
An Investigation of Machine Learning Techniques for Use in
 Training Agents for Military Simulations

MICHAEL R. HIEB AND J. MARK PULLEN

Abstract – Agents assist users with performing tasks in computer-based applications. The current
practice of building an agent involves a developer programming it for each task it must perform, but
agents constructed in this manner are difficult to modify and cannot be trained by a user. Agent-
Disciple is a system for training instructable agents through user-agent interaction. In Agent-Disciple
a user trains an instructable agent through the interface of the user’s application by providing specific
examples of tasks and their solutions, explanations of these solutions and supervises the agent as it
performs new tasks.

We report here on our work that uses Agent-Disciple to provide a learning agent that can command
simulated military forces. Military simulations currently have many limitations in modeling human
behavior. While it is relatively straightforward to build models of doctrine, it is difficult to have
agents utilize this doctrine in varying contexts. There are too many factors to consider when building
deterministic models of behavior, even in well-defined situations. We applied Agent-Disciple to
circumvent this problem by using heuristic learning methods.

A case study is presented in developing an instructable Company Commander Agent for the Modular
Semi-Automated Forces (ModSAF) simulation – a state-of-the-art, real-time, distributed interactive
military simulation currently utilized in large-scale training exercises. A ModSAF user can train the
Company Commander Agent interactively, using the ModSAF interface, to perform various military
missions using the Captain system based on Agent-Disciple. A training session with the agent
illustrates the different types of learning interactions available in Agent-Disciple.

I. INTRODUCTION

 Computer Generated Forces (CGF) are simulations of military entities. The ability to build
intelligent command agents for CGF is significantly constrained by the knowledge acquisition
effort required. Many iterations by Subject Matter Experts (SME), programmers and knowledge

This research was conducted in the Center of Excellence in Command, Control, Communications &
Intelligence and the Computer Science Department at George Mason University. Work on ModSAF was
sponsored in part by DMSO under DISA contract DCA100-91-C-0033 and work on Disciple was
sponsored in part by the Defense Advanced Research Projects Agency under Contract No. N66001-95-D-
8653.

M. R. Hieb is with AB Technologies, 1901 N. Beauregard St., Alexandria, VA, 22311.

J. M. Pullen is with the Department of Computer Science, George Mason University, Fairfax, VA, 22030.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

2

engineers are required to develop acceptable behavior even for a narrow range of situations.
Moreover, once built the agents cannot adapt themselves to changes.

Various automated knowledge acquisition tools have been proposed and utilized for this
problem, but there is no standard acquisition methodology for CGF that has gained acceptance.
The existing approaches primarily utilize programmers and knowledge engineers to encode the
expertise of a SME. Our goal is to change this paradigm by enabling the SME to use a familiar
simulation interface to instruct an agent directly under the Agent-Disciple system. We use the
ModSAF package developed for the U.S. Army to execute the agent’s orders. Direct instruction
reduces the involvement of programmers and knowledge engineers, increasing the efficiency of
the acquisition process and improving the quality of the acquired knowledge.

Agents that learn from Agent-Disciple function as instructable ModSAF agents. This
approach provides a new approach to solving the knowledge acquisition problem for CGF.
Agent-Disciple follows a general methodology for developing instructable agents for existing
applications given in [4]. The process utilizes Programming by Demonstration (PBD) [2] and
Machine Learning techniques to allow instruction by an SME. PBD systems give an end user
the ability to create programs by demonstrating their actions thorough a graphical user
interface. PBD is a new research area that is concerned with interactive learning of user tasks
from only a few examples and explanations given by the user. By contrast, Machine Learning
as employed in Agent-Disciple uses more formal, domain-independent autonomous learning
methods. Often the inputs to machine learning programs are large numbers of examples,
extensive background knowledge, or, for multistrategy learning systems, both.

Our system is called Captain. Fig. 1 shows its system design. An SME uses editors within
ModSAF to teach a command agent new tasks. The machine learning is performed on a
separate workstation running Agent-Disciple software (Agent-Disciple provides the learning
functions of Disciple in a modular toolkit). The gray modules indicate modules that were
modified for Captain.

In our system, an SME teaches a ModSAF agent through the ModSAF Graphical User
Interface rather than using a different interface for the learning system. The SME initially
demonstrates to the ModSAF agent how to perform a new mission. The SME uses the existing
ModSAF task editors to "program" the agent, as the SME normally would, creating a sequence
of specific tasks. This sequence is given to the learning system as an initial example of the
mission. The SME then explains the relevant features of the mission. The learning system will
then attempt to perform a different instance of the mission (e.g. on a different piece of terrain)
under the supervision of the SME, asking the SME to classify its solution of the mission as a
correct or incorrect example. The SME uses ModSAF's graphical user interface to correct the
agent if it does not perform the mission as required by the SME. After this teaching session, the

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

3

Agent-Disciple agent will have learned how to perform this type of mission (i.e., create a rule
specifying how to select tasks and instantiate task parameters for a specific mission) and be able
to perform this new mission when asked to do so by the SME. Thus the SME actually will
perform the programming, but by example rather than by using the task editors.

We prototyped this approach with the Captain system [4], [5], [6], consisting of an
integration of the apprenticeship learning system, Disciple [16], and ModSAF. In Captain, a
ModSAF company commander can be taught how to place its platoons to defend its assigned
area of responsibility. This process involves eliciting an initial example from the SME, eliciting
5 to 10 explanations and showing the SME 5 to 10 examples of solutions that the system
generates. Experiments with Captain indicate that this type of system will prove scalable as it is
applied to learning other tasks in this domain. We present an analysis of our learning method
in Section V that supports this conclusion, but note that since the system is based on user
interaction, it is difficult to formally prove scalability. This is an area for future research with
Captain.

Captain utilized the ModSAF terrain map to show examples to the SME for classification,
but did not fully integrate other learning interactions (specifying examples and explanations)
into the ModSAF interface. Thus the experiments were run with two interfaces – 1) the Captain
textual interface for SME interaction; and 2) the ModSAF graphical interface for display of the
example placements on the digital terrain map.

Like much other work in Machine Intelligence technology, Captain is based more on
heuristics than on derived principles. However, as we describe below, military subject matter
experts have reviewed the results of the work presented here and confirmed that the Captain
system learned to perform on a par with the SMEs who trained it. Therefore we are offering this
description of what we believe to be a highly successful example of the heuristic approach.

The remainder of this paper is organized as follows: Section II presents a discussion of
related work. Section III explains representations that Agent-Disciple uses for learning. Section
IV describes a case study of building a military command agent with Agent-Disciple. Section V
concludes the paper with a discussion of our agent-building approach and future plans.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

4

II. RELATED WORK

 We begin with a review of some of the related research on learning, particularly
Apprenticeship learning and the new field of Programming by Demonstration. Then we
describe how this research applies to agents.

A. Approaches to Machine Learning
 Apprenticeship Learning systems are at the intersection of the fields of Machine Learning
and Knowledge Acquisition. An Apprentice Learning System can be defined as an interactive
knowledge-based consultant that is provided with an initial domain theory and is able to
assimilate new problem-solving knowledge by observing and analyzing the problem-solving
steps of its users through their normal use of the system [20].

Apprenticeship Learning systems involve the user in the learning process, where Machine
Learning systems generally are not interactive. In Apprenticeship Learning systems the user
provides the learning system’s input in a representation that is natural to the user. The learning
system has an interaction with the user during the learning process, where the user may be
asked to give other examples, confirm a hypothesis, or give explanations. The output of this
learning generally is presented to the user prior to being translated into a form usable by a
performance element (e.g., a rule-based production system) [18]. Most Machine Learning
systems require their learning input to be put into a special format. The user may not be able to
understand the input (which may be in the form of data) or the output (which is often in the
form of rules) unless the user is quite familiar with the learning method.

Knowledge Acquisition systems and Apprenticeship Learning systems are closely related.
However, the emphasis of most Knowledge Acquisition systems is on modeling the initial

Subject
Matter
Expert

Workstation A Workstation B

Agent-DiscipleModSAF

Editor
Libraries

Interface
Libraries

Agent
Libraries

Interface
Functions

Problem
Solving
Functions

Learning
Functions

Fig. 1. Captain Design.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

5

knowledge base and eliciting knowledge. The emphasis in Apprenticeship Learning systems is
on refining knowledge that has already been elicited or created, using Machine Learning
techniques that learn from a user.
 Programming by Demonstration (PBD) systems are a type of Apprenticeship Learning
systems that give an end user the ability to create programs by demonstrating their actions.
Machine Learning covers an overlapping area of research concerned with methods that learn
concepts from example or domain theories, including such instruction from a teacher. An
example of a PBD system is the Metamouse system [14] which gives the user the ability to
automate drawing tasks. The user instructs an agent (a turtle named Basil) on how to
manipulate objects through an innovative graphical interface. Basil learns from specification of
graphical constraints to construct a program that automates graphical editing. The program
can have loops and conditionals.

