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Abstract – Agents assist users with performing tasks in computer-based applications.  The current 
practice of building an agent involves a developer programming it for each task it must perform, but 
agents constructed in this manner are difficult to modify and cannot be trained by a user.  Agent-
Disciple is a system for training instructable agents through user-agent interaction.  In Agent-Disciple 
a user trains an instructable agent through the interface of the user’s application by providing specific 
examples of tasks and their solutions, explanations of these solutions and supervises the agent as it 
performs new tasks.   
 
We report here on our work that uses Agent-Disciple to provide a learning agent that can command 
simulated military forces. Military simulations currently have many limitations in modeling human 
behavior. While it is relatively straightforward to build models of doctrine, it is difficult to have 
agents utilize this doctrine in varying contexts.  There are too many factors to consider when building 
deterministic models of behavior, even in well-defined situations. We applied Agent-Disciple to 
circumvent this problem by using heuristic learning methods.  
 
A case study is presented in developing an instructable Company Commander Agent for the Modular 
Semi-Automated Forces (ModSAF) simulation – a state-of-the-art, real-time, distributed interactive 
military simulation currently utilized in large-scale training exercises.  A ModSAF user can train the 
Company Commander Agent interactively, using the ModSAF interface, to perform various military 
missions using the Captain system based on Agent-Disciple. A training session with the agent 
illustrates the different types of learning interactions available in Agent-Disciple.  

 
I.    INTRODUCTION 

    Computer Generated Forces (CGF) are simulations of military entities. The ability to build 
intelligent command agents for CGF is significantly constrained by the knowledge acquisition 
effort required. Many iterations by Subject Matter Experts (SME), programmers and knowledge  
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engineers are required to develop acceptable behavior even for a narrow range of situations. 
Moreover, once built the agents cannot adapt themselves to changes.   

Various automated knowledge acquisition tools have been proposed and utilized for this 
problem, but there is no standard acquisition methodology for CGF that has gained acceptance.  
The existing approaches primarily utilize programmers and knowledge engineers to encode the 
expertise of a SME. Our goal is to change this paradigm by enabling the SME to use a familiar 
simulation interface to instruct an agent directly under the Agent-Disciple system. We use the 
ModSAF package developed for the U.S. Army to execute the agent’s orders.  Direct instruction 
reduces the involvement of programmers and knowledge engineers, increasing the efficiency of 
the acquisition process and improving the quality of the acquired knowledge. 

Agents that learn from Agent-Disciple function as instructable ModSAF agents. This 
approach provides a new approach to solving the knowledge acquisition problem for CGF.  
Agent-Disciple follows a general methodology for developing instructable agents for existing 
applications given in [4].  The process utilizes Programming by Demonstration (PBD) [2] and 
Machine Learning techniques to allow instruction by an SME.  PBD systems give an end user 
the ability to create programs by demonstrating their actions thorough a graphical user 
interface.  PBD is a new research area that is concerned with interactive learning of user tasks 
from only a few examples and explanations given by the user.  By contrast, Machine Learning 
as employed in Agent-Disciple uses more formal, domain-independent autonomous learning 
methods.  Often the inputs to machine learning programs are large numbers of examples, 
extensive background knowledge, or, for multistrategy learning systems, both. 

Our system is called Captain. Fig. 1 shows its system design.  An SME uses editors within 
ModSAF to teach a command agent new tasks.  The machine learning is performed on a 
separate workstation running Agent-Disciple software (Agent-Disciple provides the learning 
functions of Disciple in a modular toolkit).  The gray modules indicate modules that were 
modified for Captain. 

In our system, an SME teaches a ModSAF agent through the ModSAF Graphical User 
Interface rather than using a different interface for the learning system.  The SME initially 
demonstrates to the ModSAF agent how to perform a new mission.  The SME uses the existing 
ModSAF task editors to "program" the agent, as the SME normally would, creating a sequence 
of specific tasks. This sequence is given to the learning system as an initial example of the 
mission.  The SME then explains the relevant features of the mission.  The learning system will 
then attempt to perform a different instance of the mission (e.g. on a different piece of terrain) 
under the supervision of the SME, asking the SME to classify its solution of the mission as a 
correct or incorrect example. The SME uses ModSAF's graphical user interface to correct the 
agent if it does not perform the mission as required by the SME.  After this teaching session, the 
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Agent-Disciple agent will have learned how to perform this type of mission (i.e., create a rule 
specifying how to select tasks and instantiate task parameters for a specific mission) and be able 
to perform this new mission when asked to do so by the SME.  Thus the SME actually will 
perform the programming, but by example rather than by using the task editors. 

We prototyped this approach with the Captain system [4], [5], [6], consisting of an 
integration of the apprenticeship learning system, Disciple [16], and ModSAF.  In Captain, a 
ModSAF company commander can be taught how to place its platoons to defend its assigned 
area of responsibility.  This process involves eliciting an initial example from the SME, eliciting 
5 to 10 explanations and showing the SME 5 to 10 examples of solutions that the system 
generates. Experiments with Captain indicate that this type of system will prove scalable as it is 
applied to learning other tasks in this domain. We present an analysis of our learning method 
in Section V that supports this conclusion, but note that since the system is based on user 
interaction, it is difficult to formally prove scalability.  This is an area for future research with 
Captain.  

Captain utilized the ModSAF terrain map to show examples to the SME for classification, 
but did not fully integrate other learning interactions (specifying examples and explanations) 
into the ModSAF interface.  Thus the experiments were run with two interfaces – 1) the Captain 
textual interface for SME interaction; and 2) the ModSAF graphical interface for display of the 
example placements on the digital terrain map.  

Like much other work in Machine Intelligence technology, Captain is based more on 
heuristics than on derived principles. However, as we describe below, military subject matter 
experts have reviewed the results of the work presented here and confirmed that the Captain 
system learned to perform on a par with the SMEs who trained it. Therefore we are offering this 
description of what we believe to be a highly successful example of the heuristic approach. 

The remainder of this paper is organized as follows: Section II presents a discussion of 
related work.  Section III explains representations that Agent-Disciple uses for learning.  Section 
IV describes a case study of building a military command agent with Agent-Disciple. Section V 
concludes the paper with a discussion of our agent-building approach and future plans. 
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II.    RELATED WORK 

    We begin with a review of some of the related research on learning, particularly 
Apprenticeship learning and the new field of Programming by Demonstration.  Then we 
describe how this research applies to agents. 
 
A.   Approaches to Machine Learning 
    Apprenticeship Learning systems are at the intersection of the fields of Machine Learning 
and Knowledge Acquisition. An Apprentice Learning System can be defined as an interactive 
knowledge-based consultant that is provided with an initial domain theory and is able to 
assimilate new problem-solving knowledge by observing and analyzing the problem-solving 
steps of its users through their normal use of the system [20]. 

Apprenticeship Learning systems involve the user in the learning process, where Machine 
Learning systems generally are not interactive.  In Apprenticeship Learning systems the user 
provides the learning system’s input in a representation that is natural to the user.  The learning 
system has an interaction with the user during the learning process, where the user may be 
asked to give other examples, confirm a hypothesis, or give explanations.  The output of this 
learning generally is presented to the user prior to being translated into a form usable by a 
performance element (e.g., a rule-based production system) [18].  Most Machine Learning 
systems require their learning input to be put into a special format.  The user may not be able to 
understand the input (which may be in the form of data) or the output (which is often in the 
form of rules) unless the user is quite familiar with the learning method. 

Knowledge Acquisition systems and Apprenticeship Learning systems are closely related. 
However, the emphasis of most Knowledge Acquisition systems is on modeling the initial 
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knowledge base and eliciting knowledge. The emphasis in Apprenticeship Learning systems is 
on refining knowledge that has already been elicited or created, using Machine Learning 
techniques that learn from a user. 
    Programming by Demonstration (PBD) systems are a type of Apprenticeship Learning 
systems that give an end user the ability to create programs by demonstrating their actions.  
Machine Learning covers an overlapping area of research concerned with methods that learn 
concepts from example or domain theories, including such instruction from a teacher.  An 
example of a PBD system is the Metamouse system [14] which gives the user the ability to 
automate drawing tasks.  The user instructs an agent (a turtle named Basil) on how to 
manipulate objects through an innovative graphical interface.  Basil learns from specification of 
graphical constraints to construct a program that automates graphical editing.  The program 
can have loops and conditionals. 

