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ABSTRACT 
 
 
 
PERSONALIZATION OF IMMUNOSUPPRESSIVE MEDICATION FOR KIDNEY 
TRANSPLANT RECIPIENTS 
 
Mohammad Mehdi Nayebpour, Ph.D. 
 
George Mason University, 2022 
 
Dissertation Director: Dr. Naoru Koizumi 
 
 
 
This thesis presents three independent essays for the fulfillment of doctoral dissertation in 

Public Policy. The common theme in these essays is the practice of personalized 

medicine for kidney transplant recipients. The field of kidney transplantation is one of the 

costliest fields in the healthcare system and it is paid by the Federal government. 

Increasing the quality of transplant outcomes has been a major focus for the CMS, 

particularly for underserved populations such as African Americans who already face the 

worst transplant outcomes. Studies show that implementing personalized medicine 

practices increases the quality of care, reduces graft rejection and increases graft survival 

rates. Such results directly translate into reducing the cost of kidney care. In this 

manuscript I developed a personalized medicine model based on gut microbiome 

information and gene markers to optimize the administration of an immunosuppressive 

drug called Tacrolimus. This model proves to be superior than existing models in 
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predicting optimum required dose.  In the next step I investigated the role of gut 

microbiome in kidney transplant outcomes and used the change in the relative abundance 

of bacterial genera as a tool for predicting graft rejection and graft failure. Finally, the 

existing policies of insurance coverage for personalized medicine for kidney disease were 

surveyed. I present an argument that expanding Medicare coverage to personalized 

medicine for kidney transplantation is essential. This 3-essay dissertation presents a 

package for extending our knowledge of personalized medicine in kidney disease and it 

offers possible tools for implementing such practices.  

This thesis was prepared under the determination of exempt status from IRB review by 

the Office of Research Integrity and Assurance of the George Mason University,  

#1906208-1, by using non-identifiable existing data. 

 

 

 

 

 



 
 
 
 
 
 
 

1 

 

Introduction and Policy Relevance 

 

The field of kidney disease is one of the costliest fields in medicine. The complexities 

associated with End Stage Renal Disease (ESRD) led Congress in 1974 to expand 

Medicare coverage to treat ESRD patients. Since then, ESRD has been the only field of 

medicine covered by Medicare for patients less that 65 years old. This reality has made 

the field of ESRD a topic of interest among public health scholars. Except the topic of 

health insurance, no specialized medical field like ESRD has caused decades-long 

debates among policy analysts. All aspects of kidney transplantation and dialysis are 

under some level of control of the Federal government. Allocation of organs, prioritizing 

recipients, payment of dialysis and transplant surgery, post-transplant medication, and 

facilitating kidney donation are all affected by policies of the Federal government. For 

example Organ Procurement and Transplantation Network (OPTN) is a non-profit 

organization sponsored by the Federal government under the jurisdiction of Centers for 

Medicare & Medicaid Services (CMS) to provide a framework for organ allocation 

across the country. Furthermore, Medicare covers the cost of ESRD through payments of 

dialysis, transplant surgeries and medication. CMS’s policies also affect kidney donation 

by establishing national and local programs for facilitating donation through limited 

financial incentives such as tax breaks, tuition credits, transportation and lodging cost, 
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childcare and post-donation care. The involvement of the Federal government in ESRD 

provides a unique opportunity for the field of kidney transplantation to use government 

resources to further improve quality of care for ESRD patients.  

Particularly, kidney transplantation has faced several experimentations and changes in 

policies to lower the cost of care, expand equity and improve quality of care. The last of 

such changes in policy happened in 2014, knowns as the new Kidney Allocation System 

(KAS) in which the allocation process of kidney was substantially changed. The most 

recent major policy change was the law passed in 2020 by Congress to expand Medicare 

coverage of immunosuppressive medication for life, which used to be only 36 months 

post-transplant surgery. It is evident that CMS has shifted its focused away from fee-for-

service paradigm and towards long-term outcome-oriented payment paradigms, such as 

the Prospective Payment System (PPS). Among ESRD patients, African Americans 

remain the least-served population. Transplant outcomes such as graft failure and waitlist 

relisting is highest among African Americans. At the same time African Americans are 

disproportionately present on the waitlist for kidney transplant compared to other racial 

groups based on their proportion of the population. It is known that many treatments in 

the field of kidney transplantation is tailored towards European decent patients. Among 

the most essential treatments is the dose selection of Tacrolimus (Tac), the leading 

immunosuppressive medication in the country. European decent patients require low dose 

of Tac while African Americans due to their genotype tend to require higher dose of Tac, 
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caused by the expression of the CYP3A5 gene. All transplant centers in the country 

initiate their Tac administration by low dose, and based on the need of patients the dose is 

adjusted. Studies unanimously show that starting Tac therapy with higher dose for 

African American patients leads to significantly improved transplant outcomes. But this 

practice rarely takes place. That is why personalized medicine has the potential of filling 

this gap. It is well established that adopting personalized medicine for dose selection 

leads to improved transplant outcomes, particularly for minorities. The number of studies 

and clinical trials to clinically prove this hypothesis is limited. Although they all point to 

the same direction, i.e., the promising conclusion that personalized dose selection 

practice is beneficial for all ESRD patients. That is why it is essential for the Federal 

government to fund more research on this topic in order to further expand quality of care 

for ESRD minorities. There has been no comprehensive attempt to summarize all aspects 

of personalized medicine for kidney disease to help kidney transplant centers and 

advocates for establish such practices in their centers.  Furthermore, the field of 

personalized medicine has been introduced to a new dimension, i.e., the gut microbiome. 

Since the last decade there has been an immense amount of studies and focus on the role 

of gut microbiome on human health. In the field of kidney disease, there are limited 

number of such studies that investigate the role of gut microbiome on transplant 

outcomes. 
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This dissertation sheds light to the role of gut microbiome in personalized medicine for 

kidney transplantation and it provides original research to show how gut microbiome 

could be applied in personalized dose selection of Tacrolimus. The results of this 

dissertation could help hospitals, physicians, patient advocacy groups, insurance 

companies and pharmaceutical companies to further understand the role of gut 

microbiome in personalized medicine, but it can also provide evidence for policy makers 

to make informed decisions regarding the future direction of Medicare expansion in 

personalized medicine.  
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PAPER #1: The Role of Insurance in the Practice and Expansion of Personalized 

Medicine in Kidney Transplantation: A Public Policy Perspective 

 

1.1 Introduction 

1.1.1  Kidney Transplantation and Medicare 

End Stage Renal Disease (ESRD) is the only medical condition which is covered by 

Medicare for patients under the age of 65.  In 1972, congress enacted this legislation for 

qualified patients, titled Social Security Amendments of 1972; P.L. 92-603.  This was the 

first ever legislation in the US to cover the needs of patients based on medical conditions 

rather than on age (Kirchhoff, 2018). Medicare spends about 7% of its annual budget on 

ESRD treatment, while ESRD patients account for 1% of the total patients under the 

Medicare program (Hart et al., 2019). Medicare benefits for ESRD patients include 

thrice-weekly dialysis treatment, kidney transplant, and post-transplant medication. 

Previously Medicare coverage lasted 36 months post-transplant, but in December 2020 

the US Congress passed the Comprehensive Immunosuppressive Drug Coverage for 

Kidney Transplant Patients Act in which provides lifetime Medicare coverage for 

immunosuppressive drugs for kidney transplant recipients (Gill et al., 2021). Throughout 

the years, US Congress has enacted a number of modifications to Medicare benefits for 
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ESRD patients, such as the Medicare Improvements for Patients and Providers Act of 

2008 (MIPPA) which imposed a bundled payment system for dialysis providers. The 21st 

Century Cures Act (CURES Act) in 2016 will allowed Medicare-eligible ESRD patients 

to enroll in Medicare Part C private managed care plans (Hart et al., 2019). 

It is important to note that Medicare did not create a specific program for ESRD patients. 

It rather expanded the existing Medicare coverage to ESRD patients as opposed to 

creating a unique program for ESRD patients. This anecdote is important because 

fundamentally any argument that wishes Medicare to cover a certain group of patients 

needs to show how the expansion of Medicare will result in cost-effective outcomes for 

Medicare, and not only the targeted patients. 

In this paper I will first introduce the concept of personalized medicine for kidney disease 

and then present an argument for having this practice covered by Medicare. In this 

chapter, personalized medicine will be limited to the pharmacogenomics, i.e., the role of 

genes in efficacy of drugs, and will not include microbiome therapies since there is little 

literature about their effect of kidney transplantation. Thus, for the remainder of chapter 

1, pharmacogenomics and personalized medicine might be used interchangeably.  

 

1.1.2 Personalized Medicine in Kidney Transplantation 

Pharmacogenomics is the study of the impact of genetics on individual drug response.  It 

aims to maximize therapeutic impact of drugs and minimize adverse drug reactions (Hefti 
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et al, 2016; Weinshiboum et al, 2017).  The most useful definition of pharmacogenomics, 

which has been influenced by marketing campaigns, is “giving the right drug at the right 

dose to the right patient at the right time” (McLeod et. al., 2001).  Pharmacogenomics as 

a concept is not new.  Researchers have always been aware that therapeutic agents have 

significant heterogeneity in their efficacy and toxicity across different populations 

(McLeod, 2001).  It took few decades to discover the genetic basis of this phenomenon 

and to apply it in medical treatments (ibid).  Genetic factors determine 20 to 95 percent of 

drug response variability in human body (Belle, et. al., 2008).  Among the existing drugs 

in the market, gene variations could interfere with the administration of 100-150 of all of 

the 1200 FDA approved drugs (Collins, 2016). Information about a patient’s genetic 

constitution can help us select the proper drug dosage by knowing if a patient has a low 

or high metabolism.  If a drug is known to be generally safe (low to no side effects) and 

therapeutic for the general public, the use of pharmacogenomics seems to be no longer 

necessary. This is, however, not the case if a drug is known to be risky for a specific 

population.  If a drug is known to be toxic, and/or, extremely vital, it is important to 

know the gene-enzyme relationship.  For example, the enzyme thiopurine-

methyltransferase (determined by the TPMT gene) metabolizes azathioprine, an 

immunosuppressive drug used to treat Crohn’s disease (Schwartz, 2004).  If this drug is 

not properly metabolized, it can change into a toxic substance directly linked to higher 

risk of skin cancer and lymphoma. Therefore, TPMT activity is always monitored before 
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drug administration.  Another example is the Cytochrome P450 gene which has a 

significant effect on metabolism of many drugs.  Variations (polymorphisms) of the 

cytochrome P450 genes significantly affect the function of enzymes in human body. The 

effects of polymorphisms are observed in the breakdown of medications.  Drugs can be 

metabolized quickly or slowly depending on the polymorphisms of this gene. For 

example, if a cytochrome P450 enzyme metabolizes a drug slowly, smaller dosage is 

needed because the drug stays active longer in human body. Higher dosage is needed if a 

drug is quickly metabolized and broken down quickly.  According to NIH’s Genetics 

Home Reference, Cytochrome P450 enzymes account for 70-80% percent of enzymes 

involved in drug metabolism (NIH, 2019).  Knowing a patient’s whole genome sequence 

(or targeted gene sequence) before initiating a treatment can significantly help physicians 

predict a patient’s response to a drug.   

Today, Pharmacogenomics resides under the umbrella of Personalized Medicine, i.e., the 

idea of tailoring health treatment to individuals, not populations.  Personalized Medicine 

as a practice, and pharmacogenetics specifically, looks at the genetic constitution of 

patients as a critical element of treatment and prevention (Kalow, 2006).  Advances in 

sequencing techniques and computational capabilities have made this field ready for 

wider application in medical treatment. 

In the case of kidney transplantation, we focus on immunosuppressive medication. 

