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Abstract

TESTING FOR JUMPS AND MODELING VOLATILITY IN ASSET PRICES

Johan Bjursell, PhD

George Mason University, 2009

Dissertation Director: Dr. James E. Gentle

Observers of financial markets have long noted that asset prices are very volatile

and commonly exhibit jumps (price spikes). Thus, the assumption of a continuous

process for asset price behavior is often violated in practice. Although empirical

studies have found that the impact of such jumps is transitory, the shortterm effect

in the volatility may nonetheless be considerable with important financial implications

for the valuation of derivatives, asset allocation and risk management.

This dissertation contributes to the literature in two areas. First, I evaluate the

small sample properties of a nonparametric method for identifying jumps. I focus on

the implication of adding noise to the prices and recent methods developed to contend

with such market frictions. Initially, I examine the properties and convergence results

of the power variations that constitute the jump statistics. Then I document the

asymptotic results of these jump statistics. Finally, I estimate their size and power. I

examine these properties using a stochastic volatility model incorporating alternative

noise and jump processes. I find that the properties of the statistics remain close to the

asymptotics when methods for managing the effects of noise are applied judiciously.

Improper use leads to invalid tests or tests with low power. Empirical evidence



demonstrates that the nonparametric method performs well for alternative models,

noise processes, and jump distributions.

In the second essay, I present a study on market data from U.S. energy futures

markets. I apply a nonparametric method to identify jumps in futures prices of

crude oil, heating oil and natural gas contracts traded on the New York Mercantile

Exchange. The sample period of the intraday data covers January 1990 to January

2008. Alternative methods such as staggered returns and optimal sampling frequency

methods are used to remove the effects of microstructure noise which biases the tests

against detecting jumps.

I obtain several important empirical results: (i) The realized volatility of natural

gas futures exceeds that of heating oil and crude oil. (ii) In these commodities,

large volatility days are often associated with large jump components and large jump

components are often associated with weekly announcements of inventory levels. (iii)

The realized volatility and smooth volatility components in natural gas and heating

oil futures are higher in winter months than in summer months. Moreover, cold

weather and inventory surprises cause the volatility in natural gas and heating oil to

increase during the winter season. (iv) The jump component produces a transitory

surge in total volatility, and there is a strong reversal in volatility on days following

a significant jump day. (v) I find that including jump and seasonal components

as explanatory variables significantly improves the modeling and forecasting of the

realized volatility.



Chapter 1: Introduction

Observers of financial markets have long noted that asset prices are very volatile and

often exhibit jumps (price spikes). Thus, the assumption of a continuous diffusion

process for asset price behavior is often violated in practice. Although empirical

studies often note that the impact of such jumps generally is transitory, the short-

term effect in the volatility may nonetheless be considerable with important financial

implications for valuation of derivatives (Merton (1976)), asset allocation (Jarrow and

Rosenfeld (1984)) and risk management (Duffie and Pan (2001)).

A number of studies has shown that models including both a discontinuous jump

component and a continuous component fits the data better than only a continuous

process. For example, Cox and Rubinstein (1985) compare the Black-Scholes formula

with Merton’s option pricing formula (Merton (1976)) and show that for large and

frequent jumps in the price process of the underlying assets, Black-Scholes signif-

icantly undervalues out-of-the-money and at-the-money options. In a more recent

study, Bakshi et al. (1997) compare several parametric models with and without a

jump component based on model fitting, pricing, and hedging. They report that it

is essential to include a jump component for pricing and internal consistency. Eraker

et al. (2003) observe that jumps in the returns occur less frequently than what is re-

ported in most literature but are nevertheless still significant. Maheu and McCurdy

(2004) assume that jumps in stock market returns are generated by a nonhomogenous

Poisson process and find that the addition of the jump component improves forecasts

of volatility.
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An increase in the availability of high-frequency or transaction data has produced

a growing literature on nonparametric methods to identify jumps such as Barndorff-

Nielsen and Shephard (2004, 2006), Fan and Wang (2007), Jiang and Oomen (2008)

and Sen (2008). Literature using nonparametric methods include Huang and Tauchen

(2005), who provide evidence that jumps account for seven percent of the S&P 500

index’s realized variance. Andersen et al. (2007) provide empirical evidence that

the volatility jump component is both highly significant and less persistent than the

continuous component in foreign exchange rate spot (DM/$) market, S&P 500 index

futures and thirty-year US Treasury bond futures. Jiang et al. (2008) study treasury

bond futures and find that about seventy percent of jumps can be associated with

macroeconomic news releases.

Parametric models are generally applied to daily observations while nonparamet-

ric approaches are based on intraday data. Clearly, intraday data is richer in infor-

mation and thus presumably may produce more efficient estimates. However, the

utilization of intraday data is hampered by the presence of market microstructure

noise. Such frictions come from trade mechanisms and rules that govern the markets.

On a daily or longer time horizon, such noise is small compared to the volatility due

to information, but may dominate estimates at high intraday sampling frequencies.

Consequently, methods that are based on transaction data need to contend with the

effects of such noise. Huang and Tauchen (2005) examine the impact of noise in a

small sample study on the nonparametric method proposed by Barndorff-Nielsen and

Shephard (2004, 2006); however, recent methods for filtering the effects of noise have

not been applied and evaluated in this context. I seek to fill this gap in Chapter 2,

“Detecting Jumps in Asset Prices Using Bipower Variation”.

In Chapter 3, “Volatility and Jump Dynamics in U.S. Energy Futures Markets”,

I evaluate a more recent nonparametric method proposed by Jiang et al. (2008) and

2



apply the method to a dataset from U.S. energy futures markets. I document jump

processes, study their seasonal and intraday trends, and examine their contribution

to the total volatility.

Detecting Jumps in Asset Prices Using Bipower Variation

In this chapter, I evaluate nonparametric statistics by Barndorff-Nielsen and Shep-

hard (2004, 2006) that can be applied to identify days with jumps in a price process.

I evaluate the finite sample properties of the test statistics for noisy prices and partic-

ularly examine whether recently proposed methods for reducing the impact of noise

improve the tests.

First, I examine the properties and convergence results of the statistics that consti-

tute the jump statistics. Second, I evaluate whether methods that Bandi and Russell

(2006) and Zhang et al. (2005) propose to reduce the impact of noise in estimates of

the daily integrated variance apply to other intraday variations, specifically, to the

bipower and tripower variations. Third, I use the methods by Bandi and Russell

(2006) and Zhang et al. (2005) to test for jumps in price processes with noise. More-

over, I combine these methods with using staggered returns, which previously have

been applied in the literature (see Andersen et al. (2007) and Huang and Tauchen

(2005)). The methods by Bandi and Russell (2006) and Zhang et al. (2005) have

not, to the best of by knowledge, previously been applied to the jump statistics.1 I

also propose and evaluate a modified version of the method by Bandi and Russell

(2006) to make it more robust to jumps. Fourth, I consider alternative noise pro-

cesses recently proposed by Aı̈t-Sahalia et al. (2006) and Li and Mykland (2007), and

study the finite sample properties of the jump test statistics under these processes. I

also evaluate the statistics for alternative jump distributions. Specifically, I generate

1See Andersen et al. (2007), for example, who call attention to the lack of such a study.
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jumps from normal, skewed-normal and double exponential distributions. Finally,

while the methods by Bandi and Russell (2006) and Zhang et al. (2005) are based

on sampling the price process in an optimal manner to lessen the bias due to noise,

they nevertheless discard large fractions of the data. I empirically evaluate another

method developed by Zhang et al. (2005) that uses all data to estimate the daily

integrated variations.

I obtain several interesting results:

1. The statistics converge to the limiting normal distribution with zero mean and

unit variance as the sampling interval approaches zero for efficient (noise-free)

prices. The statistics have converged at a one-minute sampling interval. The

convergence results are highly influenced by noise, however, in which case the

limiting distribution remains normal but the moments become strongly biased.

2. Noise biases the statistics against identifying jumps, which is consistent with

the findings by Huang and Tauchen (2005). The optimal sampling methods by

Bandi and Russell (2006) and Zhang et al. (2005) address the bias against find-

ing jumps and increases the power of the test statistics. These methods perform

similarly to applying staggered returns, which Huang and Tauchen (2005) evalu-

ate. Combining the optimal sampling methods with staggered returns generally

leads to invalid tests.

3. Bandi and Russell (2006) give two equations for computing the optimal sam-

pling rate; one that is exact and one approximation. The former requires an

optimization routine while the second has a simple closed-form solution. I find

that the two methods perform equivalently, thus there is no significant loss to

use the approximation which is faster to compute.
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4. I find that a modified version of the method by Bandi and Russell (2006) cor-

rects the original tests from being slightly anti-conservative, and produces more

powerful jump statistics.

5. The size and power of the test statistics are similar for the three noise processes,

that is, adding serial correlation to the error process and introducing rounding

errors do not have a significant impact beyond the effects of a normal iid noise

process.

6. The finite sample properties under the alternative hypothesis are consistent for

alternative jump distributions.

Volatility and Jump Dynamics in U.S. Energy Futures Markets

Barndorff-Nielsen and Shephard (2004, 2006) and Jiang and Oomen (2008) propose

nonparametric procedures for identifying jumps in high-frequency intraday financial

time series. Jiang et al. (2008) show that the methods can be combined to produce a

test that remains powerful but is more robust to noise in the price series. Previously,

these methods have been applied to markets such as U.S. treasury, foreign exchange

and equity, but there is no empirical work using the newly developed procedures to

investigate the presence of jumps over time and the relative contribution of jumps to

the volatility of energy futures prices. The second essay (Chapter 3) seeks to fill this

gap. I apply nonparametric methods to identify jumps in futures prices of crude oil,

heating oil and natural gas contracts traded on the New York Mercantile Exchange.

I document the jump components in these markets and investigate the impact on the

total volatility.

Previous literature on investigating volatility behavior of energy futures prices

include Pindyck (2004), Linn and Zhu (2004), Ates and Wang (2007), Mu (2007),
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Wang et al. (2008) and others. Pindyck (2004) documents a significant positive

trend in natural gas futures during the sample period from May 2, 1990 to February

2, 2003. Linn and Zhu (2004) report an increase in volatility before and after the

release of inventory reports by the Energy Information Administration. Ates and

Wang (2007) document that extreme cold weather surprises and inventory surprises

are the short-run demand and supply factors that affect the spot and futures price

change volatility in natural gas and heating oil markets. Mu (2007) finds that extreme

weather conditions and low inventories are important factors affecting natural gas

futures volatility. Wang et al. (2008) examine the realized volatility and correlation

of crude oil and natural gas futures. They provide evidence that realized crude oil

futures volatility increases in the weeks immediately before OPEC recommends price

increases. However, none of these papers dealing with energy price volatility have

separated the volatility jump component from the smooth volatility component and

examined the relative importance of jump versus smooth components in the total

price volatility.

This study makes several contributions to the literature on detecting jump com-

ponents and in analyzing the time series properties of jumps in energy futures prices.

I examine the realized volatility behavior of natural gas, heating oil and crude oil

futures contracts traded on the New York Mercantile Exchange (NYMEX) using

high-frequency intraday data from January 1990 to January 2008. I apply a nonpara-

metric test statistic proposed by Jiang et al. (2008), and identify significant jump

components in energy futures prices and estimate the relative contribution of jumps

to the realized variance in the three futures contracts. I investigate whether significant

jumps are typically associated with Energy Information Administration’s inventory

news announcement dates and extreme cold weather periods. I test whether including

jump and seasonal components, and weather and inventory surprises as explanatory

6



variables improve the modeling and forecasting of energy futures volatility.

I obtain several interesting empirical results:

1. For the whole sample period, I find that the means of annualized volatility for

natural gas futures, crude oil futures and heating oil futures are 39.4, 26.0 and

26.5 percent, respectively. Thus, natural gas is the most volatile among these

price series. There are upward trends in volatility of the three series during

the sample period; for natural gas the increase is primarily due to the jump

component while the smooth component dominates the increase in the crude

oil and heating oil markets. There are significant jumps (price spikes) in all

three price series and the number of days with significant jumps per year ranges

from 5 to 34 for natural gas, 5 to 28 for heating oil and 4 to 20 days for crude

oil.

2. I document that the total realized volatility and smooth sample component

for natural gas and heating oil are higher in the winter months than during

the summer months. These results are consistent with the general hypothesis

that when short run demand for natural gas and heating oil is suddenly shifted

higher due to extreme cold weather during the winter, the short run supply is

inelastic due to low inventories at this time of the year. These two factors are

the ones largely responsible for generating volatility in the winter months.

3. I document in an intraday analysis that the volatility is higher during inventory

news announcement periods and that many jumps are associated with these

announcement dates. Furthermore, it is interesting to observe that for all mar-

kets, the volatility returns to preannouncement levels faster when there is a

jump in the futures price changes than when there is no jump. The volatility

remains elevated for about thirty minutes or shorter on days with a jump at

7



the announcement and longer otherwise.

4. I find that including the jump component as an explanatory variable improves

the performance of a realized volatility forecasting model. The coefficient of

the jump component attains the largest value at the daily lag and decreases

for corresponding weekly and monthly regression estimates. Furthermore, all

of the coefficients of jumps are negative and most are significant. The above

two results indicate that the jump component in the price process produces

transitory surges in volatility and that there is a strong reversal in the volatility

on the subsequent days of a jump.

5. Cold weather and inventory surprises lead to an increase in volatility in natural

gas and heating oil markets. Furthermore, the lagged interest-rate adjusted

spread may be a suitable proxy for the negative inventory periods since the

significance of the weather and inventory surprise variables drops while the

spread remains highly significant when including all three variables. The spread

also reduces the significance of the jump component.

Organization

The remainder of the dissertation is organized as follows. Chapter 2 presents the essay

“Detecting Jumps in Asset Prices Using Bipower Variation”. Thereafter, Chapter 3

reports the study “Volatility and Jump Dynamics in U.S. Energy Futures Markets”.

Chapter 4 concludes and offers directions for future work.
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Chapter 2: Detecting Jumps in Asset Prices Using

Bipower Variation

2.1 Introduction

It is essential to understand the dynamics of the volatility process for decision mak-

ing in many financial applications such as derivative pricing, hedging, and portfolio

rebalancing. While assuming that a continuous diffusion process that is based on the

Brownian motion drives the price process simplifies the theoretical analysis as well

as estimation of volatility, in practice, the observed price process for many financial

assets and derivatives exhibits events that cause discontinuities or jumps in the re-

turns. Although empirical studies often note that the impact of such jumps generally

is transitory, the short-term effect in the volatility may nonetheless be considerable

with important financial implications for valuation of derivatives (Merton (1976)),

asset allocation (Jarrow and Rosenfeld (1984)) and risk management (Duffie and Pan

(2001)).

A number of studies has shown that models including a discontinuous jump com-

ponent in the return process separately from the diffusion process fits the data better

than only a continuous process. Cox and Rubinstein (1985), for example, compare

the Black-Scholes formula with Merton’s option pricing formula (Merton (1976)) and

show that with large and frequent jumps in the price process of the underlying assets,

Black-Scholes significantly undervalues out-of-the-money and at-the-money options.

In a more recent study, Bakshi et al. (1997) compare several parametric models with

and without a jump component based on model fitting, pricing, and hedging. They
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report that it is essential to include a jump component for pricing and internal con-

sistency. Eraker et al. (2003) observe that jumps in the returns occur less frequently

than what is reported in most literature but are nevertheless still significant. Ma-

heu and McCurdy (2004) assume that jumps in stock market returns are generated

by a nonhomogenous Poisson process and find that the model improves forecasts of

volatility.

These studies are all based on parametric models with smooth and jump com-

ponents. Recently, motivated by an increase in the availability of high-frequency

or transaction data, a growing literature on nonparametric methods has emerged.

Barndorff-Nielsen and Shephard (2004b, 2006) propose a number of statistics based

on realized power variations to test for jumps and to estimate the contribution of

jumps to the total variation. Fan and Wang (2007) develop a method based on

wavelets. Another nonparametric statistic is proposed by Jiang and Oomen (2008),

which relies on the asymptotic differences between logarithmic returns and percentage

returns. Sen (2008) bases a jump test on principal component analysis. These non-

parametric approaches are all based on intraday data while most parametric models

are applied to daily observations. Clearly, intraday data is richer in information and

thus presumably may produce more efficient estimates. The utilization of intraday

data, however, is hampered by the presence of market microstructure noise. Such fric-

tions come from trade mechanisms and rules that govern the markets. Measurement

errors arise, for example, due to price rounding and stale prices while the bid-ask

spread and minimum tick size discretize the prices that the models typically assume

are continuous. Furthermore, the bid-ask spread leads to negative serial correlation

as the traded prices fluctuate around the fair price, while the practice of large traders

to split their orders into smaller trades to hide information generates positive serial

correlation. On a daily or longer time horizon, such noise is small compared to the

13



volatility due to information, but may dominate at high intraday sampling frequen-

cies. Consequently, statistics based on transaction data need to contend with the

effects of such noise.

In this study, I evaluate nonparametric statistics by Barndorff-Nielsen and Shep-

hard (2004b, 2006) that are applied to identify days with jumps in the price process.

The main contribution is to evaluate the finite sample properties of the tests on noisy

prices and particularly whether recently proposed methods for reducing the impact of

noise improve the tests. Huang and Tauchen (2005) carry out a simulation study on

these statistics, which I extend in a number of directions. Initially I consider the same

cases as Huang and Tauchen (2005), but I provide a more thorough examination as

to how the market microstructure noise impacts the jump statistics. Second, Bandi

and Russell (2006) and Zhang et al. (2005) recently proposed methods for reducing

the impact of noise for estimating the daily integrated variance using high-frequency

data. I carry out an extensive empirical simulation study to determine whether the

optimal sampling rates for computing the realized variation also apply for other in-

traday variations, specifically, for the bipower and tripower variations, which both

are variables in the nonparametric jump statistics. Third, I apply the methods by

Bandi and Russell (2006) and Zhang et al. (2005) to test for jumps in price processes

with noise. Moreover, I combine these methods with using staggered returns, which

previously have been applied in the literature (see Andersen et al. (2007) and Huang

and Tauchen (2005)). The methods by Bandi and Russell (2006) and Zhang et al.

(2005) have not, to the best of by knowledge, previously been applied to the jump

statistics.1 I also propose and evaluate a modified version of the method by Bandi and

Russell (2006) to make it more robust to jumps. Fourth, I consider two alternative

noise processes recently proposed by Aı̈t-Sahalia et al. (2006) and Li and Mykland

1See Andersen et al. (2007), for example, who call attention to the lack of such a study.
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(2007), and study the size and power of the jump test statistics under these processes.

These have not, to the best of my knowledge, previously been evaluated in this con-

text. I also evaluate the statistics for alternative jump distributions. Specifically, I

generate jumps from normal, skewed-normal and double exponential distributions.

Finally, while the methods by Bandi and Russell (2006) and Zhang et al. (2005) are

based on sampling the price process in an optimal manner to lessen the bias due to

noise, they nevertheless discard a large fraction of the data. I empirically evaluate

another method developed by Zhang et al. (2005) that uses all data to estimate the

daily integrated variations.

I obtain several interesting results. Noise biases the statistics against identifying

jumps, which is consistent with the findings by Huang and Tauchen (2005). The op-

timal sampling methods by Bandi and Russell (2006) and Zhang et al. (2005) address

the bias against finding jumps and increases the power of the test statistics. These

methods perform similarly to applying staggered returns, which Huang and Tauchen

(2005) evaluate. Combining the optimal sampling methods with staggered returns

generally leads to invalid tests. Second, Bandi and Russell (2006) give two equations

for computing the optimal sampling rate; one that is exact and one approximation.

The former requires an optimization routine while the second has a simple closed-

form solution. I find that the two methods perform equivalently, thus there is no

significant loss to use the approximation which is faster to compute. Third, I find

that a modified version of the method by Bandi and Russell (2006) produces more

powerful jump statistics. Fourth, the size and power of the test statistics are similar

for the three noise processes that I consider, that is, adding serial correlation to the

error process and introducing rounding errors do not have a significant impact beyond

the affects of a normal iid noise process.

In Section 2.2, I describe the underlying theoretical framework and review the
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nonparametric jump statistics by Barndorff-Nielsen and Shephard (2004b, 2006). I

also describe methods to reduce bias due to market microstructure noise. Section 2.3,

thereafter, sets up the experimental design of the simulation study followed by the

empirical results in Section 2.4. Finally, Section 2.5 concludes the work.

2.2 Review of Nonparametric Test Statistics

This section provides a background of the nonparametric procedure to test for jumps

in asset prices by Barndorff-Nielsen and Shephard (2004b, 2006). Thereafter, I discuss

the sources and implications of market microstructure noise. In particular, I review

recent advances of methods to address the bias in estimating realized variations in

contaminated prices.

2.2.1 Power Variations and Jump Test Statistics

Let Xt = log St denote the logarithmic price where St is the observed price at time

t. Assume that the logarithmic price process, Xt, follows a continuous-time diffusion

process coupled with a discrete process defined as,

dXt = µtdt + σtdWt + κtdqt, (2.1)

where µt is the instantaneous drift process and σt is the diffusion process; Wt is the

standard Wiener process; qt is a counting process with intensity λt, that is, P (dqt =

1) = λtdt; and κt is the size of the price jump at time t if a jump occurred. If Xt−

denotes the price immediately prior to the jump at time t, then κt = Xt − Xt−.
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Define the intraday return, rtj , as the difference between two logarithmic prices,

rtj = Xtj − Xtj−1
, (2.2)

where tj denotes the jth intraday observation on the tth day. Importantly, Xtj and

Xtj−1
are not necessarily two subsequently observed logarithmic prices. Let ∆ denote

the discrete intraday sample period of length, tj − tj−1. Then, Xtj is the observed

price at time tj∆ where ∆ is assumed to be constant.

The nonparametric jump statistics are based on the difference between two esti-

mators of the daily integrated variation. The realized variance is defined as the sum

of squared intraday returns,

RVt =
mt∑
j=1

r2
tj
, (2.3)

where mt is the number of ∆-returns during the tth time horizon (such as a trading

day) and is assumed to be an integer. Jacod and Shiryaev (1987) show that the

realized (quadratic) variation converges to the integrated variation assuming that the

underlying process follows equation (2.1) without jumps (λ = 0). Furthermore, in

the presence of jumps (λ > 0), the realized volatility converges in probability to the

total variation as ∆→0,

RVt
p→

∫ t

t−1

σ2
sds +

∑
t<s<t+1

κ2(s). (2.4)

Hence, the realized variation captures the effects of both the continuous and the

discrete processes where the first term in equation (2.4) is the return variation from

the diffusion process and the second term is due to the jump component.

The second estimator of the integrated variance is the realized bipower variation,
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which is defined as,

BVt = µ−1
1

mt

mt − 1

mt∑
j=2

|rtj ||rtj−1
|, (2.5)

where µ1 is a constant given by,

µk =
2k/2

√
π

Γ

(
k + 1

2

)
, (2.6)

where Γ is the Gamma function. Barndorff-Nielsen and Shephard (2004b) show that

as ∆ → 0,

BVt
p→

∫ t

t−1

σ2
sds, (2.7)

where the underlying price process is defined by the jump-diffusion process in equation

(2.1). The result follows from that only a finite number of terms in the sum in equation

(2.5) are affected by jumps while the remaining returns go to zero in probability. Since

the probability of jumps goes to zero as ∆ → 0, those terms do not impact the limiting

probability. Hence, the asymptotic convergence of the bipower variation captures only

the effects of the continuous process even in the presence of jumps. Importantly, this

result is robust in that it does not make any additional assumptions regarding the

counting process, the jump size distribution, and the relationship between the jump

process and the volatility component, σt. By combining the results from equations

(2.4) and (2.7), the contribution of the jump process in the total quadratic variation

can be estimated by the difference between these two variations where,

RVt − BVt
p→

∑
t<s<t+1

κ2(s), (2.8)

as ∆ →0. Hence, equation (2.8) estimates the integrated variation due to the jump
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component and, as such, provides the basis for a nonparametric statistic for identify-

ing jumps.

Barndorff-Nielsen and Shephard (2004b, 2006) and Barndorff-Nielsen et al. (2006)

show that in the absence of jumps in the price process,

∆−1/2 RVt − BVt((
νbb − νqq

) ∫ t

t−1
σ4(s)ds

)1/2

p→ N(0, 1), (2.9)

as ∆ → 0 where RVt and BVt are defined in equations (2.3) and (2.5) and νbb =

π2/2+π−3 and νqq = 2. The integral in the denominator, called the integrated quar-

ticity, is unobservable. From the work by Barndorff-Nielsen and Shephard (2004b)

on multipower variations, Andersen et al. (2007) propose to estimate the integrated

quarticity using the realized tripower quarticity, TPt, which is defined as,

TPt = mtµ
−3
4/3

mt

mt − 2

mt∑
j=3

2∏
i=0

|rtj−i
|4/3, (2.10)

where µ4/3 is defined in equation (2.6). Asymptotically, as ∆ → 0,

TPt
p→

∫ t

t−1

σ4
sds. (2.11)

Another estimator of the integrated quarticity from Barndorff-Nielsen and Shephard

(2004b) is the realized quadpower quarticity, QPt,

QPt = mtµ
−4
1

mt

mt − 3

mt∑
j=4

3∏
i=0

|rtj−i
|, (2.12)

where µ1 is given by equation (2.6). Hence, a test statistic based on equation (2.9) is
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given by,

∆−1/2 RVt − BVt((
νbb − νqq

)
TPt

)1/2
, (2.13)

where QPt provides an alternative to TPt.

Statistics

Barndorff-Nielsen and Shephard (2004b, 2006) propose a number of variations of

the statistic in equation (2.13), all of which asymptotically have a standard normal

distribution. A logarithmic form of the statistic is given by,

ZTPL,t =
log(RVt) − log(BVt)√(

νbb − νqq

)
1

mt

TPt

BV2

t

, (2.14)

and a similar form with an added maximum adjustment due to a Jensen’s inequality

argument (Barndorff-Nielsen and Shephard (2004a)),

ZTPLM,t =
log(RVt) − log(BVt)√(

νbb − νqq

)
1

mt
max

{
1, TPt

BV2

t

} . (2.15)

Analogous statistics are given based on the quadpower variation, QPt (equation

(2.12)),

ZQP,t =
RVt − BVt√(

νbb − νqq

)
1

mt
QPt

, (2.16)

ZQPL,t =
log(RVt) − log(BVt)√(

νbb − νqq

)
1

mt

QPt

BV2

t

, (2.17)
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and,

ZQPLM,t =
log(RVt) − log(BVt)√(

νbb − νqq

)
1

mt
max

{
1,

QPt

BV2

t

} . (2.18)

Andersen et al. (2007) and Huang and Tauchen (2005) favor replacing the logarithmic

difference between RVt and BVt in the statistics above with the ratio,

RJt =
RVt − BVt

RVt

. (2.19)

Notice that the ratio, RJt, is an estimator of the relative contribution of the jump

component to the total variance since the difference between RVt and BVt estimates

the jump component and RVt estimates the total variance. The following four statis-

tics are based on the ratio, RJt,

ZTPR,t =
RJt√(

νbb − νqq

)
1

mt

TPt

BV2

t

, (2.20)

ZTPRM,t =
RJt√(

νbb − νqq

)
1

mt
max

{
1, TPt

BV2

t

} , (2.21)

ZQPR,t =
RJt√(

νbb − νqq

)
1

mt

QPt

BV2

t

, (2.22)

and,

ZQPRM,t =
RJt√(

νbb − νqq

)
1

mt
max

{
1,

QPt

BV2

t

} . (2.23)
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Hypothesis

I apply these statistics to test the null hypothesis that there is no jump in the return

process during an interval t, where the hypothesis is rejected for large values of the

statistics relative to the standard normal distribution. The test is one-sided since

the statistics are based on the difference between two variances where the difference

is zero under the null hypothesis and greater than zero otherwise. Importantly, the

alternative hypothesis is the finding of detectable jumps. Small jumps relative to the

diffusion or noise processes are unlikely to be discernible.

2.2.2 Methods to Contend with Market Microstructure Noise

This subsection discusses the implications of market microstructure noise. I briefly

discuss the sources of such market frictions and thereafter focus on methods to limit

the effects.

Optimal Sampling Rate: Bandi and Russell

The test statistics in Section 2.2.1 rely on estimates of integrated variations, which are

obtained with model-free methods on high-frequency intraday data. The asymptotic

results hinge on efficient (noise-free) price processes. Observed prices, however, are

noisy due to market microstructure. Thus, the variation in intraday returns can

be attributed to two components: the efficient price returns and the microstructure

frictions. The variance generated by market frictions is the result of price formation

under specific trade mechanisms and rules, such as discrete price grids and bid-ask

bounce effects. Such noise introduces bias in the variance estimates, which becomes

particularly severe at high sampling rates. The variance due to noise rather than the

integrated variance will dominate the estimate as the sampling interval goes to zero.
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One approach that is used in the applied literature to alleviate the bias is simply

to sample the price process at lower frequencies than what the data permits. The

sampling intervals are typically arbitrarily chosen and commonly in the range of five

to thirty minutes. Bandi and Russell (2006), however, propose a method that finds

an optimal sampling rate for estimating the realized volatility.

Let Xtj denote the (unobservable) efficient logarithmic price, and define the noisy

logarithmic price process, Yti , which is observed in the market by,

Ytj = Xtj + εtj , (2.24)

where εtj denotes the microstructure noise process. The observed returns, r̃tj , are

then given by,

r̃tj = Ytj − Ytj−1
= rtj + ηtj , (2.25)

where as before rtj denotes the efficient returns,

rtj = Xtj − Xtj−1
. (2.26)

The microstructure noise in the observed return process is given by,

ηtj = εtj − εtj−1
. (2.27)

The random shocks, εtj , are assumed to be iid with mean zero and variance σ2
ε .

Furthermore, the true price return process, rtj , and the noise process, εtj , are assumed

to be independent. The noise component in the return process, ηtj , has a moving

average structure of order one as defined in equation (2.27). Hence, higher-order
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serial correlations are under this model assumption restricted to zero. Bandi and

Russell (2006) argue that these assumptions are valid in decentralized markets where

the random arrival of trade requests generate noisy prices that are approximately

independent. In a single specialist market structure, however, the appropriateness

may be questionable since autocovariances of orders higher than one may be non-

zero. They claim that even under such circumstances the impact by the improper

model is marginal.

Under the assumptions imposed on the efficient price process and the market

structure, they show that efficient returns are of order O(
√

∆). The result follows

from the definition of the true price returns in equation (2.26) and the properties

of the standard Brownian motion. Meanwhile, the microstructure noise, ηtj , is of

order O(1). The independence from the time duration in the microstructure noise

component is motivated by that adjustments of observed prices (such as the bid-ask

spread) are fixed in size regardless of how short the time interval is.

Hence, the variance in the noise component dominates the realized variance esti-

mate when the returns are sampled at high frequencies. For lower frequencies, how-

ever, the noise component is small compared to the variance in the efficient return

process. As a result, high frequencies can be used to estimate the noise component,

σ2
ε , while the integrated variance of the underlying efficient price,

∫ i

i−1
σ2

sds, can be

estimated at lower frequencies.

By equation (2.25), summing the squared observed returns over the daily subpe-

riods gives,
mt∑
j=1

r̃2
ti

=
mt∑
j=1

r2
ti

+ 2
mt∑
j=1

rtiηti . +
mt∑
j=1

η2
ti
. (2.28)

Hence, for short sampling intervals, ∆, the true return process component vanishes
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while the microstructure noise component converges to the second moment by equa-

tion (2.29), which Bandi and Russell (2006) formalize in Proposition 1a on page 661.