PBD systems are significant because their goal is to empower the end user by assuming 
that, if a user knows how to perform a task on the computer, then that knowledge should be 
sufficient to create a program to perform the task.  Rather than learn a programming language, 
the user should be able to instruct the computer to watch as the task is demonstrated [2].  A 
common concern among PBD systems is interface design.  The graphical (and verbal) user 
interface of these systems is generally very sophisticated, and the inferencing techniques are 
usually more specific to the task domain than machine learning methods [13]. 

PBD systems generally deal with the automation of simple tasks.  They generally do not 
deal with automating complex tasks or behaviors, such as concerns the ModSAF agents.  The 
systems do not provide facilities for the end user to specify domain knowledge to the system, as 
is done with knowledge elicitation or knowledge acquisition methods. 
 
B. Instructable Agents 

Software agents are programs that can execute with their own identity within an 
application, either autonomously or semi-autonomously.  The agents that are being developed 
today either have fixed (non-adaptive) behavior or can exhibit some limited forms of learning.  
Agent-Disciple can be thought of as an agent development environment either for training 
existing agents or for building entirely new agents. 

ModSAF agents use a task-level architecture similar to a subsumption architecture [1].  This 
allows a user to give orders to an agent, which then attempts to carry out the orders, unless it 
reacts to a condition for which it was programmed (e.g., a threat).  Since this is a reactive 
architecture, the agents must be supervised closely by the SME. 

Another approach to CGF development has been to develop entirely new ModSAF agents 
using the Soar problem-solving model [15}.  These agents currently operate primarily in 
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aviation environments.  The Soar-based agents have the potential to significantly improve the 
behavior of ModSAF entities, but conducting the knowledge acquisition to build such agents 
remains a difficult problem because they do not have the ability to learn. 

Soar [11] is a general problem-solving architecture that addresses the problem of agent 
learning.  Soar has a single learning mechanism that is integral to its architecture: chunking.  By 
contrast, Agent-Disciple integrates many learning methods for agent instruction.  Soar has a 
very elaborate model of problem solving – the Problem Space Computational Method (PSCM) – 
that uses deductive rules.  Agent-Disciple uses rules with plausible conditions and is able to 
reason with incomplete knowledge, although its problem-solving model is also more 
complicated than most expert systems. 

Huffman [10] used Soar in his system Instructo-Soar, where an instructable agent learns 
from tutorial instruction.  Instructo-Soar learns general knowledge from specific instructions, 
using rote learning and a type of inductive learning (situated explanation) in addition to the 
chunking of Soar. Huffman delineates the type of knowledge that must be learned to build an 
agent in Soar’s computational model, and demonstrates the ability of Instructo-Soar to acquire 
the majority of knowledge types necessary.  Instructo-Soar has been demonstrated in a small 
domain, a blocks world with a small number of operators, properties and relationships (less 
than 10 of each). 
 
 

III.    PLAUSIBLE VERSION SPACE RULES 
 

Here we first describe the novel structure of rules in Agent-Disciple and then give examples 
of how Agent-Disciple uses such plausible version space rules. 
 
A. Plausible Version Space Rules 
 

Agent Disciple uses a hybrid knowledge representation integrating semantic networks and 
rules. Semantic networks represent information from a terrain database at a conceptual level, as 
well as knowledge about forces and weapon systems.  In order to facilitate learning, the objects 
and the rules both use the following representation unit: 
 
 (concept-i  concept-k   (FEATURE-1 value-1) 
    . . . 
   (FEATURE-n value-n)) 
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This expression defines 'concept-k' as being a subclass of 'concept-i' (from which it inherits 
features) with additional features. The value of a feature may be a constant or another concept. 

In Agent-Disciple, rules are procedures that consist of a PROBLEM statement, CONDITIONS 

and a SOLUTION statement.  Each condition (also called a clause) consists of a plausible upper 
bound and plausible lower bound that are in the format of the representation unit described 
above.  The plausible upper bound is a conjunctive expression that is supposed to be more 
general than the exact condition, and the plausible lower bound is a conjunctive expression that 
is supposed to be less general than the exact condition. The two bounds define a plausible 
version space (PVS) for the condition to be learned by Disciple [17]. The bounds and the version 
space are called plausible because the learning process takes place in an incomplete 
representation language that may cause them to be inconsistent (a lower bound that covers 
some negative examples or an upper bound that does not cover all positive examples). 
    Fig. 2 shows the general form of a PVS procedure in Agent-Disciple.  A procedure is learned 
from specific problem solving episodes indicated by a user.  Once learned, a procedure can be 
selected to be performed by an SME.  A mission is a goal specification given to the agent (the 
agent in the military simulation is given an order).  A task is an action that the agent can take in 
the simulation. 

The terms p1 through pn and p11 through piv  represent parameter names, mn through mn 
represent mission parameters, t11 through tiv represent task parameters, um and ut represent 

the upper bound class, lm and lt represent the lower bound class, and cm through ct represent 
constraints upon the parameters. The plausible upper bound and plausible lower bound are 
both conjunctive expressions.  The plausible upper bound is more general than the plausible 
lower bound.  The upper bound represents a set of possible solutions, while the lower bound 
represents the least general generalization of the set of solutions actually encountered. 
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B. Examples of Using Plausible Version Space Rules 

Fig. 3 contains simple procedures for an agent corresponding to the situation depicted in 
Fig. 4.  Procedure P1 specifies how to OBSERVE an object t1: verify that it meets the constraint 
in the lower bound –  that it is a terrain-element (both the upper and lower bounds are the same 
in this case); if it is, then find objects for the task parameters t2 and u subject to the constraints in 
the lower bound – that t2 is a hill opposite  from t1 and that u is an armored-platoon; if there 
are no armored platoons, then use the upper bound and attempt to find a platoon; if objects for 
the task parameters are found, then perform the march task. 

Procedure P1 has been learned from the following initial example1.  
 

to accomplish  
OBSERVE    
 TERRAIN  hill-60-70 
perform 
MARCH    
 UNIT-ID  platoon-a1  LOCATION    hill-44-91 

 
The initial example is expressed as a tuple, 

(t1 ← hill-60-70,  t2 ← hill-44-91,  u ← platoon-a2) 

                                                           
1 An instructor gives the initial example and classifies the subsequent examples in this scenario as positive 
or negative.  This scenario focuses on the learning method rather than interaction. 

PROBLEM: 
 to  accomplish  
  MISSION  p1  m1 ... pn  mn 

CONDITIONS: 
   plausible upper bound    plausible lower bound 
 verify 
   (um1  m1  cm11 ... cm1o) &   (lm1  m1  cm11 ... cm1o)& 
   ...      ... 
   (umn  mn  cmn1 ... cmnp)     (lmn  mn  cmn1 ... cmnp)  
  find 
   (ut11  t11  ct111 ... ct11r) &   (lt1  t11  ct111 ... ct11r) & 
   ...      ... 
   (utiv  tiv  ctiv1 ... ctivs)     (lt1  tiv  ctiv1 ... ctivs)  
 
SOLUTION: 
 perform 
  TASK1  p11  t11 ... p1w   t1u 
  ... 
  TASKi   pi1  ti1 ...  piv  tiv 

 
Fig. 2.  PVS Procedure. 
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A detailed description of how the upper and lower bounds are formulated and modified to 
obtain P1 is given in [4].  The second example, 

(t1 ← lake-57-82,  t2 ← hill-60-70,  u ← platoon-a2) 

is positive and indicates that the lake in Fig. 4  can be observed from hill-60-70 by a platoon.  
The example  

(t1 ← hill-44-91,  t2 ← lake-57-82,  u ← platoon-a2) 

is negative since the platoon cannot move onto the lake (the platoon is a motorized unit with 
tracked vehicles and cannot drive on the lake).      The example  

(t1 ← hill-60-70,  t2 ← hill-44-91,  u ← company-a) 

is negative since a company cannot be utilized as the observing unit (it is too large to perform 
the observation mission). 
    After the procedure is learned, the agent can use it as follows: 
 

1. SELECT – The agent selects a procedure to accomplish a specific mission and binds the 
variables in the problem to the mission parameters. 

