of the CENS feature. 

From the above three figures, we see that the CUWT-4 chromagram – audio 

signals preprocessed with wavelet transform whose level-4 approximation is used to 

produce a CLP – consistently yields the highest precision, recall and F-Measure among 

the five types of chromagrams across musical pieces with global keys and multiple local 

keys. We can attribute such performance improvement solely to the undecimated wavelet 

transform of the raw signals before the chroma features are extracted. Therefore, using 

the CUWT-4 chromagram as the benchmark, Figure 50, Figure 51, and Figure 52 depict 

the performance improvement of CUWT-4 over the other four types of chromagrams in 

terms of precision, recall, and F-measure, respectively.  
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Figure 50: Precision improvement over CUWT-4 

 

 

Figure 51: Recall improvement over CUWT-4 
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Figure 52: F-measure improvement over CUWT-4 

 

 

 

 Three observations can be made from the above three figures. 

 CUWT-3 and CUWT-4 are superior chromagrams than CENS, CLP, and CRP for 

the audio key finding task. CUWT-3 and CUWT-4 are very comparable in their 

performance.  

 The highest performance gain of using CUWT-4 is in extracting multiple keys. 

Specifically, it improves the recall rate by at least 10%. 

 Chroma features play a critical role in key finding. A simple wavelet smoothing 

and approximation of the raw audio signals can yield a significant improvement. 

The results are encouraging and clearly indicate that a chromagram using level-4 

approximation of UWT in conjunction with an IGMM generative process can be used to 

recognize single (global) as well as multiple keys (modulations) in a music piece. Since 

the overall recall is 13% higher than precision, we conclude that the algorithm generates 
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a high number of false positives. Moreover, the algorithm performs approximately 15% 

better in recognizing single key than its multiple-key counterpart. 

 

4.3.2 Chord Recognition 

 

In contrast to the lack of timing information for keys, Harte’s annotations (Harte & 

Sandler, 2005) contain a sequence of chords’ start and end times for each song. 

Recognition rate is defined as the number of frames that correctly identifies the chord 

over the total number of frames (Chord Symbol Recall, CSR) for the whole duration of 

the 175 songs. Since all chords specified in Harte’s annotation can be mapped to the six 

chord types (five chord type and a “no chord”), summarized in Table 19, all frames are 

evaluated against the ground truth and no frames are discarded.  

 

Table 19: Six types of chords 

Chord Class Chord Type 

Major maj, maj7, 7, maj6, 9, maj9 

Minor min, min7, minmaj7, min6,min9 

Diminished dim, dim7, hdim7 

Augmented Aug 

Suspended sus2, sus4 

N No chord 
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Since the average time difference, in terms of song lengths, between Harte’s 

annotation and our chroma features is 262 ms, which is more than two frames (200ms), 

we suspect that there is a slight misalignment in our WAV files after they are ripped from 

the audio albums. Therefore, we also report a recognition rate with one frame tolerance 

on each side of the annotated chord. Figure 53 and Figure 54 depict the CSR (overlap 

rate) and its spread using box whisker, respectively.  

 

 

Figure 53: Chord recognition rates 
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Figure 54: Chord recognition overlap rate (box and whisker)  

 

 

 

Two observations can be made from Figure 53 and Figure 54. 

 Proper alignment between the audio piece and ground truth is critical. 

Approximately four percent of performance gain is observed when tolerance of 

one frame (0.1 second) is given.  

 Similar to what we observed for the key finding task, CUWT-3 and CUWT-4 

remain to be superior chromagrams than the other three for the audio chord 

finding task. 

 We see that the three chroma features (CLP, CENS, and CRP) produced 

drastically different results which are consistent with the experimental results 

dscribed in (Müller & Ewert, 2011) with the exception that the CLP outperforms 

CRP significantly in our experiment. 
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Figure 55: Chord recognition improvement over CUWT-4 

 

 

 

Figure 56: Combined improvement over CUWT-4 
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Using the CUWT-4 chroma feature as the benchmark, Figure 55 depicts the 

performance gain (or loss) of the other four chromagrams for the chord finding task. 