PBD systems are significant because their goal is to empower the end user by assuming
that, if a user knows how to perform a task on the computer, then that knowledge should be
sufficient to create a program to perform the task. Rather than learn a programming language,
the user should be able to instruct the computer to watch as the task is demonstrated [2]. A
common concern among PBD systems is interface design. The graphical (and verbal) user
interface of these systems is generally very sophisticated, and the inferencing techniques are
usually more specific to the task domain than machine learning methods [13].

PBD systems generally deal with the automation of simple tasks. They generally do not
deal with automating complex tasks or behaviors, such as concerns the ModSAF agents. The
systems do not provide facilities for the end user to specify domain knowledge to the system, as
is done with knowledge elicitation or knowledge acquisition methods.

B. Instructable Agents

Software agents are programs that can execute with their own identity within an
application, either autonomously or semi-autonomously. The agents that are being developed
today either have fixed (non-adaptive) behavior or can exhibit some limited forms of learning.
Agent-Disciple can be thought of as an agent development environment either for training
existing agents or for building entirely new agents.

ModSAF agents use a task-level architecture similar to a subsumption architecture [1]. This
allows a user to give orders to an agent, which then attempts to carry out the orders, unless it
reacts to a condition for which it was programmed (e.g., a threat). Since this is a reactive
architecture, the agents must be supervised closely by the SME.

Another approach to CGF development has been to develop entirely new ModSAF agents
using the Soar problem-solving model [15}. These agents currently operate primarily in

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

6

aviation environments. The Soar-based agents have the potential to significantly improve the
behavior of ModSAF entities, but conducting the knowledge acquisition to build such agents
remains a difficult problem because they do not have the ability to learn.

Soar [11] is a general problem-solving architecture that addresses the problem of agent
learning. Soar has a single learning mechanism that is integral to its architecture: chunking. By
contrast, Agent-Disciple integrates many learning methods for agent instruction. Soar has a
very elaborate model of problem solving – the Problem Space Computational Method (PSCM) –
that uses deductive rules. Agent-Disciple uses rules with plausible conditions and is able to
reason with incomplete knowledge, although its problem-solving model is also more
complicated than most expert systems.

Huffman [10] used Soar in his system Instructo-Soar, where an instructable agent learns
from tutorial instruction. Instructo-Soar learns general knowledge from specific instructions,
using rote learning and a type of inductive learning (situated explanation) in addition to the
chunking of Soar. Huffman delineates the type of knowledge that must be learned to build an
agent in Soar’s computational model, and demonstrates the ability of Instructo-Soar to acquire
the majority of knowledge types necessary. Instructo-Soar has been demonstrated in a small
domain, a blocks world with a small number of operators, properties and relationships (less
than 10 of each).

III. PLAUSIBLE VERSION SPACE RULES

Here we first describe the novel structure of rules in Agent-Disciple and then give examples
of how Agent-Disciple uses such plausible version space rules.

A. Plausible Version Space Rules

Agent Disciple uses a hybrid knowledge representation integrating semantic networks and
rules. Semantic networks represent information from a terrain database at a conceptual level, as
well as knowledge about forces and weapon systems. In order to facilitate learning, the objects
and the rules both use the following representation unit:

 (concept-i concept-k (FEATURE-1 value-1)
 . . .
 (FEATURE-n value-n))

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

7

This expression defines 'concept-k' as being a subclass of 'concept-i' (from which it inherits
features) with additional features. The value of a feature may be a constant or another concept.

In Agent-Disciple, rules are procedures that consist of a PROBLEM statement, CONDITIONS

and a SOLUTION statement. Each condition (also called a clause) consists of a plausible upper
bound and plausible lower bound that are in the format of the representation unit described
above. The plausible upper bound is a conjunctive expression that is supposed to be more
general than the exact condition, and the plausible lower bound is a conjunctive expression that
is supposed to be less general than the exact condition. The two bounds define a plausible
version space (PVS) for the condition to be learned by Disciple [17]. The bounds and the version
space are called plausible because the learning process takes place in an incomplete
representation language that may cause them to be inconsistent (a lower bound that covers
some negative examples or an upper bound that does not cover all positive examples).
 Fig. 2 shows the general form of a PVS procedure in Agent-Disciple. A procedure is learned
from specific problem solving episodes indicated by a user. Once learned, a procedure can be
selected to be performed by an SME. A mission is a goal specification given to the agent (the
agent in the military simulation is given an order). A task is an action that the agent can take in
the simulation.

The terms p1 through pn and p11 through piv represent parameter names, mn through mn
represent mission parameters, t11 through tiv represent task parameters, um and ut represent

the upper bound class, lm and lt represent the lower bound class, and cm through ct represent
constraints upon the parameters. The plausible upper bound and plausible lower bound are
both conjunctive expressions. The plausible upper bound is more general than the plausible
lower bound. The upper bound represents a set of possible solutions, while the lower bound
represents the least general generalization of the set of solutions actually encountered.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

8

B. Examples of Using Plausible Version Space Rules

Fig. 3 contains simple procedures for an agent corresponding to the situation depicted in
Fig. 4. Procedure P1 specifies how to OBSERVE an object t1: verify that it meets the constraint
in the lower bound – that it is a terrain-element (both the upper and lower bounds are the same
in this case); if it is, then find objects for the task parameters t2 and u subject to the constraints in
the lower bound – that t2 is a hill opposite from t1 and that u is an armored-platoon; if there
are no armored platoons, then use the upper bound and attempt to find a platoon; if objects for
the task parameters are found, then perform the march task.

Procedure P1 has been learned from the following initial example1.

to accomplish
OBSERVE
 TERRAIN hill-60-70
perform
MARCH
 UNIT-ID platoon-a1 LOCATION hill-44-91

The initial example is expressed as a tuple,

(t1 ← hill-60-70, t2 ← hill-44-91, u ← platoon-a2)

1 An instructor gives the initial example and classifies the subsequent examples in this scenario as positive
or negative. This scenario focuses on the learning method rather than interaction.

PROBLEM:
 to accomplish
 MISSION p1 m1 ... pn mn

CONDITIONS:
 plausible upper bound plausible lower bound
 verify
 (um1 m1 cm11 ... cm1o) & (lm1 m1 cm11 ... cm1o)&

 (umn mn cmn1 ... cmnp) (lmn mn cmn1 ... cmnp)
 find
 (ut11 t11 ct111 ... ct11r) & (lt1 t11 ct111 ... ct11r) &

 (utiv tiv ctiv1 ... ctivs) (lt1 tiv ctiv1 ... ctivs)

SOLUTION:
 perform
 TASK1 p11 t11 ... p1w t1u
 ...
 TASKi pi1 ti1 ... piv tiv

Fig. 2. PVS Procedure.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

9

A detailed description of how the upper and lower bounds are formulated and modified to
obtain P1 is given in [4]. The second example,

(t1 ← lake-57-82, t2 ← hill-60-70, u ← platoon-a2)

is positive and indicates that the lake in Fig. 4 can be observed from hill-60-70 by a platoon.
The example

(t1 ← hill-44-91, t2 ← lake-57-82, u ← platoon-a2)

is negative since the platoon cannot move onto the lake (the platoon is a motorized unit with
tracked vehicles and cannot drive on the lake). The example

(t1 ← hill-60-70, t2 ← hill-44-91, u ← company-a)

is negative since a company cannot be utilized as the observing unit (it is too large to perform
the observation mission).
 After the procedure is learned, the agent can use it as follows:

1. SELECT – The agent selects a procedure to accomplish a specific mission and binds the
variables in the problem to the mission parameters.

2. VERIFY – Verify that the mission parameters meet the constraints imposed by the
corresponding verify lower bound conditions.

3. FIND – Find a set of objects corresponding to the task parameters that meet the constraints
in the find lower bound conditions.

4. EXECUTE – Instantiate the task(s) in the solution with the set of objects from steps 2 & 3
corresponding to the parameters of the task(s), and invoke the task(s).