2. VERIFY – Verify that the mission parameters meet the constraints imposed by the 
corresponding verify lower bound conditions. 

3. FIND – Find a set of objects corresponding to the task parameters that meet the constraints 
in the find lower bound conditions. 

4. EXECUTE – Instantiate the task(s) in the solution with the set of objects from steps 2 & 3 
corresponding to the parameters of the task(s), and invoke the task(s). 
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P1:  
 to accomplish 
 OBSERVE   TERRAIN  t1 
 
 plausible lower  bound    plausible upper bound 
 verify 
  (terrain-element  t1)     (terrain-element  t1)  
 find 
  (hill  t2 (OPPOSITE   t1))    (hill  t2 (OPPOSITE   t1)) 
  (armored-platoon  u)    (platoon  u) 
 
 perform 
  MARCH  UNIT-ID  u  LOCATION    t2 
 with the positive examples 
  (t1 ← hill-60-70,     t2 ← hill-44-91,  u ← platoon-a2) 
  (t1 ← lake-57-82,    t2 ← hill-60-70,  u ← platoon-a2) 
 with the negative examples 
  (t1 ← hill-44-91,  t2 ← lake-57-82,  u ← platoon-a2) 
  (t1 ← hill-60-70,  t2 ← hill-44-91,  u ← company-a) 

    
P2: 
 to accomplish 
 MOVE  UNIT-ID  c    LOCATION   t 
 
 plausible lower bound    plausible upper bound 
 verify 
  (company  c (COMMANDS   p1)  (company  c  (COMMANDS  p1) 
    (COMMANDS   p2)      (COMMANDS  p1)  
    (COMMANDS  p3))    (COMMANDS  p3)) 
  (hill  t)       (terrain-element  t)  
 find 
  (armored-platoon  p1)    (platoon  p1) 
  (armored-platoon  p2)    (platoon  p2) 
  (infantry-platoon  p3)    (platoon  p3) 
 
 perform 
  MARCH  UNIT-ID  p1  LOCATION   t 
  MARCH  UNIT-ID  p2  LOCATION   t 
  MARCH  UNIT-ID  p3  LOCATION   t 
 with the positive examples 
 (t ← hill-60-70,  c ← company-a,  p1 ← platoon-a1,  p2 ← platoon-a2,  p3 ← platoon-a3) 
 (t ← hill-44-91,  c ← company-h,  p1 ← platoon-h7,  p2 ← platoon-h8, p3 ← platoon-h4) 

Fig. 3. Example of Plausible Version Space Procedures 
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Fig. 4  Terrain Map 
 
If the agent cannot find a procedure in step 1 to accomplish the mission, or the 

mission parameters do not meet the constraints imposed by the verify lower bound 
conditions in step 2, or the agent is unable to find a solution in step 3 (a set of objects 
meeting the constraints in the find lower bound conditions), then the agent will be 
unable to accomplish the mission.  To simplify problem solving, only the lower bound is 
used.  The upper bound is manipulated during learning and is kept so that the rule can 
be modified later. 

For example, the user of the simulation may wish to have the agent monitor for enemy 
activity in the area depicted by Fig. 4.  The user selects the agent and orders it to OBSERVE 
forest-55-87. 

 
1. SELECT – The agent selects P1 to OBSERVE forest-55-87 and binds the variable t1 to the 

object forest-55-87. 
2. VERIFY – The agent checks that the object represented by parameter t1 meets the 

constraints imposed by the verify lower bound condition in P1: 
  (terrain-element  t1)   
 Since forest-55-87 is a terrain-element, t1 is verified. 
3. FIND – Find the objects corresponding to t2 and u that meet the constraints in the find 

lower bound in P1: 
   (hill  t2 (OPPOSITE  t1)) 
   (armored-platoon  u)  
 t1 was bound to the object forest-55-87 in step one.  The object found for t2 must be a hill 

opposite  from the object represented by t1.  This must be hill-60-70 according to the 
knowledge in the agent’s semantic network.  Then the object found for u must be an 
armored platoon.  platoon-a2 is found, but any other armored platoon would satisfy the 
constraint. 

4. EXECUTE – The agent orders platoon-a2 to execute the march task to hill-60-70. 
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    Similarly, procedure P2 has been learned from the following initial example: 
 

 to accomplish 
 MOVE   
  UNIT-ID  company-a  LOCATION   hill-60-70 
 perform 
 MARCH   
  UNIT-ID  platoon-a1   LOCATION   hill-60-70 
 MARCH   
  UNIT-ID  platoon-a2   LOCATION   hill-60-70 
 MARCH   
  UNIT-ID  platoon-a3   LOCATION   hill-60-70 

 
This procedure specifies how to move a company to a position – by moving each of the 

platoons associated with that company using the appropriate movement task for a platoon 
(MARCH).  The relationship COMMANDS must hold since otherwise a company could “take” 
another company’s platoons.  There are two positive examples, and the procedure is less 
completely learned than procedure P1.  For example, the variables representing the platoons in 
the lower bound could be further generalized from armored-platoon & infantry-platoon to 
platoon, since it does not matter what type the platoons are. 

When performing procedure P2, there is an additional complication since the constraints on 
mission parameter c involve other variables representing task parameters from the solution.  In 
this case a least commitment strategy is used in the VERIFY step, where it is verified that the 
object represented by c has the relationship COMMANDS to three other objects, without 
specifying what these objects are.  These objects are then found in the FIND step. 

 

 
IV.    CASE STUDY USING CAPTAIN 

    The design of Captain follows the Agent-Disciple methodology for creating an Agent 
Training Environment given in [4].  The basic learning and problem-solving functions were 
taken from the Agent-Disciple toolkit.   The overall implementation is depicted in Fig. 5. 
 
A.   Distributed Interface to Learning System 

Researchers in the PBD field have found that it is very difficult to interface learning systems 
to existing applications. We have developed a distributed interface that allows the very 
different Disciple and ModSAF to work together. This approach has the advantage of allowing 
these two computationally intensive systems to run on separate processors. 
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    Table 1 shows the interface protocol created for the interface.  The phases correspond to 
distinct sets of learning functions as in [4].  Within the phases, types are discrete events, 
triggering actions. Even types indicate ModSAF sending data to Disciple, while odd types 
indicate Disciple sending data to ModSAF. 
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Fig. 5:. Constructing Captain Using the Agent-Disciple Toolkit. 

B. Training A ModSAF Agent 
This section illustrates the training of an instructable agent once the Agent Training 

Environment has been constructed.  In the training scenario presented, an instructor uses 
Captain to teach a ModSAF agent a new mission.  After the agent learns the new mission by 
formulating a procedure, it applies it to a new situation.  An analysis of the learning interaction 
and efficiency follows. (See Appendix 1 for a glossary of military terms.) 
 
Scenario 
A ModSAF company commander is given an order to defend an area.  A company commander 
in ModSAF commands 3 to 4 platoons.  Each armored platoon is composed of 3 to 4 tanks.  
Each infantry platoon is composed of 3 dismounted infantry squads of 12 soldiers. The 
company commander is given an area of responsibility and an avenue of approach.  The semantic 
terrain transformations will determine the optimum engagement area on the avenue of approach 
upon which the units will coordinate their fire. These three features are drawn on an overlay to 
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the terrain in Fig. 6. The company defensive mission requires determination of the best 
available terrain positions for cover and concealment, coordination of fire, ability to retreat, and 
many other factors.  Along with terrain selection, units must be selected to place upon the 
appropriate terrain, since different platoons have different capabilities. The solution to the 
mission is a position for each element of the platoon is called a placement. 

When Captain was implemented, there was no ModSAF task directly corresponding to a 
defend-area mission at any echelon level.  The closest task is “Hasty Occupy Position”, but that 
task requires a human commander, at a minimum, to place each platoon manually and indicate 
a point where the platoons will coordinate their fire when the enemy approaches. The 
commander can specify other parameters for better performance. 