Using the same benchmark, Figure 56 shows the combination of performance gains (or 

losses) of key and chord recognition. From the two figures, we state the following 

observations.  

 The CUWT-4 chromagram outperforms the most commonly used CLP by about 

4% in chord recognition. A simple CLP outperforms the CRP and CENS by about 

9% to 13%. Therefore, the selection of a chromagram has a high impact on the 

chord recognition rate.  

 If we combine the F-Measure from the key finding task and the chord recognition 

rate (CSR or AOS), we notice a gap of more than 30% between the top and 

bottom performers.  

To see the effect of using key knowledge for chord recognition, we also show our 

chord recognition rates without the use of extracted keys in Figure 57 where the simple 

peak-picking algorithm is applied as described in Table 13 but extending the templates to 

cover aug, dim and sus chord types. We see that using extracted keys improve the 

performance of a simple template-based chord recognizer at least 20% on all 

chromagrams. The step to correct sporadic chord assignments, described at the end of 

Section 3.4.4, accounts for roughly a 1% improvement across all features listed in Figure 

57 which implies that the overall framework produced reasonable chord segmentation.  
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Figure 57: Effect of bag of local keys on chord recognition 

 

 

 

4.4 Performance Comparison 

While reviewing existing methods in Sections 2.3.2 (Summary of Previous Work) and 

2.3.3 (Recent Work After 2008), we deliberately omitted reporting chord recognition 

rates in terms of Chord Symbol Recall (or Average Overlap Score) because of many 

differences in experimental settings. We group these differences into three broad 

categories – data set used for testing, performance scoring mechanism, and training data 

employed for supervised methods – and document them to provide a basis for 

performance comparison. Since we use 175 Beatles’ songs as our test data, we select 

methods in the literature with similar test dataset and experimental settings as ours so that 

a fair and objective comparison can be achieved. Furthermore, since the manual 

transcription of the complete Beatles’ collection was released by Harte (2010) in late 
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2007, all methods that we select for comparison were proposed after 2008 which is 

consistent with our detailed review in Section 2.3.3. The second criteria that we consider 

is the type of methodology – supervised, unsupervised, and knowledge based – so that a 

well-balanced representation among different technical approaches can be achieved. 

Moreover, as the last criteria, we select top performers from each type of methodology. 

Table 20 summarizes the comparison. 

 

Table 20: Performance comparison of similar work published after 2008 

 M
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C
h
o
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m

b
o
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Rocher, 

Robine, 

Hanna, and 

Oudre 

Harmonic candidates 

consist of chord/key 

pairs; use binary chord 

templates and Temperley 

key templates;  Use 

Lerdahl’s distance and 

weighted acyclic 

harmonic graph to select 

best candidate; Dynamic 

programming involved 

N 174 

Beatles 

maj, 

min 

N > 0 74.9% 

Oudre, 

Fevotte, and 

Grenier 

Template (binary) based 

probabilistic framework 

using EM;  used 

Kullback-Leibler 

divergence to measure the 

similarity between 

chromagram and chord 

templates 

N 180 

Beatles 

maj, 

min 

Y 0 72.4% 

Pauwels, 

Martens, and 

Knowledge based Local 

key acoustic model + 

N 174  

Beatles + 

maj, 

min, 

N 22.6% 78.4% 
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Peeters  binary chord template 18 Queen 

+ 18 

Zweieck 

dim, 

aug 

Ni, Mcvicar, 

Stantos-

Rodriguez, 

and De Bie 

Beat tracking + Loudness 

based treble and bass 

chroma + HMM 

Y 179 

Beatles + 

20 Queen 

+ 18 

Zweieck 

maj, 

min, 

maj/3, 

maj/5, 

maj6, 

maj7, 

min7, 

7, 

Dim, 

aug 

Y ? 83.0% 

Hu & Saul 

(2012) 