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

10

P1:
 to accomplish
 OBSERVE TERRAIN t1

 plausible lower bound plausible upper bound
 verify
 (terrain-element t1) (terrain-element t1)
 find
 (hill t2 (OPPOSITE t1)) (hill t2 (OPPOSITE t1))
 (armored-platoon u) (platoon u)

 perform
 MARCH UNIT-ID u LOCATION t2
 with the positive examples
 (t1 ← hill-60-70, t2 ← hill-44-91, u ← platoon-a2)
 (t1 ← lake-57-82, t2 ← hill-60-70, u ← platoon-a2)
 with the negative examples
 (t1 ← hill-44-91, t2 ← lake-57-82, u ← platoon-a2)
 (t1 ← hill-60-70, t2 ← hill-44-91, u ← company-a)

P2:
 to accomplish
 MOVE UNIT-ID c LOCATION t

 plausible lower bound plausible upper bound
 verify
 (company c (COMMANDS p1) (company c (COMMANDS p1)
 (COMMANDS p2) (COMMANDS p1)
 (COMMANDS p3)) (COMMANDS p3))
 (hill t) (terrain-element t)
 find
 (armored-platoon p1) (platoon p1)
 (armored-platoon p2) (platoon p2)
 (infantry-platoon p3) (platoon p3)

 perform
 MARCH UNIT-ID p1 LOCATION t
 MARCH UNIT-ID p2 LOCATION t
 MARCH UNIT-ID p3 LOCATION t
 with the positive examples
 (t ← hill-60-70, c ← company-a, p1 ← platoon-a1, p2 ← platoon-a2, p3 ← platoon-a3)
 (t ← hill-44-91, c ← company-h, p1 ← platoon-h7, p2 ← platoon-h8, p3 ← platoon-h4)

Fig. 3. Example of Plausible Version Space Procedures

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

11

80

90

40 6050

H ill
60 -70

Hill 44-91

Forest 55-87

Lake 57-82

Fig. 4 Terrain Map

If the agent cannot find a procedure in step 1 to accomplish the mission, or the

mission parameters do not meet the constraints imposed by the verify lower bound
conditions in step 2, or the agent is unable to find a solution in step 3 (a set of objects
meeting the constraints in the find lower bound conditions), then the agent will be
unable to accomplish the mission. To simplify problem solving, only the lower bound is
used. The upper bound is manipulated during learning and is kept so that the rule can
be modified later.

For example, the user of the simulation may wish to have the agent monitor for enemy
activity in the area depicted by Fig. 4. The user selects the agent and orders it to OBSERVE
forest-55-87.

1. SELECT – The agent selects P1 to OBSERVE forest-55-87 and binds the variable t1 to the

object forest-55-87.
2. VERIFY – The agent checks that the object represented by parameter t1 meets the

constraints imposed by the verify lower bound condition in P1:
 (terrain-element t1)
 Since forest-55-87 is a terrain-element, t1 is verified.
3. FIND – Find the objects corresponding to t2 and u that meet the constraints in the find

lower bound in P1:
 (hill t2 (OPPOSITE t1))
 (armored-platoon u)
 t1 was bound to the object forest-55-87 in step one. The object found for t2 must be a hill

opposite from the object represented by t1. This must be hill-60-70 according to the
knowledge in the agent’s semantic network. Then the object found for u must be an
armored platoon. platoon-a2 is found, but any other armored platoon would satisfy the
constraint.

4. EXECUTE – The agent orders platoon-a2 to execute the march task to hill-60-70.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

12

 Similarly, procedure P2 has been learned from the following initial example:

 to accomplish
 MOVE
 UNIT-ID company-a LOCATION hill-60-70
 perform
 MARCH
 UNIT-ID platoon-a1 LOCATION hill-60-70
 MARCH
 UNIT-ID platoon-a2 LOCATION hill-60-70
 MARCH
 UNIT-ID platoon-a3 LOCATION hill-60-70

This procedure specifies how to move a company to a position – by moving each of the

platoons associated with that company using the appropriate movement task for a platoon
(MARCH). The relationship COMMANDS must hold since otherwise a company could “take”
another company’s platoons. There are two positive examples, and the procedure is less
completely learned than procedure P1. For example, the variables representing the platoons in
the lower bound could be further generalized from armored-platoon & infantry-platoon to
platoon, since it does not matter what type the platoons are.

When performing procedure P2, there is an additional complication since the constraints on
mission parameter c involve other variables representing task parameters from the solution. In
this case a least commitment strategy is used in the VERIFY step, where it is verified that the
object represented by c has the relationship COMMANDS to three other objects, without
specifying what these objects are. These objects are then found in the FIND step.

IV. CASE STUDY USING CAPTAIN

 The design of Captain follows the Agent-Disciple methodology for creating an Agent
Training Environment given in [4]. The basic learning and problem-solving functions were
taken from the Agent-Disciple toolkit. The overall implementation is depicted in Fig. 5.

A. Distributed Interface to Learning System

Researchers in the PBD field have found that it is very difficult to interface learning systems
to existing applications. We have developed a distributed interface that allows the very
different Disciple and ModSAF to work together. This approach has the advantage of allowing
these two computationally intensive systems to run on separate processors.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

13

 Table 1 shows the interface protocol created for the interface. The phases correspond to
distinct sets of learning functions as in [4]. Within the phases, types are discrete events,
triggering actions. Even types indicate ModSAF sending data to Disciple, while odd types
indicate Disciple sending data to ModSAF.

Integ ration to Tas kfr ame s

CAPTAIN Editor

D IS On tolog y

A ge nt-D is cip l e Too lk it ModSAF

Cu stom iz ati onLearning

Know le dge
Re presen tation

Ca ptain

Problem Solvin g

Company
Commander

Mo di f icat ion s/
A dd it io ns

 to M od SA F
S oftw are Li brarie s ModSAF Plan View Display

Semantic Terrain
Transformations

ModSAF Editors

KB

Fig. 5:. Constructing Captain Using the Agent-Disciple Toolkit.

B. Training A ModSAF Agent
This section illustrates the training of an instructable agent once the Agent Training

Environment has been constructed. In the training scenario presented, an instructor uses
Captain to teach a ModSAF agent a new mission. After the agent learns the new mission by
formulating a procedure, it applies it to a new situation. An analysis of the learning interaction
and efficiency follows. (See Appendix 1 for a glossary of military terms.)

Scenario
A ModSAF company commander is given an order to defend an area. A company commander
in ModSAF commands 3 to 4 platoons. Each armored platoon is composed of 3 to 4 tanks.
Each infantry platoon is composed of 3 dismounted infantry squads of 12 soldiers. The
company commander is given an area of responsibility and an avenue of approach. The semantic
terrain transformations will determine the optimum engagement area on the avenue of approach
upon which the units will coordinate their fire. These three features are drawn on an overlay to

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

14

the terrain in Fig. 6. The company defensive mission requires determination of the best
available terrain positions for cover and concealment, coordination of fire, ability to retreat, and
many other factors. Along with terrain selection, units must be selected to place upon the
appropriate terrain, since different platoons have different capabilities. The solution to the
mission is a position for each element of the platoon is called a placement.

When Captain was implemented, there was no ModSAF task directly corresponding to a
defend-area mission at any echelon level. The closest task is “Hasty Occupy Position”, but that
task requires a human commander, at a minimum, to place each platoon manually and indicate
a point where the platoons will coordinate their fire when the enemy approaches. The
commander can specify other parameters for better performance.

If an order is given for this class of mission, and the placement is determined, the platoons
of the company are moved into their defensive positions. If the placement is good, then the
approaching enemy will not be able to force a way through the area. A good placement usually
results in the enemy not sensing the defenders until they have entered the area of engagement.

Fig. 6 shows a company, Company D, defending a valley with 2 armored platoons and one
infantry platoon2. Two enemy companies are approaching the valley along the expected
avenue of approach, the road. In this actual ModSAF simulation scenario, all of the enemy
forces are stopped in the valley, at a cost of approximately 25% losses in Company D. ModSAF
is a real time, non-deterministic simulation, and there is variability in the results. However, if

2 The infantry platoons are slightly to the northwest of hill-sector 868-1 and are shown as a clump of very
small circles.

Specification of Initial Scenario Signals

Phase 0 - Give Initial Example
 Type 0 - Select Example Template
 Type 1 - Send Acknowledgement of Template
 Type 2 - Select Initial Example
 Type 3 - Send Acknowledgement of Initial
 Example

Phase 1 - Give Initial Explanations
 Type 0 - Select Variable to Generate
 Explanations from
 Type 1 - Send List of Explanations
 Type 2 - Select Explanation(s)
 Type 3 - Send Acknowledgement of
 Explanations

Phase 2 - Quit Initial Signal Phases
 Type 0 - Quit Specification of initial
 Type 1 - Send Acknowledgement of Quit

Learning through Experimentation Signals

Phase 3 - Experimentation Search Parameters
 Type 0 - Select Variable(s) to Fix
 Type 1 - Send Acknowledgement Fixed
 Type 101 - Quit Search Phase
 Type 102 - Send Acknowledgement of Quit

Phase 4 - Generate Experimentation Example
 Type 0 - Request Example to be Generated
 Type 1 - Send Example

Phase 5 - Give Experimentation Example
 Type 0 - Specify Example
 Type 0 - Send Acknowledgement of Example

Phase 6 - Classify Experimentation Example
 Type 0 - Classify Example
 Type 1 - Send Acknowledgement of
 Classification

Phase 7 - Explain Mistake in Experimentation
 Type 0 - Select Variable to Generate
 Explanations from
 Type 1 - Send List of Explanations
 Type 2 - Select Explanation(s)
 Type 3 - Send Acknowledgement of Explanations
 Type 4 - Select Variable to Blame
 Type 5 - Send Acknowledgement
 Type 101 - Quit Explanation Phase
 Type 102 - Send Acknowledgement

Phase 8 - Quit Experimentation Signal Phases
 Type 0 - Quit Experimentation
 Type 1 - Send Acknowledgement of Quit

Table 1. Protocol for Agent-Disciple/ModSAF Interface.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

15

the platoons of Company D are not well-placed, then they are invariably destroyed and do not
stop the enemy.