If an order is given for this class of mission, and the placement is determined, the platoons 
of the company are moved into their defensive positions.  If the placement is good, then the 
approaching enemy will not be able to force a way through the area. A good placement usually 
results in the enemy not sensing the defenders until they have entered the area of engagement. 

Fig. 6 shows a company, Company D, defending a valley with 2 armored platoons and one 
infantry platoon2.  Two enemy companies are approaching the valley along the expected 
avenue of approach, the road.  In this actual ModSAF simulation scenario, all of the enemy 
forces are stopped in the valley, at a cost of approximately 25% losses in Company D.  ModSAF 
is a real time, non-deterministic simulation, and there is variability in the results.  However, if 

                                                           
2 The infantry platoons are slightly to the northwest of hill-sector 868-1 and are shown as a clump of very 
small circles. 
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 Type 1 - Send Acknowledgement Fixed
 Type 101 - Quit Search Phase
 Type 102 - Send Acknowledgement of Quit

Phase 4 - Generate Experimentation Example
 Type 0 - Request Example to be Generated
 Type 1 - Send Example

Phase 5 - Give Experimentation Example
 Type 0 - Specify Example
 Type 0 - Send Acknowledgement of Example

Phase 6 - Classify Experimentation Example
 Type 0 - Classify Example
 Type 1 - Send Acknowledgement of
  Classification

Phase 7 - Explain Mistake in Experimentation
 Type 0 - Select Variable to Generate
  Explanations from
 Type 1 - Send List of Explanations
 Type 2 - Select Explanation(s)
 Type 3 - Send Acknowledgement of Explanations
 Type 4 - Select Variable to Blame
 Type 5 - Send Acknowledgement
 Type 101 - Quit Explanation Phase
 Type 102 - Send Acknowledgement

Phase 8 - Quit Experimentation Signal Phases
 Type 0 - Quit Experimentation
 Type 1 - Send Acknowledgement of Quit

 
Table 1. Protocol for Agent-Disciple/ModSAF Interface. 
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the platoons of Company D are not well-placed, then they are invariably destroyed and do not 
stop the enemy. 

 

 
 

Fig. 6. ModSAF Defensive Mission Scenario. 
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Initial Example 

The user initiates the instruction session by showing the ModSAF company agent a specific 
example of a correct placement.  The user places three platoons of Company D (D1, D2 & D3) 
on the ModSAF map to defend the company’s area of responsibility, as indicated in Fig. 7. The 
user uses the ModSAF simulation interface as the user normally would when orienting units. 
Fig. 8 shows the textual representation of the example mission (the problem) and also the 
solution. The objects already have been turned into variables as indicated by the variables 
paired with the objects.  The variables will be utilized in the next section to generate 
explanations.  The actual formatting of the example was edited to improve its readability. The 
structure of the problem and solution was preset to the defensive mission task. The system 
maintains a correspondence between each concept in the textual representation (e.g. hill-sector-
868-1) and the corresponding object (region) on the map.  

 

 
Fig. 7.  Initial Placement on ModSAF Map by User. 

 
Initial Explanations 

Along with the initial example, the user is asked for explanations of why the indicated 
solution is correct. The user can generate plausible explanations using the Captain interface.  
Captain uses several heuristics to propose partial plausible explanations from which the user is 
requested to choose the relevant ones, as shown in Appendix B. The partial explanations 
proposed by the system are relationships between the objects from the problem and its 



HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS 

 

17

 

solution, or properties of these objects that are represented in the agent’s knowledge base. For 
instance, in the case of the example considered, they are relationships between the platoons and 
the terrain features. 
 
 
to accomplish:    
 POSITION-COMPANY   UNIT-ID   (company-D  c) 
     MISSION   (defend-area-mission-D  m) 
    LOCATION   (company-D-area-of-responsibility  ar) 
     ENEMY-ORIENTATION   (avenue-of-approach-D  av) 
     ENGAGEMENT-AREA   (engagement-area-D  e) 
 
perform:   
 POSITION-PLATOON  UNIT-ID   (platoon-D3 PI) 
      LOCATION  (hill-sector-868-1   hsi) 
  POSITION-PLATOON   UNIT-ID   (platoon-D1   P1T) 
     LOCATION   (hill-sector-863-2   hs1tp) 
  POSITION-PLATOON   UNIT-ID   (platoon-D2   P2T) 
    LOCATION   (hill-sector-875-2  hs2tp) 

Fig. 8. Initial Placement Problem/Solution. 
 
    There are several general explanation patterns in Captain. These are matched against the 
knowledge base to generate specific plausible explanations. The user guides the process of 
generating explanations by selecting an object from the problem or solution, indicated by its 
associated variable. As indicated below, the user specified 5 variables to generate 25 
explanations from which the user chose 14 as relevant. The chosen explanations indicate that it 
is important that this is a defensive area mission for Company D, that the platoons to be placed 
belong to Company D, and that these platoons are placed in Company D’s area of 
responsibility, i.e. in positions where they can see the engagement area. 
 
 
    While it is important to have some explanations of the initial example, there is no 
requirement that a complete set of explanations must be specified. Indeed, the assumption 
made by Captain is that this initial explanation set is incomplete (and possibly even incorrect) 
and will be completed during experimentation. Consequently, the initial example from Fig. 7 
will be available for the entire duration of the learning session so that the agent can ask 
additional questions about this example. 
    The relevant explanations identified by the user are used by the agent to generate an initial 
plausible version space for the procedure to be learned. This version space is indicated in Fig. 9, 
but is not shown to the user who communicates with the system only through concrete 
examples and explanations. The conclusion of the procedure in Fig. 9 is obtained in Captain by 
turning the objects from the initial example (Fig. 8) into variables. 
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To Accomplish 
   POSITION-COMPANY   UNIT-ID c 
                MISSION   m 
                LOCATION   ar 
                ENEMY-ORIENTATION av 
                ENGAGEMENT-AREA e 
 
Verify 
     plausible upper bound 
     (company c (COMMANDS P2T) (COMMANDS PI) (COMMANDS P1T)) 
     (overlay-object ar) 
     (overlay-object av (PART-OF ar)) 
     (overlay-object e (PART-OF av)) 
     (mission m (WITH c) (IN ar)) 
 
     plausible lower bound 
     (company-D  c (COMMANDS P2T) (COMMANDS PI) (COMMANDS P1T)) 
     (company-D-area-of-responsibility  ar) 
     (avenue-of-approach-D  av (PART-OF ar)) 
     (engagement-area-D   e (PART-OF av)) 
     (defend-area-mission-D  m (WITH c) (IN ar)) 
 
Find 
     plausible upper bound 
     (platoon PI (WEAPONS-CLASSIFICATION "light")) 
     (platoon P1T) 
     (platoon P2T) 
     (hill-sector hsi (IN ar) (VISIBLE e)) 
     (hill-sector hs1tp (IN ar) (VISIBLE e)) 
     (hill-sector hs2tp (IN ar) (VISIBLE e)) 
 
     plausible lower bound 
     (platoon-D3  PI (WEAPONS-CLASSIFICATION "light")) 
     (platoon-D1  P1T) 
     (platoon-D2  P2T) 
     (hill-sector-868-1  hsi (IN ar) (VISIBLE e)) 
     (hill-sector-863-2  hs1tp (IN ar) (VISIBLE e)) 
     (hill-sector-875-2D  hs2tp (IN ar) (VISIBLE e)) 
 
 
Perform 
   POSITION-PLATOON UNIT-ID  PI 
               LOCATION   hsi 
   POSITION-PLATOON UNIT-ID  P1T 
               LOCATION   hs1tp 
   POSITION-PLATOON UNIT-ID  P2T 
               LOCATION   hs2tp 

Fig. 9. Initial Procedure Formed by Captain. 
 

The plausible lower bound is the conjunction of the selected explanations, re-expressed in 
terms of the variables from the procedure’s conclusion. In other words, the plausible lower 
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bound covers only the initial example from Fig. 7. The plausible upper bound is an over-
generalization of the plausible lower bound, in which individual objects are turned into the 
more general objects (the heuristic used is to take the individual’s ancestor one down in the 
generalization hierarchy from the top level of the hierarchy) and the relationships between the 
objects are preserved. 
 

