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Abstract

SOLUTIONS TO CONSTRAINED PATH COMPUTATION IN MULTI-LAYER NET-
WORKS

Shujia Gong, PhD

George Mason University, 2007

Dissertation Director: Dr. Bijan Jabbari

Traffic Engineering methods as applied to traditional IP networks rely on link at-

tributes advertised by link state protocols, such as Open Shortest Path First (OSPF)

or Intermediate System to Intermediate System (IS-IS). Extending link state protocols

to include heterogeneous transport layer attributes brings a more comprehensive view

of networks for path computation. A unified control plane, which enables horizon-

tal cooperation between peer layers and vertical integration across layers, facilitates

the optimization of network resource and instantiation of cross-layered paths, yet

brings to path computation additional challenges. These include but are not lim-

ited to Generalized Label Continuity Constraints, such as wavelength continuity and

VLAN (Virtual Local Area Network) tag continuity and Interface Specific Adaptation

Constraints such as switching type adaptation constraints when a cross-layered path

needs to be setup. These constraints cannot be satisfied by traditional CSPF (Con-

strained Shortest Path First) or integer linear programming. Moreover, the network

graph may not be enough to describe the connectivity of network resources associated

with wavelength, VLAN tag or switching type adaptation capabilities.



Furthermore, the dynamic nature of the networks makes all exhaustive search or

other NP-hard algorithms practically unattractive.

In this dissertation, we provide the Common Vector solution to the Generalized

Label Continuity Constraints. Mathematical analysis and simulation results demon-

strate that the algorithm addresses the scalability problem of the existing wavelength

graph solution, yet only with minor performance degradation from blocking perspec-

tive when the traffic load is not high. Especially, when the label space grows fast, the

blocking caused by the lack of common labels is further reduced. Link performance

bounds in a ring topology, which can help evaluate the performance degradation of

common vector solution more accurately, is also discussed.

For Interface Specific Adaptation Constraints, we provide the Channel Graph so-

lution, which transforms the network graph to channel graph. We prove that this

solution addresses both the optimality and scalability problems of path computation

in multi-layer networks. We also prove that with assumption that the connectivity

and cost of adaptation depends on switching type associated with an interface, the

Channel Graph solution is most efficient. In a sparse network, the Channel Graph so-

lution has the same order of computational complexity as running CSPF on network

graph.

Simulation results that corroborate those from the analytical models are presented

in this dissertation. The solutions to path computation, as discussed here, lend

themselves as good candidates for Internet of future. The proposed solutions for

switching type adaptation and VLAN tag have also been implemented and verified

in practice 1.

1This is done as a part of path computation in Dynamic Resource Allocation in GMPLS Optical
Networks (DRAGON ) project, an NSF sponsored project, to create dynamic, deterministic, and
manageable end-to-end network transport services for high-end e-Science applications.



Chapter 1: Introduction

High-end and e-Science applications such as particle physics, earth observation, bioin-

formatics and electronic very-long baseline interferometry (e-VLBI) generate terabyte

and petabyte data and demand dynamic, deterministic, and manageable end-to-end

network transport services. In dealing with these requirements, networks become

more heterogeneous, connection-oriented and include various network elements and

switching technologies.

The switching technologies include but are not limited to layer 1 switching such as

wavelength (lambda), waveband and fiber switching; layer 2 switching such as Eth-

ernet and cell switching; sub-layer 3 or label switching such as Multi-Protocol Label

Switching (MPLS) [1], and layer 3 switching such as packet (e.g., Internet Protocol,

IP) switching. All the above switching types of layer 1 may be modeled in space

and time, while all switching types above layer 1 may be viewed as packet filtering.

Nonetheless, in general a realization of these switching types within a network re-

quires consideration of the specific type of switching on a per port basis at each node,

hence adding a level of complexity to the network for multi-layer switching.

Along with the heterogeneity of the transport and switching technologies, the

unification of control plane is under fast development, such as the set of standards

defined under Generalized MPLS (GMPLS) [2] in the The Internet Engineering Task

Force (IETF), to provide a high degree of flexibility and economy of network resource

1



utilization. Therefore, GMPLS has the potential to become an integral part of In-

ternet core networks [3], [4] by providing end-to-end control, provisioning, protection

and restoration in heterogeneous transport networks. Because the transport networks

are already incorporating to a degree network automation and self-actualization, it

is indeed needed to simplify bandwidth procurement, provisioning and management.

Due to close interaction between these functions in transport network and packet net-

works to establish a traffic engineering (TE) path, a common control plane becomes

increasingly an attractive proposition.

Link state protocols such as OSPF has been enhanced to provide all the re-

source availability information of a TE-link[5]. Therefore a single Traffic Engineering

Database (TED) that integrates the latest topological and network state informa-

tion is available for the Path Computation Element (PCE) [6] to search an optimal

end-to-end path efficiently. Reference [5, 7–9] provide the signaling definition on the

resource reservation and Label Switched Path (LSP) establishment and tear-down.

Resource optimization and performance optimization are thus possible, yet with

many challenges. These challenges cannot be met with traditional shortest path

searching algorithm. Network graph must undergo some transformation process be-

fore a path can be searched.

Early works include research on the end-to-end transport and path computations

architecture such as [10] and [11]. However, path computation algorithms are needed

in order to operate the network efficiently, cost-effectively and reliably.

In this chapter, we will first discuss the existing path computation methods, fol-

lowed by the discussion of challenges to path computation when the networks become

more heterogeneous.

2



1.1 Shortest Path Computation by Integer Linear

Programming and Matrix Calculation

Path computation in data networks has been extensively studied. Algorithms to

search shortest path, shortest pair of vertex-disjoint or edge-disjoint paths are pro-

vided in [12], where edge-disjoint and vertex-disjoint paths also involve transformation

of the network graph by adding links with negative metric to the network graph. Al-

though these algorithms are essential for the path protection and restoration, they

are not applicable to path computation in a cross-layered network environment.

1.1.1 Integer Linear Programming Approach to Find Short-

est Path

Reference [13] presents an approach to search shortest path through Integer Linear

Programming, where shortest path problem is equivalent to the transshipment prob-

lem. The source node will be the supply point, the destination node will be the

demand point, and the number of supplied units is one.

Suppose there are n nodes in a graph G = 〈V, E〉, where N is the node set and E

is the arc set. We denote source node as s, destination node as d, and cij as the cost

between node i and j, and

cij =





metric of arc(i,j) if there is a link between node i and node j ;

0 if i = j;

∞ otherwise.

(1.1)

3



We define xij as variables to be solved and

xij =

{
1 if arc(i,j) is taken by the shortest path ;

0 otherwise.
(1.2)

Then the general formulation is:

min
n∑

i=1

n∑
j=1

(cijxij) for cij 6= 0 and cij 6= ∞;

such that
n∑

j=1

(xsj) = 1;

n∑
j=1

(xjd) = 1;

n∑
i=1

xij =
n∑

k=1

xjk for j 6= s and j 6= d;

0 ≤ xij ≤ 1.

(1.3)

By solving (1.3) with an integer linear programming solver, the shortest path can

be obtained.

Integer linear programming can also be used to solve max-flow problem and crit-

ical path method. However, path computation with Generalized Label Continuity

Constraints or Interface Specific Adaptation Constraints is non-linear [14].

1.1.2 Searching Shortest Path through Matrix Calculation

Reference [15] provides the matrix algorithms to search shortest path. This algorithm

is an implementation of Dijkstra’s algorithm through matrix operation. Given a graph

4



G = 〈N, E〉, matrix L = (lij) is defined as:

lij =





length of arc(i,j) if 〈i, j〉 ∈ E ;

0 if i = j;

∞ otherwise.

(1.4)

We initialize L(0) = L, and define

l
(k)
ij = min(l

(k−1)
ij , l

(k−1)
ik + l

(k−1)
kj ). (1.5)

For a graph with n nodes, L(n) gives the distance of shortest path.

1.2 Multi-Layer Networks and Challenges to Traf-

fic Engineering

Given the GMPLS control plane, we can setup lightpath to build a virtual topology

embedded on a physical topology. Reference [16] formulate the virtual topology design

problem to optimize either the packet delay for a given traffic demand matrix or

minimize the maxflow on any lightpath. However, this problem is NP-hard and

therefore, reference [16] gave the heuristics approach. Reference [14] also present

an exact integer linear programming approach to design the virtual topology with

minimizing the average packet hop distance as the objective function. If wavelength

continuity constraint is not relaxed, the optimal solution of the objective function in

[14] is non-linear and also NP-hard.

Building virtual topology is essentially to decompose the path computation to

overlay model on a per layer basis, which means an upper layer routes is determined

5



by Forwarding Adjacency (FA) LSPs instantiated in a lower layer.

With the introduction of Multi-Region and Multi-Layer networks (MRN/MLN) in

[17], a path can be setup end-to-end across different layers. Here, a region is defined as

a switching technology domain and MRN is defined as a network of multiple switch-

ing types. MRN/MLNs bring in the switching capability constraint. In MRN/MLN,

multiple switching technologies coexist and an LSP will traverse networks with dif-

ferent switching capabilities. Packet Switch Capable region (PSC), Layer-2 Switch

Capable region (L2SC), Time Division Multiplexing capable region (TDM), Lambda

Switch Capable (LSC), and Fiber Switch Capable (FSC) have so far been defined.

All the resource availability information is integrated into a single Traffic Engineer-

ing Database (TED) and GMPLS provides a comprehensive framework to control

the cross-layered Label Switched Path (LSP) setup through vertical and horizontal

interaction and integration in MRN/MLN [18]. Therefore, efficient and optimal path

computation across the whole MRN/MLN is enabled.

MRN/MLN may consist of single-switching-type-capable Label Switching Routers

(LSR) and multi-switching-type-capable LSRs, as defined in [17]. Simplex and hybrid

nodes are two types of multi-switching-type-capable LSRs, where simplex node is

defined as a network element with different switching capabilities, but each interface

has only one switching capability, while hybrid node means that one interface of a

network element has multiple switching capabilities, and thus can adapt between

different switching types.

Cross-layered search of path and the nature of the optical network add new con-

straints into the PCE. We need to consider horizontal interaction constraints such as

wavelength continuity and also vertical integration constraints such as switching type
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adaptation constraints between different layers. Those constraints add new challenges

to the path computation algorithm and may need certain form of transformation of

the network graph before path computation.

Scalability of the solution is also an important aspect we need to consider. Exhaus-

tive search or non-polynomial algorithm cannot be accepted for dynamic requests.

In this dissertation, we consider multi-layer networks and focus on constraints

in traffic engineering path computation and solutions to support them. In chapter

2, we discuss the taxonomy of constraints in multi-layer networks for divide-and-

conquer purpose and review the existing solutions to these constraints. In chapter 3,

we discuss the solution to Generalized Label Continuity Constraint (GLCC) such as

wavelength continuity and VLAN tag continuity, together with analytical model of

common vector solutions and simulation results. In chapter 4, we discuss the Interface

Specific Adaptation Constraints (ISAC), such as Switching Capability, encoding type

and bandwidth granularity constraints, together with the Channel Graph solution. In

chapter 5, we provide an analytical model for link blocking probability estimation in

a ring network with homogeneous traffic matrix, which can provide better estimation

of network performance for the common vector solution. Finally, we provide some

concluding remarks in chapter 6.

7



Chapter 2: Review of Constraints and Solutions in

Multi-layer Networks

Many constraints, such as priority attributes, preemption attributes, policing at-

tributes, bandwidth requirements, exist in the traditional IP networks[19]. Multi-

layer networks such as Hybrid Optical/IP Networks introduce additional constraints

that cannot be satisfied in a straightforward approach[20].

As shown in Figure 2.1, we summarize the constraints into two areas, i.e., prunable

and non-prunable constraints.

Prunable metric means that the solution to such constraints is a simple filtering.

All the network elements that do not have required features will be pruned before a

path searching process. Bandwidth requirement is an example of prunable constraints.

Non-prunable constraints mean that certain network resources, such as a TE-

link, should not be pruned, but whether it is useable depends on the parameters of

the whole determined path. These constraints include the following two categories:

additive constraints and non-additive constraints. Examples of additive constraints

are attenuation and dispersion request of an optical signal. Wavelength continuity

and its more general form, referred to as label continuity, is an example of non-

additive constraints. Switching type adaptation is another example of non-prunable

and non-additive constraint.

Switching type adaptation constraint is different from the label continuity con-

straint in nature. In MLN, some network elements are multi-switching-type-capable
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Path Computation Constraints

Prunable  Constraints Non-Prunable  Constraints

Additive  ConstraintsNon-Additive  Constraints

Generalized Label 

Continuity Constraints

Interface Specific 

Adaptation Constraints

Figure 2.1: Taxonomy of Constraints in Multi-layer Networks
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and they can adapt from one switching type to another. Unlike the wavelength

conversion that can generally translate any incoming wavelength on any incoming

fiber to any outgoing wavelength on any other fiber, adaptation function of multi-

switching-type-capable LSRs is interface specific and generally, the adaptation cannot

be done from any particular switching type to any other particular type on an in-

terface. Therefore, this type of constraint is named as Interface Specific Adaptation

Constraint (ISAC).

We will discuss all the above mentioned constraints in the following sections.

2.1 Prunable Constraints and Constrained Short-

est Path First Solution

Prunable constraints include but are not limited to bandwidth requirement, policy

constraint or protection requirement.

Some administrative policy may require that certain network resources should

not be used for path setup. Shared Risk Link Group (SRLG) can also be a prunable

constraints in such a way that the nodes and links of the same SRLG should not be

used when searching disjoint paths.

Reference [21] discusses a disjoint path selection scheme with SRLG, in which

link attributes associated with all layers must be taken into account. For example,

two optical paths, which are treated as different IP links in IP layer, may share the

same fiber using different wavelengths. We say that the two IP links belong to the

same SRLG because a failure at the fiber will cause both IP links to fail at the same

time. Therefore, when we compute node/link disjoint paths, SRLG, which includes

the lower-layer information, must also be considered.
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A solution to prunable constraints is known as CSFP (Constrained Shortest Path

First), which is an extension of Dijkstra’s algorithm. Link state protocol such as

OSPF and IS-IS can advertise the resource availability, such as residual bandwidth

information of a link, based on which PCE can build the TED. When an LSP setup

request with the bandwidth requirement is made, the PCE can prune the links without

sufficient bandwidth before running Dijkstra algorithm. CSPF can also be used to

solve policy constraints or SRLG constraints, i.e. to pruned the restricted resource

before path searching.

