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Abstract

TOWARDS LOWER BOUNDS ON DISTORTION IN INFORMATION HIDING

Younhee Kim, PhD

George Mason University, 2008

Dissertation Co-Director: Dr. Zoran Duric

Dissertation Co-Director: Dr. Dana Richards

Information hiding refers to embedding additional digital data in cover objects–e.g.

audio, image or video signals–by modifying the cover objects. Information hiding techniques

have been used in a variety of application domains including copyright protection for digital

media, content authentication, media forensics, and covert communications. The goal of

information hiding techniques is to minimize the effect that the embedding process has on

the cover object. Embedding processes introduce distortion to cover images and change

the appearance as well as statistics of images. This is undesirable in many applications

including fragile watermarking and steganography. In this dissertation, information hiding

algorithms using JPEG images have been proposed with three goals: minimizing distortion

due to embedding, preserving statistical properties during embedding, and predicting a

distortion level for a given message length. Proposed methods use rounding errors created at

the JPEG quantization step as side information, and the methods are based on block-based

coding techniques known as parity coding and matrix coding. A mathematical analysis

predicts the distortion introduced by each proposed algorithm as a function of message

length and the rounding error distribution of the cover image. Minimization of distortion

in proposed methods was experimentally validated.



Extensive tests using state-of-the-art steganalysis software show that the proposed infor-

mation hiding methods compare favorably to other published methods for given embedding

rates.



Chapter 1: Introduction

1.1 Introduction to Information Hiding

Information hiding refers to the process of embedding additional digital data in host signals,

such as image, audio, or video files. The embedded data may vary—copyright information

of art works, identification numbers of media files, or information that should be kept

secret—depending on the purpose of the application. Digital images are the typical choice

for the host signals because of their ubiquitous presence in our digital society. In this

thesis, discussion is limited to image-based information hiding. Due to mature information

and communication technologies and the rapid growth of the Internet, information hiding

techniques have recently drawn the attention of the research community as well as industry.

1.1.1 Applications

Information hiding techniques have been used in many applications [1–5] including copyright

protection, traitor tracing, content authentication and covert communication.

Copyright protection

As accessing the Internet and making digital copies of media have become widespread,

copyright protection for digital media is more necessary than ever. Copyright information

is embedded in media files before distribution, and when needed, it is extracted to prove

the ownership for the media. The embedded data, usually called a watermark, needs to

survive against various attacks. The attacks may occur unintentionally or intentionally.

Unintentional attacks include general image processing such as smoothing, sharpening, or

compression, while intentional attacks include all attempts to remove the embedded wa-

termark. In order to be useful for copyright protection, the information hiding algorithm

1



should ensure that the embedded watermark is detectable after going through the various

attacks, so that it could authenticate the copyright of the watermarked media.

Traitor tracing

A unique digital ID or signature, usually called a fingerprint, is embedded into each piece of

distributed digital media. When the distributor detects the unauthorized use of their media,

the original user of the unauthorized copies can be traced by the unique fingerprint. In this

application, a possible collusion attack between users is a major challenge. For instance,

multiple users could dilute or erase the original fingerprint by averaging multiple copies of

the media to avoid detection.

Content authentication

Content authentication (tamper detection or proof of integrity) is another important appli-

cation [6,7] of information hiding techniques. This application requires verifying that media

files have not been altered since they were marked. This application can be useful for au-

thentication in automatic video surveillance or driver’s licenses [5,8]. The algorithm should

be designed in a way that alterations on the media easily destroy the embedded mark, so

that the destroyed mark would show that the content has been tampered with and further-

more that where the alteration is located. Fragile watermarking refers to the technique that

the mark is designed to be sensitive to any alterations, and semi-fragile watermarking if the

mark is sensitive only to malicious alterations (i.e., intentional attacks).

Covert communication

The goal of covert communication is to hide the existence of the hidden message in the

communicated medium. While the medium is primary in other applications, the message

itself is primary in covert communication. When information hiding technique is used in

covert communication, it is called steganography, which is of Greek origin and means covered,

or hidden writing [2]. On the other hand, the field of study that is interested in detecting

2



the steganographic communication is called steganalysis.