They conclude that the second moment of the noisy price returns, E(η2
t ), can be

consistently estimated by, ∑mt

j=1 r̃2
tj

mt

p→
mt→∞

E(η2
t ), (2.29)

where the price process should be sampled as frequently as possible. By the assump-

tions of iid random shocks, ηtj , it follows that,

E
(
η2

t

)
= E

(
(εt − εt−1)

2) = E
(
ε2
t − 2εtεt−1 + ε2

t−1

)
= 2E

(
ε2

)
, (2.30)

since E(εtεt−1) = 0. Hence,

∑mt

j=1 r̃2
j,i

2mt

p→
mt→∞

E(ε2). (2.31)

As noted above, the accumulated noise dominates the realized variance at high

sampling rates, whereas at lower sample rates the variance of the efficient price pro-

cess is proportionally larger compared to the component due to noise. An optimal

sampling rate is obtained by minimizing the conditional mean-square error (MSE),

which Bandi and Russell (2006) show can be written as,

E

(
mt∑
j=1

r̃2
ti
−

∫ t

t−1

σ2
sds

)2

= 2
1

mt

(Qt + o(1)) + mtβ + mt
2α + γ, (2.32)

where Qt denotes the quarticity,
∫ t

t−1
σ4ds. The three other parameters are defined
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as,

α =
(
E

(
η2

t

))2
,

β = 2E
(
η4

t

)
− 3

(
E

(
η2

t

))2
,

γ = 4E
(
η2

t

) ∫ t

t−1

σ2
sds − E

(
η4

t

)
− 2

(
E

(
η2

t

))2
.

The optimal number of samples, mt, is obtained by minimizing the MSE in equation

(2.32), which requires estimates of the second and fourth moments of the noise returns,

ηt, and the quarticity. An estimator of E(η2
t ) is provided by equation (2.29). Bandi

and Russell (2006) show in Proposition 2a on page 662 that a daily estimator of the

fourth moment is obtained by its sample moment,
∑mt

j=1 r̃4
tj
/mt. The estimator of

the quarticity suggested by Barndorff-Nielsen and Shephard (2002), mt/3
∑mt

j=1 r̃4
tj
,

is not consistent under market structure noise due to the accumulation of noise at

high-frequencies. Therefore, Bandi and Russell (2006) recommend to sample at a

conservative sampling interval (such as every fifteen minutes) to reduce the bias.

While the authors recognize that such a low frequency may be conservative, they argue

that the improvement of using the optimal frequency for estimating the quarticity is

negligible. They summarize the results in Proposition 2a on page 662, which states

that the optimal sampling interval, ∆0 = 1/m0, is obtained by solving,

m0 = mt : 2mt
3α̂ + mt

2β̂ − 2Q̂ = 0. (2.33)

Furthermore, Bandi and Russell (2006) show that m0 can be approximated by,

m0 ∼
(

Qt

(E(η2))2

)1/3

, (2.34)

when the optimal sampling frequency is high. Notice that the approximation does
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not depend on the fourth moment and has a closed-form solution. Intuitively, the

approximation seems reasonable since for large estimates of the second moment of

the microstructure noise component, ηtj (that is, the more contaminated the series

is), the lower the sampling frequency should be.

A Robust Optimal Sampling Rate

The optimal sampling frequency by Bandi and Russell (2006) is positively related

to the integrated quarticity, Qt =
∫ t

t−1
σ4ds, which is particularly evident from the

approximate sampling frequency given by equation (2.34) where Qt appears in the

numerator. The authors propose to estimate the quarticity by mt/3
∑mt

j=1 r̃4
tj
, which

is not robust to jumps. As a result, the method may produce a sampling frequency

that is suboptimal under the alternative hypothesis. This may in turn lead to biased

estimates of the power variations and consequently impact the jump statistics.

Instead, I propose to estimate the integrated quarticity by the QPt estimator

(equation (2.12)) proposed by Barndorff-Nielsen and Shephard (2004b), which is ro-

bust to jumps.

Optimal Sampling Rate: Zhang, Mykland and Aı̈t-Sahalia

Zhang et al. (2005) independently from Bandi and Russell (2006) under slightly dif-

ferent assumptions suggest a similar approach to estimate an optimal sampling rate

by minimizing the appropriate mean square error. Their motivation and derivation

resemble closely that of Bandi and Russell (2006), hence I only report the mean square

error that they minimize to find an optimal sampling rate. Let

[Y, Y ]t ≡
∑

ti

(
Yti+1

− Yti

)2
, (2.35)
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where Ytj is the observed noisy price process defined in equation (2.24). The MSE is

then given by,

MSE =
(
2mtE

(
ε2

))2

+

[
4mtE

(
ε4

)
+

(
8[Y, Y ]tE

(
ε2

)
− 2σ2

ε2

)
+

T

mt

∫ t

t−1

2σ4
sds

]
,

(2.36)

where estimators for the unobservable parameters are discussed in the previous sec-

tion.

Optimal Sampling Using All Data

Zhang et al. (2005) point out that while sparse sampling helps to alleviate the bias

generated by the market microstructure noise, the estimators become inefficient by

discarding large fractions of data. Instead, the authors propose an estimator that

uses more data without being dominated by the market microstructure noise. They

obtain multiple estimates of the integrated variance per day by computing estimates

from intraday return series that starts at different transactions, k. That is, create the

first intraday return series by starting with the first transaction (k = 1) and sample

the price process every ∆ time unit; obtain a second intraday series by starting at

the second transaction (k = 2) and so on for k = 1, . . . , K. The mean of these K

daily estimates, [Y, Y ]
(avg)
t , utilizes more (potentially all) data and thus reduces the

variance by averaging.

The authors show that,

[Y, Y ]
(avg)
t

L→〈X,X〉t + 2mtE
(
ε2

)
+

[
4
mt

K
E

(
ε4

)
+

4

3mt

∫ t

t−1

σ4
sds

]1/2

Z(total), (2.37)

where 〈X,X〉t denotes the estimand and mt denotes the average number of samples
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of the K grids where,

mt =
1

K

K∑
k=1

mt,k =
mt − K + 1

K
. (2.38)

The authors show that the optimal number of intraday samples, m∗
t is,

m∗
t =

(
1

6(E(ε2))2

∫ t

t−1

σ4
sds

)1/3

=

(
ξt

8(E(ε2))2

)1/3

, (2.39)

where,

ξ2
t =

4

3

∫ t

t−1

σ4
sds. (2.40)

Staggered Returns

Andersen et al. (2007), Barndorff-Nielsen and Shephard (2006) and Huang and Tauchen

(2005) evaluate a different approach to reduce the impact of microstructure noise.

Specifically, the method addresses the bias generated by spurious correlations in the

returns due to noise, such as the bid-ask bounce, which generates negative correla-

tions as trades are executed at the spread slightly above and below the fair value.

Moreover, the practice to split large trades into several smaller trades executed over a

relatively short horizon may induce positive serial correlation. Any correlation struc-

ture in the returns may bias the bipower, tripower and quadpower estimators since

these are functions of adjacent returns. The method, referred to as staggered returns,

attempts to break up or at least reduce the correlation structure by skipping one or

more returns when computing the estimators. The bipower variation using staggered

returns becomes,

BVt+i =
π

2

mt

mt − 1 − i

mt∑
j=2+i

|rtj ||rtj−1−i
|. (2.41)

The offset, i, is chosen based on the order of the autocorrelation in the return process;
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if the autocorrelation is only significant at one lag, an offset i = 1 is sufficient. Sim-

ilarly, the definitions of the quarticity estimators are modified to allow for staggered

returns. The staggered version of the tripower quarticity is defined by,

TPt = mtµ
−3
4/3

mt

mt − 2(1 + i)

mt∑
j=1+2(1+i)

2∏
k=0

|rtj−k(1+i)
|4/3, (2.42)

and the quadpower quarticity is given by,

QPt = mtµ
−4
1

mt

mt − 3(1 + i)

mt∑
j=1+3(1+i)

3∏
k=0

|rtj−k(1+i)
|. (2.43)

2.3 Design of Simulation Study

This section describes the experimental design of the simulation study. Firstly, I

define the data-generation price process. Thereafter, I introduce three market mi-

crostructure noise models.

2.3.1 Data-Generating Price Processes

The setup follows Huang and Tauchen (2005), who consider a one-factor stochastic

volatility jump-diffusion model written as,

dXt = µdt + eβ0+β1vtdwp,t + κtdqt,

dvt = αvvtdt + dwv,t,
(2.44)

where vt is a stochastic volatility factor; αv is the mean reversion parameter; and dwp

and dwv are standard Brownian motions with correlation, ρ. qt is a discontinuous

jump process where jumps occur at a rate denoted by λ. κt is the size of the jumps.

In the following, I refer to the model defined in equation (2.44) as SV1F for λt = 0,
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that is, when no jumps are simulated, and SV1FJ otherwise.

Table 2.1 presents values of the parameters in the data-generating processes that

I consider. The values are obtained from Huang and Tauchen (2005), who select the

values based on empirical studies reported in literature.

Table 2.1: The experimental design for SV1F and SV1FJ (equation (2.44)) where the jump rate,
λ, is set to zero for SV1F.

Parameter Value
µ 0.030
β0 0.000
β1 0.125
αv -0.100
ρ -0.620
λ {0.000, 0.014, 0.118, 0.500, 1.000, 1.500, 2.000}
σjmp {0.000, 0.500, . . . , 2.500}

I simulate observed prices per second from the stochastic differential equation fol-

lowing the Euler scheme. The number of simulated prices per interval t is equivalent

to six hours and a half of trading, that is, t corresponds to a typical trading day. I

compute intraday price returns for time intervals ranging from one second to thirty

minutes. I assume that the number of jumps in the SV1FJ model has a Poisson distri-

bution; hence, the interarrival times have an exponential distribution with parameter

λ. Initially, I assume that the size of the jumps, κ, has a normal distribution with

zero mean and variance, σ2
jmp. This jump model produces the asymmetric leptokurtic

features of the return distribution that is typical for market data. I also evaluate

alternative distributions of the jump size; specifically, I consider double exponential

and skewed normal distributions. Notice that I generate jumps in the log form of the

process, Xt, equation (2.44), and not in the price series form, St.

Figure 2.1 graphs realizations of 10000 simulated days from SV1F (Panel A) and

SV1FJ (Panel B). The values of the model parameters are listed in Table 2.1. For

SV1FJ, the parameters λ and σjmp are 0.014 and 1.50, respectively. The top panel

plots daily closing prices; the second panel plots daily price returns, the third panel
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plots the volatility factor, vt, and the bottom panel plots the jump component, κtdqt.

Panel A: SVIF
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Figure 2.1: The figure plots results based on realizations of 10000 simulated days of the SV1F
(Panel A) and SV1FJ (Panel B) models, equation (2.44) (page 30). The experimental design is
described in Table 2.1 with λ = 0.014 and σjmp = 1.50. The top panel is the daily closing price; the
second panel is the daily price returns given by the logarithmic difference between the last and first
price, the third panel plots the volatility factor, vt, and the bottom panel plots the jump process.
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2.3.2 Data-Generating Process with Market Microstructure

Noise

An iid normal process is a common model for market microstructure noise in the

applied literature. This model also underlies the discussion in Section 2.2.2. Let Yti

denote the observed noisy price process and let εti denote the microstructure noise.

Yti is then given by,

Yti = Xti + εti . (2.45)

where εti have a zero mean normal distribution and are independent.

In addition, I evaluate two noise processes which arguably provide more realistic

settings. The models are recently proposed by Aı̈t-Sahalia et al. (2006) and Li and

Mykland (2007), respectively, and have not, to the best of my knowledge, previously

been evaluated in this context. Aı̈t-Sahalia et al. (2006) assume that the observed

price, Yti , is given by equation (2.45) but define a dependent microstructure noise

model, εti , as,

εti = Uti + Vti , (2.46)

where Uti is independently identically distributed and Vti is an autoregressive process

of order one, AR(1), defined by Vti = φVti−1
+ Zti . They assume that U and V are

independent and that Z ∼ N(0, σ2
Z) and U ∼ N(0, σ2

U).

Li and Mykland (2007) consider another form of contamination by adding iid

errors to the latent price and, thereafter, round these values to generate observed

prices. Jacod et al. (2007) consider a variation of this process as well. Specifically,

the price process in equation (2.45) is rounded to a multiple of γ, which is motivated

by the price grid and minimum tick size rule that reside in many markets. The
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observed logarithmic price is modeled by,

Yti = log

(
γ

[
eXti+εti

γ

])
, (2.47)

where the value in the squared brackets [·] is rounded to the nearest integer. Hence,

the expression in parentheses gives the price rounded to the nearest multiple of γ.

Notice that in practice, the price cannot be allowed to drop below 0.5γ in order to

impose positive values of the argument to the natural logarithm although the model

does not prevent that from occurring. To account for this, I generate values by an

acceptance/rejection approach where I reject price changes that yield non-positive

prices.

2.4 Empirical Finite Sample Results

The empirical results are organized into four sections. First I examine the power

variations that constitute the jump statistics; that is, the realized variance (RVt),

bipower variation (BVt), tripower variation (TPt) and ratio (RJt). Thereafter, I shift

focus to the test statistics for jumps and examine their distribution under the null

hypothesis and the convergence to asymptotic results. Finally, I estimate their size

and power.

2.4.1 Power and Bipower Variations

Distributions

Before examining the properties of the jump statistics, I examine the power variations

RVt, BVt, TPt and RJt. I document their distributions and convergence to the

asymptotics for efficient and noisy prices.
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The results are obtained for 10000 realizations of price return series from the SV1J

model as defined in equation (2.44) on page 30 without initially adding any noise to

the prices. Each return series is equivalent to six and a half hours of trading. The

values of the model parameters are listed in Table 2.1 on page 31.

The two first rows in Figure 2.2 plot normal QQ plots (left panel) and kernel

density estimates (right panel)2 of RVt and BVt. Since the data-generating process

does not include discontinuous jumps, the distributions are asymptotically equal.

Correspondingly, the plots show little difference. The distributions are heavy tailed

and positively skewed.

The third row in Figure 2.2 plots results for the tripower estimator, TPt, which

estimates the integrated quarticity,
∫ t

t−1
σ4ds. Similarly to RVt and BVt, the distri-

bution is positively skewed. The density estimate for QPt which also is an estimator

of the integrated quarticity is nearly identical to TPt and, therefore, excluded.

The ratio statistic, RJt, is asymptotically normal. The graphs in the fourth panel

corroborates the normality although the QQ plot (left panel) reveals slightly thin tails.

The continuous line in the density plot (right panel) is the density estimate for RJt;

the dashed line is the density of a normal distribution with zero mean and variance

0.81. The densities are closely matched. Furthermore, the normality hypothesis is

not rejected by any of the six tests: Anderson-Darling, Cramer-von Mises, Jarque-

Bera, Lilliefors (Kolmogorov-Smirnov), Shapiro-Francia, and the Energy (Székely and

Rizzo (2005)); the p-values range from 0.28 to 0.38, see Table 2.2.

To evaluate the behavior for noisy prices, I add an iid normal noise process to

the SVIF model. From the discussion in Section 2.2.2, I expect the estimators to

be dominated by noise, particularly at high sampling frequencies. QQ normal plots

(not graphed here) do not reveal a significant change in the distributional form but

2I compute the density estimates in R (R Development Core Team (2008)) using the density
function with a Gaussian kernel.
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Figure 2.2: The left panel plots normal QQ plots for the realized variance, RVt, (equation (2.3)),
bipower variation, BVt, (equation (2.5)), tripower variation, TPt, (equation (2.10)), and ratio, RJt,
(equation (2.19)) based on 1000 simulated days of the SV1F model, equation (2.44) (page 30). The
values are in percentage form. The experimental design is described in Table 2.1 (page 31). The
right panel plots kernel density estimates, which are estimated in R using the density function with
a Gaussian kernel. The right panel for the RJt statistic also plots the density of a normal distribution
with standard deviation 0.09 (dashed line). The statistic is computed based on five-minute intraday
returns.

Table 2.2: The table presents p-values for normality tests of the RJt statistic. The column labels
denote the following tests: the Anderson-Darling (AD), Cramer-von Mises (CM), Jarque-Bera (JB),
Lilliefors (Kolmogorov-Smirnov) (KS), Shapiro-Francia (SF), and Energy (Energy) tests.

AD CM KS SF JB Energy
RJ 0.284 0.349 0.384 0.345 0.364 0.311

suggest that the location and scale may have changed. Therefore, I compute means

and standard deviations of the intraday variations RVt, BVt and RVt−BVt. I include
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the difference since it constitutes the basis of the jump statistics. The estimates are

based on 10000 realizations.

The results in Table 2.3 indicate that the estimators are severely biased at high

sampling frequencies. The first column in Panels A and B shows that RVt and BVt

converge to about 1.17 for efficient prices. The second column presents estimates

for prices with a small noise component. In spite of the small noise variance, the

estimators are highly positively biased at high sampling frequencies. Moreover, the

difference between the estimators (Panel C), which is nearly zero without noise, be-

comes negatively biased for noisy prices. The bias intensifies as the noise variance

increases.

Staggered returns is proposed above as a method to address the bias. Panel D

shows the difference when the bipower estimator is computed by offsetting returns

by one lag. While BVt remains biased, the difference with RVt is nearly zero, which

is the asymptotic property that the jump statistic is based on. Hence, this support

that the staggered method adequately corrects for the bias due to noise.

Notice that the differences without offsetting the returns (Panel C) indicate that

while they are biased at high sampling rates, they are close to zero for longer sampling

intervals. The appropriate sampling frequency varies with the noise variance. The

optimal sampling interval methods introduced in Section 2.2.2 attempt to find these

rates. I evaluate the performance of these methods next.

Optimal Sampling Rates

Bandi and Russell (2006) and Zhang et al. (2005) derive optimal sampling frequencies

for estimating the integrated variance,
∫ t

t−1
σ2

sds, using the realized variation estima-

tor, RVt. The jump statistics, however, also require the bipower, BVt, and tripower,

TPt (or quadpower, QPt) estimators, all of which are based on intraday sampling. I
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Table 2.3: The table presents means and standard deviations of the realized variance (RVt), bipower
variation (BVt), and the difference RVt −BVt for 10000 price paths. The prices are generated from
the SV1F model, equation (2.44). The experimental design is described in Table 2.1. The panel label
“Offset 0” denotes that no staggering is applied and “Offset 1” denotes that the intraday returns
are offset by one lag for the bipower estimator.

0.000 0.020 0.040 0.080 0.160 0.320
Panel A: RV (Offset 0)

1 1.17 19.90 76.02 300.57 1198.93 4792.16
(0.72) (0.81) (1.13) (3.48) (13.72) (54.77)

2 1.17 10.55 38.59 150.87 600.12 2396.89
(0.72) (0.79) (0.95) (2.51) (9.53) (37.95)

4 1.17 5.87 19.88 76.03 300.72 1199.30
(0.72) (0.79) (0.85) (1.86) (6.83) (27.09)

8 1.17 3.53 10.52 38.59 150.94 600.19
(0.72) (0.78) (0.79) (1.42) (4.86) (19.14)

16 1.16 2.36 5.84 19.88 76.04 300.57
(0.72) (0.78) (0.76) (1.15) (3.57) (13.85)

32 1.16 1.78 3.50 10.52 38.60 150.82
(0.72) (0.79) (0.75) (0.97) (2.59) (9.71)

64 1.16 1.48 2.33 5.84 19.89 75.99
(0.72) (0.79) (0.74) (0.88) (1.94) (6.91)

128 1.16 1.33 1.74 3.49 10.51 38.46
(0.72) (0.80) (0.74) (0.82) (1.53) (4.95)

256 1.16 1.26 1.45 2.32 5.85 19.82
(0.74) (0.81) (0.75) (0.81) (1.27) (3.60)

512 1.14 1.22 1.29 1.72 3.49 10.40
(0.76) (0.84) (0.76) (0.80) (1.14) (2.70)

1024 1.12 1.17 1.19 1.40 2.29 5.68
(0.79) (0.89) (0.80) (0.83) (1.09) (2.11)

2048 1.10 1.15 1.13 1.24 1.70 3.40
(0.87) (0.98) (0.88) (0.90) (1.12) (1.78)

Panel B: BV (Offset 0)
1 1.17 22.15 85.43 338.69 1351.90 5404.53

(0.72) (0.75) (1.26) (4.35) (17.30) (69.11)
2 1.17 11.61 43.23 169.85 676.45 2702.70

(0.72) (0.73) (1.00) (3.08) (11.97) (47.79)
4 1.17 6.35 22.13 85.44 338.87 1352.36

(0.72) (0.74) (0.85) (2.26) (8.61) (34.28)
8 1.17 3.73 11.58 43.22 169.92 676.56

(0.72) (0.75) (0.77) (1.67) (6.08) (24.13)
16 1.17 2.44 6.32 22.13 85.44 338.64

(0.72) (0.77) (0.74) (1.29) (4.43) (17.42)
32 1.16 1.80 3.71 11.58 43.21 169.72

(0.72) (0.78) (0.73) (1.05) (3.17) (12.18)
64 1.16 1.49 2.41 6.32 22.15 85.44

(0.72) (0.79) (0.73) (0.91) (2.33) (8.70)
128 1.16 1.34 1.77 3.69 11.57 43.09

(0.73) (0.80) (0.74) (0.84) (1.79) (6.21)
256 1.16 1.26 1.46 2.41 6.32 22.04

(0.75) (0.82) (0.76) (0.83) (1.45) (4.50)
512 1.15 1.22 1.29 1.75 3.69 11.44

(0.78) (0.86) (0.78) (0.83) (1.25) (3.33)
1024 1.12 1.17 1.19 1.41 2.37 6.15

(0.83) (0.91) (0.84) (0.88) (1.19) (2.57)
2048 1.10 1.15 1.13 1.24 1.74 3.60

(0.95) (1.05) (0.96) (0.99) (1.25) (2.15)
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Table 2.3 continue
0.000 0.020 0.040 0.080 0.160 0.320

Panel C: RV-BV (Offset 0)
1 0.00 −2.25 −9.42 −38.13 −152.97 −612.37

(0.01) (0.12) (0.36) (1.39) (5.56) (22.22)
2 0.00 −1.06 −4.63 −18.98 −76.34 −305.81

(0.01) (0.10) (0.26) (0.98) (3.86) (15.44)
4 −0.00 −0.48 −2.25 −9.42 −38.15 −153.06

(0.01) (0.08) (0.20) (0.71) (2.78) (11.09)
8 −0.00 −0.20 −1.06 −4.63 −18.98 −76.38

(0.02) (0.06) (0.15) (0.51) (1.97) (7.82)
16 −0.00 −0.08 −0.48 −2.25 −9.40 −38.07

(0.03) (0.05) (0.12) (0.38) (1.40) (5.53)
32 0.00 −0.03 −0.20 −1.07 −4.61 −18.90

(0.04) (0.06) (0.10) (0.29) (1.00) (3.89)
64 0.00 −0.01 −0.08 −0.48 −2.25 −9.45

(0.06) (0.07) (0.10) (0.23) (0.75) (2.82)
128 0.00 −0.00 −0.03 −0.20 −1.06 −4.63

(0.08) (0.09) (0.11) (0.20) (0.57) (2.04)
256 −0.00 −0.00 −0.01 −0.08 −0.47 −2.22

(0.11) (0.12) (0.14) (0.20) (0.46) (1.51)
512 −0.00 −0.00 −0.00 −0.03 −0.20 −1.05

(0.16) (0.18) (0.17) (0.22) (0.41) (1.15)
1024 0.00 0.00 −0.00 −0.01 −0.08 −0.47

(0.23) (0.24) (0.25) (0.28) (0.41) (0.95)
2048 −0.00 0.00 −0.00 −0.00 −0.03 −0.21

(0.34) (0.36) (0.34) (0.37) (0.48) (0.87)
Panel D: RV-BV (Offset 1)

1 −0.00 −0.00 −0.01 −0.02 −0.13 −0.50
(0.01) (0.10) (0.39) (1.52) (6.09) (24.35)

2 0.00 0.00 0.00 0.00 0.05 0.20
(0.01) (0.07) (0.28) (1.08) (4.24) (16.95)

4 −0.00 0.00 −0.00 −0.00 0.00 0.02
(0.01) (0.06) (0.20) (0.77) (3.06) (12.21)

8 0.00 −0.00 −0.00 −0.00 0.00 0.02
(0.02) (0.05) (0.15) (0.55) (2.17) (8.64)

16 −0.00 −0.00 0.00 0.00 −0.00 0.00
(0.03) (0.05) (0.12) (0.41) (1.54) (6.09)

32 −0.00 0.00 −0.00 −0.01 0.02 0.05
(0.04) (0.06) (0.10) (0.31) (1.11) (4.32)

64 0.00 −0.00 0.00 −0.00 −0.01 −0.04
(0.06) (0.07) (0.10) (0.24) (0.82) (3.12)

128 0.00 0.00 0.00 0.00 0.00 0.01
(0.08) (0.09) (0.11) (0.21) (0.62) (2.28)

256 −0.00 −0.00 −0.00 −0.00 0.00 −0.00
(0.11) (0.12) (0.13) (0.20) (0.49) (1.64)

512 −0.00 0.00 0.00 0.00 −0.00 −0.00
(0.16) (0.18) (0.18) (0.23) (0.44) (1.27)

1024 0.00 0.00 −0.00 −0.00 0.00 0.01
(0.24) (0.26) (0.25) (0.28) (0.44) (1.06)

2048 0.00 0.00 0.00 0.00 0.01 0.02
(0.36) (0.39) (0.37) (0.39) (0.52) (1.00)

evaluate how well the optimal sampling rates apply to these power variations.

Instead of using the stochastic model defined in Section 2.3.1, I assume that the

return process, Xt, follows the geometric Brownian motion with constant drift and

volatility so that the bias and mean-square error can be computed without any error.
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Thus, let the data-generating process be,

dXt = µdt + σdWt, (2.48)

where Wt is a standard Wiener process and the drift, µ, and volatility, σ, parameters

are constant. Let Yti denote the observed noisy price process given by,

Yti = Xti + εti , (2.49)

where εti is normally distributed. The estimates are mean values of 1000 realized

trading days per data point, where each trading day is equivalent to six and a half

hours. The drift rate, µ, is zero and the volatility, σ, is one. The sampling intervals

range from one to sixty minutes in increments of one minute. The results for the

quadpower estimator, QPt, are similar to those of the tripower estimator, TPt, and

are therefore excluded.

Panel A in Figure 2.3 plots the bias (first column), variance (second column) and

mean square error (third column) for the realized variance (RVt), bipower variation

(BVt) and tripower variation (TPt) for a price process without noise. Under these

conditions, the asymptotic theory states that the price process should be sampled as

frequently as possible. Consistent with this, the MSE obtains its minimum at the

highest frequency, that is, one minute and increases nearly linearly with the sampling

interval. This is expected since the variance is negatively related to the sampling

frequency.

Panel B graphs the equivalent results with the standard deviation of the noise

component equal to 0.040. The pattern is consistent across all three estimators. The

bias is large at high sampling frequencies but drops as the sampling interval increases

by a few minutes and thereafter flattens out after about ten minutes. Similarly, as in
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Figure 2.3: The figure plots bias, variance and mean-square error for three estimators: realized
variance (RVt), bipower (BVt), and tripower (TPt) variations. Prices are generated from the geo-
metric Brownian motion model, equation (2.48), with µ = 0 and σ = 1. Panel A plots results for
efficient price series; Panel B presents results where an iid N(0, 0.040) noise component is added to
the price process.

the previous case with no noise, the variance is low at the highest sampling frequencies
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but increases nearly linearly as the sampling frequency drops. As a result, the mean-

square error peaks at the shortest sampling interval but drops rapidly and reaches its

minimum around seven to ten minutes when it turns upwards as the bias approaches

zero but the variance begins to dominate. These results are consistent with the

theoretical results in Section 2.2.2.

To evaluate whether the optimal sampling rates by Bandi and Russell (2006) (BR)

and Zhang et al. (2005) (ZMA) coincide with these results, I estimate the optimal

sampling rates and compare with the minimum point of the MSE. For the first set of

results without noise, the optimal sampling intervals are about twenty seconds for BR

and ZMA. Since I generate prices per second, the true optimal rate is to sample at

that interval since the prices are free from noise. One explanation for this discrepancy

is that by following the recommendations by Bandi and Russell (2006), I sample the

price process every fifteen minutes for the tripower estimator to avoid bias due to

noise, which clearly is suboptimal in this case since the price process does not contain

any noise. Certainly, another explanation is that these are finite sample results while

theory hinges on asymptotics.

Once I add noise to the observed prices, the MSE in Panel B in Figure 2.3 suggests

that the optimal sampling interval is in the range of seven to ten minutes for all three

estimators. The mean (standard deviation) of the sampling interval based on 1000

simulations using BR is 8.8 (1.8) minutes; I add a vertical line to the MSE plots to

represent the BR estimate. Notice that the sampling rate given by BR coincides with

the minimum of the MSE for all three estimators. ZMA produces similar rates.

Additional simulations for other values of the model parameters yield analogous

results. In sum, these results provide new empirical support for that the optimal

sampling rates derived for the realized variance, also are appropriate for the bipower

and tripower estimators.
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An important difference between the two methods to deal with noise is that stag-

gered returns make RVt and BVt equally biased such that the difference is zero while

the optimal sampling approaches attempt to find the sampling frequency when both

are unbiased. Hence, staggered returns apply to these jump statistics, which are

based on the difference between RVt and BVt; however, it does not correct for the

bias in RVt as an estimator of realized volatility. The optimal sampling rate methods,

on the other hand, reduce the bias of the two estimators individually.

Overlapping Streams

The methods discussed thus far for dealing with noise are successful in reducing the

bias; however, they discard large fractions of the data. I follow Zhang et al. (2005) (see

Section 2.2.2 starting on page 28) and evaluate whether taking the mean of several

estimates computed from overlapping streams reduces the mean square error.

Figure 2.4 graphs the mean-square errors for realized variance (RVt), bipower

(BVt), and tripower (TPt) variations for different sampling intervals. The price pro-

cess is generated without noise. Importantly, the averaging method reduces the MSE

for all cases and by a large percentage for some scenarios. This finding is not only in-

fluential for the jumps statistics, but for any application where these power variations

are used.

2.4.2 Convergence to Asymptotics

This section examines the asymptotic properties of the jump statistics.

The left column in Figure 2.5 plots normal QQ plots of the ZTP, ZTPLM, and

ZTPRM statistics based on 1000 simulations from the SVIF model. The statistics are

defined in Section 2.2 beginning on page 16. Plots for the equivalent statistics based

on the quadpower (QPt) estimator are graphed in the right column. The plot for
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Figure 2.4: The figure graphs the mean-square error for different number of overlapping samples
for three estimators: realized variance (RVt), bipower (BVt), and tripower (TPt) variations. The
prices are generated from the geometric Brownian motion model, equation (2.48), with µ = 0 and
σ = 1. The estimates in the first two rows are based on one and five-minute sampling intervals,
respectively. The results in the third row are based on sampling at the interval given by Bandi and
Russell (2006).

ZTP indicates that its distribution has heavy tails, particularly the right tail, which

is noteworthy as it is used to test for jumps. The two other statistics are both

close to normal although ZTPLM (ZQPLM) may have a slightly heavy right tail. The

QQ plots for ZTPRM, however, are nearly linear. These conclusions are supported by

six tests of normality. Table 2.4 shows that all tests strongly reject the normality

hypothesis for ZTP and ZTPLM but not for ZTPRM; the p-values range from 0.22 to 0.38

for ZTPRM. These results confirm the findings reported by Huang and Tauchen (2005)

who document that the logarithmic and ratio statistics with the maximum correction
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Table 2.4: The table presents p-values for normality tests of the ZTP, ZTPLM, and ZTPRM statis-
tics. The column labels denote the following tests: the Anderson-Darling (AD), Cramer-von Mises
(CM), Jarque-Bera (JB), Lilliefors (Kolmogorov-Smirnov) (KS), Shapiro-Francia (SF), and Energy
(Energy) tests.

