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ABSTRACT 

VISUALIZATION AND MODELING FOR CRIME DATA INDEXED BY ROAD 

SEGMENTS 

Krista Heim, Ph.D. 

George Mason University, 2014 

Dissertation Director: Dr. Daniel Carr 

 

This research develops crime hotspot analysis and visualization methodology that use 

street segments as the basic study unit.  This incorporates the distance between points 

along a polyline rather than the standard Euclidean distance and has some distinct 

advantages over past methods.  For each crime, this method creates a weight according to 

its distance from each road segment of its surrounding block.  To create the hotspot 

visualization map, crime counts are smoothed over road segments based on the distance 

to nearest segments and the angle at which nearest roads meet at intersections.  Crime 

data from the City of Alexandria, VA Police Department and San Francisco, CA 

(available at data.sfgov.org) are considered here using a combination of conventional 

ArcGIS and R graphics.  
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I assume that demographic variables related to crime in large areas are still relevant to 

crime rates at the local level and seek to make use of the most spatially detailed data 

accessible.  Decennial demographic variables at the block level for 2010 from the U.S. 

Census are associated with road segments by assigning the available values to the 

surrounding segments of each block.  These variables include age, gender, population, 

and housing for both locations.  Variables also considered are police calls for service, 

housing prices, elevation and speed limits.   

 

I discuss/compare area crime counts with polyline crime counts using (zero-inflated) 

Poisson and Negative Binomial regression with crime-related covariates, as well as 

MCMC Poisson-Gamma Conditional Autoregressive (CAR) model in CrimeStat IV and a 

localized CAR model in R using distances between segments as weights.  Conditional 

variable importance is measured using conditional random forest modeling to see which 

of the covariates are the most important predictors of crime and to decide which variables 

are the most appropriate to consider for visualization.  Principal components are also used 

to create independent linear combinations of predictor variables.  While most 

visualization approaches for street segments have emphasized one variable at a time, this 

research uses a 3 x 3 grid of maps using DPnet to highlight each grouping of road 

segments associated with classes based on two covariates.  This multivariate visualization 

will allow us to explore multiple variables at a time and their patterns along a road 

network.   
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CHAPTER 1.  INTRODUCTION 

1.1 Problem Statement 
 

This dissertation develops new techniques of visualization, smoothing, and 

modeling over road networks, with emphasis on crime data.  While recent research in the 

“criminology of place” has led to deeper understanding of relating local patterns to 

streets, there remain analytic and visualization challenges to address.  The basic notion 

here is that distance along street segments is sometimes more relevant to the 

understanding of crime concentration than great arc distance over the entire space.  

Analyses that use larger spatial units, such as census tracts, as opposed to street segments 

may hide the variability of crime rates among the streets within those areal units.  The 

importance of streets makes sense in terms of human activity and thinking.  Examples 

include police patrolling, emergency response, logistics in moving from place to place, 

and territorial boundaries as defined by city zoning or gangs.  Recent advances have 

called attention to the crime patterns that appear on street segments, suggesting that 

streets can provide a useful geospatial foundation for analysis of selected types of crime 

data.   

The modeling and visualization of geospatial data associated with lines provides 

perspectives that are particularly relevant to phenomena involving pipelines, streams, and 

streets.  Both the phenomena and the audience that seeks to understand and interact with 
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them influence the perspectives that are useful.  The criminology of place research 

(Weisburd et al, 2012) calls attention to crime pattern on street segments.  Street 

segments are represented on a map as either a single line or polyline between two 

intersections.  A polyline is a connected series of line segments; for convenience, I use 

the term polyline to refer to the geometric representation of the street segment, even 

when there is only one line. Many kinds of crime occur in close proximity to street 

segments.  Streets are important for vehicle and foot transportation.  In terms of city 

design and regulation, streets bound industrial use and housing zones.  Locations along 

streets are important for many businesses.  Streets can bound areas associated with 

different kinds of social activity and demographics compositions.  Street-based 

perspectives are not only useful for their increasingly understood connection to crime, but 

also because of their multifaceted roles in urban dwellers thought processes. 

However, the modeling and visualization of data associated with lines and 

polylines that represent street segments is less common than the modeling and 

visualization of data associated with points and areas.  Correspondingly, the methodology 

is less mature.  For lines and polylines there are fewer published examples and gaps to 

address for the combination of geospatial structure, phenomena, and human cognition, 

motivating adapting or creating more suitable methods.  I provide one approach for 

developing and illustrating methodology that converts point and area statistics into 

polyline statistics (including Census block data), providing a unified framework for 

spatially detailed regression modeling.   

The problems I address include: 
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 Gathering crime relevant data, 

 Converting potentially crime-relevant statistics indexed by areas and points to 

statistics indexed by street segments (lines or polylines) for use in regression 

models and graphics, 

 Developing smoothing methods for street segment statistics based on 

alternative notions of street segment proximity, 

 Building regression models to identify important variables and make 

predictions, 

 Creating graphics and visualization methodology to show observed data and 

estimated values to support communication, data exploration and model 

criticism. 

I associate statistics (such as crime counts) with roads based on an inverse 

distance weighting function involving distance between each crime point and its 

surrounding segment midpoints.  It is intuitive that each surrounding segment should be 

given some value of the crime because that crime is contained within those segments.  

The motivation for the weighting is in terms of accessibility to the crime location.  A road 

segment is considered more relevant to the crime if it is the closer and thus receives more 

value.   

For visualization, my unique smoothing algorithm uses a weighting function 

based on distance between nearest street segments at two levels and the angle at which 

these streets meet at intersections.  The basic idea of smoothing is that it uses an 
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averaging of statistics with neighboring statistics (in this case crime counts on 

neighboring segments) to cancel out some of the noise and help reveal more of the 

underlying structure.  Behaviors on streets are not completely independent of each other, 

but are also influenced by streets in surrounding areas.  Smoothing reflects this 

phenomena and helps to pick out clusters of high crime streets more clearly.  Police 

would rather focus on a series of connected roads to patrol rather than just one individual 

block at a time.  Smoothing will help distinguish the groupings of roads to focus 

attention.   

This algorithm is a new contribution to the literature on smoothing.  Segments 

that are a far distance away will get less weight because they will be less relevant to the 

original segment in terms of the criminology of place.  Segments within direct view of 

the original segments will get higher weights, as being able to look down that street to the 

next street makes the two more relatable and relevant to each other.  Segments with sharp 

intersections that make small angles will also have high weight.  There is easier access 

between the two segments, with ability to move through yards and alleyways.  Segments 

at right angles then have the least value because there is no easy visibility or access 

between the two streets as seen previously.  Also, studies in Seattle showed that in some 

areas, streets in one direction fell in different clusters than streets crossing them 

orthogonally (Weisburd et. al 2012).  While such smoothing has appeal due to focus on 

crime, it does not directly adjust for additional variables related to crime. 
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Using data that wasn’t originally assigned to streets segments will help see 

patterns with crime and related variables that may not have been possible to before on 

roads.  Previous methods did not incorporate block data, but block data can still have 

pertinent information that describes the demographics of the area, that could relate to why 

the crime is high or low in those areas.  Blocks are bordered by road segments, so 

assigning segments these block values seems intuitive. 

In terms of modeling, my hypothesis is that street segment-based analysis of 

crime is better than area-based analysis, better fitting the overall crime data and 

predicting future crime.  I compare modeling of crime counts with related covariates over 

polylines (street segments) to typical modeling of crime counts over area.  In this 

research I borrow from advances made in the modeling of point and area data.  I explore 

several different modeling methods that represent different facets of the data.  Past 

parametric modeling based on discrete event data, such as cancer deaths, were sometimes 

founded on the use of the Poisson distribution.  However, the distribution has only one 

parameter that needs to account for both the mean and variance in the data.  The presence 

of over-dispersion (excess variance) in the data motivates the use of more appropriate 

models.  One such discrete event model is the negative binomial model, which has two 

parameters that determine mean and variance.  The negative binomial model of road 

segment crime counts fits better than the Poisson model.  Counts of zeros also often 

appear in area-based count data, and many Alexandria, VA road segments have zero 

crimes.  Researchers have developed zero-inflated models to deal with this issue, and 

using this type of model yields still better fit values.   
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Geospatial models often address spatial correlation; the last parametric model 

elaboration is the hierarchical CAR Bayes Model, which addresses the spatial 

dependence of the data.  I take a novel approach to the CAR model by measuring 

proximity based on neighboring road segments rather than neighboring polygons.  I use 

both the area-based and road-based models to also predict known crime values.  

Specifically, I model 2006-2008 data and compare fitted values with the observed 2009 

data.  I find that for the example of Alexandria, VA, I could better predict crime over 

road segments using my model than when they were aggregated over area units.  The 

small size of streets reduces spatial heterogeneity, leading to smaller errors of prediction.  

This could be helpful in the field of predictive policing. 

Multicollinearity becomes an issue in the models discussed above, with many 

predictors highly related to one another.  This makes the individual interpretations of the 

significance of each variable unreliable.  Conditional random forests and principal 

components analysis are both explored to select which covariates in the model are the 

strongest predictor variables.  Using selected variables (or linear combinations of them), I 

create a multivariate visualization using DPnet that includes the crime counts with two 

crime-related variables at a time.  Multivariate visualization of important variables with 

crime enables us to see in what way patterns of crime in different areas are influenced by 

multiple variables at once.   
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1.2 Organization 
 

Chapter 2 provides background on related research in the field of criminology.  

Fields in social sciences have often developed bodies of knowledge by defining concepts 

related to the phenomena of interest and by thinking about relationships among the 

concepts.  The presence of quantitative variables associated with the concepts opens the 

door to building empirical models.  Scholarly research in criminology is often guided by 

this body of knowledge and discussion of empirical models makes connections to this 

body of knowledge. This chapter also includes background on statistical methods related 

to this research, addressing hotspot detection and smoothing methodology. 

Chapter 3 will present the crime data from Alexandria, VA and San Francisco, 

CA and give some exploratory data analysis.  For Alexandria, VA I will focus on both the 

full crime data set and a subset of assault crimes.  This chapter will also explore the 

crime-related variables obtained to model with the crime data, along with some 

criminological motivation for using them.   

Chapter 4 will go into detail on the smoothing algorithm that I created.  It will 

discuss both the assignment point and area data to street segments and smoothing crime 

counts over street segments.  Note that I will use the terms “roads” and “streets” 

interchangeably.  Smoothing visualization results are given for Alexandria and San 

Francisco, CA.    

Chapter 5 discusses regression modeling.  I discuss modeling crime counts with 

relevant covariates using Poisson and Negative Binomial regression, along with the zero-

inflated versions of these models.  Following this, the hierarchical CAR Bayes models 
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are used to explicitly address spatial correlation.  The modeling results are given for 

Alexandria, VA, comparing modeling over area with modeling over roads.  I use these 

models to predict crime/assaults and compare with the observed data.   

Random forests (conditional and unconditional) are introduced in Chapter 6 in the 

context of using their variable importance measures to discover which covariates in the 

model are the strongest predictor variables. Conditional random forest variable 

importance measures are calculated for Alexandria, VA and San Francisco, CA.   

Principal components analysis is also used to create linearly independent combinations of 

the variables most highly correlated with crime.  Finally some examples of multivariate 

visualization using DPnet with Alexandria, VA are given.  I will give my conclusions, 

general challenges, and future work in Chapter 7.  
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CHAPTER 2.  BACKGROUND 

2.1 Crime Analysis on “Micro” Units of Place 
 

Before proceeding with the research on analysis of crime data, it is helpful to be 

aware of the criminological theories that motivate analyzing crime using this local unit of 

analysis.  Historically, most crime literature focused on large areas of the map for 

summary and represents crime as points.  Recent criminology theory motivates looking at 

more “micro” levels, or small units of geography.  This, in part, motivates the approach 

of using street segments as the fundamental geospatial unit of analysis.   

Much early crime literature focused on person-oriented criminal propensity and 

crime at community levels such as states and neighborhood (Nettler, 1978).  The spatial 

analysis of crime is a concept in part developed by Cohen and Felson (1979).  In this 

paper they develop the routine activities theory, arguing that crime rates are not simply 

affected by the number of motivated offenders, suitable targets, and absence of security 

measures, but also by how often these three things come together in space and time.   

Sherman, Gartin, and Buerger (1989) use this theory as motivation for what they call the 

“criminology of place”, zeroing in on the analysis of the places where crime occurs.  In 

their study, they found that about half of all calls to the police in Minneapolis, Minnesota 

came from only 3.3% of all addresses, with 4,166 robbery calls coming from just 2.2% of 

addresses.  In another study by Weisburd et al. (2004) in Seattle, Washington, 50% of 
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crime incidents reported came from under 5% of street segments.  These studies show 

why approaching crime at smaller units is important, as the interactions of offenders, 

targets, and security measures often occur in very specific geographic areas.  Looking at 

larger geographic/political areal units (i.e. zip codes, census tracts) could mask a hotspot 

resulting from a few specific street segments within those units.    

Weisburd et al. (2012) conclude 5 main points in their book about the criminology 

of place: 

1. Crime is tightly concentrated at “crime hot spots”, suggesting that we can 

identify and deal with a large proportion of crime problems by focusing on a 

very small number of places. 

2. These crime hot spots evidence very strong stability over time, and thus 

present a particularly promising focus for crime prevention efforts. 

3. Crime at places evidences strong variability at micro levels of geography, 

suggesting that an exclusive focus on larger geographic units, like 

communities or neighborhoods, will lead to a loss of important information 

about crime and the inefficient focus of crime prevention resources. 

4. It is not only crime that varies across very small units of geography, but also 

the social and contextual characteristics of places. The criminology of place in 

this context identifies and emphasizes the importance of micro units of 

geography as social systems relevant to the crime problem. 
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5. Crime at place is very predictable, and therefore it is possible to not only 

understand why crime is concentrated at place, but also to develop effective 

crime prevention strategies to ameliorate crime problems at places. 

Brantingham and Brantingham (1995) further describe the criminology of place 

by defining the various types of places in which crime can occur.  A location that attracts 

criminal activity because of its social and physical geography, regardless of the level of 

criminal motivation that an offender may have, is known as a crime generator.  There 

are many different factors that make a specific location a crime generator, such as traffic, 

population density, and proximity to shopping areas and sporting events (Van Patten, 

McKeldin-Coner and Cox 2009 and Short et al. 2008).  These places where large 

concentrations of people are drawn result in favorable settings for certain types of 

criminal acts.  A crime attractor is a place where an offender is already aware of known 

criminal opportunities.  Examples of this type of place include bar districts, prostitution 

areas and drug markets (Brantingham and Brantingham 1995).  Unlike crime generators, 

criminal activity at crime attractors is often from motivated offenders coming from 

outside of the area.  Crime-neutral areas neither generate crime by creating opportunity 

nor attract motivated offenders; instead they occasionally see crimes committed by locals 

of the area.  Crime-neutral areas tend to be low-crime places, and are useful to compare 

with the other types of areas by identifying the important differences between them.  All 

of these types of places help explain the advantages of looking at more local levels of 

crime. 
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Brantingham and Brantingham (1995) also define nodes and paths in their 

description of the criminology of place.  Nodes are central places in a person’s life, such 

as their house, school or place of business.  People tend to commit crimes close to these 

nodes and the paths between them, especially robbers and burglars.  These paths can 

include street networks and transit systems, which can strongly influence the distribution 

on crime.   Beavon, Brantingham and Brantingham (1994) discuss how the scheme of 

street networks can influence the amount of certain types of crime.   In their study, crime 

was found to be higher in areas that were more easily accessible and had more traffic, and 

lower in areas with the opposite situation. 

Weisburd, Groff, and Yang (2012) measure crime in units of street segments in 

order to focus on the criminology of place at a “micro” level.  They define street 

segments as occurring between two intersections and including both sides of the street.  

Street segments are advantageous units of analysis as they are easily recognizable units of 

space with well-defined boundaries.  Other analyses that use large areal units for analysis 

(e.g. administrative units such as census tracts, blocks, and block groups) as opposed to 

linear features such as the street segment may hide the variability of crime rates among 

the streets within an areal unit.  For example, if a census tract contains street segments 

with largely different crime patterns (in terms of crime counts), segment information is 

lost when aggregating to the census tract level, obscuring possible hot spot locations.  

Large areal unit also hide segment-specific crime-related variables, such as calls for 

service and foot and vehicular traffic rates along blocks, among others. 
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Groff, Weisburd, and Yang (2010) further explain how crimes vary across street 

segments in Seattle, Washington by calculating group-based crime trajectories over 16 

years of data, following the work of Nagin (2005).  This type of analysis clusters the 

street segments into groups according to distinctive features such as their crime rates (e.g. 

high, low) and the change in crime rate over time (e.g. increasing, decreasing, stable).  