The main requirement for steganographic systems is undetectability (or security): The

goal of steganographic methods is that the object containing the hidden message should

not be detected as a suspicious object by a steganalysis. The undetectability is challenging

because steganalysis methods use visual and statistical inspections to detect the presence

of a hidden message.

Non-security-related applications

Information hiding has many applications other than security-related ones [4]. Data annota-

tion is an example of non-security-related applications. Medical images are currently stored

linked to text files written with patients’ names and other private medical information in

a large database. If the information is embedded in the medical image itself, the database

management will become easy [1].

Information hiding technique can also be used for upgrading a legacy system without

changing the existing system much. Many analog services are being upgraded to digital

service, and information hiding techniques can be used in order to maintain backward

compatibility, which bridges to the new digital system while keeping the current system

unchanged [9].

1.1.2 General Information Hiding Scheme

The information hiding process has three general processes: generating a message to embed,

embedding the message, and extracting the message.

Generating a message : The data to embed is called a message, and the message

length is called the payload. The message could be any digital information including a

unique ID for the distributed media, copyright information, image data, or audio data. The

decision of what information to embed depends on the applications. For security reasons, the

message is usually encrypted using a secret key that has been shared between a sender and

a receiver. The encrypted message is assumed to be a binary random sequence, and many

3



statistical analysis in information hiding have been performed based on the assumption.

Embedding : The embedding process modifies the original medium in order to embed

the message. The modification performs in the spatial domain (wherein the image is iden-

tified by pixels) or transformation domain (wherein the image is identified by frequency

waves such as DCT, DFT, DWT etc.) The issue of selecting the location in the domain is

also important. For example, embedding in low frequency coefficients has a different effect

from embedding in the high frequency coefficients. It is more difficult for the human visual

system to detect modifications of the high frequency coefficients. Therefore, embedding by

modifying the high frequency coefficients can achieve more imperceptible embedding rather

than ones in the low frequency coefficients. For security reasons, the location of embed-

ding may be determined by a secret key. The original medium before a message has been

embedded is termed a cover object, and the medium after the message is embedded in it is

termed a stego object.

Extracting : The extracting process usually inverts the embedding process. When a

stego object is sent to the extracting process, the elements of the stego object are arranged

in the same order that the embedding process used. This can be accomplished by using a

secret key. The usage of the extracted messages varies depending on the applications. For

example, the extracted message which is verified as the exactly same to the original message

can prove that the content of the stego object has not been modified since marked.

1.1.3 Requirements

Each application using information hiding techniques has different requirements depend-

ing on the purpose of the application. Generally, four requirements—robustness, payload,

transparency and security—are common to most applications. Because there exist trade-

offs between those requirements, it would be very challenging to design an algorithm that

satisfies all of four requirements. The tradeoff between payload and security has been dealt

with in this thesis.

Robustness: Robustness requires the embedded message to survive against various
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types of attacks, such as filtering, resizing, rotation, and intentional attempts to remove the

embedded message. To achieve robustness, one considers perceptually significant places for

embedding, so that removing the message would result in significant perceptual distortion.

Copyright protection application is an example that requires robustness.

Payload : This refers to the number of embedded message bits. The required payload

ranges from one bit for a binary decision to a large number of bits for covert communication.

Bit rate refers to the payload normalized by the size of media and is used to measure a

embedding rate.

Imperceptibility : Many applications of information hiding require the embedded mes-

sages to be imperceptible. The transparency requirement conflicts with the robustness and

the payload requirements. To achieve the transparency, perceptually insignificant places

should be considered for embedding, which is in contrast to the robust embedding tech-

nique. It is relatively easy to achieve transparency for small payload applications, but it is

challenging for the large payloads.