Immunosuppressive therapy is a critical part of kidney transplantation. 
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Immunosuppressive therapies have significantly improved graft survival rates and have 

reduced acute rejections (Provenzani et al, 2013).  When a kidney is transplanted, a 

patient’s body recognizes this organ as a foreign object and triggers the immune system, 

i.e., white blood cells will attack the grafted organ, causing a failure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table-1: summary of drug-gene associations. (Thervet, et al., 2010) 
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Therefore, immunosuppressive drugs reduce the offensive status of a patient’s immune 

system and results in acceptance of the foreign organ.   

Application of immunosuppressive drugs have always been complicated due to their 

narrow therapeutic index, i.e., overexposure leads to toxicity and underexposure increases 

the risk of acute rejection.  Another element which adds to the complication is the vast 

pharmacokinetic inter-patient variability in immunosuppressive drugs (ibid).  Therefore, 

transplant centers routinely monitor and adjust dosage of immunosuppressive drugs for 

their patients to reach therapeutic levels.  The therapeutic range of Tacrolimus has not 

been clearly defined in the transplant literature and not all practitioners agree on a single 

optimum level. Some researchers suggest a range of 5-20, some 5-15, and others 8-10 

ng/ml (Jusko et al., 1995; McMaster et at., 1995).  Trial-and-error has been the most 

common practice to determine the best dosage (Provenzani et al, 2013).  The best way to 

administer immunosuppressive drugs is still a matter of intense debate among physicians 

(Chinnadurai, 2021). Pharmacogenomics has already been applied to chronic kidney 

disease, dialysis and transplantation, but not as intensely and widely as other chronic 

diseases such as cardiovascular disease, Alzheimer disease, cancer, and asthma (Birdwell, 

2015).  Among all immunosuppressive drugs, cyclosporine and tacrolimus are the ones 

which have been heavily studied for their pharmacogenomics affects.  For example, 

patients who do not express CYP3A5 need lower dosage of tacrolimus compared to 

patients who express CYP3A5, controlling for age.  Studies show that CYP3A5 explains 
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39% of tacrolimus inter-individual variability (Elens, 2014).  Other genes have been 

shown to affect tacrolimus absorption, such as ABCB1 polymorphism, but studies are 

conflicting in the level of its impact (ibid). Other variants include CYP3A4*22, POR*28, 

and PPARA (ibid).  Table-1 shows a list of few critical genes which impact tacrolimus 

and other immunosuppressive drugs.  

A fertile subject for research is whether adjusting dosage of tacrolimus based on the 

association of CYP3A5 with tacrolimus pharmacokinetics actually improves transplant 

outcomes or not.  Little research has been done to address this question, however, 

especially in the randomized control trial setting to prove or disprove this hypothesis. 

According to Birdwell’s survey, only one randomized control study has tested this 

hypothesis (Thervet, et al., 2010). This study shows that pharmacogenomics-guided 

dosage does indeed helped patients reach therapeutic levels by day 3, although no 

difference was observed in patient and graft survival, based on a 3 month follow up.  

More studies can improve our knowledge of this issue. Currently, transplant physicians 

select the initial dose of Tac based on a patient’s Body Mass Index (BMI), usually 0.10-

0.20 mg/kg per day then they adjust it on a daily basis by monitoring the trough 

concentration of Tac until it reaches 8-12 ng/ml for the first 3 months and 5-10 ng/ml for 

the 3-6 months post-transplant (Jusko et al., 1995). Although selecting Tac dose based on 

BMI is recommended by the US Food and Drug Administration (FDA), recent studies 

have shown that this approach is not effective, particularly in patients who are obese and 
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African Americans (Shih et al., 2014). It is believed that using a personalized dose 

selection tool at the start of immunosuppressive therapy could reduce the number of dose 

adjustments and Tac trough level fluctuations. Studies show that higher intra-patient Tac 

trough fluctuations (coefficient of variance greater than 40%) and lower time spent in 

therapeutic range (less than 40%) significantly increases the risk of graft loss, acute 

rejection, and poor kidney graft function (Davis et al., 2020; Taber et al., 2017). Lack of 

drug management and immunosuppressive medication modulation also results in sever 

infectious conditions for kidney transplant recipients (Shih et al., 2014). Achieving an 

early immunosuppressive therapeutic level is proven to significantly decrease the risk of 

acute rejection by 58% by day 2 after transplantation (Schiff et. al, 2007). The need for 

an individualized Tac dose adjustment plan for kidney transplant recipients is significant 

and utilization of a personalized plan will significantly improve transplant outcomes for 

all patients. Improved transplant outcomes such as lower rejection rates, shorter hospital 

stays, and higher organ utilization all translate into reducing the healthcare cost of post-

transplant kidney care. 

Lastly, the impact of gut microbiome on immunosuppressive medication treatments has 

been of great interest for researchers. Gene sequencing of the gut microbiome has shed 

light on some previously unexplainable dynamics of immunosuppressive medication 

effectiveness.  Xiao et. al (2018), Swanson (2015) and Ahmad et. al (2016) discuss the 

current understanding of microbiome influence on kidney transplant outcomes in their 
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papers. All investigations point to the fact that gut microbiota has a critical role in the 

development of human diseases and particularly in kidney disease (Xiao et. al; 2018).  

There are 1000 different types of microbiota in the human gut (Gin et. al; 2010) and the 

composition of the gut microbiome differs from person to person (Lynch et. al; 2016).  

The gut microbiome of humans is involved in important activities such as food digestion, 

regulating metabolism and the immune system, and promotion of angiogenesis, i.e., 

development of new blood vessels (Thaiss et. al, 2016; Neish, 2009; Manfredo et. al, 

2018).  Imbalance in the gut microbiome is associated with inflammatory bowel disease, 

obesity, diabetes, colorectal cancer, cardiovascular disease and nervous system disease 

(Xiao et. al; 2018).  New studies have observed the critical role of gut microbiota on the 

immune system (Belkaid et. al, 2014). The change in gut microbiota diversity has effects 

on distant organs as well (ibid).  Several studies have investigated the change of the 

microbiome composition after a kidney transplant operation (Lee et.al, 2014; Zaza et al., 

2017). All studies have observed: 1) a decrease in the baseline predominant organisms, 2) 

a decrease of diversity and 3) emergence of new dominant bacterial population after 

transplantation (Xiao et. al; 2018).  All studies conclude that the above changes lead to an 

increased risk of post-transplant infection (ibid).  In the specific case of kidney transplant, 

change in gut microbiota composition has been associated with increased risk of graft 

failure in renal transplant by influencing the dosing of immunosuppressant drugs (Zaza et 

al., 2017). For example, Lee et al. investigated the role of human microbiome on 
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Tacrolimus dosage and concluded that Faecalibacterium prausnitzii abundance in the 

first week of transplantation is positively associated with higher future tacrolimus dosing 

at 1 month (Lee et al., 2014). Other studies have even observed the role of gut 

microbiome in the prognosis of kidney transplant outcomes (Ardalan et al., 2017;  

Ahmad et al., 2016; Fricke et al., 2014).  Ardalan et al. report that gut dysbiosis causes 

accumulation of uremic toxins, systemic inflammation, and infection that influence the 

pathogenesis of acute kidney injury, chronic kidney disease, emergence of infection, 

changes in drug metabolism and graft rejection (Ardalan et al., 2017).  Dysbiosis can be 

caused by immunosuppression and antimicrobial therapies, ischemia-reperfusion (I/R) 

injury, and dietary restrictions (ibid).  Studies are still in their early stages and results are 

somehow mixed due to small sample sizes, but more studies are underway to explore 

microbiome’s effect on kidney disease.  What has not been done is the development of an 

algorithm to detect a personalized optimum medication dosage based on a person’s pre-

transplant gut microbiome composition.   

 

1.2 Challenges in Personalized Medicine in Kidney Transplantation 

There are two main challenges in adopting the practice of Personalized Medicine in 

Kidney Transplantation: a) whether applying genotype/microbiome-guided dose selection 

will result in better outcomes, b) the payment of practicing personalized dose selection. 

Regarding the first challenge, most researchers and practitioners believe that the 
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projection of studies point to the conclusion that personalized treatments do offer better 

transplant outcomes, even though the studies are still limited (Thervet, et al., 2010). Most 

results show strong evidence that personalized dose selection practices lead to shorter 

time to reach therapeutic levels, which in turn leads to better transplant outcomes (ibid). 

More clinical trials with different cohorts of patients can strengthens this argument. 

Particularly in the case of African American patients who historically experience poor 

transplant outcomes, the hypothesis of most studies is to expect better outcomes for this 

specific population by applying personalized dose selection (Taber et al., 2017).  

The main challenge in applying personalized medicine in kidney transplant is, in fact, the 

payment.  Hospitals and healthcare providers are the ones who perform this service, but 

reimbursement is not guaranteed. Specially in the case of patients who already face 

significant financial challenges, paying for more expenses is difficult to justify. Based on 

an extensive survey by Hresko et al. at Duke University Institute for Genome Sciences & 

Policy, the coverage of pharmacogenomics (PGx) tests significantly varies across 

different insurance companies. Medicare does in face cover such tests in a limited 

capacity, but most of the largest private insurance companies are the ones that cover the 

largest number of PGx tests. It has been evident that adoption of PGx tools have been 

extremely slow in the medical world, but more so has been the payment processes for 

such tools. The slow pace of adoption has been due to lack of knowledge among 

physicians, patients’ interest, and lack of insurance coverage. What has been causing 



 
 
 
 
 
 
 

16 

hesitancy among insurance companies is the lack of evidence that PGx tests and practices 

lead to better outcomes (Hresko et al., 2012). Hresko surveyed the top 10 insurance 

companies in the country: Kaiser Foundation Group, Coventry Corporation Group, 

UnitedHealth Group, Independence Blue Cross Group, Aetna Group, Highmark Group, 

Humana Group, Wellpoint, HCSC Group, and Cigna Health Group. The results show that 

among all these companies, in total, 27 PGx tests are covered (table 2). It is important to 

note that these 27 PGx tests were covered for drugs which have mentioned on their label 

the impact of genetic variations. If such label is not on the drug, it is not covered by any 

insurance company. Most PGx tests are deemed investigational and not medically 

necessary. Aetna was proven to cover the largest number of PGx tests. Medicare also 

recognizes the coverage of PGx tests and it covers the cost of targeted gene testing for 

Warfarin response. Medicare covers the PGx testing of CYP2C9 or VKORC1 alleles to 

predict warfarin effectiveness only when Medicare beneficiaries are candidates for 

anticoagulation therapy and few other requirements (Hresko et al., 2012). In June 2020, 

the CMS Medicare issued a future Local Coverage Determination (LCD) for 

pharmacogenomics testing. This LCD described Medicare’s intent to cover single gene, 

multi-gene panels to improve the safety of specific medications. The definition for 

coverage is stated as “medically necessary, appropriate, and approved for use in the 

patient’s condition and are known to have a gene(s)-drug interaction that has been 

demonstrated to be clinically actionable as defined by the FDA (PGx information 
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required for safe drug administration) or Clinical Pharmacogenetic Implementation 

Consortium (CPIC) guidelines (category A and B)” (CMS, 2020). One important 

criterion for both Medicare and private companies is not only there needs to be evidence 

that a gene-drug interaction exists, but also whether knowing about the genotype will 

have any clinical utility. In several cases, knowing about a gene-drug interaction does not 

necessarily translate into clinical utility, thus, it will not be justified for reimbursement or 

coverage (CMS, 2020). In the PGx cases where insurance companies have covered, 

strong randomized clinical trials have been performed and shown the effectiveness of 

applying genotyping in drug treatment, either via dose selection or drug selection. It is 

interesting to note that the difference between coverage of PGx tests is also impacted by 

the type and number of randomized clinical trials that each insurance company decides to 

review (Hresko et al., 2012) 

If the benefits of performing personalized dose selection could be advocated by all 

stakeholders, that will be the start of advocacy for Medicare coverage.  Stakeholders are 

kidney transplant centers (i.e., hospitals), patient advocacy groups such as the American 

Kidney Fund (AKF), the National Kidney Foundation (NKF), the government agencies in 

charge of overseeing kidney transplant outcomes and allocation of organs such as Organ 

Procurement and Transplantation Network (OPTN) and United Network for Organ 

Sharing (UNOS) and notably Medicare who pays all the expenses, and physician 

advocacy groups such as American Organ Transplant Association and American Society 
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of Transplantation (AST) who have a vested interest in to improve the outcome of their 

treatments. There are numerous of such advocacy groups, all listed in a thorough 

repository on the NKF webpage. Each of these stakeholders possess different interests in 

advancing better outcomes in kidney transplantation. Two group of stakeholders that 

have the ultimate power of the purse and direct financial interests are hospitals and 

Medicare. In the next section we argue that how the interests of these parties could align 

and materialize the practice of personalized medicine in kidney transplant.  