Fig. 6. ModSAF Defensive Mission Scenario.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

16

Initial Example

The user initiates the instruction session by showing the ModSAF company agent a specific
example of a correct placement. The user places three platoons of Company D (D1, D2 & D3)
on the ModSAF map to defend the company’s area of responsibility, as indicated in Fig. 7. The
user uses the ModSAF simulation interface as the user normally would when orienting units.
Fig. 8 shows the textual representation of the example mission (the problem) and also the
solution. The objects already have been turned into variables as indicated by the variables
paired with the objects. The variables will be utilized in the next section to generate
explanations. The actual formatting of the example was edited to improve its readability. The
structure of the problem and solution was preset to the defensive mission task. The system
maintains a correspondence between each concept in the textual representation (e.g. hill-sector-
868-1) and the corresponding object (region) on the map.

Fig. 7. Initial Placement on ModSAF Map by User.

Initial Explanations

Along with the initial example, the user is asked for explanations of why the indicated
solution is correct. The user can generate plausible explanations using the Captain interface.
Captain uses several heuristics to propose partial plausible explanations from which the user is
requested to choose the relevant ones, as shown in Appendix B. The partial explanations
proposed by the system are relationships between the objects from the problem and its

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

17

solution, or properties of these objects that are represented in the agent’s knowledge base. For
instance, in the case of the example considered, they are relationships between the platoons and
the terrain features.

to accomplish:
 POSITION-COMPANY UNIT-ID (company-D c)
 MISSION (defend-area-mission-D m)
 LOCATION (company-D-area-of-responsibility ar)
 ENEMY-ORIENTATION (avenue-of-approach-D av)
 ENGAGEMENT-AREA (engagement-area-D e)

perform:
 POSITION-PLATOON UNIT-ID (platoon-D3 PI)
 LOCATION (hill-sector-868-1 hsi)
 POSITION-PLATOON UNIT-ID (platoon-D1 P1T)
 LOCATION (hill-sector-863-2 hs1tp)
 POSITION-PLATOON UNIT-ID (platoon-D2 P2T)
 LOCATION (hill-sector-875-2 hs2tp)

Fig. 8. Initial Placement Problem/Solution.

 There are several general explanation patterns in Captain. These are matched against the
knowledge base to generate specific plausible explanations. The user guides the process of
generating explanations by selecting an object from the problem or solution, indicated by its
associated variable. As indicated below, the user specified 5 variables to generate 25
explanations from which the user chose 14 as relevant. The chosen explanations indicate that it
is important that this is a defensive area mission for Company D, that the platoons to be placed
belong to Company D, and that these platoons are placed in Company D’s area of
responsibility, i.e. in positions where they can see the engagement area.

 While it is important to have some explanations of the initial example, there is no
requirement that a complete set of explanations must be specified. Indeed, the assumption
made by Captain is that this initial explanation set is incomplete (and possibly even incorrect)
and will be completed during experimentation. Consequently, the initial example from Fig. 7
will be available for the entire duration of the learning session so that the agent can ask
additional questions about this example.
 The relevant explanations identified by the user are used by the agent to generate an initial
plausible version space for the procedure to be learned. This version space is indicated in Fig. 9,
but is not shown to the user who communicates with the system only through concrete
examples and explanations. The conclusion of the procedure in Fig. 9 is obtained in Captain by
turning the objects from the initial example (Fig. 8) into variables.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

18

To Accomplish
 POSITION-COMPANY UNIT-ID c
 MISSION m
 LOCATION ar
 ENEMY-ORIENTATION av
 ENGAGEMENT-AREA e

Verify
 plausible upper bound
 (company c (COMMANDS P2T) (COMMANDS PI) (COMMANDS P1T))
 (overlay-object ar)
 (overlay-object av (PART-OF ar))
 (overlay-object e (PART-OF av))
 (mission m (WITH c) (IN ar))

 plausible lower bound
 (company-D c (COMMANDS P2T) (COMMANDS PI) (COMMANDS P1T))
 (company-D-area-of-responsibility ar)
 (avenue-of-approach-D av (PART-OF ar))
 (engagement-area-D e (PART-OF av))
 (defend-area-mission-D m (WITH c) (IN ar))

Find
 plausible upper bound
 (platoon PI (WEAPONS-CLASSIFICATION "light"))
 (platoon P1T)
 (platoon P2T)
 (hill-sector hsi (IN ar) (VISIBLE e))
 (hill-sector hs1tp (IN ar) (VISIBLE e))
 (hill-sector hs2tp (IN ar) (VISIBLE e))

 plausible lower bound
 (platoon-D3 PI (WEAPONS-CLASSIFICATION "light"))
 (platoon-D1 P1T)
 (platoon-D2 P2T)
 (hill-sector-868-1 hsi (IN ar) (VISIBLE e))
 (hill-sector-863-2 hs1tp (IN ar) (VISIBLE e))
 (hill-sector-875-2D hs2tp (IN ar) (VISIBLE e))

Perform
 POSITION-PLATOON UNIT-ID PI
 LOCATION hsi
 POSITION-PLATOON UNIT-ID P1T
 LOCATION hs1tp
 POSITION-PLATOON UNIT-ID P2T
 LOCATION hs2tp

Fig. 9. Initial Procedure Formed by Captain.

The plausible lower bound is the conjunction of the selected explanations, re-expressed in
terms of the variables from the procedure’s conclusion. In other words, the plausible lower

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

19

bound covers only the initial example from Fig. 7. The plausible upper bound is an over-
generalization of the plausible lower bound, in which individual objects are turned into the
more general objects (the heuristic used is to take the individual’s ancestor one down in the
generalization hierarchy from the top level of the hierarchy) and the relationships between the
objects are preserved.

Experimentation
 The agent will use the plausible version space in Fig. 9 to generate other placements for
defensive missions, and will show these to the user, who will accept or reject them. The user
can control this experimentation process by fixing some of the parameters of the defensive
mission. For instance, it is useful to ask the agent to initially generate only placements of
Company D in its area of responsibility as shown below, using a user-guided search method
(Hieb, 1996). This limits the search space the agent must deal with.

User Settings for Experimentation Menu:

1> Make Variables Distinct
2> Fix Variables
3> Continue

Enter Selection Number: 2

Enter one or a list of variables to fix (or q to quit):
(c, e)

fixed variable c to company-D
fixed variable e to engagement-area-D

 The Captain agent generates a new placement of Company D by generating placements
consistent with the plausible upper bound of the procedure in Fig. 9. Placements that fall under
the lower bound as well are discarded. It then proposes a placement (which is covered by the
upper bound but not the lower bound) to the user on the ModSAF screen, as shown in Figures
10 and 11. The user rejects this placement. The system then asks that the user look at the initial
placement to determine what additional explanations need to be given to correct the initial
procedure such that it will not generate any more incorrect examples3. The user then explains
that the infantry unit is too far away from the area of engagement, as shown in Appendix C.