2.2 Non-prunable Constraints and the Solutions

Not every network element in an optical network provides O-E-O conversion along

the lightpath. In such a network, Routing and Wavelength Assignment (RWA) is

subject to many constraints categorized either as additive, or as non-additive. Cer-

tain constraints, such as wavelength continuity, switching capability and bandwidth

requirements, are non-additive, while constraints such as attenuation and dispersion

are additive. These constraints make the lightpath setup in an optical network very

different from circuit setup in a traditional circuit-switched network.

2.2.1 Additive Constraints and the Solutions

In this subsection, we discuss the additive constraints such as attenuation and dis-

persion, followed by the discussion on K Shortest Paths (KSP) solutions.
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Additive Constraints

In DWDM networks, with the increase of bit-rate and the number of wavelength, and

with the reduction of the channel spacing, optical impairments have a more significant

impact on the routing scheme. Reference [22] and [23] discuss the optical transmission

technologies and the impairments systematically.

Attenuation is defined as decrease on signal strength caused by absorption and

scattering. It is usually expressed in db/km. The impurity of fiber will convert optical

signal to heat, which cause the absorption attenuation. Scattering means that the

light ray may change its direction and diffuse out of the fiber. There are two types

of scattering, namely Rayleigh scattering and Mie Scattering. Rayleigh Scattering

is caused by miniscule changes in the core’s refractive index and Mie scattering is

resulted from the core that is not a perfect cylinder. Attenuation occurs not only

during transmission, but also during switching because some switching fabric in OXC

consists Micro-Electro-Mechanical Systems (MEMS), which is a passive device. Every

deflection will cause loss of signal strength.

Solution to attenuation is amplification. However, signal-to-noise ratio (SNR) de-

creases because Erbium-Doped Fiber Amplifier (EDFA) adds Amplified Spontaneous

Emission (ASE) to noise.

Dispersion is caused by different speeds of different wavelength during light ray

propagation. The main reason is either by modal effect (PMD) or chromatic dis-

persion. PMD (polarization mode dispersion) is an inherent property of all optical

media. Dispersion is measured in ps/nm/km.

With the reduction of signal spacing, inter-channel cross-talk will also happen.
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Other non-linear effects such as Self-phase Modulation (SPM), Cross-phase Modula-

tion (XPM) caused by non-linear index of refraction of glass, and Four Wave Mixing

(FWM) which generates a new wavelength by mixing multiple wavelengths.

Constraints on attenuation, dispersion and delay are additive. Optimization of all

the additive constraints at the same time is an NP-hard problem.

K Shortest Paths solution

K Shortest Paths (KSP) is a solution to additive constraints, such as attenuation,

dispersion and delay. We cannot delete any intermediate results even if a threshold of

a constraint is exceeded because we can hardly determine which segment of the path

caused that problem and meanwhile that segment could appear in another path that

satisfies all the constraints. We need to find K shortest paths, add corresponding link

parameters and choose the qualified one.

Numerous publications have discussed KSP, computing K shortest paths in the

order of increasing length. Reference [24–26] are three among many KSP algorithms.

The algorithms provided in [24] and [25] allow cycles. Reference [25] provides a

straightforward solution, Recursive Enumeration Algorithm (REA), which does not

delete any link or node to avoid cycles.

Recursive Enumeration Algorithm Define a digraph G = 〈V, E〉, where V is

the node set and E is the arc set. It is easy to find the shortest path from node s to

t and any other node. We define Γ−1(v) as the node set, such that for every element

u ∈ Γ−1(v), arc 〈u, v〉 ∈ E.

Candidate path set for kth shortest path to node v is denoted as Ck(v). Clearly,
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the second shortest path from s to t must be one of the shortest path from s to a

node v in Γ−1(t) , followed by arc 〈v, t〉. Therefore, all the shortest path from s to

any node in Γ−1(t) will be in C2(t). The path of the smallest length and with 〈u, t〉

as the last hop is denoted as π2(t). Clearly, π2(u) + 〈u, t〉 with the paths remaining

in C2(t) will together consists C3(t). The procedure to find π2(u) is the same as that

to find π2(t). This is why this algorithm is recursive.

If we continue the above procedure, we can either find K shortest path or exhaust

all possible paths from s to t.

Simply put, the next shortest path πk(t) is found and deleted from the candidate

path heap, and the next shortest path to the predecessor u of t in πk(t) should be

found and concatenated by 〈u, t〉. The newly found path is added to the candidate

path heap, from which the next shortest path πk+1(t) is found and deleted.

The recursion happened when we search the next shortest path to the predecessor

u of t in πk(t). This algorithm is simple and efficient. Because it does not avoid loops

by deleting nodes or links, its complexity is O(m+Kn log(m/n)), where m and n are

the number of arcs and nodes, respectively.

YEN’s algorithm YEN’s algorithm searches loopless K Shortest Paths. A new

implementation of YEN’s algorithm is presented in [26]. YEN’s algorithm cannot be

applied directly to routing in MLN because it will produce unnecessary loops. Before

we discuss in details, we reiterate some terminologies of YEN’s algorithm as follows.

YEN’s algorithm is based on a deviation algorithm, which constructs a “pseudo”-

tree. This tree is not a usually defined tree because it contains repeated nodes. The

“pseudo”-tree, whose root is the source node, is initialized to be the shortest path.
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This path, denoted as p1, will be the parent path for the next shortest path p2.

The basic idea is that any newly found path must share some nodes that are along

the existing “pseudo”-tree from the root. The last node that newly found path shares

with the existing tree is called “deviation node”, denoted as d(pk) if we are searching

for path k + 1. When searching path k + 1, we should not repeat the nodes that

had appeared from the root to d(pk). Therefore, these nodes should be deleted. We

should also avoid the arc from the deviation node to its next node, and delete those

nodes and arcs that had been deleted when pk was found.

We should regard the nodes from the d(pk) to the predecessor of the terminal

node along path pk, as potential deviation node for d(pk+1). Delete the nodes from

the source node to potential d(pk+1) along path pk, and the arc from d(pk+1) to its

next node along path pk, and run SPF algorithm to find shortest path q from d(pk+1)

to the terminal node. Concatenate the path from the source to the potential d(pk+1)

along path pk with q to form the next potential shortest path and add it to candidate

path heap. After searching along the parent path pk is finished, choose the path with

minimal cost from the candidate path heap.

YEN’s algorithm is more complicated than REA. Because it needs to delete nodes

and arcs before the next shortest path is found, its efficiency is worse than REA.

However, the paths we can find are loopless. The complexity of YEN’s algorithm,

according to [26], is O(Kn(m+nlogn)), where n is the number of nodes and m is the

number of arcs in the network graph.
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2.2.2 Non-additive Constraints

In this subsection we discuss the non-additive constraints. These include constraints

such as label continuity (for example wavelength continuity in all-optical networks)

and switching capability.

Generalized Label Continuity Constraint and Auxiliary Graph Solution

Label continuity is important at least in two cases. First, wavelength continuity which

is a non-additive constraint in all-optical networks where wavelength translation is

not present at every or certain nodes across a path. For nodes without wavelength

translation capability, the incoming wavelength and outgoing wavelength along the

same path should be the same. Another case is the problem of global VLAN tag

continuity, i.e., a path should maintain its VLAN tag at the nodes across a path. In

such networks, the label swapping is not available at every or certain nodes.

This constraint is considered to be non-prunable because we cannot delete those

links without the required wavelength. Such links can also be part of the lightpath

after wavelength translation occurs in some intermediate nodes. We cannot prune the

nodes or links according to VLAN tag availability either because we cannot determine

which VLAN tag could be selected at the originating node.

An approach to solve the wavelength continuity constraint by converting a Net-

work Graph to a Wavelength Graph has been presented in [27]. In wavelength graph,

one plane is generated for each wavelength, and each node in the network graph is

duplicated at each wavelength plane. For those nodes that have wavelength conver-

sion capability, additional links are created to connect the replications of each node

on the corresponding wavelength planes. Virtual nodes are generated as a dummy
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Figure 2.2: A Network Graph with Three Nodes and Four Wavelengths in Each Fiber

Figure 2.3: A Wavelength Graph with Three Nodes and Four Wavelength Planes

originating node and a dummy destination node. These virtual nodes are connected

to the replications of the true originating node and destination node respectively and

metric on each virtual link is assigned as zero.

Figure 2.2 and figure 2.3 illustrate the network graph and wavelength graph,

respectively. We assume that the yellow switch in the middle does not have the

wavelength translation capability.

Wavelength Graph solution could result in non-elementary path, which is a path
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Figure 2.4: Non-elementary Path

with cycles. As shown in Figure 2.4, suppose B and C are WIXC (Wavelength-

Interchanging Crossconnect) which can switch a wavelength on incoming fiber to

another wavelength on outgoing fiber. The lightpath we can setup from A to D is

A−B − E −B − C − F − C −D. Therefore, running a shortest path algorithm on

the network graph is not enough.

Although wavelength graph can find an optimal path for an LSP setup request,

and can likewise be used to address VLAN continuity constraints, it has inherent

scalability problems. The computational complexity of wavelength graph is kn(n+k),

where k is the number of wavelength in a fiber and n is the number of nodes in the

network graph, which makes it impractical for large label space regardless of the

network size.

Reference [28] provides a graph model for traffic grooming in multi-layer mesh

networks, which addresses both the wavelength continuity problem and the grooming

policies at the same time. Two layers are modeled and each node is replicated into

2(W + 2) virtual nodes, where W is the number of wavelengths in each fiber. The
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Figure 2.5: Sample Multi-Region Network Topology

lower W layers are similar to the wavelength graph defined in [27]. By adding a light-

path layer and an access layer, various constraints such as transceivers and grooming

capabilities can be modeled. This reference, as [27], will also have scalability problem

for a large W .

Reference [29] tries to address the scalability problem by creating a link bundled

auxiliary graph. This graph bundle all the wavelengths in a TE-link, which can

significantly reduce the number of nodes in the auxiliary graph, but it did not provide

an analytical model on the impact of wavelength continuity constraint to the blocking

probability.

Switching Capability Constraint

Figure 2.5 is a sample network topology which consists of two regions, i.e., L2SC and

LSC. All nodes are hybrid nodes.

An LSP request can specify 10 Gbps end-to-end connection with L2SC from node

1 to node 8. In this case, we cannot simply prune those links without L2SC because
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we can adapt the switching type in the intermediate nodes to L2SC or LSC. We

must also guarantee that when the flow reaches destination node, it must have been

adapted back to L2SC. Because the adaptation is an interface specific functionality,

the switching capability constraint is a typical example of ISAC.

An optimal path in MRN/MLN can be non-elementary, i.e., a simplex node may

need to be visited more than once in a path, but each visit will take a different

switching type on a different interface.

Breadth-First Search could be a potential solution to search a path, but it is

non-optimal and cannot guarantee to find a path even if there is a feasible one.

Exhaustive search is not a scalable solution. It cannot handle dynamic LSP setup

request even in a small network.

2.3 Summary

This chapter provides a taxonomy of constraints in multi-layer networks, which is

the basis our divide-and-conquer solutions. It also reviews existing solutions to some

constraints that also exist in conventional IP or optical networks, and discusses their

limitation when applied to the multi-layer networks. For the GLCC and ISAC con-

straints, efficient and feasible solutions are to be explored in the subsequent chapters.
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Chapter 3: Common Vector Solution to

Generalized Label Continuity Constraint

An example of the Generalized Label Continuity Constraints is the wavelength conti-

nuity constraint in All-Optical Networks (AONs) or network based on Reconfigurable

Optical Add-Drop Multiplexer (ROADM) and/or Dense Wavelength Division Multi-

plexing (DWDM), in which an end-to-end LSP needs to be setup. End-to-end LSP is

mandatory for deterministic network services to high-end eScience applications that

require high speed and high capacity lightpath, which is subject to the wavelength

continuity constraint.

Another example is the VLAN tag continuity, where an end-to-end path across

geographically dispersed Ethernet switches is needed. This Ethernet switching tech-

nology is deployed not only in local area networks, but also in backbones such as

in the hybrid optical and packet network infrastructure, e.g., HOPI project. Ether-

net switches in the network may not necessarily support VLAN tag swapping and

therefore, VLAN tag continuity constraint also needs to be satisfied.

Both wavelength and VLAN tags, as mentioned above, are essentially labels.

These as well as other labels can be classified under Generalized Label Continuity

Constraints (GLCC)[30]. GMPLS defines a set of protocols as the standardized con-

trol plane to instantiate the LSP setup, tear-down and manipulation.

In this chapter, we discuss the applicability of a common vector solution to ad-

dress the GLCC problem. We develop an analytical model to obtain the estimation on
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blocking probability of LSP setup requests. We also develop a simulation model. Sub-

sequently, numerical results are presented and compared with the analytical model.

Finally, concluding remarks are made.

3.1 VLAN Tag Constraints and the Common Vec-

tor Solution

VLAN tag is a field of 12 bits, which can identify k = 4096 VLANs. If we create

VLAN plane as we do on wavelength plane and replicate nodes and links, a network

will generate hundreds of millions of nodes and links. Clearly, wavelength graph

approach cannot provide a scalable solution to VLAN tag continuity constraint.

To address this problem, we utilize the Common Vector solution, where the el-

ements of the vector represent the availability or the lack of the labels at a node

across the path. The set of available labels can simply be determined by taking the

logical AND across the vectors at each node on the path. A method such as Extended

Indexing Reference [31] can be used to facilitate the distribution of the labels.

A vector comprised of 4096 bits, with each bit indicating the status of one of

the 4096 VLAN tags used at each node is an attractive solution for large Ethernet

networks in practice.

3.2 Modeling of Common Vector Solution to Wave-

length Continuity Constraint

In this section, we show that the common vector approach is a reasonably good

solution to wavelength continuity constraint by the following models.
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We assume that the arrival process of LSP setup requests to each node is Poisson

with mean of λ and the departure process is exponential with mean service time 1/µ.

We use the following notations in our model:

G = 〈V, E〉: Network graph G with node set V and link set E.

N : Total number of nodes in V .

M : Total number of links in E.