Experimentation 
    The agent will use the plausible version space in Fig. 9 to generate other placements for 
defensive missions, and will show these to the user, who will accept or reject them. The user 
can control this experimentation process by fixing some of the parameters of the defensive 
mission. For instance, it is useful to ask the agent to initially generate only placements of 
Company D in its area of responsibility as shown below, using a user-guided search method 
(Hieb, 1996).  This limits the search space the agent must deal with. 
 
User Settings for Experimentation Menu: 
 
1> Make Variables Distinct 
2> Fix Variables 
3> Continue 
 
Enter Selection Number:  2 
 
Enter one or a list of variables to fix (or q to quit):  
(c, e) 
 
fixed variable c to company-D  
fixed variable e to engagement-area-D  
 

    The Captain agent generates a new placement of Company D by generating placements 
consistent with the plausible upper bound of the procedure in Fig. 9. Placements that fall under 
the lower bound as well are discarded.  It then proposes a placement (which is covered by the 
upper bound but not the lower bound) to the user on the ModSAF screen, as shown in Figures 
10 and 11.  The user rejects this placement.  The system then asks that the user look at the initial 
placement to determine what additional explanations need to be given to correct the initial 
procedure such that it will not generate any more incorrect examples3.  The user then explains 
that the infantry unit is too far away from the area of engagement, as shown in Appendix C. 

                                                           
3 The initial positive example is always used as a reference, so that the user can generate a positive 
explanation, which will correct the current procedure.  Explanations of why the negative example is 
incorrect can also be generated, but currently cannot be used to modify the plausible version space.  Such 
negative explanations would have to be converted to positive explanations.  An additional benefit to 
referring back to the initial example is that the user is quite familiar with it, as the user specified it at the 
start of the learning process as a prototypical solution. 
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Fig. 10. Negative Company D Placement Generated by Captain. 

 
to accomplish:    
 POSITION-COMPANY   UNIT-ID   (company-D  c) 
     MISSION   (defend-area-mission-D  m) 
    LOCATION   (company-D-area-of-responsibility  ar) 
     ENEMY-ORIENTATION   (avenue-of-approach-D  av) 
     ENGAGEMENT-AREA   (engagement-area-D  e) 
 
perform:   
 POSITION-PLATOON  UNIT-ID   (platoon-D3 PI) 
      LOCATION  (hill-sector-878-1   hsi) 
  POSITION-PLATOON   UNIT-ID   (platoon-D2   P1T) 
     LOCATION   (hill-sector-863-1   hs1tp) 
  POSITION-PLATOON   UNIT-ID   (platoon-D1   P2T) 
    LOCATION   (hill-sector-878-2  hs2tp) 

Fig. 11. Negative Company D Problem/Solution. 
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Fig. 12. Positive Company D Placement Generated by Captain. 

 
to accomplish:    
 POSITION-COMPANY   UNIT-ID   (company-D  c) 
     MISSION   (defend-area-mission-D  m) 
    LOCATION   (company-D-area-of-responsibility  ar) 
     ENEMY-ORIENTATION   (avenue-of-approach-D  av) 
     ENGAGEMENT-AREA   (engagement-area-D  e) 
 
perform:   
 POSITION-PLATOON  UNIT-ID   (platoon-D3 PI) 
      LOCATION  (hill-sector-875-1   hsi) 
  POSITION-PLATOON   UNIT-ID   (platoon-D2   P1T) 
     LOCATION   (hill-sector-878-2   hs1tp) 
  POSITION-PLATOON   UNIT-ID   (platoon-D1   P2T) 
    LOCATION   (hill-sector-863-1  hs2tp) 

Fig. 13. Positive Company D Problem/Solution 
At this point Captain generates the placement in Fig. 12, which the expert subsequently 

accepts. Consequently, the system makes the following generalizations in the lower bound that 
correspond to the generalization of the positive examples from Fig. 7 and Fig. 12: 
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Is this correct solution to the problem:? 
[y/n]:  y 
 
I made the following generalization(s): 
hill-sector-868-1  hill-sector-863-1  → hill-sector 
hill-sector-863-2  hill-sector-878-2  → hill-sector 
hill-sector-875-2  hill-sector-863-2  → hill-sector 
platoon-D1  platoon-D2  → armored-platoon 
platoon-D2  platoon-D1  → armored-platoon 
 
At this point, all the placement examples for Company-D that the system might 
generate are already covered by the plausible lower bound of the version space and 
Captain presents the following message to the user: 
 
There are no more examples from which to learn 
2340 solutions of the current problem were examined 
335 solutions are available for verification 
 
Would you like to see other problem solving examples to verify the learned procedure? [y/n]: n 
 

    The messages indicate that during the learning process, 2340 tuples from the initial search 
space have been examined.  Of the 2340 tuples, 2005 tuples were not covered by the upper 
bound, and 335 tuples are covered by the lower bound.  The tuples covered by the lower bound 
are considered positive examples of the placement problem for Company D and are saved.  The 
user has the option to review these positive placements in the same manner as during the 
experimentation above.  If the user finds an incorrect placement, the rule is modified 
accordingly. 
    The user then directs Captain to experiment with placing other companies for defending 
their areas of responsibility by “unfixing” the previously-fixed objects, company-D and 
engagement-area-D4. In response, the system generates a new example for the user to validate. 
This example comes from a different area on the map, which is in the area of responsibility for 
Company E. 
    Because the user accepts the placement generated by the agent for Company E, the system is 
able to make a significant reduction in the plausible version space by generalizing the following 
concepts from the plausible lower bound: 
 
Is this correct solution to the problem:? 
[y/n]:  y 
I made the following generalization(s): 
 
company-D  company-E   → company 
avenue-of-approach-D  avenue-of-approach-E   → avenue-of-approach 

                                                           
4 This involves saving the procedure and then loading it again to generate a new search space without 
any fixed variables. 
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engagement-area-D  engagement-area-E    → engagement-area 
defend-area-mission-D  defend-area-mission-E   → Defend-area-mission 
platoon-D3  platoon-E3    → infantry-platoon 
company-D-area-of-responsibility   company-E-area-of-responsibility     → area-of-responsibility 
 

The process described above is followed until Captain is able to place companies successfully 
on the first try. Typically each placement is dealt with in fewer examples and at the same time 
learning the values of all possible parameters, for example by varying the value of the 
engagement-area that was previously fixed.  In the end the agent has learned the 
procedure shown in Fig. 14. It produces the final message: 
 
There are no more examples from which to learn 
2644 solutions of the current problem were examined  
375 solutions are available for verification 
 
Would you like to see other problem solving examples to verify the learned procedure? [y/n]:  n 
 
    The messages indicate that during the learning process, 2644 tuples from the initial search 
space have been examined.  Of the 2644 tuples, 2269 tuples were not covered by the upper 
bound, and 375 tuples are covered by the lower bound.  The tuples covered by the lower bound 
are considered positive examples of the placement problem and are saved. 
 
Applying the Learned Procedure 
    Subsequently, after the procedure has been learned for the defensive placement mission, 
another company commander may use the procedure.  A scenario is shown in Fig. 19  for 
Company A where the company command agent has been ordered to defend the area shown 
on the map. 
    The agent will look for a procedure that can be used for this type of mission – and finds the 
procedure shown in Fig. 14 Next it will check if the verify portion of the lower bound condition 
of this procedure is satisfied when the variables from the procedure are matched with the 
objects from the specific mission. Using the procedure in Fig. 14  it will check if company-A (that 
matched c) is a company that commands three platoons A1, A2 and A3.  This matching 
succeeds because company-A COMMANDS platoon-A1, platoon-A2 and platoon-A3 and company-A 
has 3 platoons. Similarly the agent will check if company-A-area-of-responsibility, engagement-area-

A and defend-area-mission-A satisfy the corresponding conditions from the verify portion of the 
plausible lower bound (i.e. the conditions for ar, e and m respectively). Since the verify portion 
of the lower bound matched successfully, the solve portion of the lower bound is used to find 
objects which correctly satisfy the constraints of the associated clauses.  A1 and A2 must be 
armored-platoons, and A3 must be an infantry-platoon with WEAPON-CLASSIFICATION "light", such 
as platoon-A3. 
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To Accomplish 
   POSITION-COMPANY   UNIT-ID c 
                MISSION   m 
                LOCATION   ar 
                ENEMY-ORIENTATION av 
                ENGAGEMENT-AREA e 
 