3 The initial positive example is always used as a reference, so that the user can generate a positive
explanation, which will correct the current procedure. Explanations of why the negative example is
incorrect can also be generated, but currently cannot be used to modify the plausible version space. Such
negative explanations would have to be converted to positive explanations. An additional benefit to
referring back to the initial example is that the user is quite familiar with it, as the user specified it at the
start of the learning process as a prototypical solution.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

20

Fig. 10. Negative Company D Placement Generated by Captain.

to accomplish:
 POSITION-COMPANY UNIT-ID (company-D c)
 MISSION (defend-area-mission-D m)
 LOCATION (company-D-area-of-responsibility ar)
 ENEMY-ORIENTATION (avenue-of-approach-D av)
 ENGAGEMENT-AREA (engagement-area-D e)

perform:
 POSITION-PLATOON UNIT-ID (platoon-D3 PI)
 LOCATION (hill-sector-878-1 hsi)
 POSITION-PLATOON UNIT-ID (platoon-D2 P1T)
 LOCATION (hill-sector-863-1 hs1tp)
 POSITION-PLATOON UNIT-ID (platoon-D1 P2T)
 LOCATION (hill-sector-878-2 hs2tp)

Fig. 11. Negative Company D Problem/Solution.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

21

Fig. 12. Positive Company D Placement Generated by Captain.

to accomplish:
 POSITION-COMPANY UNIT-ID (company-D c)
 MISSION (defend-area-mission-D m)
 LOCATION (company-D-area-of-responsibility ar)
 ENEMY-ORIENTATION (avenue-of-approach-D av)
 ENGAGEMENT-AREA (engagement-area-D e)

perform:
 POSITION-PLATOON UNIT-ID (platoon-D3 PI)
 LOCATION (hill-sector-875-1 hsi)
 POSITION-PLATOON UNIT-ID (platoon-D2 P1T)
 LOCATION (hill-sector-878-2 hs1tp)
 POSITION-PLATOON UNIT-ID (platoon-D1 P2T)
 LOCATION (hill-sector-863-1 hs2tp)

Fig. 13. Positive Company D Problem/Solution
At this point Captain generates the placement in Fig. 12, which the expert subsequently

accepts. Consequently, the system makes the following generalizations in the lower bound that
correspond to the generalization of the positive examples from Fig. 7 and Fig. 12:

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

22

Is this correct solution to the problem:?
[y/n]: y

I made the following generalization(s):
hill-sector-868-1 hill-sector-863-1 → hill-sector
hill-sector-863-2 hill-sector-878-2 → hill-sector
hill-sector-875-2 hill-sector-863-2 → hill-sector
platoon-D1 platoon-D2 → armored-platoon
platoon-D2 platoon-D1 → armored-platoon

At this point, all the placement examples for Company-D that the system might
generate are already covered by the plausible lower bound of the version space and
Captain presents the following message to the user:

There are no more examples from which to learn
2340 solutions of the current problem were examined
335 solutions are available for verification

Would you like to see other problem solving examples to verify the learned procedure? [y/n]: n

 The messages indicate that during the learning process, 2340 tuples from the initial search
space have been examined. Of the 2340 tuples, 2005 tuples were not covered by the upper
bound, and 335 tuples are covered by the lower bound. The tuples covered by the lower bound
are considered positive examples of the placement problem for Company D and are saved. The
user has the option to review these positive placements in the same manner as during the
experimentation above. If the user finds an incorrect placement, the rule is modified
accordingly.
 The user then directs Captain to experiment with placing other companies for defending
their areas of responsibility by “unfixing” the previously-fixed objects, company-D and
engagement-area-D4. In response, the system generates a new example for the user to validate.
This example comes from a different area on the map, which is in the area of responsibility for
Company E.
 Because the user accepts the placement generated by the agent for Company E, the system is
able to make a significant reduction in the plausible version space by generalizing the following
concepts from the plausible lower bound:

Is this correct solution to the problem:?
[y/n]: y
I made the following generalization(s):

company-D company-E → company
avenue-of-approach-D avenue-of-approach-E → avenue-of-approach

4 This involves saving the procedure and then loading it again to generate a new search space without
any fixed variables.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

23

engagement-area-D engagement-area-E → engagement-area
defend-area-mission-D defend-area-mission-E → Defend-area-mission
platoon-D3 platoon-E3 → infantry-platoon
company-D-area-of-responsibility company-E-area-of-responsibility → area-of-responsibility

The process described above is followed until Captain is able to place companies successfully
on the first try. Typically each placement is dealt with in fewer examples and at the same time
learning the values of all possible parameters, for example by varying the value of the
engagement-area that was previously fixed. In the end the agent has learned the
procedure shown in Fig. 14. It produces the final message:

There are no more examples from which to learn
2644 solutions of the current problem were examined
375 solutions are available for verification

Would you like to see other problem solving examples to verify the learned procedure? [y/n]: n

 The messages indicate that during the learning process, 2644 tuples from the initial search
space have been examined. Of the 2644 tuples, 2269 tuples were not covered by the upper
bound, and 375 tuples are covered by the lower bound. The tuples covered by the lower bound
are considered positive examples of the placement problem and are saved.

Applying the Learned Procedure
 Subsequently, after the procedure has been learned for the defensive placement mission,
another company commander may use the procedure. A scenario is shown in Fig. 19 for
Company A where the company command agent has been ordered to defend the area shown
on the map.
 The agent will look for a procedure that can be used for this type of mission – and finds the
procedure shown in Fig. 14 Next it will check if the verify portion of the lower bound condition
of this procedure is satisfied when the variables from the procedure are matched with the
objects from the specific mission. Using the procedure in Fig. 14 it will check if company-A (that
matched c) is a company that commands three platoons A1, A2 and A3. This matching
succeeds because company-A COMMANDS platoon-A1, platoon-A2 and platoon-A3 and company-A
has 3 platoons. Similarly the agent will check if company-A-area-of-responsibility, engagement-area-

A and defend-area-mission-A satisfy the corresponding conditions from the verify portion of the
plausible lower bound (i.e. the conditions for ar, e and m respectively). Since the verify portion
of the lower bound matched successfully, the solve portion of the lower bound is used to find
objects which correctly satisfy the constraints of the associated clauses. A1 and A2 must be
armored-platoons, and A3 must be an infantry-platoon with WEAPON-CLASSIFICATION "light", such
as platoon-A3.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

24

To Accomplish
 POSITION-COMPANY UNIT-ID c
 MISSION m
 LOCATION ar
 ENEMY-ORIENTATION av
 ENGAGEMENT-AREA e

Verify
 plausible upper bound
 (company c (NUMBER-OF-PLATOONS 3)(COMMANDS P2T)
 (COMMANDS PI) (COMMANDS P1T))
 (overlay-object ar)
 (overlay-object av (PART-OF ar))
 (overlay-object e (PART-OF av))
 (mission m (WITH c) (IN ar))

 plausible lower bound
 (company c (NUMBER-OF-PLATOONS 3)(COMMANDS P2T)
 (COMMANDS PI) (COMMANDS P1T))
 (area-of-responsibility ar)
 (mounted-avenue-of-approach av (PART-OF ar))
 (engagement-area e (PART-OF av))
 (defend-area-mission m (WITH c) (IN ar))

Solve
 plausible upper bound
 (platoon PI (WEAPONS-CLASSIFICATION "light"))
 (platoon P1T)
 (platoon P2T)
 (hill-sector hsi (IN ar) (VISIBLE e) (DISTANCE-TO-ENGAGEMENT-AREA "close"))
 (hill-sector hs1tp (IN ar) (VISIBLE e))
 (hill-sector hs2tp (IN ar) (VISIBLE e))

 plausible lower bound
 (infantry-platoon PI (WEAPONS-CLASSIFICATION "light"))
 (armored-platoon P1T)
 (armored-platoon P2T)
 (hill-sector hsi (IN ar) (VISIBLE e) (DISTANCE-TO-ENGAGEMENT-AREA "close"))
 (hill-sector hs1tp (IN ar) (VISIBLE e))
 (hill-sector hs2tp (iN ar) (VISIBLE e))

Perform
 POSITION-PLATOON UNIT-ID PI
 LOCATION hsi
 POSITION-PLATOON UNIT-ID P1T
 LOCATION hs1tp
 POSITION-PLATOON UNIT-ID P2T
 LOCATION hs2tp

Fig. 14. Final Procedure Formed by Captain.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

25

Fig. 15. Placement of Platoons by a Captain Agent for a Defensive Mission.

The rest of the variables from the solve portion (i.e. hs1tp, hs2tp, hsi) have to be matched with
objects from the map. For instance, hsi may be matched with hill-sector-900-1 because this hill
sector is IN company-A-area-of-responsibility, the engagement-area-A is VISIBLE from it, and the
DISTANCE-TO-ENGAGEMENT-AREA is "close". Similarly, hs1tp and hs2tp could be successfully
matched to hill-sector-911-2 and hill-sector-903-2. Because the objects have been found to satisfy
the solve portion of the lower bound condition, the procedure is applied and the solution
indicated is shown in Fig. 15 and represented as:

 POSITION-PLATOON platoon-A3 IN hill-sector-900-1
 POSITION-PLATOON platoon-A1 IN hill-sector-911-2
 POSITION-PLATOON platoon-A2 IN hill-sector-903-2

 It is important to stress that there are many correct placements, corresponding to different
ways of matching the lower bound to the situation the agent faces. For instance, hs1tp, hs2tp,
hsi could also be successfully matched with another set of hill sectors that satisfy the lower
bound conditions of the procedure leading to the following solution of the placement problem:

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

26

 POSITION-PLATOON platoon-A3 IN hill-sector-903-1
 POSITION-PLATOON platoon-A1 IN hill-sector-903-2
 POSITION-PLATOON platoon-A2 IN hill-sector-911-1

 If the lower bound does not mach the current situation, the procedure is not considered
applicable. Another problem-solving strategy could be that if the lower bound of the
procedure does not match the current situation, then the agent would check if the upper bound
matches it, and if it does, then the procedure is again applied, but the unit placement indicated
by it is considered only plausibly correct.