L: Total number of labels in each link. In this context, label is wavelength λ.

vi: Node i in node set V , where i = 1..N .

ei: Link i in link set E, where i = 1..M .

hij: The number of hops of the shortest path between vi and vj in G.

γij: The traffic intensity between vi and vj in G.

fij: The traffic flow generated by γij in the network.

fek
: The total traffic flow on link ek.

I(vi, vj, ek): An indication function on whether the shortest path between vi and

vj on the network graph traverses link ek.

Aei
: The number of available labels on link ei.

Pij: Path between vi and vj.

pm
ij : The link that the mth hop along Pij traverses.

Ap1,..,m
ij

: The number of labels that are commonly available on the first m hops

along Pij.

We also assume that the traffic intensity in the network is not high. When an

LSP request arrives at node vi, vi will check its Traffic Engineering Database (TEDB),

prune those links without enough bandwidth and run CSPF without considering the

label availability. After a path is found, vi will perform the logical AND operation
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on the vector of label availability along the path. If no commonly available label is

found, the LSP request will be rejected.

To simplify the analysis, we assume that the label occupancies of the links are

independent. This may not be an accurate assumption in that all the labels along

an LSP are selected to be the same, which indicates the dependency of the label

occupancy on different links. However, this dependency favors the common vector

solution, and the actual performance of the network will be better than the analytical

model we provide in the next subsections.

3.2.1 Estimation of the Number of Available Labels on a

Link

Blocking probability in various network scenarios have been extensively studies, such

as in [32–34]. The blocking probability in all-optical networks with and without

wavelength changers has been considered in [32] and has been modeled with the

assumption that the traffic load is light, an initial estimate of link blocking probability

is known, and usage of a wavelength on a hop is statistically independent of other

hops as well as other wavelengths. This paper concluded that the blocking probability

will increase along with the number of hops with or without wavelength changers, yet

did not estimate the blocking probability that caused by lack of common labels along

a path which was computed without consideration of label continuity.

Reference [33] focuses on the optical network with wavelength converters. The

traffic is assumed to be bounded by the number of ports in a node, which hides the

dynamic nature of the traffic. The wavelength converters presented in this paper

cannot model the networks with label continuity constraints.
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Reference [34] discusses the blocking probability in a ring network with homoge-

neous traffic demand matrix. It assumes that a lightpath request will randomly pick

a wavelength plane and try to search path only on that plane. Though it provides

a relatively tight blocking probability bounds under this assumption, it bypasses the

wavelength continuity constraints.

Computing the number of available labels on a link is a M/M/m/m queueing

problem. We first need to know the traffic flow on each link.

The traffic flow generated by any pair of nodes vi and vj is:

fij = γijhij. (3.1)

We first run the shortest path first algorithm between each pair of nodes on a

network graph without traffic and assign:

I(vi, vj, ek) =

{
1 if Pij traverses ek

0 otherwise
(3.2)

Due to the assumption that the traffic intensity is not high, only a small proportion

of LSPs will take a path other than the shortest one. Therefore, fek
can be estimated

as:

fek
=

N∑
i=1

N∑
j=1

λijI(vi, vj, ek). (3.3)

Since the arrival of LSP request is a Poisson process to each node, the arrival of

traffic flow to each link is also nearly a Poisson process. Therefore, we can apply
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results form M/M/m/m queueing system to find the number of available labels.

P (Aei
= k) =

fk
ei
/k!∑L

j=0(f
j
ei/j!)

. (3.4)

This estimation in equation (3.4) is very rough especially when traffic intensity

is moderate. It assumes static routing and overestimate the traffic flow on each

link. Reference [34] provides a more accurate estimation on the upper bounds of link

blocking probability in homogeneous optical ring networks.

If we assume that the routing algorithm is dynamic, the link blocking probability

is nearly the same in the whole network, and the network is complicated enough

that the alternative path is of the equal length as the shortest path, we can further

simplified the equation (3.3) as follows:

fek
=

∑N
i=1

∑N
j=1 fij

M
. (3.5)

Because we use offered load instead of carried load to calculate the traffic flow on

each link, the equation (3.4) gives us the upper bound of the actual blocking ratio.

3.2.2 Estimation of Blocking Probability of LSP Setup Re-

quests

Equation (3.4) gives the probability of P (Aei
= k). For an LSP with multi-hops, a

successful connection needs at least one particular label that is commonly available

along the path.

Given a two-hop LSP Pij between vi and vj, we denote that there are k common
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wavelength available on P 1
ij and P 2

ij as P (AP 1,2
ij

= k).

Given AP 1
ij

= k1 and AP 2
ij

= k2, we have:

P (AP 1,2
ij

= k) =
L∑

k1=0

L∑

k2=0

(
P (AP 1,2

ij
= k|AP 1

ij
= k1, AP 2

ij
= k2)

P (AP 1
ij

= k1)P (AP 2
ij

= k2)
)
. (3.6)

Given L labels in a link, the number of possibilities are: AP 1
ij

= k1, AP 2
ij

= k2 is

∣∣∣{AP 1
ij

= k1, AP 2
ij

= k2}
∣∣∣ =

(
L
k1

)(
L
k2

)
(3.7)

Given L labels in a link, AP 1
ij

= k1 and AP 2
ij

= k2, AP 1,2
ij

= k means that that we

choose k1 out of L on P 1
ij first. Because there are k common labels on P 1

ij and P 2
ij, it

means we choose k1 labels from the first fiber randomly, and choose k labels out of

k1 labels and (k2 − k) labels out of (L− k1) labels on P 2
ij.

The number of possibilities are:

∣∣∣{AP 1
ij

= k1, AP 2
ij

= k2, andAP 1,2
ij

= k}
∣∣∣ =

(
L
k1

)(
k1

k

)(
L− k1

k2 − k

)
(3.8)

Dividing equation (3.8) by equation (3.7), we have:

P (AP 1,2
ij

= k|AP 1
ij

= k1, AP 2
ij

= k2) =

(
k1

k

)(
L− k1

k2 − k

)

(
L
k2

) , (3.9)

where max(0, k1 + k2 − L) ≤ k ≤ min(k1, k2).
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Therefore, we have:

P (AP 1,2
ij

= k) =
L∑

k1=1

L∑

k2=1

(
k1

k

)(
L− k1

k2 − k

)

(
L
k2

) P (Ap1
ij

= k1, Ap2
ij

= k2), (3.10)

where max(0, k1 + k2 − L) ≤ k ≤ min(k1, k2).

The estimation of the case that there are k common labels along a n−hop LSP is

an iterative process. We have:

P (AP 1,2,...,n
ij

= k) =
L∑

k1=0

L∑

k2=0

(
P (AP 1,2,...,n

ij
= k|AP n

ij
= k2, AP 1,...,n−1

ij
= k1)

P (AP 1...n−1
ij

= k1)P (AP n
ij

= k2)
)

(3.11)

Therefore, the probability of blocking is P (AP 1,2,...,n
ij

= 0).

We assume that the alternative path between any pair of nodes vi and vj is of the

same length as the shortest path. The expected blocking probability is as follows:

Pb =

∑N
i=1

∑N
j=1 γijP (A

P
1,2,...,hij
ij

= 0)

∑N
i=1

∑N
j=1 γij

(3.12)

If we use (3.3) to estimate the traffic flow on a link, we called it an estimation

based on static routing. If we use (3.5) to estimate the traffic flow on a link, we called

it an estimation based on homogeneous link load assumption.

Given arrival and departure ratio ρ = γ/µ, we denote the probability of blocking

in M/M/m/m as B(ρ,m).
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Theorem 1. In Erlang B model, given the number of servers is m, and the expected

number of idle servers is E[am], when the number of servers is increased to m + 1

and the ρ is small enough such that B(ρ,m) ≤ 1/(m + 1), we have:

E[am+1]

E[am]
>

m + 1

m
. (3.13)

Proof. Given the M/M/m/m formula of n servers busy as:

P [n] =
ρn/n!∑m
i=0(

ρi

i!
)
, (3.14)

We have the expected number of busy servers E[bm] as:

E[bm] =
m∑

n=0

(n · P [n]) =

∑m
n=1 ρn/(n− 1)!∑m

i=0(ρ
i/i!)

= ρ

∑m−1
n=0 (ρn/n!)∑m
i=0(ρ

i/i!)

= ρ

∑m
n=0(ρ

n/n!)− ρm/m!∑m
i=0(ρ

i/i!)

= ρ(1− P [n = m]).

(3.15)

Therefore, we have:

E[am] = m− E[bm]. (3.16)

Given that:

E[am+1]

E[am]
=

(m + 1)− ρ(1−B(ρ,m + 1))

(m− ρ(1−B(ρ,m))
, (3.17)
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it can be easily shown that (3.13) is equivalent with

1− (m + 1)B(ρ,m) + mB(ρ,m + 1) > 0. (3.18)

Because we assume that B(ρ,m) ≤ 1/(m+1) and mB(ρ,m+1) > 0, the inequality

(3.18) holds.

Theorem 1 shows that the proportion of available labels increases faster than that

of the label increase. From this conclusion, we can prove the following theorem.

Theorem 2. For any integer m > 1, we have:

(
mL−mk1

mk2

)

(
mL
mk2

) <

(
L− k1

k2

)

(
L
k2

) (3.19)

Proof. The Left Hand Side (LHS) can be expanded as follows:

(
mL−mk1

mk2

)

(
mL
mk2

) =

(mL−mk1)!
(mk2)!(mL−mk1−mk2)!

(mL)!
(mk2)!(mL−mk2)!

=
(mL−mk1)(mL−mk1 − 1) · · · (mL−mk1 −mk2 + 1)

(mL)(mL− 1) · · · (mL−mk2 + 1)
.

(3.20)
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The Right Hand Side (RHS) can be expanded as follows:

(
L− k1

k2

)

(
L
k2

) =

(L−k1)!
k2!(L−k1−k2)!

L!
k2!(L−k2)!

=
(L− k1)(L− k1 − 1) · · · (L− k1 − k2 + 1)

L(L− 1) · · · (L− k2 + 1)
.

(3.21)

Because mL
mL−mk1

= L
L−k1

, mL−mk1−m
mL−m

= L−k1−1
L−1

, · · · , and mL−mk1−mk2+m
mL−mk2+m

= L−k1−k2+1
L−k2+1

,

we divide (3.21) by (3.20) and obtain:

LHS

RHS
=

m−1∏
i=1

(
mL−mk1 − i

mL− i
)•

2m−1∏
i=m+1

(
mL−mk1 − i

mL− i
)•· · ·•

k2m−1∏

i=(k2−1)m+1

(
mL−mk1 − i

mL− i
)

=

k2−1∏
j=0

(j+1)m−1∏
i=jm+1

(
mL−mk1 − i

mL− i
) (3.22)

Because each element in equation 3.22 is smaller than 1, therefore, we have:

(
mL−mk1

mk2

)

(
mL
mk2

) <

(
L− k1

k2

)

(
L
k2

) (3.23)

Theorem 1 shows that the expected number of idle labels increase faster than

the increase of the total number of labels. Theorem 2 shows that when the number

available labels increase, the probability of blocking caused by the lack of common
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Figure 3.1: Network Topology

labels on a two-hop path will be reduced.

This conclusion implies that the common vector solution for the label continuity

constraints will have less negative impact on performance from blocking probability

perspective as the label space grows larger.

3.2.3 Numerical Results

Numerical Results on Homogeneous Traffic Matrix

We consider a network topology as depicted in figure 3.1, and assume that the traffic

matrix is homogeneous. We consider that each link has 8 wavelengths.

Figure 3.2 shows the estimation of blocking probability based on both static route

and the homogeneous link load assumption respectively. It also showed the actual

blocking probability by simulating 10 million LSP setup requests. We can clearly

see that the estimation based on homogeneous link load assumption is closer to the

actual blocking rate. Both estimations are upper bounds of the actual blocking rate.

Figure 3.3 compares the blocking ratio of the common vector solution with the
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Figure 3.2: Comparison of Estimated and Actual Blocking Probability
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wavelength graph solution. Given incoming traffic of 3 Erlangs at each node, we

simulated the cases that there are 4 to 8 wavelengths in a fiber. None of the node has

wavelength translation capability. The wavelength graph solution can accept more

calls than the common vector solution. However, when the network load is very high

or very low, the improvement on the call acceptance ratio is not significant. When

the network load is moderate, wavelength graph solution demonstrates a much better

performance with regard to call acceptance.

The computational complexity of the common vector solution is equivalent to

Dijkstra algorithm and then find the availability of labels on each link traversed by

the LSP. Therefore, it is O(M +Nlog(N))+O(N +L). The computational complexity

of the wavelength graph solution is given in [27], which is O(LN(N + L)).

Figure 3.4 shows that the computational complexity of common vector solution is

almost irrelevant to the number of wavelengths on a link, while the wavelength graph
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Table 3.1: Matrix of Mean Holding Time between Nodes

node 0 1 2 3 4 5 6 7 8 9

0 0.0 0.6 0.7 0.8 1.2 1.3 1.4 1.5 0.5 1.0
1 0.6 0.0 0.7 0.9 0.8 1.0 1.1 1.2 1.4 1.3
2 0.8 0.7 0.0 1.6 0.4 1.2 1.3 0.5 1.0 1.5
3 0.8 0.7 1.6 0.0 1.2 0.4 1.2 0.8 1.3 1.0
4 0.5 1.6 1.7 0.3 0.0 0.4 1.5 1.8 0.2 1.0
5 1.8 0.8 0.2 1.2 0.9 0.0 1.1 1.8 0.2 1.0
6 1.8 1.8 1.7 1.7 0.2 0.2 0.0 0.3 1.0 0.3
7 1.8 1.5 1.1 0.5 0.9 0.5 0.2 0.0 1.5 1.0
8 1.4 1.2 0.8 0.6 1.2 0.8 0.7 1.3 0.0 1.0
9 1.8 1.8 1.7 0.3 1.0 0.2 0.8 0.2 1.2 0.0

solution shows that even if the wavelength number is small, it still takes much more

time than the common vector solution does.