They use Ripley’s K to establish whether similar trajectories are found among 

neighboring road segments (i.e. if similar trajectories are clustered together), or if there is 

great variation from street-to-street.   

Figure 1 shows an example from Groff, Weisburd, and Yang (2010) where there 

is a high variation in crime trajectory patterns between many of the neighboring road 

segments in downtown Seattle.  They found that there is heterogeneity between 

neighboring street segments in a number of places, which provides even further 

motivation to examine crime at the street segment level rather than in larger units of area, 

and provides motivation for smoothing over road segments in visualization.  Smoothing 

methods help to reveal patterns by borrowing strength from neighbors to reduce noise.  

The heterogeneity at some neighboring locations suggests looking for circumstances that 

motivate restricting the extent of spatial smooth along street segments.   
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Figure 1: Spatial Distribution of Temporal Trajectories in Central Seattle (Weisburd, Groff Yang, 2010)  

 

 

 

Further papers from these researchers support the approach of crime analysis at 

the micro level.  Weisburd, Groff and Morris (2011) focus on hot spots of juvenile crime 

in Seattle.  Their findings once again suggest that crime rates can vary greatly from one 

street segment to the next, and that targeting hot spots over street segments could help 

prevent crime.  Another paper by Weisburd, Groff and Yang (2012) argues that focusing 

crime prevention on the level of specific street segments would be less costly and more 

effective than focusing efforts over larger areas. 
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In the Seattle study, Weisburd et al. (2012), analyze a number of covariates to see 

how they vary with crime.  Some important variables included those that reflected crime 

opportunities across Seattle.  These variables include the number of high-risk juveniles, 

residential population, the number of public facilities (e.g. hospitals, parks, etc.), bus 

stops, type of street (arterial v. non-arterial), police and fire stations, and percentage of 

vacant land.  Other variables reflecting the social disorganization of Seattle include 

socioeconomic status, housing assistance, racial heterogeneity, and percentage of active 

voters, among others.  This motivates the incorporation of such variables in my analysis 

of crime over street segments. 

 

2.2 Previous Methods of Analysis and Hotspots 
 

Hotspot mapping is a technique that helps to identify where the highest rates of 

crime occur.  It is a predictive tool that uses past information in order to identify locations 

that need the most police patrolling.  There are several different types of hotspot 

methodologies throughout the crime literature.  An accepted standard has not yet 

emerged in this field.  When visualizing crime data on a map, whether it is violent crime 

(e.g. assault) or damage to property (e.g. vandalism), certain neighborhoods appear 

relatively safe while other areas have dense clusters of criminal activity.  Many criminals 

target the same areas repeatedly over a period of time.  Crime “hotspot” analysis 

describes the areas that have larger than average crime counts or rates.   With the 

increasing availability of data down to the incident level and the progress made in 

Geographical Information Systems (GIS), hotspot mapping has become a popular tool in 
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the crime analysis community. 

The three basic types of visualization methods are frequently seen in crime 

literature are choropleth maps, spatial ellipses and smoothing.  A choropleth map is a 

specific type of thematic map which refers to maps that have data aggregated to a 

political or administrative area, such as census tracts, zip codes or block groups.  Crime 

events mapped as points can be aggregated within these geographic areas.  An example 

of this can be seen in the paper by Anselin (1995) paper on local indictors of spatial 

association, which examines the spatial pattern of conflict in African countries (data is 

aggregated to country level).  Another example in Eck (2005) shows vehicle crime data 

thematically mapped by census tracts (See Figure 2).  Using crime counts is not adequate 

here, as a certain census tract may only have a higher count of vehicle crimes because the 

tract covers a larger population.  While Census tracts were designed to have an average of 

about 4,000 inhabitants, they can vary between 1,200 and 8,000 people.  Choropleth 

maps can be useful in representing certain summary statistics for political and 

administrative regions.  However, the variation of spatial attributes within the regions 

(e.g. differing population sizes of census tracts) can make them inconsistent in portraying 

the underlying spatial structure without further statistical adjustments.  
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Figure 2: Thematic map of vehicle crime by census tract (Eck, 2005).  

 

 

 

An example of using spatial ellipses involves nearest neighbor hierarchical 

clustering; this creates hot spot ellipses based on the nearest neighbor points that are 

closer than they would be if they had occurred by chance (complete spatial randomness).  

Examples of this are included in Liu and Brown (2003) and Levine (2006).  Figure 3 

shows an example from Levine (2006) using nearest neighbor hierarchical clustering to 

create hotspot ellipses of crashes in Houston from 1999 to 2001 caused by driving while 

intoxicated.  Within the hierarchy, first-order clusters can be described as hotspots 

constructed from nearest-neighbor individual incidents, while the second-order clusters 
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group the first-order clusters into larger hotspots.  A weakness of the spatial ellipse 

method is that crime does not naturally form spatial ellipses; some areas in the hotspots 

may actually have low crime (Eck, 2005).   Spatial ellipses also ignore some important 

spatial details such as large lakes that could be in the middle of the area.  Crime is rarely 

occurring over a lake so it would not be accurate to have part of the ellipse fall over this 

space.  Also, choosing different parameters can produce different results.  This DWI 

crash example illustrates the dominance of thinking in terms of points and areas in 

cartographic contexts.  It would seem that a more focused map would show crash 

hotspots along road segments since they are primarily on roads and intersections rather 

than the elliptical regions. 

 

 

 

 

Figure 3: Ellipses from nearest-neighbor hierarchical clustering (Levine, 2006). 
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2.3 Smoothing methods and tools 
 

2.3.1 Smoothing over areas 
 

Smoothing helps to reveal patterns in data by approximating a function over the 

data that reduces the noise that distracts from the overall pattern. This flexible method 

tries to improve the precision of the area data without introducing large level of bias 

(Haining, 2003).  Basic smoothing methods include local moving mean/median 

smoothers.  For example, the moving median smoother replaces the value for case  ,     , 

with the median value from a set of values within a certain window of  , including      

(Haining 2003).  Similarly, the moving mean method replaces each point with the mean 

of a certain number of adjacent points; the larger the number of adjacent points included, 

the smoother the result.  Oversmoothing introduces bias by reducing the local variation 

that is not noise.  In mapping, smoothing creates a smooth surface          that can 

reflect counts/occurrences (in my case, crime data) or continuous data.  Variable 

transformations such as counts per unit area support making comparisons.  These can be 

represented in colored choropleth maps and in perspective surfaces.   

Common graphical smoothing often uses weighted averages.  The simplest spatial 

weighting considered is a simple binary weight:  

 
    {

                                
                                     

 

 

 

(1) 

 

Sites that are connected are considered spatial neighbors; what it means to be connected 

is open to interpretation.  For example, counties can be considered connected if they 
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share a common border or if points within the county are less than a certain distance apart 

(Schabenberger and Gotway, 2005).  This weight may instead be a function of other 

features, such as the length of the shared border, or population of the counties.   

Distance weighting is another example of spatial weighting that uses the distance 

between points rather than the connectedness of areas.  One distance weighting is the 

simple disk averaging, which assigns weights     as follows: 

 
    {

                                 
                                     

 

 

(2) 

A distance decay function will give smaller weights to data values farther away and 

larger weights to those that are closer to the given data point.  One example of this given 

in Haining (2003) is 
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(3) 

In this instance      is the distance between cases   and   and   is a chosen constant.  

Weights are normalized to sum to one.  All of these weighting methods can be 

incorporated into rules for smoothing maps.  This notion of borrowing strength from 

neighbors appears in many statistical contexts, such as time series and bivariate kernel 

smoothing.   

A smoothing method frequently used in the crime literature is kernel density 

estimation.  Kernel density interpolation aggregates points within a certain radius and 
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then creates a continuous surface over the map to represent the distribution of crimes.  

Formally, if there are   independent observations            from random variable  , 

the kernel density estimator   ̂    used to approximate the density value      at point   

is: 

   ̂    
 

  
∑  (

    

 
) 

   , (4) 

 

where   is the “kernel” function and   is the bandwidth (i.e. neighborhood around point 

 ) .  Different types of kernel functions and bandwidths can be specified to give various 

resulting maps. 

Eck (2005) uses quartic kernel density estimation, which incorporates the quartic 

kernel function, to create a smooth surface from the points over the map. Using a 

smoothing method such as this and creating a continuous surface makes it easier to 

interpret the general locations where crime is occurring.  Levine (2006) gives an example 

of a three-dimensional kernel density interpolation of 1990 motor vehicle crashes relative 

to 1990 population in Honolulu (see Figure 4).  The area-based smoothing across spatial 

locations used here is inconsistent with the phenomena because the values correspond to 

motor vehicles crashes, most of which occur on roads.  If many roads are in the same area 

they “borrow strength” from each other but the individual roads, however the strength 

that they borrow is based on great arc distance over the entire space rather than distance 

along the roads.  There could be many different barriers between roads where it would no 

longer make sense to borrow values from each other.  Measuring area across bodies of 
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water, over a railroad track, or through the woods is not necessarily meaningful, as there 

would not be as much of a relationship between roads that face these barriers.  For these 

reasons, borrowing strength based on distance along street segments would make much 

more sense for this motor vehicle crash data.  

 

 

 

 

Figure 4: Kernel Density Interpolation (Levine, 2006). 

 

 

 

Further crime smoothing methods include the transition density model described in 

Liu and Brown (2003).  In this paper, Liu and Brown create a predictive algorithm using 

a point-pattern based density model, extending crime clustering methods by incorporating 

other variables based on criminal preferences derived from analysis of past events. Their 

transition density model measures the relationship between demographic, social, and 
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spatial attributes (among others) and measures of criminal activity, and uses a Gini-

index-based measure for feature selection.  The Gini-index is a measure of statistical 

dispersion of the data, with smaller index values indicating a higher level of cohesiveness 

and good set of features.  In Lui and Brown (2003), this index    is calculated as follows.  

Define     as the distance between event   and   in the feature subspace.  Then a 

similarity score     is calculated   

 
    

 

      
 

(5) 

 

Where      
 ̅

⁄  and  ̅ is the average event distance.  Then the Gini index is given as 

variable this index is defined as: 

         (     ). (6) 

For a data set of   events, the averaged Gini index is:  
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(7) 

Locations, times, and features of all incidents are the realization of a space-time point 

process.  The transition density is divided into two components.  The first order spatial 

transition density reflects the event intensity in the feature space, while second order 

spatial transition densities describe the interaction of a new event location with past event 

locations.  Formally, let the features, location, and time of all incidents be a realization of 
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a space-time point process {              }, where     ,  , and   are random quantities 

within feature space     , geographic space     , and time region     , 

respectively.  Then calculate the density    by dividing the occurrence of events over 

time and space as  

                          
                          

             (8) 

where   
                        is the spatial transition density and   

             is 

the temporal transition density.  More information is given explicitly in Lui and Brown 

(2003). 

Figure 5 gives an example of the resulting model, with darker shading representing 

areas of higher potential for crime created using Lui and Brown’s density model.  The 

white points represent breaking and entering crimes incident locations.  This is a 

sophisticated model for handling spatial data with covariates; however, for my purposes, 

it does not take into account the distances over road networks that I seek to use.  I did not 

pursue developing a special variant for roads. 
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Figure 5: One of the resulting models calibrated on July 7–20 data, tested on July 21–27 data (left) and 

July 21–August 3 data (right) (Liu and Brown, 2003). 

 

 

 

Smoothing methods are often used to call attention to regions with high and low 

values and can serve as hotspot detection algorithms.  Some algorithms are specifically 

designed for hotspot detection.  Here I call attention to the well-established spatial scan 

statistic method initially developed by Kulldorf (1997) and later extended in several 

ways.  Spatial scan statistics uses a moving circular window on each centroid of a region, 

with the radius of the circle varying.  If the window contains the centroid of a region, 

then that whole region is included in the window.  These circles cover the map and may 

have many partially overlapped circles of different sizes.  For each window, it is possible 

to compute the likelihood of observing the observed number of cases within and outside 

the window, respectively.  Kulldorf (1997) proposes the spatial scan statistic for the 

Bernoulli and Poisson models.  There are also many extensions to the spatial scan 

statistic that use ellipses and cylinders as opposed to circles.   

H. Liu, D.E. Brown / International Journal of Forecasting 19 (2003) 603–622 617

 

Fig. 3. GMM (upper), WPK (middle), and FPK (lower) versions of the proposed model calibrated on July 7–20 data and tested on July

21–27 data (left) and July 21–August 3 data (right).
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2.3.2 Smoothing over networks 
 

In mathematics, networks are a series of connected edges and vertices with a 

number or weight assigned to each edge.  In real-world applications, networks can 

include streams, pipelines, streets, communication networks, and much more.  Each type 

of network has properties that motivate the choice of analysis method refinements.  For 

example, analysis of streams may incorporate weights based on flow direction.  For 

analysis of street segment data, whether or not the traffic flow is one-way or two-way 

may make a difference depending on the phenomena being studied.     

De Oliveira (2011) extends the spatial scan statistic over pipes in a water 

distribution network.  He hypothesizes that the networks contain unexpected clustering of 

pipe breakage points, and attempts to discover where the clusters of breaks are located.  

While typically spatial scan statistics use aggregated count data, in this paper they focus 

on each individual break event, and define a cluster as a connected subgraph of pipe 

networks that has a significantly higher density of breaks than what is expected.  Within 

the constrained space of pipe networks, the basic spatial scan statistics use a distance 

metric that will not accurately describe the space.  De Oliveira creates another approach 

that relies on the shortest path distances between points along the pipe network. 

Another paper that uses path length measurements is Curriero (2006), where 

stream distance is used as a foundation for kriging.  Kriging is a method of interpolation 

where values at a point are predicted using a weighted average of known values in some 

neighborhood of that point.  The stream-restricted and unrestricted network distances can 

be quite different.  The length of the stream using stream distance was 134 miles, while 



27 

 

the length when not restricted to this path was only 70 miles.  Results showed that kriging 

using the stream distance provided a more accurate prediction than kriging based on 

Euclidean distance.   

Other papers that also look at spatial statistics along stream distance include 

Peterson, Theobald and Ver Hoef (2007) and Ver Hoef, Peterson and Theobald (2006). 

They make the claim that Euclidean distance may not be ecologically meaningful as this 

measure does not accurately represent the spatial configuration of a stream network. They 

develop a new measure using hydrologic distance, which is defined as the distance 

between two locations when movement is restricted to a stream network, and may or may 

not be limited to flow direction.  Typical spatial autocovariance functions may not be 

valid when looking at non-Euclidean or arc distance, and these papers discuss ways of 

developing a valid model to surpass this obstacle.   

Similar to these methods of smoothing over networks, I use nearest road segments 

as opposed to nearest areas.   I use the road distances between midpoints of connected 

segments as weights in the spatial modeling.   

 

2.3.3 Smoothing software tools 
 

There are many software tools available to implement these hotspot and 

smoothing methods.  For example, SaTScan is a free software that analyzes spatial, 

temporal and space-time data using the spatial, temporal, or space-time scan statistics 

(Kulldorf, 2009).  SaTScan uses several different models, including both the Poisson and 

Bernoulli models along with the space-time permutation model, the ordinal model, and 
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the Exponential and Normal models.  The software can handle data aggregated to census 

units or other geographical levels, or unique coordinates for each observation.  SaTScan 

has the flexibility to handle spatial heterogeneity of a background population, any 

categorical covariates, multiple data sets, temporal trends and missing data.  

CrimeStat is a popular spatial statistics program for the analysis of crime incident 

locations.  CrimeStat was developed by Ned Levine & Associates of Houston, Texas and 

provides statistical tools to aid many law enforcement agencies and researchers across the 

country in effectively mapping crimes (Levine, 2013). The program includes more than 

100 statistical routines for the spatial analysis of crime, including nearest neighbor 

hierarchical clustering, kernel density estimation, space- time analysis, journey-to-crime 

modeling and regression modeling (including Poisson regression), among other area-

based methods, and also has the ability to write graphical objects to ArcGIS. 