Security : What distinguishes steganography from other forms of information hiding is

the focus on merely detecting presence of a hidden message. In steganography, a third-party

is assumed to know the distributions of cover objects and stego objects, and the embedding

algorithms (not secret key). Stego objects should look just like innocent cover objects even

though they contain hidden messages. In secure steganographic system, an adversary cannot

distinguish whether a sender is sending a legitimate cover object or a stego object. Cachin

formalized security of steganography in [10,11]. The security of steganographic system with

a cover object (C) and an object generated by an embedding algorithm (S) is quantified

using relative entropy between PC and PS . The system is called ǫ-secure against passive

adversaries if

D(PC ||PS) =
∑

x∈C

PC(x)log
PC (x)

PS(x)
≤ ǫ.

If ǫ = 0, the stego system is called perfectly secure [10].
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1.2 Overview and Scope of Thesis

This thesis will present information hiding schemes using JPEG images1 with three goals:

minimizing distortion due to embedding, preserving statistical properties during embedding,

and predicting the distortion level with a given message length. Since stego images are

created by modifying the cover images, some level of distortion to the cover images is

unavoidable; however, the minimized distortion is required in many applications. Especially

in high-image-quality-required applications, including fine art works, photographs for court

evidence, or surveillance videos that may have to be processed again after stored, minimal

distortion to the images should be one of the primary requirements. Another motivation of

aiming for minimal distortion is that modification in the image statistics can be minimized

by the method of minimizing distortion. Relationship between the distortion and statistical

change in information hiding is firstly explored by this thesis. Minimizing distortion due to

embedding is the first goal of this thesis.

In addition to producing distortion, embedding messages alters statistical properties

of the cover image. When one algorithm focuses only on minimizing distortion, it may

disregard the effect of the statistical alteration, which will make the algorithm vulnerable

to the steganalysis attack: The altered statistical properties can be used for the steganalysis

methods, which are interested in detecting the use of steganographic methods. Preserving

statistical properties in images during embedding is the second goal of this thesis.

Another goal regarding distortion in this thesis is predicting the distortion level with a

given message length. Distortion varies depending on the payload, the length of message.

A high payload increases the level of distortion. There has been very little work on how

to choose the payload in terms of the tradeoff between payload and distortion. Instead,

trial-and-error methods have been used to determine the payload with a given distortion

level. In this thesis, the distortion is predicted as a function of message length and one

of the cover data statistics. The mathematical analysis will help to determine the payload

automatically. To the best of our knowledge, this is the first mathematical analysis of

1This can be expanded to other formats.
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predicting distortion in the field of information hiding.

In this thesis, information hiding algorithms using JPEG images have been proposed.

Chapter 3 will overview of the JPEG encoder including the process of producing the round-

ing errors, which will provide a background for understanding this thesis. After providing

the background about JPEG images, our fundamental minimization scheme, which uses

rounding errors and block-based coding, is introduced in Chapter 4. The detailed imple-

mentation of the minimization scheme are described as four embedding algorithms from

Chapter 5 to 8 depending how to deal with the issues of JPEG information hiding. The

algorithms use two block-based coding techniques called parity coding and matrix coding.

The expected distortion with each algorithm is mathematically analyzed in the chapters.

Achieving the three goals is validated by measuring distortion. The distortion is mea-

sured as a distance between cover data and stego data. When each embedding algorithm is

proposed, the distortion for various embedding rates is presented and the various results are

demonstrated in each chapter. We have continuously improved our embedding algorithm to

decrease distortion and the results show how low a distortion we have reached through the

improvement. The accuracy in the estimation of distortion due to embedding is shown by

plotting the theoretical one and experimental one in the same graph. To show how closely

the embedding algorithm preserve the original statistics, differences between the histograms

before and after embedding are measured. Lastly, we have tested our embedding algorithms

with the well-known steganalysis tests and showed the results.

7



Chapter 2: Literature Review

Information hiding is a relatively new research field. Detailed survey of early algorithms

and softwares for information hiding techniques can be found in the papers by Petitcolas [2]

and Swanson et al. [12]. A comprehensive overview of many applications is provided in the

books by Cox, Miller, and Bloom[13], Johnson, Duric, and Jajodia [14], Katzenbeisser and

Petiticolas [15], and Wayner[16]. An overview focusing on the principles and mathematical

methods on information hiding is provided by Moulin in [5].