Numerical Results on Nonhomogeneous Traffic Matrix

Homogeneous and non-homogeneous traffic matrix may result in different network

blocking scenarios. To make the comparison, we consider the following three designed

cases:

1. Traffic generated at each node is the same and the traffic matrix is homogenous;

2. The inter-arrival of call requests at each node is the same and the mean holding

time between node vi and vj is in proportion to the value in ith row and jth

column given in table 3.1; and

3. The inter-arrival of call requests at each node is in proportion to the values given

in table 3.2 and the mean holding time between node vi and vj is in proportion

to the value in ith row and jth column given in table 3.1.
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Table 3.2: The Inter-arrival of Call Requests at Each Node

node 0 1 2 3 4 5 6 7 8 9

Incoming Traffic Intensity 1.0 1.4 0.6 0.8 1.2 1.3 0.7 1.5 0.5 1.0

Table 3.3: Comparison of Blocking Probability of Common Vector Solution between

Case 1 and 2

Wavelength 4 5 6 7 8 9

Common Vector Solution
for Case 1 0.259 0.167 0.106 0.063 0.034 0.0166

Common Vector Solution
for Case 2 0.262 0.173 0.110 0.068 0.039 0.0216

Table 3.4: Comparison of Blocking Probability of Wavelength Graph Solution between

Case 1 and 2

Wavelength 4 5 6 7 8 9

Wavelength Graph
Solution for Case 1 0.245 0.116 0.0378 0.0068 0.000747 0.000118

Wavelength Graph
Solution for Case 2 0.251 0.127 0.0436 0.0091 0.001083 0.000085
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Table 3.5: Estimated vs. Actual Blocking Probability of Common Vector Solution

for Case 1 and 2

Wavelength 4 5 6 7 8 9

Common Vector Solution for
Homogeneous Traffic Matrix 0.262 0.173 0.110 0.0683 0.0394 0.0216

Estimation of Blocking
Probability Based on equation 3.3 0.507 0.392 0.286 0.196 0.125 0.0735

Estimation of Blocking
Probability Based on equation 3.5 0.472 0.332 0.211 0.119 0.0595 0.0265

Table 3.3 and 3.4 show the blocking probability of common vector solution and

wavelength graph solution with homogeneous and non-homogeneous traffic matrix,

respectively.

When the incoming traffic intensity from each node is the same, table 3.5 shows

the estimated and actual blocking probability of common vector solution for non-

homogeneous traffic matrix. We can see that as the blocking probability decreases,

the estimation based on both equation (3.3) and (3.5) is improving. The estimation

based on equation (3.5) is much better than equation (3.3) because dynamic path

computation will make the traffic flow in the network nearly homogenous.

However, when the traffic intensity generated at each node is different, the network

will demonstrate a different blocking scenario.

Figure 3.5 and 3.6 show the blocking probability of all the three cases of the

common vector and wavelength graph solutions, respectively. Figure 3.7 shows the

comparison between estimated and actual blocking probability of the common vector

solution. The estimation based on both equation (3.3) and (3.5) are showed. Figure

3.5 and 3.6 clearly show the performance degradation, which means that unbalanced

traffic from each node can increase the network blocking probability. Figure 3.7 shows
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Figure 3.5: Comparison of Blocking Probability of Common Vector Solution between

Case 1, 2 and 3

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Wavelengths in a Fiber

P
ro

ba
bi

lit
y 

of
 B

lo
ck

in
g

WG Solution for Case 1
WG Solution for Case 2
WG Solution for Case 3

Figure 3.6: Comparison of Blocking Probability of Wavelength Graph Solution be-

tween Case 1, 2 and 3
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that when the traffic load is light, the estimation of blocking ratio based on dynamic

routing is even less than the actual blocking ratio. This is because the dynamic

routing assumption hides the non-homogeneous traffic demand from each node.

This implies that given the same traffic intensity, a network with nearly homoge-

neous traffic demand has better performance from blocking probability perspective.

Numerical Results on Label Space Increase

Given the same proportion of expected idle wavelengths as the number of wavelengths

increases, we want to verify whether the common vector solution will demonstrate a

better performance from blocking perspective in a network with homogeneous traffic

intensity on all the links. Figure 3.8 is a network with only two nodes. Table 3.6 lists

the incoming traffic per node and blocking probability on each link obtained by (3.4).

According to (3.15), the incoming traffic to each node is designed in such a way that

the number of expected idle wavelengths on each link is increased proportionally to

the number of wavelengths.

Figure 3.9 clearly shows that the expected and actual blocking probabilities de-

crease fast when the label space grows larger. The actual blocking ratio for the two

hop traffic also decreases fast. This result corroborates the conclusion of section 3.2.2.

Figure 3.10 illustrates the expected and actual blocking probabilities when we keep

the same link blocking probability as the number of wavelengths in a link increases.
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Table 3.6: Traffic Intensity and Link Blocking Probability Given the Same Proportion

of Idle Wavelengths as the Label Space Increases

Wavelength 4 8 12 16 20

Incoming Traffic per Node 1 1.8499 2.7314 3.6262 4.52625
Traffic on Each Link 2 1.8499 2.7314 3.6262 4.52625
Pb obtained by (3.4) 0.095238 0.02183 0.006281 0.001986 0.000658
Expected Number of

Idle Wavelengths 2.1905 4.381 6.5715 8.762 10.9525
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Figure 3.9: Decrease of Blocking Probabilities as the Label Space Increases

Table 3.7: Expected Number of Idle Wavelengths Given the Same Link Blocking

Probability as the Label Space Increases

Wavelength 4 8 12 16 20

Incoming Traffic per Node 1 2.7533 4.6716 6.6660 8.7048
Traffic on Each Link 2 5.5065 9.3433 13.332 17.4096
Pb obtained by (3.4) 0.09524 0.09524 0.09524 0.09524 0.09524
Expected Number of

Idle Wavelengths 2.1905 3.0179 3.5466 3.9377 4.2484
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Figure 3.10: Given the Same Link Blocking Probability, the Blocking Probabilities of

the Network along the Increase of Label Space

As shown in table 3.7, the expected number of idle wavelengths in a link increases

slower than the total number of wavelength does. Therefore, the expected blocking

probability increases fast. Because the label selection on different links is correlated,

the actual blocking ratio between node 0 and node 2 only increases slightly. We

also note the overall blocking ratio reduces slightly because when we reject more call

setup requests between node 0 and node 2, the number of accepted one-hop calls is

increased.

Table 3.8 gives the incoming traffic per node and blocking probability on each link

without wavelength obtained by (3.4). According to (3.15), the incoming traffic to

each node is designed in such a way that the number of expected idle wavelengths on

each link is increased proportionally to the number of wavelengths.
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Table 3.8: Traffic Intensity and Link Blocking Probability Given the Same Proportion

of Idle Wavelengths as the Label Space Increases in a Network Depicted in Fig. 3.1

Wavelength 4 8 12 16 20

Incoming Traffic
per Node 1 1.9608 3.2635 4.3508 5.4385

Average Traffic
on Each Link 1.1111 2.1786 3.6261 4.8324 6.0427

Pb obtained by (3.4) 0.0210 3.45 ∗ 10−6 4.24 ∗ 10−8 2.64 ∗ 10−10 1.70 ∗ 10−12

Expected Number of
Idle Wavelengths 2.9123 5.8245 8.7369 11.6492 14.5615
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Figure 3.11: Decrease of Blocking Probabilities as the Label Space Increases in the

Network Depicted in Figure 3.1
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Figure 3.11 clearly shows that the expected and actual blocking probabilities de-

crease fast when the label space grows larger. This figure corroborates the intuition

that path with any number of hops will be benefited from the increase of label space.

3.3 Summary

Generalized label continuity constraints becomes important constraints in label switched

networks. This chapter provides a simple and efficient solution to this type of con-

straints. Here both analytical model and numeric results show that common vector

solutions can address the scalability problem when the label space is large with rea-

sonably good performance from blocking probability point of view.

Common vector solution has two steps. The first step it to compute the path with-

out consideration on label continuity and the second step is to find a common label

along the path. Since wavelength graph solution combine these two steps together, it

has a better view on the network resources and can find an optimal solution. Hence,

wavelength graph solution is recommended for small label space and common vector

solution is good for large label space.

44



Chapter 4: Solutions to Switching Type

Adaptation Constraints in Multi-Region and

Multi-layer Networks

From the perspective of the control plane, a set of network elements that share the

same switching technology is defined as a region. Currently, five regions are defined

and they are PSC, L2SC, TDM, LSC and FSC region. A network of elements with

multiple switching technology is called a multi-region network. A layer describes a

data plane switching granularity level, such as VC4 and VC-12 in TDM region.

OSPF extension defined in [5] provides the control plane capability of obtaining

all the traffic engineering data from different layers to build the TEDB. Interface

Switching Capability Descriptor (ISCD) [35] describe the attributes of a TE link in

its sub-TLV and a hybrid node can advertise multiple ISCDs for the same TE-link.

Figure 4.1 is an example of the architecture of a hybrid node with two switching

elements. One is PSC switching element and the other is photonic switching element.

At least one interface must advertise multiple switching capabilities for a hybrid node.

Besides the external links, the two switching elements are also connected by internal

links. Because each internal link has finite capacity, the TE-attributes associated

with these internal links must also be advertised for the path computation purpose.

The nature of multi-layer networks implies that the collaborative mechanism

across layers needs to be defined. Reference [36] defines the Interface adaptation
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capability descriptor (IACD) that contains necessary information for the path com-

putation algorithm to determine the forwarding and switching capability of the inter-

nal links. Reference [37] proposed a more efficient approach called Node Adaptation

Capability Descriptor (NACD) that can also reduce the LSP blocking probability. In

[37], OSPF is extended with metric of dynamic values based on the availability of

both external and internal available resources.

Once an LSP is found, it is set up through GMPLS RSVP-TE. LSRs on both ends

of the LSP can form Forwarding Adjacency (FA) by advertising this LSP into the

instance of OSPF/ISIS [38] and this LSP can be used for further path computation.

The signaling capability of GMPLS makes it possible to optimize the network resource

utilization and provision the service rapidly.

Because a path can be setup across layers, there may be a large gap between the

required bandwidth on an upper layer and the large available bandwidth on a lower
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layer. For example, a request of a 10 Gigabit Ethernet with switching type L2SC

may instantiate through an OC-768 WDM channel. A large portion of the OC-768

channel will be wasted if other traffic flows are not multiplexed onto this lightpath.

Therefore, traffic-grooming in multi-layer networks become an important research

problem because it has significant impact on the loss performance [39].

In a network without a unified control plane, path computation may be divided

into sub-problems in different layers. Connections in a lower layer are setup to create

a virtual topology for the neighboring upper layer. Path computation on each layer

is based on the virtual topology created by the neighboring lower layer with certain

objective functions for optimality. This divide-and-conquer approach will definitely

result in sub-optimal solutions because optimality of each layer is correlated and

optimality in optical layer has been proved to be NP-hard [16].

Optimization of static and dynamic traffic requests are very different in terms of

objective function and methodology. Given static traffic request, we can assume that

the network has enough resource to accommodate all the requests. The optimization

is from resource perspective, i.e. the paths are setup in such a way that minimal

resources are used. For dynamic traffic requests, minimization of blocking probability

or maximization network throughput is the objective function. For static traffic

requests, integer linear programming could search an optimal path in a small network,

but it has scalability problem. This chapter is to provide solutions for dynamic traffic

requests in multi-layer networks.
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4.1 Challenges to Path Computation Elements

With all the possibilities of network resource optimization and rapid service provi-

sioning, MRN/MLN also introduces new challenges to path computation if we con-

sider constraints such as the switching type adaptation, encoding type, bandwidth

granularity, and etc. Cross-layered connection need both horizontal interaction and

integration, which means the collaboration between network elements on the same

layer, and vertical interaction and integration, which means the collaboration between

different layers or regions.

LSP setup in multi-region and multi-Layer networks (MRN/MLN) is more com-

plicated in that different layers have different switching technologies. Some network

elements are multi-switching capable and they can adapt from one switching type to

another. Unlike the wavelength conversion that can generally translate any incoming

wavelength on any incoming fiber to any outgoing wavelength on any other fiber,

adaptation function of hybrid LSRs is interface specific and generally, the adapta-

tion cannot be done from any particular switching type to any other particular type

on an interface. This type of constraints is named as Interface Specific Adaptation

Constraints (ISAC) in this dissertation.

Figure 4.2 illustrate an example of the interface specific adaptation constraint.

Suppose that all the links with switching type L2SC have 200Mb/s unreserved band-

width and all the links with switching type TDM have two Virtual Container level

4 (VC-4) available. Node A is a hybrid node that can adapt between switching type

L2SC and TDM and all the other nodes are single-switching type capable nodes.

Since the payload rate in each VC-4 is smaller than 155.52Mb/s, we need at least two
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Figure 4.2: An Example of Interface Specific Constraint

VC-4 to transport 200Mb/s data.

Now we want to setup an Enterprise System Connection (ESCON) of 200Mb/s

through this network. We also assume that only the interface between node A and

B support Virtual concatenation (VCAT) as defined in [40]. Interface card between

node A and C only support standard contiguous concatenation (CCAT). Reference

[41] shows that VCAT has significantly better resource efficiency than CCAT, but

we cannot preclude equipment with CCAT capability only. As we know, CCAT can

only adapt the 200Mb/s ESCON service to VC-4-4c, which interface between node A

and C cannot provide due to bandwidth shortage. However, if this 200Mb/s ESCON

service has already been encapsulated into TDM protocol and come in through a

TDM interface of node A, node A can switch it to the TDM interface between node

A and C. Therefore, we cannot simply prune the interface between node A and node

C because it may still be a feasible segment along the path.
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Figure 4.4: An Example of Non-Elementary Path in Multi-Region Networks

Figure 4.3 illustrate an example given in section 3.1 of [36]. A switching fabric

that supports both PSC and L2SC functionalities is assembled with LSC interfaces

enabling “lambda” encoding. In the switching fabric, some interfaces can terminate

Lambda LSPs and perform frame (or cell) switching whilst other interfaces can ter-

minate Lambda LSPs and perform packet switching. In this case, traffic can only

flow along the red arrows shown in figure 4.3.

Similar to the wavelength continuity constraint, switching type adaptation may

also generate non-elementary path as illustrated in Figure 4.4. Node A and D are
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single-switching type capable nodes, node B is a simplex node with L2SC-only inter-

face and TDM-only interface, and node C is a hybrid node which can adapt between

L2SC and TDM. Because node B is visited twice, such path cannot be found through

Dijkstra algorithm on a network graph.