AD CM KS SF JB Energy
ZTP 0.000 0.000 0.000 0.000 0.000 0.000
ZTPLM 0.000 0.001 0.005 0.000 0.000 0.000
ZTPRM 0.224 0.297 0.375 0.238 0.285 0.226
ZQP 0.000 0.000 0.000 0.000 0.000 0.000
ZQPL 0.000 0.000 0.007 0.000 0.000 0.000
ZQPRM 0.154 0.236 0.382 0.146 0.162 0.183

deviate the least from the asymptotic normal distribution. The results for the two

sets of statistics based on TPt and QPt are equivalent, which also is the case for the

forthcoming results in this subsection; therefore, I limit the discussion to the statistics

computed based on TPt for the remainder of this section.
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Figure 2.5: The figure graphs normal QQ plots for jump statistics based on 1000 simulated days
of the SV1F model, equation (2.44) (page 30). The experimental design is described in Table 2.1
(page 31). The left column plots results for the three statistics ZTP, ZTPLM, and ZTPRM. The right
column plots results for the equivalent statistics based on the quadpower (QPt). The statistics are
computed based on five-minute intraday returns.

I produce equivalent results for noisy price series. I particularly focus on the ZTPRM

statistic. I limit the discussion to the iid normal noise process and expand the study
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to the other noise processes that I describe in Section 2.3.2 in later sections.

Figure 2.6 graphs normal QQ plots for three different values of the standard

deviation of the noise component. I report results for σmn equal to 0, 0.052 and

0.080, respectively, in the first, second, and third row. The results in the left column

are based on constant five-minute sampling intervals, which is near the optimal rates

for small values of the noise variance but is likely too frequent for noisier prices. The

second and third columns are results based on the optimal daily sampling rates by

Bandi and Russell (2006) and Zhang et al. (2005), respectively, which I refer to as

BR and ZMA. The plots are based on 1000 realized trading days.
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Figure 2.6: The figure plots normal QQ plots of realizations of the ZTPRM statistic based on
1000 days which are simulated from the SV1F model, equation (2.44). The experimental design
is described in Table 2.1. An iid N(0, σmn) noise component is added to the price process; σmn

takes the values 0.000 (first row), 0.052 (second row), and 0.080 (third row). The results in the left
column are based on five-minute sampling intervals; the second column is based on sampling at the
rates given by Bandi and Russell (2006) by solving equation (2.33); and the third column is based
sampling at the rates given by Zhang et al. (2005).

The distributions do not appear to deviate largely from normality. The six nor-

mality test statistics do not reject the normal hypothesis for zero noise for any of the

three sampling methods (Table 2.5). However, for σmn = 0.052 all statistics strongly
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reject normality for constant sampling (p-value < 0.0005) but only weakly so for

BR and ZMA with p-values in between 0.01 and 0.07. The tests strongly reject the

normality hypothesis in all cases for the largest noise variance, σmn = 0.080.

Table 2.5: The table presents p-values for normality tests of the ZTPRM statistic. The column labels
denote the following tests: the Anderson-Darling (AD), Cramer-von Mises (CM), Jarque-Bera (JB),
Lilliefors (Kolmogorov-Smirnov) (KS), Shapiro-Francia (SF), and Energy (Energy) tests.

AD CM KS SF JB Energy
σmn = 0.000

Constant 0.224 0.297 0.375 0.238 0.285 0.233
BR 0.921 0.857 0.855 0.975 0.662 0.912
ZMA 0.541 0.446 0.262 0.521 0.323 0.533

σmn = 0.052
Constant 0.000 0.000 0.001 0.000 0.000 0.000
BR 0.019 0.023 0.037 0.010 0.007 0.017
ZMA 0.032 0.061 0.073 0.019 0.012 0.045

σmn = 0.080
Constant 0.000 0.000 0.000 0.000 0.000 0.000
BR 0.000 0.000 0.006 0.000 0.000 0.000
ZMA 0.000 0.000 0.000 0.000 0.000 0.001

Figure 2.7 plots normal QQ plots when applying staggered returns with one lag

offset. The normality tests now reject the null hypothesis for the constant sampling

rate for zero noise while the p-values for BR and ZMA remain large (Table 2.6).

For σmn = 0.052, the statistical inferences remain unchanged; however, the p-values

for constant sampling increases slightly ranging from 0.005 (Anderson-Darling) to

0.053 (Jarque-Bera) while the p-values decrease for the two other sampling methods.

The trend continues for the largest noise variance where the p-values for BR and

ZMA are less than 0.02 while the normal hypothesis is no longer rejected for the

constant sampling rate. The following subsection examines in more detail how the

noise impacts the statistics.
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Figure 2.7: The figure graphs normal QQ plots of realizations of the ZTPRM statistic based on
1000 trading days which are simulated from the SV1F model, equation (2.44). The experimental
design is described in Table 2.1. An iid N(0, σmn) noise component is added to the price process;
σmn takes the values 0.000 (first row), 0.052 (second row), 0.080 (third row). The results in the left
column are based on five-minute sampling intervals; the second column is based on sampling at the
rates given by Bandi and Russell (2006) by solving equation (2.33); and the third column is based on
sampling at the rates given by Zhang et al. (2005). The bipower and tripower estimates are based
on staggered returns with one lag offset (i = 1).

Table 2.6: The table shows p-values for normality tests of the ZTPRM statistics using staggered
returns with one lag offset. The column labels denote the following tests: the Anderson-Darling
(AD), Cramer-von Mises (CM), Jarque-Bera (JB), Lilliefors (Kolmogorov-Smirnov) (KS), Shapiro-
Francia (SF), and Energy (Energy) tests.

AD CM KS SF JB Energy
σmn = 0.000

Constant 0.009 0.012 0.033 0.009 0.015 0.010
BR 0.128 0.183 0.383 0.227 0.335 0.155
ZMA 0.562 0.597 0.639 0.434 0.188 0.624

σmn = 0.052
Constant 0.007 0.009 0.005 0.033 0.053 0.005
BR 0.031 0.043 0.081 0.028 0.030 0.036
ZMA 0.274 0.379 0.510 0.089 0.098 0.309

σmn = 0.080
Constant 0.079 0.142 0.300 0.088 0.077 0.106
BR 0.000 0.001 0.022 0.000 0.001 0.001
ZMA 0.000 0.000 0.000 0.000 0.000 0.000

Asymptotics

This section documents the convergence to the asymptotics of the jump statistics. I

assume a fixed trading time, T , and investigate the distribution of the ZTPRM statis-

tic as the sampling interval, ∆, approaches zero or, equivalently, as the number of48



intraday return samples, mt, goes to infinity since mt = T/∆.

I examine the distribution of the ZTPRM statistic as ∆ → 0 by generating 100 trad-

ing days from the SV1F model and compute the jump statistics per day. Thereafter, I

compute the p-value from the Kolmogorov-Smirnov test of normality.3 I repeat these

steps 100 times and examine the distribution of the p-values, which is uniform under

the asymptotic theory. I produce these results for sampling intervals, ∆, ranging from

one second to about thirty minutes; specifically, ∆ = 1, 2, 4, . . . , 2048 seconds.

Panel A in Figure 2.8 plots histograms for prices without noise. The labels speci-

fies the sampling interval, ∆, in seconds. The distributions appear to be uniform with

the exception for the longest sampling intervals (1024 and 2048). Panel B graphs his-

tograms for a price process with a relatively severe noise component, NIID(0, 0.160).

The pattern is consistent in that there are proportionally too many small p-values at

the lower sampling frequencies. Interestingly, in spite of the severe noise process, the

distribution converges to normal distribution for the high frequency estimates; even

for the one-second sampling interval.

Since the asymptotic results show that the statistic in most cases appear to be

normal, I examine the mean and standard deviations of the jump statistic; recall that

their asymptotic values are zero and one, respectively. Panel A in Table 2.7 presents

the mean and standard deviation of 10000 realizations of the ZTPRM statistic. The

row labels denote the sampling interval in seconds, and the column labels denote the

standard deviation of the noise process. The means remain close to zero for efficient

prices (first column); however, even for small levels of noise, the estimates become

negatively biased at high sampling frequencies. This is consistent with the conver-

gence results for the power variations, which show that noise causes the difference

between RVt and BVt to become negatively biased. For the lowest levels of noise

3The results based on the Anderson-Darling and Shapiro-Francia tests are equivalent.
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Figure 2.8: The figure graphs histograms of 100 p-values from the K-S test on 100 realizations of
the ZTPRM statistic. Prices are simulated from the SV1F model, equation (2.44). The experimental
design is described in Table 2.1. The plot labels denote the sampling interval, ∆, in seconds. Panel
A plots results for efficient price series; Panel B presents results where an iid N(0, 0.160) noise
component is added to the price process.

(σmn = 0.027), a sampling interval around three minutes or longer seems appropriate.

The optimal frequency drops as the noise intensifies. Similarly, the standard deviation

is biased. Panel B presents estimates for staggered intraday returns which are offset

by one lag. Interestingly, the means are close to zero at any noise level and sampling

frequency. Similarly, the standard deviations are close to one. Hence, offsetting the
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intraday returns appears to adequately address the impact of noise.

The results without offsetting the intraday returns presented in Panel A in Table

2.7 suggest that for each noise variance, there exists a range of sampling intervals that

produces estimates of the moments that are consistent with the asymptotic properties.

The objective of the optimal sampling rate methods introduced in the previous section

is to find these ranges. I compute the rates given by Bandi and Russell (2006) and

find that these correspond well with the sampling intervals in Panel A that produces

values close to the asymptotics. The estimated optimal sampling intervals for the

first five noise processes are 31, 242, 569, 1227, and 2125 seconds, which all seem

appropriate. The interval for the most severe noise component is 2827, and thus goes

beyond the range covered in the table.

Overlapping Streams

Section 2.2.2 reviews a method by Zhang et al. (2005) where all data can be used

to compute the daily realized variation without inflating the bias due to noise. I

show in Section 2.4.1 that this approach reduces the mean-square error for the power

variations. I evaluate whether the same method can be applied to the jump statistics.

Following the same experimental design, I find that the jump statistics do not converge

towards the normal distribution with mean zero and standard deviation one. A likely

explanation is that while the staggered and optimal sampling methods reduce the bias,

there is still some bias remaining which accumulates when estimates from overlapping

streams are combined. Hence, I do not proceed with this method in the following.

2.4.3 Size

The following section evaluates the size of the statistics for different sampling rates,

noise processes, and jump distributions.
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Table 2.7: The table presents means and standard deviations (in parentheses) of the ZTPRM statis-
tic for 10000 price paths. The prices are generated from the SV1F model, equation (2.44). The
experimental design is described in Table 2.1. Panel A and Panel B report estimates without and
with staggered returns by one lag.

0.000 0.020 0.040 0.080 0.160 0.320
Panel A: No Staggering

1 0.01 −21.04 −23.00 −23.53 −23.66 −23.69
(1.00) (1.61) (0.84) (0.73) (0.72) (0.72)

2 0.01 −13.37 −15.77 −16.50 −16.68 −16.73
(1.01) (1.77) (0.91) (0.73) (0.72) (0.71)

4 −0.01 −7.85 −10.54 −11.49 −11.76 −11.83
(0.99) (1.77) (1.01) (0.76) (0.72) (0.72)

8 0.01 −4.10 −6.71 −7.89 −8.25 −8.34
(0.98) (1.52) (1.09) (0.79) (0.73) (0.72)

16 −0.00 −1.81 −3.94 −5.27 −5.73 −5.87
(1.00) (1.24) (1.12) (0.83) (0.73) (0.72)

32 0.00 −0.65 −2.06 −3.36 −3.92 −4.11
(1.00) (1.04) (1.06) (0.87) (0.75) (0.72)

64 0.01 −0.19 −0.91 −1.97 −2.63 −2.87
(0.99) (1.00) (1.00) (0.90) (0.78) (0.74)

128 0.02 −0.03 −0.33 −1.01 −1.65 −1.95
(0.98) (0.98) (0.98) (0.93) (0.83) (0.76)

256 −0.01 0.00 −0.11 −0.45 −0.93 −1.27
(0.98) (0.97) (0.98) (0.95) (0.86) (0.79)

512 −0.02 −0.01 −0.02 −0.15 −0.47 −0.79
(0.98) (0.98) (0.98) (0.96) (0.91) (0.83)

1024 0.00 0.01 −0.01 −0.06 −0.19 −0.43
(1.00) (0.99) (1.00) (0.98) (0.94) (0.89)

2048 0.01 0.00 0.01 −0.01 −0.07 −0.21
(0.99) (1.00) (0.99) (0.99) (0.98) (0.95)

Panel B: Staggering
1 −0.01 −0.02 −0.01 −0.01 −0.02 −0.02

(1.00) (1.00) (0.99) (0.99) (0.99) (0.99)
2 0.00 0.01 0.00 0.00 0.01 0.01

(1.00) (0.98) (0.99) (0.99) (0.98) (0.98)
4 −0.01 −0.00 0.00 0.00 0.00 0.00

(1.00) (1.00) (0.99) (0.98) (0.99) (0.99)
8 0.02 0.00 −0.01 −0.01 0.00 0.00

(1.00) (1.00) (0.99) (0.99) (0.99) (0.99)
16 −0.00 −0.00 0.01 0.01 0.00 0.00

(1.01) (0.99) (1.00) (0.99) (0.98) (0.98)
32 −0.00 0.02 −0.01 −0.02 0.02 0.01

(1.00) (0.98) (0.99) (1.00) (0.98) (0.98)
64 0.02 0.01 0.01 −0.00 −0.01 −0.01

(0.99) (1.00) (1.00) (0.99) (0.99) (0.99)
128 0.02 0.02 0.01 0.01 0.01 0.01

(0.99) (0.99) (1.01) (0.99) (1.00) (1.00)
256 −0.02 −0.00 −0.01 −0.01 0.01 0.01

(0.99) (0.99) (0.99) (0.99) (0.99) (0.98)
512 −0.00 −0.01 0.01 0.01 −0.00 0.01

(1.01) (1.01) (1.01) (1.01) (1.00) (1.00)
1024 0.01 0.01 0.00 0.00 0.01 0.01

(1.04) (1.04) (1.04) (1.03) (1.04) (1.03)
2048 0.01 0.01 0.00 0.00 0.01 0.02

(1.07) (1.07) (1.07) (1.07) (1.08) (1.08)

Figure 2.9 graphs time series of five statistics. The statistics are ZTP, ZTPL, ZTPLM,
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ZTPR and ZTPRM, which are defined in Section 2.2 beginning on page 16. The con-

tinuous and dashed horizontal lines indicate the 0.99 and 0.999 critical values, re-

spectively. Since there are no jumps in the process, 1 and 0.1 percent of the samples

are expected to be greater than the critical values. Thus, on average the number of

rejections should be 100 and 10 (out of a 10000 realizations). The actual rejection

rates for the critical value 0.01 for ZTP, ZTPL, ZTPLM, ZTPR and ZTPRM are 0.031, 0.024,

0.019, 0.015, and 0.011, respectively. All statistics except ZTPRM reject the null too

frequently. I present a more rigorous investigation of the rejection rates henceforth.
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Figure 2.9: The figure plots realizations of five jump statistics based on 1000 simulated days
from the SV1F model, equation (2.44). The experimental design is described in Table 2.1. The
statistics are ZTP, ZTPL, ZTPLM, ZTPR and ZTPRM. The statistics are computed based on five-
minute intraday returns. The horizontal continuous and dashed lines are the 0.99 and 0.999 critical
values, respectively.

Panel A in Figure 2.10 plots the size of five test statistics against the sampling

intervals: one, three, five, ten, fifteen and thirty minutes. The nominal size is 0.05 for

the upper-left panel, 0.01 for the upper-right, 0.005 for the lower-left, and 0.001 for

the lower-right. The estimates are for 10000 simulated trading days from the SV1F
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model without any noise process.4

The test size and sampling interval are positively related with the exception of

ZTPRM; as a result, the tests become increasingly anti-conservative as the sampling

interval increases. The estimated size for the ZTP statistic is in fact greater than the

nominal value even for the highest sampling frequency. The rejection rate based on

the ZTPRM statistic, however, remains near the nominal size for all sizes and sampling

intervals. The two statistics based on the ratio, RJt, deviate the least from the

nominal size although the logarithmic adjusted statistic with a maximum correction,

ZTPLM, remains close to ZTPR. Moreover, the maximum correction reduces the bias in

both cases where it is applied.

Panel B plots the size for prices with noise. I add an iid N(0, σmn) process to the

simulated prices with σmn = 0.080. The trends are similar to the behavior without

noise in Panel A; however, the statistics are conservative at higher sampling frequen-

cies before eventually turning invalid. The ranking among the statistics in terms of

having a size near the nominal size remains the same as before where the estimated

size for the ZTPRM statistic is closest to the nominal size for sampling intervals at

about ten minutes or longer; its size remains impressively close to the nominal size in

spite of the relatively severe noise component. Furthermore, a sampling interval in the

range from ten to thirty minutes appears appropriate with and without noise while a

higher rate produces a very conservative statistic at high levels of noise. That is, the

noise biases the statistics against identifying jumps if the price process is sampled too

often. These findings agree with the applied literature on high-frequency data where

the sampling interval typically is chosen in the five to thirty-minute range. From a

4Standard errors of the mean values are readily available since the estimates have a binomial
distribution. The standard error is (p̂(1 − p̂)/N)1/2, where N = 10000 is the number observations
and p̂ is the estimated rejection rate. The standard error for p̂ = 0.1, for example, is approximately
0.001.
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Panel A: Efficient Prices
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Panel B: Noisy Prices
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Figure 2.10: The figure plots the size of five jump statistics based on 10000 simulated days of
the SV1F model, equation (2.44) (page 30). The experimental design is defined in Table 2.1 (page
31). The estimates are based on efficient prices in Panel A and noisy prices in Panel B where an iid
N(0, σmn) process is added to the simulated prices with σmn = 0.080. The sizes are plotted against
sampling intervals which range from one to thirty minutes The statistics are ZTP, ZTPL, ZTPLM,
ZTPR and ZTPRM. The horizontal lines denote the nominal sizes, which are 0.05 (upper-left panel),
0.01 (upper-right panel), 0.005 (lower-left panel), and 0.001 (lower-right panel).
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statistical point of view, however, it does not seem optimal to throw away such large

amount of data unless absolutely needed. That is, if the noise level is sufficiently

low so that a three-minute sampling interval does not produce biased estimates, then

sampling at thirty minutes only uses a tenth of the data, thus potentially produces

less efficient estimates. Henceforth, my objective is to evaluate whether the methods

from Section 2.2.2 allow to use more data while preserving the asymptotic properties

of the statistics.

Table 2.8 reports the rejection frequencies under the null hypothesis; the signifi-

cance level is set to α = 0.99. The columns report rejection rates for different values

of the standard deviation of the noise process, σmn. The sampling rates are kept con-

stant at one, three, five and thirty minutes. I include results for three statistics, ZTP,

ZTPLM and ZTPRM. The results based on the quadpower estimator, QPt, are analogous

to TPt and therefore not reported. The three panels tabulate the rejection rates for

the statistics where the bipower (equation (2.41)) and tripower (equation (2.42)) are

computed using staggered returns with offset zero (panel i = 0), one (panel i = 1)

and two (panel i = 2).

Several interesting results appear.

1. The first panel clearly shows that the noise has a considerable impact on the

test sizes, particularly at high sampling frequencies. For one-minute sampling

intervals, the statistics become biased against identifying jumps, which is con-

sistent with the convergence results in Section 2.4.2. In fact, the rejection rates

are less than 0.0005 for all three statistics for the three largest values of the

noise variations although the nominal test size is 0.01. As the sampling interval

increases to three minutes, the test size approaches the nominal size yet remains

conservative for the larger values of σmn. Notice, however, that the statistics are

becoming increasingly anti-conservative for no or minor noise at this sampling
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rate. The same patterns hold for five-minute sampling. For the thirty-minute

interval, however, the ZTP and ZTPLM statistics reject the null hypothesis too

often while ZTPRM is reasonably close to the nominal size.

Thus, I confirm that the optimal constant sampling rate is highly dependent on

the noise variance. A high sampling rate yields test sizes that are closer to the

true size without noise while the appropriate sampling frequency drops as the

noise variance increases.

2. A cross-panel comparison indicates that applying staggered returns reduces the

impact of noise considerably. Importantly, the estimated sizes are nearly con-

stant across all values of the noise variations (see second panel: i = 1), and thus

alleviate the user from having to gauge the level of noise in order to select an

appropriate sampling rate.

Offsetting the returns by two lags (panel: i = 2) does not enhance the results

but rather worsen the tests by making them further anti-conservative. I find

that the mean of the statistic becomes positively biased and thus causes the

test to be invalid.

A noteworthy finding is that the rejection rates for ZTPRM at the highest sam-

pling frequency when offsetting the returns by one lag is analogous to the thirty-

minute sampling interval without staggering. That is, the former uses thirty

times more data. I investigate below whether this translates into a more pow-

erful test.

3. The ZTPRM statistic consistently produces test sizes that are closest to the nom-

inal size narrowly followed by ZTPLM. The ZTP is considerably worse.

Table 2.9 presents results based on the method by Bandi and Russell (2006). I

compute sampling rates per day using their exact and approximate equations, see
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Table 2.8: The sizes of three statistics are tabulated based on 10000 days simulated from the SV1F
model, equation (2.44). An iid N(0, σmn) noise process is added to the simulated prices; σmn is set to
0.000, 0.027, 0.040, 0.052, 0.065, 0.080. The panel labels i = 0, 1, 2 denote the staggered offset. The
statistics are ZTP, ZTPLM, and ZTPRM. The return horizons are one, three, five and thirty minutes.
The test size is 0.01.

{σmn}
Interval 0.000 0.027 0.040 0.052 0.065 0.080

(i = 0)
1 minutes ZTP 0.019 0.006 0.002 0.000 0.000 0.000

ZTPLM 0.014 0.004 0.001 0.000 0.000 0.000
ZTPRM 0.010 0.003 0.001 0.000 0.000 0.000

3 minutes ZTP 0.033 0.029 0.022 0.014 0.009 0.006
ZTPLM 0.021 0.018 0.013 0.009 0.005 0.003
ZTPRM 0.015 0.011 0.008 0.006 0.004 0.002

5 minutes ZTP 0.037 0.038 0.034 0.027 0.023 0.017
ZTPLM 0.020 0.019 0.019 0.016 0.013 0.009
ZTPRM 0.013 0.013 0.012 0.010 0.007 0.004

30 minutes ZTP 0.114 0.115 0.116 0.115 0.115 0.113
ZTPLM 0.049 0.050 0.050 0.049 0.052 0.051
ZTPRM 0.016 0.015 0.016 0.017 0.017 0.018

(i = 1)
1 minutes ZTP 0.025 0.025 0.024 0.024 0.024 0.023

ZTPLM 0.018 0.017 0.017 0.017 0.017 0.015
ZTPRM 0.014 0.014 0.013 0.013 0.013 0.011

3 minutes ZTP 0.042 0.041 0.040 0.038 0.036 0.034
ZTPLM 0.026 0.023 0.022 0.023 0.022 0.022
ZTPRM 0.017 0.015 0.015 0.015 0.016 0.015

5 minutes ZTP 0.048 0.049 0.048 0.050 0.048 0.049
ZTPLM 0.026 0.027 0.028 0.028 0.028 0.028
ZTPRM 0.016 0.016 0.017 0.017 0.018 0.017

30 minutes ZTP 0.192 0.192 0.192 0.192 0.190 0.190
ZTPLM 0.090 0.092 0.090 0.089 0.090 0.090
ZTPRM 0.033 0.033 0.034 0.033 0.034 0.034

(i = 2)
1 minutes ZTP 0.025 0.027 0.028 0.028 0.029 0.031

ZTPLM 0.018 0.020 0.020 0.021 0.022 0.022
ZTPRM 0.014 0.017 0.017 0.016 0.016 0.017

3 minutes ZTP 0.047 0.047 0.047 0.046 0.046 0.046
ZTPLM 0.027 0.029 0.030 0.029 0.028 0.028
ZTPRM 0.019 0.020 0.021 0.021 0.019 0.020

5 minutes ZTP 0.070 0.065 0.067 0.068 0.070 0.070
ZTPLM 0.040 0.040 0.039 0.040 0.041 0.043
ZTPRM 0.026 0.025 0.026 0.027 0.026 0.026

30 minutes ZTP 0.308 0.318 0.320 0.319 0.320 0.317
ZTPLM 0.161 0.159 0.161 0.163 0.165 0.164
ZTPRM 0.067 0.066 0.065 0.066 0.065 0.067

equations (2.33) and (2.34), which I refer to as BR1 and BR0, respectively. Notice

that the optimal sampling rates are computed per day; that is, the sampling rate is

adjusted per day. The benefit is that if the price process is noisier during certain

periods, the sampling rate is appropriately adjusted.

In contrast to the results for constant sampling without staggered returns, the sizes
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stay effectively constant near the nominal size across all standard deviations for the

ZTPRM statistic. That is, the noise does not bias the ZTPRM statistic against rejecting

the null hypothesis, which is remarkable considering the large bias resulting from

sampling at constant sampling rates, see Table 2.8. Rather than being conservative,

which is the case with constant sampling, the ZTP and ZTPLM statistics reject the

null hypothesis too often, in particular as the noise increases. The size for the ZTPRM

statistic, however, is very close to the nominal size at all instances. The application of

staggered returns combined with BR makes the test statistics anti-conservative and

thus invalidates the test. Further analysis shows that the mean values of the statistics

becomes positively biased, which results in too many rejection, when both methods

are applied.

Bandi and Russell (2006) evaluate two methods for estimating the optimal sam-

pling rate, one exact and one approximate. The authors find that the exact (BR1)

and approximate (BR0) rates are close when it is optimal to sample the price process

at a high frequency. As the noise component increases, however, the approximation

tends to underestimate the optimal interval. I do not find any such disparity between

the two equations in this context. This finding has an important practical impli-

cation since the approximating equation has a closed-form solution while the exact

equation requires an optimization routine and consequently is computationally slower

to obtain.

I document the sampling intervals estimated by BR1 to further explore what

causes the difference between applying constant and optimal sampling rates with no

staggering. For prices without noise, the optimal sampling interval predicted by BR1

is around 30 seconds. The interval gradually increases with the noise and reaches

about 30 minutes for the largest noise variance. Interestingly, even though BR1 on

average gives a 30-minute sampling rate for the largest noise variance, holding the
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sampling interval constant at that rate across the whole sample period yields worse

results (compare with the first panel in Table 2.8 for results with constant 30-minute

sampling.) This supports the notion that estimating the sampling rate per trading

day rather than across the full sample is beneficial since some intervals are more (or

less) noisy and thus require longer (shorter) sampling intervals.

Table 2.9: The size is tabulated for three statistics based on 10000 days simulated from the SV1F
model, equation (2.44). An iid N(0, σmn) noise process is added to the simulated prices; σmn is set
to 0.000, 0.027, 0.040, 0.052, 0.065, 0.080. BR1 and BR0 denote sampling rates that are obtained
by solving equation (2.33) and by equation (2.34), respectively. The panel labels i = 0, 1, 2, denote
the staggered offset. The statistics are ZTP, ZTPLM, and ZTPRM. The test size is 0.01.

{σmn}
Interval 0.000 0.027 0.040 0.052 0.065 0.080

(i = 0)
BR0 ZTP 0.016 0.040 0.048 0.062 0.068 0.074

ZTPLM 0.013 0.021 0.024 0.030 0.032 0.034
ZTPRM 0.011 0.013 0.013 0.014 0.013 0.014

BR1 ZTP 0.016 0.040 0.050 0.057 0.066 0.079
ZTPLM 0.013 0.023 0.024 0.027 0.033 0.035
ZTPRM 0.011 0.013 0.013 0.012 0.013 0.012

(i = 1)
BR0 ZTP 0.019 0.054 0.071 0.093 0.108 0.133

ZTPLM 0.014 0.031 0.038 0.045 0.051 0.062
ZTPRM 0.011 0.017 0.021 0.021 0.025 0.024

BR1 ZTP 0.019 0.052 0.075 0.092 0.117 0.135
ZTPLM 0.014 0.029 0.039 0.046 0.057 0.066
ZTPRM 0.011 0.018 0.021 0.023 0.025 0.026

(i = 2)
BR0 ZTP 0.021 0.071 0.104 0.130 0.167 0.198

ZTPLM 0.016 0.041 0.057 0.068 0.085 0.107
ZTPRM 0.014 0.025 0.031 0.034 0.042 0.047

BR1 ZTP 0.021 0.070 0.103 0.139 0.169 0.197
ZTPLM 0.016 0.041 0.054 0.072 0.087 0.103
ZTPRM 0.014 0.024 0.030 0.034 0.045 0.046

Table 2.10 documents the test sizes based on the optimal sampling rate by Zhang

et al. (2005). The size for the ZTPRM statistic remains close to the nominal test size and

is generally unaffected as the noise increases without staggering. Applying staggered

returns does not improve the performance but rather worsen the test as the noise

increases. Hence, the patterns are analogous to those of BR.
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Table 2.10: The size is tabulated for three statistics based on 10000 days simulated from the SV1F
model, equation (2.44). An iid N(0, σmn) noise process is added to the simulated prices; σmn is set
to 0.000, 0.027, 0.040, 0.052, 0.065, 0.080. The sampling rates are determined per day by the method
by Zhang et al. (2005). The panel labels i = 0, 1, 2, denote the staggered offset. The statistics are
ZTP, ZTPLM, and ZTPRM. The test size is 0.01.

{σmn}
Interval 0.000 0.027 0.040 0.052 0.065 0.080

(i = 0)
ZMA ZTP 0.016 0.043 0.054 0.064 0.071 0.080

ZTPLM 0.013 0.022 0.028 0.029 0.034 0.039
ZTPRM 0.011 0.012 0.014 0.014 0.014 0.015

(i = 1)
ZMA ZTP 0.019 0.061 0.082 0.097 0.115 0.129

ZTPLM 0.015 0.034 0.041 0.053 0.057 0.066
ZTPRM 0.013 0.019 0.022 0.027 0.025 0.027

(i = 2)
ZMA ZTP 0.022 0.081 0.112 0.148 0.172 0.201

ZTPLM 0.018 0.048 0.060 0.077 0.094 0.106
ZTPRM 0.015 0.030 0.033 0.040 0.045 0.047

Robust Optimal Sampling Rate

In Section 2.2.2, I propose a modification of the BR method by estimating the optimal

sampling rate based on the QPt estimator, which is robust to jumps. I refer to the

robust version as RobustBR. In the following, I evaluate whether the validity of the

test is impacted compared to the original BR version.

I constrain the results to the ZTPRM statistic. Table 2.11 presents the estimated

sizes for different standard deviations of the noise process. The table includes re-

sults for the approximate and exact solutions for BR and RobustBR, respectively.

Interestingly, RobustBR is valid in most cases except for small noise variances while

BR is slightly anti-conservative for all models. The difference between BR0 and Ro-

bustBR0 is significant for σmn ≥ 0.040.5 I find that even though the two estimators

are asymptotically equal under the null hypothesis, the RobustBR produces a sam-

pling frequency that on average is higher compared to BR irrespective of the noise

component, which may explain the difference in their sizes. Applying staggered re-

turns to RobustBR causes the test to be invalid, which is consistent with the findings

5P-values based on the large sample hypothesis test prop.test in R are less than 0.001.
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for BR.

Table 2.11: The size is tabulated for the ZTPRM statistic based on 10000 days simulated from
the SV1F model, equation (2.44). An iid N(0, σmn) noise process is added to the simulated prices;
σmn is set to 0.000, 0.027, 0.040, 0.052, 0.065, 0.080. BR1 and BR0 denote sampling rates that are
obtained by solving equations (2.33) and (2.34), respectively. The results denoted by RobustBR are
based on the sampling rates computed as described in Section 2.2.2. The test size is 0.01.