Verify 
     plausible upper bound 
     (company c (NUMBER-OF-PLATOONS 3)(COMMANDS P2T)  
   (COMMANDS PI) (COMMANDS P1T)) 
     (overlay-object ar) 
     (overlay-object av (PART-OF ar)) 
     (overlay-object e (PART-OF av)) 
     (mission m (WITH c) (IN ar)) 
 

     plausible lower bound 
     (company  c (NUMBER-OF-PLATOONS 3)(COMMANDS P2T)  
   (COMMANDS PI) (COMMANDS P1T)) 
     (area-of-responsibility  ar) 
     (mounted-avenue-of-approach  av (PART-OF ar)) 
     (engagement-area   e (PART-OF av)) 
     (defend-area-mission  m  (WITH c)  (IN ar)) 
 
 
 
Solve 
     plausible upper bound 
     (platoon PI  (WEAPONS-CLASSIFICATION "light")) 
     (platoon P1T) 
     (platoon P2T) 
     (hill-sector hsi  (IN ar)  (VISIBLE e)  (DISTANCE-TO-ENGAGEMENT-AREA "close")) 
     (hill-sector hs1tp (IN ar)  (VISIBLE e)) 
     (hill-sector hs2tp (IN ar)  (VISIBLE e)) 
 

     plausible lower bound 
     (infantry-platoon  PI  (WEAPONS-CLASSIFICATION "light")) 
     (armored-platoon  P1T) 
     (armored-platoon  P2T) 
     (hill-sector  hsi  (IN ar) (VISIBLE e)  (DISTANCE-TO-ENGAGEMENT-AREA "close") ) 
     (hill-sector  hs1tp  (IN ar) (VISIBLE e)) 
     (hill-sector  hs2tp  (iN ar) (VISIBLE e)) 
 
Perform 
   POSITION-PLATOON UNIT-ID  PI 
               LOCATION   hsi 
   POSITION-PLATOON UNIT-ID  P1T 
               LOCATION   hs1tp 
   POSITION-PLATOON UNIT-ID  P2T 
               LOCATION   hs2tp 

Fig. 14.     Final Procedure Formed by Captain. 
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Fig. 15. Placement of Platoons by a Captain Agent for a Defensive Mission. 

 
The rest of the variables from the solve portion (i.e. hs1tp, hs2tp, hsi) have to be matched with 
objects from the map. For instance, hsi may be matched with hill-sector-900-1 because this hill 
sector is IN company-A-area-of-responsibility, the engagement-area-A is VISIBLE from it, and the 
DISTANCE-TO-ENGAGEMENT-AREA is "close". Similarly, hs1tp and hs2tp could be successfully 
matched to hill-sector-911-2 and hill-sector-903-2. Because the objects have been found to satisfy 
the solve portion of the lower bound condition, the procedure is applied and the solution 
indicated is shown in Fig. 15  and represented as: 
 
 POSITION-PLATOON  platoon-A3 IN hill-sector-900-1 
 POSITION-PLATOON   platoon-A1 IN hill-sector-911-2 
 POSITION-PLATOON   platoon-A2 IN hill-sector-903-2 
 

    It is important to stress that there are many correct placements, corresponding to different 
ways of matching the lower bound to the situation the agent faces. For instance, hs1tp, hs2tp, 
hsi could also be successfully matched with another set of hill sectors that satisfy the lower 
bound conditions of the procedure leading to the following solution of the placement problem: 
 



HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS 

 

26

 

 POSITION-PLATOON  platoon-A3 IN hill-sector-903-1 
 POSITION-PLATOON   platoon-A1 IN hill-sector-903-2 
 POSITION-PLATOON   platoon-A2 IN hill-sector-911-1 
 
    If the lower bound does not mach the current situation, the procedure is not considered 
applicable.  Another problem-solving strategy could be that if the lower bound of the 
procedure does not match the current situation, then the agent would check if the upper bound 
matches it, and if it does, then the procedure is again applied, but the unit placement indicated 
by it is considered only plausibly correct. 
 
 

V. ANALYSIS OF LEARNING 
 
    It is important to stress that while this procedure has been learned from six examples, the 
agent internally examined approximately 5,000 different placements that are covered by the 
upper bound of the procedures in Figures 9 and 14. These placements are for the three areas 
considered corresponding to Companies D, E and F. The learning process stopped because the 
procedure was refined to where all the placements that could be generated were covered by the 
lower bound of the procedure being learned (there was no other placement both covered by the 
upper bound and not covered by the lower bound). It is would be impractical for the ModSAF 
user to consider each of the 5,000 placements individually. However, the user may continue to 
verify the learned procedure by examining placements covered by the plausible lower bound 
(there are approximately 700 such placements in the training scenario illustrated). 
    The initial search space for the problem without any explanations given was approximately  
4 x 1013.  The procedure in Fig. 14 was learned from 3 positive and 3 negative examples – one 
given by the user and 5 generated for classification by Captain.  17 explanations were given by 
the user, 14 initially, and 3 during experimentation.  If fewer initial explanations were given to 
Captain, more examples would be generated for user classification. 
    This illustration gives a general outline of the learning method. There are many other kinds of 
interactions between the user and the agent. For instance, the user may  choose to give the 
agent additional examples of good placements. These may cause the generalization of the lower 
bound or of both the lower and the upper bounds. 
    During learning, the agent may also accumulate negative or positive exceptions of the 
procedure. These are incorrect placements that are covered by the lower bound, or good 
placements not covered by the upper bound. In such cases, the agent will attempt to elicit new 
knowledge (e.g. new features of platoons or their positions that are not defined in the 
knowledge base) from the user using the consistency-driven elicitation methods detailed in 
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[18]. These knowledge items will allow the agent to modify the plausible version space of the 
procedure such that the negative and the positive exceptions become negative examples and 
positive examples, respectively. Another way of dealing with a procedure’s positive exceptions 
is to split the plausible version space into several plausible version spaces that do not have 
exceptions [4]. This will lead to learning more smaller procedures for the particular problem 
(instead of one large procedure) that correspond to smaller plausible version spaces, giving a 
more accurate solution 
    The general idea of this approach is to allow the user to teach the agent in a variety of ways, 
and to intervene whenever the user wishes in the teaching process. On the other hand, the 
agent learner has a very proactive strategy of soliciting explanations in a variety of ways in 
order to remedy its failures.  Because this approach is based on a user interacting with, 
checking and correcting the way the agents solve problems, it produces verified knowledge-
based agents without an initial verification step. 
    Based on experiments with Captain, we believe it can learn defensive placement techniques 
for any well-documented terrain, involving larger than company forces.  As the previous 
section showed, complex defensive placement procedures are learned from a small number of 
examples. This ability to learn with only a few examples is due to explanations that identify the 
relevant features of the examples. In order to quantify the value of explanations we ran a series 
of experiments. These experiments were a variation of the leave-one-out experiments done with 
empirical inductive learners. First, an ideal procedure was learned for a certain problem in the 
ModSAF domain by giving 8 explanations. Then, a series of procedures was learned by 
withholding explanations from the system in a progressive fashion (giving first one less, than 
two less and so on). We also varied the withheld explanations to generate all possible 
combinations of the remaining explanations.  Thus by leaving out 1 explanation, we had 8 
combinations, by leaving out 2 explanations we had 28 combinations, and so on. The initial 
search space (which in the Disciple approach is approximated by the set of instances of the 
plausible upper bound) was measured for each procedure to determine what the effect of 
leaving out the explanations was. In all we performed about 40 experiments to generate this 
graph. In each case Captain formed a plausible version space rule that could be used to solve 
the problem. 
    The graph in Fig. 16 was obtained by averaging the search space obtained for each number of 
explanations given We found a wide variation of the search space since the individual utility of 
the explanations varied.  Both the minimum and maximum values of the search space at each 
number of explanations are also presented on the graph to show this variation.  Fig. 16 shows 
that there is roughly an order of magnitude drop in the search space that the algorithm uses for 
each explanation given. The maximum search space is 9.54 x 108. The initial explanations vastly 
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reduce this search space.  As an example, after two explanations are given, it averages 3.1 x 106 
placements. This result explains why the user can teach the agent the procedure after seeing 
only a small number of examples. 
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Fig. 16. Reduction of Search Space by Explanations 