Optimality of the path cost is another challenging problem. The cost of setting

up an end-to-end LSP in MRN/MLN is a combination of three components as follow:

1. the cost for traversing a link on certain wavelength and switching type;

2. the cost for switching type adaptation when the path has to take a different

switching technology at some intermediate nodes; and

3. the cost for wavelength translation when the path has to switch to a different

wavelength at some intermediate nodes.

In this chapter, we assume that we can use the common vector solution provided

in chapter 3 to address the wavelength continuity constraint.

Note that if only the first cost factor is present, then the problem is simplified to

looking for a shortest path. If only the first and third cost components are present,

then the problem is simplified to looking for a semi-lightpath in a single region net-

work.

References [27–29] solve the wavelength continuity constraints by auxiliary graph.

In these graph models, nodes are replicated and edges are created based on the

connectivity information. However, these models cannot capture the connectivity in-

formation of the interface switching and adaptation capability constraints. Therefore,

a new graph modeled needs to be proposed.
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This chapter will provide a solution, called Channel Graph Solution for Interface

Switching Adaptation Constraints (CSISAC) to address the adaptation and cost-

optimization challenge.

4.2 Transformation between Network Graph and

Channel Graph

In this chapter, we introduce the concept of the channel graph. It can be viewed as

the dual of the network graph in terms of node and link definition[20]. The Path

Computation Element (PCE) will run CSPF on the channel graph to compute the

path.

4.2.1 Notations

We use the following notations in our model:

G = 〈V, E〉: Network graph G with node set V and link set E.

H = 〈N, A〉: Channel graph H with node set N and link set A.

|V |: Total number of nodes in V .

|E|: Total number of links in E.

|N |: Total number of nodes in N .

|A|: Total number of links in A.

vi: Node i in node set V , where i = 1..|V |.

ei: Link i in link set E, where i = 1..|E|.

L: Total number of switching types on links.

I
sj
ei : An indication function whether switching type sj is available on link ei, where

sj = 1, 2, ..., L.
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d−G(vi): The in degree of node vi in graph G.

d+
G(vi): The out degree of node vi in graph G.

ε−G(vi): The incoming link set of node vi. Clearly, |ε−G(vi)| = d−G(vi).

ε+
G(vi): The outgoing link set of node vi. Clearly, |ε+

G(vi)| = d+
G(vi).

ε−G(vi, sk): The set of incoming links with switching type sk to node vi.

ε+
G(vi, sk): The set of outgoing links with switching type sk from node vi.

〈ei, sj〉: Switching type sj on link ei in G.

H(ei) or H(〈ei, sj〉) : The head node of directed link ei.

T (ei) or T (〈ei, sj〉): The tail node of directed link ei.

nk
i,j: Node nk

i,j in node set N , where k = 1..|N | and can be mapped to 〈ei, sj〉 in

G.

ak
i : Link ak

i in link set A, where i = 1..|A| and can be mapped to node vk in G.

Γ−G(vk): The set that enumerates 〈ei, sj〉 such that ei ∈ ε−G(vk) and I
sj
ei = 1.

Γ+
G(vk): The set that enumerates 〈ei, sj〉 such that ei ∈ ε+

G(vk) and I
sj
ei = 1.

ΘG(vk): Indication matrix of adaptation capability of node vk. ΘG(vk) is a |Γ−G(vk)|

by |Γ+
G(vk)| matrix, where an element in ith row and jth column is denoted as θi,j(vk).

hij: The number of hops of the cost optimal path between vi and vj in G.

Πij: Path between vi and vj.

πk
ij: πk

ij is a tuple〈ex, sy〉, which indicates that the kth hop along Πij traverses link

ex and switching type sy.

ϕ(πk
ij): A function to extract link index from πk

ij. If πk
ij = 〈ex, sy〉, then ϕ(πk

ij) = ex;

ψ(πk
ij): A function to extract switching type from πk

ij. If πk
ij = 〈ex, sy〉, then

ψ(πk
ij) = sy;
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From the above definition, we have,

Isj
ei

=

{
1 if ei has switching type sj;

0 otherwise;
(4.1)

and,

θi,j(vk) =

{
1 if vk can switch element i in Γ−G(vk) to element j in Γ+

G(vk);

0 otherwise.
(4.2)

4.2.2 Construction of a Channel Graph

A Channel graph can be viewed as dual of a network graph. A tuple 〈ei, sj〉 in a

network graph will be translated into a node nk
i,j in the channel graph. A node vi

in the network graph will be translated into several arcs in the channel graph. The

construction of the channel graph yields a straight-forward 1 : 1 mapping of an LSP

in network graph into a path in the channel graph.

For each node vi in network graph G, we generate a node in channel graph H for

each element in Γ−G(vi) and Γ+
G(vi), which means that each 〈ei, sj〉 in a network graph

can be one-to-one mapped to a node in the channel graph H. Therefore, we have:

|N | =
|V |∑
i=1

(|Γ−G(vi)|+ |Γ+
G(vi)|) (4.3)

For each node vi in network graph G, we scan each element in Γ−G(vi) and Γ+
G(vi).

If an element 〈em, sj〉 in Γ−G(vi) can be switched to an element 〈ep, sq〉 in Γ+
G(vi), and

〈em, sj〉 and 〈ep, sq〉 are mapped to nk
m,j and nl

p,q, respectively, a link ai
x is created in
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Figure 4.5: A Network Graph Abstracted from the Figure 4.4

channel graph H between nk
i,j and nl

p,q. Therefore, we have:

|A| =
|V |∑
i=1

|Γ−G(vi)|∑
j=1

|Γ+
G(vi)|∑

k=1

(θj,k(vi)) (4.4)

We take figure 4.4 as an example to illustrate the whole transformation process.

Suppose each connection between nodes in figure 4.4 is bidirectional and node C will

advertise both switching types of TDM and L2SC on its links. Therefore, we abstract

figure 4.4 as a network graph illustrated in figure 4.5.

In this sample network graph G = 〈V,E〉, V = {v1, v2, v3, v4} and E = {e1, e2, e3,

e4, e5, e6}. We define s1 as L2SC and s2 as TDM, and then we have Γ−G(v2)={〈e1, s2〉,

〈e4, s1〉, 〈e4, s2〉, 〈e6, s1〉}, Γ+
G(v2)={〈e2, s2〉, 〈e3, s1〉, 〈e3, s2〉, 〈e5, s1〉}, and ΘG(v2) =




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


.

Based on figure 4.5, we can generate eight nodes in H, enumerated as N =
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We create links in H based on ΘG(vi) for each vi ∈ V . The channel graph H

transformed from G is illustrated in figure 4.6.

4.3 Cost Modeling and Mapping between a Net-

work Graph and a Channel Graph

The cost structure of using the resources is presented as follows. For each link ej, vari-

able w(〈ej, sk〉 , λi) is given as the “cost” of using wavelength λi, switching capability

sk on link ej.

The cost of wavelength conversion from λp to λq on node vi is modeled as c(vi, λp, λq).

The cost of interface adaptation from 〈ex, sj〉 to 〈ey, sk〉 at T (ex) is modeled as

c(T (ex), 〈ex, sj〉 , 〈ey, sk〉). Here we assume that the cost of wavelength conversion
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and interface adaptation are independent.

An LSP between node vi and vj is defined as Πij = {π1
ij, π

2
ij, · · · , π

hij

ij }, where πk
ij

is a tuple 〈ex, sy〉 and T (πn
ij) = H(πn+1

ij ) for n = 1, · · · , (hij − 1).

The cost of an LSP Πij is defined as C(Πij). We have

C(Πij) =

hij∑

k=1

w(πk
ij, λk) +

hij−1∑

k=1

c(T (πk
ij), λk, λk+1) +

hij−1∑

k=1

c(T (πk
ij), π

k
ij, π

k+1
ij ), (4.5)

where hij is the number of hops that the LSP traverses; w(πk
ij, λk) is the cost that

a LSP traverses πk
ij on λi; c(T (πk

ij), λk, λk+1) is the cost of wavelength translation

from λk to λk+1 at node T (πk
ij); and c(T (πk

ij), π
k
ij, π

k+1
ij ) is the cost of switching type

adaptation from πk
ij to πk+1

ij at node T (πk
ij).

If we relax the wavelength continuity constraint, (4.5) will be as follows:

C(Πij) =

hij∑

k=1

w(πk
ij) +

hij−1∑

k=1

c(T (πk
ij), π

k
ij, π

k+1
ij ), (4.6)

When we search a minimum cost path in a network graph, we need to transform

the problem to be a minimum cost path in a channel graph. Therefore, we need to

map the cost w(πk
ij) defined in a network graph to c(nz

x,y) in channel graph, where

πk
ij = 〈ex, sy〉 and z is the index of node nz

x,y in N . The cost c(T (πk
ij), π

k
ij, π

k+1
ij ) in

the network graph is mapped to c(a
T (πk

ij)

l ) in the channel graph, where arc a
T (πk

ij)

l is

mapped to node T (πk
ij) in the network graph.
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4.4 Searching Optimal Path in a Channel Graph

4.4.1 Path Searching in a Channel Graph

The source node ID and destination node ID in a LSP request are node IDs in G.

Therefore, to find a path in H, we need to convert node IDs in G into node IDs in H.

Suppose we want to find a path from vi to vj with switching capability sk. The

source nodes in H can include any node that can be mapped to an element in

ε+
G(vi, sk).The destination nodes in H can include any node that can be mapped

to an element in ε−G(vj, sk).

To simplify the path computation, we need to add two virtual nodes N
′
s and N

′
t .

We also add virtual links from N
′
s to each element in ε+

G(vi, sk) and from each element

in ε−G(vj, sk) to N
′
t in H. Each virtual link is assigned with metric 0.

We just need to run CSPF to find a path from N
′
s to N

′
t on H.

Suppose we are seeking a path from v2 to v3 in the network graph G in Figure 4.5

with switching capability L2SC, the final channel graph H is the channel graph as

shown in Figure 4.7.

Theorem 3. For any network graph, if there is a path that satisfies the switching

type constraint from the source to the destination, it can be found through the channel

graph.

Proof. If there is a path in the network graph, the path can be described as a

sequence of directed links π1
ij, π

2
ij, · · · , π

hij

ij , such that the T (πk
ij) = H(πk+1

ij ) for

k = 1, 2, · · · , hij−1. From the above discussion, we can see that all the switching ca-

pability parameters and adaptation functionalities which were hidden or aggregated
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Figure 4.7: Adding Virtual Nodes and Links to Channel Graph

together in the network graph now become explicit and separate nodes or links in

the channel graph. Running CSPF on channel graph will easily traverse all these

resources to find an optimal path. Because mapping between the network graph and

channel grpah is 1 : 1, a path in the channel graph can be mapped back to a path in

the network graph due to 1 : 1 mapping.

4.4.2 Optimality of LSP Searching in MRN

Given the cost modeling equation in (4.6), we have the following theorem.

Theorem 4. Suppose an intermediate node vx is on the optimal path Πij. Πij does

not necessarily contain Πix, the optimal path between vi and vx.

Proof. Equation (4.6) shows that the cost of an LSP contains not only the cost w(πk
ij)
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to traverse a link, but also the cost c(T (πk
ij), π

k
ij, π

k+1
ij ) of switching type adaptation.

By definition, we have:

C(Πix) =

hix∑

k=1

w(πk
ix) +

hix−1∑

k=1

c(T (πk
ix), π

k
ix, π

k+1
ix ), (4.7)

, and

C(Πxj) =

hxj∑

k=1

w(πk
xj) +

hxj−1∑

k=1

c(T (πk
xj), π

k
xj, π

k+1
xj ), (4.8)

, and C(Πij) can be written as:

C(Πij) =

hix∑

k=1

w(πk
ij) +

hix−1∑

k=1

c(T (πk
ij), π

k
ij, π

k+1
ij ) + c(vx, π

hix
ij , πhix+1

ij )

+

hij∑

k=hix+1

w(πk
ij) +

hij−1∑

k=hix+1

c(T (πk
ij), π

k
ij, π

k+1
ij ). (4.9)

We define the cost between node vi and vj that contains Πix as C(Π′
ij). Then we

have:

C(Π′
ij) = C(Πix) + c(vx, π

hix
ix , π1

xj) + C(Πxj). (4.10)

It is clear by definition of Πix and Πxj that:

C(Πij)− c(vx, π
hix
ij , πhix+1

ij ) ≤ C(Π′
ij)− c(vx, π

hix
ix , π1

xj). (4.11)

However, the switching type on πhix
ix may be selected a few hops before, and

without considering π1
xj. Therefore, cost c(vx, π

hix
ix , π1

xj) ≥ 0 or even in an extreme

case that c(vx, π
hix
ix , π1

xj) can be infinity if node vx does not have the switching type
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Figure 4.8: An Illustration of Theorem 4

adaptation capability between πhix
ix and π1

xj. On the other hand, c(vx, π
hix
ij , πhix+1

ij )

is selected by taking all the subsequent hops into account. Therefore, we have

c(vx, π
hix
ij , πhix+1

ij ) ≤ c(vx, π
hix
ix , π1

xj). And therefore, the relationship between C(Πij)

and C(Π′
ij) cannot be determined.

Figure 4.8 illustrated an example of theorem 4. Suppose node v1, v4 and v6 are

single-switching-capable nodes. Node v2 and v5 are hybrid nodes that can adapt

between L2SC and TDM. Node v3 is a simplex node. Suppose the metric on each

link is 1 and the adaptation cost between L2SC and TDM is 10.

Clearly the optimal cost path between node v1 and v3 is {〈e1, L2SC〉, 〈e2, L2SC〉}.

But the optimal path between node v1 and v6 is {〈e1, L2SC〉, 〈e3, TDM〉, 〈e4, TDM〉,

〈e5, TDM〉, 〈e6, L2SC〉}. Though v3 is on the optimal path between v1 and v6, but

Π2
1,6 take a different path between v2 and v3 from Π2

1,3.

Theorem 5. The C(Πij) can be determined by knowing the minimal cost from vi to

all the elements in Γ−G(vj).

Proof. The proof of this theorem is straightforward. Theorem 4 clearly shows that

we cannot determine the optimal path to the destination node vj by checking all the

optimal path to the adjacent nodes of vj.