σmn

0.000 0.027 0.040 0.052 0.065 0.080
BR0 0.011 0.013 0.013 0.014 0.013 0.014
Robust BR0 0.012 0.012 0.009 0.009 0.010 0.010
BR1 0.011 0.013 0.013 0.012 0.013 0.012
Robust BR1 0.012 0.011 0.011 0.012 0.009 0.010

Serially Correlated Noise and Rounding Errors

The previous studies of the jump statistics and daily variations that I extend evaluate

the finite sample properties under a normal iid noise process. Thus, an important

contribution is to evaluate the impact of other models of market frictions. In Section

2.3.2 on page 33, I introduce processes by Aı̈t-Sahalia et al. (2006) with autocorrelated

errors and by Li and Mykland (2007) with rounding errors. Henceforth, I refer to

these by AMZ and LMTS.

I simulate from AMZ for different values of E[U2], E[V 2], and φ. Aı̈t-Sahalia

et al. (2006) estimate the parameters of their model for a few stocks and find that

φ generally is negative. I report results for φ equal to −0.3 and −0.7. Specifically,

I consider the following sets of parameter values: (σU , σV , φ) = {(0.020, 0.020,−0.3),

(0.040, 0.040, −0.3), (0.020, 0.020,−0.7), (0.040, 0.040,−0.7)}. These values give a

total variation in the same range as those I consider above but with an added corre-

lation structure introduced by φ.

Li and Mykland (2007) assume that the noise term, εti , is iid normal with zero

mean and variance σ2
ε . I report simulation results for σε = {0.027, 0.052, 0.080} and

γ = {0.01, 0.10} where γ is applied to introduce rounding errors in the price process,
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see equation (2.47) on page 34.

I find that the results based on the optimal sampling frequency proposed by Zhang

et al. (2005) are similar to those by Bandi and Russell (2006); therefore, I excluded

the former. For the same reason, I only report estimates for BR0 and exclude BR1.

All estimates are based on 10000 simulations.

Table 2.12 tabulates the size for the ZTP, ZTPLM and ZTPRM statistics for contam-

inated prices using the AMZ model. The test size does not appear to be sensitive

to φ as the values are equivalent for the two values of φ as well as for other values

not reported here. The variance, however, biases the statistic against identifying

jumps, which is consistent with the previous results for iid errors. The tests becomes

conservative without staggering at longer sampling intervals. The size for staggered

returns at one lag offset is near the nominal level at the highest frequency for the

ZTPRM statistic. Combining staggering and sampling at longer intervals produces in-

valid tests, which is consistent with the results for iid normal noise. Similarly for the

optimal rates by Bandi and Russell (2006), the autocorrelation does not seem to have

a significant impact on the size.

The results based on prices that are contaminated following the model by Li and

Mykland (2007) are consistent with the results for iid normal errors. Hence, rounding

prices does not have a significant impact. Tables 2.14 and 2.15 show the test sizes

for constant and optimal sampling rates and reveal modest differences from the iid

case. Additional simulation runs with larger rounding errors have a similar effect to

increasing the variance of the iid normal process.

2.4.4 Power

In this section, I add the jump component to the data-generating process and evaluate

the power of the test statistics for different values of the jump intensity, λ, and the
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Table 2.12: The size is tabulated for the ZTP, ZTPLM, and ZTPRM statistics based on 10000 days
simulated from the SV1F model, equation (2.44). The observed prices are generated following AMZ
where {σU , σZ , φ} ∈ {(σ, σ, φ)} for σ equal to 0.020 and 0.040 and φ equal to −0.3 and −0.7. The
panel label i denotes the staggered offset. The return horizons are one, three, five and thirty minutes.
The test size is 0.01.

{σU , σZ , φ}
Interval {20, 20,−0.3} {40, 40,−0.3} {20, 20,−0.7} {40, 40,−0.7}

(i = 0)
1 minutes ZTP 0.005 0.001 0.006 0.001

ZTPLM 0.004 0.000 0.004 0.001
ZTPRM 0.003 0.000 0.003 0.000

3 minutes ZTP 0.026 0.011 0.026 0.009
ZTPLM 0.016 0.006 0.014 0.006
ZTPRM 0.011 0.004 0.009 0.004

5 minutes ZTP 0.036 0.023 0.036 0.023
ZTPLM 0.019 0.012 0.019 0.013
ZTPRM 0.012 0.007 0.012 0.007

30 minutes ZTP 0.111 0.109 0.111 0.107
ZTPLM 0.050 0.047 0.050 0.048
ZTPRM 0.014 0.014 0.014 0.015

(i = 1)
1 minutes ZTP 0.026 0.023 0.027 0.023

ZTPLM 0.019 0.017 0.019 0.017
ZTPRM 0.015 0.013 0.016 0.015

3 minutes ZTP 0.039 0.037 0.039 0.037
ZTPLM 0.022 0.022 0.023 0.023
ZTPRM 0.015 0.015 0.016 0.015

5 minutes ZTP 0.048 0.048 0.048 0.047
ZTPLM 0.027 0.028 0.028 0.027
ZTPRM 0.016 0.017 0.016 0.015

30 minutes ZTP 0.189 0.192 0.188 0.189
ZTPLM 0.087 0.089 0.088 0.088
ZTPRM 0.032 0.033 0.033 0.033

Table 2.13: The size is tabulated for the ZTP, ZTPLM, and ZTPRM statistics based on 10000 days
simulated from the SV1F, equation (2.44). The observed prices are generated following AMZ where
{σU , σZ , φ} ∈ {(σ, σ, φ)} for σ = 0.020, 0.040, and φ = −0.3,−0.7. The sampling rates are obtained
by solving equation (2.33). The panel labels i denotes the staggered offset. The test size is 0.01.

{σU , σZ , φ}
Interval {20, 20,−0.3} {40, 40,−0.3} {20, 20,−0.7} {40, 40,−0.7}

(i = 0)
BR0 ZTP 0.041 0.069 0.047 0.066

ZTPLM 0.023 0.033 0.025 0.031
ZTPRM 0.013 0.013 0.014 0.015

BR1 ZTP 0.043 0.063 0.045 0.067
ZTPLM 0.023 0.029 0.025 0.030
ZTPRM 0.014 0.013 0.015 0.011

(i = 1)
BR0 ZTP 0.055 0.105 0.065 0.111

ZTPLM 0.030 0.053 0.036 0.055
ZTPRM 0.017 0.025 0.021 0.026

BR1 ZTP 0.060 0.109 0.066 0.115
ZTPLM 0.032 0.054 0.037 0.056
ZTPRM 0.019 0.023 0.022 0.026
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Table 2.14: The size is tabulated for three statistics based on 10000 days simulated from the SV1FJ
model, equation (2.44) with the jump rate, λ = 0.014, and standard deviation of the jump size is,
σjmp = 1.50. The observed prices are generated following LMTS for σ = 0.027, 0.052, 0.080 and
γ = 0.01, 0.10. Results are presented for the return horizons: one, three, five and thirty minutes.
The statistics are ZTP, ZTPLM, and ZTPRM. The panel label i denotes the staggered offset. The test
size is α = 0.01.

{σε, γ}
Interval {27, 0.01} {52, 0.01} {80, 0.01} {27, 0.1} {52, 0.1} {80, 0.1}

(i = 0)
1 minutes ZTP 0.007 0.001 0.001 0.007 0.001 0.001

ZTPLM 0.005 0.001 0.001 0.005 0.001 0.001
ZTPRM 0.004 0.001 0.000 0.004 0.001 0.000

3 minutes ZTP 0.030 0.015 0.007 0.030 0.015 0.007
ZTPLM 0.018 0.010 0.003 0.018 0.010 0.003
ZTPRM 0.012 0.007 0.002 0.012 0.007 0.003

5 minutes ZTP 0.039 0.028 0.017 0.039 0.028 0.017
ZTPLM 0.020 0.016 0.009 0.020 0.016 0.009
ZTPRM 0.013 0.011 0.005 0.013 0.011 0.005

30 minutes ZTP 0.115 0.115 0.113 0.115 0.115 0.113
ZTPLM 0.050 0.049 0.051 0.050 0.050 0.051
ZTPRM 0.016 0.017 0.018 0.016 0.017 0.018

(i = 1)
1 minutes ZTP 0.027 0.025 0.024 0.027 0.026 0.024

ZTPLM 0.019 0.018 0.016 0.019 0.018 0.017
ZTPRM 0.015 0.014 0.013 0.015 0.014 0.013

3 minutes ZTP 0.042 0.039 0.035 0.042 0.039 0.035
ZTPLM 0.024 0.024 0.023 0.024 0.024 0.023
ZTPRM 0.016 0.016 0.016 0.016 0.016 0.016

5 minutes ZTP 0.050 0.051 0.050 0.050 0.051 0.050
ZTPLM 0.028 0.029 0.028 0.029 0.029 0.029
ZTPRM 0.016 0.018 0.017 0.017 0.018 0.017

30 minutes ZTP 0.192 0.192 0.190 0.192 0.192 0.191
ZTPLM 0.092 0.089 0.090 0.093 0.089 0.090
ZTPRM 0.033 0.033 0.034 0.034 0.033 0.034

standard deviation of the jump size, σjmp.

I generate prices from the jump-diffusion model, SVIFJ, as specified in equation

(2.44) (page 30). The experimental design is described in Table 2.1 (page 31) with

λ = 0.014 and σjmp = 1.50. I initially consider a price process without noise. The

first five panels in Figure 2.11 graph time series of statistics and the bottom panel

plots the jump process, κtdq. The statistics appear to catch most of the larger

jumps. There are, however, a number of smaller jumps that are not identified by the

statistics at these significance levels, which is not surprising since these are difficult

to distinguished from the diffusion process.

Table 2.16 presents confusion matrices for the ZTPRM statistic for different values
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Table 2.15: The size is tabulated for three statistics based on 10000 days simulated from the
SV1FJ model, equation (2.44) with the jump rate, λ = 0.014, and standard deviation of the jump
size is, σjmp = 1.50. The observed prices are generated following LMTS for σ = 0.027, 0.052, 0.080
and γ = 0.01, 0.10. The sampling rates are obtained by solving equation (2.33). The statistics are
ZTP, ZTPLM, and ZTPRM. The panel label i denotes the staggered offset. The test size is α = 0.01.

{σε, γ}
Interval {27, 0.01} {52, 0.01} {80, 0.01} {27, 0.1} {52, 0.1} {80, 0.1}

(i = 0)
BR0 ZTP 0.040 0.063 0.074 0.040 0.063 0.074

ZTPLM 0.022 0.031 0.034 0.022 0.031 0.034
ZTPRM 0.013 0.014 0.014 0.014 0.014 0.014

BR1 ZTP 0.041 0.058 0.079 0.041 0.058 0.079
ZTPLM 0.023 0.028 0.035 0.023 0.028 0.036
ZTPRM 0.013 0.013 0.013 0.013 0.013 0.013

(i = 1)
BR0 ZTP 0.055 0.094 0.133 0.055 0.094 0.134

ZTPLM 0.031 0.045 0.062 0.032 0.045 0.063
ZTPRM 0.018 0.022 0.024 0.018 0.022 0.024

BR1 ZTP 0.053 0.093 0.136 0.053 0.093 0.135
ZTPLM 0.030 0.047 0.066 0.030 0.047 0.066
ZTPRM 0.018 0.023 0.027 0.018 0.024 0.027

ZTP 0
6

ZTPL 0
6

ZTPLM 0
6

ZTPR 0
6

ZTPRM 0
6
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Figure 2.11: The five first panels plot realizations of five jump statistics for 1000 simulated days
from the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1 with
λ = 0.014 and σjmp = 1.50. The bottom panel plots the jump process. The statistics are ZTP, ZTPL,
ZTPLM, ZTPR and ZTPRM. The statistics are computed based on five-minute intraday returns. The
horizontal continuous and dashed lines are the 0.99 and 0.999 critical values, respectively.

of the jump intensity, λ. I exclude the ZTP and ZTPLM statistics since they are invalid,

see Section 2.4.3. The labels, NJ and J, denote days without and with a jump, respec-

tively. The rows represent the true events while the columns denote the statistical
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inference. Hence, the rows for the 2 × 2 matrices add up to one where the 1 × 1

element is the fraction of correct non-rejections of the null (no-jump) hypothesis and

the 1× 2 element is the false rejection rate. Meanwhile, the 2× 1 element is the false

non-rejection of the null hypothesis and the 2 × 2 element is the correct rejection.

The jump intensity, λ, is set to 0.014, 0.118, 1.000 and 2.000, respectively, while the

standard deviation of the jump size, σjmp, is held constant at 1.50. The significance

level, α, is 0.99.

Since the underlying prices are efficient, theory states that the price series should

be sampled as frequently as possible. Consistently, the type I error is smallest and near

the nominal test size for the highest frequency, that is, for the one-minute sampling

interval. Furthermore, the test correctly rejects the null hypothesis at relatively

high rates. As the sampling interval increases, the statistic is computed on fewer

data points. Consequently, the test properties deteriorate as the variance increases.

The type I error holds up reasonable well for the ZTPRM statistic as the sampling rate

decreases; the type II error, however, increases significantly. Hence, for efficient prices

there is a considerable loss in power at low sampling rates. In fact, there is an evident

drop in the power already at the five-minute sampling rate compared to the highest

frequency.

Moreover, the observed patterns are nearly constant across the different jump

intensities, which is anticipated since the nonparametric statistic is applied to each

day individually. If the jump arrival rate were large enough to generate multiple jumps

per day, the power should increase as the statistics would accrue the effects of several

jumps. I expect the variance of the jump size, σjmp, however, to be positively related

to the power of the test since larger jumps are easier to identify. To further explore

the relationship between the power and the magnitude of the jump size, I simulate

price processes for different values of the jump parameters. The rejection rates are
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Table 2.16: Confusion matrices are tabulated for the ZTPRM statistic based on 10000 days simulated
from the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1 σjmp =
1.50. The jump rates, λ, are 0.014, 0.118, 1.000, and 2.000. Results are presented for four return
horizons: one, three, five and thirty minutes. The labels, NJ and J, denote days without and with a
jump, respectively. The rows correspond to the actual event of a jump or no jump while the columns
denote the statistical inference. The test size is 0.01.

λ = 0.014 λ = 0.118 λ = 1.000 λ = 2.000
(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)

1 minutes (NJ) 0.990 0.010 0.989 0.011 0.990 0.010 0.984 0.016
(J) 0.239 0.761 0.208 0.792 0.211 0.789 0.211 0.789

3 minutes (NJ) 0.985 0.015 0.985 0.015 0.986 0.014 0.990 0.010
(J) 0.319 0.681 0.323 0.677 0.307 0.693 0.305 0.695

5 minutes (NJ) 0.987 0.013 0.987 0.013 0.988 0.012 0.989 0.011
(J) 0.377 0.623 0.404 0.596 0.375 0.625 0.373 0.627

30 minutes (NJ) 0.984 0.016 0.984 0.016 0.980 0.020 0.985 0.015
(J) 0.754 0.246 0.761 0.239 0.734 0.266 0.734 0.266

presented in Table 2.17. I hold the return horizon fixed at five minutes. There is a

positive relationship between the power and variance for all three statistics.

Table 2.17: The power is tabulated for the ZTPRM statistic based on 10000 days simulated from
the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1. The jump
rate, λ, is 0.5, 1.0, 1.5 and 2.0. The standard deviation of the jumps, σjmp, ranges from 0.5 to 2.5
by increments of 0.5. The return horizon is five minutes. The test size is 0.01.

σjmp

λ 0.5 1.0 1.5 2.0 2.5
ZTPRM 0.5 0.197 0.465 0.615 0.700 0.749

1.0 0.211 0.477 0.625 0.712 0.765
1.5 0.206 0.484 0.634 0.715 0.768
2.0 0.205 0.485 0.627 0.714 0.769

In order to determine the extent to which the power characteristics depend on the

sampling frequency, Table 2.18 presents the equivalent results for the ZTPRM statistic

at different sampling intervals. It is remarkable how low the power drops for the

30-minute sampling intervals. Even going from one to five-minute sampling leads

to a considerable reduction in power, which is significant since five-minute sampling

intervals are commonplace in the applied empirical literature. Importantly, however,

these results are for efficient prices.

To examine the impact of noise on the power of the test, I tabulate confusion

matrices for different sampling intervals and noise variances based on 10000 simulated
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Table 2.18: The power is tabulated for ZTPRM per jump intensity and standard deviation of the
jump size based on 10000 days simulated from the SV1FJ model, equation (2.44). The experimental
design is described in Table 2.1. The jump rates, λ, are 0.5, 1.0, 1.5 and 2.0. The standard deviation
of the jumps, σjmp, ranges from 0.5 to 2.5 by increments of 0.5. The return horizons are one, three,
five and thirty minutes. The test size is 0.01.

σjmp

λ 0.5 1.0 1.5 2.0 2.5
1 minutes 0.5 0.432 0.678 0.780 0.837 0.868

1.0 0.439 0.691 0.789 0.842 0.871
1.5 0.443 0.690 0.789 0.839 0.872
2.0 0.438 0.692 0.789 0.841 0.871

3 minutes 0.5 0.278 0.552 0.679 0.756 0.806
1.0 0.288 0.559 0.693 0.765 0.812
1.5 0.289 0.569 0.698 0.768 0.812
2.0 0.290 0.562 0.695 0.768 0.811

5 minutes 0.5 0.197 0.465 0.615 0.700 0.749
1.0 0.211 0.477 0.625 0.712 0.765
1.5 0.206 0.484 0.634 0.715 0.768
2.0 0.205 0.485 0.627 0.714 0.769

30 minutes 0.5 0.038 0.138 0.252 0.349 0.426
1.0 0.037 0.139 0.266 0.368 0.448
1.5 0.041 0.147 0.273 0.377 0.462
2.0 0.041 0.149 0.266 0.368 0.455

days from the SV1FJ model, equation (2.44). The jump intensity, λ, is 0.014 and the

standard deviation of the jump size is 1.50.

Table 2.19 presents matrices for constant one, three, five and thirty-minute sam-

pling intervals. For σmn equal to 0.052 and 0.080, the type I errors are less than 0.0005

at the highest sampling frequency. For the 30-minute sampling interval, the type I

errors are near 0.01 for all values of σmn. The power decreases with the sampling

frequency. Staggering the returns, however, increases the power. The type I errors

remain nearly constant only narrowly exceeding 0.01. Without noise, the test rejects

the false null about 75 percent of the time while the percentage drops to 50 percent

for the largest noise variance for one-minute sampling. Offsetting the returns by two

lags increases power slightly but causes the test to become invalid.

Table 2.20 presents the confusion matrices for the method by Bandi and Russell

(2006). Analogous with the previous findings, the best results are obtained without

staggering. Staggering the returns with one or two lags offset does not alter the power
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Table 2.19: Confusion matrices are tabulated for ZTPRM based on 10000 days simulated from the
SV1FJ model, equation (2.44), with λ = 0.014, and σjmp = 1.50. An iid N(0, σmn) noise process is
added to the simulated prices; σmn is set to 0.000, 0.027, 0.052, 0.080. Results are presented for four
return horizons: one, three, five and thirty minutes. The panel label i denotes the staggered offset.
The labels, NJ and J, denote days without and with a jump, respectively. The rows correspond to
the actual event of a jump or no jump while the columns denote the statistical inference. The test
size is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

1 minutes (NJ) 0.990 0.010 0.997 0.003 1.000 0.000 1.000 0.000
(J) 0.239 0.761 0.297 0.703 0.493 0.507 0.623 0.377

3 minutes (NJ) 0.985 0.015 0.988 0.012 0.994 0.006 0.998 0.002
(J) 0.319 0.681 0.399 0.601 0.471 0.529 0.572 0.428

5 minutes (NJ) 0.987 0.013 0.987 0.013 0.990 0.010 0.996 0.004
(J) 0.377 0.623 0.377 0.623 0.464 0.536 0.536 0.464

30 minutes (NJ) 0.984 0.016 0.984 0.016 0.983 0.017 0.982 0.018
(J) 0.754 0.246 0.775 0.225 0.761 0.239 0.768 0.232

(i = 1)
1 minutes (NJ) 0.986 0.014 0.986 0.014 0.987 0.013 0.989 0.011

(J) 0.246 0.754 0.297 0.703 0.413 0.587 0.500 0.500
3 minutes (NJ) 0.983 0.017 0.985 0.015 0.985 0.015 0.985 0.015

(J) 0.348 0.652 0.355 0.645 0.435 0.565 0.536 0.464
5 minutes (NJ) 0.984 0.016 0.984 0.016 0.983 0.017 0.983 0.017

(J) 0.362 0.638 0.391 0.609 0.449 0.551 0.493 0.507
30 minutes (NJ) 0.968 0.032 0.967 0.033 0.967 0.033 0.966 0.034

(J) 0.674 0.326 0.703 0.297 0.725 0.275 0.754 0.246
(i = 2)

1 minutes (NJ) 0.985 0.015 0.983 0.017 0.984 0.016 0.983 0.017
(J) 0.246 0.754 0.297 0.703 0.399 0.601 0.507 0.493

3 minutes (NJ) 0.981 0.019 0.980 0.020 0.979 0.021 0.980 0.020
(J) 0.341 0.659 0.362 0.638 0.435 0.565 0.493 0.507

5 minutes (NJ) 0.974 0.026 0.974 0.026 0.973 0.027 0.974 0.026
(J) 0.348 0.652 0.413 0.587 0.464 0.536 0.529 0.471

30 minutes (NJ) 0.933 0.067 0.933 0.067 0.934 0.066 0.933 0.067
(J) 0.681 0.319 0.681 0.319 0.696 0.304 0.703 0.297

significantly; however, the type I errors increase further beyond the nominal size. The

rates for BR without offsetting the returns are equivalent to the values for constant

sampling at the highest frequency with staggering the returns at one lag. Moreover,

the results for BR0 and BR1 are equivalent. ZMA yields comparable results, see

Table 2.21.

Robust Optimal Sampling Rate

The results in Section 2.4.3 showed that the RobustBR produces valid tests for most

cases while the standard BR approach tends to be slightly anti-conservative. Table
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Table 2.20: Confusion matrices are tabulated for the ZTPRM statistic based on 10000 days simulated
from the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1 with
λ = 0.014 and σjmp = 1.50. BR1 and BR0 denote sampling rates that are obtained by solving
equation (2.33) and by equation (2.34), respectively. The panel label i denotes the staggered offset.
The labels, NJ and J, denote days without and with a jump, respectively. The rows correspond to
the actual event of a jump or no jump while the columns denote the statistical inference. The test
size is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

BR0 (NJ) 0.989 0.011 0.987 0.013 0.986 0.014 0.985 0.015
(J) 0.203 0.797 0.370 0.630 0.493 0.507 0.572 0.428

BR1 (NJ) 0.989 0.011 0.987 0.013 0.988 0.012 0.988 0.012
(J) 0.210 0.790 0.399 0.601 0.493 0.507 0.609 0.391

(i = 1)
BR0 (NJ) 0.989 0.011 0.983 0.017 0.979 0.021 0.976 0.024

(J) 0.210 0.790 0.348 0.652 0.464 0.536 0.565 0.435
BR1 (NJ) 0.989 0.011 0.982 0.018 0.977 0.023 0.974 0.026

(J) 0.232 0.768 0.391 0.609 0.457 0.543 0.609 0.391
(i = 2)

BR0 (NJ) 0.985 0.015 0.975 0.025 0.966 0.034 0.953 0.047
(J) 0.217 0.783 0.326 0.674 0.486 0.514 0.565 0.435

BR1 (NJ) 0.985 0.015 0.976 0.024 0.965 0.035 0.953 0.047
(J) 0.196 0.804 0.362 0.638 0.478 0.522 0.565 0.435

Table 2.21: Confusion matrices are tabulated for the ZTPRM statistics based on 10000 days sim-
ulated from the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1
with λ = 0.014 and σjmp = 1.50. The return sampling rates are obtained per day using the method
by Zhang et al. (2005). Results are presented for four return horizons: one, three, five and thirty
minutes. The panel label i denotes the staggered offset. The labels, NJ and J, denote days without
and with a jump, respectively. The rows correspond to the actual event of a jump or no jump while
the columns denote the statistical inference. The test size is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

ZMA (NJ) 0.989 0.011 0.987 0.013 0.985 0.015 0.985 0.015
(J) 0.225 0.775 0.442 0.558 0.551 0.449 0.638 0.362

(i = 1)
ZMA (NJ) 0.987 0.013 0.980 0.020 0.973 0.027 0.973 0.027

(J) 0.203 0.797 0.428 0.572 0.572 0.428 0.572 0.428
(i = 2)

ZMA (NJ) 0.985 0.015 0.970 0.030 0.960 0.040 0.953 0.047
(J) 0.203 0.797 0.384 0.616 0.478 0.522 0.609 0.391

2.22 presents the power for RobustBR. The behavior is similar to the patterns for BR

discussed surrounding Table 2.20. Notice that RobustBR has in most instances more

power without being invalid while BR often is slightly anti-conservative.
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Table 2.22: Confusion matrices are tabulated for the ZTPRM statistic based on 10000 days simulated
from the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1 with
λ = 0.014 and σjmp = 1.50. BR1 and BR0 denote sampling rates that are obtained by solving
equation (2.33) and by equation (2.34), respectively. The results denoted by RobustBR are computed
by sampling rates as described in Section 2.2.2. The panel label i denotes the staggered offset. The
labels, NJ and J, denote days without and with a jump, respectively. The rows correspond to the
actual event of a jump or no jump while the columns denote the statistical inference. The test size
is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

RobustBR0 (NJ) 0.988 0.012 0.988 0.012 0.990 0.010 0.990 0.010
(J) 0.200 0.800 0.393 0.607 0.481 0.519 0.570 0.430

RobustBR1 (NJ) 0.988 0.012 0.989 0.011 0.988 0.012 0.990 0.010
(J) 0.178 0.822 0.333 0.667 0.504 0.496 0.585 0.415

(i = 1)
RobustBR0 (NJ) 0.987 0.013 0.987 0.013 0.984 0.016 0.982 0.018

(J) 0.170 0.830 0.363 0.637 0.444 0.556 0.570 0.430
RobustBR1 (NJ) 0.986 0.014 0.987 0.013 0.984 0.016 0.983 0.017

(J) 0.170 0.830 0.348 0.652 0.496 0.504 0.556 0.444

Since RobustBR is proposed as a more robust alternative to jumps compared to

BR, I compare the power of the ZTPRM statistic using these two methods for more

severe jump processes. I compute the power for different jump rates and jump sizes

for prices with and without noise, see Table 2.23. Panel A clearly shows that the

RobustBR has higher power in all instances. The difference is smaller for noisy

prices, see Panel B.

Hence, these empirical results suggest that the robust version of BR should be

used in place of BR since (1) it remains valid for most cases in which BR is slight

anti-conservative; and (2) it has higher power.

Alternative Jump Distributions

The jump distribution that I have considered thus far follows the jump-diffusion

model proposed by Merton (1976), where the jump size, κ, is normally distributed.

Alternative jump distributions that produce similar characteristics of the return dis-

tribution include the double exponential, which Kou (2002) and Glasserman (2004)
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Table 2.23: The power is tabulated for the ZTPRM statistic based on 10000 days simulated from
the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1. The jump
rate, λ, is 0.5, 1.0, 1.5 and 2.0. The standard deviations of the jumps, σjmp, are 0.5, 1.5 and 2.5.
BR1 and BR0 denote sampling rates that are obtained by solving equation (2.33) and by equation
(2.34), respectively. The results denoted by RobustBR are computed by sampling rates as described
in Section 2.2.2. The test size is 0.01.

σjmp

0.5 1.5 2.5
Panel A: σmn = 0.000

BR 0.5 0.525 0.814 0.885
1.0 0.522 0.823 0.892
1.5 0.523 0.829 0.896
2.0 0.525 0.831 0.896

RobustBR 0.5 0.598 0.846 0.906
1.0 0.593 0.855 0.910
1.5 0.603 0.861 0.918
2.0 0.600 0.857 0.917

Panel B: σmn = 0.080
BR 0.5 0.056 0.436 0.617

1.0 0.064 0.437 0.627
1.5 0.062 0.452 0.636
2.0 0.062 0.443 0.638

RobustBR 0.5 0.064 0.440 0.621
1.0 0.066 0.451 0.632
1.5 0.064 0.456 0.647
2.0 0.065 0.456 0.644

apply. Kou (2002) argues that the double exponential jump diffusion model (DExp)

produces properties similar to those under the normal assumption but also enables

closed-form solutions for a wider range of option-pricing problems. Ramezani and

Zeng (1999) find that the same double exponential jump-diffusion model improves

the empirical fit of the normal jump diffusion model to stock price data (Merton

(1976)).

Furthermore, I also consider a skewed-normal jump distribution (SN) (Azzalini

(1985)) to add a negative skewness to the jump returns. This distribution includes

a shape parameter along with location and scale parameters, where the distribution

reduces to the standard normal when the shape parameter is zero.6 The skewed-

normal distribution has previously been considered as a candidate for the return

6The probability density function is given by f(z; µ, σ2, α) = 2φ(z;µ, σ2)Φ(αz; µ, σ2), where µ, σ2,
and α are the location, scale, and shape parameters, and φ(x) and Φ(x) are the normal probability
and cumulative density functions.
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distribution. Keel (2006), for example, finds that the skewed-normal provides a poor

fit since it does not produce heavy tails. The distribution may, however, be more

appropriate for the jump size.

Figure 2.12 compares estimates of density functions based on 1000 deviates from

the normal, N(0, 1.5), double exponential, DExp(η1 = 1.1, η2 = 0.8), and skewed

normal SN(µ = 0, σ = 2.5, α = −1), distributions.
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Figure 2.12: The figure graphs estimated density functions based on 1000 deviates from the
N(0, 1.5), DExp(η1 = 1.1, η2 = 0.8), and SN(0, 2.5,−1).

Recall that the asymptotic properties of the nonparametric jump statistics do

not rely on the normality assumption of the jump size, thus remain valid for these

alternative distribution. Nevertheless, the small sample properties may vary. There-

fore, I examine the power of the tests under these distributions. To the best of my

knowledge, literature has only considered the normal jump distribution in this context

hitherto.

Tables 2.24 - 2.27 present confusion matrices based on constant and optimal sam-

pling (BR) rates for the two alternative jump size distributions. The power is higher

under the skewed-normal distribution, which is consistent with that the jumps are

generally larger in magnitude compared to under the double exponential distribution.