 

1.3 How Medicare covers ESRD 

It is essential to understand the different parts of Medicare program in order to explore 

possible ways to expand it to prospective treatments.  There are 4 distinct parts in 

Medicare programs: 

1- Part A: Hospital insurance. This part covers the cost of inpatient services such as 

transplant surgery. 

2- Part B: Supplementary medical insurance. This part covers physician services, 

hospital outpatient services, dialysis, medical equipment, preventative services 

and prescription drugs. Generally, patients pay a 20% coinsurance for part B 

insurance, but it may vary based on income level.  

3- Part C: Medicare Advantage. Patients who wish to receive Medicare part A and B 

through a private insurance company can use Part C. The Federal Government 
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pays private health plans that participate in Part C. Additional services that are not 

covered under Part A of B will be provided to patients at additional premium such 

as dental, vision, fitness programs, and any service that can be customized to treat 

a specific condition. 

4- Part D: outpatient prescription drugs. Patients who are enrolled in Part A and Part 

B may also enroll in Part D which provides outpatient prescription drugs via 

private insurance companies.  

As of 2015, 59% of ESRD patients used Medicare as their primary payer, 8% had 

Medicare as secondary payer (covered by employer-sponsored insurance as primary), 

14% were in Part C plans, and 19% had non-Medicare coverage, i.e., they were pre- or 

post-Medicare entitlement (patients in the waiting period for receiving dialysis or patient 

after 36 months of receiving a transplant) (Kirchhoff, 2018). In 2016, Medicare spent 

approximately $61,996 per ESRD patient, compared to $9,889 per non-ESRD patients 

[ibid]. Total Medicare spending on ESRD patients in 2016 was $35.4 billion, which 

equals to 7% of total Medicare spending. This proportion of expenditure on ESRD 

patients (i.e., 7%) has been stable since 2004 (Kirchhoff, 2018).  

It is important to clearly lay out how does Medicare pay for ESRD services and what 

does it exactly cover. When ESRD benefits were first implemented by the US Congress 

in 1972, Medicare paid health care providers separate amounts for testing, supplies, drugs 

and treatments. This system was known as fee-for-service and it significantly improved 
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the conditions of ESRD patients. Although, the fee-for-service system proved to 

significantly increase the cost of kidney care regardless of providing better outcomes. In 

order to control costs, Congress required CMS to implement a prospective payment 

system (PPS) for dialysis services. With PPS, the annual amount of payment to a 

healthcare provider is established in advance at the beginning of the fiscal year, 

regardless of the actual volume of care provided to patients. It has been evident that since 

the implementation of PPS in 2011, the annual increase in Medicare fee-for-service 

spending has been modest, and the spending per-beneficiary has decreased (Kirchhoff, 

2018). Congress has been satisfied with the PPS plan because the growth in Medicare 

spending has been due to the increase in covered lives and not due to higher costs (Hart et 

al., 2019). Although, this still does not reflect the quality of outcomes. In the case of 

kidney transplantation, Medicare provides reimbursement for medical services performed 

in a hospital such as surgery, medication, tests, and in-patient recovery. To be more 

specific, Medicare Part A covers the cost of performing surgery with all the associated 

treatments including laboratory tests. Medicare Part B covers the cost of 

immunosuppressive drugs. Patients are responsible to pay 20% of the Medicare-approved 

expenses unless they fall below the minimum income level and are covered by 

complimentary Medicaid coverage for the 20% co-payment.  

Patients do not pay for any Medicare-approved laboratory tests (Kirchhoff, 2018).  

Laboratory tests are defined as “medically necessary clinical diagnostic laboratory tests” 
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ordered by a physician, which includes certain blood tests, urinalysis, tests on tissue 

specimens and screening tests [ibid]. Genetic test for pharmacogenomics purposes have 

not been covered by Medicare, but there are several arguments from numerous 

stakeholders to encourage reimbursement of such genetic tests (Hresko et al., 2012). In 

this paper, I will describe the current knowledge of personalized medicine in the field of 

kidney transplantation and its benefits and challenges in transplant outcomes. This paper 

will describe the framework of personalized medicine in kidney transplantation, then 

provide a policy perspective argument for Medicare to cover the cost of such practices in 

kidney transplantation. 

 

1.4 An Argument for Medicare Payment for Personalized Medicine in Kidney 

Transplantation 

Based on the studies cited earlier, there is no doubt about the impact of CYP3A5 on 

Tacrolimus effectiveness for kidney transplant patients.  What is lacking is more 

randomized clinical trials (RTC) to show the clinical benefits of applying genotype-

guided Tac dose selection. It will be prudent for CMS or other healthcare agencies like 

the NIH to provide more grants for research in order to conduct more RCTs. Since the 

existing studies point towards the efficacy of genotype-guided treatments, distributing 

grants is justified, because it will not be solely an investigation in the dark, but the 

existing path does encourage favorable outcomes for this investment. If the efficacy of 
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PGx testing for Tac can be established, cost-effectiveness can then be analyzed. Based on 

the small cost for targeted genotyping, circa $200 per sequencing and the associated 

overhead costs, the benefits strongly surpass the costs. If the benefits include one day 

shorter hospital stay (an amount equal to on average $6000-10,000 per day) and longer 

graft survival and fewer rejections, demonstrating cost-effectiveness will not be difficult. 

On the other hand, there needs to be advocacy from the non-government stakeholders to 

prepare the conditions in which Medicare can cover the costs of PGx testing for kidney 

disease. Notably, one of the most important criteria for PGs coverage is labeling. While it 

is important to have FDA’s approval on drug-gene interactions, printing PGx information 

on the drug package seems to be the most important criterion based on Hreski’s survey. 

Having this label on drug packaging is a necessary condition, but not sufficient. It is upon 

the drug manufacturers to print such information on the packaging. This would 

potentially also benefit drug manufacturers by having their drugs experience targeted 

dose selection for higher efficacy. Since the adoption of PGx testing by Aetna and 

Humana, there has been a vast amount of data regarding the utility of such coverage. This 

could be an incentive for Medicare since these private companies have been bearing the 

initial cost of investigation and evidence generation. The last challenge for adopting PGx 

as a routine practice in kidney transplantation, is the fact that patients might end up facing 

a co-payment cost, in the case of Medicare usually close to 20%. As noted before, for 

many patients who already face financial difficulties, this could be an extra burden.  
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Based on an opinion piece by Geruso et al. in the Harvard Business Review, they studied 

the impact of PGs testing on premiums or co-pays (Geruso et al., 2018). They reached the 

conclusion that the increase in premiums and co-pays are significantly low and compared 

to other medical expenses it is minuscule. They also argue that the benefits of PGx in the 

short and long run can have direct financial return for patients, notably shorter hospital 

stays and lower adverse drug reactions.   

Due to the high cost of ESRD for Medicare, there has been a great emphasis on quality of 

care and outcomes. Short term rejection rate remains an important criterion for evaluating 

transplant centers, but Medicare has also shifted its attention towards long term survival 

rate (Kirchhoff, 2018). Kidney transplantation is more cost-effective than dialysis after 

3.1 years, thus it is much more financially beneficial to improve graft survival rate 

beyond 5 years. Using PGx tests to improve dose selection at the very beginning of 

transplant surgery is a viable strategy to improve graft survival rate. The recent move 

from Congress to cover life-time immunosuppressive medication coverage noted the 

benefits of long-term care, e.g., the cost of returning to dialysis due to kidney failure is 

around eight times the cost of immunosuppressive medication. If all stakeholders use the 

momentum created in the US Congress and provide more evidence on the benefits of 

PGx testing for kidney transplantation, it is not farfetched to see personalized medicine as 

a routine practice in kidney transplantation.  
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Table-2: Coverage Policies for Pharmacogenomics Tests by Insurer 
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PAPER #2: The Role of Gut Microbiome in Personalized Optimum Dose Selection 

of Tacrolimus for Kidney Transplant Recipients 

 

Abstract 

This paper introduces a new personalized dose selection model for Tacrolimus based on 

gene markers and gut microbiome profile. Previous studies have explored strong 

associations between Tacrolimus dosing after kidney transplant operation and the 

abundance of certain species of bacteria in the gut. There have been no attempts to translate 

the knowledge of gut microbiome into clinical utility. By recruiting 10 kidney transplant 

patients from the George Washington University Hospital, we collected the first database 

containing pre- and post-transplant gut microbiome data paired with targeted gene 

sequencing of CYP3A5 for the purpose of developing the first gene/microbiome-guided 

Tacrolimus dose selection model. The pre-transplant relative abundance of Phocaeicola in 

days£10 was negatively associated with optimal Tac dose and the increase in relative 

abundance of Bacteroides after transplantation in 11£days£90 was positively associated 

with optimum Tac dose with p<0.01. The bias and precision of our model were 

significantly improved compared to those of the current state-of-the-art optimum Tac dose 

model, i.e., Jacobson et al. (p=0.05 one-sided Wilcoxon signed-rank test). Further 
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validation of this model by an independent cohort of patients is required. Conducting 

clinical trials to investigate weather using this model translates into improved outcomes 

will determine the utility of this model. 

 

 

2.1 Introduction 

 

2.1.1 Tacrolimus 

Tacrolimus (Tac) is the most widely used post-transplant maintenance 

immunosuppression regimen in the United States [1]. Tac has a narrow therapeutic 

window, i.e., low exposure leads to graft rejection and high exposure leads to toxicity [2]. 

That is why Tac trough levels are routinely monitored to be in the therapeutic range by 

continuously adjusting the dose.  Therapeutic levels are usually defined as 8-12 ng/ml for 

the first 3 months and 6-10 ng/ml for months 3-6 post-transplant, although each 

transplant center follows its own unique protocol [3]. Reaching the therapeutic level by 

dose adjustment is particularly difficult due to the wide inter-individual variability of 

Tac. This variability is presumably caused by the expression of cytochrome gene 

P4503A5 (CYP3A5), which affects Tac’s pharmacokinetics [3].  It is known that the 

expression of CYP3A5*1 allele is associated with high metabolization of Tac, hence 

higher dose of Tac is needed to reach therapeutic levels [4].  Studies show that African 
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Americans are generally high expressors of CYP3A5 and need higher dose of Tac to 

reach therapeutic levels compared to European Americans [2]. Currently transplant 

centers do not practice genotype-guided dose selection. A trial-and-error approach with 

routine Tac through level monitoring is practiced instead [3]. Some centers apply a rule 

of thumb approach by selecting the initial Tac dose as 0.10-0.30 mg/kg per day in two 

divided doses [5]. Although selecting Tac dose based on bodyweight is recommended by 

the US Food and Drug Administration (FDA), recent studies have shown that this 

approach is not effective, particularly in patients who are obese [5, 6].  

Studies have shown that a lack of drug management for immunosuppressive medication 

results in sever post-transplant complications such as infections, delayed graft functions 

and acute rejections for kidney transplant recipients [7, 8]. Having a strategy to select 

optimal initial Tac dose is critical because achieving an early immunosuppressive 

therapeutic level is proven to significantly decrease the risk of acute rejection [7]. 