We denote the kth element in Γ−G(vj) as γ−G,k(vj) and the minimal cost from vi

to γ−G,k(vj) is C(vi, γ
−
G,k(vj)). Because the last hop of the optimal path must be
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an element in Γ−G(vj), when we know the minimal cost from vi to γ−G,k(vj), the

minimal cost between vi and vj will be min{C(vi, γ
−
G,k(vj)) + w(γ−G,k(vj))} for k =

1, · · · , |Γ−G(vj)|.

We denote the cost to vertex nj as d[nj]. We define a queue as Q. Any vertex that

is reachable from ni, but the optimal path to which has not yet been determined will

be added to Q. We denote P [nj] to store the cost optimal path from ni to nj. Each

node has a flag f [nj] to mark optimal path to nj has been found or not. We denote

w[H(aj)] as the link metric in G that maps to aj in H, and w[aj] as the adaptation

cost.

Based on Theorem 5, we need to modify the Dijkstra algorithm as in table 4.1.

Theorem 6. The modified Dijkstra algorithm given in table 4.1 will find the cost

optimal path from N
′
s to N

′
t .

Proof. This is equivalent to prove that when we make any change in Q, this change

cannot reduce the cost to any node nk such that f [nk]=“found”.

The modified Dijkstra is different from the conventional Dijkstra at line 9 and 20

in table 4.1. Though the calculation of path cost is added, we still guarantee that the

minimal cost path to each nk is found, which can be proved in the same way as the

conventional Dijkstra. Because the cost of all the aj such that aj ∈ Γ−H(N
′
t ) is 0, by

Theorem 5, we know that the path cost from N
′
s to N

′
t is optimal.
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Table 4.1: Modified Dijkstra Algorithm for Channel Graph Solution

1. BEGIN
2. For each node nj in H
3. d[nj] := ∞
4. P [nj] := null
5. f [nj] := “Not Found”
6. End For
7. d[N

′
s] := 0

8. For each link aj in ε+
H(N

′
s)

9. d[T (aj)] := w(aj) + w[H(aj)]
10. add T (aj) to Q
11. End For
12. sort Q according to d[nj] for nj ∈ Q
13. nk := head of Q
14. f [nk] := “found”
15. P [nk] := N

′
s

16. Remove head of Q
17. while Q is not empty
18. For each link aj in ε+

H(nk)
19. if d[nk] + w(aj) + w[H(aj)] < d[T (aj)]
20. d[T (aj)] := d[nk] + w(aj) + w[H(aj)]
21. if T (aj) is not in Q
22. Add T (aj) into Q
23. P [T (aj)] := P [H(aj)] concatenate aj

24. End if
25. End if
26. End For
27. sort Q according to d[nj] for nj ∈ Q
28. nk := head of Q
29. f [nk] := “found”
30. Remove head of Q
31. End while
32. END
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4.5 Pseudo Code for Channel Graph Solution for

Interface Switching Adaptation Constraints

The following algorithm, which we refer to as Channel Graph Solution for Inter-

face Switching Adaptation Constraints (CSISAC), computes the Shortest Paths with

switching capability swcap from source vertex s to destination vertex t on a channel

graph transformed from a network graph.

The following variables are defined:

1. Each element in V has components { VertexID, InDegree, OutDegree, Incomin-

gArcList, OutgoingArcList ...}

2. Each element in E has components { EdgeID, HeadVertexID, TailVertexID,

ISCD, IACD, Metric, Bandwidth, Attenuation...}

3. Each element in N has components { NodeID, OriginalEdgeID, OriginalSwitch-

ingCap, InDegree, OutDegree, IncomingArcList, OutgoingArcList, Metric, Band-

width,...}

4. Each element in A has components {ArcID, OriginalVertexID, HeadNodeID,

TailNodeID, Metric...}
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4.5.1 Step 1 (Translation of a network graph to a channel

graph)

Step 1.1 (Create nodes in H)

p = 0
For each node vi in G

For each element 〈ej, sk〉 ∈ ε+
G(vi, sk) with enough bandwidth

p = p + 1
Generate node np

j,k in H

np
j,k.NodeID=p

np
j,k.OriginalEdgeID= ej.EdgeID

np
j,k.OriginalSwitchingCap = sk

np
j,k.Metric = ej.Metric

... ... ... ...
End For

End For
End For

Step 1.2 (Create arcs in H)

q = 0
For each node vi in G

For each tuple 〈ej, sk〉 ∈ Γ−G(vi)
If vi can adapt 〈ej, sk〉 to 〈ex, sy〉 ∈ Γ+

G(vi) THEN
q = q + 1
Generate arc ai

q in H
ai

q.ArcID = q
ai

q.OriginalVertexID = vi.VertexID
H(ai

q) = np
j,k in H // p is the index of np

j,k in H

T (ai
q) = np

x,y in H // p is the index of np
x,y in H

Add ai
q to Γ+

H(H(ai
q)))

Add ai
q to Γ−H(T (ai

q)))
ai

q.Metric= Adaptation Cost of C(vi, 〈ej, sk〉 , 〈ex, sy〉)
... ... ... ...

End If
End For

End For
End For

65



Step 1.3 (Generate virtual source node and destination node in H)

Add newSource to H
For each tuple 〈ej, sk〉 ∈ Γ+

G(vs)
Add new arc to H to connect newSource to np

j,k

Assign 0 to the metric of the new arc in H
End For
Add newDest to H
For each tuple 〈ej, sk〉 ∈ Γ+

G(vt)
Add new arc to H to connect np

j,k to newDest

Assign 0 to the metric of the new arc in H
End For

4.5.2 Step 2 (Searching path on channel Graph H)

Running the modified Dijkstra algorithm given in table 4.1.

4.5.3 Step 3 (Converting the path found in H to a path in

G)

Suppose a path has been found and stored in variable Path.

For each path element ai
q in Path

output
〈
H(ai

q).OriginalEdgeID, H(ai
q).OriginalSwitchingCap

〉
End For

4.6 Computational Complexity and Proof of Effi-

ciency for Channel Graph Solution

Computational complexity of step 1 is O(|N |+∑|V |
i=1(|Γ−G(vi)||Γ+

G(vi)|)). The Compu-

tational complexity of step 2 is O(|A|+ |N | log(|N |)). The computational complexity

of step 3 is O(|A|). Because we only need to transform network graph to channel
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graph once, the step 1 can be done only once for all the LSP setup request. The

overall complexity of the channel graph solution is O(|A|+ |N | log(|N |)).

Theorem 7. Given the worst case that the cost of taking 〈ex, sj〉 ∈ Γ+
G(vi) is de-

pendant on 〈ey, sk〉 ∈ Γ−G(vi) for each combination of vi, ex, sj, ey and sk, the channel

graph solution is the most efficient solution.

Proof. In equation (4.6), it is defined that the cost of connection between 〈ex, sj〉 ∈

Γ+
G(vi) and 〈ey, sk〉 ∈ Γ−G(vi) is c(vi, 〈ex, sj〉 , 〈ey, sk〉). From theorem 5, we know that

we can find the cost optimal path by knowing the cost to each 〈ex, sj〉.

In the worst case, suppose c(vi, 〈ex, sj〉 , 〈ey, sk〉) has a different value for each

combination of vi, ex, sj, ey and sk, the cost optimal path can only be determined by

checking each combination of c(vi, 〈ex, sj〉 , 〈ey, sk〉) such that T (ex) = H(ey) = vi.

This requirement can be translated into a graph with |N | nodes to describe all

the 〈ex, sj〉 ∈ (Γ+
G(vi)

⋃
Γ−G(vi)) for any vi ∈ G, and |A| arcs to describe all the

connectivity information between 〈ex, sj〉 and 〈ey, sk〉) such that ex ∈ E, ey ∈ E and

T (ex) = H(ey).

Therefore, the computational complexity is O(|A| + |N | log(|N |))), which is the

complexity of channel graph solution.

In the real practice, the network is usually not the worst case. There may be only

a few hybrid nodes that can do the adaptation. In this scenario, we prove channel

graph solution has the same order of complexity as the network graph in a sparse

network.

Theorem 8. In a sparse network G = 〈V, E〉 with k hybrid nodes and k ¿ |V |,

suppose that d−G(vi) = d+
G(vi)

.
= (|E|/|V |) and there are L switching types in average
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on each incoming or outgoing link of a hybrid node, the channel graph solution has

the same order of complexity as the network graph.

Proof. Without losing generality, we denote the fist |V | − k nodes as the simplex or

single-switching capable nodes and the last k nodes as the hybrid nodes. The dual of

G = 〈V,E〉 is channel graph H = 〈N, A〉.

Given there are k hybrid nodes, we have,

|N | = k ×
(

L|E|
|V |

)
+ (|V | − k)× |E|

|V | . (4.12)

From the k ¿ |V |, we know that:

|N | .
= |E|. (4.13)

For the first |V |−k nodes, |E|
2

|V |2 links will be generated to describe the connectivity.

For the k hybrid nodes, k ×
(

L2|E|2
|V |2

)
links will be generated in the channel graph.

Therefore, we have,

|A| = k ×
(

L2|E|2
|V |2

)
+ (|V | − k)×

( |E|2
|V |2

)
. (4.14)

Given k ¿ |V | and L is usually small, we have,

|A| .
=
|E|2
|V | . (4.15)

Because the computational complexity of channel graph is O(|A|+ |N | log(|N |))).

Therefore the computational complexity O(T ) in our case is:
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O(T ) =
|E|2
|V | + |E| log |E|. (4.16)

Sparse network means that |E| = O(|V |). Therefore,

O(T ) = O(|E|) + |V | log |V |, (4.17)

which is the computational complexity of Dijkstra algorithm on a network graph.

4.7 Breadth-first Search (BFS)

Breadth-first Search (BFS) is also a graph search algorithm that begins from a root

node. We mark all the nodes as “unvisited ”and mark the root node as “visited”. We

explore all of the root’s neighboring nodes. If a neighboring node is “unvisited”, then

put it into a queue. The head of the queue is popped up and marked as “visited”.

We then apply BFS for the head node, and continue doing this until all the nodes are

“visited”.

BFS is an efficient algorithm. For a graph with n nodes and m links, the compu-

tational complexity is O(n + m). However, it does not guarantee the optimality of

the path. Actually, it finds the path with fewest hops from the root. By this nature,

it is not possible to find KSP through BFS algorithm.

For the MRN/MLN, BFS cannot be applied directly because the set of reachable

outgoing links of a node is dependent on the switching type of the incoming link. Path

searching also depends on which switching type was chosen on a link with multiple

switching types.

Therefore, the BFS is slightly modified as follows:
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Figure 4.9: A Network on Which BFS May or May not Find a Path

1. For each node the BFS algorithm traverses, the incoming link and its switching

type should also be stored;

2. Only those outgoing links that are reachable from the incoming link with the

particular switching type should be traversed; and

3. If there are multiple switching types on an outgoing link that could be reached

from the incoming link, choose the same switching type on the outgoing links

as that on the incoming link if possible. If the switching type on the incoming

link is not available on an outgoing link, randomly choose a switching type that

can be adapted to from the incoming link.

The above modification clearly shows that the non-elementary path cannot be

found by BFS.

Figure 4.9 showed a case that BFS may not find an existing path. Suppose node

A is a single switching capable node, node B is a hybrid node that can adapt between

L2SC, LSC and TDM, node C is a hybrid node that can adapt between TDM and

L2SC, and node D is a simplex node. Now we want to setup a L2SC connection

between node A and D. In BFS, if node B translates L2SC between A and B to LSC

between B and C, the path searching will fail because node C cannot adapt LSC to

TDM or L2SC. Since node B doesn’t have any idea which will be the subsequent links

and can only choose a switching type between node B and node C randomly, the path
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Figure 4.10: Cost-optimal Path Cannot Be Found by BFS

computation algorithm only have 50% chance to find the path. We can assume that

in a large network, this probability is further reduced.

Figure 4.10 shows a network scenario where cost-optimal path may not be found

by BFS. Suppose only node A and F are single-switch capable nodes and all other

nodes are hybrid nodes. If we want to compute a path between node A and F with

switching type L2SC, the optimal path could be < A, B, L2SC > − < B, C, TDM >

− < C,D, TDM > − < D,E, TDM > − < E,F, L2SC >. However, BFS may find

a path as < A,B,L2SC > − < B, C, L2SC > − < C,D,LSC > − < D, E, TDM >

− < E, F, L2SC >.

4.8 Numerical Results

Our simulation is based on figure 4.11, a simplified abstraction of the HOPI network.

In this section, we will compare the computational complexity, probability of blocking

and number of non-elementary paths of channel graph solution and BFS.

We generate 5 ∗ 105 LSP setup requests and suppose the traffic matrix is homoge-

neous. Figure 4.12 shows the comparison of the blocking probability between channel

graph and BFS solution.

Figure 4.12 shows that channel graph solution can accept more LSP requests than

BFS solution. When the traffic intensity is light, the blocking caused by the lack of

link capacity is negligible. The dominant reason of blocking in BFS is illustrated in
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Figure 4.12: Comparison of Blocking Probability Between Channel Graph and BFS

Solutions
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Figure 4.13: Comparison of Time Consumption Between Channel Graph and BFS

Solutions

Figure 4.9. When the traffic intensity is moderate or high, the blocking caused by

the lack of link capacity is dominant.

Figure 4.13 shows that channel graph solution needs more time than BFS to

compute a path. It takes about twice the time as BFS needs. The simulation shows

that channel graph is a scalable solution. We can see the decrease of time consumption

as the traffic intensity grows. This is partially caused by pruning the link without

sufficient bandwidth which makes the graph not connected.

Figure 4.14 compares the average hops that channel graph solution and BFS take.

Because BFS is a min-hop algorithm, its average hops is fewer than channel graph

solution’s. Along with the increase of traffic intensity, the average hop is increased

because links along the shortest path may be occupied and the algorithm can only

find longer path.
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Figure 4.14: Comparison of Average Hops Between Channel Graph and BFS Solutions
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Figure 4.15: Comparison of Average Cost Between Channel Graph and BFS Solutions
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Figure 4.16: Efficiency of Channel Graph Solution

Figure 4.15 compares the average cost that channel graph solution and BFS takes.

Because BFS is a min-hop algorithm, it is not a cost optimal solution. Along with

the increase of traffic intensity, the average cost is increased because links along the

minimal cost path may be occupied and the algorithm can only find a more expensive

path.

Theorem 8 has proved that channel graph solution has the same order of efficiency

as the network graph. Figure 4.16 verifies this theorem.