 
 

VI.   CONCLUSIONS 
 
    Systems for automating complex tasks must be designed so that they can be general enough 
to be adapted to different domains. For example, considerable effort was expended in 
modifying both the ModSAF application (which contains over 450 source libraries written in C) 
and Agent-Disciple to create Captain [21]. A future goal in Agent-Disciple is to use the existing 
editor interface of ModSAF, as opposed to a separate learning system interface. Lieberman [12] 
points out that the interface between an end user and the agent training system is a crucial 
issue not addressed in most of the machine learning research. The Agent-Disciple approach is 
to use as much of the existing ModSAF interface as possible, on the assumption that this is 
easier for the SME. 
    Much of the power of the agent instruction approach presented comes from the multiple 
types of interaction between the SME and the agent being taught.  Such rich interaction is rare 
in Machine Learning systems, and is closer to the interaction found in Programming By 
Demonstration systems [13]. Such interaction is necessary, however, to develop more powerful 
agents. These interactions include: specifying new terms in the representation language of the 
agent; giving the agent an example of a solution to a task for which the agent is to learn a 
general procedure; validating analogical instances of solutions proposed by the agent; 
explaining to the agent reasons for the validation; and being guided to provide new terms in 
the representation during interaction [18]. 
    Captain addresses the basic requirements for an ideal Programming By Demonstration 
learner, as identified by Maulsby and Witten [14]. First, the learning agent is under the user’s 
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control, who specifies the actions and features relevant to the task to be taught, gives hints and 
explanations to the agent, and guides its learning actions. Second, the learning agent uses 
various knowledge-based heuristics for performing plausible generalizations and 
specializations that are understandable, including plausible generalization of a single example. 
Third, the agent learns a task in terms of all the parameters necessary for task execution. It also 
learns from a small set of examples. 
    Captain currently does not address autonomous learning, where the agent would learn 
without the guidance of an SME, but the same learning methods that are being developed for 
instruction should be applicable [7], [8], [9], [19]. 
    Verification and validation is a difficult problem with military command agents, because of 
the complexity of the agent reasoning process.  Our approach addresses this problem by 
allowing the user to test the agent with additional examples after the agent has successfully 
learned how to perform a mission.  The SME can select the testing examples or the testing 
examples can be automatically generated. If the agent performs the mission incorrectly, the user 
can correct the agent through the same instruction techniques that were originally used to teach 
the agent (i.e., by giving additional examples or explanations).  If the agent performs the 
mission selected by the SME correctly, then confidence in the learned behavior increases. 
    Captain offers an efficient approach for teaching complex behavior to an agent through 
demonstration.  This approach was illustrated by our investigations with the Captain system.  
This approach to training ModSAF agents appears to be more natural and significantly simpler 
than the currently process, where the SME manually specifies the mission of the ModSAF 
agents in great detail to achieve reasonable behavior in a simulation. The learning efficiency in 
Captain is achieved through the use of plausible version spaces and a human guided heuristic 
search of these spaces. 
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Appendix A 
Glossary of Military Terms 

 

area of responsibility: area established by boundary lines, within which a unit is expected to operate. 

armored: attribute indicating use of vehicles with a defensive covering, usually tanks or attack: 

application of combat power on an objective by a military force in order to a make the enemy abandon 

their defense or face piecemeal destruction. 

avenue of approach: an air or ground route of an attacking force of a given size leading to its objective or 

to key terrain in its path. 

company: unit usually consisting of 3 or 4 platoons. 

control measure: area of responsibility, avenue of approach, engagement area, or other method whereby 

a commander directs activity as part of a mission given to a subordinate unit. 

defend: actions taken by a military force to cause an enemy attack to fail;  usually focused on retaining 

control of terrain. 

engagement area: location where a unit attacks or defends. 

infantry: unit consisting of foot soldiers. 

march: normal forward movement of a unit (including vehicles as well as units on foot). 

mobility corridor: area within which a unit can move at its normal march rate. 

ModSAF: Modular Semi-Automated Forces. 

orientation: direction something is facing. 

overlay: information superimposed on a map, chart, or other display, to show details not appearing or 

requiring special emphasis on the original placement: area where a military unit stays for some length of 

time; usually the intention is to defend the area 

platoon: unit of about 40 humans or 4 tanks. 

quadrant: one quarter of a placement or other area. 

SAFOR: Semi-Automated Forces. 

sector: an area designated by boundaries within which a unit operates, and for which it is responsible. 

unit: small military force under a single commander. 
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Appendix B 
First Phase of Solution Explanation by Expert 

 
Explanation Editor 
 
Indicate   - a variable that you would like to generate explanations from  
            - a pair of variables to generate explanations from  
            - an explanation (enter ? for help with syntax) 
            - 'all' to generate all explanations 
            - 'retract' to retract an explanation 
            - 'view' to view the current set of accepted explanations 
            - 'quit' to quit explanation generation  
[variable/variable pair/explanation/all/r/v/q]: c 
 
Choose the relevant explanation(s) 
 
1> (c  IS-A  company-D  AFFILIATION   "friendly") 
2> (c  IS-A  company-D   NUMBER-OF-PLATOONS   3) 
3> (m  IS-A  defend-area-mission-D   WITH   c  IS-A company-D) 
4> (c  IS-A  company-D  COMMANDS   PI  IS-A  platoon-D3) 
5> (c  IS-A  company-D  COMMANDS   P1T  IS-A  platoon-D1) 
6> (c  IS-A  company-D  COMMANDS   P2T  IS-A  platoon-D2) 
7> QUIT 
 
Enter selection as number or list of numbers: (3 4 5 6) 
[variable/variable pair/explanation/all/r/v/q]:  m 
Choose the relevant explanation(s) 
 
1> (m IS-A defend-area-mission-D  IN  ar IS-A  company-D-area-of-responsibility) 
2> QUIT 
 
Enter selection as number or list of numbers: 1 
[variable/variable pair/explanation/all/r/v/q]:  ar 
 
Choose the relevant explanation(s) 
 
1> (av IS-A avenue-of-approach-D  PART-OF   ar IS-A company-D-area-of-responsibility) 
2> (hsi IS-A hill-sector-868-1   IN   ar IS-A  company-D-area-of-responsibility) 
3> (hs1tp IS-A hill-sector-863-2   IN   ar IS-A company-D-area-of-responsibility) 
4> (hs2tp IS-A hill-sector-875-2D   IN   ar IS-A company-D-area-of-responsibility) 
5> QUIT 
 
Enter selection as number or list of numbers: (1 2 3 4) 
[variable/variable pair/explanation/all/r/v/q]:  e 
 
Choose the relevant explanation(s) 
1> (e IS-A engagement-area-D  WIDTH   0.17) 
2> (e IS-A engagement-area-D  LENGTH   1.3) 
3> (e IS-A engagement-area-D  PART-OF   av IS-A avenue-of-approach-D) 
4> (hsi IS-A hill-sector-868-1   VISIBLE   e IS-A engagement-area-D) 
5> (hs1tp IS-A hill-sector-863-2  VISIBLE   e IS-A engagement-area-D) 
6> (hs2tp IS-A hill-sector-875-2D  VISIBLE   e IS-A engagement-area-D) 
7> QUIT 
 