Latent Dirichlet 

Allocation (LDA) for 

both symbolic and audio 

data; use Mauch’ NNLS 

chroma features; audio 

data is synthesized from 

MIDI 

N 136 

Beatles 

maj, 

min 

N ? 49.1% 

de Haas, 

Magalhaes, 

and Wiering 

Knowledge-based tonal 

harmony model; Use 

Mauch’s beat-

synchronized NNLS 

chroma; Use K-S key 

profiles for key finding 

and involve dynamic 

programming 

N 179 

Beatles + 

20 Queen 

+ 18 

Zweieck 

maj, 

min, 

7 

N > 0 74.1% 

Wang  & 

Wechsler 

Wavelet based 

chromagram + bag of 

local keys + template-

based chord matching 

N 175 

Beatles 

maj, 

min, 

aug, 

dim, 

sus 

Y 0 72.3% 

 

 

It is clear that the supervised HMM-based machine learning method proposed by 

Ni et al. outperforms all other unsupervised or knowledge-based systems in the literature. 

Their method not only produces the highest chord recognition rate by a relatively wide 

margin, but the chord vocabulary – the number of chord types – they aim to recognize far 

exceeds all other methods. However, as emphasized by de Hass et al. (2012), in the 2011 

edition of MIREX’s chord estimation task, the recognition rates among participants are 
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between 12.6% and 82.9% while a deliberately overfitted result yields a CSR of 97.6%. 

Due to the scarcity of labeled training data, the majority of the supervised approaches are 

trained from the available 217 musical pieces (leave-one-out cross validation by Ni et 

al.), it is unclear how much of the trained systems and other supervised approaches have 

been overfitted by the said data set. The scarcity of training data is also reported in (Chai, 

2005; Rhodes, et al., 2007; Pauwels, et al., 2011).   

 On the other hand, most of the unsupervised and knowledge-based systems appear 

to perform at about the same level, with the exception of the LDA-based method. The 

knowledge-based approach proposed by Pauwels et al. seems to be leading the pack; 

however, they discarded 22.6% of the audio segments that do not fit into the chord 

vocabulary and it is unclear how much such experimental setting affects the recognition 

rates. Furthermore, as indicated by de Hass (2012) as well as our own discovery 

discussed in Section 4.3.2, many different “re-mastered” versions of the Beatles are 

circulating on the market which might be slightly different from the version used in 

Harte’s annotated ground truth. These factors, along with different target chord 

vocabulary and test dataset employed in the proposed methods, we believe that our 

approach performs at least at, or outperforms, the other unsupervised or knowledge-based 

systems proposed in the literature. 
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4.5 Tonal Harmony and Machines 

Thus far, we have discussed, mostly from the technical aspect, existing literature and our 

proposed methods in using machines to understand music in terms of its tonal and 

harmonic content. Given the experimental results that we surveyed, we believe that there 

is no clear winner in extracting the three fundamental elements – pitch, chords, and keys 

– using the three computing paradigms – supervised, unsupervised, and knowledge-based 

– that we commonly find from the literature. This is a perfect juncture for us to examine 

the merit of each paradigm in the context of music, and specifically, the extraction of 

tonal harmony using machines. 

Supervised learning mimics the way, in certain aspects, how students analyze 

tones and harmony with feedback from teachers with the “correct” analyses in their 

learning process. However, as indicated by Bharucha (1991, p. 85), “one can demonstrate 

in a psychological laboratory that people without formal musical training in harmony 

analysis, are capable of making judgments about chords and their relationships.” He 

further stated that “this implicit or tacit knowledge of chords must have been obtained 

through passive perceptual exposure without feedback.” Passive exposure, in this case, 

means that there is no explicit training involved nor guidance from a supervisor for 

correct labeling of tonal and harmonic analysis. Clarke (2005, p. 29) further stated that 

“suitably enculturated listeners can make systematic judgments about tonal structure in 

music (expressed, for instance, in terms of the perceived completeness or stability of a 
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sequence) without any experience of ‘supervised learning’ or formal music instruction 

(Krumhansl 1990).”  