Additionally, a personalized Tac dose selection strategy is critical in reducing intrapatient 

Tac trough fluctuations and increasing time in therapeutic range. Studies show that higher 

intrapatient Tac trough fluctuations (coefficient of Variance greater than 40%) and lower 

time spent in therapeutic range (less than 40%) significantly increases the risk of graft 

loss [9, 10]. 

Lack of an optimal Tac dose selection strategy has encouraged researchers to adopt more 

advanced approaches for initial Tac dose selection, particularly through genotyping [2]. 
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Such personalized approaches are proven to be significantly effective in reaching Tac 

therapeutic levels in fewer days and with less dose adjustments [2]. Among the 

personalized Tac dose selection models, Jakobson et al. from the of University of 

Minnesota have developed the most seminal model, supported by the National Institute of 

Allergy and Infectious Disease (NIAID). This genotype-guided dose selection model 

incorporates few clinical and center-specific factors in order to make it practical and easy 

to use. This model has been validated by the same team in a retrospective comparison 

study on 795 patients to predict initial Tac trough levels and optimum Tac (Prograf) dose. 

The personalized model of Jakobson was significantly superior to the basic clearance 

approach for the first 6 months post-transplant with low bias and high precision [3]. 

Equation 1 shows the Jakobson model for prediction of Tac apparent clearance (CL/F) in 

the first 6 months post-transplant. Equation 2 shows the total daily dose requirement 

(TDD) based on the predicted Tac clearance and the desired goal for trough 

concentration. 

 

 

 

 

 

 

Equation (1)  
CL/F (l h-1) = 

38.4´[(0.86, if days 6-10) or (0.71, if days 11-180)] 
´[(1.69, if CYP3A5*1/*3 genotype) or (2.00, if CYP3A5*1/*1 genotype)] 
´(0.7, if receiving a transplant at a steroid sparing center) 
´[(age in years/50)-0.4] 
´(0.94, if CCB is present) 

 
CCB=calcium channel blocker 
CL/F= Tac apparent clearance 
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The example presented by Jakobson et al. is the following: in order to prospectively 

select the optimal Tac dose for a 50-year-old patient with 85 kg on day 3 post-transplant 

with a Tac trough level goal of 10 ng/ml and a genotype of CYP3A5*1/*1 in a CCB and 

steroid using center, we first calculate the CL/F and then TDD. 

CL/F (l h-1) = 38.4´(2 for CYP3A5*1/*1 genotype)´[(50/50)-0.4]´(0.94 for CCB 

use)=72.2 

TDD (mg) = [72.2´ 10 ng/ml ´ 25 h]/1000=17.5 

The optimal daily Tac dose for this patient is 17.5 mg or 8.5-8 mg twice daily. If we use 

the FDA’s weight-based dosing method (0.1 mg/kg/day) the predicted dose would be 

equal to 8.5 mg per day, which would significantly under-dose the patient. Jakobson’s 

model has not been tested in a prospective trial yet. 

 

2.1.2. Gut Microbiome and Kidney Transplant 

One element that has been absent from personalized Tac dose selection models is the 

human gut microbiome. There are more than 100 trillion microbial cells in the human gut 

which significantly influence the host immune system and overall health [17].  Even the 

Equation (2)  
TTDJacobson (mg) = 

[CL/F(I h-1)´Tac trough goal (ng ml-1)´24 h]/1000 
 
TDD= total daily dose 
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smallest change in the diversity and composition of the human gut microbiome could 

affect the host health [18]. It has been established that kidney transplantation leads to 

microbiome dysbiosis caused by the administration of immunosuppressive and antibiotic 

drugs [12, 13]. Microbiome dysbiosis is associated with several post-transplant 

complications such as increased risk of infections, diarrhea and graft failure [12, 13]. 

Examples of bacterial taxa that have proven association with kidney transplant outcomes 

are as follows, Janthinobacterium, Clostridia, Bacilli, Lactobacillales which are 

associated with spontaneous tolerance; numerous genera in Lachnospiraceae which are 

negatively associated with serum creatinine and blood urea nitrogen (BUN); Butyrate-

producing bacteria are associated with less development of respiratory viral infections 

and Lactobacillus plantarum which is associated with reduced risk of clostridium 

difficile (C. Diff) infection incidence [14]. It is known that at least 30% of all non-

antibiotic drugs alter the abundance of at least one bacterial strain [18]. Lower gut 

bacterial diversity has been associated with reduced immune functioning and metabolic 

syndrome [18]. Recent studies have explored the possibility of a significant connection 

between human gut microbiome and the metabolism of drugs, particularly drugs which 

impact the immune system such as Tac [15, 16, 17]. No direct causal relationship has 

been proven in any study regarding microbiome dysbiosis and drug metabolism and 

transplant outcomes. What makes this relationship difficult to study is the complex and 

bidirectional dynamic between gut microbiome, immunosuppressive medication, and 
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antibiotics, i.e., initial Tac and antibiotic administration causes microbiome dysbiosis, 

and in return, microbiome dysbiosis affects the immune system via a variety of pathways 

and manipulates dose adjustments of immunosuppressive medication and antibiotic 

efficacy [13].  

 

2.1.3 Gut Microbiome and Tacrolimus 

Post-transplant dysbiosis of the gut microbiome caused by the administration of 

antibiotics and immunosuppressants can result in the abundance of certain bacterial 

communities that can metabolize immunosuppressants into less potent metabolites [14]. 

For example, Lee et al. discovered a significant association between Faecalibacterium 

prausnitzii, which is one of the most abundant bacterial species in the gut microbiome, 

and Tac dose in the first month after kidney transplantation [15]. Patients with higher 

abundance of Faecalibacterium prausnitzii in the first week of transplantation demanded 

higher dose of Tac at 1 month [15]. Lee et al. opines that Tac absorption and/or 

metabolism may be affected by the colonic mucosa since a healthy colonic mucosa 

requires butyrate from bacterial sources such as Faecalibacterium prausnitzii. An 

additional study reached the conclusion that Faecalibacterium prausnitzii can metabolize 

Tac into a less potent novel metabolite M1 (9-hydroxy-tacrolimus), which is 15-fold less 

potent than Tac in inhibiting the proliferation of activated T cells [16].  
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Studies have unanimously reached the conclusion that if drug-microbiome interactions 

could be predicted for every patient, it will facilitate the selection of optimal treatments 

and dose which leads to fewer dose adjustments and adverse reactions [18]. Although 

many studies have explored drug-microbiome interactions, there is a major lack of 

translation into clinical use [18]. A framework that can incorporate clinical information, 

gene markers and microbiome profile of a given patient into a personalized dose selection 

practice does not exist.  Such personalized practices must be clinically relevant, cost-

effective, fast and non-invasive to be accepted [18]. This paper is an attempt to 

incorporate gut microbiome profile in a personalized Tac dose selection model. This will 

be based on the genotype-guided Tac dose selection model of Jacobson et al. and it will 

improve the overall performance of that model. 

 

 

2.2 Methods 

 

2.2.1 Population 

Seventeen kidney transplant patients from The George Washington University Hospital 

(GWUH) were consented and enrolled in this study. IRB was approved by the GWUH 

Office of Human Research (#NCR191914) and George Mason University IRB  
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#1906208-1. Summary of clinical and demographic information is presented in table 1. 

Exclusion criteria were pediatric, pregnant, and simultaneous kidney-pancreas recipients.  

All patients underwent induction therapy based on test results such as Panel of Reactive 

Antibodies (PRA) and Donor Specific Antibodies (DSA). DSA is a measure to predict 

antibody-mediated rejection. PRA is a measure to determine the potential level of 

sensitization of a given patient towards the pool of kidney donors, as a result of prior 

exposure to external HLA antigens during blood transfusions, pregnancies, or previous 

organ transplantations. If a patient possesses a high PRA, he/she will undergo a 

desensitization process to reduce the risk of graft rejection. Patients who were highly 

sensitized received Velcade (Bortezomib) preoperatively. All patients received two doses 

of Thymoglobulin, while sensitized patients received three doses. Following 

Thymoglobulin induction, all patients received Simulect. Induction therapies are pre-

medicated with methylprednisolone, acetaminophen, and diphenhydramine. Induction 

therapy is the process of administering immunosuppressive therapy at the time of kidney 

transplantation to reduce the risk of allograft rejection. After the transplant surgery, all 

patients started with 4 mg of Tac. On a case-by-case basis, some patients were subject to 

antibiotics (Atovaquone) and stimulant laxatives. 
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2.2.2 Sample Collection and Sequencing 

For each patient a series of sample collection activities took place. 3mL of blood was 

drawn for gene sequencing at the time of routine clinic visit. Blood was stored in ZYMO 

DNA/RNA Shield Blood Collection tubes which ensure sample stability during 

storage/transport at ambient temperatures without the need for refrigeration or specialized 

equipment. The nucleic acids (DNA & RNA) in samples are preserved at ambient 

temperature (DNA >1 year, RNA up to 1 month). Targeted gene sequencing was 

performed by Illumina Next Generation sequencer by The Sequencing Center lab in Fort 

Collins, CO. The list of targeted genes is available in appendix A. We focused on the 

expression of the gene CYP3A5. Because it is well established that the cytochrome 

P4503A5 (CYP3A5)*1 allele singlehandedly has the most significant impact on 

metabolization of Tac [3]. The cytochrome P4503A5 has 25 allelic expressions (from *1 

to *9) but only the alleles *1, *3, *6 and *7 are frequently found in the population. 

Therefore, the existence of single nucleotide polymorphisms CYP3A5*3(rs776746, 

g.6986A>G), CYP3A5*6 (rs10264272, g. 14690 G>A) and CYP3A5*7 (rs41303343, 

g.27131-27132insT) were analyzed. Subjects who did not express CYP3A5*3, *6 or *7 

alleles were categorized as CYP3A5*1/*1 genotype and those who expressed one 

CYP3A5*3, *6 or *7 allele were categorized as CYP3A5*1/*3, *1/*6 or *1/*7 genotype, 

respectively.  
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Two stool samples were collected per patient for gut microbiome sequencing. The first 

stool sample was collected 1 week before transplant and the second stool sample was 

collected 1-2 months post-transplant. Collection was performed by subjects by using a 

paper feces catcher and a coring brush which eliminated the risk of contamination. Stool 

samples were stored inside ZYMO DNA/RNA Shield Fecal Collection Tubes–DX. These 

tubes preserve the bacterial communities in ambient temperature (DNA>2 years, RNA>1 

month). Whole DNA of bacteria was sequenced using shotgun metagenomics to the 

strain level by CosmosID lab in Germantown, MD (https://www.cosmosid.com). For 

each patient, only the bacterial taxa with relative abundance more than 1% were included 

in the analysis, which is the common practice in gut microbiome studies to exclude 

irrelevant taxa [15]. Appendix C shows the 76 remaining genera. Shannon diversity index 

for both pre- and post-transplant stool sample was calculated, and the difference was 

analyzed. Shannon diversity index is a popular metric in biology for measuring the 

number of species living in a sample (richness) and their relative abundance (evenness). 

The number of unique species that exist in an environment represents the richness of that 

environment. But that is not enough to measure the diversity of a given environment; 

because if one species dominates the whole environment it will not be a diverse 

environment. That is why in addition to richness, Shannon diversity considers the relative 

abundance of the species to measure the evenness of the environment as well. 
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2.2.3 Clinical data 

Clinical data was collected from electronic health records in Cerner and deidentified per 

protocol. Among which, Tac dose and Tac trough levels were the most critical entries.  