The power is in fact low for the latter distribution which can be explained by that

a large fraction of the jumps are small, thus indistinguishable from the diffusion and

noise processes.
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Table 2.24: Confusion matrices are tabulated for ZTPRM based on 10000 days simulated from the
SV1FJ model, equation (2.44) with λ = 0.014 and κ ∼ DExp(η1 = 1.1, η2 = 0.8). An iid N(0, σmn)
noise process is added to the simulated prices; σmn is set to 0.000, 0.027, 0.052, 0.080. Results are
presented for four return horizons: one, three, five and thirty minutes. The panel label i denotes
the staggered offset. The labels, NJ and J, denote days without and with a jump, respectively. The
rows correspond to the actual event of a jump or no jump while the columns denote the statistical
inference. The test size is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

1 minutes (NJ) 0.989 0.011 0.996 0.004 0.999 0.001 1.000 0.000
(J) 0.331 0.669 0.434 0.566 0.574 0.426 0.676 0.324

3 minutes (NJ) 0.988 0.012 0.990 0.010 0.995 0.005 0.999 0.001
(J) 0.456 0.544 0.471 0.529 0.551 0.449 0.610 0.390

5 minutes (NJ) 0.986 0.014 0.988 0.012 0.990 0.010 0.994 0.006
(J) 0.493 0.507 0.478 0.522 0.529 0.471 0.596 0.404

30 minutes (NJ) 0.988 0.012 0.987 0.013 0.986 0.014 0.987 0.013
(J) 0.779 0.221 0.779 0.221 0.757 0.243 0.772 0.228

(i = 1)
1 minutes (NJ) 0.989 0.011 0.989 0.011 0.990 0.010 0.990 0.010

(J) 0.353 0.647 0.375 0.625 0.507 0.493 0.610 0.390
3 minutes (NJ) 0.987 0.013 0.986 0.014 0.986 0.014 0.988 0.012

(J) 0.456 0.544 0.456 0.544 0.537 0.463 0.574 0.426
5 minutes (NJ) 0.985 0.015 0.985 0.015 0.984 0.016 0.984 0.016

(J) 0.493 0.507 0.507 0.493 0.566 0.434 0.618 0.382
30 minutes (NJ) 0.980 0.020 0.983 0.017 0.980 0.020 0.982 0.018

(J) 0.787 0.213 0.765 0.235 0.735 0.265 0.743 0.257

Table 2.25: Confusion matrices are tabulated for the ZTPRM statistic based on 10000 days simulated
from the SV1FJ model, equation (2.44). The experimental design is described in Table 2.1, with λ =
0.014 and κ ∼ DExp(η1 = 1.1, η2 = 0.8). An iid N(0, σmn) noise process is added to the simulated
prices; σmn is set to 0.000, 0.027, 0.052, 0.080. BR1 and BR0 denote sampling rates that are
obtained by solving equation (2.33) and by equation (2.34), respectively. The panel label i denotes
the staggered offset. The labels, NJ and J, denote days without and with a jump, respectively. The
rows correspond to the actual event of a jump or no jump while the columns denote the statistical
inference. The test size is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

BR0 (NJ) 0.989 0.011 0.986 0.014 0.987 0.013 0.986 0.014
(J) 0.309 0.691 0.515 0.485 0.588 0.412 0.662 0.338

BR1 (NJ) 0.989 0.011 0.986 0.014 0.988 0.012 0.987 0.013
(J) 0.309 0.691 0.471 0.529 0.610 0.390 0.654 0.346

(i = 1)
BR0 (NJ) 0.989 0.011 0.987 0.013 0.983 0.017 0.984 0.016

(J) 0.316 0.684 0.500 0.500 0.603 0.397 0.669 0.331
BR1 (NJ) 0.989 0.011 0.986 0.014 0.985 0.015 0.983 0.017

(J) 0.287 0.713 0.493 0.507 0.610 0.390 0.684 0.316
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Table 2.26: Confusion matrices are tabulated for ZTPRM based on 10000 days simulated from the
SV1FJ model, equation (2.44) with λ = 0.014 and κ ∼ SN(µ = 0, σ = 2.5, α = −1). An iid N(0, σmn)
noise process is added to the simulated prices; σmn is set to 0.000, 0.027, 0.052, 0.080. Results are
presented for four return horizons: one, three, five and thirty minutes. The panel label i denotes
the staggered offset. The labels, NJ and J, denote days without and with a jump, respectively. The
rows correspond to the actual event of a jump or no jump while the columns denote the statistical
inference. The test size is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

1 minutes (NJ) 0.989 0.011 0.996 0.004 0.999 0.001 1.000 0.000
(J) 0.140 0.860 0.199 0.801 0.294 0.706 0.419 0.581

3 minutes (NJ) 0.988 0.012 0.990 0.010 0.995 0.005 0.999 0.001
(J) 0.221 0.779 0.250 0.750 0.294 0.706 0.353 0.647

5 minutes (NJ) 0.986 0.014 0.988 0.012 0.990 0.010 0.994 0.006
(J) 0.235 0.765 0.257 0.743 0.316 0.684 0.397 0.603

30 minutes (NJ) 0.988 0.012 0.987 0.013 0.986 0.014 0.987 0.013
(J) 0.640 0.360 0.632 0.368 0.654 0.346 0.662 0.338

(i = 1)
1 minutes (NJ) 0.989 0.011 0.989 0.011 0.990 0.010 0.990 0.010

(J) 0.140 0.860 0.184 0.816 0.235 0.765 0.316 0.684
3 minutes (NJ) 0.987 0.013 0.986 0.014 0.986 0.014 0.988 0.012

(J) 0.221 0.779 0.235 0.765 0.279 0.721 0.316 0.684
5 minutes (NJ) 0.985 0.015 0.985 0.015 0.984 0.016 0.984 0.016

(J) 0.250 0.750 0.265 0.735 0.331 0.669 0.346 0.654
30 minutes (NJ) 0.980 0.020 0.983 0.017 0.980 0.020 0.982 0.018

(J) 0.574 0.426 0.581 0.419 0.574 0.426 0.603 0.397

Table 2.27: Confusion matrices are tabulated for ZTPRM based on 10000 days simulated from
the SV1FJ model, equation (2.44) with λ = 0.014 and κ ∼ SN(µ = 0, σ = 2.5, α = −1). An iid
N(0, σmn) noise process is added to the simulated prices; σmn is set to 0.000, 0.027, 0.052, 0.080.
BR1 and BR0 denote sampling rates that are obtained by solving equation (2.33) and by equation
(2.34), respectively. The panel label i denotes the staggered offset. The labels, NJ and J, denote
days without and with a jump, respectively. The rows correspond to the actual event of a jump or
no jump while the columns denote the statistical inference. The test size is 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

BR0 (NJ) 0.989 0.011 0.986 0.014 0.987 0.013 0.986 0.014
(J) 0.132 0.868 0.250 0.750 0.360 0.640 0.412 0.588

BR1 (NJ) 0.989 0.011 0.986 0.014 0.988 0.012 0.987 0.013
(J) 0.140 0.860 0.250 0.750 0.338 0.662 0.426 0.574

(i = 1)
BR0 (NJ) 0.989 0.011 0.987 0.013 0.983 0.017 0.984 0.016

(J) 0.132 0.868 0.243 0.757 0.353 0.647 0.397 0.603
BR1 (NJ) 0.989 0.011 0.986 0.014 0.985 0.015 0.983 0.017

(J) 0.125 0.875 0.235 0.765 0.338 0.662 0.397 0.603

2.5 Summary and Conclusions

In this study, I examine small samples properties of nonparametric statistics devel-

oped by Barndorff-Nielsen and Shephard (2004b, 2006) to test for jumps in asset76



prices. I particularly study the impact of adding noise to the price process and recent

methods to contend with such contamination.

I provide several contributions to the literature. Previous studies have established

that market microstructure noise biases the statistics against identifying jumps. I

provide empirical evidence showing that this can be attributed to that both the mean

and variance of the test statistics become negatively biased as the noise increases. As

a result, the rejection rates decreases since the test is based on the right tail.

Second, Bandi and Russell (2006) and Zhang et al. (2005) propose methods for

reducing the impact of noise when estimating the daily integrated variance using

high-frequency data. I show that these methods also perform well to determine the

optimal sampling rates for the bipower and tripower variations.

Third, by applying the optimal sampling methods by Bandi and Russell (2006)

and Zhang et al. (2005), the test size is closer to the asymptotic results under the

null hypothesis and also increases the power of the test statistics. The two methods

perform similarly to applying staggered returns, which Huang and Tauchen (2005)

evaluate. I propose a modified version of the method by Bandi and Russell (2006) to

improve its robustness to jumps. I find that the modified method produces valid jump

statistics in most scenarios where the original procedure is slightly anti-conservative.

Furthermore, the modified approach has greater power.

Fourth, Bandi and Russell (2006) give two equations for computing the optimal

sampling rate; one that is exact and one approximation. The former requires an

optimization routine while the second has a simple closed-form solution. I find that

the two methods produces equivalently results, thus there is no significant loss to use

the approximation, which is faster to compute.

Fifth, the size and power of the test statistics are similar for the three noise

processes that I consider. Previous literature has evaluated the statistics for a normal
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iid noise process. I find that the jump statistics perform equivalently when adding

serial correlation to the iid noise process and introducing rounding errors of the prices.

A number of future research directions has emerged that I have not pursued in this

work. The experimental design generates prices per second throughout the trading

day. In practice, there are longer and irregular gaps in between trades depending on

the liquidity of the markets. Certainly since the statistics rely on intraday data, this

approach can only be applied to liquid markets; nonetheless, it is doubtful that prices

can be observed at such high and regular frequencies on a daily basis. Hence, an

interesting extension is to consider irregular durations in between price observations.

Second, I determine the optimal sampling rate per day, which relies on that the

market is sufficiently liquid, which is not true in practice in many markets. Future

research may determine whether it is beneficial to estimate the rate over a longer time

horizon. As a result, the method may yield more robust estimates of the optimal

sampling rates and still update the sampling rate sufficiently often. Third, more

recent nonparametric methods based on high-frequency data have been proposed,

such as Fan and Wang (2007), Jiang and Oomen (2008), and Sen (2008). The finite

sample properties of these and the statistics that I consider in this study can be

compared.
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Chapter 3: Volatility and Jump Dynamics in U.S.

Energy Futures Markets

3.1 Introduction

Observers of energy futures markets have long noted that energy futures prices are

very volatile and often exhibit jumps (price spikes) during news event periods. Thus,

the assumption of a continuous diffusion process for asset price behavior is often vi-

olated in practice. Since volatility behavior is the central topic for option pricing,

risk management and asset allocation strategies, market participants, regulators and

academics have a strong interest in the identification of jumps over time and measur-

ing the relative importance of the jump component versus the smooth sample path

component as contributors to total volatility. Motivated by the increase in the avail-

ability of high-frequency data (tick by tick data), Barndorff-Nielsen and Shephard

(2004, 2006) and Jiang and Oomen (2008) have developed nonparametric procedures

for detecting the presence of jumps in high-frequency intraday financial time series.

Jiang et al. (2008) show that these two nonparametric methods can be combined to

produce a test that remains powerful but more robust to noise in the price series.

Despite this, there has been no empirical work using this newly developed procedure

to investigate the presence of jumps over time and the relative contribution of jumps

to the volatility of energy futures prices. This paper seeks to fill this gap in the

literature.

Recent literature based on parametric approaches to identify and model jumps

in stock returns include Chan and Maheu (2002), Maheu and McCurdy (2004) and

83



others. Chan and Maheu (2002) propose an autoregressive conditional jump intensity

within a GARCH model approach to detect and model jumps in seventy-two years

of daily stock returns. They find a significant time variation in the conditional jump

intensity and in the jump size in stock returns during the sample period. Maheu and

McCurdy (2004) model conditional variance of returns as a combination of jumps and

smoothly changing components.

Literature using nonparametric methods include Huang and Tauchen (2005), who

perform a Monte Carlo study on small sample properties of the nonparametric pro-

cedure for detecting jumps by Barndorff-Nielsen and Shephard (2004, 2006). Their

results indicate that microstructure noise biases the test against detecting jumps and

suggest applying a simple lagging strategy to correct the bias. They also provide evi-

dence that jumps account for seven percent of the S&P 500 index’s realized variance.

Using the same nonparametric approach, Andersen et al. (2007) provide empirical evi-

dence that the volatility jump component is both highly significant and less persistent

than the continuous sample path component in foreign exchange rate spot (DM/$)

market, US S&P 500 index futures and thirty-year US Treasury bond futures.

Previous literature on investigating volatility behavior of energy futures prices in-

clude Pindyck (2004), Linn and Zhu (2004), Ates and Wang (2007), Mu (2007), Wang

et al. (2008) and others. Pindyck (2004) documents a significant positive trend in

natural gas futures during the sample period from May 2, 1990 to February 2, 2003.

Linn and Zhu (2004) report an increase in volatility before and after the release of

inventory reports by the Energy Information Administration. Ates and Wang (2007)

use a nonlinear error-correction model with a multivariate GARCH errors process to

document that extreme cold weather surprises and inventory surprises are the short-

run demand and supply factors that affect the spot and futures price change volatility
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in natural gas and heating oil markets. Mu (2007) finds that extreme weather condi-

tions and low inventories are important factors affecting natural gas futures volatility

within a single equation model with a GARCH error process. Wang et al. (2008)

examine the realized volatility and correlation of crude oil and natural gas futures.

They provide evidence that realized crude oil futures volatility increases in the weeks

immediately before OPEC recommends price increases. However, none of these pa-

pers dealing with energy price volatility have separated the volatility jump component

from the volatility smooth component and examined the relative importance of jump

versus smooth components in the total price volatility.

This paper makes several contributions to the literature on detecting jump com-

ponents and in analyzing the time series properties of jumps in energy futures prices.

First, I examine the realized volatility behavior of natural gas, heating oil and crude

oil futures contracts traded on the New York Mercantile Exchange (NYMEX) using

high-frequency intraday data from January 1990 to January 2008. Second, using a

nonparametric test statistic proposed by Jiang et al. (2008), I identify significant

jump components in energy futures prices and estimate the relative contribution of

jumps to the realized variance in the three futures contracts. Third, I investigate

whether significant jumps are often associated with Energy Information Administra-

tion (EIA)’s inventory news announcement dates and extreme cold weather periods.

Fourth, I test whether including jump and seasonal components as explanatory vari-

ables improve the modeling and forecasting of energy futures volatility. Finally, I

evaluate the effects of weather and inventory surprises as short-run demand and sup-

ply factors on the realized volatility. In addition, I test whether the spread nearby

and first deferred contracts can be used as a proxy for these surprises.

The remainder of the paper is organized as follows. Section 3.2 provides the

background for the statistical methodology used in this paper. Section 3.3 describes
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the data and contract specifications of natural gas, heating oil and crude oil futures.

Empirical results are reported in Section 3.4, and Section 3.5 presents a summary

and conclusions.

3.2 Background of Statistical Methodology

3.2.1 Asset Price Dynamics and Jump Statistics

Let Xt = log St denote the logarithmic price where St is the observed price at time

t. Assume that the logarithmic price process, Xt, follows a continuous-time diffusion

process coupled with a discrete process defined as,

dXt = µtdt + σtdWt + κtdqt, (3.1)

where µt is the instantaneous drift process and σt is the diffusion process; Wt is the

standard Wiener process; dqt is a Poisson jump process with intensity λt, that is,

P (dqt =1) = λtdt; and κt is the logarithmic size of the price jump at time t if a jump

occurred. If Xt− denotes the price immediately prior to the jump at time t, then

κt = Xt −Xt−. Define the intraday return, rtj , as the difference between logarithmic

prices, rtj = Xtj − Xtj−1
, where tj − tj−1 is the discrete intraday sample period, ∆.

Bipower Variations

Barndorff-Nielsen and Shephard (2004, 2006) propose a number of nonparametric

statistics based on realized power variations to test for jumps and to estimate the

contribution of jumps to the total variation. Specifically, the statistics are based on

the difference between two estimators of the integrated daily cumulative variation.
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The realized (quadratic) variance is defined as the sum of squared intraday returns,

RVt =
mt∑
j=1

r2
tj
, (3.2)

where mt is the number of intraday ∆-returns during the tth trading day and is

assumed to be an integer. Jacod and Shiryaev (1987) show that the realized variation

converges to the integrated daily variation under the assumption that the underlying

process follows equation (3.1) without jumps. Furthermore, in the presence of jumps

(λ > 0), the realized variance converges in probability to the total variation as ∆→0,

RVt
p→

∫ t

t−1

σ2
sds +

∑
t<s<t+1

κ2(s). (3.3)

Hence, the realized variance captures the variance of both the continuous and the

discrete processes. A second estimator of the integrated daily variance is the realized

bipower variation, which is defined as,

BVt =
π

2

mt

mt − 1

mt∑
j=2

|rtj ||rtj−1
|. (3.4)

Barndorff-Nielsen and Shephard (2004) show that as ∆ → 0,

BVt
p→

∫ t

t−1

σ2
sds. (3.5)

Hence, the asymptotic convergence of the bipower variation captures only the effects

of the continuous process even in the presence of a jump process.1 By combining the

results from equations (3.3) and (3.5), the contribution of the jump process in the

1The result follows from that only a finite number of terms in the sum in equation (3.4) are
affected by jumps while the remaining returns converges to zero in probability. Since the probability
of jumps goes to zero as ∆ → 0, those terms do not impact the limiting probability.
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total quadratic variation can be estimated by the difference of these two variations

where,

RVt − BVt
p→

∑
t<s<t+1

κ2(s), (3.6)

as ∆ →0. Hence, equation (3.6) estimates the integrated variation due to the jump

component and, as such, provides the basis for a nonparametric test for identifying

jumps.

Barndorff-Nielsen and Shephard (2004, 2006) and Barndorff-Nielsen et al. (2006)

show that in the absence of jumps in the price process,

∆−1/2 RVt − BVt((
νbb − νqq

) ∫ t

t−1
σ4(s)ds

)1/2

p→ N(0, 1), (3.7)

as ∆ → 0 where RVt and BVt are defined in equations (3.2) and (3.4) and νbb =

π2/2 + π − 3 and νqq = 2. The integral in the denominator, the integrated quarticity,

is unobservable. From the work by Barndorff-Nielsen and Shephard (2004) on multi-

power variations, Andersen et al. (2007) propose to estimate the integrated quarticity

using the realized tripower quarticity, TPt, which is defined as,

TPt = mtµ
−3
4/3

mt

mt − 2

mt∑
j=3

2∏
i=0

|rtj−i
|4/3, (3.8)

where µ4/3 is a constant given by,

µk = 2k/2 Γ((k + 1)/2)

Γ(1/2)
. (3.9)

Asymptotically, as ∆ → 0,

TPt
p→

∫ t

t−1

σ4
sds. (3.10)
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Hence, a test statistic based on equation (3.7) is given by,

∆−1/2 RVt − BVt((
νbb − νqq

)
TPt

)1/2
. (3.11)

Barndorff-Nielsen and Shephard (2004, 2006) propose a number of variations of

the statistic in equation (3.11), all of which asymptotically have a standard normal

distribution. The small sample properties of these statistics are evaluated by Huang

and Tauchen (2005) in a Monte Carlo study. They find that the following statistic

has the best finite sample properties,

Zbns,t =
RJt√(

νbb − νqq

)
1

mt
max

{
1, TPt

BV2

t

} , (3.12)

where,

RJt =
RVt − BVt

RVt

. (3.13)

The Zbns,t statistic in equation (3.12) can be applied to test the null hypothesis that

there is no jump in the return process during a trading day, t, where the hypothesis

is rejected for large positive values of the statistic relative to the standard normal

distribution. The test is one-sided since the statistic is based on the difference between

variances where the difference is zero under the null hypothesis and greater than zero

otherwise.

Swap Variance

Jiang and Oomen (2008) base a statistic to test for jumps in asset prices on the

variance swap replication strategy (Neuberger (1994)). This strategy allows traders

to hedge their exposure to volatility risk more effectively than by using traditional
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put or call options. The hedge portfolio is based on that the accumulated difference

between the simple return and the logarithmic return is one half of the integrated

variance under the assumption that the asset price process is continuous. The relation

between the two return measures breaks down, however, if the data-generating process

has discontinuities in the price process, which Jiang and Oomen (2008) use to develop

a test for jumps.

The price process in equation (3.1) (page 86) with St = exp(Xt) can be written

as,

dSt

St

=

(
µt +

1

2
σ2

)
dt + σtdWt + (eκt − 1) dqt, (3.14)

which can be shown to be,

2

∫ 1

0

(
dSt

St

− dXt

)
= σ2

(0,1) + 2

∫ 1

0

(eκT − κt − 1) dqt. (3.15)

In the discrete case, the left-hand side of equation (3.15) is the swap variance, which

can be estimated by,

SwVt = 2
mt∑
i=1

(Rti − rti), (3.16)

where Rti = (Sti − Sti−1
)/Sti−1

is the ith intraday simple return, rti is the equivalent

logarithmic return, and mt is the number of intraday returns. Asymptotically, as

mt → ∞,

SwVt − RVt
p→

 0, if no jump;

2
∫ t

t−1

(
eκt − 1

2
κ2

t − κt − 1
)
dq, if jump,

(3.17)

where RVt is the realized variation (equation (3.2)). The result in equation (3.17)

follows from equation (3.15) and that RVt →
∫ t

t−1
σsds +

∑
t<s<t+1 κ2(s) (Jacod and

Shiryaev (1987)).
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Jiang and Oomen (2008) consider three statistics based on equation (3.17). They

find in a simulation study that a ratio statistic defined as,

Zswv,t =
σ̂2

t mt√
Ω̂t

(
1 − RVt

SwVt

)
, (3.18)

has the best small sample properties. Ω̂t is an estimator of,

Ωt =
µ6

9

∫ t

t−1

(
σ2

u

)3
du, (3.19)

where σt is the volatility term in the data-generating process defined in equation (3.1)

(page 86) and µ6 is a constant given by equation (3.9) (page 88). The estimator, Ω̂t,

is defined by,

Ω̂
(p)
t =

µ6

9

m3
t µ

−p
6/p

mt − p + 1

N−p∑
j=0

p∏
k=1

|rt+k|6/p. (3.20)

Jiang and Oomen (2008) conclude in simulations studies that four and six are appro-

priate choices for p.

Combined Statistic

While both the Zbns,t and Zswv,t statistics are based on intraday returns, they have im-

portant asymptotic differences. The BNS framework compares the realized variation,

RVt, with an estimator that is robust to jumps (BVt); the swap-variance approach, on

the other hand, compares RVt with the SwVt estimator where the latter is sensitive

to jumps. Moreover, the swap-variance test is primarily driven by the third power of

the returns while the BNS framework is based on the second moment, which has the

implication that the former test is two-sided as opposed to BNS which is one-sided.

According to Jiang and Oomen (2008), the Zswv,t statistic generally has the same
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sign as the jump although that may not be the case. A weakness with the swap-

variance test is that multiple jumps with different signs may cancel out the effect of

each other while the impact of multiple daily jumps accrues in the BNS framework.

Furthermore, SwVt requires estimating daily integrated variations at a higher order

than BNS does. Generally, estimators of higher order terms are less robust to jumps

and noise.

Simulation studies (for example Huang and Tauchen (2005) and Jiang et al.

(2008)) on these two statistics have shown that both methods may become anti-

conservative, which is particularly evident when applying methods to contend with

noisy prices. Jiang et al. (2008) propose to address this by only rejecting the null

hypothesis when both tests reject. They provide empirical evidence suggesting that

the combined version is conservative and powerful. I report a small sample simulation

study on the combined statistic in Appendix A.III (page 150). I find that although

the tests based on the individual statistics are invalid, the combined method is highly

conservative but nearly as powerful. I apply this combined method to the energy

market data to increase the validity of the results. In addition, I produce all results

based on the BNS framework for robustness.

3.2.2 Decomposing Total Variation

The daily variance due to the jump component is estimated by the difference between

RVt and BVt, equation (3.6), where RVt estimates the total variation including the

contribution due to the jump component, whereas BVt is robust to jumps and only

captures the variation due to the continuous component. Hence, the difference is zero

in absence of jumps and greater than zero otherwise. However, due to measurement

errors, the difference can be negative. Barndorff-Nielsen and Shephard (2004) suggest

imposing a lower bound at zero by letting the variance due to the jump component
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be given by,

Jt = max[RVt − BVt, 0]. (3.21)

Furthermore, since small values of Jt may be due to noise rather than discontinuities

in the price process, I identify the variance contributed by significant jumps as,

Jt,α = (RVt − BVt) I(p<1−α), (3.22)

where p is the p-value which is set to the maximum value of the p-values based on the

Zbns,t and Zswv,t statistics; α is the significance level; and I is the indicator function,

which is equal to one if the test rejects the null hypothesis and zero otherwise. The

variation that is contributed by the continuous sample path component can then be

estimated by,

Ct,α = I(p<1−α)RVt + I(p≥1−α)BVt. (3.23)

By this definition, the sum of Jt,α and Ct,α adds up to the total variation, RVt.

3.2.3 Contending with Market Microstructure Noise

The Zbns,t and Zswv,t test statistics depend on estimates of daily integrated variations,

which are obtained with model-free methods on high-frequency intraday data. The

asymptotic properties of the realized variance, RVt, and bipower variation, BVt, as-

sume an efficient price process. Observed prices, however, are noisy due to market

microstructure. As a result, the variance in high-frequency returns can be attributed

to two components: efficient price returns and microstructure frictions. The variance

generated by market frictions is the result of the price formation under specific trade

mechanisms and rules, such as the discrete price grid and bid-ask bounce effects.

Such noise introduces bias in the variance estimates and becomes particularly severe

93



at high sampling rates. In fact, Bandi and Russell (2006) among others show that as

the sampling interval goes to zero, the variance due to noise rather than the integrated

variance will dominate the estimate.

The conventional approach relied on in the applied literature to alleviate the bias

is simply to sample the price process at lower frequencies than what the data permit.

The sampling intervals are typically arbitrarily chosen and commonly in the range of

five to thirty minutes.

In addition to sparse sampling, Andersen et al. (2007), Barndorff-Nielsen and

Shephard (2006), and Huang and Tauchen (2005) propose and evaluate a method,

referred to as staggered returns to further reduce the impact of the microstructure

noise.2 In particular, the method addresses the bias generated by spurious correlations

in the returns due to noise. The bid-ask bounce, for example, may induce negative

autocorrelations in the intraday asset price returns as the trades are executed at the

spread slightly above and below the fair value. Moreover, the practice to split large

trades into several smaller trades that are executed during a relatively short time

horizon may induce positive autocorrelation. Any such autocorrelation structure in

the returns may bias the bipower and tripower estimators since these are functions

of adjacent returns. The proposed method attempts to break or at least reduce the

correlation structure by skipping one or more intraday returns when computing these

estimates rather than taking adjacent returns. The bipower variation using staggered

returns becomes,

BVt+i =
π

2

mt

mt − 1 − i

m∑
j=2+i

|rtj ||rtj−1−i
|. (3.24)

2Bandi and Russell (2006) and Zhang et al. (2005) independently propose alternative methods for
reducing the impact of noise when estimating the daily integrated variance using high-frequency data.
They find an optimal sampling rate for estimating the realized variance by quantifying the trade-
off between the bias due to noise at high sampling frequencies and the variance due to infrequent
sampling.
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The offset, i, is chosen based on the order of the autocorrelation in the return process;

for example, if the autocorrelation is only significant at one lag, an offset i = 1 may

be sufficient. Similarly, the definition of the tripower estimator is modified to allow

for staggered returns as,

TPt = mtµ
−3
4/3

mt

mt − 2(1 + i)

mt∑
j=1+2(1+i)

2∏
k=0

|rtj−k(1+i)
|4/3. (3.25)

3.3 Contract Specifications and Data

In this study, I examine price series for three contracts from the U.S. energy futures

markets. The contracts are on natural gas, crude oil, and heating oil, all of which are

traded on the New York Mercantile Exchange (NYMEX).

The natural gas futures contract is commonly cited as the benchmark for the

spot market, which accounts for nearly 25 percent of the energy consumption in the

U.S. The futures contract began trading on April 3, 1990 and is based on delivery at

the Henry Hub in Louisiana. The contract trades in units of 10, 000 million British

thermal units (mmBtu) and is quoted in dollars and cents per mmBtu. Contracts are

traded for about thirteen years forward (the current calendar year plus the next twelve

years). The minimum price fluctuation is $0.001 per mmBtu ($10.00 per contract)

and a five-minute intraday trading halt is triggered by a price movement of $3.00 per

mmBtu ($30, 000 per contract).

The futures contract on crude oil began trading in 1983 and, according to NYMEX,

is the world’s most liquid futures contract on a physical commodity. The contract

calls for delivery of both domestic as well as international crude oils of different grades

in Cushing, Oklahoma. The contract, which is listed nine years forward, trades in

units of 1, 000 U.S. barrels (42, 000 gallons) and is quoted in U.S. dollars and cents
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per barrel. The minimum price fluctuation for crude oil is $0.01 per barrel ($10.00

per contract) and five-minute intraday trading halts are triggered by price movements

of $10.00 per barrel ($10, 000 per contract) in either direction.

The heating oil futures contract began trading on November 14, 1978. Heating oil

currently accounts for about a fourth of the yield of a barrel of crude oil, second only

to gasoline. The futures contract trades in units of 42, 000 gallons (1, 000 barrels) and

is based on delivery in the New York Harbor. Separate contracts are traded for 36

consecutive months. The price is quoted in dollars and cents per gallon. The minimum

price fluctuation is $0.0001 per gallon ($4.20 per contract) and intraday trading halts

are triggered by price movements of $0.25 per gallon ($10, 500 per contract) in either

direction. Detailed specifications for all three contracts are presented in Appendix

A.I.

Part of the intraday data is from the Commodity Futures Trading Commission’s

database. The data series for crude oil and heating oil range from January 1, 1990 to

May 31, 2002 and the series for the natural gas contract span from January 1, 1993

to March 31, 2004. This dataset is supplemented with more recent data obtained

from the Institute for Financial Markets, Futures Industry Association, and extend

the crude oil and heating oil series to December 31, 2007 and the natural gas series

to January 31, 2008. Each transaction includes a date and time stamp and the

transaction price. Prior to September 11, 2001, the open outcry trading hours were

9:45 AM to 3:10 PM. Following 9/11, the trading commenced on September 17, 2001

with varying trading times until October 1, 2001, when trading hours were set at

10:00 AM to 2:30 PM. Since January 31, 2007, the trading hours have been set at

9:00 AM to 2:30 PM.

The contracts began trading electronically via the Globex trading platform in the

spring of 2007. While liquidity initially was low on the Globex platform, it increased

96



rapidly during the summer of 2007, and electronic trading became consistently higher

than pit trading in September of 2007 for all three contracts, and has since remained

the predominant trading platform. Consequently, I switch from the open outcry series

to the electronic dataset from September 2007 forward. The electronic trading takes

place from 6:00 PM to 5:45 PM the following day; however, for consistency I consider

only the transactions for the same hours during which the pit trading takes place.

Furthermore, I use the data series from nearby contract months. During the

maturity month, I shift to the first deferred contract month, using the daily trading

frequency as the switch indicator. The data are filtered to limit any biased results

due to illiquid trading.3

Data on stock levels are obtained from the Department of Energy’s (DOE) Energy

Information Administration (EIA). The inventories of crude oil and heating oil are

published by EIA as part of their weekly petroleum status report.4 EIA also provides

estimations of weekly volumes of working gas in U.S. underground natural gas storage

facilities in its historical weekly storage estimates database. Historical daily weather

data is obtained from the National Oceanic and Atmospheric Administration (NOAA)

database.5,6 The database includes daily minimum and maximum temperatures in

degrees Fahrenheit for Chicago and New York City. Chicago weather is used for the

natural gas analysis since Chicago is one of the main consumption areas. Heating

oil’s main market is the Northeastern U.S. with New York State having the highest

demand. Therefore, New York weather is chosen for the heating oil and crude oil

analysis. I match the sample ranges of the stock levels and temperatures with the

3Since the daily variation estimators rely on frequent intraday trading, days with fewer than three
hours of trading and days with a trading gap longer than two hours are excluded from the study.

4Distillate oil can be categorized into low and high sulfur classes where the latter class often is
referred to as heating oil. Hence, I extract the historical stocks from this class from the petroleum
status report as the heating oil inventory.

5http://www.noaa.gov/
6I thank Professor Sheryl Beach at George Mason University and Professor Cary J. Mock at the

University of South Carolina for help with acquiring the weather data.
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transaction data.

3.4 Empirical Results

This section first examines the persistency and dynamics in the total realized variation

and the jump process. Thereafter, seasonal and intraday patterns of the variations

and the impact of the jump process on the total realized variation are considered.

Finally, I present results on modeling and forecasting total realized variation by in-

corporating the discontinuous jump component as an explanatory variable in the

model. In addition, I add weather and inventory surprises and interest-rate adjusted

spread to the model.

3.4.1 Realized Variations and Jump Dynamics

The time series behavior of daily closing prices (top panel) and log-returns (bottom

panel) for crude oil, heating oil and natural gas are presented in Panels A-C in

Figure 3.1. It clearly exhibits that the closing prices of the three energy markets have

generally increased since around 1999.

The Augmented Dickey-Fuller (ADF) test is used to test for the presence of a unit

root in realized variance, realized volatility (realized variance in standard deviation

form), and log transformation of realized variance and the same forms of the jump

component. The first row of Table 3.1 reports the ADF test statistics which indicate

that the null hypothesis of unit root is rejected at the 1% level of significance for all

series.