The first academic conference related to information hiding is International Workshop

on Information Hiding (IH), which has been yearly held since 1996. The IH conference

proceedings are considered the primary source for the recent information hiding techniques.

Another related conference is IS&T/SPIE Electronic Imaging Security, Forensics, Steganog-

raphy, and Watermarking of Multimedia Contents (SPIE). In addition, two recent peer

reviewed journals are IEEE Transactions on Information Forensics and Security and Inter-

national Journal of Information Security.

Since the proposed methods in this thesis are applicable to steganography and fragile

watermarking, the review will be limited to those two subfields rather than covering all

information hiding techniques that have been developed for the last decade.

2.1 Steganography and Steganalysis

People have been using steganography to hide information since Greek times. However, dig-

ital steganography is a relatively new research field [15]. Since being undetectable is one of

the essential requirements for steganographic applications, steganography and steganalysis

techniques are evolving in competition with each other.
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2.1.1 Steganography Techniques

The steganography techniques for images can be broadly grouped into two categories: spa-

tial domain methods [17–20] and frequency domain methods [21–25].

In spatial domain steganographic techniques, pixel values of images are used to embed

messages. To modify the pixel values, the early steganographic methods replace the least

significant bits (LSB) of pixel values with the message bits, which is known as a LSB

replacement technique [26]. The LSBs of the pixel values are considered redundant parts of

images, especially in terms of visual perception. In the LSB replacement technique, it was

assumed that the LSBs were completely random so their modification by being replaced

with the random message bits would not be detected; however, it was found in [27] that

the LSBs are very correlated with the image. It was also found, even though the LSB

modification does not change the visual quality of the image much, that the modification

changes the statistics of the LSBs significantly, which can be detectable.

Another technique used in the spatial domain methods is called ±1 embedding [18], which

modifies the pixel value by incrementing or decrementing, so the LSB of the pixel value

become matched to the message bit [17]. More sophisticated method using ±1 embedding,

called Stochastic Modulation, was proposed in [18], where noise was added to the pixels with

an arbitrary probabilistic distribution to provide the better security.

Second category of image steganographic methods is embedding techniques using trans-

form domain data. The most common transformation is the Discrete Cosine Transform

(DCT), which is used in a JPEG encoder. The proposed methods in this thesis use DCT

coefficients to embed a message, so they belong to this category. Since the steganalysis

methods was successful to detect the spatial domain embedding methods, many transform

domain embedding algorithms have proposed methods to preserve statistical properties of

cover images. The detailed discussion on how the steganographic methods were proposed

to avoid the statistical attacks of various steganalysis methods will be presented in the next

section 2.1.2.

Current embedding techniques for JPEG images can be grouped into three groups [28]:
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(a) embedding by direct modification of DCT coefficients [21–23], (b) minimal distortion

embedding by utilization of side information (e.g., rounding errors occurred at the quanti-

zation stage.) [25, 29], (c) converting to JPEG format after robustly embedding a message

in another domain [30].

Two different methods of modifying directly DCT coefficients are discussed first: the

F5 [21] and Outguess [22] algorithms. Both algorithms were proposed to preserve the

histogram of DCT coefficients during the embedding process. F5 embeds a message by

modifying DCT coefficients in a way that avoids becoming the frequency of adjacent coeffi-

cients similar, which is noticeable by a simple histogram attack. F5 decrements the absolute

value of the coefficient values instead of replacing the LSB by the message bit. Outguess

embeds a message using up to a half of all usable coefficients, and correct the discrepancy,

which is created by the embedding process, using the remaining coefficients. In results,

Outguess can preserve the DCT coefficient histogram, but it has a drawback of decreasing

the possible maximal length of embedding by half.