All Tac dose entries (total daily dose in Mg) was collected continuously from the day of 

transplant surgery until day 90 post-transplant. Envarsus was the dominant 

immunosuppressant drug in this transplant center. Tac doses were routinely adjusted by 

transplant physicians to reach therapeutic levels. Tac trough levels were measured by the 

George Washington University Hospital Lab. Trough levels of the first day of kidney 

transplant and trough levels measured in the afternoon were excluded to reflect true and 

stable concentration levels. Four time frames were defined for the analysis, i.e., 2£days£5 

,6£days£10, 11£days£30, 31£days£90. For each time frame, observed optimal Tac dose 

was defined as the average administrated dose of Tac in that time frame, which 

corresponded to the occurrence of stable therapeutic Tac levels (8-12 ng/ml). Our model 

was developed based on the observed optimal Tac doses in order to predict future optimal 

Tac doses based on gut microbiome taxa and Jacobson’s initial total daily dose. A future 

study shall validate this model based on a testing set. 
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2.2.4 Statistical Analysis 

Relevant bacterial taxa were selected by plotting their pre-transplant relative abundance 

and the change in their relative abundance against observed optimal Tac dose for each 

subject. Pearson correlation coefficient was calculated for bivariate analysis in all levels 

of species, genus, and family. Taxa of genus level was ultimately selected for analysis 

because in the species level there were a significant number of unknown species. 

Significant bacterial genera were selected for possible inclusion in the model with p-

value<0.05, graphs 1 to 4 in appendix B. We used pre-transplant relative abundance of 

bacteria for predicting optimal Tac dose for days 2-10 since the pre-transplant 

microbiome profile is the closest to that time frame. For predicting the optimal Tac level 

for days 11-90, we used the change in relative abundance of bacteria, since pre- and post-

transplant relative abundances showed no correlation with observed optimal tac dose.  

Ordinary Least Square (OLS) linear regression was used to add the relevant microbiome 

variables to the Jacobson model, previously presented in equations 1 and 2. The total 

daily dose derived from the Jacobson model for the ith subject is named TDD-Jacobi. The 

observed optimal Tac dose for the ith subject (Dosepred,i) is the dependent variable of our 

model. The results of the final models were compared to the Jacobson model via bias and 

precision. Prediction error for ith patient (PEi) was defined as the difference between 

predicted and observed dose, shown in equation 3. We followed the definitions of 
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Jacobson et al. for bias and precision [3]. Bias was defined as the median prediction error 

and precision as the median absolute prediction error, shown in equation 3. 

 

 

 

 

 

 

 

 

 

To compare the outcome of our model against Jacobson’s model we evaluated relative 

predictive performance in all the four time frames. One-sided Wilcoxon signed-rank test 

was used on the paired prediction errors for relative bias and on paired absolute 

prediction errors for relative precision [25]. Null hypothesis was set as bias and precision 

of the two models are similar against the alternative hypothesis that bias and precision of 

our model is less than Jacobson’s. A p-value<0.01 was evidence that the models do not 

have similar predictive power and our model is superior at predicting optimal Tac dose in 

each time frame. 

 

Equation (3)  
PEi = Dosepred,i-Doseobs,i. 
Bias = median (PEi) 
Precision = median (|PEi|) 
 
PEi = prediction error for ith patient. 
Dosepred,i = predicted optimal Tac dose for ith patient.  
Doseobs,i = observed optimal Tac dose for ith patient. 
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2.3 Results 

All patients possessed the CYP3A5*1/*1 allele which made them high expressors of 

CYP3A5.  This controls for the effect of gene markers on Tac dosing which has been 

absent in all previous gut microbiome studies. Various models were examined to reach 

the most relevant, simple, and efficient models. Table 1 shows the results of the OLS 

models for predicting optimal Tac dose in the four time frames. The variable Phocaeicola 

represents the pre-transplant relative abundance of Phocaeicola in the form of 

percentage. The variable DBacteroides represents the change in relative abundance of 

Bacteroides from pre-transplant to post-transplant in the form of percentage. Each 

column represents on OLS regression results. The rows are independent variables. The 

value of TDD(Jacobson) is calculated separately based on equation 2. The adjusted R-

squared value for all models were above 60%. The last 4 rows of table-1 compares the 

paired bias and precision of each OLS prediction of optimal Tac dose vs. those of 

Jacobson. The overall significance of each regression (F-Statistic) is less than 0.01, which 

rejects the hypothesis that all regression coefficients are equal to zero. The n for each of 

the regressions was 17, with 2 independent variables in each regression, and the 

outcomes of the regression (F-statistic and Adj-R2) justified the validity of using the OLS 

model. 
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Table 3: OLS Regression Results for Optimal Tac Dose 
 Dependent Variable 
 
 
Independent 
Variables: 

Optimal 
Dose, 
2£days£5 

Optimal 
Dose, 
6£days£10 

 Optimal 
Dose, 
11£days£30 

 Optimal 
Dose, 
31£days£90 

TDD-Jacob2-5days 1.11 
(0.98) 

     

TDD-Jacob6-10days  1.76 
(1.56) 

    

TDD-Jacob11-180days    3.32 
(2.86) 

 2.07 
(2.89) 

Pre-tx abundance of  
Phocaeicola 

-74.63** 
(22.15) 

-105.39** 
(20.42) 

    

DRelative 
abundance of 
Bacteroides 

   46.17** 
(12.77) 

 49.08** 
(12.92) 

Constant 4.74 5.02  -16.06  -7.57 
Prob>F 0.01 0.009  0.007  0.008 
Adj.R2 0.64 0.66  0.68  0.67 
Bias 0.49 0.55  -0.11  -1.47 
Precision 1.49 2.44  2.56  3.58 
Jacobson’s Bias -2.83 -4.95  -3.18  -0.85 
Jacobson’s 
Precision 

2.99 4.95  3.66  2.58 

**p-value<0.01 

 

 

 

For predicting optimal Tac dose in days£10, the pre-transplant abundance of Phocaeicola 

was the most significant variable with p<0.01. For predicting optimal Tac dose in 
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days³11, the change in the relative abundance of Bacteroides was the most significant 

variable with p<0.01. The bias and precision of our model were significantly less than 

those of Jacobson et al., with p<0.05. for all time frames in one-sided Wilcoxon signed-

rank test. The graphs below show how our model improves the predictive power of 

Jacobson’s model by having less prediction errors. As evident in figure 5 to 8, blue dots 

(predicted values) are much closer to the red diamonds (observed values) compared to the 

hallow green dots (Jacobson’s predictions). 
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Figure 1-a: Predicted values vs. observed values for days 2-5 
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Figure 1-b: Predicted values vs. observed values for days 6-10 

Figure 1-c: Predicted values vs. observed values for days 11-30 
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Figure 1-d: Predicted values vs. observed values for days 31-90 
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Applying the results of our models on the four time frames, we propose the following 

personalized optimal dose selection model for Tacrolimus. 

 

 

 

 

 

 

 

To further elaborate the above equation, we use the same example used in Jacobson’s 

model. A 50-year-old patient with 85 kg on day 3 post-transplant with a Tac trough level  

 

 

goal of 10 ng/ml and a genotype of CYP3A5*1/*1 in a CCB and steroid using center, and 

a pre-transplant relative abundance of %6 Phocaeicola. To calculate the predicted 

optimal Tac dose, we first find TDDJacobson for this case, which is 17.5 mg. Afterwards we 

follow the streps of equation 4. 

TDD = 17.5 ´ (1.11, if 2£days£5) – (74.63´0.06, Phocaeicola if 2£days£5) + (4.74, if 

2£days£5) = 19.7 mg/day.  This example shows that Jacobson’s model is underdosing the 

patient, and it needs to be increased by 2.2 mg/day. 

Equation (4)  
TDD (mg/day) = 

TDDJacobson ´ [(1.11, if 2£days£5) or (1.76, if 6£days£10) or (3.32, if 11£days£30) 
or (2.07, if 31£days£90) 
- (74.63 ´ pre-tx relative abundance of Phocaeicola, if 2£days£6) 
- (105.39 ´ pre-tx relative abundance of Phocaeicola, if 6£days£10) 

 + (46.17 ´ change in relative abundance of Bacteroides, if 11£days£30) 
 + (49.08 ´ change in relative abundance of Bacteroides, if 31£days£90) 

+ [(4.74, if 2£days£6) or (5.02, if 6£days£10)] 
-  [(16.06, if 11£days£30) or (7.57, if 31£days£90)] 

 
TDD = total daily dose (mg/day) 
TDDJacobson = predicted total daily dose by Jacobson model defined by equation 2. 
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2.4 Discussion 

Using the above example, our model does not prescribe a definite 19.7 mg/per Tac dose 

for the given patient on day 3, it rather presents a guideline to the physician to aim for 

19.7 mg and plan dose adjustments towards this value. Our model has shown to be more 

accurate than Jacobson in predicting optimal Tac doses by having a significantly smaller 

bias and precision error. It is, however, critical to note that the use of bacterial abundance 

as a predictor does not imply a causal relationship between Tac metabolization and 

bacterial genera. Based on our analysis, Phocaeicola and Bacteroides are significantly 

associated with optimal Tac dose levels, Phocaeicola for the first 10 days and 

Bacteroides for days 11-90.  This association is in line with previous research on the 

effects of Phocaeicola and Bacteroides on health outcomes. Various species of the 

genera Phocaeicola and Bacteroides are among the most abundant species in the human 

gut, about 30% of the human gut microbiota, and they play a critical role in the balance 

of the colonic ecosystem [20]. They are known to regulate the degradation of complex 

heteropolysaccharides to small chain fatty acids and the synthesis of vitamins and 

bioactive compounds [19]. Bacteroides particularly has been subject to significant 

attention, and it has been considered as the next generation probiotics candidate due to its 

involvement in host health [20]. Bacteroides usually dominates the human gut 

microbiome by 20-50% of the total genera [20]. Lee et al. have previously studied the 

role of Bacteroides in kidney transplant outcomes. Lower abundance of Bacteroides post-
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transplant was associated with diarrhea and acute rejection [21]. This is particularly of 

interest since our results indicated a positive correlation between the increase in the 

abundance of Bacteroides post-transplant and higher optimal Tac dose in the days 11-90 

post-transplant which might potentially have decreased the risk of rejection. A skin 

transplant study on mice showed that fecal transplant of high-dose Tac-treated mice 

which contains high abundance of Bacteroides into low-dose Tac-treated mice will 

increase the allograft survival rate [22].   

In an in-vitro study by Guo et al., they reached the same conclusion as Lee et al. 

regarding F. prausnizii which produces less potent metabolites, thereby requiring higher 

doses of Tac. But they also found that Bacteroidales, an order of bacteria which includes 

Bacteroides genus, produce inactive metabolites as well, which correlates with 

demanding higher Tac dose for efficacy [23]. The aforementioned studies support our 

choice of using Bacteroides as a predictor for optimal Tac dose.  