The top panel in Figure 2, A-C, shows daily volatilities (realized variance in stan-

dard deviation form) for the crude oil, heating oil and natural gas series. Each of

the three series exhibits strong autocorrelation. This is confirmed by the Ljung-Box
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statistic (LB10), which is equal to 10, 926 for crude oil, 9, 263 for heating oil and 6, 184

for natural gas (see the bottom row of Panel A-C in Table 3.1). A cross-market com-

parison shows that the natural gas market is the most volatile market; the annualized

realized volatilities are 39.4 percent for natural gas, 26.5 percent for heating oil and

26.0 percent for crude oil. The equivalent values for the S&P 500 and the thirty-year

U.S. Treasury bond futures over the sample period 1990− 2002 are 14.7 and 8.0 per-

cent, respectively (Andersen et al. (2007)). Hence, the energy futures markets, and

particularly the natural gas market, are highly volatile during this sample period.

The maximum of the daily volatility, however, is higher for the two oil markets with

a daily maximum of 0.1950 for crude oil, which occurred during the period following

the invasion of Iraq in 1990. Based on the skewness and excess kurtosis, the loga-

rithmic form appears to be the most normally distributed, which is consistent with

previous empirical findings in the equity and foreign exchange markets (Andersen

et al. (2007)) although the Jarque-Bera test statistic rejects normality for all forms

and markets at the 1% significance level.

The second panel in Figure 3.2, A-C, plots the separate measurement of the jump

components in standard deviation form. The jump component is defined as the

difference between the realized and bipower variations with a lower bound at zero

(equation (3.21)). The mean of the daily volatility due to the jump component is

equivalent for crude and heating oil at 0.0033 and 0.0038, respectively, while it is

larger for natural gas at 0.0061; the corresponding annualized volatilities are 5.2, 6.0

and 9.7 percent, respectively. The jump component is highly positively skewed with

a large kurtosis in all three markets. The Ljung-Box test statistics reported in the

bottom row are significant although considerably smaller than for the total volatility.

The Ljung-Box statistics for the standard deviation form of the jump components

are between 190 and 290 for the three markets while the corresponding statistics
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are greater than 6, 000 for the realized volatility of each of the three series. Hence,

the smooth component appears to contribute more to the persistency in the total

volatility. The second panel in Figure 3.2, A-C, clearly shows that there is some

persistence in the jump component.

Since the jump component in Table 3.1 is computed by the difference defined in

equation (3.21), the properties and in particular the prevalence of autocorrelation

may partially be due to that the estimator captures some of the smooth process on

days without jumps.7 Hence, to alleviate such potential bias, I examine the properties

for significant jumps as defined by equation (3.22). The significant jumps are deter-

mined by the combined statistic (see Section 3.2) where the bipower and tripower

estimators are obtained using staggered returns with one lag offset (equations (3.24)

and (3.25)) to reduce the impact of market microstructure noise.8 The significant

jump components based on the test level α set to 0.99 are plotted in the last panel in

Figure 3.2, A-C, which clearly exhibits that large volatility often can be associated

with a large jump component.

Table 3.2 reports yearly statistics of the significant jump components for α equal

to 0.99. There are significant jumps in all three price series. The number of days

with a jump ranges from 5 to 34 for natural gas, 5 to 28 for heating oil and 4 to 20

days for crude oil. The proportion of days with jumps in natural gas is higher during

the second half of the sample period; the other markets do not reveal the same trend.

The table also includes daily summary statistics per year for the relative contribution

for days with a significant jump. The relative contribution of the jump component

to the total variance ranges from 23 to 87 percent for natural gas futures, 23 to 64

percent for crude oil futures and 23 to 74 percent for heating oil futures for days with

7It is generally assumed that the jump component dominates the diffusion component on days
with significant jumps.

8Equivalent results are obtained when sampling at the rate given by the method by Bandi and
Russell (2006), see footnote 1.
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jumps. Hence, jumps have a significant impact in all three markets.

Table 3.3 presents a regression analysis to test for linear trends in the daily time

series of the realized volatility, the smooth and significant jump components and the

relative contribution. The model is specified as,

Vt = β0 + β1Trendt + εt, (3.26)

where Vt denotes the realized variations and ratio, respectively, and Trendt denotes

the trend. The trends in the total volatility are positive and significant for all three

markets. In natural gas, the jump component emerges as the driving factor of the

trend in the total variation, whereas in the crude and heating oil markets the smooth

component is positive and significant while the jump component contributes less.

This result is also reflected in the trend in the relative contribution, which is positive

and significant for natural gas while negative in the oil markets.

Moreover, I test for linear trends in the monthly estimates of the jump intensity

and size of the significant jump component by estimating the model specified in

equation (3.26). Vt denotes the intensity and volatility, respectively, and Trendt

denotes the (monthly) trend. The regression results are presented in Table 3.4. The

arrival rates of jumps are computed per month by taking the ratio of days with a

jump over the total number of trading days. The trends are positive and significant

for both series in the natural gas market, while they are negative for crude oil. There

are no significant trends in the heating oil market. The time series behavior of the

exponentially smoothed series of the intensity and size for the three contracts are

graphed in Figure 3.3.

To further examine the jump dynamics, I consider different levels of α ranging

from 0.5 to 0.9999. The empirical results are reported in Table 3.5. The first row
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tabulates the number of days with a significant jump. As a comparison, the total

number of trading days for the complete sample period for natural gas is 3, 676, for

crude oil is 4, 510, and for heating oil is 4, 449. As expected, the proportion of days

with significant jumps declines from 0.49 to 0.02 for natural gas, 0.49 to 0.01 for

heating oil, and from 0.44 to 0.01 for crude oil, as the level of α increases from 0.5 to

0.9999. Andersen et al. (2007) report that the equivalent values for S&P 500 futures

and thirty-year U.S. Treasury bond futures are 0.737 − 0.051 and 0.860 − 0.076,

respectively; thus, jumps are more frequent in the latter markets.9 Based on the

proportions of days with a jump for the energy futures markets, the test statistic

consistently rejects the null hypothesis too frequently for the larger test sizes had the

underlying data generating process been a continuous diffusion process. For natural

gas, 13 percent of the days are identified as having a jump for α = 0.95 and 7 percent

for α = 0.99. Similar percentages hold for the other markets. The sample mean and

standard deviations are daily values of the volatility due to significant jumps where

the estimates are computed only over days with significant jumps. Hence, the average

jump size increases as the significance level increases. The annualized estimates range

from 16.0 to 47.1 percent for natural gas, 9.68 to 22.6 percent for crude oil and 10.0

to 24.9 percent for heating oil. The Ljung-Box test statistics for significant jumps

(LB10, J
1/2
α ) are lower than the equivalent values for jumps defined by equation (3.21)

reported in Table 3.1. Consistently, the Ljung-Box statistics decrease as the size of

α increases. Yet, even as the number of jumps declines, the Ljung-Box statistics

indicate that some persistency remains in the jump component. The p-values are less

than 0.01 for α = 0.999 for all markets and less than 0.01 for α = 0.9999 for natural

gas. The time series plot of the significant jump component is graphed in the fourth

9Andersen et al. (2007) identifies jumps by the BNS framework, which partially explain the
differences. The rates using this statistic for the energy markets are 0.64 to 0.02 for natural gas and
heating oil, and from 0.44 to 0.01 for crude oil.
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panel of Figure 3.2, A-C.

Finally, Table 3.6 presents summary statistics for jump returns conditioned on

the sign of the returns. Since the test statistic does not provide the direction of the

price change, I define the largest (in magnitude) intraday price return as the jump for

each day for which the test rejects the null hypothesis and thus obtain the size and

sign of the jump return. From Table 3.6, I observe that there are more negative than

positive jumps for all three energy futures markets. The mean and median values are

equivalent, however.

In summary, using high-frequency data, I have applied a nonparametric statistical

procedure proposed by Barndorff-Nielsen and Shephard (2004, 2006) to decompose

total volatility into a smooth sample path component and a jump component for three

markets. I find that jump components are less persistent than smooth components

and large volatility is often associated with a large jump component. Across the three

markets, natural gas futures is the most volatile, followed by heating oil and then by

crude oil futures.

3.4.2 Seasonal Effects in Smooth and Jump Components

Previous literature (see Ates and Wang (2007) and others) has documented that

extreme cold weather surprises and inventory surprises are the short run demand and

supply factors affecting the spot and futures price change volatility in natural gas

and heating oil markets. In this section, I investigate whether there is a seasonal

(monthly) pattern in the total realized volatility, the smooth and jump components,

and the relative contribution of jumps in these markets.

Table 3.7, Panel A-C, presents regression results from testing the equality of

monthly means of the total realized volatility, the smooth and jump components,
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and the relative contribution of jumps. I estimate the regression model,

Vt = β0 +
12∑

i=1,i 6=7

βiDi + εt, (3.27)

where Vt denotes the realized variations and ratio, respectively, and Di denotes a

dummy variable which is equal to one for the ith calendar month and zero otherwise.

The intercept denotes the monthly value of July which is used as the basis of com-

parison. The monthly coefficients for the realized volatility and smooth sample path

component are positive and higher during the winter months compared to those in

the summer months for all markets. The top two panels in Figure 3.4, A-C, exhibit

U-shaped curves for the realized volatility and smooth sample path components for

all three markets during the whole year.

The jump component does not display the same consistent seasonal behavior as

the smooth component. The jump components for natural gas and crude oil have

peaks in both winter and summer. The monthly jump intensity is graphed in the fifth

row in Figure 3.4, A-C. The intensity is highest in November through January for

natural gas while the peak occurs during the summer for crude oil. I cannot identify

a consistent pattern of the jump intensity for crude oil and heating oil futures.

The sixth panel plots the monthly stock levels as reported by EIA. The invento-

ries for heating oil and natural gas exhibit inverted U-shaped curves, reaching their

seasonal lows towards the end of the winter season, after which inventories begin to

build up until the stock peaks around November. From the seventh plot in Figure

3.4, Panels A-C, I observe that the monthly mean of daily minimum temperatures

clearly exhibits inverted U-shaped curves. Accordingly, during the winter season,

when the stock levels of the underlying assets are low, sudden increases in demand

due to extreme cold weather can often generate high volatility for natural gas and
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heating oil. Section 3.4.5 provides a more detailed analysis on these effects.

In short, I have identified that the monthly volatility and the smooth path com-

ponent exhibit seasonal variation during the year. They are relatively high in winter

months and low in summer months for all three markets. I do not find an evident

seasonal patterns in the jump component for any of the three markets during the

sample period of this study.

3.4.3 EIA’s Inventory Announcements, Intraday Realized Volatil-

ity and the Jump Component

Previous literature documents that jumps in asset prices are often associated with

news events. Barndorff-Nielsen and Shephard (2006), for example, document that

days with a jump in the DM/$ foreign exchange market can be linked with macroe-

conomic news. This is consistent with findings by Andersen et al. (2007), who report

that macroeconomic announcements lead to large intraday price moves in a dataset

from the foreign exchange markets. Johannes (2004) uses a parametric approach

and shows that jumps in daily Treasury bill rates are associated with specific news

announcements. Jiang et al. (2008) find that about 70 percent of the jumps in the

U.S. Treasury markets occur at prescheduled macroeconomic announcements. This

section examines the impact of the Energy Information Administration’s (EIA) inven-

tory announcements on intraday realized volatility and explores whether significant

jumps can be linked to surprises in inventory announcements.

Before summarizing the full-sample results for the energy futures markets, I con-

sider three specific days with large price movements. Figure 3.5, Panel C, plots

cumulative intraday five-minute returns for natural gas on May 2, 2001. The Zbns,t

statistic is highly significant with a value of 6.61 for this day. The figure displays a
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large jump around 2 PM, which coincides with the release time of the storage report

published by EIA. On May 3, 2001, the Los Angeles Times printed the headline: “Gas

and crude oil prices dive as U.S. inventory levels surge”, referring to industry reports

from the previous day showing an unexpected increase in the stock-piles.10 Figure

3.5, Panel A, graphs price movements for crude oil on Thursday, November 15, 2007.

The Zbns,t statistic identifies a jump for this day at the five percent significance level.

In the afternoon, Bloomberg reported that the crude oil stock-piles rose unexpectedly

due to the storage report released by EIA.11,12 Bloomberg wrote that imports rose to

their highest levels in the past few months allowing refineries to increase their runs

and still increase their inventories. Figure 3.5, Panel B, plots the intraday behavior

in heating oil futures prices on February 14, 2007. It shows that the price dropped

considerably with a smooth sample path for about an hour following the announce-

ment time at 10:30 AM. CNN reported later that day that while the crude oil supply

declined more than expected, the heating oil reserve fell less than forecast. On the

same day, analysts also reported that weather forecasts predict milder temperatures

than expected.13 Hence, the gradual price change may be due to the conflicting im-

plications of the surprises in the stock-piles and the change in weather. The jump

test statistic does not indicate a significant jump (the p-value is 0.9). In short, the

three cases mentioned above illustrate the working of the jump statistic.

EIA releases weekly reports on the inventory status of heating oil, crude oil and

natural gas. From May 2003 to December 2007, a smaller version of the inventory

report for heating oil and crude oil with highlights and summarizing tables are released

after 10:30 AM on Wednesdays; a full report is published after 1:00 PM on the same

10http://articles.latimes.com/2001/may/03/business/fi-58758
11http://www.bloomberg.com
12The petroleum report, which typically is released on Wednesdays, was postponed one day due

to Veterans’ day holiday.
13http://money.cnn.com/2007/02/14/markets/oil eia/
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day.14 The EIA also compiles and releases a weekly natural gas storage report with

estimates of natural gas in underground storage. From March 2000 to May 2002, the

inventory report was released between 2:00 and 2:15 PM on Wednesdays. Since May

2002, EIA has released the report around 10:30 AM on Thursdays.15

I use one way analysis of variance models (that is, a regression model with dummy

variables) to test whether the volatility increases at the announcement time on days

with and without significant jump, respectively. I estimate the regression model,

Volt,k = β0 +
∑
i 6=l

βiDi + εt,k. (3.28)

The dependent variable, Volt,k, is the five-minute intraday volatility estimated by the

absolute value of the difference between the logarithm of the closing and opening

prices of the interval where k = 1, . . . , K, denotes the intraday periods. The inde-

pendent variables, Di, are dummy variables denoting the five-minute intervals. The

index l denotes a five-minute interval prior to the announcement time, which serves

as the benchmark. It is implicitly assumed to be the equilibrium price absent any

information about the content of the news release.

Table 3.8B, Panel B, presents the regression results of natural gas on Thursday

mornings between 9:55 - 12:10 AM where the time period 10:05 - 10:10 serves as

the benchmark.16 The coefficients representing the release time of the storage report

at 10:30 - 10:35 AM are positive and highly significant compared to the benchmark

equilibrium price. The coefficients are 0.0227 (38.60) with significant jump days

(α = 0.99) compared to 0.0062 (24.07) for days without significant jumps, with t-

statistics in parentheses. The volatility remains elevated for about thirty minutes

14The report was released off trading hours prior to May 2003.
15Before March 2, 2000, the report was released after the close of NYMEX on Wednesdays. Further

discussion on the inventory reports is referred to EIA’s website: http://www.eia.doe.
16Alternative benchmarks yield analogous results.
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on days with jumps and sixty minutes on days without jumps. I also find that the

coefficients prior to the announcement are insignificant and thus provide no evidence

on leakage of inventory information related to the natural gas futures market. The

results are consistent with the results of Linn and Zhu (2004), who examine the

impact of the storage report on natural gas futures price volatility using transaction

data from January 1999 to October 2002. They report a considerable increase in

volatility at the time of the release and that the volatility remains elevated for up to

thirty minutes following the announcement. They do not, however, consider jumps.

The regression results in Table 3.8B, Panel A, report the behavior in volatility

when the release time of the natural gas storage report was at 2:00 PM on Wednesday

afternoons from March 2000 to May 2002. The results are analogous to those for

Thursdays. There is a large surge in volatility at the release time. Figure 3.6, Panel

C, clearly demonstrates the time series behavior of intraday volatility of natural gas

during the announcement periods.

Turning to the regression results in Table 3.8A, Panels A and B, I examine the

intraday regression results for crude oil and heating oil markets on Wednesdays at

the release time of the petroleum report at 10:30 AM. I observe that the crude oil

coefficient is 0.0116 (23.62) for days with jumps and 0.0040 (24.73) for days without

jumps. For heating oil, the coefficient is 0.0139 (17.13) for days with jumps and 0.0042

(15.06) for days without jumps; the parentheses report corresponding t-statistics. It

is interesting to observe that volatility returns to prelevel volatilities approximately

within ten minutes in both crude oil and heating oil markets on announcement days

with jumps, while the volatility remains elevated beyond sixty minutes on announce-

ment days without jumps. Panels A and B in Figure 3.6 plot the time series behavior

of realized volatility during announcement days with jump and without jump com-

ponents.
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Furthermore, I examine whether the arrival rate of jumps is higher during the

inventory event periods by determining the intraday timing of jumps. The timings

are established by a procedure similar to one used by Jiang et al. (2008).17 During

sample period June 2002 to December 2007, I identify that there are 72 jumps on

Thursdays in the natural gas market and 60 of these occur between 10:25-10:40 AM;

there are a total of 167 jumps during this sample period. There are 45 jumps on

Wednesdays in the heating oil market and 35 occur at the inventory announcement;

there are 121 jumps for the whole sample period. Similarly, there are 36 jumps on

Wednesdays in the crude oil market and 27 of these occur the announcement; there

are a total of 91 during the whole sample period. The results strongly suggest that

there are clusters in jumps during the inventory announcement dates in all three

energy futures markets.

In summary, I provide three new interesting empirical findings. First, the intraday

volatility increases during the period immediately following the inventory announce-

ment; furthermore, the volatility is higher during the announcement period on days

with a significant jump component than on days without a jump. Second, the volatil-

ity returns to previous levels faster on days with a jump at the announcement period

compared to days without a jump. Third, jumps often occur during the inventory

announcement days in energy futures markets.

17Let rtj denote the jth intraday return on the tth day. (1) Find the largest (in magnitude) return,
r∗tj , and record that return as a jump. (2) To test whether there are additional jumps on the same
day, set r∗tj to the median value of the intraday returns for that day since the median is robust to
jumps. (3) Recompute the test statistic for the tth day. If the test still rejects the null hypothesis,
return to step (1) to determine the time of an additional jump. Otherwise, all jumps have been
identified for the tth day.
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3.4.4 Modeling Realized Variation with Jump Component

A number of studies in different markets have found that the volatility process is a

member of the long-memory time series by employing ARFIMA models or stochastic

volatility models. Corsi (2004) proposes the HAR-RV model to represent the time

series behavior of the realized volatility process. The HAR-RV model is motivated

by the heterogeneous market hypothesis suggested by Müller et al. (1997), which

recognizes the heterogeneity of the traders due to differences in the endowment, degree

of information, temporal horizons, risk profile, and so on. These differences lead trader

groups to settle for different prices and decide to trade at different market situations;

hence, they create volatility. Corsi (2004) incorporates realized volatility over different

time horizons in his model such as daily, weekly and monthly volatility components

to capture the volatility due to heterogeneous beliefs among trader groups. While

the HAR-RV model does not explicitly incorporate the long-memory property, Corsi

(2004) demonstrates that his model can reproduce the memory persistence observed

in many markets. Andersen et al. (2007) extend the HAR-RV model by including a

jump component as an explanatory variable, and demonstrate that the augmented

model (HAR-RV-J model) significantly improves the performance of the HAR-RV

model for modeling and forecasting volatility in DM/$, S&P 500 futures and T-bond

futures.

Following the Andersen et al. (2007) approach, I specify the HAR-RV-J model for

three energy markets as follows. First, I define the multi-period normalized realized

variation as,

RVt,t+h = h−1

h∑
i=1

RVt+i. (3.29)

I consider h = 1, h = 5 and h = 22, which correspond to daily, weekly and monthly
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lags. For these time horizons, the HAR-RV model is written as,

RVt,t+h =β0 + βDRVt + βW RVt−5,t + βMRVt−22,t+

Q∑
q=1

(
δq sin

(
2πqT

252

)
+ ξq cos

(
2πqT

252

))
+ εt,t+h.

(3.30)

I add sine and cosine terms to capture the seasonal variation. Andersen et al. (2007)

extend the model by adding a variable for the jump component, Jt, that is,

RVt,t+h =β0 + βDRVt + βW RVt−5,t + βMRVt−22,t + βJJt+

Q∑
q=1

(
δq sin

(
2πqT

252

)
+ ξq cos

(
2πqT

252

))
+ εt,t+h.

(3.31)

Henceforth, this model is referred to as the HAR-RV-J model.

Besides estimating these models in the realized variance form, I also consider two

nonlinear transformations. A standard deviation (volatility) form of the HAR-RV-J

model is defined as,

RV
1/2
t,t+h =β0 + βDRV

1/2
t + βW RV

1/2
t−5,t + βMRV

1/2
t−22,t + βJJ

1/2
t +

Q∑
q=1

(
δq sin

(
2πqT

252

)
+ ξq cos

(
2πqT

252

))
+ εt,t+h,

(3.32)

and a logarithmic transformation is written as,

log(RVt,t+h) =β0 + βD log(RVt) + βW log(RVt−5,t) + βM log(RVt−22,t)+

βJ log(Jt + 1) +

Q∑
q=1

(
δq sin

(
2πqT

252

)
+ ξq cos

(
2πqT

252

))
+ εt,t+h.

(3.33)
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The nonlinear forms of the HAR-RV model are defined analogously.18

The ordinary least squares procedure is used to estimate the parameters of the

models, and Newey and West (1987) is applied to estimate consistent standard errors

of the parameters. The regression results are reported in Tables 3.9A and 3.9B. The

major results are summarized as follows:

1. The coefficients of the volatility form of the HAR-RV model are consistently

positive and in most cases highly significant, see Table 3.9A. The daily lag

coefficient, βD, decreases as h increases in all markets but remains significant.

For natural gas futures, the values drop from 0.212 (5.17) to 0.167 (5.59) to 0.087

(7.08) for h equal to 1, 5 and 22. The values in parentheses are t-statistics. This

relationship also holds for the weekly lag, βW .

2. Table 3.9B tabulates the coefficients for the HAR-RV-J model where the jump

component is included as an explanatory variable. All coefficients for the total

variation remain positive and generally highly significant. The estimates of βJ

are consistently negative and significant for all values of h for all models and

markets. Thus, the impact of the lagged realized variation is reduced by the

jump component. For natural gas, the coefficient βJ in the standard deviation

form of the model is −0.097 (−2.55) for the daily horizon, and −0.073 (−2.56)

for the weekly horizon, and −0.040 (−2.20) for the monthly horizon. These

results suggest that the jump component in the price process produces transient

surges in the volatility with a strong reversal in the volatility on the subsequent

day of a jump. The coefficient remains significant at the weekly horizon but only

weakly so over the monthly period, which is consistent with the low persistency

in the jump component.

18The purposes of log transformation are: (1) the distribution of logarithmic realized volatility
is nearly normal, and (2) estimated realized volatility transformed back from logarithmic realized
volatility is always positive.
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3. The adjusted R2 values remain nearly the same or are slightly improved for

HAR-RV-J compared to HAR-RV for all three markets. The extension to in-

clude the Fourier terms for seasonality improves the adjusted R2, particularly

for h = 22. The adjusted R2 values increases by 0.05 for natural gas, 0.03 for

heating oil, and 0.04 for crude oil.

4. The results for the variance and logarithmic forms are generally consistent with

the standard deviation form. The logarithmic transformation has in most in-

stances the highest adjusted R2.

In short, I provide additional empirical evidence to support the improved perfor-

mance of the HAR-RV-J model over the HAR-RV model in energy futures markets.

The impact of the jump component on current realized volatility is transitory and

there is a strong reversal in subsequent realized volatility.

3.4.5 HAR-RV Model and Short-Run Supply and Demand

Factors

The financial press often refer to extreme weather conditions and declining inventory

levels as factors driving short-run increases in prices and volatility in energy markets.

Ates and Wang (2007) provide empirical evidence supporting these claims in the

natural gas and heating oil markets; particularly, they find that extreme cold weather

surprises and inventory surprises account for variation in the interest-rate adjusted

basis, and spot and futures price changes. In the following, I extend the HAR-RV

model with these variables to assess their explanatory power in this context.

Since natural gas and heating oil are primarily used for heating purposes, the de-

mand in these commodities is highest during the colder winter months and lower in the

summer. The production, however, remains fairly constant, which leads to increasing
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inventories in the late summer and into the fall while the stock declines throughout

the winter and early spring. Consequently, changes in the daily low temperature can

serve as a proxy for changes in the short-run demand in these commodities, and a

negative inventory surprise provides a proxy for quantifying the inelastic short-run

supply during the low inventory season.

From the theory of storage (Working (1949), Brennan (1958), and Telser (1958))

the difference between futures and cash is equal to the cost of storage minus the

marginal convenience yield of holding the commodity. The yield is negatively related

to inventory levels and thus may cause the basis to become negative during periods of

low inventories when there are sudden increases in demand due to cold weather. The

basis remains positive, however, during warmer seasons with high inventory levels

since sudden increases in demand of the commodities can be absorbed. As a result,

the basis can be applied as a proxy to explain changes in prices due to changes in the

short-run supply and demand. Ng and Pirrong (1994), for example, use the interest-

rate adjusted basis as a proxy for the demand and supply factors in their empirical

model. Since the spot markets in these commodities generally are less liquid than the

futures markets, the difference between the nearby and first deferred contracts (that

is, the spread) can be used as an alternative to the basis since the nearby contract

trades very close to the spot price. Fama and French (1988), for example, use negative

spread periods as a proxy for periods of low inventory levels. Hence, I compute the

negative interest-rate adjusted spread and examine whether it captures the short-run

supply and demand effects due to inventory and cold weather surprises.

I compute the interest-rate adjusted spread by,

spreadt = F2,t,T2 − F1,t,T1e
r(T2−T1)/365, (3.34)
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where F1,t,T1 is the nearby futures price for a contract that expires at time T1,

F2,t,T1 is the first deferred contract that expires at time T2, and r is the three-month

Treasury-bill rate. I obtain historical daily interest rate series from the Federal Re-

serve database.19 Since the negative spread is used as a proxy for low inventory

periods, I create the variable spread−
t by setting positive spreads to zero.

I construct the extreme low weather surprise variable (elwst) to measure the non-

linear relationship between the commodities and the extreme cold temperatures by

first estimating a model for daily low temperatures proposed by Campbell and Diebold

(2005). They model the conditional mean by a trend and seasonal and cyclical com-

ponents by approximating the seasonal volatility component using a Fourier series

and the cyclical volatility component using a GARCH process, see the full model

specification in Appendix A.II on page 149.20 Second, I compute the empirical cumu-

lative distribution of the residuals and find the tenth percentile, which I use as the

threshold to define the extreme cold temperature surprises. Third, I set the values

above the tenth percentile to zero.

I estimate a regression model to determine the inventory surprise variable (invst)

which is given by the residuals. The regression model is defined as,

Invt = β0 +

QI∑
q=1

(
δq sin

(
2πqT

365

)
+ ξq cos

(
2πqT

365

))
+

LI∑
l=1

βt−lInvt−l + εI,t, (3.36)

where Invt is the stock level reported by EIA on day t and Invt−l denotes lagged

19http://www.federalreserve.gov/econresdata/releases/statisticsdata.htm
20I obtain equivalent results based on a dynamic regression model,

Tmint = β0 +
Q∑

q=1

(
δq sin

(
2πqT

365

)
+ ξq cos

(
2πqT

365

))
+

L∑
l=1

βt−lTmint−l + εW,t, (3.35)

where Tmin is the daily low temperature.
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values.21

The extended version of the HAR-RV-J model is written as,

RVt,t+h =β0 + βDRVt + βW RVt−5,t + βMRVt−22,t + βJJt+

R∑
r=0

βelws,r|elwst−r+1| + βinvs,r|invst+1| + βspread−|spread−
t |+

Q∑
q=1

(
δq sin

(
2πqT

252

)
+ ξq cos

(
2πqT

252

))
+ εt,t+h.

(3.37)

where elwst+1 is the extreme low temperature surprise; invst+1 is the inventory sur-

prise; and, spread−
t denotes the interest-rate adjusted negative spread.

In the following, I refer to model (1) through (5) where (1) denotes to the HAR-

RV model; (2) is the HAR-RV-J model; (3) adds the negative interest-rate adjusted

spread to HAR-RV-J; (4) adds the weather and inventory surprise variables to the

HAR-RV-J model; and (5) is the full model defined by equation (3.37). Table 3.10

reports regression estimates of the five models for Q = 3 and R = 2. The estimates

for the weather and inventory surprises are scaled by 105. The ordinary least squares

procedure is used to estimate the parameters of the models, and Newey and West

(1987) is used to estimate consistent standard errors of the parameters to account

for autoregressive and heteroskedastic errors. The Fourier terms are included in all

models but not presented to conserve space.

The regression results on the monthly variations reported in Table 3.7 show that

the inventory increases throughout the summer and fall, and begins to decline in

December in the natural gas and heating oil markets. Furthermore, the interest-rate

adjusted spread remains negative over the same period as the inventory is declining

21Since the HAR-RV regression is estimated on a daily frequency and EIA releases its storage
reports on a weekly basis, I obtain daily estimates of the inventory by spline interpolation, which is
likely to smooth out the series.
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in both markets. These patterns are also apparent from Figure 3.4.

The following results are obtained from the estimation of the five models.

1. I discuss models (1) and (2) in Section 3.4.4 but include them as a reference.

The third model adds the negative interest-rate adjusted spread. The results

for natural gas, Panel C, show that the absolute value of the negative spread

is positive and highly significant. Together with the seasonal variations in the

spread, these findings are consistent with that volatility is higher during the

colder season when the inventories are low. These conclusions also hold for the

heating oil market. The seasonality in the basis is not as apparent in the crude

oil market, which is consistent with that this commodity is used more evenly

throughout the year.

2. The fourth model adds the low temperature and inventory surprise variables

to the HAR-RV-J model. The estimate of the absolute value of the current

weather surprise, ewlst+1, is positive for all markets and thus agrees with the

hypothesis that low temperature surprises lead to an increase in volatility. It is

weakly significant in the natural gas and heating oil markets but insignificant

in the crude oil market. The inventory surprise is positive, which supports

the hypothesis that inventory surprises generate volatility; the estimates are

insignificant, however, in all markets.

3. Interestingly, the estimate of the fifth model suggests that the lagged negative

spread may be a suitable proxy for the negative inventory periods since the

significance of the weather and inventory surprise at time t + 1 drops while the

spread estimate remains highly significant in all markets.

4. Lastly, the jump component is negative and significant in the HAR-RV-J model

(2) and remains so in all models. Notice, however, that the estimate increases
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somewhat and loses in significance as the negative interest-rate adjusted spread

is added to the model. The addition of the weather and inventory surprise

variables, however, leaves the jump estimate nearly unchanged. This suggest

that the short-run supply and demand factors as proxied by the spread explain

some of the jump component during the colder winter season.

3.5 Summary and Conclusions

This paper applies a nonparametric method based on realized and bipower varia-

tions calculated from intraday high-frequency data to identify jumps in daily futures

prices in three energy futures contracts. The futures contracts are crude oil, heating

oil and natural gas, which are traded on the NYMEX. The sample period of the

high-frequency intraday data spans from January 1990 to January 2008. Alternative

methods such as staggered returns and optimal sampling frequency methods are used

to remove the effects of microstructure noise, which biases the tests against detecting

jumps. I obtain several interesting empirical results:

First, for the whole sample period, I find that the means of annualized volatility

for natural gas futures, crude oil futures and heating oil futures are 39.4, 26.0 and 26.5

percent, respectively. Thus, natural gas is the most volatile among these three price

series. There are upward trends in volatility for all series during the sample period;

for natural gas the increase is primarily due to the jump component while the smooth

component dominates the increase in the crude oil and heating oil markets. There are

significant jumps (price spikes) in the price series. The number of significant jump

days per year ranges from 5 to 34 for natural gas, 5 to 28 for heating oil and 4 to

20 days for crude oil. I find that days with large volatility are often associated with

large jumps. The relative contribution of the jump component to the total variance
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on days with jumps ranges from 23% to 87% for natural gas futures, 23% to 74%

for heating oil futures and 23% to 64% for crude oil futures. In addition, the results

suggest that jump dynamics are much less persistent than continuous sample path

dynamics.