The supervised approach for analysis of tonal harmony typically includes an 

HMM or N-gram as we discussed in Sections 2.3.2 and 2.3.3. However, components such 

as the Markov process or N-gram are only capable of capturing the local structure of 

music but not the large-scale structure at a higher level (Lewis, 1991). He further 

indicated that “the probability distribution function is not an economical representation – 

the probability distribution function must represent all possible structures, including those 

which are not desired …” Such difficulties are evident in the dynamic Bayesian network 

(DBN) system we described in Section 2.3.3.  

 Rule-based approaches address the issue of “short-sightedness,” described earlier, 

in a sense that they can describe both large- and small-scale structure of a target music 

piece; however, it is difficult for such an approach to reconcile multiple parallel contexts 

such as meter, rhythm, and tonal harmony simultaneously (Todd & Loy, 1991, p. 29).  

Lewis (1991) further stated that “rules must be weakened or modified to handle 

ambiguity and “fuzzy” structure, properties which are characteristic of most forms of 

music.”  

The availability of rules that adequately formalizes harmony progression of rock 

music might be another area of concern for rule-based approaches. Many music styles, 

including popular and rock, have certain patterns of motion which occur more often than 

others. However, these patterns of progression might not coincide with the common-
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practice music (European art music from 18
th

 to 19
th

 centuries) whose basic principles of 

harmony have been studied extensively for the past hundred years. Though such well-

studied harmonic successions are found in rock, as described by Stephenson (2002), these 

successions are “in the statistical minority” and “when they do occur, their rhythmic 

deployment within the phrase structure is usually not the same as that associated with 

common-practice music.” The harmonic patterns of a corpus of 100 representative rock 

songs, chosen from Rolling Stone magazine’s 20 top-ranked songs for each decade from 

the 1950s through the 1990s, are analyzed by de Clercq and Temperley (2011). They 

reported that “strong asymmetries of root motion found in common-practice music are 

notably absent in rock,” and “perhaps rock harmony is guided by strong and restrictive 

principles that have not yet been observed.” They further suggested that “a more ‘data-

driven’ approach to rock harmony may be desirable, an approach in which the music is 

allowed to speak for itself.” 

The unsupervised approach typically involves using a Bayesian-based 

probabilistic framework which certainly has its fair share of criticism regarding the 

violation of tonal expectation. Since tonal expectation, as described by (Todd & Loy, 

1991, p. 40), generally explains “judgments about what pitch or chord should follow after 

the presentation of context pitches or chords,” is not addressed in this approach, tonal and 

harmonic labels are purely determined based on probability maximization. Therefore, a 

pure unsupervised approach has a higher potential for producing unrealistic labels than 

those of rule-based and supervised methods.  
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 Without a doubt, the humans’ auditory system and brain combined is the most 

powerful signal processing tool to analyze tonal harmony; the two systems working 

together allow us to enjoy music. By the same token, we believe that injecting a rule-

based module of tonal expectancy into an unsupervised framework has the highest 

potential of allowing machines to extract and recognize tonality and harmony from raw 

audio signals.   
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Chapter 5 Applications and Extensions 
 

 

 