4.9 Modification and Complexity of KSP for Chan-

nel Graph

In MRN/MLN environment, running CSPF in a Channel Graph to find a path may

not be enough to address the optical impairment constraints. Therefore, we need to
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run KSP.

If we take Figure 4.7 to run KSP, we can find two paths. The first path will be

N
′
s − n3

3,1 −N
′
t . The second path will be N

′
s − n7

5,1 − n8
6,1 − n3

3,1 −N
′
t .

In YEN’s KSP algorithm, if N
′
s − n3

3,1 − N
′
t is the parent path, we need to find

alternative path from n3
3,1 to N

′
t . We may find one if the network topology gets

complicated enough. However, the newly found path will contain an unnecessary loop.

This is because when we reach node n3
3,1, we have already reached the destination

node. Therefore, we need to modify the KSP algorithm in such a way that if the

predecessor of the destination node in channel graph is the incoming link of the

destination node with the required switching type in the network graph, we will stop

searching alternative path from this predecessor.

The second reason that could generate a loop when we run YEN’s algorithm is

that we may come back to a node in H whose head node and switching type in

network graph G has appeared in the same path. The solution is that when a node in

the Channel Graph is deleted, all the nodes (corresponding to a link in the network

graph) in Channel Graph having the same head node and switching capability in the

network graph must also be deleted.

KSP is used in [21] to find disjoint path with SRLG in GMPLS network. To

ensure the survivability of the network, we can also apply Oki’s algorithm to channel

graph. When we prune links L(i, j) on the network graph, we need to prune all the

nodes in channel graph that can be mapped to L(i, j) in the network graph.

The computational complexity is O(K|N |(|A|+ |N |log(|N |))) according to YEN’s

algorithm.
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4.10 Summary

In this chapter we discussed the channel graph solution to interface specific adaptation

constraints. Network graph needs to be transformed before path computation starts.

It is proved that the cost modeling and mapping between the channel graph and

the network graph provided in this chapter can guarantee to find the cost-optimal

path efficiently. We compared the computational complexity and blocking probability

between channel graph and BFS solutions. It is showed that channel graph solution

only takes slightly more time than BFS, but it has much better performance from

blocking probability aspect.

We prove that in a sparse network with a small number of adaptation nodes, the

channel graph has the same order of complexity as the network graph. Numerical

results verifies this proof.

KSP needs modification before applying to the channel graph to avoid unneces-

sary loop.
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Chapter 5: Link Performance Bounds in

Homogeneous Optically Switched Ring Networks

The estimation of the blocking probability of the common vector solution presented

in chapter 3 is based on equation (3.3). To simplify the estimation, we intentionally

overlooked the discrepancy between the offered load and carried load on each link, and

consequently, the calculated blocking probability turned out to be always greater than

the actual blocking ratio. Though precise calculation of the link blocking probability

can demonstrate significant improvement on the network performance estimation, the

computational complexity is non-polynomial. Therefore, bounds may serve as a useful

measure for design, provisioning and performance evaluation purposes, especially if

the upper and lower bounds are found to be very tight. In this chapter, we propose

a more accurate estimation on the traffic flow intensity on a link in a homogeneous

ring network.

We take ring topology as prototype because it is simple, yet provides insights

to blocking probability of other complicated topologies. Meanwhile, variants of ring

architecture are widely deployed by service providers. The mesh architecture may be

developed by extending the existing ring topology to further simplify the intercon-

nection of these networks at the core.

The model discussed in this chapter is based on the lower and upper bounds of link

blocking probability. We analyze the performance for a homogeneous traffic case and

present simulation results for representative ring networks. We demonstrate that the
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Figure 5.1: Optically Switched Ring Networks

bounds are very tight with an error of less than 2% when the traffic load is modest.

The approach is based on partitioning the state space into subspaces and weighting

the upper bound of blocking probability in each subspace with the occurrence of the

states. The computational complexity of the approach is comparable to solving a

degree of N polynomial equation.

This chapter is organized as follows. We consider a ring topology with dynamic

optical links interconnecting the network nodes and develop upper and lower bounds

to estimate the probability of link blocking. We then presents our model, followed

by the derivation of the lower and upper bounds. Numerical results and concluding

remarks are provided subsequently.
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5.1 System Model

As shown in Figure 5.1, N access nodes are connected to a unidirectional optically

switched ring. A fiber on the ring has m wavelengths, and each node j has the

same incoming traffic λi. We assume that wavelength conversion is unavailable, the

traffic demand matrix is homogeneous, and traffic only flows clockwise. Meanwhile,

incoming traffic at each access node is a Poisson process, and the traffic is distributed

among all the wavelengths randomly with equal probability. If a request cannot be

satisfied on the selected wavelength plane, it is rejected. The service time of each

request is assumed to follow an exponential distribution.

From the above assumptions, we know that the arrival to each wavelength plane is

also a Poisson process. The problem is simplified to determining a blocking probability

on each wavelength plane, given the Poisson arrival rate of incoming traffic of λi/m

at each node.

Blocking probability in various network scenarios have been addressed in [32, 33,

42,43]. The blocking probability in all-optical networks with and without wavelength

changers has been considered in [32] and has been modeled with the assumption that

the traffic load is light, an initial estimate of link blocking probability is known, and

usage of a wavelength on a hop is statistically independent of other hops as well as

other wavelengths. The estimation of fiber utilization ratio in [32] neglects the impact

on call arrival rate caused by the blocking. This is reasonable when the link blocking

probability is low. However, with high link blocking probability, the assumption will

result in over-estimating the path blocking probability. Moreover, by assuming that

wavelength seizure and release are independent of each other, the dynamic nature of
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the traffic is hidden.

Reference [33] focuses on the optical network with wavelength converters. The

traffic is assumed to be bounded by the number of ports in a node, which hides the

dynamic nature of the traffic. Reference [42] provides both analytical model and

simulation results on call blocking probability in a ring network for very light traffic.

This model assumes a homogeneous traffic matrix, Markovian correlation of blocking

at adjacent links, and certain regular topologies. The computational complexity is

modest.

More recently, a computational model for estimating blocking probability in a

multi-fiber WDM optical network has been presented in [43] where the entire wave-

length channel is dedicated to a single connection. Our work deals with dynamically

provisioned networks, where even if a wavelength is occupied on some segments of

a network, it can still be reused wherever possible, hence considerably reducing the

blocking probability.

With Fiber to the Home (FTTH), the arrival rate at an edge node will become

high and blocking probability may be much greater than that in the core network.

Estimation of blocking probability in a network with arbitrary traffic intensity is a

hard problem in that the correlation of blocking probability on different links makes

precise computation of carried load impossible.

We note that link blocking probability is usually the basis to compute call blocking.

This will be the focus of this chapter and is equally applicable to [32] and [42]. It can

further be extended to model waveband switching or fiber switching.
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BC

Figure 5.2: A Ring with Three Nodes

Table 5.1: List of Link States

Link Occupied by path Occupied by path Occupied by path

AB 1. Idle 2. From A to B 3. From A to C 4. From C to B
BC 5. Idle 6. From B to C 3. From A to C 7. From B to A
CA 8. Idle 9. From C to A 4. From C to B 7. From B to A

5.2 State Transition Diagram of a Unidirectional

Ring Topology

5.2.1 A Simple Example

Suppose we have 3 nodes in a unidirectional ring. Each link has only one wavelength.

Figure 5.2 shows that both link AB and BC being busy can be caused by two scenarios,

i.e., AB is occupied by a lightpath from A to B and BC is occupied by a lightpath

from B to C or AB and BC is occupied by a lightpath from A to C, which means that

we should not only note whether a link is busy, but also note the source-destination

pair which occupies the link.

We can list the states as shown in Table 5.1. Therefore, we can find 14 different

states for a three-node ring. We define S1 as the scenario that all links are idle. S1

can be described as S1 = (1, 5, 8), where the three indices in the parentheses are
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Figure 5.3: State Transition Diagram of a Three-node Ring. Each Arrow Represents

Transition Rate of λ/2, and Each Arrow with Dashed Line Represents Transition

Rate of µ.

defined in Table I. Similarly, we define S2 = (1, 5, 9), S3 = (1, 6, 8), S4 = (1, 6, 9),

S5 = (1, 7, 7), S6 = (2, 5, 8), S7 = (2, 5, 9), S8 = (2, 6, 8), S9 = (2, 6, 9), S10 = (2, 7, 7),

S11 = (3, 3, 8), S12 = (3, 3, 9), S13 = (4, 5, 4) and S14 = (4, 6, 4).

We assume that the traffic demand matrix is homogeneous, the incoming traffic at

each node is λ, the departure rate of each lightpath request is µ. The state transition

diagram of Figure 5.2 can be depicted as in Figure 5.3.
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Figure 5.4: State Transition Matrix in a Three-node Ring

Table 5.2: Comparison of Caculated and Simulated Probability of Blocking Pb

λ/µ 0.1 0.2 0.3 0.4 0.5 0.6
Caculated Pb 0.1237 0.2113 0.2776 0.3301 0.3730 0.4090
Simulated Pb 0.1250 0.2139 0.2784 0.3336 0.3723 0.4157

Based on Figure 5.3, we can obtain the state transition matrix as shown in Fig-

ure 5.4. We can obtain the probability of each state in the following vector:

S′ =
[ 8
D

4r

D

4r

D

2r2

D

4r

D

4r

D

2r2

D

2r2

D

r3

D

2r2

D

4r

D

2r2

D

4r

D

2r2

D

]
, (5.1)

where D = r3 + 12r2 + 24r + 8, and r = λ/µ.

According to (5.1), we can easily calculate the probability that link AB is busy

as:

Pb =
14∑

k=6

Sk. (5.2)

84



5.2.2 Partitioning the state space

A three-node unidirectional ring with homogeneous traffic demand is the simplest

scenario. However, calculating the precise link blocking probability is complicated.

Generally, for a ring with N nodes, we need O(NN) network states, and since we

need to compute the transition rate for any state to any other state, an O(NN ×NN)

matrix results. Even if N is small, the matrix becomes intractable due to its non-

polynomial complexity. A precise state transition diagram to obtain the blocking

probability is not possible when N is large.

When the traffic demand matrix is homogeneous, the blocking probability on each

link is also the same. For a ring with N links denoted as (l1, l2, · · · , lN), we focus on

the blocking probability on l1.

The basic idea of the proposed algorithm is straightforward. The arrival rate on

l1 is dependent on the current network states. We assume that there are K network

states, and the flow rate on l1 of state k is Ik. Without loss of generality, we assume the

departure rate of all the states is one per time unit. We denote pk as the probability

that the network is in state k. The blocking probability of link l1 is:

Pb =
K∑

k=1

Ik

1 + Ik

pk. (5.3)

When all links are idle, the flow rate on l1 is the maximum. When link lN is busy,

the flow rate on l1 is reduced. If both lN and l2 are busy, the flow rate on l1 is further

reduced. We denote the network state space as Ω.

The proposed algorithm in this chapter simplifies the state transition diagram by
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dividing Ω into 3 subspaces as follows:

S0 = Ω− S1 − S2. (5.4)

S1 = {lN busy and l2 idle}. (5.5)

S2 = {lN busy and l2 busy}. (5.6)

We use the maximum flow rate Isk among all the states skm ∈ Sk as the represen-

tative flow rate in Sk, and denote psk as the probability that the network is in state

Sk, and define P Sk
bu = Isk/(1 + Isk). Therefore, we have

2∑

k=0

(P Sk
bu psk) > Pb. (5.7)

Equation (5.7) can not be used directly because it is of the same complexity to

calculate the precise psk. Further approximation is required.

5.3 Lower Bound of Blocking Probability

Suppose the blocking probability on each link is Pb. We offer the following approach

to compute the lower bound of blocking probability on a link. In all subsequent

analysis, we assume the traffic matrix is homogeneous with newly generated traffic

intensity of λ at each node. The ring is unidirectional and traffic flows clockwise.

Theorem 9. In a ring with N nodes, if node A is k hops away from the head node

of link δ, the traffic flow I(k) from A on the link δ satisfies

I(k) ≥ λ((1− Pb)
k − (1− Pb)

N−1)

(N − 1)Pb

. (5.8)
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Proof. The prerequisite for a successful lightpath setup over link δ from node A is

that all the links along the path other than δ to be idle. Only path that is longer than

k will pass traffic through link δ. Because each link is busy with probability Pb, the

probability of successful lightpath setup from A can be approximated as (1 − Pb)
m

where m + 1 is the number of hops from node A to the destination. The maximal

hop is (N − 1) in that a node will never setup a lightpath to loop back. The traffic

flow β from a node to any other node is identical, and therefore

β = λ/(N − 1). (5.9)

Thus, the overall traffic flow from node A on link δ is approximately

N−2∑

m=k

β(1− Pb)
m =

λ((1− Pb)
k − (1− Pb)

N−1)

(N − 1)Pb

. (5.10)

When a link is busy, the link after this busy link is likely to be busy because the

traffic flows clockwise. Due to this dependency on link blockage, the probability that

k links are idle will be greater than (1− Pb)
k.

Corollary 1: From Theorem 9, the overall traffic flow Λ on a link in the ring

topology given homogeneous traffic demand satisfies

Λ =
N−2∑

k=0

I(k) ≥ λ(1− (1− Pb)
N−1(1 + Pb(N − 1)))

(N − 1)P 2
b

. (5.11)

Theorem 10. We assume the arrival process is Poisson and the departure process is

exponential with mean service time 1/µ . The lower bound of link blocking probability

Pb can be computed by substituting Λ with the lower bound of equation (5.11) and by
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defining ρ = Λ/µ to solve the equation

ρ

1 + ρ
= Pb. (5.12)

Proof. The blocking probability on a particular link δ can be approximately computed

according to M/M/1/1 as

ρ

1 + ρ
= P

′
b . (5.13)

Given Pb, P
′
b ≤ Pb because the left side of (5.13) is a monotonic increasing function,

and we substituted ρ with its lower bound. However, Pb is also unknown. Because ρ is

a monotonic decreasing function of Pb, (5.13) is also a monotonic decreasing function

of Pb. Therefore, when P
′
b ≤ Pb, the solution of Pb to (5.12) is strictly smaller than

the precise value of Pb.

We denote the calculated result from (5.12) as Pbl.

5.4 Upper Bound of Blocking Probability

When all links are idle, the flow Is0 on l1 is the maximum.