Ver Hoef, Peterson, Clifford and Shah (2014) created an R package that will 

analyze the stream networks described in their previous works.  The Spatial Stream 

Network package (SSN) imports GIS data as a SpatialStreamNetwork object and uses 

distance metrics and geostatistical models unique to stream networks, including water 

volume and directional flow.  The package also includes traditional models that use 

Euclidean distance, simple random effects models, and Poisson and binomial families for 

a generalized linear mixed model.  The most unique component of the 

SpatialStreamNetwork object being analyzed is that it contains both point and line 

features within the same object rather than as two separate objects. 
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2.3.4 Visualization tools 
 

The mapping techniques described above focus on visualizing one variable at a 

time.  Conventional segment encoding does not extend to viewing multiple variables (e.g. 

crime rates and crime-related covariates) together in one visualization.  There are 

examples that use segment thickness and dash patterns but these are not typically 

effective when the segments in the plot are dense.  However, there is an effective 

dynamic Java package called CCmaps (conditioned choropleth maps) for viewing areas 

characterized a dependent variable and two covariates.  Dr. Carr produced a variant 

called DPnet (dynamically partitioned network) that features colored polylines rather than 

color polygons.  This is suitable for showing road segments.   Carr, Wallin and Carr 

(2000) first described the conditioned map approach to representing three variables.  

Further descriptions with CCmaps examples appear in Carr, White and MacEachren 

(2005) and Carr and Pickle (2010).  The basic idea when applied to road segments is to 

represent the dependent crime variable using color.   There are three colors that 

distinguish low, middle, and high values.  The analyst controls what is meant by low, 

middle, and high by using a three-class slider.  To address two covariates, DPnet 

partitions the single map into a two-way 3 x 3 grid of maps.  The grid highlights road 

segments with low, middle, and high values of the first covariate in the left, middle and 

right columns respectively. Analogously, the grid highlights the road segments with low, 

middle and high values of the second covariate in the bottom, middle and top rows, 

respectively.   Technically, showing the non-highlighted segments in a 4th color that is 
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closer to the background serves to highlight the segments shown in the color slider 

colors.   

The analyst selects the dependent variable to attach to the color slider and the two 

covariates to attach to the two three-class partitioning slides.   Then the analyst adjusts 

the sliders to control what is meant by low, middle, and high values.  Dynamic feedback 

includes changes in road segment colors in the grid of maps.  The averages of the 

highlighted road segment crime values for each the nine map appears at the top right of 

each of the map and the R-squared from fitting these means to corresponding partitioned 

sets of road segment crime values appears at the lower right of the grid of maps. This and 

other statistics are all updated dynamically with adjustments to the partition slider 

thresholds.   Examples appear in Chapter 6 using DPnet to partition crime counts for road 

segments in conjunction with two additional variables.   
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CHAPTER 3.  DATA 

3.1 Crime Data 
 

I use and develop methodologies that support multivariate analysis and 

visualization of crime statistics with road segments as the fundamental unit of analysis.   

However, such methodology is of little use without associated data.  The collection, 

origination, and access to data are crucial to model.  Data availability and quality has a 

major impact on the resulting models. 

The crime data I use in illustrating this methodology comes from the Alexandria 

Police Department for Alexandria, VA.  The City and County of San Francisco also 

provided data for San Francisco, CA that can be accessed directly on the web 

(data.sfgov.org).   The methodology includes converting local geospatial polygon data 

such as U.S. Census block statistics (U.S. Census Bureau, 2013) to polyline (road 

segment) data.  Having additional variables associated with road segments opens the door 

to multivariate parametric and nonparametric modeling and prediction.   

 

3.1.1 Alexandria Crime Data 
 

The Alexandria Police Department provided a data set of crimes reported for the 

years 2006-2010, with examples of some of the variables given in Table 1.  Variables in 

this data set include a description of the crime committed, classification of that crime, and 
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the time of day and date which the crime occurred.  The time reported is generally 

recorded within the hour after the incident concludes; however, sometimes the report 

time or date is several days after the incident (for example, in cases of rape where there 

may be a delay in the victim reporting).  Time of day can factor into specific types of 

crime, such as robberies around midnight or daytime residential burglaries.  Crime is 

broken down into Part One, Nuisance, and All Other Offenses.  Within those categories 

there are subgroups of Part One (murder, rape, robbery, felonious assault, burglary, 

larceny, motor vehicle theft, etc.), Nuisance (alcohol violations, drug, prostitution, 

destruction, gambling, disorderly, etc.), and All Other Offenses, which includes anything 

that doesn’t fall into the first two categories. 

 

 

 
Table 1: Description of Alexandria Police Department Data 

Variable Description 

INCINMBR Incident Number 

DTREPORT Date of Crime (From 1/1/06 to 

12/31/10) 

TMREPORT Time of Report 

INCLASLIT, OFFENSELIT Type of Crime: Assault and Battery, 

Residential Burglary, Driving While 

Intoxicated, etc. 

AL_CRIMES_DB_CRIMES_IBRGENERAL Grouped Crime Types: Assault 

Offenses, Larceny/Theft Offenses, 

Liquor Law Violations, etc. 

CENSUS, SUBCEN Census ID numbers 

LAT, LONGIT Northern Virginia State Plane 

Coordinates (in feet) 

ZIP Zip Code 22314, 22301, etc. 

LOCATION 
Address of where each crime 

occurred/ was recorded 

AL_CRIMES_DB_OFFENSES_IBRAGAINST, 

AL_CRIMES_DB_OFFENSES_IBRGENERAL 

Crime against Person, Property, or 

Society 
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Variable Description 

LOCTYPELIT Type of Locality: 

Highway/Road/Alley, 

Residence/Home, Parking 

 

 

 

There are a total of over 62,000 crimes recorded, with both addresses and x-y 

coordinates given for where the crime occurred.  The coordinate system used here is the 

State Plane Northern VA coordinate system, which gives values in feet.  This coordinate 

system is the preferred projection of typical geospatial coordinates (latitude and 

longitude) chosen to most accurately preserve distance between points with minimal 

distortion to areas and angles.  Crime points that are not directly on top of the street 

segment are geocoded to the address where the crime occurred.   Estimated points, (for 

example, 400 King St.) are geocoded to sit on the actual street.  These are approximate 

points where the crime occurred; under certain circumstances an exact location may be 

unknown.  A few addresses with crime counts were removed because it was known that 

those crimes did not occur at these locations.  These include 2001 and 2003 Mill Rd and 

2034 Eisenhower Ave, which are locations of the old Police Department/Sheriff’s 

Offices.  Missing data exists where there where geocoding errors; some points were 

geocoded to be outside of the city limits of Alexandria and were removed.   

I will analyze both the full crime data set and assault offenses.  Assault offenses 

include assault and battery, simple assault, felonious assault, and assault and battery of a 

police officer(s).  This focuses on crimes involving the threat and/or an occurrence of 

bodily harm, as opposed to crime overall that includes both violent and nonviolent 
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crimes.  Assaults are also relevant over road segments as many assaults occurring over 

roadways (road rage assaults) and outside of public facilities near the street.  This subset 

includes over 5,500 crimes. 

One tool that allows us to visualize the crime location on a map is the R package 

‘RGoogleMaps’.   Figure 6 shows a subset of the City of Alexandria crime data with the 

crime locations plotted using yellow triangles. 

 

 

 

 

Figure 6: Close-up of Alexandria Crime using RGoogleMaps. 
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I also show the Alexandria crime data using ArcMap from ArcGIS (ESRI, 2011).  

Figure 7 gives one example using Assault Offenses.  There are at least three sections of 

the city in which distinct clusters appear.  One section is Old Town Alexandria, which is 

on the Southeast side of the city by the Potomac River on the right side of the map.  This 

is the downtown area of the city with many streets and businesses close together.  Next is 

West Alexandria, which is on the left-hand side of the map.  With this particular map 

view, the West Alexandria cluster could be divided up into further clusters, for example 

surrounding the highway on the left and one more towards Central Alexandria.  The third 

section is North Alexandria, which is technically in the Northeast section of the city.   
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Figure 7: Assault and Battery crime in Alexandria as viewed in ArcMap. 

 

 

 

 

Note that this visualization does not take into account the number of overlapping 

points; some points actually represent a location where many crimes occurred.  I address 

this by associating these crimes with the nearest road segments and assign the road 

segments a color scale based on the number of crimes along each segment.  Figure 8 is a 

map of assault counts along each road segment divided by the length of that segment in 

miles.  This supports thinking in terms of crimes per mile and helps to adjust for the 

tendency of longer segments to have more crimes.  Colors are defined by the quintiles of 
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this value.  Blue road segments correspond to low crime density while red road segments 

correspond to high crime density.  The red road segments clearly corresponding to the 

three clusters mentioned previously (that is, Old Town, West, and North Alexandria).   

The map legend shows the upper bound on road segments is 511.30 assaults per mile.  

Such segments beg for explanation.  Are there many counts, a small length, or both?  Are 

there location reporting errors?  We would not notice this anomaly in Figure 7.  In terms 

of graphical representation of point density, the direct plotting of points has poor 

perceptual accuracy of extraction (Cleveland and McGill, 1984).  It is better to use 

methods that show crime density along road segments as seen in Figure 8.   
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Figure 8: Alexandria Assault and Battery Crimes with crime count represented by road segment color. 

 

 

 

3.1.2 San Francisco Crime Data 
 

 Crime data locations for San Francisco, CA are made freely available by the City 

and County of San Francisco at data.sfgov.org (2014).  Crime data sets for a big city such 

as San Francisco are much larger than for Alexandria, VA.  I downloaded the crime 

incidents for 2012, which includes over 123,000 crime points.  Variables in the San 
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Francisco crime data set are given in Table 2.  Crime points are not as accurately 

geocoded as in the Alexandria data set; that is, they are only geocoded to the nearest 

block (e.g. 900 Block of Hyde Street) or intersection (e.g. 6
th

 St/ Harrison St).   

 

 

 
Table 2: Description of San Francisco Crime Data 

Variable Description 

IncidntNum Incident Number 

Date, DayOfWeek Date and Day of Week Crime was 

Committed (From 1/1/12 to 

12/31/12) 

Time Time of Report 

Descript Description of type of crime 

Category Grouped Crime Types: Vehicle 

Theft, Assault, Robbery, etc. 

PdDistrict Police District: Central, Southerm, 

Bayview, etc. 

Resolution Was someone arrested, cited, etc. 

Location 
Block where each crime occurred/ 

was recorded 

 

 

 

 Figure 9 shows a map of all of the crime points (in red) in San Francisco.  The 

northeast section of San Francisco is the downtown area, which is down the bottom of a 

large hill.  Based on past data, larger counts of crime are expected in this area.  In Figure 

9 there is such a multitude of points over a small area that they completely cover the map 

and make it impossible to visually assess crime density. 
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Figure 9: Crimes in San Francisco, CA in 2012. 

 

 

 

I can once again map the crimes to the roads to get a simple visualization of 

where most of the crimes are located. Figure 10 displays the crime by length similar to 

the map in Figure 8.   It is now possible to see the higher crimes located in the downtown 

area of San Francisco by the red road segments. 
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Figure 10: San Francisco Crimes with crime count per unit length represented by road segment color. 

 

 

 

3.2 Crime-Related Variables 
 

Data availability and quality limit the variety and quality of the models that help 

reveal and explain patterns in the data.  The criminology of place emphasizes the value of 

micro analysis, so motivates seeking point data with specific locations, road segment 

data, and area data at the smallest areal units available, blocks.  A rich resource for block 

data is the U.S. decennial Census.  This is the most spatially detailed data set the Census 
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provides.  There are a total of 1,294 blocks in Alexandria.  There are some locations 

where rapid change of these area statistics could be indicative of social disruption that 

relate to change in crime rates at the segment level.  A limitation of the block data is that 

it spans 10 years.  There are some time mismatches when comparing crime (e.g. years 

2006-2010) with data from the decennial census (2010 based on 10-year time span).  

However, the stability of the block data statistics and crime at locations over time still 

makes this block data relevant.  Statistics on age, sex, residential population and housing 

units can be found on the U.S. Census FactFinder website for 2010 at the block level 

(U.S. Census Bureau, 2013).  I downloaded shapefiles for Alexandria down to the block 

level from the 2010 US Census to map this information, and this downloaded data I 

transform to variables used.   

Age is a useful variable since most crimes are committed by those of a certain 

age.  Across age groups, there is a rise in the number of crimes committed by offenders in 

their adolescent years, with a peak in offenses by those in their late teens/early twenties, 

and a steady decline after that (Vold, Bernard and Snipes, 2002).  The U.S. Decennial 

Census provides statistics for approximately 20 age categories that I collapsed to the 

following 5 basic categories:  Under 17 years old, 18-24 years old, 25-44 years old, 45-64 

years old, and over 65 years old.  I also produced an additional variable by converting the 

counts to the percent of each age group within each block as an additional variable to 

consider in modeling.  Figure 11 gives an example of the 18-24 year old age group in 

Alexandria, VA.  The units here are percents converted to decimal form.  Notice how the 
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areas with high percentages of 18-24 year old are similar to the crime clusters shown 

before.   

 

 

 

 

Figure 11: Age within each block in Alexandria, VA. 

 

 

 

The Census also provides gender.  I convert the count data within each block to 

percent male and percent female as an additional variable to consider in modeling as 
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well.  Gender has one of the highest correlations with crime, with males much more 

likely to offend than females (Vold, Bernard and Snipes, 2002).  I convert the population 

counts to population density by dividing the counts by their calculated block areas.  In 

crime literature, the large population of certain neighborhoods is found to be associated 

with high crime rates (Vold, Bernard and Snipes, 2002).  Finally, I looked at housing 

block data and converted housing units to housing density by dividing by the area of each 

block.  Population and housing densities help describe the overall environment, which are 

important factors in environmental criminology (Brantingham and Brantingham, 1995).  I 

use ArcGIS to assign the area statistics to each polyline surrounding that block.  Each 

road segment will have two values.  I will use the average of those two values for 

modeling and visualizations.  

 

3.2.1 Alexandria Crime-Related Variables 
 

Aside from the Census block data, I obtained a few other crime-related variables 

for Alexandria, VA.  Two members of the Alexandria Police Department provided calls 

for service data.  This data is for the same time frame as the crime data (2006-2010) and 

included over 50,000 observations in an Excel file.  I successfully geocode about 39,000 

of these call locations using ArcMap in ArcGIS.  The location given only includes 

nearest intersection where the call was made rather than the actual address.  I used 

ArcMap tools to assign each call to the nearest road segment, with each segment getting a 

sum of those calls.  This data set gives the date and time of the call and the type of call.  

The type of call indicates witnessing something suspicious, a noise complaint, disorderly 



45 

 

conduct, shoplifting, etc.  I expect this variable to by highly correlated with crime data, as 

many of the arrests made are a result of a call made to the police department.  When 

analyzing assault crimes, I subset the calls for service data to only include calls related to 

assault.  For modeling purposes, I also created a variable by removing the “crime-related” 

calls but keeping complaints and other descriptors of social disorder.  More specifically, 

this “social disorder” variable includes animal complaints, drug complaints, missing 

person reports, noise violations, parking complaints, suspicious events, suspicious 

packages/substances, telephone complaints and traffic complaints.  An article from 

Wilson and Kelling (1982) makes the claim that disorder and crime are strongly linked at 

the community level.  In this article they describe what is known as the “broken 

windows” theory; that is, if a window is broken on a building and not repaired, the rest of 

the windows will soon be broken.  Undesirable behaviors in the neighborhood, if left 

untended, will lead to a breakdown of community control and lead the area to become 

more vulnerable to criminal activity.  I associate this variable with the nearest segment to 

give another resulting plot of count per unit length, shown in Figure 12. 

Home prices in Alexandria were obtained from GMU Center for Regional 

Analysis. (Dr. Ed Zolnik and Jeanette Chapman) through the Metropolitan Regional 

Information Systems (MRIS).  This data include homes sold from 2006-2010, which 

includes over 7,000 homes in the Alexandria area, geocoded to the exact address of the 

home.  It must be kept in mind before analyzing this data set that 2006 was the peak of 

the housing bubble, so home prices will be higher in 2006 and then decrease/flatten out 

over 2007-2010.  The number of sales will also be higher in 2006 and then drop off.  This 
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data set includes townhouses, duplexes, single detached homes, and condos, but excludes 

most new homes and all rental units.  There is a lot of research on the relationship 

between crime and economic conditions/poverty (Vold, Bernard and Snipes, 2002) and 

the price of homes can be a good reflection of this relationship.  This variable, since it is 

in point data form, can also be associated with the nearest segment.  The number of 

vacant houses is a useful variable in other studies, but I was not able to obtain this.   

 

 

 

 

Figure 12: Police Service Calls by Length in Alexandria, VA. 
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I studied the data to pick variables that were needed and transformations to 

improve the modeling.  After assigning the crimes to the road, I round the fractional 

values to the nearest integer (CrimeInt and AssaultInt) because the Poisson and Negative 

Binomial models will only work properly if given counts as the response variables.  Out 

of the different age and gender categories, I specifically select the counts of 0-17 year 

olds, 18-24 year olds and the count of males for use in the model.  I select these age and 

gender variables out of the possible categories since there is strong background literature 

of the influence of young males and crime.  I will also use an interaction term specifically 

with the 18-24 year olds and males to account for the strong relationship the two 

variables jointly have with regards to crime.   