A point of weakness of our study is that it has been limited to a small sample size (n=10) 

while we plan to increase the size to 50 within 12 months. It also requires validation by a 

cohort of new patients in order to test the model. 
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Appendix A: list of targeted genes 

 

CYP3A5 
CYP3A4 
CYP3A7 
CYP2C19 
FMO3 
C6 
ABCB1 
HSD11B1 
NR1I2 
IL10 
IL12A 
LEP 
POR 
HUS1 
UGT1A9 
HPRT1 
UGT1A9 
SLCO1B1 
NFATC1 
ABCC2 
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Appendix B: Demographic Information 

 

 

 

 

 

 

 

 

 

 
Characteristics 

Measure at time of transplant 
(N=17) 

Age (Mean±SD) 58.9±11.01 
BMI (Mean±SD) 33.35±3.78 
Male (n, %) 6 (60%) 
African American (n, %) 6 (60%) 
Live donor (n, %) 6 (60%) 
Previous Transplant (n, %) 2 (20%) 
Dialysis (n, %) 8 (80%) 
Cold Ischemic time hours (Mean/Median) 9.24/1.91 
CPRA (Mean±SD) 45.36±43.14 
History of hypertension (n, %) 10 (100%) 
Diabetes (n, %) 4 (40%) 
Hepatitis C (n, %) 2 (20%) 
High risk CMV (n, %) 5 (50%) 
High risk EBV (n, %) 0 (0%) 
Creatinine (Mean±SD) 6.45±4.69 
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Appendix C: Correlation Between Optimal Tac Dose and Relative Abundance of 
Bacterial Genera 
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Figure c-1: Association between Phocaeicola and observed optimal Tac dose in days 2-5 

Figure c-2: Association between Phocaeicola and observed optimal Tac dose in days 6-10 
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PAPER #3: The Role of Gut Microbiome in Personalized Probiotic Regimens and 

Prediction of Outcomes for Kidney Transplant Recipients, controlling for CYP3A5 

 

Abstract 

The gut microbiome and its impact on human health has been the subject of interest among 

researchers. Diversity and composition of gut microbiome significantly changes after 

kidney transplantation. Prior studies show that gut microbiome dysbiosis has significant 

effects on transplant outcomes such as spontaneous tolerance, acute rejection, serum 

creatinine and blood urea nitrogen, infections and diarrhea. In this paper, we investigate 

which genera of bacteria exhibit the significant changes in relative abundance after kidney 

transplantation among high expressers of CYP3A5 gene, and controlling for age, race and 

gender by recruiting 10 kidney transplant patients. Association between gut microbiome 

dysbiosis and Tacrolimus trough level fluctuation and AlloSure Donor Derived Cell-free 

DNA were analyzed. Shannon diversity decreased after the transplant operation for all 

subjects. The average relative abundance of Alistipes decreased by 4% with p=0.01 across 

all subjects and the average relative abundance of Bacteroides increased by 8% with 

p=0.03 for African Americans. Every 0.1% increase in relative abundance of 

Faecalibacterium in African Americans after transplant surgery was associated with 20% 
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increase in Tac CV till 60 days post-transplant (p=0.01). After transplant surgery, every 

1% increase in the relative abundance of Lachnospiraceae was associated with 1.08 units 

drop in AlloSure dd-cfDNA levels controlling for patient age (p=0.05). 

 

 

3.1 Introduction 

 

3.1.1 The Gut Microbiome 

There are more than 100 trillion microbial cells (mostly bacteria) in the human gut, which 

significantly influence the host immune system, metabolism and overall health [17]. To 

compare the scale of microbiome collective genomes to human genome, the former 

encodes more than three million genes, actively producing thousands of metabolites, 

while the latter consists of 23000 genes [25]. Here we will use the term gut microbiome 

as the collective genomes of the bacteria in human gut, and gut microbiota as the 

community of bacteria itself although they are usually used interchangeably in the 

literature. Studies have shown that even the smallest change in the diversity and 

composition of the humane gut microbiota could affect the host health [18]. This is due to 

the involvement of gut microbiota in the fermentation of non-digestible substrates that 

regulate the production of short chain fatty acids such as acetate, propionate, and butyrate 

to modulate biological responses of host gastrointestinal health [25, 26]. When the gut 
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microbiota is in symbiosis, it can provide the host with various metabolic capabilities that 

promotes overall health. It is established that dysbiosis in the gut microbiota is associated 

with the pathogenesis of intestinal and extra-intestinal disorders [17]. A species-rich gut 

ecosystem is more likely to be robust against environmental interventions such as surgery 

and medication [25]. Diversity is particularly important because, in the absence of certain 

species due to intervention, other functionally related species can compensate for the 

function of absent species [25]. In this paper we focus on bacterial communities. It is 

known that the factors influencing gut microbiome variety among humans are age, sex, 

ethnicity, genetics, and environmental factors such as diet, geography, and medication 

[17]. 

 

3.1.2 Gut Microbiota in Kidney Transplant  

Both human and animal studies show that kidney transplantation leads to microbiome 

dysbiosis in the gut [27]. This is mainly caused by the administration of 

immunosuppressive and antibiotic drugs [12, 13]. Microbiome dysbiosis is associated 

with several post-transplant complications, such as increased risk of infections, diarrhea, 

interstitial fibrosis, reduced tolerance, modification of immunosuppressant levels in blood 

and graft failure [12, 13, 27]. Examples of bacterial taxa that have proven association 

with kidney transplant outcomes are as follows, Janthinobacterium, Clostridia, Bacilli, 

Lactobacillales are associated with spontaneous tolerance; lower abundance of 
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Bacteroidetes at the phylum level is associated with acute rejection; numerous genera in 

Lachnospiraceae are negatively associated with serum creatinine and blood urea 

nitrogen; Lactobacillus plantarum is associated with reduced risk of clostridium difficile 

infection, and reduction in genera Ruminococcus, Dorea, and Coprococcus are associated 

with incidents of diarrhea [14, 27]. Lower gut bacterial diversity has been associated with 

reduced immune functioning and metabolic syndrome [18]. No direct causal relationship 

has been proven in any study regarding microbiome dysbiosis and transplant outcomes. 

What makes this relationship difficult to study is the complex and bidirectional dynamics 

between gut microbiome, immunosuppressive medication, and antibiotics, i.e., initial 

immunosuppressive and antibiotic administration causes microbiome dysbiosis, and in 

turn, microbiome dysbiosis affects the immune system via a variety of pathways and 

manipulates dose adjustments of immunosuppressive medication and antibiotic efficacy 

[13]. The same relationship exists for the gut microbiota composition and graft rejection 

or infections, i.e., microbial dysbiosis could facilitate rejection or infections, which in 

turn, rejection or infection cause more microbial dysbiosis. Salvadori et al. have 

summarized all the relevant findings of the role of microbiota in kidney transplant [27].  

In this pilot study, we will look at the role of gut microbiota in prediction of post kidney 

transplant outcomes and measures to personalize nutritional treatments. We use time in 

Tacrolimus blood level fluctuation and AlloSure Donor Derived Cell-free DNA (dd-

cfDNA) as proxies for transplant outcome. Prier studies have established that Tacrolimus 
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blood level fluctuation is strongly associated with graft rejection and failure, and high 

levels of dd-cfDNA is also associated with risk of active rejection [28, 38]. Therefore, 

these measures will be used as proxies for graft rejection or failure. 

 

3.1.3 Tacrolimus Blood Level Fluctuation and Time in Therapeutic Range 

Tacrolimus (Tac) is the most widely used post-transplant maintenance 

immunosuppression regimen in the United States [1]. Tac has a narrow therapeutic 

window, i.e., low exposure leads to graft rejection and high exposure leads to toxicity [2]. 

Tac trough levels are routinely monitored to be in the therapeutic range by adjusting Tac 

dose. Therapeutic levels are usually defined as 8-12 ng/ml for the first 3 months and 6-10 

ng/ml for months 3-6 post-transplant, although each transplant center follows its own 

unique protocol [3]. Reaching the therapeutic level by dose adjustment is particularly 

difficult due to the wide inter-individual variability of Tac. This variability is presumably 

caused by the expression of cytochrome gene P4503A5 (CYP3A5) which affects Tac’s 

pharmacokinetics [3].  It is known that the expression of CYP3A5*1 allele is associated 

with high metabolization of Tac, hence higher dose of Tac is needed to reach therapeutic 

levels [4].  Prior studies show that African Americans (AA) are generally high expressors 

of CYP3A5 and thus need higher dose of Tac to reach therapeutic levels compared to 

European Americans [2]. Prior studies also show that Tac blood level fluctuation is 

strongly associated with acute rejection and poor kidney graft function [28]. Park et al. 
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show that Coefficient Variability (CV) of Tac trough levels above 33.7% in the 1st year 

post-transplant is significantly associated with allograft loss [29]. Coefficient Variability 

(CV) is a statistical measure for calculating fluctuation which defined as the ratio of the 

standard deviation to the mean. The higher the CV, the greater the level of fluctuation, 

expressed as a percentage.  

Rozen-Zvi et al. additionally found that the combination of high Tac trough level CV and 

exposure to low Tac levels (<5 ng/mL) is a significant predictor of high-risk patients in 

early post-transplant period [30].  Other studies show that intra-patient Tac variability is 

higher among African-American kidney patients, and it is a significant risk factor for 

deleterious outcomes, i.e., 10% increase in Tac coefficient of variability (CV) increases 

the risk of acute rejection by 20% and risk of graft loss by 30%. A high Tac CV of >40% 

is a significant predictor for disparities in African American patients compared to white 

patients [31]. Additionally, Davis et al. found that high Tac CV (>44.2%) combined with 

low Time in Therapeutic Range (TTR<40%) during the first year of post-transplant, 

significantly increased the risk of graft loss [9]. 

In this paper, we hypothesize that the change in abundance of certain gut microbiome 

bacterial genera are associated with high Tac fluctuation and low TTR, which proposes 

the idea that the abundance or the lack of those genera could be associated with graft 

rejection. We know that post-transplant dysbiosis of the gut microbiome can promote an 

increase in the abundance of certain bacterial communities that can metabolize 
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immunosuppressants into less potent metabolites [14]. For example, Lee et al. discovered 

a significant association between Faecalibacterium prausnitzii which is one of the most 

abundant bacterial species in the gut microbiome and higher levels of Tac dose in the first 

month post-transplant [15]. Patients with higher abundance of this species in the first 

week of transplantation demanded higher dose of Tac at 1 month [15]. Lee et al. believe 

that Tac absorption and/or metabolism may be affected by the colonic mucosa and we 

know that a healthy colonic mucosa requires butyrate from bacterial sources such as 

Faecalibacterium prausnitzii. Another study reached the conclusion that 

Faecalibacterium prausnitzii metabolizes Tac into a less potent novel metabolite M1 (9-

hydroxy-tacrolimus) which is 15-fold less potent than Tac in inhibiting the proliferation 

of activated T cells [16]. We will show new associates between the gut microbiome and 

Tac blood level fluctuations and TTR. 

 

3.1.4 AlloSure Donor Derived Cell-free DNA  

The AlloSure test (manufacture name) is a clinical-grade, targeted, next generation 

sequencing assay that measures single-nucleotide polymorphisms to accurately quantify 

donor-derived cell-free DNA (dd-cfDNA) in renal transplant recipients without separate 

genotyping of either the donor or the recipient. The AlloSure test is intended to assess the 

probability of allograft rejection in kidney transplant recipients with clinical suspicion of 

rejection. The AlloSure result is the percent of donor-derived cell-free DNA in the total 
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cell-free DNA present in kidney transplant recipients. dd-cfDNA level greater than 1% 

indicate a probability of active rejection (antibody-mediated rejection or T cell-mediated 

rejection) [38]. dd-cfDNA levels 1% and below reflect absence of active rejection. In this 

study we will examine the association between the change in abundance of gut 

microbiome bacterial communities and dd-cfDNA levels. The AlloSure test is a novel 

predictive test that has been used in a few transplant center including the George 

Washington University Hospital and it has proven to be significantly accurate in 

predicting graft rejection. Since the AlloSure test data for all of our subjects were readily 

available we planned to execute the first ever association study between dd-cfDNA and 

gut microbiome. 

 

 

3.2 Methods 

 

3.2.1 Population 

TWELVE kidney transplant patients from The George Washington University Hospital 

were consented and enrolled in this study.  IRB was approved by the GWUH Office of 

Human Research (#NCR191914) and George Mason University IRB  #1906208-1. 

Summary of clinical and demographic information is presented in Table 1. Exclusion 

criteria were pediatric, pregnant, and simultaneous kidney-pancreas recipients.  
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All patients underwent induction therapy based on test results such as Panel of Reactive 

Antibodies (PRA) and Donor Specific Antibodies (DSA). DSA is a measure to predict 

antibody-mediated rejection. PRA is a measure to determine the potential level of 

sensitization of a given patient towards the pool of kidney donors, as a result of prior 

exposure to external HLA antigens during blood transfusions, pregnancies, or previous 

organ transplantations. If a patient possesses a high PRA, he/she will undergo a 

desensitization process to reduce the risk of graft rejection. Patients who were highly 

sensitized received Velcade (Bortezomib) preoperatively. All patients received two doses 

of Thymoglobulin, while sensitized patients received three doses. Following 

Thymoglobulin induction, all patients received Simulect. Induction therapies are pre-

medicated with methylprednisolone, acetaminophen, and diphenhydramine. Induction 

therapy is the process of administering immunosuppressive therapy at the time of kidney 

transplantation to reduce the risk of allograft rejection. After the transplant surgery, all 

patients started with 4 mg of Tac. On a case-by-case basis, some patients were subject to 

antibiotics (Atovaquone) and stimulant laxatives. 