Music segmentation is the process of partitioning the target music signals into multiple 

sections so that each section is homogeneous within its boundary but distinct from its 

neighboring sections; in musicology, we call it form analysis. It usually serves as an 

intermediate step to solve a larger problem such as content-based information retrieval. In 

computer vision, an extracted image segment can be used as a query to retrieve the 

content of similar nature. For popular music, a short “catchy” melody or text, which 

typically resides in a verse or chorus section, can be used as a query to retrieve the 

popular song. However, there are a few notable exceptions due to the inherent differences 

in the format of audio and image data and what they represent. First, music signals are 

one dimensional time series so the boundaries of a segment can completely be 

represented by two time points. Second, for western popular music, some segments are 

expected to repeat with certain order. Third, music is created to be pleasant to our ears so 

it follows certain “rules” to meet our expectations formed by previous listening 

experience. Methods employed for music segmentation can be categorized into 

repetition-, novelty-, and homogeneity-based, as described by (Paulus, et al., 2010). A 

theme that connects these methods is a self-similarity matrix (SSM) which was first 

proposed by (Foote, 1999) for music visualization and subsequently used by many 

researchers for segmentation (Jensen, 2007). In (Jensen, 2007), timbre, chroma, and 
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rhythm were used to produce SSMs in which a shortest path algorithm was employed to 

find the segmentation points; similarly in (Paulus, et al., 2010), using the three features, a 

probabilistic fitness function was introduced. Most recently in (Chen & Li, 2011), 

chroma and Mel-frequency cepstral coefficients (MFCCs) were used as features for 

clustering and the results from the two-level clustering were combined to produce better 

segmentation results. 

In traditional musical form analysis on common period music, cadence patterns 

and key schemes are often employed as cues, but their usages are not strictly followed in 

popular music. Therefore, four other cues are used in rock music to signal the beginning 

of a new segment: text, instrumentation, rhythm, and harmony, as proposed in (Swain, 

2002). An example of text cue could be the arrival of the title line; the instrumentation 

cue could be the addition of the guitar or background vocals. These two cues are not in 

the scope of this chapter. In our work, we propose to use keys and harmony (chords) to 

produce a multi-dimensional harmonic rhythm as the segmentation cue. Harmonic 

rhythm is delineated by (Swain, 2002) covering six dimensions: texture, phenomenal, 

bass pitch, root, density, and function. For our case, except bass pitch, the other five 

dimensions can be completely created from local keys and chords that correspond to the 

three rock cues (keys, rhythm, and harmony) described earlier. Our approach for 

segmentation is novel since we extract and separate the harmonic content into five 

dimensions of harmonic rhythm as the segmentation cue while most existing work use 

the whole chromagram for music structure analysis.  
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Based on the above overview, we see that there are three types of information to 

be extracted from the audio signals: local keys, chords, and segments. We have 

successfully extracted two elements – using undecimated wavelet transform on the audio 

signals, an infinite Gaussian mixture to extract a bag of local keys, and template-based 

chord recognition mechanism – from the Beatles’ 12 albums of 175 songs. We are 

currently combining the local keys and chords to create harmonic rhythm on a frame-by-

frame basis to be used by the third component for music segmentation. 

Figure 58 depicts the high-level components and flow of our system. After 

performing a wavelet transform on the audio signals to extract a chromagram, we extract 

a bag of local keys and subsequently a time series of chords. The extracted chords are 

then used to transform the bag of keys into a time series. Given the two time series, a 

multi-dimensional harmonic rhythm is formed to facilitate segmentation which is casted 

as a change detection problem. The last step is to use the segmentation information to 

refine chords. We describe each component in detail in the following subsections. 
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Figure 58: Music segmentation through harmonic rhythm  

 

 

 

As described in the Introduction section, we propose to build a multi-dimensioned 

harmonic rhythm as the segmentation cue. Table 21 associates three elements – wavelet-

based chromagram, extracted local keys, and chords – to the five dimensions of the 

harmonic rhythm.  Suggested by (Stephenson, 2002), a key modulation (change of key) is 

the most obvious signal of a new segment and its cue, represented by the function 

dimension of the harmonic rhythm, is extracted by the local key estimator described in 

Section 3.2. The phenomenal, root, and function dimensions correspond to the harmonic 

aspect of a music piece; specifically, the chord, chord progression, and the degree of the 

chord in the diatonic scale, respectively. The original definition of the texture dimension 

is the fastest rhythm played (such as violin or piano) in a music piece within a measure, 

but we use the chromagram extracted from wavelet approximations as the texture 

dimension. Since extracted keys and chords can never be 100% accurate, we use the 

density dimension to express the percentage of texture information represented by the 

Audio signals 

1) Wavelet transform 
2) Chromagram 

3) Bag of  

local keys 

5) Key sequence 

4) Chords 

6) Harmonic rhythm 
7) Segmentation 
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phenomenal dimension that we extracted. Therefore, if the density is high, we are more 

confident about the cue within its time window.  