The population and housing densities are scaled by dividing by 1,000 (since the 

area in meters squared created very small values). The full calls for service data set are 

used for the full crime data set, while the assault calls for service data is used for the 

assault data set.  The social disorder variable is used for both data sets.  The distributions 

of these variables are highly skewed.  To reduce this skewness in the data I use a simple 

square root transformation of the age, gender, housing, population, and call count 

variables.  Housing prices are only available for selected segments.  We will use a simple 

imputation strategy to give values to segments that do not already have values.  

Imputation is the process of replacing missing data with substituted values.  For those 

segments that do not have housing prices, I give them the average value of the prices 

from two levels of nearest-neighbor segments.  If none such value exists at this level, I 

give the segment the median housing price value of the entire data set.  More 
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sophisticated imputation methods were not used here, but are possible.  These housing 

price values are also scaled by 1,000.   

I create a scatterplot matrix of the crimes versus the crime-related variables using 

hexagon binning.  In hexagon binning, the entire    plane is divided into a grid of 

hexagons, with the number of points falling in each hexagon being counted and stored.  

The color in the hexagon plot is determined by this count, with higher count densities 

getting a darker color.  The matrix also does a loess smooth over each plot, which gives a 

smooth line to represent the overall trend in the data.  The diagonal plots show the 

variables names and their densities.   The bottom row shows how the covariates relate 

directly to the crime variable at the left of the row.  You can see, for the most part, a very 

small increase in values as crime increases. 
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Figure 13: Scatterplot matrix with hexagon binning and loess smooth: Full Alexandria crime data set, first 

subset of variables. 
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Figure 14: Scatterplot matrix with hexagon binning and loess smooth: Full Alexandria crime data set, 

second subset of variables. 

 

 

 

Each variable has a positive correlation with crime except for housing price.  The 

crime decreases in areas with high property values.  Crime increases as population and 

housing density increases but then at a certain point starts to stabilize.  There are many 

zero values for many variables.  The high number of zeros leads to a dark hexagon at the 

lower left of each plot.  This supports the use of zero-inflated models, described in 

Chapter 5.     
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Figure 15 highlights an outlier with a green dot.  This road segment has a large 

number of calls for service compared with its number of crimes, going against the trend 

of the other segments.  I extract the geographical coordinates of this segment and identify 

it using RGoogleMaps.  This segment is near a group of large apartment buildings along 

the highway, and nearby the Landmark Mall (opposite side of the highway on the 

southeast corner of the map), which tends to have large counts of crimes located near it.  

Identifying individual anomalies in this way really gets the root of the criminology of 

place; each segment can be very unique and different.  We do no delete this outlying 

observation prior to modeling, however this can be taken under consideration.   
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Figure 15 Scatterplot matrix with outlier identified. 
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Figure 16: Close-up of outlier in full crime data set. 

 

 
 

3.2.2 San Francisco Crime-Related Variables 
 

 I include San Francisco as a second location in my research to show my modeling 

is flexible to different geographies and variables.  For San Francisco, elevation and speed 

limits are possible crime-related covariates.  As you go down the large hill that makes up 

the center of the map of San Francisco into the downtown area in the Northeast, the crime 

tends to increase as shown previously in Figure 10.  A video on this phenomenon is “The 

Joy of Stats” by Hans Rosling, where he drives down this hill and labels crime locations 

(Rosling, 2010).  He also comments on how the San Francisco Police Department has 

made remarkable efforts to provide access to their crime data.  Due to the way in which 
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cities develop, geographers document high correlations between economic wealth and 

elevation in many locations (New Orleans, Richmond, Atlanta, etc.), with the poorer 

parts of the city being located at lower elevations (Campanella, 2002).  I obtained 

elevation at the block level from the City and County of San Francisco website 

data.sfgov.org.  Speed limit data can also be obtained for this website for most major 

streets in San Francisco.  This data is already in a polyline format and just needs to be 

divided up by intersection.  As stated before, people tend to commit crimes along the 

paths that they normally take.   Roads with high speed limits tend to be highways, with 

few crimes expected to be located on them.  Figure 17 displays the speed limits in San 

Francisco, with a lot of the higher speed limits on the highways leading in and out of the 

city.  The roads with lower speed limits tend to be smaller, more local roads, and may 

have higher crime on them.  Many of the segments' speed limit information are not 

provided.  However, in California the default speed limit for unlabeled roads is 25 mph; 

thus, 25 mph is imputed in place of all unknown segment values. 
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Figure 17: Speed Limits in San Francisco, CA. 

 

 

 

I created similar scatterplot matrices with hexagon binning and smoothing line to 

that of the Alexandria variables with those I gathered for San Francisco.  We see similar 

trends with crimes versus the Census crime-related variables (such as housing density) 

using hexagon binning, with perhaps an even stronger correlation.  Higher elevation in 

Figure 19 is related to lower crime in the data set.  It seems based on the smooth line that 

crime has a mostly stable trend across speed limits; however, the points themselves for 

speed limit do show some larger crime points for small speed limits.  I will evaluate how 
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important each of the variables is in modeling the overall crime in San Francisco in 

Chapter 6.   

 

 

 

 
Figure 18: Scatterplot matrix with hexagon binning and loess smooth: San Francisco crime data set, first 

subset of variables. 
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Figure 19: Scatterplot matrix with hexagon binning and loess smooth: San Francisco crime data set, 

second subset of variables. 
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CHAPTER 4.  ASSIGNING AND SMOOTHING CRIME ON STREET 

SEGMENTS 

4.1 Assigning area and point data to street segments 
 

In order for street segments to serve as the fundamental units of crime analysis, 

methods or algorithms are needed that associate crimes and crime-related statistics with 

street segments.  The area data consists of census blocks.  It is straightforward to 

associate census block values to their bounding segments.  Except for segments located 

along the boundaries of the map, each segment will get two values for a crime-related 

variable that represent the two sides of the street.  In more general situations, it could be 

feasible that a road takes on three or more values.  There are many different functions 

that could be applied to the two values to create one representative value for that 

segment.  Here I use a simple average.  Taking the difference between the two values 

could also be interesting for future analysis of differences between sides of streets.   

I would like something more sophisticated to measure the crime points along the 

street segments.  In the point data description below I refer to projecting crime events to 

street segments, since this is the dependent variable of primary interest.  However, the 

same method is applicable to other variables assessed at “points”.  These could be either 

dependent variables or covariates in models.  

When crime events are recorded, police or others produce reports that use street 

addresses (along with geospatial coordinates) as the crime location.  In such situations 
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humans are basically making the association.  Of course there are errors in reporting and 

subsequent processes; for example, more than one street could have the same name.  I 

make use of the data provided knowing that there are some problems and provide one 

way of addressing the gap in associating crime points with street segments whose 

polyline vertices have known geospatial location.   

Road segments are defined as the portions of road bounded by two intersections.  

A road segment is considered a polyline, which is a collection of line segments which are 

treated as one object.  A block is a polygon, which is consisted of one or more polylines.   

I start with the case of crime located in a polygon whose edges are street segments.  In 

order for street segments to serve as the fundamental analysis unit for crimes, methods 

with algorithms are need to associate point indexed data with street segments.  Some 

algorithms are available in software such as ArcGIS for associating points with lines. A 

simple approach associates point data with the line to which it is closest. Geometrically, it 

is straightforward to assess the closest distance of a point to a line.  The orthogonal 

projection of the point onto the line or an extension the line provides a basis for assessing 

distance.  This is replaced by distance to the closest endpoint if the projected point is on 

an extension of the line.  When the road segment is a polyline, the distance to the polyline 

can be the smallest of the distances to its constituent lines. 

Associating a crime totally to the closest road segment seems a natural choice 

when the crime is much closer to the road segment than to other points of surrounding 

road segments.  However, there are times when a crime can be almost equally close to 

two segments or more.  This motivates assigning fractional crimes based on inverse 
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distance to surrounding road segments. The use of fractional crimes not may seem natural 

to those used to looking at discrete counts, but seems reasonable to address otherwise 

ambiguous situations.  Also, accumulated fraction of crimes can be rounded to the nearest 

integer for presentation and discrete modeling purposes. 

One approach to projecting crimes to segments is to allocate a fraction of the 

crime based on the relative distance of the nearest point of the each of the surrounding 

line segments.  My approach allocates a fraction of the crime based on the relative 

distance to street segment midpoints.  There were two reasons for this.  First, the Census 

block boundaries are segments whose midpoints are more central to the blocks.  Second, 

the segment midpoints offer a straightforward way assess the distance between connected 

segments.  I use an inverse distance weighting so that crimes farther away from the road 

segment midpoint will receive less weight than those close to the road segment. Midpoint 

  will take a weighted value     : 

      ∑
     

∑       
   

 
     (9) 

where       [
 

       
]
 

 for     and d(x, xi) is the road distance from segment to 

crime point xi, i = 1,…,N.   In my example I choose    , which is simple inverse 

distance weighting.  This transformation is monotone.  As the values of   increase, 

weights given to points farther away from   decrease even more, while weights given to 

points close by increase more.  If    , each segment gets equivalent weighting. 

In order to assign crimes from inside a polygon to a road segment, I compute 

these weights to assign each crime inside a polygon fractions of crimes for the segments 
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of that polygon.  Figure 20 illustrates the algorithm one crime point inside a polygon with 

5 segments. Each segment midpoint is assigned a “fraction” of the crime depending on 

how close that crime is to that midpoint.  As stated previously, I can also reweight this 

with a different value of  , so that midpoints farther away get even smaller weights and 

the closer midpoints get even larger weights. The impact of a crime at a location inside a 

polygon of segments only has impact outside the polygon via segment distances from the 

polygon segments.  

 

Figure 20: Weights of a Crime Assigned to Midpoints 

 

 

 

The sum of all fractional counts at each midpoint is the crime value for that 

midpoint.  Most segments have two sides of the street (two neighboring blocks/polygons) 

with fractional crime counts being accumulated from both sides.  Note that there are 

some geometric concerns not considered when assigning crimes to road segments in this 
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way.  An intuitive way to think about distance is the travel time for a human.  Issues arise 

when there is a feature such as a building or river that is a barrier between a point and 

road segments.  The closest segment (by travel time) may be different than the smallest 

distance to each segment.    

More generally, additional methods of assigning points to segments and assessing 

the distance from segment to segment can be developed based on the topic and the kind 

of data available.  Methods of assigning point data to road segments can be refined based 

on additional experience and scrutiny. For example, there may be times when barriers 

between points and lines exist that should be respected. 

 

4.2 Smoothing crime counts over street segments 
 

I smooth the crime counts over the road segments in order to better visualize the 

occurrence of crime hotspots.  I would like the impact of a crime at a location inside a 

polygon of segments to have impact outside the polygon via segment-to-segment 

distance.  I want to borrow strength from neighboring connected segment’s crime counts 

to average out local spatial variation to reduce noise, but not so much that I oversmooth 

and increase bias.  I measure the road distance from segment midpoint to segment 

midpoint in order to smooth the new fractional values of the crime counts over the road 

network space. 

A segment is considered a “neighbor” to another is they both share at least one 

vertex.  For each segment, I incorporate the values of crime counts from two levels of 

nearest segments to calculate new smoothed crime counts, as illustrated in Figure 21.  I 
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consider all segments (blue) connected to the segment of interest (black), and all of the 

segments (red) connected to the blue segments.  For the smoothing, I will use both the 

distance of the nearest segments and the angle at which they meet.  The rationale behind 

using the distance is that I assume segments closer to the segment of interest will be the 

most similar in crime composition.   

 

Figure 21: Graphic example of segments two levels apart. The black line is the original line, the blue lines 

are the nearest connected segments, and the red lines are the nearest connected segments to the blue lines. 

 

 

 

For angles, I use a continuous scale that gives highest weight to those segments 

that create      angles at intersections.  That is, the segments join in a straight line.  I 

give the smallest weight to intersections that join with an     angle.  High smoothing 

weights for segments making straight angles makes sense intuitively from a line-of-sight 

and traffic flow perspective—roads in a straight line to the next road would be expected 
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to be relatable.  Similarly, intersections with small angles would be more related to each 

other since they are so close in area (small distance from one road to the next).  There 

may be an increase in small walkways and alleyways between roads that meet at a sharp 

angle.  The easier accessibility between roads that create sharp angles will make the roads 

more relatable in their crime counts. 

The angle weight for all first-order neighbors will be produced using the angle 

between the original segment and those first-order neighbors.  The angle weight for all 

second-order neighbors will be the angle between the second-order neighbor and its 

corresponding first-order neighbor.  Figure 22 shows a graphical example of this.  The 

black segment represents the original segment.  When comparing with the red segment, 

the only angle under consideration is the one between the blue and red line.  

 

 

 

 

Figure 22: Depiction of angles: The black line is the original line, the blue line is the nearest connected 

segment, and the red line is the nearest connected segments to the blue line. 

 



65 

 

 

 

An alternative for calculating the angle weight of second-order neighbors could 

be to incorporate both the angle from the first neighbor and the angle of the second 

neighbor with a product of angle weights, but that was not done here.  Looking at Figure 

23, the angles considered when comparing the black segment to the red segment would 

be the one between the black and blue segment and between the blue and red segment. 

However, I did not use this angle weighting option in this dissertation. 

 

 

 

  
Figure 23: Alternative depiction of angles: The black line is the original line, the blue line is the nearest 

connected segment, and the red line is the nearest connected segments to the blue line. 

 

 

 

I define the length from    from segment   (where   is in the set of neighboring 

segments       ) to the original segment to be the distance from the midpoint of segment 



66 

 

  to the midpoint of the original segment along the road network.  I also define    to be 

the angle at which each line segment   meets another at an intersection.  Then the crime 

count of the original segment    and the surrounding segments    for          are 

reweighted as follows: 

      
     

     
         

  
 
  

∑   
 
  

        

 

(10) 

 

where    is the crime count of segment          and      
and      

 are the new 

weighted values for the original segments and segment  , respectively.  The angle weight 

   is defined as  

     [      
       

  
]  

(11) 

 

I define   to be how much weight is the fraction of the original segment count retained at 

that segment and     to be the fraction of the original segment count attributed to its 

first and second segment neighbors.   You could think about this as a type of broadcast 

smooth, with pieces of the original segment counts being given out to its surrounding 

segments.  For example, for      , half of the original crime count is incorporated into 

the smooth count for that segments and the other half is attributed to the first and second-

level neighboring segments.  The inverse distance weighting here gives smaller value to 

those segments whose distance is larger to the original segment.  The value of   
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determines how much weight is contributed by the angles of the surrounding segments.  

In my example I use      , but choice of both   and   is flexible.  Once      
 and 

     
are calculated, they are summed up for each segment over the entire data set, 

creating the new smoothed counts.  

This weight preserves the overall count of crime, while simply reassigning the 

values.  When visualizing my smoothed counts, the length of segments may have a 

significant effect in analysis.  Some roads are very long and have few intersections (such 

as highways), creating segments very long relative to most of the segments in the data 

set.  These will then naturally higher counts to longer segments and lower counts to 

shorter segments.  In order to standardize the values, I will divide the crime count for 

each segment by the length of that segment when mapping. 

 

4.3 Smoothing Results 

4.3.1 Alexandria Crime and Assaults 
 

An algorithm was created in R which identifies the polygon (Census block) that 

each crime is in, along with the distance from each crime to each segment midpoint of 

that polygon.  All of the inverse distances are calculated and each road segment midpoint 

is given the sum of these values.  The data is imported in ArcMap of ArcGIS and each 

segment is given the value of its midpoint.  Figures 24 and 25 give the resulting maps 

with a 5-point color scale with break points defined at quintiles for the full crime data set 

and the assault data set, respectively.  I divide this fractional count value by the length so 

that roads don’t get exorbitantly high values of crimes simply because they are long roads 
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with few intersections.  The highest 20% of crime counts on the roads are shown in red.  

The big cluster of crime in Southeast Alexandria can still be seen. 