 

3.2.2 Sample Collection and Sequencing 

For each patient, a series of sample collection activities took place. Three mL of blood 

was drawn for gene sequencing at the time of routine clinic visit. Blood was stored in 

ZYMO DNA/RNA Shield Blood Collection tubes which ensure sample stability during 
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storage/transport at ambient temperatures without the need for refrigeration or specialized 

equipment. The nucleic acids (DNA & RNA) in samples are preserved at ambient 

temperature (DNA >1 year, RNA up to 1 month). Targeted gene sequencing was 

performed by Illumina Next Generation sequencer by The Sequencing Center lab in Fort 

Collins, CO. The list of targeted genes is available in appendix A. The existence of single 

nucleotide polymorphisms CYP3A5*3(rs776746, g.6986A>G), CYP3A5*6 (rs10264272, 

g. 14690 G>A) and CYP3A5*7 (rs41303343, g.27131-27132insT) was analyzed. 

Subjects who did not express CYP3A5*3, *6 or *7 alleles were categorized as 

CYP3A5*1/*1 genotype and those who expressed one CYP3A5*3, *6 or *7 allele were 

categorized as CYP3A5*1/*3, *1/*6 or *1/*7 genotype, respectively.  

All patients in this study possessed the CYP3A5*1/*1 allele which made them high 

expressors of CYP3A5.  This controls for the effect of CYP3A5 on Tac metabolism 

which has been absent in all previous gut microbiome studies. 

Two stool samples were collected per patient for gut microbiome sequencing. The first 

stool sample was collected 1 week before transplant and the second stool sample was 

collected 4-8 weeks post-transplant. Collection was performed by subjects by using a 

paper feces catcher and a coring brush which eliminated the risk of contamination. Stool 

samples were stored inside ZYMO DNA/RNA Shield Fecal Collection Tubes–DX. These 

tubes preserve the bacterial communities in ambient temperature (DNA>2 years, RNA>1 

month). Whole DNA of bacteria was sequenced using shotgun metagenomics to the 
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strain level by CosmosID lab in Germantown, MD. For each patient only the bacterial 

taxa with relative abundance more than 1% were included in the analysis, which is the 

common practice in gut microbiome [15]. Shannon diversity index for both pre- and post-

transplant stool sample was calculated, and the difference was analyzed. Shannon 

diversity index is a popular metric in biology for measuring the number of species living 

in a sample (richness) and their relative abundance (evenness). For each subject Jaccard 

beta diversity index was calculated to compare the pre- and post-transplant composition 

of the gut microbiome. This index, which is presented as a percentage, reflects the level 

of dissimilarity between the two stool samples. 

 

3.2.3 Clinical data 

Clinical data was collected from electronic health records in Cerner and deidentified per 

protocol. Among which, Tac dose and Tac trough levels were the most critical entries.  

All Tac dose entries (total daily dose in mg) were collected continuously from the day of 

transplant surgery till day 90 post-transplant. Envarsus was the dominant 

immunosuppressant drug in this transplant center. Tac doses were routinely adjusted by 

transplant physicians to reach therapeutic levels, 10 ng/ml for Envarsus users and 200 

ng/ml for Cyclosporin users. Tac trough levels were measured by the George Washington 

University Hospital Lab. For each patient, the Coefficient of Variability (CV) of Tac 

trough levels was calculated for the first 30 days and 90 days post-transplant. CV is 
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measured as (SD/mean)×100%. Measure of AlloSure Donor Derived Cell-free DNA was 

provided by CareDx as a routine test in the George Washington University Hospital at 1, 

2, and 3 months post-transplant. For patients who had multiple AlloSure measures in 

each month, the median was used.  

 

3.2.4 Statistical Analysis 

Change in alpha diversity (Shannon index) was analyzed for all samples. Shannon 

diversity index is calculated as below: 

Shannon Diversity = ∑[(𝑃𝑖) ∗ 𝐿𝑛(𝑃𝑖)] 

Where Pi= proportion of total sample represented by species i, divided by the number of 

individuals of species i by total number of species. 

The analysis was performed separately for African Americans and non-African 

Americans in order to explore the effect of race on diversity. T-tests on pre- and post-

transplant paired samples were performed to compare the change in alpha diversity using 

the significance level defined at p=0.05. In order to see which bacterial genera 

experienced significant change in their abundance, we analyzed the difference between 

pre- and post-transplant relative abundance of all genera by t-tests for paired samples 

using the significance level defined at p=0.05. Species level analysis was not possible due 

to too many unknown species. This phenomenon occurs at the time of sequencing. The 

existence of species can be detected, but mano of them will not be necessarily assigned to 
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a certain known species. All analysis were also performed on AA and non-AA subjects 

separately. After selecting the bacterial genera which experienced the most significant 

level of change, we used a random effects regression model to control for interpatient 

variability, along with race, age and gender. Since for each subject we have two values 

for gut microbiome relative abundance, i.e., pre- and post-transplant, we can set our data 

in a panel format. The Random Effects regression model is used to estimate the effect of 

individual-level factors that vary between subjects. In our case, the time of producing and 

collecting samples and different diets contribute to the random effect. 

The model is set as below: 

Yit = a + bXit + ui + eit 

Where i= 1 to 12 (number of subjects); t= 1 (for pre-transplant) and 2 (for post-

transplant); Yit is the dependent variable representing the relative abundance of Alistipes 

in subject i for period t; eit is the residual as a whole where the residual is a combination 

of cross section and time series; ui is the individual residual which is the random 

characteristic of unit observation the i-th and remains at all times; a is constant; b is the 

coefficient for each independent variable; X is the set of independent variables defined as 

below: 

1/ Post-Transplant: a dummy variable which equals to 1 when the observation is for post-

transplant. 

2/ AA: a dummy variable which equals to 1 when the subject is African-American. 



 
 
 
 
 
 
 

75 

3/ Age: a continuous real number representing subjects’ age. 

4/ Male: a dummy variable which equals to 1 when the subject is male. 

 

In the next step, Tac CV of the first 30 and 90 days post-transplant was plotted against 

the change in relative abundance of all genera to detect any possible association. Pearson 

correlation coefficient was calculated and those with p<0.05 were selected. Same analysis 

was performed on dd-cfDNA to detect any possible association between dd-cfDNA and 

change in abundance of genera. After selection of the relevant genera, Ordinary Least 

Square model was used to control for the effects of age and gender. Since all subjects 

were high expressers of CYP3A4 we did not include a control variable for that.  

 

 

3.3 Results 

 

3.3.1 Microbiome Diversity 

Figure 1-a and 1-b show the gut microbiome composition of all subjects in genus level, 

categorized by pre- and post-transplant. Genus with abundance less than 0.5% were 

excluded (studies usually exclude at less than 1%, but for extra level of investigation we 

excluded at 0.5%). Figure 1-c shows the aggregate microbiome composition by pre- and 

post-transplant cohorts. 
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Among all patients (n=12), Shannon diversity decreased after the transplant surgery, but 

the change was not statistically significant with significance defined at p=0.05 (figure 1-

d). However, Shannon diversity was reduced 0.7 units for non-AA subjects after 

transplantation (n=4 paired observations). This change was significant with p=0.001 in a 

T-test for paired samples. No significant change was observed among African Americans 

with n=8 paired observations (figure 1-e). The average Beta diversity among all subjects 

was 54.36% (SD=17.4%, min=29, max=88) which means on average the post-transplant 

gut microbiome composition was 54.36% different from the pre-transplant gut 

microbiome composition. There was no significant difference among AAs and non-AAs. 
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Figure 2-a: Gut Microbiome Composition for pre- and post- kidney transplant 

Figure 2-b: Gut Microbiome Composition for pre- and post- kidney transplant for the 
50% abundance 
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Fig. 2-c 

Figure 2-c: Gut Microbiome Composition for pre- and post- kidney transplant 
aggregate cohorts 

Figure 3: Shannon Diversity for pre- and post-transplant samples 
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3.3.2 Altered Bacterial Genera 

Alistipes and Eggerthella were significantly altered among all subjects. T-test for paired 

samples showed that after transplant operation, relative abundance of Alistipes decreased 

4.
5

5
5.

5
6

Non-African American African American

Shannon diversity

post-txpre-tx

r= -0.7 
p= 0.05 

r= -0.02 
p= 0.93 

Figure 4: Change in Shannon Diversity for all patients and AA patients 
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on average 4% with p=0.01, and relative abundance of Eggerthella decreased on average 

0.6% with p<0.01. figure 2-a shows the change in relative abundance of Alistipes and 

Eggerthella with correlation coefficient of r=-0.46 and p=0.02 for Alistipes. The random-

effect regression model controlling for age, race and gender confirmed the significant 

drop in Alistipes (coef=-0.04, p<0.005), represented in table 2. We forgo the analysis of 

Eggerthella since the change in relative abundance of this genus was less than 1% and 

not clinically relevant.  

Among African American subjects, Bacteroides, Clostridium, and Flavonifractor were 

significantly altered after transplant surgery. Figure 2-b shows the change in relative 

abundance of Bacteroides with r=0.46 and p=0.02. After transplant operation, relative 

abundance of Bacteroides increased on average 8% for AAs. T-test for paired samples 

showed that this change was significant with p=0.03. We forgo the analysis of 

Clostridium and Flavonifractor since the change in their relative abundance was less than 

1% and not clinically relevant. The random-effect regression model controlling for age 

and gender confirmed the significant change in Bacteroides (coef=0.08, p<0.04) for AAs, 

represented in table 2. 
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Figure 5: Change in the relative abundance of Alistipes and Eggerthella in all subjects 
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** p<0.01   *p<0.05 

 

Table 4: Random-Effects Regression Results for Change in Relative 
Abundance of Bacterial Genera 
 All Subjects 

(n=34, panel data) 
African Americans 
(n=26, panel data) 

 Dependent var Dependent var 
 
 
Independent var 

 
Relative Abundance of 
Alistipes 

 
Relative Abundance of 
Bacteroides 

After Tx -0.04** 
(0.01) 

0.08* 
(0.04) 

AA 0.03 
(0.02) 

- 

Age 0.002* 
(0.0009) 

-0.0007 
(0.002) 

Male -0.03* 
(0.01) 

-0.04 
(0.05) 

Constant -0.069 
(0.063) 

0.19 
(0.16) 

Prob>chi2 0.004 0.19 
Overall R2 0.44 0.28 
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3.3.3 Tacrolimus Fluctuation 

Among African Americans, the change in relative abundance of Faecalibacterium was 

associated with Tac CV within 30 and 60 days after transplant with Pearson correlation 

coefficient r=0.67 (p=0.06) and r=0.52 (p=0.18) respectively, shown in figure 3. After 

controlling for age and gender, OLS regression shows coef=222.23 (p=0.009) within 30 

days and coef=214.77 (p=0.008) within 60 days post-transplant, i.e., every 0.1% increase 

in relative abundance of Faecalibacterium in AAs after transplant surgery is associated 

with ~20% increase in Tac CV till 60 days post-transplant. Table 3 reflects the results.  