 

Table 21: Segmentation cues 

Dimension Segmentation Cue 

Texture Wavelet-based chromagram 

Phenomenal Chords 

Root/quality Root progression 

Density 
% of energy in texture that articulates the 

phenomenal dimension 

Function 
The triad’s position (roman numeral) in a 

key 

 

 

In rock form analysis, (Stephenson, 2002) states that there is no need to wait for 

the complete unfolding of a harmonic pattern to see if it differs significantly from what 

has come before. It coincides with our listening experience of popular music, i.e., without 

formal music training, most listeners are capable of sensing a new “segment” coming up 

for a song that they listen to for the first time. This is the main idea of our proposed 

segmentation process using machines, i.e., to mimic the humans’ perception of change 

based on the five cues from harmonic rhythm. Other than using the cue of local key 

changes, other dimensions will be inspected from the perspectives of speed and 

independency (Swain, 2002); both are related to tension and resolution. Speed is one of 
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the fundamental ways to create tension: the faster the motion, the greater the tension. As 

the tension builds up, listeners expect to hear a resolution which signifies a change; 

though such a change alone does not necessarily warranty the beginning of a new 

segment. Specifically for the speed perspective, we will examine the speed of change on 

phenomenal and root dimensions of the harmonic rhythm to detect change. Independency 

among dimensions of harmonic rhythm also creates tension: the more divergent they are, 

the more tension they build; the resolution of such tension is the arrival of convergence. 

Since speed is the best indicator of (in)dependence among salient dimensions, we will 

detect the change points of divergence and convergence by examining the root, 

phenomenal, and density dimensions. Therefore, the task of music segmentation can be 

approached by detecting three changes – key, speed, and independence – from the 

harmonic rhythm. 

The sequential probability ratio test (SPRT) and cumulative sum (CUSUM), 

originally developed for quality control purposes in manufacturing, are the first two 

approaches for change detection on sequential data; many methods were derived from 

them (Basseville & Nikiforov, 1993). These methods are statistically parametric and 

require estimation of likelihood. However, it is impossible to assume any underlying 

distribution in harmonic rhythm, so a nonparametric method is in order. Recently, a non-

parametric, martingale based change detection method was proposed in (Ho & Wechsler, 

2010) by examining the strangeness of a newly arrived data point to see if the assumption 

of exchangeability is violated, which signals a change in the data stream. For data points 

in the harmonic rhythm that fall inside a segment, we can safely assume that they are 
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generated by the same latent variable and therefore exchangeable. Different from the 

online streaming data, we have the complete harmonic rhythm to help determine the 

appropriate strangeness measure for the speed and dependency cues of the target music. 

Based on the strangeness of the cues in sequence of the harmonic rhythm, we can detect 

the segmentation boundaries.  

We have discussed all components and steps in Figure 58 except the processes 

from components 7 to 4, a part of an estimation refinement loop consisting of 

components 4, 5, 6, and 7. This last step uses the segmentation information to fine tune 

the time series of chords estimated in step 4.  
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Chapter 6 Conclusions and Future Work 

In this chapter, we summarize the work that we have performed and highlight the 

contributions to the field of Music Information Retrieval. Potential future work is also 

discussed. 