 

Figure 24: Crimes per unit length along road in Alexandria prior to smoothing 
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Figure 25: Assaults per unit length along road in Alexandria prior to smoothing 
 

 

 

From Figure 25 with the Assault map you can see the 3 clusters defined 

previously (West, Northeast, and Southeast) even more clearly.  In order to calculate the 

smoothed crime values, I take the fractional crime counts I have just compiled and 

smooth over the nearest roads, along with the nearest roads to those roads (two levels of 

nearest road segments).  I do this by compiling a polyline shapefile in ArcGIS based on 

the census block polygon shapefile that includes the fractional crime count, the polylines 
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starting coordinates, ending coordinates, midpoint coordinates, and lengths.  Note that 

converting the polygon to the polyline file creates duplicates of road segments except for 

those on the boundaries of the City of Alexandria.  Using R, I sort the data by their 

coordinate values and join together the data that belongs to the same segment.  Then, I 

created an algorithm that locates adjoining road segments by finding all segments that 

share starting coordinates and/or ending coordinates.   

The distance between a segment and its adjoining segment is defined here as half 

of the length of the original segment added to half of the length of the adjoining segment.  

I then go another level, finding the adjoining segments to each segment already known to 

be connected to the original segment.  The distance to the original segment here is the 

accumulation of half of the length of the original segment, the entire length of the 

adjoining segment, and half of the length of the segment connected to that.  Angles 

between roads are also incorporated as described in earlier in this chapter.  A list structure 

is compiled storing these lengths and angles, which I then use in the formula from 

Section 4.2 that gives some weight to the original segment and some weight to the 

neighboring list of segments.   

Figures 26 and 27 show maps from ArcGIS using      , meaning that 60% of 

the crime value comes from the original segment, while 40% come from its connected 

segments to second degree.  The choice of   is up to the discretion of the user; it seems 

appropriate, however, that       so that at least half of the value of the segment is 

coming from its original value. 
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I keep the same break points on the color scale in the smoothed maps as those 

from Figures 24 and 25 for comparison.  While the differences seem to be slight when 

comparing the two figures, you can see that some of the segments that were colored red 

in the previous figure in the North and the West are no longer considered as highly 

valued.  Observe how the colors have a smoother transition from red to blue, as opposed 

to Figure 24 and 25 where the colors appear more scattered; this helps to identify more 

clearly the areas that may need more police patrolling.  Many of the road segments in the 

Old Town Alexandria area remain red, as all of their nearest connected segments have 

equally high counts to the original segment and would be left relatively unchanged. 
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Figure 26: Crimes per unit length along road in Alexandria after smoothing, a=0.6. 
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Figure 27: Assaults per unit length along road in Alexandria after smoothing, a=0.6 

 

 

 

I compare Figure 27 with a different level of   in Figure 28.  Here I use      , 

which will use half of the value from the original segment and half of the value from 

neighboring segments.  You can see very slight differences in these two figures.   
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Figure 28: Assaults per unit length along road in Alexandria after smoothing, a=0.5. 

 

 

 

4.3.2 San Francisco Crimes 
 

I similarly look at crime maps for San Francisco, CA, once again with      .  

You can see a large red patch in Northeast San Francisco, which is the downtown area, in 

Figure 27.  Once again, red road segments indicate having the highest 20% of crime 



75 

 

counts compared with the other segments.  Figure 28 shows the crime data after 

smoothing, with the values more smoothly transitioning from red to blue. 

 

 

 

 
Figure 29: Crimes per unit length along road in San Francisco prior to smoothing. 
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Figure 30: Crimes per unit length along road in San Francisco after smoothing, alpha=0.6. 
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CHAPTER 5.  MODELING  

5.1 Poisson and Negative Binomial (Zero-Inflated) Regression 

5.1.1 Poisson Regression 
 

The Poisson distribution is a discrete probability distribution that expresses the 

probability that a certain number of events occur in a given interval (Faraway, 2006).  

The Poisson distribution arises when the events being counted occur independently, the 

probability of two or more events being counted occurring simultaneously is zero, the 

events occur randomly in time or space, and the average count in an interval is 

proportional to the length of that interval.  Formally, the probability mass function for 

random variable   with Poisson parameter     is 

 
        

     

  
         

(12) 

A basic property of the Poisson distribution is that both its expected value (the average 

count in an interval) and variance are equal to a single parameter  .  In real-life examples, 

it may be the case that the variance is much larger than the mean.  This is referred to as 

overdispersion (Cameron and Trivedi, 1998).   

The Poisson regression model is the standard model for count data.  This assumes 

that the response variable has a Poisson distribution and can be modeled by a linear 

combination of unknown covariates with regression coefficients  .  For a sample of   
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independent Poisson random variables           , a simple linear model with mean    

depending on explanatory variables    is  

      
    (13) 

Since the left side of this equation, which is the expected count, must be 

nonnegative, it is typical to instead consider the log-linear model 

            
    (14) 

Then for the  th
 of   independent observations, the distribution of    given    is Poisson 

distributed with density 

 
         

   
       

   
            

(15) 

where           
   . 

By the “law of rare events” (Levine et al., 2013), the total number of events will 

approximately follow a Poisson distribution if an event occurs in any of a large number 

of trials but the probability of occurrence in any given trial is small and assumed to be 

constant.  Poisson regression is appropriate for the analysis of rare events such as crime 

incidents, motor vehicle crashes, and uncommon diseases.  According to Haining (2003), 

the Poisson distribution is often used to model both crime counts and rare diseases.   

 

5.1.2 Negative Binomial and Zero-Inflated Models 
 

As stated in the previous section, overdispersion is a common problem when 

applying the Poisson distribution to real-life data.  There are several different methods to 

account for overdispersion and to better model the data.   Some software allows for 
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overdispersion in the fitting procedure.  In some cases where the variance of the data is 

much larger than the mean, the more flexible negative binomial model, which has two 

parameters determining the mean and variance, may be a more appropriate choice 

(Faraway, 2006).  Bayesian modelling can also address overdispersion by incorporation 

of random effects as well as fixed spatially structured components (Haining, 2003).   

The standard form of the probability distribution for the negative binomial model 

is 

 
        (

     

 
)                        

(16) 

 

where   is the probability of success and   is the number of failures.  The negative 

binomial distribution can alternatively be written as a mixture of Poisson and Gamma 

distributions: 
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(17) 

 

In my case, the    counts can be assumed to follow a Poisson distribution while the mean 

   follows a Gamma distribution (Levine, 2013).  Then the negative binomial distribution 

can then be defined as  

                   

 

(18) 

with Poisson mean 
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       (19) 

 

where   is a vector of coefficients for the k parameters (plus an intercept) and the model 

error    is independent with a gamma distribution with mean equal to 1 and variance 

equal to     with     being called the inverse dispersion parameter (Levine, 2013).  

The negative binomial model can be useful not only when the variance is much larger 

than the mean, but also when the dependent variable is extremely skewed. 

One of the possible causes of overdispersion in Poisson regression is the presence 

of excess zeros.  Counts of zeros often appear in area-based count data when the 

populations are very small.  As an extreme example, Loving County, Texas, with its 2010 

population of 82, is very likely to have zero cases of death from leukemia in that year.  

There could be zero cases of deaths from any cause for a specific year.  As indicated 

later, there is an excess of zero crimes in the Alexandria crime data both when treated as 

areal/block data and as road segments data.  Also note that some blocks do not have any 

people living in them (population of zero).  Out of the 1,294 blocks, a total of 347 of 

them have zero population.  It might be helpful if such blocks were modeled differently.  

The negative binomial model in part helps to compensate for this problem.   

More specific strategies to model crime data that have an excessive number of 

zero counts involve using the zero-inflated Poisson or zero-inflated Negative Binomial 

regression models, where the zeros are modeled separately.  The theory behind zero-

inflated models is that the zero count data is caused by a separate process and should be 

modeled independently of the other count data.  Thus, the nonzero count data is modeled 

with the Poisson/Negative Binomial model while the zeros are modeled by a logit model.    
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Formally the zero-inflated Negative Binomial distribution is defined as follows (Cameron 

and Trivedi, 1998):  

                    
    

               (
     

 
)                   

 

(20) 

 

where    is the probability of extra zeros.  

 

5.1.3 Alexandria Crime Modeling Over Area 
 

For modeling over areas, the point data is summed up within each Census block, 

while the Census block data is kept in its original format.  The R functions glm() and 

zeroinfl() in the ‘pscl’ package can fit both simple Poisson and Negative Binomial 

regression models with or without the zero-inflated components.  Here I apply the above 

models to the Alexandria crime data set and compare block-based models with road 

segment models with regards to modeling fits and residuals.  I chose not to model San 

Francisco at this time because it has a much larger number of segments (over 16,000) and 

thus is much more computationally intensive.  After exploring the data and making 

appropriate transformations, we put together the following models for analysis: 
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I will look at the full crime data set for the first four models.  I will analyze both 

crime and assault models in the spatial models section.  First, I calculate a simple Poisson 

regression model using the function glm() in R. The crimes are assigned to roads as 

explained in Chapter 4.  These fractional crime counts are rounded to integers to be 

compatible with the discrete distribution model.  Table 3 below shows the model results 

for the Alexandria, VA full crime data set.  As stated before, I round crime to the nearest 

integer as these models will only take discrete values.   

 

 

 
Table 3: Poisson Regression Model for Alexandria Crime Aggregated to Blocks. 

Coefficients Estimate Standard Error Z-Value P-Value 

Intercept 3.310 0.143 232.310 <0.001 

Under17Count 0.060 0.002 25.889 <0.001 

Age18to24Count 0.319 0.008 38.880 <0.001 

MaleCount -0.009 0.004 -23.155 <0.001 

PopDens -0.677 0.060 -11.264 <0.001 

HousingDens 0.522 0.082 6.366 <0.001 

HousePrice -6.15E-4 2.25E-5 -27.296 <0.001 

Calls 0.112 0.002 54.931 <0.001 

SocialDisorder -0.044 0.004 -9.499 <0.001 

Age18to24*MaleCount -3.23E-6 3.31E-7 -9.758 <0.001 

 

 

 
Table 4: Deviance Residuals for Poisson Regression Model for Alexandria Crime Aggregated to Blocks. 

Min Q1 Median Q3 Max 

-36.267 -5.603 -3.024 0.180 103.416 

 

 

 

The Poisson regression coefficient estimates, standard errors, and p-values are 

given in the output of the summary of the model.  This model suggests that all of the 

variables have a significant effect on the crime count.  However there are many indicators 
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suggesting that this model is not appropriate to use in this case.  For Poisson models, the 

deviance residuals calculated in Table 4 should be approximately normally distributed if 

the model is specified correctly.  Both the table with the median of -3.024 below zero and 

a large maximum and the boxplot (Figure 31) indicate the distribution is skewed to the 

right.  The residual deviance in Table 5 can be used to measure the goodness of fit of the 

model.   With the residual deviance of about 66319 and 1282 degrees of freedom, a chi-

square test yields a small p-value (close to 0), indicating the data does not fit the Poisson 

model well.  
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Figure 31: Residual Deviance Values from the Poisson Regression Model 

 

 

 
Table 5: Residual Deviance of Poisson Model Aggregated to Blocks. 

Residual Deviance Degrees of Freedom P-Value 

66318.85 1282 <0.001 

 

 

 

As explained previously, overdispersion can exist in Poisson crime count models 

like mine, with the variance being much larger than the mean.  I use the function 

dispersiontest() in R to test the null hypothesis of no overdispersion and the p-value of 
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0.007745 appears in Table 6.  One way to address this over-dispersion is using the Zero-

Inflated Poisson model.  A simple specification of this model is to assume all zero counts 

have the same probability of belonging to the zero component.  I generate the following 

results using the zeroinfl() function, which once again gives that all of the variables have 

a statistically significant relationship to crime counts as shown in Table 7.   

 

 

 
Table 6: Overdispersion Test of Poisson Model Aggregated to Blocks. 

Z-Value P-Value Dispersion 

1.736 0.041 166.658 

 

 

 
Table 7: Zero-Inflated Poisson Regression Model for Alexandria Crime Aggregated to Blocks. 

Coefficients Estimate Standard Error Z-Value P-Value 

Intercept 3.897 0.015 264.50 <0.001 

Under17Count 0.062 0.002 25.97 <0.001 

Age18to24Count 0.254 0.005 54.76 <0.001 

MaleCount -0.052 0.002 -21.69 <0.001 

PopDens -0.912 0.063 -14.55 <0.001 

HousingDens 0.402 0.084 4.82 <0.001 

HousePrice -0.001 0.000 -54.40 <0.001 

Calls 0.108 0.002 54.40 <0.001 

SocialDisorder -0.056 0.004 -12.74 <0.001 

Age18to24*MaleCount -0.003 0.000 -25.50 <0.001 

 

 

 

Similarly, I model this area data using the Negative Binomial and Zero-Inflated 

Negative Binomial Models.  As shown in Table 8, the first simple negative binomial 

model yields very different results than the previous Poisson model.  Many of the p-

values have increased and some of the crime-related variables are no longer significant.  
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Specifically, this model gives the 18-24 year olds, population density, housing prices, and 

calls for service as having a significant effect on crime counts. 

 

 

 
Table 8: Negative Binomial Regression Model for Alexandria Crime Aggregated to Blocks. 

Coefficients Estimate Standard Error Z-Value P-Value 

Intercept 2.752 0.100 27.636 <0.001 

Under17Count -0.020 0.041 -0.489 0.625 

Age18to24Count 0.337 0.054 6.200 <0.001 

MaleCount 0.015 0.032 0.459 0.646 

PopDens -2.032 0.705 -2.884 0.004 

HousingDens 1.294 0.948 1.365 0.172 

HousePrice 0.000 0.000 -2.186 0.029 

Calls 0.169 0.027 6.250 <0.001 

SocialDisorder -0.007 0.056 -0.118 0.906 

Age18to24*MaleCount -0.003 0.002 -1.645 0.099 

 

 

 

Table 9 shows the coefficients of the zero-inflated negative binomial model.  

Compared with the regular negative binomial model, while some of the p-values have 

gone down, the same four variables remain significant.   

 
 
 
Table 9: Zero-Inflated Negative Binomial Regression Model for Alexandria Crime Aggregated to Blocks. 

Coefficients Estimate Standard Error Z-Value P-Value 

Intercept 3.173 0.090 35.090 <0.001 

Under17Count -0.032 0.035 -0.904 0.366 

Age18to24Count 0.349 0.047 7.420 <0.001 

MaleCount -0.012 0.024 -0.531 0.595 

PopDens -2.108 0.571 -3.695 <0.001 

HousingDens 1.303 0.752 1.734 0.083 

HousePrice 0.000 0.000 -5.069 <0.001 

Calls 0.157 0.022 7.060 <0.001 

SocialDisorder -0.023 0.045 -0.517 0.605 

Age18to24*MaleCount -0.001 0.002 -0.779 0.436 
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Model-fitting measures are used to calculate which model will give the best 

predictive values.  In Table 10, I compare these past four models in how well they fit the 

data by comparing their mean squared error and AIC.  The mean squared error is the 

average of the squared residuals from the model (the residuals are the difference between 

the observed values and the model’s predicted values).  AIC is short for Akaike's “An 

Information Criterion”, which is calculated for one or several fitted model objects where 

a log-likelihood value can be obtained.  It follows the formula                

            , where SSE is the residual sum of squares,    represents the number of 

parameters in the fitted model, and   is the sample size.  The smaller the residual values 

and the smaller the AIC, the better the fit.  The Poisson model gives wildly larger values, 

indicating that the Negative Binomial model, specifically the Zero-Inflated Negative 

Binomial Model, is the most appropriate.   

 

 

 
Table 10: Model Comparisons for Alexandria Crime Aggregated to Blocks. 

MODEL MEAN SQUARED 

ERROR 

AIC DF AIC VALUES 

POISSON 166.53 12 71368 

ZERO-INFLATED POISSON 19.34 11 60437 

NEGATIVE BINOMIAL 6.58 11 10628 

ZERO-INFLATED 

NEGATIVE BINOMIAL 

5.24 12 10595 

 

 

 

5.1.4 Alexandria Crime Modeling Over Roads And Comparisons 
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I can run analogous models for a road segment data to see how this compares with 

area-based modeling.  As I explain later, I assign fractional crime counts to the nearest 

road segments, aggregate them for each segment and round the result to integers. Table 

11 shows a terse summary for the Poisson, zero-inflated Poisson, negative binomial, and 

zero-inflated negative binomial regression models. 

 

 

 

Table 11: Model Comparisons for Alexandria Crime Assigned to Roads. 