V. ANALYSIS OF LEARNING

 It is important to stress that while this procedure has been learned from six examples, the
agent internally examined approximately 5,000 different placements that are covered by the
upper bound of the procedures in Figures 9 and 14. These placements are for the three areas
considered corresponding to Companies D, E and F. The learning process stopped because the
procedure was refined to where all the placements that could be generated were covered by the
lower bound of the procedure being learned (there was no other placement both covered by the
upper bound and not covered by the lower bound). It is would be impractical for the ModSAF
user to consider each of the 5,000 placements individually. However, the user may continue to
verify the learned procedure by examining placements covered by the plausible lower bound
(there are approximately 700 such placements in the training scenario illustrated).
 The initial search space for the problem without any explanations given was approximately
4 x 1013. The procedure in Fig. 14 was learned from 3 positive and 3 negative examples – one
given by the user and 5 generated for classification by Captain. 17 explanations were given by
the user, 14 initially, and 3 during experimentation. If fewer initial explanations were given to
Captain, more examples would be generated for user classification.
 This illustration gives a general outline of the learning method. There are many other kinds of
interactions between the user and the agent. For instance, the user may choose to give the
agent additional examples of good placements. These may cause the generalization of the lower
bound or of both the lower and the upper bounds.
 During learning, the agent may also accumulate negative or positive exceptions of the
procedure. These are incorrect placements that are covered by the lower bound, or good
placements not covered by the upper bound. In such cases, the agent will attempt to elicit new
knowledge (e.g. new features of platoons or their positions that are not defined in the
knowledge base) from the user using the consistency-driven elicitation methods detailed in

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

27

[18]. These knowledge items will allow the agent to modify the plausible version space of the
procedure such that the negative and the positive exceptions become negative examples and
positive examples, respectively. Another way of dealing with a procedure’s positive exceptions
is to split the plausible version space into several plausible version spaces that do not have
exceptions [4]. This will lead to learning more smaller procedures for the particular problem
(instead of one large procedure) that correspond to smaller plausible version spaces, giving a
more accurate solution
 The general idea of this approach is to allow the user to teach the agent in a variety of ways,
and to intervene whenever the user wishes in the teaching process. On the other hand, the
agent learner has a very proactive strategy of soliciting explanations in a variety of ways in
order to remedy its failures. Because this approach is based on a user interacting with,
checking and correcting the way the agents solve problems, it produces verified knowledge-
based agents without an initial verification step.
 Based on experiments with Captain, we believe it can learn defensive placement techniques
for any well-documented terrain, involving larger than company forces. As the previous
section showed, complex defensive placement procedures are learned from a small number of
examples. This ability to learn with only a few examples is due to explanations that identify the
relevant features of the examples. In order to quantify the value of explanations we ran a series
of experiments. These experiments were a variation of the leave-one-out experiments done with
empirical inductive learners. First, an ideal procedure was learned for a certain problem in the
ModSAF domain by giving 8 explanations. Then, a series of procedures was learned by
withholding explanations from the system in a progressive fashion (giving first one less, than
two less and so on). We also varied the withheld explanations to generate all possible
combinations of the remaining explanations. Thus by leaving out 1 explanation, we had 8
combinations, by leaving out 2 explanations we had 28 combinations, and so on. The initial
search space (which in the Disciple approach is approximated by the set of instances of the
plausible upper bound) was measured for each procedure to determine what the effect of
leaving out the explanations was. In all we performed about 40 experiments to generate this
graph. In each case Captain formed a plausible version space rule that could be used to solve
the problem.
 The graph in Fig. 16 was obtained by averaging the search space obtained for each number of
explanations given We found a wide variation of the search space since the individual utility of
the explanations varied. Both the minimum and maximum values of the search space at each
number of explanations are also presented on the graph to show this variation. Fig. 16 shows
that there is roughly an order of magnitude drop in the search space that the algorithm uses for
each explanation given. The maximum search space is 9.54 x 108. The initial explanations vastly

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

28

reduce this search space. As an example, after two explanations are given, it averages 3.1 x 106
placements. This result explains why the user can teach the agent the procedure after seeing
only a small number of examples.

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

Si
ze

 o
f S

ea
rc

h
Sp

ac
e

0 1 2 3 4 5 6 7 8

Number of Explanations Given by the User

Maximum

Minimum

Average

Fig. 16. Reduction of Search Space by Explanations

VI. CONCLUSIONS

 Systems for automating complex tasks must be designed so that they can be general enough
to be adapted to different domains. For example, considerable effort was expended in
modifying both the ModSAF application (which contains over 450 source libraries written in C)
and Agent-Disciple to create Captain [21]. A future goal in Agent-Disciple is to use the existing
editor interface of ModSAF, as opposed to a separate learning system interface. Lieberman [12]
points out that the interface between an end user and the agent training system is a crucial
issue not addressed in most of the machine learning research. The Agent-Disciple approach is
to use as much of the existing ModSAF interface as possible, on the assumption that this is
easier for the SME.
 Much of the power of the agent instruction approach presented comes from the multiple
types of interaction between the SME and the agent being taught. Such rich interaction is rare
in Machine Learning systems, and is closer to the interaction found in Programming By
Demonstration systems [13]. Such interaction is necessary, however, to develop more powerful
agents. These interactions include: specifying new terms in the representation language of the
agent; giving the agent an example of a solution to a task for which the agent is to learn a
general procedure; validating analogical instances of solutions proposed by the agent;
explaining to the agent reasons for the validation; and being guided to provide new terms in
the representation during interaction [18].
 Captain addresses the basic requirements for an ideal Programming By Demonstration
learner, as identified by Maulsby and Witten [14]. First, the learning agent is under the user’s

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

29

control, who specifies the actions and features relevant to the task to be taught, gives hints and
explanations to the agent, and guides its learning actions. Second, the learning agent uses
various knowledge-based heuristics for performing plausible generalizations and
specializations that are understandable, including plausible generalization of a single example.
Third, the agent learns a task in terms of all the parameters necessary for task execution. It also
learns from a small set of examples.
 Captain currently does not address autonomous learning, where the agent would learn
without the guidance of an SME, but the same learning methods that are being developed for
instruction should be applicable [7], [8], [9], [19].
 Verification and validation is a difficult problem with military command agents, because of
the complexity of the agent reasoning process. Our approach addresses this problem by
allowing the user to test the agent with additional examples after the agent has successfully
learned how to perform a mission. The SME can select the testing examples or the testing
examples can be automatically generated. If the agent performs the mission incorrectly, the user
can correct the agent through the same instruction techniques that were originally used to teach
the agent (i.e., by giving additional examples or explanations). If the agent performs the
mission selected by the SME correctly, then confidence in the learned behavior increases.
 Captain offers an efficient approach for teaching complex behavior to an agent through
demonstration. This approach was illustrated by our investigations with the Captain system.
This approach to training ModSAF agents appears to be more natural and significantly simpler
than the currently process, where the SME manually specifies the mission of the ModSAF
agents in great detail to achieve reasonable behavior in a simulation. The learning efficiency in
Captain is achieved through the use of plausible version spaces and a human guided heuristic
search of these spaces.

ACKNOWLEDGEMENTS

 This work would not have been possible without the Disciple system of Gheorghe Tecuci.
The authors thank Ken Frosch of the GMU C3I Center for designing/implementing the
Disciple/ModSAF PDU interface, and Vince Laviano of the GMU C3I Center for ModSAF
programming.

REFERENCES

[1] R.A. Brooks, “The Whole Iguana,” in Robotic Science, M. Brady, Ed. Cambridge, MA: MIT Press,

pp. 432-456, 1989.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

30

[2] A. Cypher, Ed., Watch What I Do: Programming by Demonstration, Cambridge, MA: MIT Press,
1993.

[3] T. Dybala and G. Tecuci, “Shared Expertise Space: A Learning Oriented Model for Cooperative
Engineering Design,” Proc. IJCAI-95 Workshop on Machine Learning in Engineering, Montreal,
Canada, August, 1995.

[4] M.R. Hieb, Training Instructable Agents Through Plausible Version Space Learning, PhD Dissertation,
School of Information Technology and Engineering, George Mason University, Fairfax, VA, 1996.