Second, I document that the total realized volatility and smooth sample compo-

nent for natural gas and heating oil are higher in the winter months than during the

summer months. These results are consistent with the general hypothesis that when

short run demand for natural gas and heating oil are suddenly shifted higher due

to extreme cold weather during the winter, the short run supply is inelastic because

of low inventories at this time of the year. These two factors are the ones largely

responsible for generating volatility in the winter months.

Third, in an intraday analysis, I document that the volatility is higher during

inventory news announcement periods and that many jumps are associated with these

announcement dates. Furthermore, it is interesting to observe that for all markets,

the volatility returns to pre-announcement levels faster when there is a jump in the

futures price changes than when there is no jump. The volatility remains elevated

for about thirty minutes or shorter on days with a jump at the announcement and

longer otherwise.

Fourth, I find that including the jump component in the HAR-RV model im-

proves the performance of the realized volatility forecasting model. The coefficient

of the jump component attains the largest value at the daily lag and decreases for

corresponding weekly and monthly regression estimates. Furthermore, most of the

coefficients of jumps are negative and significant. The above two results indicate that

the jump component in the price process produces transitory surges in volatility and

that there is a strong reversal in the volatility on the subsequent days of a jump.
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Fifth, cold weather and inventory surprises lead to an increase in volatility in nat-

ural gas and heating oil markets. Furthermore, the lagged interested-rate adjusted

spread may be a suitable proxy for the negative inventory periods since the signifi-

cance of the weather and inventory variables drops while the spread remains highly

significant when including all three variables. The spread also reduces the significance

of the jump component slightly.

The empirical results have several important implications for market participants

in energy futures markets. For option traders, option pricing models with jumps are

preferred over the Black option model in these three energy futures contracts during

the winter months. Market participants may prefer to employ an optimal hedging

ratio with jumps to hedge their exposure to energy price risk. Finally, market risk

managers should be aware that the shapes of the return distributions of energy futures

prices will change over time due to the presence of significant jumps in energy futures

prices. Feng and Brooks (2002) and Sullivan et al. (2002) for example discuss risk

management in the natural gas futures market but do not address jumps.
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3.6 Tables

Table 3.1: Daily summary statistics for futures contracts on crude oil (Panel A), heating oil (Panel
B) and natural gas (Panel C) for realized variance, RVt (equation (3.2)) and jump component,

Jt (equation (3.21)). Statistics are also computed in standard deviation form, RV1/2
t (J1/2

t ), and
logarithmic form, log(RVt) (log(Jt + 1)). ADF denotes the augmented Dickey-Fuller statistic. Min
and Max are minimum and maximum daily values. JB is the Jarque-Bera test statistic for normality.
LB10 denotes the Ljung-Box tenth-order serial correlation test statistic. Kurtosis denotes excess
kurtosis. The realized variations are computed based on five-minute intraday returns and staggered
returns with one lag offset.

RVt RV
1/2
t log(RVt) Jt J

1/2
t log(Jt + 1)

Panel A: Crude Oil

ADF1 −16.04 −6.75 −5.67 −33.99 −19.34 −33.96
Mean 0.0003 0.0164 −8.3774 0.0000 0.0033 0.0000
Std Dev 0.0007 0.0072 0.7718 0.0003 0.0045 0.0003
Skewness 44.30 4.87 0.04 59.82 7.34 59.71
Kurtosis 2534.14 88.62 1.06 3835.89 175.34 3825.63
Min 0.0000 0.0030 −11.6462 0.0000 0.0000 0.0000
Max 0.0381 0.1953 −3.2664 0.0188 0.1370 0.0186
JB 1.21E + 09 1.49E + 06 2.13E + 02 2.77E + 09 5.82E + 06 2.76E + 09
LB10 968 10926 16947 91 283 93

Panel B: Heating Oil

ADF1 −15.35 −6.80 −4.95 −27.02 −23.85 −27.00
Mean 0.0003 0.0167 −8.3128 0.0000 0.0038 0.0000
Std Dev 0.0004 0.0064 0.6897 0.0002 0.0044 0.0002
Skewness 27.81 3.24 0.17 50.19 3.83 50.07
Kurtosis 1286.59 39.97 0.83 2998.58 56.75 2988.21
Min 0.0000 0.0034 −11.3906 0.0000 0.0000 0.0000
Max 0.0207 0.1439 −3.8779 0.0103 0.1017 0.0103
JB 3.08E + 08 3.04E + 05 1.50E + 02 1.67E + 09 6.08E + 05 1.66E + 09
LB10 1873 9263 13033 137 193 138

Panel C: Natural Gas

ADF1 −10.91 −8.63 −7.53 −21.34 −13.62 −21.33
Mean 0.0007 0.0248 −7.5419 0.0001 0.0061 0.0001
Std Dev 0.0008 0.0105 0.7556 0.0003 0.0075 0.0003
Skewness 6.73 2.16 0.22 11.83 2.74 11.80
Kurtosis 81.85 10.01 0.66 207.69 14.62 206.60
Min 0.0000 0.0038 −11.1209 0.0000 0.0000 0.0000
Max 0.0165 0.1286 −4.1015 0.0073 0.0852 0.0072
JB 1.06E + 06 1.82E + 04 9.60E + 01 6.70E + 06 3.74E + 04 6.63E + 06
LB10 2912 6184 8503 194 231 194

Note: 1. H0: Unit root. The lag orders are determined by Schwartz criterion. Only intercepts are

included in the level series. The critical value for the ADF test for the 1% (5%) significance level

is −3.4393 (−2.8654).
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Table 3.2: Yearly estimates for crude oil (Panel A), heating oil (Panel B) and natural gas (Panel
C). No. Days denotes the number of trading days, No. Jumps denotes the number of days with
jumps, and Prop denotes the proportion of days with jumps. Min, Mean, Median and Max are daily
statistics of the relative contribution of the jump component to the total realized variance (equation
(3.13)) computed for days with a significant jump component for α = 0.99.

RJ on Jump Days (%)
No. Days No. Jumps Prop Min Mean Median Max

Panel A: Crude Oil
1993 250 13 0.052 22.61 30.01 28.92 40.14
1994 250 17 0.068 26.05 35.28 33.09 45.92
1995 250 10 0.040 22.58 37.07 34.74 62.32
1996 251 13 0.052 25.63 34.40 31.33 62.08
1997 251 11 0.044 23.75 33.78 31.55 47.48
1998 251 8 0.032 25.26 29.78 29.47 38.68
1999 250 9 0.036 22.92 29.94 28.61 39.73
2000 249 7 0.028 23.32 30.93 25.65 44.61
2001 246 4 0.016 26.84 31.49 31.18 36.76
2002 250 5 0.020 26.48 32.34 33.55 38.89
2003 250 15 0.060 30.52 41.21 37.17 58.77
2004 249 9 0.036 28.51 36.48 36.02 47.22
2005 251 12 0.048 24.97 32.97 30.17 44.20
2006 250 6 0.024 28.26 38.03 36.23 48.73
2007 258 20 0.078 22.79 32.47 29.40 64.18

Panel B: Heating Oil
1993 236 14 0.059 25.39 34.83 30.48 57.86
1994 249 18 0.072 25.23 36.20 32.16 58.79
1995 237 12 0.051 24.37 32.25 31.96 43.12
1996 251 10 0.040 27.91 37.74 34.30 56.65
1997 248 16 0.065 24.16 34.77 30.25 52.06
1998 251 17 0.068 23.06 33.63 31.24 63.76
1999 248 7 0.028 26.41 35.31 37.65 43.31
2000 247 11 0.045 23.09 32.29 35.23 42.80
2001 246 14 0.057 23.06 36.40 36.89 53.63
2002 249 5 0.020 27.58 31.88 30.15 38.25
2003 250 18 0.072 27.02 39.07 37.00 61.52
2004 249 17 0.068 25.90 39.15 35.41 64.98
2005 251 20 0.080 28.09 42.37 41.00 73.56
2006 251 19 0.076 26.50 37.74 37.67 58.43
2007 258 28 0.109 22.83 33.89 31.30 65.06
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Table 3.2 continue
RJ on Jump Days (%)

No. Days No. Jumps Prop Min Mean Median Max
Panel C: Natural Gas

1993 250 5 0.020 31.72 46.17 46.58 60.52
1994 248 11 0.044 25.18 34.49 34.53 54.62
1995 250 8 0.032 26.42 39.34 33.76 75.23
1996 248 15 0.060 26.62 37.22 36.43 61.08
1997 213 8 0.038 28.84 38.65 33.20 73.60
1998 240 11 0.046 26.47 42.90 37.51 78.50
1999 232 12 0.052 25.32 33.53 32.12 55.07
2000 235 17 0.072 28.23 48.46 48.03 87.47
2001 236 34 0.144 23.56 45.76 44.06 85.92
2002 245 17 0.069 28.12 46.05 43.43 72.97
2003 249 25 0.100 25.89 38.51 34.75 77.15
2004 249 26 0.104 26.45 42.05 37.26 69.19
2005 251 19 0.076 26.50 42.05 40.37 68.96
2006 250 23 0.092 25.47 41.88 42.09 62.96
2007 258 14 0.054 23.39 33.81 32.18 52.13
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Table 3.3: Regression analysis is used to test for trends in daily time series of realized volatility,
smooth and jump components, and relative contribution in crude oil, heating oil and natural gas.
OLS is used to estimate the regression model,

Vt = β0 + β1Trendt + εt,

where Vt denotes the realized variations and ratio, respectively, and Trendt denotes the trend. The
significance level α to test for jumps is 0.99. The dependent variables are scaled by 106. t-statistics
are reported in parentheses.

RV
1/2
t C

1/2
t,α J

1/2
t,α RJ

1/2
t

Panel A: Crude Oil
Intercept 16356.0 16182.0 521.3 38141.0

(152.79) (159.99) (10.56) (18.18)
Trend 0.383 0.395 −0.036 −6.207

(4.61) (5.04) (−0.93) (−3.82)
R2 Adj 0.00 0.01 0.00 0.00
F Stat 21.26 25.40 0.87 14.56

Panel B: Heating Oil
Intercept 16646.0 16397.0 720.9 56079.0

(173.84) (179.68) (14.14) (25.13)
Trend 0.485 0.467 0.048 −3.057

(6.44) (6.52) (1.20) (−1.74)
R2 Adj 0.01 0.01 0.00 0.00
F Stat 41.51 42.47 1.43 3.04

Panel C: Natural Gas
Intercept 24830.0 24288.0 1370.0 67217.0

(143.45) (148.02) (13.82) (24.98)
Trend 0.326 0.160 0.418 10.307

(1.98) (1.03) (4.43) (4.03)
R2 Adj 0.00 0.00 0.01 0.00
F Stat 3.91 1.05 19.65 16.20
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Table 3.4: Regression analysis is used to test for trends in the monthly intensity of jumps and
volatility due to significant jumps, J

1/2
t,α=0.99, in crude oil, heating oil and natural gas. OLS is used

to estimate the regression model,

Vt = β0 + β1Trendt + εt,

where Vt denotes the intensity and volatility, respectively, and Trendt denotes the trend. The
intensity is estimated by the number of jumps over the total number of trading days per month.
The volatility is estimated by the mean of the daily jump volatility per month. t-statistics are
reported in parentheses.

Jump intensity Jump volatility
Panel A: Crude Oil

Intercept 0.04104 0.00050
(15.30) (9.48)

Trend −0.00006 −0.00000
(−1.31) (−1.27)

R2 Adj 0.01 0.01
F Stat 1.72 1.62

Panel B: Heating Oil
Intercept 0.05668 0.00069

(16.90) (12.94)
Trend 0.00008 0.00000

(1.54) (1.09)
R2 Adj 0.01 0.01
F Stat 2.37 1.18

Panel C: Natural Gas
Intercept 0.06181 0.00129

(16.50) (12.49)
Trend 0.00036 0.00001

(5.05) (4.41)
R2 Adj 0.13 0.10
F Stat 25.55 19.42
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Table 3.5: Summary statistics for significant jumps, J
1/2
t,α (equation (3.22)), for futures contracts

on crude oil (Panel A), heating oil (Panel B) and natural gas (Panel C). Jumps are identified by
the Zt statistic (equation (3.12)) for α equal to 0.500, 0.950, 0.990, 0.999, 0.9999. No. Jumps denotes
the number of jumps in the complete sample. Proportion denotes the ratio of days with a jump.
The sample consists of 4, 510 trading days for crude oil, 4, 449 for heating oil, and 3, 676 for natural
gas. Mean and Std Dev are the mean and standard deviation of the daily jump component, J1/2

t,α .

LB10, J
1/2
t,α denotes the Ljung-Box tenth-order autocorrelation test statistic. The realized variations

are computed based on five-minute intraday returns and staggered returns with one lag offset.

α 0.500 0.950 0.990 0.999 0.9999
Panel A: Crude Oil

No. Jumps 1993 440 197 80 37
Proportion 0.44 0.10 0.04 0.02 0.01

Mean (J
1/2
t,α ) 0.0061 0.0100 0.0121 0.0152 0.0144

Std Dev 0.0051 0.0082 0.0109 0.0159 0.0079

LB10, J
1/2
t,α 75 71 59 58 0

Panel B: Heating Oil
No. Jumps 2161 502 272 115 66
Proportion 0.49 0.11 0.06 0.03 0.01

Mean (J
1/2
t,α ) 0.0063 0.0103 0.0121 0.0144 0.0157

Std Dev 0.0046 0.0064 0.0077 0.0096 0.0116

LB10, J
1/2
t,α 124 101 105 41 0

Panel C: Natural Gas
No. Jumps 1816 470 246 121 75
Proportion 0.49 0.13 0.07 0.03 0.02

Mean (J
1/2
t,α ) 0.0101 0.0171 0.0207 0.0263 0.0297

Std Dev 0.0079 0.0103 0.0120 0.0137 0.0135

LB10, J
1/2
t,α 179 241 216 222 38
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Table 3.6: Summary statistics for jump returns for days with significant jumps (α = 0.99) for
crude oil, heating oil and natural gas. N denotes the number of jumps. The largest (in magnitude)
five-minute intraday return per day with a significant jump is identified as the jump return. The
statistics are computed for positive and negative returns, respectively.

Contract N Mean Median StdDev Max Min
Positive Jumps

Crude Oil 89 0.012 0.009 0.015 0.137 0.003
Heating Oil 101 0.012 0.010 0.010 0.102 0.005
Natural Gas 89 0.021 0.016 0.014 0.083 0.007

Negative Jumps
Crude Oil 107 0.012 0.011 0.005 0.031 0.003
Heating Oil 165 0.012 0.011 0.005 0.033 0.004
Natural Gas 153 0.020 0.018 0.011 0.067 0.006
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Table 3.7: Regression analysis is used to analyze seasonal (monthly) variations. The dependent

variables are realized volatility, RV1/2
t (equation (3.2)), volatility due to the smooth component,

C
1/2
t,α=0.99 (equation (3.23)), volatility due to the significant jump component, J

1/2
t,α=0.99 (equation

(3.22)), relative contribution of the jump component, RJt (equation (3.13)), inventory level, tem-
perature, and spread (equation (3.34)). OLS is used to estimate the regression model,

Vt = β0 +
12∑

i=1,i6=7

βiDi + εt,

where Vt denotes the dependent variable, and Di is a dummy variable set to one for the ith month and
zero otherwise. The intercept denotes the month of July which is used as the basis for comparison.

RV
1/2
t C

1/2
t J

1/2
t RJt Stock Temp Spread

Panel A: Crude Oil
Intercept 0.0146 0.0144 0.0005 0.0367 321164.0 68.3 −0.095

(39.66) (41.72) (3.19) (5.03) (62.04) (115.18) (−2.94)
D1 0.0047 0.0045 0.0003 −0.0028 −8894.9 −41.2 −0.178

(9.05) (9.22) (1.19) (−0.27) (−1.22) (−49.13) (−3.83)
D2 0.0021 0.0023 −0.0002 −0.0119 −6516.7 −40.7 −0.146

(4.01) (4.55) (−0.99) (−1.13) (−0.89) (−48.47) (−3.10)
D3 0.0022 0.0023 −0.0001 0.0018 4208.4 −34.6 −0.021

(4.37) (4.80) (−0.60) (0.17) (0.57) (−40.68) (−0.46)
D4 0.0019 0.0018 0.0002 0.0224 9889.4 −25.2 0.068

(3.70) (3.73) (0.81) (2.16) (1.35) (−29.62) (1.47)
D5 0.0008 0.0008 0.0000 0.0074 10031.0 −15.8 0.140

(1.55) (1.60) (0.18) (0.72) (1.37) (−18.87) (3.05)
D6 0.0010 0.0010 0.0001 0.0004 4222.6 −5.6 0.060

(1.91) (1.97) (0.28) (0.04) (0.58) (−6.69) (1.32)
D8 0.0007 0.0007 −0.0001 0.0063 −5302.2 −0.3 −0.076

(1.40) (1.53) (−0.23) (0.62) (−0.71) (−0.33) (−1.68)
D9 0.0011 0.0008 −0.0003 −0.0022 −12609.0 −7.2 −0.146

(2.13) (1.62) (−1.22) (−0.21) (−1.70) (−8.54) (−3.14)
D10 0.0014 0.0014 −0.0002 −0.0058 −4690.3 −18.6 −0.133

(2.63) (2.88) (−0.83) (−0.57) (−0.63) (−22.18) (−2.37)
D11 0.0022 0.0022 −0.0001 0.0065 −5650.0 −27.7 −0.094

(4.10) (4.46) (−0.46) (0.62) (−0.76) (−32.97) (−1.56)
D12 0.0031 0.0031 0.0002 −0.0043 −16178.0 −36.1 −0.021

(5.92) (6.29) (0.63) (−0.42) (−2.18) (−42.97) (−0.45)
R2 Adj 0.03 0.03 0.00 0.00 0.12 0.97 0.02
F Stat 11.68 12.85 1.12 1.37 2.58 668.92 8.89
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Table 3.7 continue

RV
1/2
t C

1/2
t J

1/2
t RJt Stock Temp Spread

Panel B: Heating Oil
Intercept 0.0145 0.0143 0.0006 0.0417 126390.0 68.3 0.010

(45.11) (46.72) (3.47) (5.35) (51.64) (115.18) (10.46)
D1 0.0057 0.0056 0.0007 0.0220 −1516.2 −41.2 −0.025

(12.54) (12.70) (2.82) (1.98) (−0.44) (−49.13) (−18.84)
D2 0.0040 0.0041 −0.0001 0.0088 −11433.0 −40.7 −0.033

(8.65) (9.31) (−0.39) (0.78) (−3.30) (−48.47) (−24.08)
D3 0.0040 0.0040 0.0003 0.0093 −19706.0 −34.6 −0.026

(8.90) (9.37) (1.35) (0.85) (−5.69) (−40.68) (−19.58)
D4 0.0023 0.0022 0.0004 0.0240 −19891.0 −25.2 −0.018

(5.10) (5.13) (1.61) (2.17) (−5.75) (−29.62) (−13.66)
D5 0.0010 0.0010 −0.0001 0.0137 −13826.0 −15.8 −0.009

(2.13) (2.37) (−0.32) (1.24) (−3.99) (−18.87) (−7.00)
D6 0.0006 0.0006 0.0002 0.0177 −8764.6 −5.6 −0.003

(1.40) (1.44) (0.64) (1.61) (−2.53) (−6.69) (−2.57)
D8 0.0011 0.0012 −0.0001 0.0265 4410.4 −0.3 −0.001

(2.40) (2.72) (−0.30) (2.44) (1.26) (−0.33) (−0.49)
D9 0.0014 0.0011 0.0000 0.0023 6823.5 −7.2 −0.001

(3.01) (2.63) (0.09) (0.21) (1.94) (−8.54) (−1.09)
D10 0.0010 0.0010 0.0001 0.0121 6414.7 −18.6 −0.000

(2.29) (2.45) (0.30) (1.12) (1.83) (−22.18) (−0.19)
D11 0.0016 0.0016 −0.0001 0.0257 10570.0 −27.7 −0.017

(3.38) (3.76) (−0.32) (2.29) (3.01) (−32.97) (−7.11)
D12 0.0029 0.0030 −0.0000 0.0119 9853.3 −36.1 −0.013

(6.45) (6.98) (−0.20) (1.08) (2.81) (−42.97) (−10.07)
R2 Adj 0.06 0.07 0.00 0.00 0.52 0.97 0.28
F Stat 28.01 30.01 1.99 1.27 20.56 668.92 140.40

Panel C: Natural Gas
Intercept 0.0224 0.0217 0.0016 0.0732 2218.7 64.2 0.032

(38.83) (39.88) (4.74) (7.78) (56.85) (74.77) (2.64)
D1 0.0071 0.0075 −0.0004 −0.0085 −37.2 −45.4 −0.118

(8.91) (9.82) (−0.91) (−0.65) (−0.67) (−37.44) (−6.90)
D2 0.0048 0.0048 0.0003 0.0004 −626.9 −42.8 −0.114

(5.82) (6.12) (0.50) (0.03) (−11.18) (−35.29) (−6.46)
D3 0.0007 0.0011 −0.0008 −0.0242 −981.5 −34.8 −0.020

(0.90) (1.49) (−1.54) (−1.83) (−17.92) (−28.27) (−1.16)
D4 −0.0016 −0.0013 −0.0007 −0.0025 −1005.9 −24.9 0.010

(−1.98) (−1.71) (−1.38) (−0.18) (−18.15) (−20.25) (0.57)
D5 −0.0021 −0.0019 −0.0006 −0.0084 −740.4 −15.6 0.022

(−2.65) (−2.55) (−1.20) (−0.64) (−13.47) (−12.82) (1.31)
D6 −0.0005 −0.0003 −0.0004 0.0008 −342.2 −5.4 0.020

(−0.59) (−0.33) (−0.90) (0.06) (−6.20) (−4.49) (1.15)
D8 0.0030 0.0025 0.0007 0.0038 259.5 −0.9 0.069

(3.73) (3.35) (1.36) (0.29) (4.74) (−0.78) (4.09)
D9 0.0039 0.0043 −0.0007 −0.0140 559.2 −9.6 0.342

(4.75) (5.54) (−1.50) (−1.05) (10.09) (−7.87) (19.73)
D10 0.0032 0.0034 −0.0004 −0.0103 822.8 −20.6 0.327

(4.02) (4.46) (−0.80) (−0.79) (14.67) (−16.94) (18.17)
D11 0.0024 0.0026 −0.0003 −0.0101 880.1 −31.2 −0.112

(2.98) (3.36) (−0.61) (−0.75) (15.62) (−25.72) (−3.45)
D12 0.0080 0.0079 0.0001 0.0023 536.8 −41.3 −0.094

(9.84) (10.29) (0.27) (0.17) (9.69) (−34.06) (−5.43)
R2 Adj 0.09 0.10 0.01 0.00 0.81 0.95 0.32
F Stat 32.46 35.20 1.66 0.78 297.89 370.35 144.12
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Table 3.8A: Regression analysis is used to test for differences in five-minute intraday volatilities
on Wednesdays from May 2003 to December 2007 for crude oil and heating oil. During this period,
the petroleum report was released on Wednesdays at 10:30. OLS is used to estimate the regression
model,

Volt,k = β0 +
∑
i 6=l

βiDi + εt,k,

where Volt,k denotes the intraday volatility for the kth five-minute intraday interval, Di is a dummy
variable set to one for the ith five-minute interval and zero otherwise, and l denotes the five-minute
interval 10:10 - 10:15 which is used as a basis for comparison. The intraday volatility is given by
the absolute value of the difference between the logarithm of closing and opening prices per interval.
The reported results are confined to the trading time 10:00 - 11:35. The interval 10:30 - 10:35 matches
the announcement time of the petroleum report. The columns present estimates for announcement
days with and without significant jumps, respectively. The significance level α to test for jumps is
0.99. t-statistics are reported in parentheses.

Crude Oil Heating Oil
Jump No Jump Jump No Jump

Intercept 0.0015 0.0014 0.0009 0.0011
(4.23) (12.54) (1.15) (4.23)

10:00 - 10:05 −0.0004 −0.0003 −0.0003 0.0000
(−0.49) (−1.20) (−0.29) (0.08)

10:05 - 10:10 0.0000 −0.0001 0.0009 0.0006
(0.09) (−0.82) (1.13) (2.09)

10:15 - 10:20 −0.0006 −0.0002 0.0004 0.0006
(−1.28) (−1.19) (0.44) (2.04)

10:20 - 10:25 −0.0005 −0.0001 0.0003 0.0004
(−0.97) (−0.65) (0.41) (1.37)

10:25 - 10:30 0.0000 0.0003 0.0008 0.0009
(0.10) (1.86) (0.94) (3.10)

10:30 - 10:35 0.0116 0.0040 0.0139 0.0042
(23.62) (24.73) (17.13) (15.06)

10:35 - 10:40 0.0022 0.0014 0.0031 0.0019
(4.38) (8.93) (3.77) (6.90)

10:40 - 10:45 0.0005 0.0016 0.0011 0.0020
(1.11) (10.18) (1.36) (7.30)

10:45 - 10:50 0.0010 0.0014 0.0011 0.0021
(2.15) (8.59) (1.33) (7.44)

10:50 - 10:55 0.0005 0.0010 0.0014 0.0014
(1.07) (6.49) (1.75) (5.05)

10:55 - 11:00 0.0015 0.0010 0.0018 0.0015
(3.08) (6.27) (2.28) (5.26)

11:00 - 11:05 0.0008 0.0009 0.0020 0.0010
(1.73) (5.33) (2.46) (3.62)

11:05 - 11:10 0.0003 0.0007 0.0012 0.0012
(0.66) (4.41) (1.46) (4.22)

11:10 - 11:15 0.0002 0.0004 0.0009 0.0009
(0.44) (2.45) (1.11) (3.30)

11:15 - 11:20 0.0009 0.0006 0.0016 0.0008
(1.90) (3.73) (2.03) (3.04)

11:20 - 11:25 0.0004 0.0005 0.0011 0.0009
(0.76) (3.19) (1.38) (3.26)

11:25 - 11:30 0.0003 0.0005 0.0008 0.0008
(0.68) (3.15) (0.97) (3.00)

11:30 - 11:35 0.0003 0.0004 0.0013 0.0007
(0.69) (2.26) (1.55) (2.48)

R2 Adj 0.46 0.13 0.47 0.12
F Stat 20.11 30.26 28.96 24.42
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Table 3.8B: Regression analysis is used to test for differences in five-minute intraday volatilities
for natural gas on Wednesdays from March 2000 to May 2002 when the storage reports was released
around 14:00 (Panel A) and on Thursdays from June 2002 to December 2007 when the report was
released around 10:30 (Panel B). The reported results are limited to the trading time 12:55 - 14:30
on Wednesdays and 10:00 - 12:10 on Thursdays. The five-minute interval 13:05 - 13:10 is used as the
basis on Wednesdays and 10:05 - 10:10 on Thursdays. The intervals 14:00 - 14:05 and 10:30 - 10:35
match the announcement time of the natural gas storage report on Wednesdays and Thursdays,
respectively. The columns present estimates for announcement days with and without significant
jumps, respectively. The significance level α to test for jumps is 0.99. t-statistics are reported in
parentheses.

Jump No Jump
Panel A: Wednesday

Intercept 0.0014 0.0024
(2.15) (5.78)

12:55 - 13:00 0.0007 −0.0006
(0.76) (−0.95)

13:00 - 13:05 −0.0001 −0.0004
(−0.06) (−0.67)

13:10 - 13:15 −0.0002 0.0000
(−0.18) (0.02)

13:15 - 13:20 0.0001 −0.0005
(0.10) (−0.82)

13:20 - 13:25 −0.0001 −0.0003
(−0.07) (−0.46)

13:25 - 13:30 0.0002 −0.0004
(0.22) (−0.67)

13:30 - 13:35 −0.0002 −0.0005
(−0.20) (−0.79)

13:35 - 13:40 −0.0001 −0.0006
(−0.08) (−1.08)

13:40 - 13:45 0.0004 −0.0005
(0.40) (−0.89)

13:45 - 13:50 0.0003 0.0000
(0.34) (0.00)

13:50 - 13:55 0.0002 0.0002
(0.25) (0.44)

13:55 - 14:00 0.0019 0.0015
(2.16) (2.64)

14:00 - 14:05 0.0258 0.0096
(28.77) (16.76)

14:05 - 14:10 0.0059 0.0039
(6.48) (6.74)

14:10 - 14:15 0.0042 0.0044
(4.60) (7.61)

14:15 - 14:20 0.0035 0.0034
(3.91) (5.94)

14:20 - 14:25 0.0027 0.0036
(2.97) (6.30)

14:25 - 14:30 0.0044 0.0027
(4.87) (4.69)

R2 Adj 0.47 0.20
F Stat 29.31 17.33
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Table 3.8B continue
Jump No Jump

Panel B: Thursday
Intercept 0.0023 0.0022

(5.58) (11.70)
9:55 - 10:00 −0.0017 −0.0008

(−1.31) (−1.86)
10:00 - 10:05 −0.0001 −0.0008

(−0.09) (−1.86)
10:10 - 10:15 −0.0003 −0.0003

(−0.59) (−1.31)
10:15 - 10:20 −0.0000 −0.0003

(−0.01) (−1.14)
10:20 - 10:25 −0.0007 −0.0003

(−1.13) (−1.02)
10:25 - 10:30 −0.0001 0.0001

(−0.23) (0.46)
10:30 - 10:35 0.0227 0.0062

(38.60) (24.07)
10:35 - 10:40 0.0033 0.0034

(5.63) (12.96)
10:40 - 10:45 0.0013 0.0027

(2.19) (10.41)
10:45 - 10:50 0.0014 0.0018

(2.31) (7.03)
10:50 - 10:55 0.0019 0.0019

(3.20) (7.36)
10:55 - 11:00 0.0016 0.0010

(2.81) (3.99)
11:00 - 11:05 0.0013 0.0013

(2.25) (4.86)
11:05 - 11:10 0.0008 0.0010

(1.30) (3.85)
11:10 - 11:15 0.0008 0.0013

(1.32) (4.96)
11:15 - 11:20 0.0002 0.0009

(0.28) (3.58)
11:20 - 11:25 0.0005 0.0008

(0.85) (2.96)
11:25 - 11:30 0.0006 0.0010

(0.95) (3.82)
11:30 - 11:35 0.0007 0.0007

(1.19) (2.65)
11:35 - 11:40 0.0009 0.0007

(1.53) (2.80)
11:40 - 11:45 0.0005 0.0005

(0.83) (2.02)
11:45 - 11:50 0.0005 0.0007

(0.78) (2.71)
11:50 - 11:55 0.0002 0.0004

(0.38) (1.37)
11:55 - 12:00 0.0003 0.0004

(0.49) (1.63)
12:00 - 12:05 0.0000 0.0006

(0.05) (2.47)
12:05 - 12:10 −0.0006 0.0004

(−1.06) (1.54)
R2 Adj 0.48 0.13
F Stat 51.94 30.53
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Table 3.9A: The table reports OLS estimates of the HAR-RV model (equation (3.30) on page 111)
for daily (h = 1), weekly (h = 5), and monthly (h = 22) realized variance, RVt, for futures contracts
on crude oil (Panel A), heating oil (Panel B) and natural gas (Panel C). Sine and cosine terms are
added to capture seasonal variation. The model is also computed for two nonlinear forms of the
realized variation: standard deviation form, RV1/2

t , and logarithmic form, log(RVt). The t-statistics
in parentheses are computed based on Newey-West/Bartlett adjusted standard errors (Newey and
West (1987)). The realized variations are computed based on five-minute intraday returns and
staggered returns with one lag offset.