MODEL MEAN SQUARED 

ERROR 

AIC DF AIC VALUES 

POISSON 4.489 10 18334.83 

ZERO-INFLATED 

POISSON 

2.907 11 17773.81 

NEGATIVE BINOMIAL 1.671 11 14422.27 

ZERO-INFLATED 

NEGATIVE BINOMIAL 

1.671 12 14424.27 

 

 

 

Notice that the mean squared error calculations are much smaller than that of the 

area-based models.  This is because the road-based models are calculating at a much finer 

scale, with 3,328 segments rather than 1,294 blocks.   There is less room for large 

squared errors when modeling these smaller counts.  When focusing on the AIC values, 

the Poisson regression road-based models give significantly better fits compared to the 

area-based model.  However, this is not the case when comparing the negative binomial 

results, suggesting there are additional sources of unmodeled variation in the road 

segment models.   The AIC values are much more stable across the four road-based 

models.  
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For the road segment data, the negative binomial models fit better than the 

Poisson models.  Table 12 shows the coefficient results from the zero-inflated negative 

binomial model.  Looking specifically at these results, the under 17 and 18-24 year olds, 

house prices, calls for service, social disorder, and the interaction term are significant.  

These results are slightly different than the area-based model. 

 

 
 

Table 12: Zero-Inflated Negative Binomial Regression Model for Alexandria Crime on Roads Segments. 

Coefficients Estimate Standard Error Z-Value P-Value 

Intercept 0.482 0.057 8.407 <0.001 

Under17Count 0.048 0.016 2.976 0.003 

Age18to24Count 0.065 0.023 2.902 0.004 

MaleCount 0.008 0.013 0.654 0.513 

PopDens 0.012 0.011 1.212 0.225 

HousingDens 0.001 0.014 0.056 0.955 

HousePrice -0.003 0.001 -3.991 <0.001 

Calls 0.102 0.012 8.504 <0.001 

SocialDisorder 0.087 0.024 3.602 0.000 

Age18to24*MaleCount -0.003 0.001 -5.222 <0.001 

 

 

 

5.2 Spatial Models 
 

As stated earlier, an assumption of the Poisson distribution is that the events occur 

randomly in time and space.  The semivariogram based on residuals can be used as a 

guide to indicate if a model is needed with a more complicated variance structure based 

on spatial information (Schabenberger and Gotway, 2005).  A semivariogram measures 

the average dissimilarity between data as a function of their separation in geographical 

space. At locations   and   over spatial field     , the semivariogram        is defined 

as  
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                        ⁄  (21) 

The semivariogram can suggest that there may be some spatial autocorrelation in the 

residuals.   

A simple Moran’s I test can also be used to assess spatial autocorrelation.  Given 

random variable   and   spatial units (indexed by   and  ), Moran’s I is  

 
  

 

∑ ∑      

∑ ∑           ̅ (    ̅)

∑      ̅  
 

 
(22) 

where     correspond to a matrix of spatial weights.  Values close to -1 indicate spatial 

dispersion, while values close to +1 indicate spatial correlation in the data.  A value of 0 

indicates spatial randomness. 

Statistical approaches to addressing the spatial dependence in data include adding 

a spatial component to the regression model.    A spatial version of the Poisson model is 

known as the auto-Poisson model.  Assume there are   observed quantities       

                   that are realizations of random variables at spatial location    which 

vary over D, a subset of the two-dimensional space (Cressie, 1993). The auto-Poisson 

model specifies a conditional probability given the value of random variable Z at 

neighboring locations      and incorporates an intensity parameter   that is dependent on 

the space (Haining, 2003).  Using the notation of Haining (2003) this spatial Poisson 

model is defined as: 

 
 {         |            }  

  
          

     
 

(23) 

where          ∑                 . 
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Here,        is the set of site-specific effects while          represent between site 

interaction effects; it is assumed that               and           for all   and  .  The 

non-spatial version will set          .  Because one of the assumptions is          , 

the spatial model will only model negative spatial dependence; that is, it will only model 

competitive neighboring dependence (Haining, 2003).   

 Like others, I generalize this auto-Poisson model to include the regression 

variables pertinent to my study.  Let    denote the expected value of the response   .  

Then for the Poisson distribution,             .  For the generalized linear model a 

link function is included, which is a function of    set equal to a linear combination of 

parameters               :  

                                               (24) 

For the Poisson model,                    (Haining, 2003).  This model can 

similarly be constructed for the spatial version of the negative binomial model.   

 

5.2.1 Conditional Autoregressive Models  
 

While spatial autocorrelation can be modeled as given above, spatial structure 

may still remain in the residuals. More in-depth methods that are commonly used to 

represent spatial autocorrelation, specifically for non-overlapping areal units, are 

conditional autoregressive models.  In conditional autoregressive models (CAR models), 

models are specified for the conditional probability distributions for each observation 

        given the values of all of the other observations (Schabenberger and Gotway, 

2005).  It is assumed that         depends only on another observation         if the 
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location      is in some set of neighbors of     ,     .  This process is known as a 

Markov random field.  Thus, with the conditional autoregressive approach, models are 

constructed for  

  (  (    )    (    )          ). (25) 

 

The conditionally specified model described is an example of a hierarchical Bayes 

model.  In a hierarchical model, the observed outcomes are conditional on a set of 

parameters which are also conditional on another set of parameters, or hyperparameters 

(Gelman et al., 1995).   In these models there is not a spatial parameter        to estimate 

because the spatial dependence is not defined directly through the observations.   

To estimate the parameter of interest for a given area in a study region, strength is 

borrowed other areas in the study region.  An example of using this type of model using 

relative risk of disease is given in Haining (2003).   Let           be the observed 

number of deaths of a certain disease observed in area  , with        .        is 

independent and identically Poisson distributed with intensity parameter              , 

where      is the expected number of deaths from the disease in area   and      is the 

relative risk of dying from the disease in area  .  Then, 

 
            

(        )
    

          

     
.  

(26) 

When different areas of a region have widely different population sizes, it would be 

advisable to choose an estimator for      so that there are more uniform levels of 

precision across the space.  In Bayesian analysis, it is assumed that the      themselves 
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are random variables that follow their own probability distribution, known as the prior 

distribution.  The flexibility of the model can also be used to choose a model where the 

       are spatially structured or unstructured.   

 Continuing to follow the notation of Haining (2003), let   vary across areas        

and define 

                                            (27) 

where random effects are decomposed into spatially structured and unstructured 

components. The parameters               are drawn from another probability 

distribution, of which there are many different choices. 

 The negative binomial model that incorporates a spatial autocorrelation term is 

the MCMC Poisson-Gamma-CAR Model (Levine, 2013).  The Poisson-Gamma-CAR 

model has three key properties: a Poisson mean, a Gamma dispersion parameter (similar 

to the negative binomial model), and an estimate of local spatial autocorrelation.  This 

model is defined as                    where the mean    of the model is defined by the 

distribution 

           
        ). (28) 

In this model,   once again is a vector of coefficients for k covariates plus an intercept 

term, and the model error    is independent of these covariates.  It can be shown that 

                
      , where the prior distribution of   is a Gamma distribution 

with hyperparameters    and    (default values equal to 0.01 in CrimeStatIV to reflect a 

noninformative prior).           is defined to follow a gamma distribution with mean 1 

and variance   ⁄  for    .  The extra term here,   , is the spatial random effect for 
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each observation; these spatial effects are assumed to be distributed as a multivariate 

normal model (Levine, 2013).    

 The CAR function, developed by Besag (1974), can be expressed as: 

  (  |    )        ∑    (     )      (29) 

where g is a function related to the expected mean,    is the expected value for 

observation i,     is a spatial weight between the i
th

 observation and all other 

observations, and   is a spatial autocorrelation parameter that determine the size and 

nature of the effect of the neighborhood (Levine, 2013).  The estimate of the spatial 

parameter    from Equation 28 uses a function of this form.  Then    can be modeled 

(using notation from Levine 2013) assuming  

 
                

   

   
      ∑

   

   
   

   

 

  
(30) 

where           is the probability of a spatial effect with     ∑        (summed over 

all neighboring regions).  Equation 30 is a conditional normal density with mean 

 ∑
   

   
      and variance 

  
 

   
.  The parameter   determines the direction and magnitude 

of spatial effects, and     is the spatial weight between neighboring regions   and  .  

From the variance term,   
  

 

  
 (note that this term is the same for all observations).  

The parameter    is assumed to follow a Gamma distribution 

     
               .  The hyperparameters    and    are each given a default 

value of 0.01 in CrimeStatIV to reflect a noninformative prior (Levine, 2013).   
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 The spatial weight matrix W has off-diagonal entries     and diagonal entries 

     .  The matrix D is a diagonal matrix with elements     on the diagonal (0 

elsewhere).  Then, as shown in Sun, Tsutakawa, and Speckman (1999),  a   is chosen 

such that     
         

   where      and      are the smallest and largest 

eigenvalues of WD
-1

, respectively, then Ф has a multivariate normal distribution with 

mean 0 and nonsingular covariance matrix   
         . 

Putting everything together, the parameters in the Poisson-Gamma-CAR model 

are            ,               ,  ,            ,    and  .  Once this 

model is specified and initial parameter values are chosen, random samples can be drawn 

from the full conditional distributions of each parameter and the estimates for the 

coefficients are estimated based on the results of these samples.  Inference in calculating 

statistics for this model is based on Markov Chain Monte Carlo (MCMC) simulation.  An 

MCMC algorithm is an iterative tool that generates each sample based on the value of the 

previous sample.  Ideally, the algorithm is run until convergence has been obtained.  

Initial values of an MCMC algorithm are usually chosen arbitrarily in software tools used 

to implement the model. 

I address two different types of Poisson-Gamma-CAR models in the following 

section.  The first of these is the standard area-based method explained previously, which 

compiles a matrix of 1s and 0s based on whether polygons are neighboring each other.  I 

compare this with the CAR model that uses a dissimilarity metric and modify it to use it 

with road segments.  The model proposed by Lee and Mitchell (2012) is based on the 

standard CAR prior with the restriction that   is fixed at 0.99 to ensure that there is strong 
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spatial smoothing globally, which can then also altered locally by using a function of the 

dissimilarity between areal units.  They do this because large differences in the response 

are likely to occur when neighboring populations are very different.  This dissimilarity is 

captured by a separate matrix, which could include social or physical factors such as the 

absolute difference in smoking rates or the proportion of the shared border that is blocked 

by some physical barrier that cannot be crossed (Lee and Mitchell 2012).  I will modify 

this to use over road segments by creating two matrices: a matrix of 1s and 0s based on 

neighboring segments and another matrix with road distance between these neighboring 

segments.  In this way, the structure of the road segments can be somewhat maintained 

and incorporated into the modeling.   

CrimeStat IV (Levine, 2013) supports spatial modeling with Poisson and negative 

binomial models and CAR models, but major focus is on analysis of space over regions 

rather than over lines.  The R package ‘CARBayes’ can also be used to analyze data 

using various types of CAR models (Lee, 2013).  Research that focus on modeling crime 

counts and traffic crashes using these CAR models similarly incorporate the spatial 

component over regions rather than on roads (Osgood 2000, Miaou et al. 2003 and Song 

et al. 2006).  I adapt the models to roads.   

 

 

5.2.2 CAR Modeling Results 
 

The visually apparent clusters in the Alexandria maps strongly suggest spatial 

autocorrelation.  I ran Moran’s I test to see if the statistics support the visual impression.   
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The extremely small p-value indicates that there is indeed spatial autocorrelation, which 

means the data would be better suited to a model that incorporates a spatial component. 

 

 
 

Table 13: Moran’s I Test for Spatial Autocorrelation. 

Statistic Observed Rank P-Value 

0.1447 10001 <0.001 

 

 

 

In R I look at properCAR.re(), which is a function that fits a Bayesian 

hierarchical model with spatially correlated random effects to the data, where the data 

likelihood can be binomial, Gaussian or Poisson.  The random effects are modelled by the 

conditional autoregressive (CAR) model explained previously, with inference is based on 

Markov Chain Monte Carlo (MCMC) simulations.  After the first 5,000 burn-in samples, 

I collected 25,000 samples for the modeling.  This area (block data) model uses a 

modified prior proposed by Stern and Cressie (1999) and uses a weighting matrix of 1s 

and 0s based on nearest polygons.  If the polygons (blocks) are touching they get a value 

of 1, otherwise 0.  This matrix is then a 1,294 x 1,294 size matrix, with rows and columns 

representing each polygon.  Table 14 shows area model results based on aggregating all 

crimes to blocks. 

 

 

 
Table 14: Poisson-Gamma CAR model for Alexandria Crime Aggregated to Blocks. 

Coefficients Median 2.5% 97.5% 
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Intercept 3.4030 3.4029 3.4031 

Under17Count 0.0376 0.0376 0.0377 

Age18to24Count -0.1453 -0.1454 -0.1451 

MaleCount -0.0822 -0.0822 -0.0821 

PopDens 0.4149 0.4123 0.4151 

HousingDens 3.8425 3.8398 3.8427 

HousePrice -0.0008 -0.0008 -0.0008 

Calls 0.0891 0.0891 0.0891 

SocialDisorder -0.1839 -0.1839 -0.1838 

Age18to24*MaleCount -0.0217 -0.0217 -0.0217 

Rho 0.59 0.38 0.74 

 

 

 

As opposed to p-values, Bayesian modeling results include 95% credible intervals 

for the coefficient estimates.  The table shows the 2.5% and 97.5% percentiles that 

provide these intervals.  A way to interpret these values is to consider any variable with 

an interval that does not include zero as significant in the model.  In this case, all of the 

variables in this model are significant and are related the response (crime count), as their 

95% credible intervals do not include zero.  The   calculated here is between 0.59 and 

0.74, indicating the model has included some of the spatial autocorrelation.   

Table 15 shows the area model results for the assault data.  For the assault data 

set, population density and social disorder are no longer considered significant.  The 

spatial autocorrelation has a wider interval in this case with   values between 0.40 and 

0.92. 

 

 

 
Table 15: Poisson-Gamma CAR model for Alexandria Assaults Aggregated to Blocks. 

Coefficients Median 2.5% 97.5% 
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Intercept 1.1174 0.7017 2.5259 

Under17Count 0.0839 0.0709 0.1152 

Age18to24Count 0.2763 0.1851 0.3766 

MaleCount -0.0447 -0.1083 -0.0174 

PopDens -0.2284 -0.9247 0.0277 

HousingDens -1.0694 -3.4912 -0.6983 

HousePrice -0.0010 -0.0011 -0.0009 

AssaultCalls 0.1932 0.1743 0.2314 

SocialDisorder -0.0072 -0.0244 0.0168 

Age18to24*MaleCount -0.0116 -0.0177 -0.0074 

Rho 0.78 0.40 0.92 

 

 

 

For the road segment data, I use a modified CAR model with a dissimilarity 

metric based on the length of all of the nearest segments.  I create a matrix for all pairs of 

nearest segments that captures all of the distances between those segments and use this as 

the dissimilarity metric.  I also include a matrix similar to the area-based model, with 1s 

and 0s based on nearest segments (1s if roads share an intersection, 0s otherwise).  Both 

of these matrices are then 3,328 x 3,328 size matrices, with rows and columns 

representing each segment.  I model the data using the R package dissimilarityCAR.re(). 

Tables 16 and 17 show results for the full crime-based model and the assault-based 

model, respectively. With the size of the matrices here, the run time of the code increases, 

with full-crime model taking approximately 40 minutes to run. 

 

 

 
Table 16: Poisson-Gamma CAR dissimilarity model for Alexandria Crime Assigned to Roads. 

Coefficients Median 2.5% 97.5% 
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Intercept 0.0814 -0.0588 0.1934 

Under17Count 0.0772 0.0526 0.1094 

Age18to24Count 0.0518 -0.0003 0.121 

MaleCount 0.0280 -0.0001 0.0568 

PopDens 0.0030 -0.0163 0.0204 

HousingDens 0.0073 -0.0161 0.0343 

HousePrice -0.0028 -0.0045 -0.0013 

Calls 0.0822 0.0540 0.0992 

SocialDisorder 0.1020 0.0644 0.1616 

Age18to24*MaleCount -.0054 -0.0067 -0.0039 

 
 
 
Table 17: Poisson-Gamma CAR dissimilarity model for Alexandria Assaults Assigned to Roads. 

Coefficients Median 2.5% 97.5% 

Intercept -1.1929 -1.4702 -0.8196 

Under17Count 0.0645 0.0120 0.1148 

Age18to24Count 0.2586 0.1693 0.3461 

MaleCount -0.0623 -0.0120 -0.0212 

PopDens 0.0057 -0.0308 0.0517 

HousingDens 0.0043 -0.0560 0.0520 

HousePrice -0.0145 -0.0199 -0.0100 

AssaultCalls 0.2234 0.1415 0.3144 

SocialDisorder 0.1565 0.0855 0.2074 

Age18to24*MaleCount -0.0033 -0.0055 -0.0007 

 

 

 

In the full-crime data set results in Table 16, the significant variables include the 

under 17 year olds, housing price, calls, and social disorder.  While the 18 to 24 year olds 

were not significant, the interaction between this age group and males does have a 

significant effect in the model.   In the assault model results (Table 17), population and 

housing densities are the only two variables not considered to have a significant effect on 

assault crimes.   