[5] M.R. Hieb and G. Tecuci, “Training an Agent through Demonstration: A Plausible Version Spaces
Approach” Proc. of the 1996 AAAI Spring Symposium on Acquisition, Learning and Demonstration:
Automating Tasks for Users. AAAI Press Technical Report, Menlo Park, CA, 1996.

[6] M.R. Hieb, G. Tecuci, J.M. Pullen, A. Ceranowicz, and D. Hille, “A Methodology and Tool for
Constructing Adaptive Command Agents for Computer Generated Forces,” in Proc. of the 5th
Conference on Computer Generated Forces and Behavioral Representation., Orlando, Florida, 1995.

[7] M.R. Hieb, D. Hille and G. Tecuci, “Designing a Computer Opponent for War Games: Integrating
Planning, Learning and Knowledge Acquisition in WARGLES,” Proce. of the 1993 AAAI Fall
Symposium on Games: Learning and Planning, AAAI Press Technical Report FS-93-02, Menlo Park,
CA, 1993.

[8] D. Hille, M.R. Hieb, J.M. Pullen and G. Tecuci, “Abstracting Terrain Data through Semantic
Terrain Transformations,” Proc. of the 5th Conference on Computer Generated Forces and Behavioral
Representation, Orlando, Florida, 1995.

[9] D. Hille, M.R. Hieb and G. Tecuci, “Captain: Building Agents that Plan and Learn,” Proc. of the 4th
Conference on Computer Generated Forces and Behavioral Representation., Orlando, Florida, 1994.

[10] S.B. Huffman, Instructable Autonomous Agents. PhD Dissertation, Department of Computer Science
and Engineering, University of Michigan, 1994.

[11] J.E. Laird, A. Newell and P.S. Rosenbloom, “Soar: An Architecture for General Intelligence,”
Artificial Intelligence, Vol. 33, 1987.

[12] H. Lieberman, “A User Interface for Knowledge Acquisition From Video,” In Proc. Eleventh
Conference on Artificial Intelligence, San Francisco, CA: Morgan Kaufmann, 1994.

[13] D. Maulsby, Instructable Agents, PhD Dissertation, Department of Computer Science, University of
Calgary, 1994.

[14] D. Maulsby, and I.H. Witten, “Learning to Describe Data in Actions,” Proc of ICML-95 Workshop
on Learning from Examples vs. Programming by Demonstration, CA, 1995.

[15] M. Tambe, W.L. Johnson, R.M. Jones, F. Koss, J.E. Laird, P.S. Rosenbloom, and K. Schwamb,
“Intelligent Agents for Interactive Simulation Environments,” AI Magazine., 16(1), Spring, 1995.

[16] G. Tecuci, DISCIPLE: A Theory, Methodology and System for Learning Expert Knowledge, Ph.D.
Dissertation, University of Paris South, 1988.

[17] G. Tecuci, "Automating Knowledge Acquisition as Extending, Updating and Improving a
Knowledge Base," IEEE Trans. of Syst. Man Cybern., vol. SMC-22(6), 1992.

[18] G. Tecuci and M.R. Hieb, “Consistency-driven Knowledge Elicitation: Using a Machine Learning-
oriented Knowledge Representation to Integrate Learning and Knowledge Elicitation in
NeoDISCIPLE,” Knowledge Acquisition, vol. 6(1), 1994.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

31

[19] G. Tecuci, Hieb M.R., D. Hille and J.M. Pullen, “Building Adaptive Autonomous Agents for
Adversarial Domains,” Proc. of the AAAI 94 Fall Symposium – Planning and Learning: On To Real
Applications., 1994.

[20] G. Tecuci and Y. Kodratoff, “Apprenticeship Learning in Imperfect Theory Domains” in Machine
Learning: An Artificial Intelligence Approach. Vol. III, Y. Kodratoff and R. S. Michalski, Eds., San
Francisco, CA: Morgan Kaufmann, 1990.

[21] E.L. White, K.E. Frosch, V.P. Laviano, M.R. Hieb, and J.M. Pullen, “Interfacing External Decision
Processes to DIS Applications,” 8th Conference on Computer Generated Forces and Behavioral
Representation., 1996.

AUTHORS’ BIOGRAPHIES

Michael Hieb received his PhD in Information Technology at George Mason University in
1996. Dr. Hieb is currently working for AB Technologies. He has published over 30 papers in
the areas of learning agents, knowledge acquisition and multistrategy learning. When working
for IntelliTek, Dr. Hieb implemented a distributed problem-solving testbed at the Goddard
Space Flight Center. Previously, he worked as a Nuclear Engineer for General Electric.

J. Mark Pullen is Associate Professor of Computer Science at George Mason University. He
also is a member of the Center for Excellence in Command, Control, Communications and
Intelligence. He was an officer in the U.S. Army for 21 years, specializing in advanced computer
and communications technologies. Dr. Pullen was with the Defense Advanced Research
Projects Agency (DARPA) from 1986 to 1992, where he was Program Manager for Advanced
Computing, Networking and Distributed Simulation, and Deputy Director of the Tactical
Technology Office and the Information Science and Technology Office. His research interests
include distributed and parallel computing systems and their applications to educational and
military simulations. He is a Fellow of the IEEE.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

32

Appendix A
Glossary of Military Terms

area of responsibility: area established by boundary lines, within which a unit is expected to operate.

armored: attribute indicating use of vehicles with a defensive covering, usually tanks or attack:

application of combat power on an objective by a military force in order to a make the enemy abandon

their defense or face piecemeal destruction.

avenue of approach: an air or ground route of an attacking force of a given size leading to its objective or

to key terrain in its path.

company: unit usually consisting of 3 or 4 platoons.

control measure: area of responsibility, avenue of approach, engagement area, or other method whereby

a commander directs activity as part of a mission given to a subordinate unit.

defend: actions taken by a military force to cause an enemy attack to fail; usually focused on retaining

control of terrain.

engagement area: location where a unit attacks or defends.

infantry: unit consisting of foot soldiers.

march: normal forward movement of a unit (including vehicles as well as units on foot).

mobility corridor: area within which a unit can move at its normal march rate.

ModSAF: Modular Semi-Automated Forces.

orientation: direction something is facing.

overlay: information superimposed on a map, chart, or other display, to show details not appearing or

requiring special emphasis on the original placement: area where a military unit stays for some length of

time; usually the intention is to defend the area

platoon: unit of about 40 humans or 4 tanks.

quadrant: one quarter of a placement or other area.

SAFOR: Semi-Automated Forces.

sector: an area designated by boundaries within which a unit operates, and for which it is responsible.

unit: small military force under a single commander.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

33

Appendix B
First Phase of Solution Explanation by Expert

Explanation Editor

Indicate - a variable that you would like to generate explanations from
 - a pair of variables to generate explanations from
 - an explanation (enter ? for help with syntax)
 - 'all' to generate all explanations
 - 'retract' to retract an explanation
 - 'view' to view the current set of accepted explanations
 - 'quit' to quit explanation generation
[variable/variable pair/explanation/all/r/v/q]: c

Choose the relevant explanation(s)

1> (c IS-A company-D AFFILIATION "friendly")
2> (c IS-A company-D NUMBER-OF-PLATOONS 3)
3> (m IS-A defend-area-mission-D WITH c IS-A company-D)
4> (c IS-A company-D COMMANDS PI IS-A platoon-D3)
5> (c IS-A company-D COMMANDS P1T IS-A platoon-D1)
6> (c IS-A company-D COMMANDS P2T IS-A platoon-D2)
7> QUIT

Enter selection as number or list of numbers: (3 4 5 6)
[variable/variable pair/explanation/all/r/v/q]: m
Choose the relevant explanation(s)

1> (m IS-A defend-area-mission-D IN ar IS-A company-D-area-of-responsibility)
2> QUIT

Enter selection as number or list of numbers: 1
[variable/variable pair/explanation/all/r/v/q]: ar

Choose the relevant explanation(s)

1> (av IS-A avenue-of-approach-D PART-OF ar IS-A company-D-area-of-responsibility)
2> (hsi IS-A hill-sector-868-1 IN ar IS-A company-D-area-of-responsibility)
3> (hs1tp IS-A hill-sector-863-2 IN ar IS-A company-D-area-of-responsibility)
4> (hs2tp IS-A hill-sector-875-2D IN ar IS-A company-D-area-of-responsibility)
5> QUIT

Enter selection as number or list of numbers: (1 2 3 4)
[variable/variable pair/explanation/all/r/v/q]: e