TTR did not correlate with any bacterial genera or species. 
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r= 0.46 
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Figure 6: Change in relative abundance of Bacteroides among AA subjects 
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Table 5: OLS Regression for Association Between Tac CV and Faecalibacterium 
 
 
 
 
Independent Var: 

African American 
(n=14) 
 
Dependent Var: 
Tac CV 30 days 

African American 
(n=14) 
 
Dependent Var: 
Tac CV 60 days 

DFaecalibacterium 
222.25** 
(46.11) 

214.77** 
(44.28) 

Age 1.39* 
(0.41) 

1.58** 
(0.40) 

Male 6.52 
(4.52) 

12.71* 
(4.34) 

Constant -12.12 
(21.56) 

-30.55 
(20.70) 

Prob>F 0.03 0.02 
Adj.R2 0.75 0.78 

** p<0.01   *p<0.05 
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Figure 7: Association between change in abundance of Faecalibacterium 
and Tac CV 
Among AA subjects 
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3.3.4 AlloSure Donor Derived Cell-free DNA 

dd-cfDNA levels in 30 days, 60 days and 90 days were significantly correlated with the 

change in relative abundance of a genus belonging to the Lachnospiraceae family. Figure 

4 shows the relationship with the associated Pearson correlation coefficients, r=-0.61 

p=0.07 for dd-cfDNA levels in 30 days, r=-0.64 p=0.06 for 60 days, r=-0.77 p=0.01 for 

90 days. OLS regression shows that after transplant surgery, every 1% increase in the 

relative abundance of a genus belonging to Lachnospiraceae is associated with 1.08 units 

drop in AlloSure dd-cfDNA levels (p=0.05) controlling for patient age. 
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Figure 8: Association between Lachnospiraceae and dd-dfDNA 
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Table 6: Summary of Paper# 2 results 

Measure All Subjects African Americans 

Selected Bacterial genera with 
abundance>0.5% 

76 genera, shown in 
appendix D - 

Shannon Diversity 
pre-Tx 

5.5 5.4 

Shannon diversity 
post-tx 5.1 5.38 

Beta Diversity 54.36% 55.01% 
CYP3A5 All high expressers All high expressers 

Altered Bacterial Genera 

Alistipes (reduced by 
4% controlling for 
race, age, gender with 
p=0.01) 

Bacteroides (increased 
by 8% controlling for 

age, gender with 
p=0.04) 

Tac CV 
 - 

Every 0.1% increase in 
relative abundance of 

Faecalibacterium after 
tx is associated with 

~20% increase in Tac 
CV till 60 days post-tx, 

controlling for age, 
gender (p<0.01) 

ddcf-DNA 

every 1% increase in 
the relative abundance 
of Lachnospiraceae is 
associated with 1.08 
units drop in dd-
cfDNA levels (p=0.05) 
controlling for patient 
age.  

- 
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3.4 Discussion 

Our analysis showed that alpha diversity decreased for all subjects, but more significantly 

for non-AA subjects. As mentioned earlier, change in diversity of gut microbiome has 

been associated to deleterious transplant outcomes. In order to remedy the change in 

diversity of gut microbiota, applying probiotic treatments to increase the abundance of 

Alistipes and Eggerthella may be able ameliorate this change of diversity for all patients 

after transplant operation. Using an intervention to restore the balance of bacterial 

communities in the gut has been practiced before, but in limited cases using probiotic 

medication or fecal transplant [31]. In the field of kidney disease, restoring the gut 

microbiome balance via probiotics have shown missed results, although no direct 

association to lower graft rejection or lower graft failure has been witnessed [31, 32]. 

Alistipes are anaerobic bacteria found mainly in the healthy human gastrointestinal tract 

microbiota and they have proven protective effects against diseases such as liver fibrosis, 

colitis, cancer immunotherapy, and cardiovascular disease [33]. In a mice skin transplant 

study, Mclntosh et al. found that the abundance of Alistipes was associated with 

prolonged graft survival. They concluded that Alistipes had a therapeutic role in skin 

transplant and administration of probiotics or fecal microbiome transplantation (FMT) are 

beneficial in transplant cases [34]. In a study by Hyunjeong et al. with 46 kidney 

transplant subjects, the role of gut microbiome in acute rejection was studied [35]. They 

realized at 3 months post-transplant, Alistipes was decreased in the acute rejection group 
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(p=0.0001, Wilcoxon rank-sum test). Linear discriminant analysis effect size (LEfSe) 

method showed that Alistipes was also significantly lower in the acute rejection group 

before kidney transplant. Our findings suggest the plausibility of administering probiotics 

or FMTs to increase the abundance of Alistipes in kidney transplant patients before 

and/or after transplant. It is known that the presence of Alistipes has been correlated with 

the promotion of healthy phenotypes, for example its protective roles in colitis, autism 

spectrum disorder, and various liver and cardiovascular fibrotic disorders [33]. Alistipes 

is a relatively new genus, and it has been the focus of recent clinical studies. Our analysis 

demonstrated that male subjects experienced even less abundance of Alistipes in their gut 

before and after transplant, thus needing an extra amount of Alistipes after transplant 

compared to other patients. 

For African Americans in particular, the abundance of Bacteroides increased after 

transplant, but it might be beneficial not to alter this change via probiotic treatments 

because the increase of Bacteroides has been associated with favorable outcomes. 

Bacteroides has been subject to significant attention in transplant research, and it has 

been considered as the next generation probiotics candidate due to its involvement in host 

health [20]. Bacteroides usually dominates the human gut microbiome by 20-50% of the 

total genera and they play a critical role in the balance of the colonic ecosystem [20]. 

They are known to regulate the degradation of complex heteropolysaccharides to small 

chain fatty acids and the synthesis of vitamins and bioactive compounds [19]. Lee et al. 



 
 
 
 
 
 
 

89 

discovered that lower post-transplant abundance of Bacteroides was associated with 

diarrhea and acute rejection [21]. A skin transplant study on mice showed that fecal 

transplant of high-dose Tac-treated mice which contained high abundance of Bacteroides 

into low-dose Tac-treated mice will increase the allograft survival rate [22].   

Our analysis showed that we can use the change in microbiome abundance as a signal for 

transplant outcomes, using proxies such as Tac CV and dd-cfDNA. Change in certain 

bacterial abundance after transplant could be a proxy for the level of Tac fluctuation (CV) 

and AlloSure Donor Derived Cell-free DNA. Higher levels of Tac CV (>40%) and higher 

levels of dd-cfDNA (>1%) are proven to be associated with poor outcomes and rejection. 

We believe that among African Americans, increase in abundance of Faecalibacterium 

could be a sign of high Tac fluctuation in 30 and 60 days post-transplant. This is in line 

with the seminal study of Lee et al. in which they discovered that higher abundance of 

Faecalibacterium prausnitzii which belongs to the Faecalibacterium genus in the first 

week of kidney transplant is associated with higher required Tac dose at 1 month [15]. 

Faecalibacterium prausnitzii metabolizes Tac into a less potent novel metabolite. Our 

analysis shows that Faecalibacterium is not only associated with higher required Tac 

dose, but also higher Tac fluctuation (CV) post kidney transplant. It is plausible to 

conduct a clinical trial to reduce the abundance of Faecalibacterium after kidney 

transplant for African American patients to see if it improves their Tac absorption.  
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Decrease in abundance of a genus belonging to the Lachnospiraceae family could 

indicate an increase in dd-cfDNA in all patients. Patients with higher dd-cfDNA lost 

significant amount of Lachnospiraceae. Abundance of Lachnospiraceae is associated 

with decreased lethality from graft-versus-host disease in allogenic blood/marrow 

transplantation and higher survival rate by its anti-inflammatory effect through induction 

of regulatory T cells [36]. Jenq et al. reached this conclusion by collecting fecal samples 

of 64 patients 12 days after bone marrow transplantation. They found that increased 

amount of genus Blautia which belongs to the Lachnospiraceae family was associated 

with reduced graft-versus-host disease lethality. Abundance of Blautia is known to be 

reduced by administration of antibiotics that inhibit anaerobic bacteria. The genera 

Blautia and Roseburia of the Lachnospiraceae family are the most active genera in the 

control of gut inflammatory processes, atherosclerosis, and maturation of the immune 

system [37]. It is known that patients with higher abundance of Blautia and Roseburia 

face minimal renal dysfunction with p<0.05 in a linear mixed effects regression model 

and FDR<5% [37].  We believe reduction in Lachnospiraceae family could indicate a 

probability of active rejection. A clinical trial study would be able to confirm this 

hypothesis and investigate whether increasing the abundance of Lachnospiraceae after 

kidney transplant could lead to lower levels of dd-cfDNA and higher graft survival rate. 
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3.5 Conclusion 

Our study has been limited to a small sample size (n=17), although planning to increase 

the size to 50 within 12 months. All of our findings require validation by a cohort of new 

patients in a clinical trial. We propose conducting two interventions: 

a) administering probiotics or FMTs to increase the abundance of Alistipes and 

Lachnospiraceae in a cohort of kidney transplant patients before and/or after 

kidney transplant and analyzing the associated graft survival rate for this cohort 

compared to a control group; 

b) administering probiotics or FMTs to reduce the abundance of Faecalibacterium 

in a cohort of African American kidney transplant patients after transplant and 

analyzing the associated graft survival rate for this cohort compared to a control 

group.  

As a result of these trials, we can also examine whether monitoring the abundance of 

Lachnospiraceae and Faecalibacterium could be a proxy for monitoring dd-cfDNA and 

Tac fluctuation, respectively.  
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Appendix A: list of targeted genes 

 
CYP3A5 
CYP3A4 
CYP3A7 
CYP2C19 
FMO3 
C6 
ABCB1 
HSD11B1 
NR1I2 
IL10 
IL12A 
LEP 
POR 
HUS1 
UGT1A9 
HPRT1 
UGT1A9 
SLCO1B1 
NFATC1 
ABCC2 
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Appendix B: Patient Characteristics 
  
Characteristics 

 
 
Measure at time of transplant (N=17) 

Age (Mean±SD) 57.58 (11.67) 
BMI (Mean±SD) 33.45 (3.69) 
Male (n, %) 8 (66.6) 
African American (n, %) 8 (66.6) 
Live donor (n, %) 7 (58.3) 
Previous Transplant (n, %) 3 (27.2) 
Dialysis (n, %) 9 (81.8) 
Cold Ischemic time hours (Mean, Median) 11, 2 
CPRA (Mean±SD) 50.32 (45.16) 
History of hypertension (n, %) 1 (9.1) 
Diabetes (n, %) 4 (36.3) 
Hepatitis C (n, %) 2 (16.6) 
High risk CMV (n, %) 5 (45.4) 
High risk EBV (n, %) 0 (0) 
Creatinine (Mean±SD) 4.47 (3.6) 
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Appendix C 

  

Bacteroides 
Phocaeicola 
Lachnospiraceae_u_g 
Clostridiales_u_g 
Blautia 
Parabacteroides 
Ruminococcus 
Clostridium 
Faecalibacterium 
Alistipes 
Ruminococcaceae_u_g 
Enterocloster 
Mediterraneibacter 
Anaerobutyricum 
Dorea 
Firmicutes_u_g 
Roseburia 
Streptococcus 
Acidaminococcus 
Anaerostipes 
Coprococcus 
Eubacterium 
Akkermansia 
Oscillibacter 
Drancourtella 
Sellimonas 

Bifidobacterium 
Clostridia_u_g 
Dialister 
Dysosmobacter 
Oscillospiraceae_u_g 
Lachnoclostridium 
Erysipelotrichaceae_u_g 
Limosilactobacillus 
Phascolarctobacterium 
Prevotella 
Burkholderiales_u_g 
Flavonifractor 
Eggerthella 
Faecalimonas 
Lactobacillus 
Subdoligranulum 
Sutterella 
Longicatena 
Megasphaera 
Parasutterella 
Porphyromonas 
Actinomyces 
Gemmiger 
Oliverpabstia 
Lacticaseibacillus 
Neglecta 

Ruthenibacterium 
Veillonella 
Weissella 
Pseudoruminococcus 
Anaerotruncus 
Bariatricus 
Catenibacterium 
Desulfovibrio 
Enterobacter 
Enterococcus 
Escherichia 
Amedibacillus 
Lachnospira 
Evtepia 
Klebsiella 
Ligilactobacillus 
Lawsonibacter 
Longibaculum 
Odoribacter 
Paraprevotella 
Pediococcus 
Clostridioides 
Prevotellamassilia 
Tyzze
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