I can compare the road-based models with the previous area-based CAR models.  

The model fitting calculations I used here are the mean squared error and the DIC.  The 
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deviance information criterion (DIC) is a hierarchical modeling version of the AIC and is 

specifically useful in Bayesian model selection problems such as mine.  For the area-

based model, the R packages had some limitations so did not produce the model-fitting 

values.  To address the problem, I ran the same model in CrimeStat IV.   

For the area-based full crime model, The DIC measure is 47369, which is better 

than the AIC for the Poisson regression but worse than the negative binomial values.  I 

also calculate a mean squared error of 1.01E+7, which is significantly larger than the 

mean squared error of the previous models.  The reason for this is a number of large 

residual outliers.  Below is a table of summary statistics which show a minimum residual 

value of -73050, which obviously has a major effect on the mean squared error.  

However, even locating and removing the outliers in R while yield similarly large values.  

For the area-based assault model, the DIC value from CrimeStat IV in this case is 7019, 

which is smaller than the AIC of the zero-inflated negative binomial model.  The mean 

squared error in this case is much more manageable than the full crime data set at 

approximately 29258.  Since we are dealing with a smaller number of counts overall in 

the assault data set, the errors will be smaller relative to that.   

 

 
 

Table 18: Summary Statistics for Residual in Area-Based Full Crime Model 

Minimum Q1 Median Mean Q3 Maximum 

-73050.00 -1.92 1.83 -186.30 15.87 1605.00 
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The following table gives a comparison of the area-based and road-based model-

fitting results.  The road-based CAR model has smaller DIC and mean squared error 

values than the area-based model.  The segment-based model has a much larger number 

of segments and is looking at smaller counts of crime over a much finer level, leading to 

much smaller errors for better prediction along each segment.   

 

 

 
Table 19: Comparing Mean Squared Error and DIC measures 

MODEL MEAN SQUARED ERROR DIC 

AREA-BASED ALL CRIME 10125263.74 47369 

ROAD-BASED ALL CRIME 1.10 12957 

AREA-BASED ASSAULTS 29258.22 7019 

ROAD-BASED ASSAULTS 0.33 5834 

 

 

 

Multicollinearity of the explanatory variables complicates interpretation of 

regression parameters and inflates standard errors.  This is a serious issue with the data 

and could produce strange effects.  Multicollinearity exists when two or more 

explanatory variables in a multiple regression model are highly linearly related. The 

correlations between these independent variables are strong.  This could lead to 

unreliable and unstable estimates of regression coefficients.  In these cases, the variable 

with the stronger correlation may have the correct sign while the weaker one will 

sometimes get flipped around.  Another problem could be that the two variables cancel 

each other out.  Sometimes the regression model will break down because the covariance 
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matrix cannot be inverted.  High crime communities usually have many factors that might 

cause crime, and tend to be found in the same places at the same time.  Thus a number of 

possible causal factors could be highly correlated with each other and multicollinearity 

becomes an issue (Vold, Bernard and Snipes, 2002).    

A popular diagnostic tool for measuring multicollinearity is the variance inflation 

factor (VIF).  This is calculated for each predictor by doing a linear regression of that 

predictor on all the other predictors, and then obtaining the    from that regression.  The 

VIF is then 
 

      
, with strong multicollinearity being represented by VIF values far 

away from 1.  Just looking at the simple negative binomial case, we get the following 

variance inflation factors for each variable: 

 

 

 
Table 20: Variance Inflation Factors for Variables in the Negative Binomial Model for the Full Crime Data 

Set 

Variable Variance Inflation Factor 

Under 17 Count 11.91 

Age 18 to 24 Count 16.21 

Male Count 20.58 

Population Density 26.53 

Housing Density 26.57 

House Price 1.10 

Calls 4.65 

Social Disorder 4.55 
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Age 18 to 24 * Male Count 10.09 

 

 

 

The resulting variance inflation factors show that many of the variables are highly 

correlated with each other.  This doesn’t necessarily affect overall model prediction, but 

it may lead to unreliable interpretations of whether individual variables are truly 

significant or not.  As will be shown in the following section, in spite of the 

multicollinearity, the segment-based model will give a very decent prediction of crime 

compared with the area-based version.  Further investigation into important variables and 

variable selection is given in Chapter 6.   

 

5.3 Alexandria Crime Prediction over Area and Roads 
 

I would like to see how well these models predict crime from one year to the next 

to see if the road-based methods predict crime better than the area-based methods.  Using 

quantitative methods to predict where crime is located is known as “predictive policing” 

(Ratcliffe, 2004).  In predictive policing, analytical techniques identify likely targets for 

police intervention, preventing crime and helping solve past crimes by making statistical 

predictions.  Challenges of predictive policing include obtaining relevant, reliable data 

sets and having computing resources for computationally intensive algorithms.    

I use my CAR-based models to analyze the data from 2006 to 2008 in order to see 

how well each method predicts the crime from 2009.  I average the crime count values 

over the 3 years (2006-2008) and model these values with the two methods.  An 
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alternative would be to smooth the crime counts from these years for comparison.  Note 

that the covariates used in this research are the same for all three years.  The modeling 

would be more complex if year-specific covariates were involved.  I take the average 

difference between the fitted data from the modeling results and the true observed data 

from 2009 in Table 21.  Based on the results in Table 21, the prediction values for the 

road-based model are very close to the true values for 2009.  It also looks like the 

prediction in the road-based model has much less variability when predicting future crime 

than the area-based model.  For example, the first and third quartiles for the area-based 

full crime data set are -3.30 and -0.90, while for the road-based it is -2.69 and -0.26.   

 

 

 
Table 21: Summary of difference between Predicted and Observed 2009 values for Four Models.  

Model Min Q1 Median Mean Q3 Max 

Area-Based 

All Crime 

-309.40 -3.30 0.016 30.32 0.90 14530.00 

Road-Based 

All Crime 

-38.04 -2.69 -1.20 -2.08 -0.26 0.96 

Area-Based 

Assaults 

-19.53 0.04 0.05 2.67 0.10 1098.00 

Road-Based 

Assaults 

-10.17 -0.12 0.01 -0.17 0.02 3.99 

 

 

 

The following four figures represent the resulting maps using lines and areas 

based on predicted values from the models along with the observed crime points.  It can 

be seen in these figures that the road-based model gives a more accurate prediction of 

future crime than the area-based model at a more local level.  Figure 36 gives the 

difference between the predicted and the observed crime counts along the roads.  You can 
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see there are more segments that underestimate the crime rather than overestimate.  

However, most of the segments seem to very closely predict the crime in 2009. 

 

 

 

 
Figure 32: Predicted crime values over areas for 2009 in Alexandria, VA. 
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Figure 33: Predicted assault values over areas for 2009 in Alexandria, VA 
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Figure 34: Predicted crime values over polylines for 2009 in Alexandria, VA 

 



109 

 

 
Figure 35: Predicted assault values over polylines for 2009 in Alexandria, VA. 
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Figure 36: Predicted-Observed Crime Count 
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CHAPTER 6.  VARIABLE SELECTION AND MULTIVARIATE 

VISUALIZATION  

6.1 Variable Selection 
 

While I use the models in the previous chapter to compare two data structures 

(area-based and road-based) and predict crime, these models are not the best to evaluate 

how important/significant each variable is in the assessment of crime, with 

multicollinearity being a big issue.  I will now discuss two different methods that will 

resolve this problem and accurately select important variables.  In statistics, variable 

selection is the process of selecting a subset of relevant variables for use in model 

construction.  An assumption when selecting variables is that the data may contain many 

redundant or irrelevant variables that provide little information than a smaller subset of 

those variables would.  Variable selection seeks to explain the data in the simplest way 

possible, without any unnecessary predictors that add noise to the estimation of other 

quantities. 

I look at two methods of variable selection in this chapter.  First I use random 

forest modeling, using conditional random forest variable importance to evaluate each 

variable conditional on every other variable in the data set.  The second method I use 

finds the variables that are most highly correlated with crime and creates linear 

combinations of these variables using principal components analysis.  Each of these 

methods provides different perspectives on the data, and address multicollinearity issues.  
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6.1 Random Forests and Variable Importance 
 

A random forest is a popular tool used in classification and regression that grows 

many decision trees in order to appropriately classify objects and predict response values 

(Breiman, 2001).  This tool has good predictive accuracy and easily accommodates many 

more variables than used in this dissertation.  In order to build decision trees, the 

predictor space is divided into a number of regions and a prediction is made for a given 

observation based on the mean or mode of a set of training observations within the region 

containing the given observation.  Using notation based on James et al. (2013), this 

means that for a set of values           , the predictor space is divided into   distinct 

non-overlapping regions           .  For each observation in region   , the prediction 

is the mean of the response values for the training observations within   . 

Decision trees are built using recursive binary splitting.  This means that each 

branch of the tree is divided into two branches at each split of the predictor space. At 

each step, the best split is decided at that current step rather that looking ahead to see 

which split would create the best tree in the future.  For regression, select the predictor    

and cutpoint   such that splitting the predictor space into the regions               

   and                  leads to minimizing the residual sum of squares (RSS): 

 ∑      ̂  
  

            

 ∑      ̂  
  

            

 
(31) 

where   ̂  
 is the mean response for the training observations in region          and  ̂  

 

is the mean response for the training observations in region         (James et al., 2013).  
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This process is repeated at the next level to further minimize the RSS, with one of the 

previously split regions being split further into two more pieces.  This continues until a 

pre-defined stopping rule is reached.   

Decision trees have high variance, with widely differing results depending on how 

the training data is compiled.  In order to compensate for this, random forests uses 

bootstrapping, also known as bagging in the context of decision trees.  Bagging takes 

repeated samples from the data set and average over all of the resulting predicted values.  

That is, decision trees are created for each data set   of   bootstrapped data sets, the 

predicted value  ̂     is calculated, and then the average is taken of the predicted values 

over all   data sets: 

  ̂       
 

 
∑  ̂     

   . (32) 

For each tree, the data set that is created by sampling with replacement leaves out 

about one-third of the data.  The observations that are left out of the sample are known as 

the out-of-bag (OOB) observations.  A prediction can be made for the  th
 observation 

using all of the trees for which that observation is OOB.   

As opposed to simple decision trees, when producing a random forest, for each 

split, the algorithm assesses a random sample   of   variables as split candidates and 

picks the best split using the best candidate variable.  A new sample of   variables is 

taken at each split.  For regression, the number of variables considered at each split is 

usually taken to be equal to   ⁄ , where    is the total number of predictor variables.   

A measure of variable importance is the value of how much the RSS is decreased 

from splits over a given predictor variable, average over all   bootstrapped trees.   The 
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first of variable importance is the mean decrease of accuracy on the OOB samples when a 

certain variable is excluded from the model.  If this value is large, then the variable will 

be considered more important.   A second measure is the total decrease in node impurity, 

resulting from splits over a given variable, averaged over all trees.  Node impurity is 

measured by the RSS from the training data set.  Similarly, a larger value indicates a 

more important variable.   

 The variable importance measures described above can be used to select which 

predictor variables are the most relevant to the response variable.  However, issues can 

arise when many of the predictor variables are highly correlated (Strobl et al., 2008).  

This is due to the fact that typical variable importance measures are measures of marginal 

importance, whereas in the case of highly correlated variables the conditional effect of 

each variable may be more appropriate.  A variable that may appear to be influential may 

actually be entirely independent of the response when it is considered from the 

perspective of being conditional on another variable with which it is highly correlated.   

 Strobl et al. (2008) develops a different variable importance measure using a 

conditional permutation method, which they show to be a more reliable measure in 

showing the true impact of each variable.  Instead of the simple permutation of variable m 

given in the typical variable importance measure, the conditional method is carried out by 

having variable m being permuted within    , where   is the group of all other 

variables in the data set.  This will preserve the correlation structure between m and all of 

the other predictor variables.  If variable m and   variables are independent, both 

methods will yield the same results.  However, if the two are correlated, the original 
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variable importance assessment will increase the importance of correlated predictor 

variables.  

 Formally, there are four steps in calculating conditional variable importance.  The 

first step is to compute the oob (out-of-bag) prediction accuracy before permutation: 

 ∑       ̂ 
       ̅   

  ̅    
 

(33) 

where    is the response for observation  ,  ̂ 
   

 is the predicted class for observation  , 

and  ̅    is the oob sample for tree   with              .  Second, for each variable   to 

be conditioned on, cutpoints are extracted that split the variable in the current tree and a 

grid is created by dividing the sample space at each cutpoint.  Then within the grid, the 

values of variable    are permuted and then the post-permutation oob prediction accuracy 

is calculated: 

 ∑       ̂      
       ̅   

  ̅    
 

(34) 

where  ̂      
   

 is the predicted class for observation   after permuting its value of variable 

   within the grid.  Finally, the difference between the prediction accuracy before and 

after permuting gives the variable importance of    for one tree, which is then averaged 

over all trees (Strobl et al., 2008). 

In R (R Core Team, 2013) the ‘randomForest’ package supports computing the 

random forest estimates and variable importance.  The importance() function in this 

package yields two variable importance measures.  The R ‘party’ package and its 
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function cforest() supports computing conditional random forests and their associated 

variable importance measures. 

6.2 Condition Random Forest Results 

6.2.1 Alexandria Crime and Assaults 
 

I obtain variable importance measures from the conditional random forests for 

Alexandria in order to identify more accurately the most important crime-related 

variables and which variables will be the most valuable when visualization is restricted to 

using two explanatory variables.  One weakness of using the conditional variable 

importance measurements is the computation time.  The number of variables and 

observations significantly adds to the overall run time.  To compensate for this, bootstrap 

samples were taken of the data and the variable importance values were measured over 

all of the samples.  Even with these samples, the full crime data set took over 24 hours to 

run.   

Figures 37 and 38 show the conditional random forest variable importance plots 

for all crime and assaults, respectively.   Variables with values farther from zero are more 

important.   
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Figure 37: Conditional random forest for the full Alexandria crime data set (Variables to the right of the 

dashed line are significant). 
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Figure 38: Conditional random forest for the Alexandria assault data set (Variables to the right of the 

dashed line are significant). 
 

 

 

For the full crime data set, the conditional variable importance gives Service 

Calls, Social Disorder and Housing Price as the most important variables.  Anything on 

or to the left of the red line is not important in the model.  Housing density, population 

density, and the number of 18 to 24 year olds are not significant in this conditional 

random forest model.  For assaults, the variables Assault Calls, Social Disorder, and 

Under 17 are the most important.   Notice that the count of males and 18 to 24 years olds 
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are more important in this model than in the full crime data set, while housing price is not 

as significant.   

When using these variables, the conditional random forest models do not fit as 

well as the CAR models as shown in Table 22.  Note that while the random forest 

modeling takes into account the multicollinearity issue, it does not incorporate any spatial 

component, which may affect the model fits.   

 

 

 
Table 22: Random Forest Mean Squared Error 

MODEL MEAN SQUARED 

ERROR 

RANDOM FOREST: ALL CRIME 12.25 

CAR MODEL: ALL CRIME 1.10 

RANDOM FOREST: ASSAULTS 1.67 

CAR MODEL: ASSAULTS 0.33 

 

 

 

6.2.2 San Francisco Crimes 
 

Figure 39 shows the conditional random forest variable importance plot for San 

Francisco, CA.  Here, Elevation, Male Count and Housing Density pop up as the most 

importance in the conditional variable importance, and thus are most closely related to 

the criminal activity. Speed Limit is not at all a significant variable in the data set.   
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Figure 39: Conditional random forest for the San Francisco crime data set (Variables to the right of the 

dashed line are significant). 
 

 

 

6.3 Supervised Principal Components Analysis 
 

 Rather than looking at each variable one at a time to assess variable importance, 

linearly independent combinations of these variables can be used.  Principal Components 

Analysis (PCA) is a dimension reduction tool that can reduce the number of variables 

into a smaller set that still contains a majority of the information from the original set.  

This resolves the issue of multicollinearity in the data set.   It uses linear transformations 
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of possibly correlated variables to create a sometimes smaller set of linearly independent, 

uncorrelated variables, known as principal components.  The first principal component 

will account for the largest amount of variability among the variables, with each of the 

following uncorrelated components having the next highest variance. 