Choose the relevant explanation(s)
1> (e IS-A engagement-area-D WIDTH 0.17)
2> (e IS-A engagement-area-D LENGTH 1.3)
3> (e IS-A engagement-area-D PART-OF av IS-A avenue-of-approach-D)
4> (hsi IS-A hill-sector-868-1 VISIBLE e IS-A engagement-area-D)
5> (hs1tp IS-A hill-sector-863-2 VISIBLE e IS-A engagement-area-D)
6> (hs2tp IS-A hill-sector-875-2D VISIBLE e IS-A engagement-area-D)
7> QUIT

Enter selection as number or list of numbers: (3 4 5 6)
[variable/variable pair/explanation/all/r/v/q]: v

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

34

Accepted Explanations:
1> (c IS-A company-D COMMANDS P2T IS-A platoon-D2)
2> (c IS-A company-D COMMANDS P1T IS-A platoon-D1)
3> (c IS-A company-D COMMANDS PI IS-A platoon-D3)
4> (m IS-A defend-area-mission-D WITH c IS-A company-D)
5> (m IS-A defend-area-mission-D IN ar IS-A company-D-area-of-responsibility)
6> (hs2tp IS-A hill-sector-875-2D IN ar IS-A company-D-area-of-responsibility)
7> (hs1tp IS-A hill-sector-863-2 IN ar IS-A company-D-area-of-responsibility)
8> (hsi IS-A hill-sector-868-1 IN ar IS-A company-D-area-of-responsibility)
9> (av IS-A avenue-of-approach-D PART-OF ar IS-A company-D-area-of-responsibility)
10> (hs2tp IS-A hill-sector-875-2D VISIBLE e IS-A engagement-area-D)
11> (hs1tp IS-A hill-sector-863-2 VISIBLE e IS-A engagement-area-D)
12> (hsi IS-A hill-sector-868-1 VISIBLE e IS-A engagement-area-D)
13> (e IS-A engagement-area-D PART-OF av IS-A avenue-of-approach-D)

[variable/variable pair/explanation/all/r/v/q]: pi

Choose the relevant explanation(s)

1> (PI IS-A platoon-D3 MARKING "D3")
2> (PI IS-A platoon-D3 WEAPONS-CLASSIFICATION "light")
3> (PI IS-A platoon-D3 MODSAF-UNIT-NAME "unit_US_DIGroup_Platoon")
4> (PI IS-A platoon-D3 EFFECTIVE-RANGE "close")
5> (hsi IS-A hill-sector-868-1 DISTANCE-TO-ENGAGEMENT-AREA "close")
 (PI IS-A platoon-D3 EFFECTIVE-RANGE "close")
6> (P1T IS-A platoon-D1 EFFECTIVE-RANGE "close")
 (PI IS-A platoon-D3 EFFECTIVE-RANGE "close")
7> (hs1tp IS-A hill-sector-863-2 DISTANCE-TO-ENGAGEMENT-AREA "close")
 (PI IS-A platoon-D3 EFFECTIVE-RANGE "close")
8> (P2T IS-A platoon-D2 EFFECTIVE-RANGE "close")
 (PI IS-A platoon-D3 EFFECTIVE-RANGE "close")
9> QUIT

Enter selection as number or list of numbers: 2

[variable/variable pair/explanation/all/r/v/q]: q

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

35

Appendix C
Second Phase of Solution Explanation by Expert

Is this correct solution to the problem:?
[y/n]: n

Look again at the initial problem solving example you specified

1> Explanation Editor
2> Blame Object
3> Specialization by System
4> View Initial Example
5> View Current Example
6> Quit

Enter Selection Number: 1
[variable/variable pair/explanation/all/r/v/q]: hsi

Choose the relevant explanation(s)

1> (hsi IS-A hill-sector-868-1 VISIBLE mobility-corridor-D PART-OF av IS-A avenue-of-approach-D)
2> (PI IS-A platoon-D3 EFFECTIVE-RANGE "close")
 (hsi IS-A hill-sector-868-1 DISTANCE-TO-ENGAGEMENT-AREA "close")
3> (P1T IS-A platoon-D1 EFFECTIVE-RANGE "close")
 (hsi IS-A hill-sector-868-1 DISTANCE-TO-ENGAGEMENT-AREA "close")
4> (hs1tp IS-A hill-sector-863-2 VISIBLE mobility-corridor-D)
 (hsi IS-A hill-sector-868-1 VISIBLE mobility-corridor-D)
5> (hs1tp IS-A hill-sector-863-2 DISTANCE-TO-ENGAGEMENT-AREA "close")
 (hsi IS-A hill-sector-868-1 DISTANCE-TO-ENGAGEMENT-AREA "close")
6> (hs1tp IS-A hill-sector-863-2 HAS-EXIT "yes")
 (hsi IS-A hill-sector-868-1 HAS-EXIT "yes")
7> (P2T IS-A platoon-D2 EFFECTIVE-RANGE "close")
 (hsi IS-A hill-sector-868-1 DISTANCE-TO-ENGAGEMENT-AREA "close")
8> (hs2tp IS-A hill-sector-875-2D HAS-EXIT "yes")
 (hsi IS-A hill-sector-868-1 HAS-EXIT "yes")
9> CONTINUE
10> QUIT

Enter selection as number or list of numbers: 9

Choose the relevant explanation(s)

1> (hsi IS-A hill-sector-868-1 PART-OF HILL868)
2> (hsi IS-A hill-sector-868-1 DISTANCE-TO-ENGAGEMENT-AREA "close")
3> (hsi IS-A hill-sector-868-1 HAS-EXIT "yes")
4> (hsi IS-A hill-sector-868-1 VISIBLE mobility-corridor-D)
5> (hsi IS-A hill-sector-868-1 QUADRANT 1)
6> QUIT

Enter selection as number or list of numbers: 2

 As a result of this explanation, the property value pair (DISTANCE-TO-ENGAGEMENT-AREA
“close”) is added to the clause for the variable hsi in both the upper and lower bound of the
procedure in Fig. 9, as shown below:

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

36

old plausible upper bound
(hill-sector hsi (IN ar) (VISIBLE e))

new plausible upper bound
(hill-sector hsi (IN ar) (VISIBLE e) (DISTANCE-TO-ENGAGEMENT-AREA "close"))

old plausible lower bound
(hill-sector-868-1 hsi (IN ar) (VISIBLE e))

new plausible lower bound
(hill-sector-868-1 hsi (IN ar) (VISIBLE e) (DISTANCE-TO-ENGAGEMENT-AREA "close"))

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

37

 FOOTNOTES

Page 8

1 An instructor gives the initial example and classifies the subsequent examples in this scenario as positive or
negative. This scenario focuses on the learning method rather than interaction.

Page 14

2 The infantry platoons are slightly to the northwest of hill-sector 868-1 and are shown
as a clump of very small circles.

Page 19

3 The initial positive example is always used as a reference, so that the user can generate a positive
explanation, which will correct the current procedure. Explanations of why the negative example is
incorrect can also be generated, but currently cannot be used to modify the plausible version space. Such
negative explanations would have to be converted to positive explanations. An additional benefit to
referring back to the initial example is that the user is quite familiar with it, as the user specified it at the
start of the learning process as a prototypical solution.

Page 22

4 This involves saving the procedure and then loading it again to generate a new search space without any
fixed variables.

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

38

FIGURE CAPTIONS

Fig. 1. Captain Design.

Fig. 2. PVS Procedure.

Fig. 3. Example of Plausible Version Space Procedures

Fig. 4 Terrain Map

Fig. 5: Constructing Captain Using the Agent-Disciple Toolkit.

Fig. 6. ModSAF Defensive Mission Scenario.

Fig. 7. Initial Placement on ModSAF Map by User.

Fig. 8. Initial Placement Problem/Solution.

Fig. 9. Initial Procedure Formed by Captain.

Fig. 10. Negative Company D Placement Generated by Captain.

Fig. 11. Negative Company D Problem/Solution.

Fig. 12. Positive Company D Placement Generated by Captain.

Fig. 13. Positive Company D Problem/Solution

Fig. 14. Final Procedure Formed by Captain.

Fig. 15. Placement of Platoons by a Captain Agent for a Defensive Mission.

Fig. 16. Reduction of Search Space by Explanations

HIEB AND PULLEN: TRAINING AGENTS FOR MILITARY SIMULATIONS

39

Correspondences Abstract

The current practice of building an agent involves a developer programming it for each task it
must perform, but agents constructed in this manner are difficult to modify and cannot be
trained by a user. Agent-Disciple is a system for training instructable agents through user-agent
interaction. We report here on our work that uses Agent-Disciple to provide a learning agent
that can command simulated military forces, which currently have many limitations in
modeling human behavior. We present an instructable Company Commander Agent that can
be trained interactively to perform various military missions using the Captain system based on
Agent-Disciple.