 

6.1 Summary 

With the end goal of devising a simple, but not simpler, mechanism to extract tonality 

and harmony from real audio music of WAV format, we started our journey from a much 

simpler and clearer format of the symbolic MIDI music. Since MIDI is designed to 

instruct computers to communicate and play music, musical notes can be easily extracted 

and the two tasks (tonality and harmony recognition) are completed by modeling the 

target music using an infinite Gaussian mixture. Since there is no ground truth available 

for MIDI music, manually transcribed key and chord from the real audio WAV 

recordings is used as a validity check for the symbolic domain. We obtain reasonable 

good results for both the key and chord recognition tasks. Using a bag-of-notes modeling 

experience from the symbolic domain, we proceed to analyze the WAV track for real 

audio CD albums.  
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WAV audio, unlike MIDI, requires a Fourier-like transform to covert the signals 

from the time domain to the frequency domain for the two tasks. Due to inherent “noisy” 

characteristics of the audio recording – such as the attack transients and higher harmonics 

that do not contribute positively to the recognition of tonality and harmony content of the 

target music piece, we use a wavelet transform on the raw WAV data to obtain a 

smoother and period-regularized approximation to the original signals. A best candidate 

approximation is chosen based on entropy-based and similarity-based criteria. The 

chosen approximation, still in time representation, is transformed into frequency 

representation using a Constant-Q transform where a series of 12-dimensioned Pitch 

Class Profiles, or chromagram, is generated for extracting local keys.  

The processing paths of symbolic and real audio data, i.e., MIDI and WAV, cross 

at the adoption of infinite Gaussian mixture for extracting a bag of local keys from a bag 

of frames. Using the Beatles’ 175 songs in our experiments, we observe that the wavelet 

approximated signals provided at least a 5% improvement on the F-measure over other 

chromagrams on extraction of local keys. Using the obtained local keys, the energy levels 

in each chromagram is adjusted by applying the Krumhansl & Kessler profiles to 

promote diatonic pitches to find the most suitable chords for harmony extraction.  Again, 

using the 175 Beatles’ songs, with no frames discarded, we achieved a 72.3% recall 

(correct overlap) rate on extracting six types of chords – major, minor, augmented, 

diminished, suspended, and N (none) – which rivals results from the state-of-the-art. We 

also observed that our wavelet transformed chromagram outperforms others by at least 

4% in terms of chord recognition. 
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6.2 Contributions 

The main argument for applying unsupervised machine learning paradigms for harmony 

analysis on audio signals follows the principle of Einstein’s – “As simple as possible, but 

not simpler” – and David Wheeler’s corollary to Butler Lampson’s quote – “…, except 

for the problem of too many layers of indirection.” From experimental results, we show 

that our approach – a much simpler one compared to most of the existing methods – 

performs just as well or outperforms many of the much more complex models for 

harmony analysis without using any training data. We make four contributions to the 

music signal processing and music information processing communities:  

1. We have shown that using undecimated wavelet transform on the raw audio 

signals improves the quality of the pitch class profiles. 

2. We have demonstrated that an infinite Gaussian mixture can be used to efficiently 

generate a bag of local keys for a music piece. 

3. We have ascertained that the combination of well-known tonal profiles and a bag 

of local keys can be used to adjust the pitch class profiles for harmony analysis. 

4. We have shown that an unsupervised chord recognition system – without any 

training data or other musical elements – can perform as well, if not exceed, many 

of the supervised counterparts.  
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6.3 Future Work 

We see that there are three lines of future work. First, we can adjust the framework to 

replace the one-way interaction (a bag of local keys first, then frame-by-frame chords) 

with two-way estimation so that chord information can be used to transform the bag of 

local keys into a time series of local keys which can in turn improve the chord 

recognition task iteratively. Second, build the harmonic rhythm as a five-dimensioned 

segmentation cues for structural analysis. For the first two lines of work, we have 

elaborated on them in detail in Section 5. Third, extend the use of the infinite Gaussian 

mixture to develop a new global descriptor using a bag of spectral frames as input as 

briefly described in Section 3.4.  
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