 Formally, let   denote the matrix of data with the   variables making up the 

columns of the matrix and the   observations making up the rows of the matrix.    can be 

divided up into three parts as follows: 

 

        

 

(35) 

where   is a matrix of left singular vectors,   is a matrix of right singular vectors, and   

is the diagonal matrix of singular values (Hervé and Williams, 2010).  The matrix   

gives the coefficients of the linear combinations used to compute the factor scores.  The 

matrix of principal component factor scores   is obtained as follows:  

 

          

 

(36) 

 I selected the variables to use in principal components following a supervised 

principal component approach developed by A. Vidyashankar (2014).   His approach 

screens variables in possibly high dimensional data sets for use in principal components 

in order to help address computation and interpretation issues.   The procedure uses 
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multiple 50% bootstrap samples of the cases to obtain the correlation distributions 

between the dependent variable with each of the candidate regression variables.    

Note that the distribution of correlations for a variable may show interesting 

patterns related to the subsets of cases sampled and begin to suggest localized variable 

importance.   Local variable importance at the case level can also be addressed using 

random forests.  This could be important in crime studies, and I leave the study of this a 

topic for future research.    

The more supervised principal components procedure uses a chosen percentile of 

the resulting correlation distribution and the cutoff threshold for variable selection.  I 

chose to select variables whose 70
th

 percentile was a positive correlation above .3 for the 

Alexandria data and above .4 for the San Francisco data.  The 30
th

 percentile could be 

used to select variables based on negative correlations as well.   I run principal 

components analysis on these variables.  For the full crime data, the five selected 

variables include the two age variables (count of those under 17 and between 18 to 24), 

the number of males, the calls for service, and social disorder.  A table of these 

correlations is given below.  The selection for the assault data set is equivalent except we 

replace calls for service with assault-related calls for service.   

 

 

 
Table 23: 70

th
 Percentile Correlation of Crime and Crime-Related Variables for Alexandria, VA 

Variables Crime Correlations 

Under 17 Count 0.328 

Age 18 to 24 Count 0.323 
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Male Count 0.322 

Population Density 0.263 

Housing Density 0.236 

House Price -0.117 

Calls 0.448 

Social Disorder 0.455 

 

 

 

 I computed principal components analysis using the R function princomp().   

Running the principal components analysis for the Alexandria data set gives loadings in 

Table 24.  The first principal component is roughly the average of all of the standardized 

variables, with slightly higher correlations for young males (that is, the two young age 

categories and males).  The second principal component a contrast between the social 

disorder and calls for service and the counts of the 0 to 17 and 18 to 24.  This suggests 

there are a greater number of calls relative to the number to the population values.  An 

alternative variable thus might be a calls for service to young male population ratio. 

The plot following the principal components table gives an illustration of the 

proportion of variance covered.  The first two components retain over 90% of the original 

variability of the data set, suggesting that these are the two important principal 

components which will be very helpful in models and graphs.  The assault data set will 

give similar results, but with the full calls for service data set replaced with assault calls 

for service.  
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Table 24: Principal Components Correlations for the Full Crime Data Set for Alexandria, VA 

Variable Component 1 Component 2 Component 3 Component 4 Component 5 

Social 

Disorder 

-0.294 0.648 0.532 -0.456  

Calls -0.314 0.629 -0.522 0.480  

Under 17 

Count 

-0.511 -0.259 0.553 0.605  

Age 18 to 24 

Count 

-0.527 -0.243 -0.290 -0.266 -0.713 

Male Count -0.526 -0.243 -0.233 -0.352 0.697 
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Figure 40: Bar Chart of Variance Explained by Each Principal Component 

 

 

 

 I ran both the zero-inflated negative binomial model and the CAR model with just 

these two principal components to show that the model-fitting measurements will give 

results as using all of the variables.  Table 25 shows the mean squared error, AIC, and 

DIC values.  Using only these two variables is comparable to using the full set of 

variables in Table 19.   A big advantage of using principal components analysis resolves 

the issue of multicollinearity and creates a simplified, reduced data set without too much 

loss of information.   
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Table 25: Mean Squared Error, AIC and DIC using Principal Components 

 Full Crime 

Zero-Inflated 

Assault 

Zero-Inflated 

Full Crime 

CAR Model 

Assault 

CAR Model 

Mean Squared 

Error 

1.30 1.48 0.94 0.28 

AIC 14959 6780 NA NA 

DIC NA NA 13254 6028 

 

 

 

 The same procedure is applicable to the available crime-related variables in San 

Francisco, CA.  Here the highest correlated variables are Housing Density, Population 

Density, Male Count, and Age 18 to 24 Count.  These are the four variables that I will 

select to be in the principal components analysis. 

 

 

 
Table 26: 70

th
 Percentile Correlation of Crime and Crime-Related Variables for San Francisco, CA 

 

Variables Crime Correlations 

Under 17 Count 0.386 

Age 18 to 24 Count 0.423 

Male Count 0.520 

Population Density 0.527 

Housing Density 0.540 

Elevation -0.137 

Speed Limit 0.095 
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Table 27 shows the results of the principal components analysis.  Once again, 

over 90% of the variance from the original data set is explained with the first two 

principal components, so I focus on those specifically.  Based on the correlations, the first 

component seems to be a mixture of population density, housing density, and male count.  

The second component is a contrast between housing and population densities and Male 

and Age 18 to 24 counts with the age groups weighted most heavily.   

 

 

 
Table 27: Principal Components for the Full Crime Data Set for San Francisco, CA 

Variable Component 1 Component 2 Component 3 Component 4 

Housing Density -0.545 0.366 0.419 0.627 

Population Density -0.570 0.295 0.131 -0.755 

Male Count -0.544 -0.225 -0.787 0.186 

Age 18 to 24 Count -0.287 -0.853 0.433  

 

 

 

I use the multivariate visualization tool DPnet in the next section for Alexandria, 

VA.  I show both the most important variables from the conditional random forests and 

the linear combinations of variables given from the principal components analysis to see 

the patterns these variables have with regards to crime.  The principal components used 

may be difficult to interpret, as they are linear combinations of several variables; 

however, they may also lead to a new way to conceptualize crime and how it relates to 

multiple variables at a time.   
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6.3 DPnet Results 
 

I use DPnet to partition crime counts for road segments in conjunction with two 

additional variables.  First I focus on the variables given in the conditional random forest 

modeling, followed by the variables created in principal components analysis.  

Dynamically partitioned maps will draw polylines to represent road segments. The crime 

counts slider at the top has two thresholds that distinguish low, middle and high values, 

shown in blue, gray and red, respectively.  Below the slider are thresholds values.  The 

sliders at the right and bottom axes can be changed using the chosen covariates I would 

like to analyze.  The average crime count of road segments highlighted in a panel appears 

at the top right of each panel.  If there is a change in segment crime rates based on the 

slider variables, this will be reflected in the pattern of counts.  The mean counts for the 

road segments highlighted in a panel are used as fitted values in a simple model, and the 

R-squared describes the quality of the fit at the lower right of the plots.   

Figure 41 is a snapshot of what DPnet can do with the full crime data set over 

road networks with two other variables.  Here I used two of the most important variables, 

property values and police calls for service, mapped against the fractional crime counts 

on the road segments. The three variable groups show patterns that are almost impossible 

to notice when looking at the variables one at a time.  For example, Figure 42 gives a 

close-up of the upper left corner of this plot.  This shows a cluster of segments in blue, 

signifying a low crime count, in an area with high housing prices and low number of 

calls, which is what might be expected.   
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Figure 41: DPnet for all crimes with covariates police calls for service and house property sales. 
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Figure 42: Zoom in on the upper-left corner of DPnet for All Crimes. 

 

 

 

 Figure 43 gives the DPnet of the smoothed assault counts with the two most 

important variables chosen from the conditional random forest, the social disorder 

variable and the number of people under 17.  There is a trend here with high crime along 

the same roads as high number of social disorder calls and a high count of people under 

17 years of age, and low number of crimes along the roads with low amount of social 

disorder and number of those under 17.  The top right panel shows a cluster of roads with 

high crime rates.  All of the right panels with highlighted roads associated with high 

social disorder have high crime rates.  Figure 44 zooms in on the middle left panel 
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associated low social disorder and middle amounts of people under 17.  You can see an 

entire section of blue segments here, representing low crime.   
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Figure 43: DPnet for Assaults with covariates Social Disorder and Under 17 Counts. 
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Figure 44: Zoom in on middle-left section of DPnet for Assaults. 

 

 

 

So far, the partition has produced small    values, indicating the panels don’t fit 

the road segment crime counts very well.  Now I will map the two variables created in 

principal components analysis against the crime.  I described the first principal 

component as “Average of Calls, Social Disorder, and Young Male Population”, since it 

represented linear combination of these variables.  The second component I will define as 

“Calls/ Social Disorder and Young Male Population Contrast”, as this is mostly a 

combination of the calls for service and social disorder variables.  Figure 45 gives the full 

DPnet view.  The middle-right section includes one very large crime value that seems to 

drive it to be in its own category.  I do not know what is occurring at the segment that is 
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making the crime counts high at that specific location, but as stated before there is always 

the possibility of geocoding errors.  The    value has increased to over 66%.  Following 

the full map are two snapshots in Figures 46 and 47.  The upper-middle section, 

representing large “Calls/ Social Disorder and Young Male Population Contrast” values 

and middle-sized “Average of Calls, Social Disorder, and Young Male Population” 

values, contains the large cluster of high crime in Old Town Alexandria.  The lower-

middle section, representing small “Calls/ Social Disorder and Young Male Population 

Contrast” values and middle-sized “Average of Calls, Social Disorder, and Young Male 

Population” values, has the cluster of low crime just northwest of the downtown 

Alexandria area.  Although these components may be hard to interpret, as they are no 

longer count values and have negative and positive numbers, they show definite patterns 

with the crimes that the original variables by themselves did not give.   

Figure 48 gives a similar DPnet, but removes those high segments that were in the 

middle-right section.  This helps us see some patterns that may have been masked by 

these high values.  For example, the upper-right section has a few very high segments, 

with average crime count of 18 in that section.  There is a low patch of crime in the 

middle-left section, representing middle values of “Calls/ Social Disorder and Young 

Male Population Contrast” and low values of “Average of Calls, Social Disorder, and 

Young Male Population”.   
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Figure 45: DPnet of the crime counts compared with the first two principal components. 
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Figure 46: Upper-middle section of DPnet of the crime counts compared with the first two principal 

components 
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Figure 47: Lower-middle section of DPnet of the crime counts compared with the first two principal 

components 
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Figure 48: DPnet of the smoothed crime counts compared with the first two principal components, 

ignoring high crime segments. 
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CHAPTER 7.  CONCLUSIONS AND FUTURE WORK 

In this research, I developed and adapted methods to support the modeling and 

visualization of crime data and covariates indexed by road segments.  This is part of a 

broader vision that seeks to put analysis of data indexed by lines and polylines on a more 

equal footing with analysis of data indexed by points or polygons.  Methods that convert 

point and area data to line-indexed data enable line-indexed data to be used as a unifying 

framework for modeling and visualization.  In the line-indexed framework common 

general concepts such as neighbors, distance, and spatial correlation remain relevant, but 

the exact usage can be adapted to the framework as motivated by phenomena such as 

crime. 

The choice of crime data is strategic.  The theory of the criminology of place has 

focused attention on "micro" analysis where road segments become particularly relevant. 

The clusters of road segments in Weisburd et al. (2012) and the graphics reveal a variety 

of crime patterns on roads that can be obscured by area-based analysis.  The extensive 

criminology of place literature is persuasive and motivates my analysis along street 

segments.  While many variables chosen here aren’t directly related to the criminology of 

place, they still call attention to the benefits of crime analysis along this spatial unit and 

support taking next steps in using a wider variety of models and graphics to look deeper 

into crime patterns with the limitation of readily available data and its quality.  The 
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models found most of the variables suggested to be related to crime indexed by roads.  

Places where predictions are poor perhaps can be improved by using more specifics of 

the street segments and incorporating more details of place. 

I assigned fractional counts of crime to surrounding road segments based on 

inverse distance weighting.  I created a unique smoothing algorithm in R that reweights 

crime counts over road segments according to the distances to nearest segments and the 

angle at which they meet.  This results in a smooth visualization of crime over roads to be 

more easily interpreted by law enforcement by reducing noise to help see the patterns of 

crime more clearly.  The smoothing algorithm was used for Alexandria, VA and San 

Francisco, CA, with visualizations in ArcMap. 

 Both point and area data (such as Census block data) were converted into 

polyline statistics, providing a unified framework for modeling along street segments.  I 

focused on several models that represented different facets of the data, including the zero-

inflated negative binomial model and the Poisson-Gamma CAR model.  I compared 

models that aggregate data to areal units with models using counts along road segments.  

The road-based CAR model used uniquely-defined matrices depending on nearest road 

segments and distance between those segments.  In the example of Alexandria, VA, the 

road-based models gave better fit results and could better predict crime (and assaults) 

than when they were aggregated over area units.  This unique method gives very accurate 

prediction results at a local, “micro” level and is a step forward in predictive policing.  
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The interpretation of crime covariates in the models is complicated by their 

correlations. To partially address this, I took some early steps that analyze the model 

covariates in terms of their importance in the models and also used supervised principal 

complements to produce variables that were independent.  For the full crime data set of 

Alexandria, VA, the most important variables from the random forests included the calls 

for service, social disorder, and housing prices.  For the assault data set, the most 

important variables were found to be the assault calls for service, social disorder, and the 

number of people under 17 years of age.  It is interesting to note that social disorder 

(complaints, noise violations, etc.) is highly important in both cases, while age is more 

relevant to the assault crimes.  Elevation, count of males, and housing density were found 

to be the top three most important variables for San Francisco, CA.  This supports the 

idea that different types of variables can describe crime in different locations.   Principal 

components comprised of linear combinations of highly correlated variables were 

generated using principal components analysis.  Models using the first two components 

were competitive to models using the full set of variables.  Such work may be helpful in 

terms of variable selection and possibly in terms of the evolution of the criminology of 

place theory.   

Using the most important variables from conditional random forests and the two 

principal component variables, DPnet created a multivariate visualization along the street 

segments in order to explore patterns visually that aren’t typically possible to explore.  

This visualization was used only for Alexandria, VA.  The software is not yet able to 

handle the number of road segments in San Francisco, CA to be able to create a DPnet 
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example for this location.  The principal components may be difficult to interpret, but 

provide a very strong pattern visually and would be interesting to develop further. 

There are a number of different things I could do to extend my research.  I would 

like to explore more rigorously the idea of using a CAR model of polylines rather than 

polygons.  I could look more closely to identify special features of those   road segments 

that are poorly fit by the models.  Alternative assessments of modeling and variable 

importance could be used.  Structural equation modeling (SEM) could be used, which 

constructs latent variables (variables that are not measured directly but may still have 

effects on the data) in order to capture the unreliability of measurements in the previous 

models.  I could also explore a number of different projection and weighting schemes for 

moving crime to road segments and for smoothing those points for visualization.  I could 

separate crimes that tend to be closer to intersections and crimes that tend to be closer to 

midpoints and model separately.  I could consider a weighting that incorporates the 

direction of the flow of traffic on a street.    Whether or not the traffic flow is on a one-

way or two-way road may make a difference in the analysis of crimes on these segments.  

Using fractional counts might not be easily interpretable for the police force.  It might 

make sense to convert back to simple counts.   

I would like to have more data to explore, as data at the micro level can be hard to 

come by.  In general, the utility of models and graphics depends on the availability and 

quality of the relevant variables.  The “criminology of place” studies suggest that local 

features can make a big difference in crime rates.  Often data is not gathered.  When local 

data is gathered there are often barriers to obtaining data and work to do in preparing the 
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data for analysis.  Many of the variables that the Census provides are only at the block 

group level, which covers a much larger area than the block data. This is much less useful 

to look at when focusing on crime at the local level.  Some of the variables included in 

this data set are race, poverty status, and single family home, which would be incredibly 

useful as crime predictors if they were given at a finer scale.  With the data I do have, it 

would be useful to explore smaller levels of the age category, to focus in more detail on 

teens/adolescents rather than having the 0-17 and 18-24 variables.  Having an adolescent 

age category could better be a better representation of the group of criminal offenders.  

Other variables that may be useful in the future with the increase of availability of data 

and technological advances include a cell phone-based assessment of street traffic, more 

readily available data on vacant homes, building uses, and assessments of pedestrian 

traffic on pathways.  It may also be useful to incorporate what local people and law 

enforcement know about the areas into the analysis in some way. 

This type of modeling/visualization could be extended to other types of data aside 

from crime.  My model could in particular be useful for looking at car accidents, as the 

majority of the time these occur on roads.  The modeling and visualization methods given 

here are flexible for handling many different types of data and covariates. 
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