RVt,t+h (RVt,t+h)1/2 log(RVt,t+h)
h 1 5 22 1 5 22 1 5 22

Panel A: Crude Oil
β0 0.000 0.000 0.000 0.003 0.004 0.007 −1.460 −1.869 −3.018

(4.79) (4.49) (4.35) (6.27) (6.15) (5.90) (−9.00) (−8.32) (−7.65)
βD 0.232 0.162 0.061 0.234 0.184 0.075 0.228 0.182 0.073

(5.11) (5.65) (4.37) (7.15) (8.47) (6.73) (7.86) (9.87) (6.84)
βW 0.356 0.226 0.159 0.352 0.215 0.178 0.364 0.218 0.188

(7.59) (3.62) (4.12) (6.83) (3.33) (4.37) (8.31) (4.06) (4.90)
βM 0.189 0.295 0.275 0.211 0.339 0.327 0.246 0.379 0.376

(3.02) (3.44) (3.55) (4.70) (4.75) (4.43) (7.07) (6.70) (5.56)

AdjR2 0.35 0.47 0.50 0.45 0.57 0.59 0.52 0.64 0.66
F 200.63 332.03 374.10 302.86 495.07 537.51 400.11 671.00 703.42

Panel B: Heating Oil
β0 0.000 0.000 0.000 0.003 0.004 0.007 −1.430 −1.818 −3.013

(3.88) (3.94) (4.13) (5.54) (5.79) (6.21) (−7.40) (−6.95) (−7.32)
βD 0.246 0.151 0.059 0.211 0.146 0.066 0.189 0.132 0.062

(3.96) (4.75) (5.55) (5.21) (5.78) (6.27) (6.50) (7.48) (6.45)
βW 0.277 0.171 0.171 0.306 0.217 0.207 0.331 0.247 0.211

(3.41) (3.01) (3.48) (5.82) (4.78) (5.14) (8.40) (6.62) (6.04)
βM 0.292 0.407 0.330 0.303 0.400 0.335 0.317 0.402 0.356

(6.23) (7.47) (5.05) (7.67) (7.90) (5.69) (8.36) (8.47) (6.36)

AdjR2 0.37 0.50 0.56 0.44 0.59 0.62 0.47 0.64 0.66
F 205.75 360.61 447.11 275.43 517.19 586.81 319.99 633.94 696.84

Panel C: Natural Gas
β0 0.000 0.000 0.000 0.003 0.003 0.007 −1.355 −1.889 −3.787

(0.16) (0.23) (0.38) (3.53) (2.90) (3.20) (−9.18) (−8.98) (−9.95)
βD 0.221 0.140 0.055 0.212 0.167 0.087 0.191 0.159 0.096

(2.48) (2.65) (3.46) (5.17) (5.59) (7.08) (6.80) (10.67) (9.40)
βW 0.360 0.262 0.229 0.416 0.350 0.331 0.470 0.400 0.407

(4.94) (3.03) (3.08) (11.57) (7.75) (5.86) (12.37) (11.08) (7.88)
βM 0.172 0.244 0.111 0.165 0.214 0.075 0.184 0.217 0.040

(3.74) (6.00) (1.98) (4.55) (5.69) (1.22) (5.66) (5.31) (0.61)

AdjR2 0.27 0.37 0.33 0.40 0.51 0.42 0.47 0.58 0.47
F 127.12 201.03 165.47 225.93 348.03 240.82 298.83 474.63 306.11
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Table 3.9B: The table reports OLS estimates of the HAR-RV-J model (equation (3.31) on page
111) for daily (h = 1), weekly (h = 5), and monthly (h = 22) realized variance, RVt, for futures
contracts on crude oil (Panel A), heating oil (Panel B) and natural gas (Panel C). Sine and cosine
terms are added to capture seasonal variation. The model is also estimated for two nonlinear forms
of the realized variation: standard deviation form, RV1/2

t , and logarithmic form, log(RVt). The
t-statistics in parentheses are computed based on Newey-West/Bartlett adjusted standard errors
(Newey and West (1987)). The realized variations are computed based on five-minute intraday
returns and staggered returns with one lag offset.

RVt,t+h (RVt,t+h)1/2 log(RVt,t+h)
h 1 5 22 1 5 22 1 5 22

Panel A: Crude Oil
β0 0.000 0.000 0.000 0.003 0.004 0.006 −1.067 −1.333 −2.116

(3.24) (3.96) (4.66) (5.74) (6.54) (6.80) (−7.95) (−6.65) (−5.46)
βD 0.579 0.373 0.206 0.343 0.248 0.121 0.300 0.222 0.099

(5.85) (5.16) (4.28) (7.15) (7.70) (5.27) (8.01) (9.99) (7.33)
βW 0.054 0.097 0.035 0.202 0.140 0.132 0.311 0.189 0.206

(1.10) (1.96) (0.98) (2.93) (2.42) (2.88) (7.16) (4.19) (6.40)
βM 0.296 0.323 0.373 0.286 0.413 0.443 0.268 0.428 0.432

(4.38) (3.27) (3.73) (5.96) (6.04) (6.02) (9.13) (8.79) (7.07)
βJ −1.161 −0.779 −0.426 −0.160 −0.140 −0.071 −93.090 −76.571 −47.977

(−5.77) (−5.07) (−4.45) (−2.11) (−1.90) (−1.79) (−6.87) (−6.82) (−3.83)

AdjR2 0.11 0.28 0.43 0.46 0.56 0.61 0.61 0.70 0.71
F 51.51 160.07 297.55 338.09 501.39 614.83 624.62 946.64 974.48

Panel B: Heating Oil
β0 0.000 0.000 0.000 0.003 0.004 0.007 −1.285 −1.687 −2.891

(4.07) (4.05) (4.19) (5.58) (5.82) (6.24) (−6.66) (−6.58) (−6.97)
βD 0.330 0.206 0.108 0.234 0.166 0.087 0.213 0.154 0.083

(4.13) (4.79) (4.65) (5.57) (5.45) (5.04) (7.35) (8.03) (6.19)
βW 0.259 0.160 0.161 0.301 0.212 0.202 0.329 0.245 0.210

(3.30) (2.90) (3.45) (5.81) (4.72) (5.12) (8.51) (6.69) (6.07)
βM 0.274 0.396 0.319 0.298 0.396 0.331 0.310 0.395 0.350

(5.77) (7.39) (5.05) (7.51) (7.80) (5.64) (8.23) (8.36) (6.27)
βJ −0.409 −0.266 −0.234 −0.052 −0.046 −0.047 −406.496 −367.955 −343.616

(−3.85) (−3.43) (−3.65) (−2.83) (−2.69) (−2.40) (−3.27) (−4.46) (−4.33)

AdjR2 0.37 0.51 0.56 0.44 0.59 0.63 0.47 0.64 0.66
F 191.78 332.48 413.99 249.05 468.20 532.55 289.65 575.03 632.84

Panel C: Natural Gas
β0 0.000 0.000 0.000 0.003 0.003 0.007 −1.200 −1.767 −3.670

(0.04) (0.15) (0.35) (3.40) (2.84) (3.18) (−7.12) (−8.14) (−9.53)
βD 0.273 0.189 0.087 0.264 0.206 0.109 0.228 0.189 0.124

(2.24) (3.15) (5.39) (6.50) (6.66) (7.41) (7.75) (9.34) (8.36)
βW 0.337 0.240 0.215 0.393 0.333 0.321 0.462 0.394 0.401

(4.04) (2.71) (2.90) (11.68) (7.39) (5.68) (12.69) (10.88) (7.72)
βM 0.171 0.242 0.110 0.163 0.212 0.074 0.175 0.209 0.033

(3.88) (6.08) (1.97) (4.55) (5.66) (1.21) (5.40) (5.12) (0.50)
βJ −0.185 −0.177 −0.112 −0.097 −0.073 −0.040 −164.304 −128.756 −122.877

(−0.73) (−1.92) (−2.78) (−2.55) (−2.56) (−2.20) (−2.03) (−2.77) (−3.81)

AdjR2 0.27 0.38 0.33 0.40 0.51 0.42 0.47 0.59 0.48
F 115.73 184.23 150.86 206.00 316.44 217.63 272.32 431.98 278.98
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Table 3.10: Regression results of five models based on equation (3.37) where the dependent variable,

the realized variation, is in standard deviation form, RV1/2
t+1 (h = 1). The dash (-) denotes that the

corresponding variable is excluded. elwst is the extreme low temperature surprise; invst is the
inventory surprise; and spread−

t denotes the interest-rate adjusted negative spread. The Fourier
terms are estimated but not reported to conserve space. The weather and inventory estimates are
scaled by 105. The t-statistics are obtained based on the procedure by Newey and West (1987) and
reported in parentheses.

1 2 3 4 5
Panel A: Crude Oil

β0 0.003 0.003 0.003 0.003 0.003
(6.27) (5.74) (6.10) (5.93) (5.77)

βD 0.234 0.343 0.259 0.260 0.260
(7.15) (7.15) (7.56) (7.56) (7.57)

βW 0.352 0.202 0.339 0.343 0.340
(6.83) (2.93) (6.37) (6.70) (6.43)

βM 0.211 0.286 0.203 0.205 0.200
(4.70) (5.96) (4.95) (4.69) (4.94)

|elwst+1| − − − 0.130 0.100
(0.54) (0.43)

|elwst| − − − −0.400 −0.400
(−1.39) (−1.49)

|elwst−1| − − − 0.760 0.740
(2.15) (2.09)

|invst+1| − − − 0.000 0.000
(0.14) (0.20)

|spread−
t | − − 0.000 − 0.000

(1.66) (1.61)
βJ − −0.160 −0.060 −0.058 −0.061

(−2.11) (−2.30) (−2.18) (−2.30)

AdjR2 0.45 0.46 0.45 0.45 0.45
F 302.86 338.09 250.04 196.40 184.07

Panel B: Heating Oil
β0 0.003 0.003 0.004 0.003 0.004

(5.54) (5.58) (6.02) (5.53) (6.53)
βD 0.211 0.234 0.220 0.233 0.220

(5.21) (5.57) (5.81) (5.53) (5.76)
βW 0.306 0.301 0.276 0.297 0.276

(5.82) (5.81) (4.72) (5.60) (4.69)
βM 0.303 0.298 0.236 0.289 0.236

(7.67) (7.51) (5.83) (7.37) (5.94)
|elwst+1| − − − 0.470 0.280

(1.82) (1.10)
|elwst| − − − 0.046 −0.100

(0.13) (−0.42)
|elwst−1| − − − 0.760 0.530

(2.29) (1.57)
|invst+1| − − − 0.002 0.001

(1.30) (0.60)

|spread−
t | − − 0.040 − 0.037

(5.00) (4.76)
βJ − −0.052 −0.049 −0.052 −0.049

(−2.83) (−2.44) (−2.83) (−2.46)

AdjR2 0.44 0.44 0.45 0.44 0.45
F 275.43 249.05 235.75 179.58 173.31

Panel C: Natural Gas
β0 0.003 0.003 0.004 0.003 0.004

(3.53) (3.40) (4.08) (3.48) (4.55)
βD 0.212 0.264 0.246 0.264 0.246

(5.17) (6.50) (7.13) (6.53) (7.15)
βW 0.416 0.393 0.356 0.393 0.354

(11.57) (11.68) (7.06) (11.58) (6.88)
βM 0.165 0.163 0.153 0.163 0.160

(4.55) (4.55) (4.69) (4.07) (4.33)
|elwst+1| − − − 0.660 0.480

(1.54) (1.14)
|elwst| − − − −0.700 −0.900

(−1.29) (−1.59)
|elwst−1| − − − −0.500 −0.700

(−1.16) (−1.56)
|invst+1| − − − 0.038 −0.015

(0.54) (−0.23)

|spread−
t | − − 0.008 − 0.008

(4.62) (4.52)
βJ − −0.097 −0.086 −0.098 −0.086

(−2.55) (−2.10) (−2.55) (−2.12)

AdjR2 0.40 0.40 0.41 0.40 0.41
F 225.93 206.00 193.25 147.66 142.46
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3.7 Figures

Panel A: Crude Oil
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Figure 3.1: The figure graphs closing prices (top panel) and daily returns (bottom panel) for futures
contracts on crude oil, heating oil and natural gas. The returns are computed as the logarithmic
price difference between the last and first transactions per day.
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Panel A: Crude Oil
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Figure 3.2: The figure graphs time-series of the realized volatility and jump component for futures
contracts on crude oil, heating oil and natural gas. The top panel for respective contract graphs the
daily realized volatility, RV1/2

t (equation (3.2)); the second panel plots the jump component J
1/2
t

(equation (3.21)); the third panel shows the jump statistic, Zt (equation (3.12)); and the bottom

panel plots the significant jump component, J
1/2
t,α=0.99 (equation (3.22)). The realized variations are

computed based on five-minute intraday returns and staggered returns with one lag offset.
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Panel A: Crude Oil
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Figure 3.3: The figure graphs the exponentially smoothed (with smoothing parameter 0.94)

monthly mean of the intensity (left column) and size (right column) of significant jumps, J
1/2
t,α=0.99

(equation (3.22)) for futures contracts on crude oil (Panel A), heating oil (Panel B) and natural gas
(Panel C). The realized variations are computed based on five-minute returns and staggered returns
with one lag offset.
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Panel A: Crude Oil
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Figure 3.4: The figure graphs the monthly mean of the daily realized volatility, RV1/2
t (equation

(3.2)), the smooth component, C1/2
t,α=0.99 (equation (3.23)), the significant jump component, J

1/2
t,α=0.99

(equation (3.22)), and the relative contribution, RJt (equation (3.13)), for futures contracts on crude
oil (Panel A), heating oil (Panel B) and natural gas (Panel C). Intensity denotes the fraction of days
with a significant jump over the number of trading days per month. Stock denotes the inventory
level which is scaled by 10−3. Temp denotes the monthly average of daily minimum temperature in
New York City for crude oil (Panel A) and heating oil (Panel B), and Chicago for natural gas (Panel
C). Spread denotes the monthly average of daily spreads (equation (3.34)). The realized variations
are computed based on five-minute intraday returns and staggered returns with one lag offset.
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Figure 3.4 continue

Panel B: Heating Oil
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Figure 3.4 continue

Panel C: Natural Gas
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Panel A: Crude Oil
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Figure 3.5: The figure graphs cumulative five-minute intraday price returns in percentage for crude
oil on November 15, 2007, heating oil on February 14, 2007, and natural gas on May 2, 2001,
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Figure 3.6: The figure graphs the mean of five-minute intraday volatilities, Volt,k (equation (3.2)),
for crude oil (Panel A), heating oil (Panel B) and natural gas (Panel C). The intraday volatility is
given by the absolute value of the difference between the logarithm of closing and opening prices
per interval. For crude and heating oil, the values are computed for Wednesdays from May 2003 to
December 2007 when the petroleum report was released around 10:30. Two days are considered for
natural gas; the storage report was released around 14:00 on Wednesdays from March 2000 to May
2002, and on Thursdays around 10:30 from June 2002 to December 2007. The left (right) column
plots volatilities for announcement days with (without) significant jumps (α = 0.99).
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A Appendix

A.I Contract Specifications

Table A.1: Key features of contract specifications for crude oil, heating oil and natural gas.

Panel A: Light, Sweet Crude Oil Futures
Trading Unit
1000 U.S. barrels (42000 gallons)
Price Quotation
U.S. dollars and cents per barrel
Trading Hours
Open outcry trading is conducted from 9:00 AM until 2:30 PM.
Trading Months
Crude oil futures are listed nine years forward using the following listing schedule: consecutive months are
listed for the current year and the next five years; in addition, the June and December contract months are
listed beyond the sixth year.
Minimum Price Flucuation
$0.01 (1¢) per barrel ($10.00 per contract).
Maximum Daily Price Flucuation
$10.00 per barrel ($10, 000 per contract) for all months.
Last Trading Day
Trading terminates at the close of business on the third business day prior to the 25th calendar day of the
month preceding the delivery month. If the 25th calendar day of the month is a non-business day, trading
shall cease on the third business day prior to the business day preceding the 25th calendar day.
Settlement Type
Physical
Delivery
F.O.B. seller’s facility, Cushing, Oklahoma, at any pipeline or storage facility with pipeline access to TEP-
PCO, Cushing storage, or Equilon Pipeline Co., by in-tank transfer, in-line transfer, book-out, or inter-

facility transfer (pumpover).
Trading Symbol
CL

Panel B: Heating Oil Futures
Trading Unit
42000 U.S. gallons (1000 barrels)
Price Quotation
U.S. dollars and cents per barrel
Trading Hours
Open outcry trading is conducted from 9:00 AM until 2:30 PM.
Trading Months
36 consecutive months
Minimum Price Flucuation
$0.0001 (0.01¢) per gallon ($4.20 per contract).
Maximum Daily Price Flucuation
$0.25 per gallon ($10, 500 per contract) for all months.
Last Trading Day
Trading terminates at the close of business on the last business day of the month preceding the delivery
month.
Settlement Type
Physical
Delivery
F.O.B. seller’s facility in New York harbor, ex-shore. All duties, entitlements, taxes, fees, and other charges
paid. Requirements for seller’s shore facility: capability to deliver into barges. Buyer may request delivery
by truck, if available at the seller’s facility, and pays a surcharge for truck delivery. Delivery may also be
completed by pipeline, tanker, book transfer, or inter- or intra-facility transfer. Delivery must be made in
accordance with applicable federal, state, and local licensing and tax laws.
Trading Symbol
HO
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Panel C: Henry Hub Natural Gas Futures
Trading Unit
10, 000 million British thermal units (mmBtu).
Price Quotation
U.S. dollars and cents per barrel
Trading Hours
Open outcry trading is conducted from 9:00 AM until 2:30 PM.
Trading Months
The current year plus the next twelve years through December 2020. A new calendar year will be added
following the termination of trading in the December contract of the current year.
Minimum Price Flucuation
$0.001 (0.1¢) per mmBtu ($10.00 per contract).
Maximum Daily Price Flucuation
$3.00 per barrel ($30, 000 per contract) for all months.
Last Trading Day
Trading terminates three business days prior to the first calendar day of the delivery month.
Settlement Type
Physical
Delivery
The Sabine Pipe Line Co. Henry Hub in Louisiana. Seller is responsible for the movement of the gas through
the Hub; the buyer, from the Hub. The Hub fee will be paid by seller.
Trading Symbol
NG

A.II Modeling Daily Temperatures

I model daily low temperatures by the conditional mean temperature model proposed by Campbell

and Diebold (2005),

Tmint = Trendt + Seasonalt +
L∑

l=1

βt−lTmint−l + σtεt, (A.1)

where,

Trendt =
M∑

m=1

ξmtm

Seasonalt =
P∑

p=1

(
σc,p sin

(
2πpd(t)

365

)
+ σs,p cos

(
2πpd(t)

365

))

σ2
t =

Q∑
q=1

(
σc,q sin

(
2πqd(t)

365

)
+ σs,q cos

(
2πqd(t)

365

))

+
R∑

r=1

αr(σt−rεt−r)2 +
S∑

s=1

βsσ
2
t−s

εt ∼ iid(0, 1),

(A.2)
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where d(t) cycles through 1, . . . , 365. I follow Campbell and Diebold (2005) and set L = 25, M = 1,

P = 3, Q = 3, R = 1, and S = 1.

A.III Small Sample Properties of a Combined Statistic

This section reports a small Monte Carlo study on the combined statistic described in Section

3.2.1. I show that the test remains valid with reasonable power for price processes with market

microstructure noise. The setup follows Huang and Tauchen (2005), who consider a one-factor

stochastic volatility jump-diffusion model written as,

dXt = µdt + eβ0+β1vtdwp,t + κtdqt,

dvt = αvvtdt + dwv,t,
(A.3)

where vt is a stochastic volatility factor; αv is the mean reversion parameter; and dwp and dwv are

standard Brownian motions with correlation, ρ. qt is a discontinuous jump process where jumps

occur at a rate denoted by λ. κt is the size of the jumps. In the following, I refer to the model

defined in equation (A.3) as SV1F for λt = 0, that is, when no jumps are simulated, and SV1FJ

otherwise.

Table A.2 presents values of the parameters in the data-generating processes that I consider.

The values are obtained from Huang and Tauchen (2005), who select values based on empirical

studies on observed market data reported in literature.

Table A.2: The experimental design for SV1F and SV1FJ (equation (A.3)) where the jump rate,
λ, is set to zero for SV1F.

Parameter Value
µ 0.030
β0 0.000
β1 0.125
αv -1.386
ρ -0.620
λ 0.014
σjmp 1.500

I simulate observed prices per second from the stochastic differential equation following the Euler

scheme. The number of simulated prices per interval t is equivalent to six hours and a half of trading,

that is, t corresponds to a typical trading day. I compute intraday price returns for time intervals

ranging from one to thirty minutes. I assume that the number of jumps in the SV1FJ model has a
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Poisson distribution; hence, the interarrival times have an exponential distribution with parameter

λ. The size of the jumps, κ, has a normal distribution with zero mean and variance, σ2
mn.

Section 3.2.3 discusses the sources and impact of market microstructure noise. I report results

based on an iid normal noise process where the noisy logarithmic prices, Yti , are given by,

Yti = Xti + εti , (A.4)

where εti denotes the microstructure noise.22 I report results based on applying staggered returns

to reduce the impact of noise, see Section 3.2.3.

Table A.3: The size of the combined statistic based on ZTPRM and ZSWVR is tabulated based on
10000 days simulated from the SV1F model as defined in equation (A.3). The experimental design is
described in Table A.2. A noise process is added to the simulated prices, where the noise is assumed
to be iid N(0, σ2

mn); σmn is set to 0.000, 0.027, 0.040, 0.052, 0.065, 0.080. The panel label i denotes
the staggered offset. The return horizons are one, three, five and thirty minutes. The test size is
α = 0.01.

{σmn}
Interval 0.000 0.027 0.040 0.052 0.065 0.080

(i = 0)
1 minutes 0.000 0.000 0.000 0.000 0.000 0.000
3 minutes 0.002 0.002 0.001 0.000 0.000 0.000
5 minutes 0.002 0.002 0.002 0.002 0.001 0.001
30 minutes 0.011 0.011 0.010 0.011 0.011 0.012

(i = 1)
1 minutes 0.001 0.000 0.000 0.000 0.000 0.000
3 minutes 0.002 0.002 0.001 0.001 0.001 0.001
5 minutes 0.002 0.003 0.002 0.002 0.002 0.001
30 minutes 0.016 0.016 0.015 0.016 0.016 0.016

Table A.3 presents rejection rates under the null hypothesis for different standard deviations

of the noise component, σmn, ranging from 0.000 to 0.080 based on 10000 realizations. The test

is highly conservative except for the longest sampling intervals irrespective of whether staggered

returns are applied.

Table A.4 shows rejection rates under the alternative data-generating return process. The labels,

NJ and J, denote days without and with a jump, respectively. The rows represent true events while

the columns denote statistical inferences. Hence, the rows for the 2×2 matrices add up to one where

the 1 × 1 element is the fraction of correct non-rejections of the null (no-jump) hypothesis and the

1 × 2 element is the false rejection rate. Meanwhile, the 2 × 1 element is the false non-rejection of

22I obtain analogous results for an AR(1) noise process (Aı̈t-Sahalia et al. (2006)) and by enforcing a minimum

tick size (Li and Mykland (2007)).
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the null hypothesis and the 2 × 2 element is the correct rejection.

The power stays reasonably high even though the tests are highly conservative at all sampling

rates except for the 30-minute return horizon. For example, the power drops from 0.638(0.0048)

to 0.493(0.0050) (with standard deviation in parentheses) as the variance of the noise component

increases from 0.000 to 0.080 when sampling every five minutes and applying staggered returns with

one lag (see panel (i = 1)). The equivalent rates based on the ZTPRM statistic alone range from

0.638 (0.0048) to 0.507 (0.0050) and for ZSWVR range from 0.725 (0.0045) to 0.616 (0.0049).23 The

type I error for both ZTPRM and ZSWVR are greater than 0.01, respectively, while the errors for the

combined test range from 0.001 to 0.003. The results suggests that the noise impact the statistics

differently under the null hypothesis, thus leading to false rejections on different days. Hence, the

combined statistic continues to reject the same false null hypotheses but reduces the type I error.

Table A.4: Confusion matrices are presented based on 10000 days simulated from the SV1FJ model
as defined in equation (A.3). The experimental design is described in Table A.2. A noise process are
added to the simulated prices, where the noise is assumed to be IID N(0, σmn); σ2

mn takes the values
0.000, 0.027, 0.052, 0.080. Results are presented for four return horizons, which are one, three, five
and thirty minutes. The panel label i denotes the staggered offset. The labels, NJ and J, denote
days without and with a jump, respectively. The rows correspond to the actual event of a jump or
no jump while the columns denote the statistical inference. The test size is α = 0.01.

{σmn}
0.000 0.027 0.052 0.080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)
(i = 0)

1 minutes (NJ) 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
(J) 0.246 0.754 0.304 0.696 0.493 0.507 0.623 0.377

3 minutes (NJ) 0.998 0.002 0.998 0.002 1.000 0.000 1.000 0.000
(J) 0.341 0.659 0.406 0.594 0.493 0.507 0.580 0.420

5 minutes (NJ) 0.998 0.002 0.998 0.002 0.998 0.002 0.999 0.001
(J) 0.377 0.623 0.384 0.616 0.486 0.514 0.543 0.457

30 minutes (NJ) 0.989 0.011 0.989 0.011 0.989 0.011 0.988 0.012
(J) 0.754 0.246 0.783 0.217 0.768 0.232 0.775 0.225

(i = 1)
1 minutes (NJ) 0.999 0.001 1.000 0.000 0.999 0.001 1.000 0.000

(J) 0.261 0.739 0.319 0.681 0.435 0.565 0.522 0.478
3 minutes (NJ) 0.998 0.002 0.998 0.002 0.999 0.001 0.999 0.001

(J) 0.355 0.645 0.362 0.638 0.464 0.536 0.551 0.449
5 minutes (NJ) 0.998 0.002 0.997 0.003 0.998 0.002 0.999 0.001

(J) 0.362 0.638 0.406 0.594 0.457 0.543 0.507 0.493
30 minutes (NJ) 0.984 0.016 0.984 0.016 0.984 0.016 0.983 0.017

(J) 0.768 0.232 0.768 0.232 0.761 0.239 0.790 0.210

23Notice that I do not tabulate the power based on the individual statistics.
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Chapter 4: Summary and Future Work

This dissertation contributes to the literature in two related areas. First, I evaluate

the small sample properties of a nonparametric method to identify jumps in asset

prices. Second, I apply an extension of this method to data from U.S. energy futures

markets to document and examine jump processes and their relative contribution to

the total volatility.

Detecting Jumps in Asset Prices Using Bipower Variation

In this chapter, I examine small sample properties of nonparametric statistics devel-

oped by Barndorff-Nielsen and Shephard (2004, 2006) that are applied to test for

jumps in asset prices. I primarily focus on the implication of adding noise to the

observed prices and recent methods to contend with such market frictions.

My work has produced several important empirical findings. The jump test statis-

tics converge to the limiting normal distribution with zero mean and unit variance

as the sampling interval approaches zero for efficient (noise-free) prices. These statis-

tics have converged at a one-minute sampling interval. The convergence results are

highly influenced by noise, however. Literature has previously established that mar-

ket microstructure noise biases the statistics against identifying jumps. I find that

the limiting distribution remains normal but the mean and variance estimates become

negatively biased. As a result, the rejection rate decreases since the test is based on

the right tail. The optimal sampling methods by Bandi and Russell (2006) and Zhang

et al. (2005) reduce the bias and increase the power of the test statistics. These meth-

ods perform similarly to applying staggered returns. I propose a modified version of
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the method by Bandi and Russell (2006) and show that it corrects the jump statistics

from being slightly anti-conservative to become valid. Furthermore, it increases the

power. I find that the size and power are similar for three different models of market

microstructure noise. Specifically, adding serial correlation to the error process and

introducing rounding errors do not have a significant impact beyond the effects of

an iid normal noise process. Alternative jump distributions do not alter the small

sample properties of the jump statistics considerably.

A number of future research directions has emerged that I have not pursued in this

work. The experimental design generates prices per second throughout the trading

day. In practice, there are longer and irregular gaps in between trades. Since the

statistics rely on intraday data, this approach can only be applied to liquid markets;

nonetheless, the impact of missing observations is an important extension. Second,

I determine the optimal sampling rate per day, which assumes that the market is

sufficiently liquid. Future research may determine whether it is beneficial to estimate

the rate over a longer time horizon and, as a result, obtain more robust estimates

of the optimal sampling rates. Third, more recent nonparametric methods based on

high-frequency data have been proposed in the literature, such as Fan and Wang

(2007), Jiang and Oomen (2008), and Sen (2008). The finite sample properties of

these and the statistics that I consider in this study may be compared in the future.

Volatility and Jump Dynamics in U.S. Energy Futures Markets

This essay applies a nonparametric method based on realized and bipower variations

calculated from intraday high-frequency data to identify jumps in prices from U.S.

energy futures markets. The futures contracts are crude oil, heating oil and natural

gas, which are traded on NYMEX. The sample period of the high-frequency intraday

data spans from January 1990 to January 2008. I apply alternative methods such as
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staggered returns and optimal sampling frequency methods to remove the effects of

microstructure noise which biases the tests against detecting jumps.

I document several interesting and important findings. The natural gas market is

the most volatile among these price series. There are upward trends in volatility for

the three series during the sample period; for natural gas the increase is primarily due

to the jump component while the smooth component dominates the increase in the

crude oil and heating oil markets. There are significant jumps (price spikes) in all price

series. I document that the total realized volatility and smooth sample component for

natural gas and heating oil are higher in the winter months than during the summer

months. These results are consistent with the general hypothesis that when short run

demand for natural gas and heating oil are suddenly shifted higher due to extreme

cold weather during the winter, the short run supply is inelastic due to low inventories

at this time of the year. In an intraday analysis, I find that the volatility is higher

during inventory news announcement periods and that many jumps are associated

with these announcement dates. Furthermore, it is interesting to observe that for

all markets, that volatility returns to preannouncement levels faster when there is a

jump in the futures price changes than when there is no jump. This suggest that

jumps may be efficient pricing of new information.

I find that including the jump component as an explanatory variable improves the

performance of a simple realized volatility forecasting model. The coefficient of the

jump component attains the largest value at the daily lag and decreases for corre-

sponding weekly and monthly regression estimates. Moreover, all of the coefficients

of jumps are negative and most are significant. The above two results indicate that

the jump component in the price process produces transitory surges in volatility and

that there is a strong reversal in the volatility on the subsequent days of a jump.

In addition, I add cold weather and inventory surprises to the model and find that
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these lead to an increase in volatility in natural gas and heating oil markets. Further-

more, I compute the lagged interested-rate adjusted spread and document that the

spread can serve as a proxy for negative inventory periods since the significance of

the weather and inventory variables drops while the spread remains highly significant

when including all three variables.

The empirical results have several important implications for participants in en-

ergy futures markets. For option traders, option pricing models with jumps are

preferred over the Black option model in these three energy futures contracts during

the winter months. Market participants may prefer to employ an optimal hedging

ratio with jumps to hedge their exposure to energy price risk. Market risk managers

should be aware that the shapes of the return distributions of energy futures prices

will change over time due to the presence of significant jumps in these markets.

Several possible future research directions emerge from this work. For example,

the empirical results suggest that volatility returns to preannouncement levels after an

inventory report release faster on days with jumps compared to days with no jumps.

A more detailed study of this finding may follow the approach used by Ederington and

Lee (1993, 1995). I show that including jump and seasonal components as well as the

interest-rate adjusted spread improve a model of the realized volatility. A study on

whether this leads to improved forecasts of volatility compared with other models may

be of interest, see for example Andersen et al. (2003). The considerable contribution of

jump components to the total volatility may have important implications on Value-at-

Risk (VaR) calculations in these markets. Feng and Brooks (2002) and Sullivan et al.

(2002) provide a framework for VaR calculation and hedging of futures contracts and

present empirical results for natural gas futures contracts. Kruse (2006) investigate

if forecasting realized volatility improves VaR forecasts. They do not consider jumps,

however.
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