Theorem 11. In a ring with N nodes,

Is0 = Nλ/2. (5.14)

Proof. If a node A is k hops away from the head node of l1, the probability that A

imposes traffic flow on l1 will be the left hand side of (5.10) with Pb = 0. Therefore,

88



The total traffic flow on l1 will be

N−2∑

k=0

N−2∑

m=k

λ

N − 1
=

Nλ

2
. (5.15)

The upper bound of link probability can never exceed

PU
b =

Nλ/2

1 + Nλ/2
= P S0

bu . (5.16)

Equation (5.16) gives the simplest approach to calculate the upper bound of link

blocking probability. However, we can find tighter upper bound by the following

steps.

5.4.1 Lower Bound of pS2

According to (5.6), ps2=P{lN busy and l2 busy}. Therefore, we have

ps2 ≥ P{lN busy}P{l2 busy} = P 2
b ≥ P 2

bl. (5.17)

The lower bound of pS2 can be calculated as pl
S2 = P 2

bl.

5.4.2 Lower Bound of P (S1 ∪ S2)

We know that S1∪S2 = {lN busy} and S1∩S2 = Φ. Therefore, PS1 +PS2 = Pb ≥ Pbl.

The lower bound of P (S1 ∪ S2) is Pbl.
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5.4.3 Upper Bound of Link Blocking Probability

In S2, the flow rate on l1 can not exceed λ/(N − 1). This is because only the traffic

flow from the head node of l1 to the tail node of l1 can be accepted. Therefore, we

have

P S2
bu =

λ/(N − 1)

1 + λ/(N − 1)
. (5.18)

In S1, the flow rate on l1 cannot exceed λ. Therefore, we have

P S1
bu =

λ

1 + λ
. (5.19)

Because pS0 + pS1 + pS2 = 1, we have

pS0 ≤ 1− Pbl. (5.20)

Theorem 12. The upper bound of link blocking probability Pbu can be calculated as

below:

Pbu = (1− Pbl)P
S0
bu + (Pbl − P 2

bl)P
S1
bu + P 2

blP
S2
bu . (5.21)

Proof. S0, S1, and S2 is a partition of the set of all network states. Therefore, from

(5.3), we have

Pb <
∑

k∈S0

pkP
S0
bu +

∑

k∈S1

pkP
S1
bu +

∑

k∈S2

pkP
S2
bu =

2∑

k=0

pskP
Sk
bu . (5.22)

From (5.20) and P S0
bu > P S1

bu , we have

2∑

k=0

pskP
Sk
bu < (1− Pbl)P

S0
bu + (Pbl − pS2)P

S1
bu + pS2P

S2
bu . (5.23)
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Because pS2 ≥ P 2
bl, we have

Pb < (1− Pbl)P
S0
bu + (Pbl − P 2

bl)P
S1
bu + P 2

blP
S2
bu = Pbu, (5.24)

where Pbl can be calculated according to (5.12).

5.5 Extension to M/M/m/m Model

If we relax the wavelength continuity constraint, and assume a call setup request can

be accepted as long as there is enough bandwidth along the determined LSP, the

M/M/m/m model can be applied..

Theorem 9 and Corollary 1 will still hold. Theorem 10 can be extended as follows:

We assume that there are w wavelength in each fiber. The lower bound of link

blocking probability Pb can be computed by substituting Λ with the lower bound of

equation (5.11) and by defining ρ = Λ/µ to solve the equation

ρw/w!∑w
k=0 ρk/k!

= Pb. (5.25)

The left side of equation (5.25) is the Erlang B formula and it is also a monotonic

increasing function. Equation (5.16) in M/M/m/m becomes

PU
b =

Iw
s0/w!∑w

k=0 Ik
s0/k!

= P S0
bu . (5.26)

5.6 Simulation versus Calculation Results

In our simulation, we assume that we are dealing with a unidirectional WDM network

with 10 wavelengths in a fiber as shown in Figure 5.1. The arrival of incoming call
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Table 5.3: Caculated Bounds in a Six-Node Ring

λ 0.001 0.0025 0.005 0.0075 0.01

Pbl 0.002967 0.007301 0.01423 0.02084 0.02714
Pbu 0.002985 0.007408 0.01464 0.02171 0.02861
P S0

bu 0.002991 0.007444 0.01478 0.02200 0.02913

Table 5.4: Caculated versus Simulated Bounds in a Three-Node Ring

λ 0.1 0.2 0.3 0.4 0.5 0.6

Pbl 0.1212 0.2056 0.2696 0.3206 0.3625 0.3980
Pbc 0.1237 0.2113 0.2776 0.3301 0.3730 0.4090
Pbu 0.1250 0.2144 0.2816 0.3341 0.3765 0.4116

to each node is a Poisson process at a rate of 10λ per second. The distribution of

the service rate is exponential with the mean of one per second. We also assume the

path computation element will randomly pick up a wavelength plane and run CSPF

on that plane. The traffic demand matrix is homogeneous.

This model is to calculate the upper bound and lower bound of blocking probability

when the discrepancy between carried load and offered load is not negligible. When

the traffic load is light, P S0
bu can sever as a good upper bound. Table 5.3 provides the

comparison of calculated lower bound Pbl, calculated upper bound Pbu and calculated

P S0
bu in a six-node ring.

Table 5.4 provides the comparison of calculated lower bounds Pbl, upper bounds

Pbu and the actual blocking probability Pbc when λ is increased from 0.1 to 0.6 at a

Table 5.5: Caculated versus Simulated Bounds in a Four-Node Ring

λ 0.1 0.2 0.3 0.4 0.5 0.6

Pbl 0.1412 0.2249 0.2841 0.3297 0.3665 0.3973
Pbs 0.1543 0.2483 0.3108 0.3604 0.4001 0.4335
Pbu 0.1548 0.2537 0.3227 0.3738 0.4133 0.4448
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Table 5.6: Caculated versus Simulated Bounds in a Five-Node Ring

λ 0.1 0.2 0.3 0.4 0.5 0.6

Pbl 0.1537 0.2336 0.2879 0.3289 0.3619 0.3894
Pbs 0.1806 0.2785 0.3412 0.3895 0.4255 0.4517
Pbu 0.1817 0.2879 0.3583 0.4084 0.4460 0.4753

Table 5.7: Caculated versus Simulated Bounds in a Six-Node Ring

λ 0.1 0.2 0.3 0.4 0.5 0.6

Pbl 0.1614 0.2367 0.2867 0.3243 0.3543 0.3794
Pbs 0.2002 0.3001 0.3599 0.4072 0.4420 0.4653
Pbu 0.2063 0.3185 0.3897 0.4390 0.4751 0.5027

step of 0.1. It is also depicted in Fig. 5.5.

Table 5.5 to Table 5.7 provides the comparison of calculated lower bounds Pbl, up-

per bounds Pbu, and the blocking probability Pbs from simulation when λ is increased

from 0.1 to 0.6 at a step of 0.1. Table 5.5 is also depicted in Fig. 5.6.

From the simulation, we can observe that the calculated upper bound is very tight.

When the traffic intensity is modest, the error is less than 2%.

Fig. 5.9 depicts the error of Pbl and Pbu when the number of node and traffic

intensity increase. We can observe that the error increases along with the node

number and traffic intensity.

If we relax the wavelength continuity constraint, the system model will be as

described in 5.5.

Table 5.8: Error as the Number of Nodes and Traffic Intensity Increase

Number of Nodes 4 5 6

% Error of Pbl when λ = 0.1 8.49 14.89 19.38
% Error of Pbl when λ = 0.2 9.42 16.12 21.13
% Error of Pbu when λ = 0.1 0.32 0.61 3.05
% Error of Pbu when λ = 0.2 2.17 3.38 6.13
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Figure 5.5: Calculated Upper and Lower Bounds vs. Actual Blocking Probability in

a 3-node Ring

Table 5.9: Calculated versus Simulated Bounds in a Six-Node Ring with relaxation

of wavelength continuity

λ 0.8 1.0 1.2 1.4 1.6 1.8

Pbl 0.08535 0.1154 0.1425 0.1670 0.1889 0.2088
Pbs 0.08713 0.1210 0.1520 0.1814 0.2065 0.2283
Pbu 0.12747 0.1839 0.2353 0.2802 0.3187 0.3515
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We assume that there are 4 wavelengths in a fiber. Table 5.9 provides the compar-

ison of calculated lower bounds Pbl, upper bounds Pbu, and the blocking probability

Pbs from simulation when λ is increased from 0.8 to 1.8 at a step of 0.2. Table 5.9 is

also depicted in Fig. 5.10.

If we use equation (5.11) in replacement of (3.3) to compute the traffic flow on

a link, we can have a better estimation on the blocking probability of call setup

requests.
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5.7 Conclusion

This chapter presents a novel and efficient approach to calculate the lower and upper

bounds of interconnecting link blocking probability in optically switched ring net-

works deploying optical network elements like ROADMs. The approach considers the

impact of blocking on flow rate on a link by dividing the network state space into

three subspaces. This novel approach has the potential to be applied to heteroge-

neous traffic demand matrix in ring or mesh networks. The efficiency of the approach

provides the network designers a useful tool to control the QoS or adjust the traffic

flow in their networks. It could also facilitates the estimation of the network perfor-

mance in various scenarios, such as the common vector solution for generalized label

continuity constraints.
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Chapter 6: Conclusions and Future Work

6.1 Further Improvement on The Path Computa-

tion Efficiency in Multi-Layer Networks

6.1.1 A Mixture of Network Graph and Channel Graph

Theorem 8 has proved that the channel graph has the same order of complexity as the

network graph for a sparse network with k hybrid node such that k ¿ |V |. Equation

(4.16) gives the approximate computational complexity. In a dense network with all

other assumptions the same as in theorem 8, equation (4.16) can be written as:

O(T ) = d−G(vi)|E|+ d−G(vi)|V |(log |V |+ log(d−G(vi))). (6.1)

In a dense network such that d−G(vi) = O(|V |), we have:

O(T ) = |V ||E|+ 2|V |2(log |V |). (6.2)

If the network G has limited number of boundary node, we can probably further

simplify the path searching by a mixture of network graph and channel graph.

Figure 6.1 is a simple example of a network graph with clear region boundary.

We call the nodes that are not connected to any region boundary node as internal

node. We can convert any region boundary node vi with all the links 〈ej, sk〉 such

that 〈ej, sk〉 ∈ ε−G(vi, sk)
⋃

ε+
G(vi, sk) into a channel graph H. All the other single-

switching-type-capable nodes vx are moved to H. For vx which is connected through

102



L2SC

TDM

LSC
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ej to region boundary node vi in G, because the link ej has been converted into a

node ny in the channel graph, we create a virtual link between vx and ny in H. For

links ej that is not connected between an internal node, it is moved to H without

any change.

This mixed graph solution with k region boundary nodes such that k ¿ |V | can

reduce the computational complexity of the path computation to be approximately

that in a network graph. The worst case is that every node is a region boundary

node, which has the same computational complexity as the channel graph solution.

6.1.2 Further Improvement on Efficiency by Considering Switch-

ing Network Concept

Theorem 7 has proved that the channel graph is the most efficient solution for the

worst case that the cost of taking 〈ex, sj〉 ∈ Γ+
G(vi) is dependant on 〈ey, sk〉 ∈ Γ−G(vi)

for each combination of vi, ex, sj, ey and sk.

Figure 4.1 shows the architecture of a hybrid node with multiple switching el-

ements. The adaptation cost between different switching capabilities can actually

be modeled as the link cost between TDM switching element and PSC switching ele-

ment. This is similar to the link between different wavelength planes in the wavelength

graph. Though it does not capture the interface specific constraints as given in figure

4.2, it gives us further possibility to aggregate 〈vi, ex, sj, ey, sk〉 according to switch-

ing elements and further reduce the computational complexity of path computation

algorithm.
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6.2 Future Work on Common Vector Solution

6.2.1 Proof or Disproof of Theorem 1 for any ρ

Theorem 1 is only proved for small ρ. According to simulation, this inequality should

hold for any ρ. Rigorous proof or disproof of theorem 1 for any ρ is desired.

6.2.2 Common Vector Performance in case of Multiple Fibers

between Two Nodes

When there are multiple fibers between two nodes, the evaluation of common vector

performances is different from what is shown in chapter 3. I leave this part for future

study.

6.3 More Accurate Estimation on Link Performance

Bounds

The link performance bounds in chapter 5 is only on ring topology. For mesh networks,

a tight estimation on link performance bounds can provide the network operator more

confidence on network planning and path computation strategy.

6.4 Application of Common Vector and Channel

Graph Solution in Multi-domain Networks

The introduction of path computation elements in [6] and [44] enables cooperation

between PCE components in multi-domain environment. Reference [45] discussed

cooperative inter-domain path computation, on which the performance of common

vector and channel graph solution can be studied.
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6.5 Stability of Virtual Topology

In multi-layer networks, the lower layer provides virtual topology to the neighboring

upper layer. When searching a path, we should try best to use the residual capacity

on existing virtual topology, i.e., try to avoid switching type adaptation. When a

cross-layered path is setup, the virtual topology is changed from the perspective of

the upper layer, which may make cause subsequent establishment and tearing down

of existing paths if we want to guarantee the optimality of these paths.

6.6 Conclusion

This dissertation discusses various constraints on path computation in multi-layer

networks in support of routing and traffic engineering. Solutions to different con-

straints are provided, feasibility of the common vector solution for generalized label

continuity constraints and optimality of the channel graph solution to interface spe-

cific constraints are provided. Though we focuss here on multi-layer networks, the

approach on multi-layer path computation described in this paper is also applicable

to multi-area/multi-AS networks.

All the constraints, such as optical impairment, wavelength continuity and switch-

ing capability requirements, can be satisfied. Channel Graph may be considered as a

general approach to address the non-additive interface specific adaptation constraints

at a node. This method is in particular efficient for switching type adaptation for

which the number of switching types is limited. However, for label continuity the

common vector method is preferred.

The solutions to path computation as discussed here lend themselves as good
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candidates for practical implementation. The proposed solutions for switching type

adaptation and VLAN tag have been implemented as part of path computation in

Dynamic Resource Allocation in GMPLS Optical Networks (DRAGON ) project, an

NSF sponsored project to create dynamic, deterministic, and manageable end-to-end

network transport services for high-end e-Science applications.
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