Enter selection as number or list of numbers: (3 4 5 6) 
[variable/variable pair/explanation/all/r/v/q]:  v 
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Accepted Explanations: 
1> (c IS-A company-D  COMMANDS   P2T IS-A platoon-D2) 
2> (c IS-A company-D  COMMANDS   P1T IS-A platoon-D1) 
3> (c IS-A company-D  COMMANDS   PI IS-A platoon-D3) 
4> (m IS-A defend-area-mission-D   WITH   c IS-A company-D) 
5> (m IS-A defend-area-mission-D   IN   ar IS-A company-D-area-of-responsibility) 
6> (hs2tp IS-A hill-sector-875-2D   IN   ar IS-A company-D-area-of-responsibility) 
7> (hs1tp IS-A hill-sector-863-2   IN   ar IS-A company-D-area-of-responsibility) 
8> (hsi IS-A hill-sector-868-1   IN   ar IS-A company-D-area-of-responsibility) 
9> (av IS-A avenue-of-approach-D   PART-OF   ar IS-A company-D-area-of-responsibility) 
10> (hs2tp IS-A hill-sector-875-2D   VISIBLE   e IS-A engagement-area-D) 
11> (hs1tp IS-A hill-sector-863-2   VISIBLE   e IS-A engagement-area-D) 
12> (hsi IS-A hill-sector-868-1   VISIBLE   e IS-A engagement-area-D) 
13> (e IS-A engagement-area-D   PART-OF   av IS-A avenue-of-approach-D) 
 
 
[variable/variable pair/explanation/all/r/v/q]:  pi 
 
Choose the relevant explanation(s) 
 
1> (PI IS-A platoon-D3 MARKING "D3") 
2> (PI IS-A platoon-D3 WEAPONS-CLASSIFICATION "light") 
3> (PI IS-A platoon-D3 MODSAF-UNIT-NAME "unit_US_DIGroup_Platoon") 
4> (PI IS-A platoon-D3  EFFECTIVE-RANGE  "close") 
5> (hsi IS-A hill-sector-868-1    DISTANCE-TO-ENGAGEMENT-AREA  "close") 
       (PI IS-A platoon-D3  EFFECTIVE-RANGE  "close") 
6> (P1T IS-A platoon-D1  EFFECTIVE-RANGE  "close") 
       (PI IS-A platoon-D3  EFFECTIVE-RANGE  "close") 
7> (hs1tp IS-A hill-sector-863-2    DISTANCE-TO-ENGAGEMENT-AREA  "close") 
       (PI IS-A platoon-D3  EFFECTIVE-RANGE  "close") 
8> (P2T IS-A platoon-D2  EFFECTIVE-RANGE  "close") 
        (PI IS-A platoon-D3  EFFECTIVE-RANGE  "close") 
9> QUIT 
 
Enter selection as number or list of numbers:   2 
 
[variable/variable pair/explanation/all/r/v/q]:  q 
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Appendix C 
Second Phase of Solution Explanation by Expert 

 
Is this correct solution to the problem:? 
[y/n]:  n 
 
Look again at the initial problem solving example you specified 
 
1> Explanation Editor 
2> Blame Object 
3> Specialization by System 
4> View Initial Example 
5> View Current Example 
6> Quit 
 
Enter Selection Number: 1 
[variable/variable pair/explanation/all/r/v/q]:  hsi 
 
Choose the relevant explanation(s) 
 
1> (hsi IS-A hill-sector-868-1 VISIBLE mobility-corridor-D PART-OF av IS-A avenue-of-approach-D) 
2> (PI IS-A platoon-D3 EFFECTIVE-RANGE "close") 
      (hsi IS-A hill-sector-868-1   DISTANCE-TO-ENGAGEMENT-AREA "close") 
3> (P1T IS-A platoon-D1 EFFECTIVE-RANGE "close") 
      (hsi IS-A hill-sector-868-1   DISTANCE-TO-ENGAGEMENT-AREA "close") 
4> (hs1tp IS-A hill-sector-863-2 VISIBLE mobility-corridor-D) 
      (hsi IS-A hill-sector-868-1 VISIBLE mobility-corridor-D) 
5> (hs1tp IS-A hill-sector-863-2   DISTANCE-TO-ENGAGEMENT-AREA "close") 
      (hsi IS-A hill-sector-868-1   DISTANCE-TO-ENGAGEMENT-AREA "close") 
6> (hs1tp IS-A hill-sector-863-2 HAS-EXIT "yes") 
      (hsi IS-A hill-sector-868-1 HAS-EXIT "yes") 
7> (P2T IS-A platoon-D2 EFFECTIVE-RANGE "close") 
      (hsi IS-A hill-sector-868-1   DISTANCE-TO-ENGAGEMENT-AREA "close") 
8> (hs2tp IS-A hill-sector-875-2D HAS-EXIT "yes") 
      (hsi IS-A hill-sector-868-1 HAS-EXIT "yes") 
9> CONTINUE 
10> QUIT 
 
Enter selection as number or list of numbers: 9 
 
Choose the relevant explanation(s) 
 
1> (hsi IS-A hill-sector-868-1 PART-OF HILL868) 
2> (hsi IS-A hill-sector-868-1   DISTANCE-TO-ENGAGEMENT-AREA "close") 
3> (hsi IS-A hill-sector-868-1 HAS-EXIT "yes") 
4> (hsi IS-A hill-sector-868-1 VISIBLE mobility-corridor-D) 
5> (hsi IS-A hill-sector-868-1 QUADRANT 1) 
6> QUIT 
 
Enter selection as number or list of numbers: 2 
 
    As a result of this explanation, the property value pair (DISTANCE-TO-ENGAGEMENT-AREA 
“close”) is added to the clause for the variable hsi in both the upper and lower bound of the 
procedure in Fig. 9, as shown below: 
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old plausible upper bound 
(hill-sector hsi (IN ar) (VISIBLE e)  ) 
 
new plausible upper bound 
(hill-sector hsi (IN ar) (VISIBLE e)   (DISTANCE-TO-ENGAGEMENT-AREA "close")) 
 
old plausible lower bound 
(hill-sector-868-1  hsi  (IN ar) (VISIBLE e)   ) 
 
new plausible lower bound 
(hill-sector-868-1  hsi  (IN ar) (VISIBLE e)   (DISTANCE-TO-ENGAGEMENT-AREA "close")) 
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 FOOTNOTES 
 
Page 8 
 
1  An instructor gives the initial example and classifies the subsequent examples in this scenario as positive or 
negative.  This scenario focuses on the learning method rather than interaction. 
 
 
Page 14 
 
2  The infantry platoons are slightly to the northwest of hill-sector 868-1 and are shown 
as a clump of very small circles. 
 
 
Page 19 
 
3 The initial positive example is always used as a reference, so that the user can generate a positive 
explanation, which will correct the current procedure.  Explanations of why the negative example is 
incorrect can also be generated, but currently cannot be used to modify the plausible version space.  Such 
negative explanations would have to be converted to positive explanations.  An additional benefit to 
referring back to the initial example is that the user is quite familiar with it, as the user specified it at the 
start of the learning process as a prototypical solution. 
 
 
Page 22 
 
4 This involves saving the procedure and then loading it again to generate a new search space without any 
fixed variables. 
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FIGURE CAPTIONS 
 
Fig. 1. Captain Design. 
 
Fig. 2.  PVS Procedure. 
 

Fig. 3. Example of Plausible Version Space Procedures 
 
Fig. 4  Terrain Map 
 
Fig. 5:  Constructing Captain Using the Agent-Disciple Toolkit. 
 
Fig. 6. ModSAF Defensive Mission Scenario. 
 
Fig. 7.  Initial Placement on ModSAF Map by User. 
 
Fig. 8. Initial Placement Problem/Solution. 
 
Fig. 9. Initial Procedure Formed by Captain. 
 
Fig. 10. Negative Company D Placement Generated by Captain. 
 
Fig. 11. Negative Company D Problem/Solution. 
 
Fig. 12. Positive Company D Placement Generated by Captain. 
 
Fig. 13. Positive Company D Problem/Solution 
 
Fig. 14.     Final Procedure Formed by Captain. 
 
Fig. 15. Placement of Platoons by a Captain Agent for a Defensive Mission. 
 
Fig. 16. Reduction of Search Space by Explanations 
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Correspondences Abstract 
 
The current practice of building an agent involves a developer programming it for each task it 
must perform, but agents constructed in this manner are difficult to modify and cannot be 
trained by a user.  Agent-Disciple is a system for training instructable agents through user-agent 
interaction. We report here on our work that uses Agent-Disciple to provide a learning agent 
that can command simulated military forces, which currently have many limitations in 
modeling human behavior. We present an instructable Company Commander Agent that can 
be trained interactively to perform various military missions using the Captain system based on 
Agent-Disciple.  
 
 
 