Minimal distortion embedding methods [25,29] utilize side information such as rounding

errors that occur during JPEG quantization stage and embed a message while minimizing

distortion. Exploiting rounding errors as the side information for minimal distortion was

firstly proposed in [29] called Perturbed Quantization. Perturbed Quantization (PQ) chose

those coefficients whose values before rounding are in the middle of the interval as changeable

coefficients for low distortion of stego objects. Wet paper code [31] was used to embed a

message. The work proposed in this thesis also utilizes rounding errors of DCT coefficients;

however, in our methods, (a) the combined distortion due to rounding and embedding has

been minimized by considering all coefficients; (b) there are no constraints on choosing

usable coefficients. All available coefficients are considered as useable; (c) the solution is

always guaranteed; (d) double compression is not necessary.

Another group of JPEG steganographic methods [30, 32] embed messages robustly in

images other than the JPEG format and convert the embedded images to the JPEG format.

Besides the methods discussed so far (spatial and transform domains techniques), model
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based techniques are important in steganography. Model-based-steganography [23, 33] is

a hiding method that preserves distributions of individual JPEG coefficients during the

embedding process. On the sender’s side the method estimates the distributions of the AC

coefficients in JPEG images from the distribution of the most significant bits (MSB) of

the coefficients. The estimated distribution is used by an entropy decoder to encode the

compressed and encrypted message in the LSBs of the coefficients. On the receiver’s side

the same distribution is estimated from the MSBs of the coefficients and the message is

extracted from the LSBs of the coefficients by an entropy encoder.

Another method to preserve the statistics of cover objects is the graph-theoretical ap-

proach. The graph-theoretical approach technique embeds a message by exchanging rather

than overwriting cover data. The method proposed by Hetzl and Mutzel [34] constructs a

graph with cover data and finds matched edges. The matched edge is defined as two ele-

ments of cover data that can be interchanged to embed a message. This graph-theoretical

approach can be applied to various formats of cover data including BMP images, JPEG im-

ages, and WAV audio files. Because of the non-uniform distribution of the DCT coefficients,

about 3% of coefficients are left unmatched for the block size of 3 in the experiments con-

ducted [34]. However, still the major coefficients are matched, so the histogram is preserved

for not being detected by histogram-based attacks [27,35].

2.1.2 Steganalysis Techniques

The goal of steganalysis methods is to detect the presence of a hidden message, although

the message itself does not need to be decoded. The techniques of image steganalysis are

categorized into two: algorithm-specific steganalysis and universal steganalysis.

The first approach of steganalysis methods were designed with respect to the specific

embedding method, and they can be grouped depending on the image format that the

embedding algorithm uses, such as raw images, palette-based images, or JPEG images.

To embed a message in raw images, the simple LSB replacement technique was used

in the pixel domain. There are two steganalysis techniques to detect the LSB replacement
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embedding: visual attack [27] and chi-square attack [27].

The visual attack detected changes in the LSB plane of images when the LSBs were

replace by a message. Since the LSBs are correlated with the image, embedding of the

random message bits changes the correlation between the LSB plane and the image. For

example, after embedding with full capacity of the image (i.e., every LSB is replaced with

the message bit), the LSB plane of the image looks like random noise.

The chi-square attack detected changes of image statistics by LSB replacement. The LSB

replacement results in producing pairs of adjacent coefficients that their values differ by only

1 (e.g., (2,3), (4,5)). The frequencies of those adjacent coefficients have changed depending

on the frequencies of embedding message bits (0 or 1). The chi-square attack [27] found that

the frequencies of those adjacent coefficients become similar as the amount of the embedded

messages becomes large. Since the chi-square attack was proposed, the LSB replacement

techniques have been considered as easily detectable by examining histograms [36–39] or

structural analysis [40]. LSB steganalysis approaches that also provided message length

estimation were proposed for gray scale images [41,42] and color images [43].

The Hide algorithm [17] increments or decrements the sample value in order to match its

LSB to the message bit, which can not detected by simple LSB steganalysis. This ±1 em-

bedding technique used in the Hide algorithm was detected by looking at the neighborhood

colors for each color value as proposed in [35,44].

The next group of steganalysis is designed with respect to embedding methods for

palette-based images. Many steganography methods [20,45] for palette-based images (e.g.,GIF

images) have been proposed. The early proposed steganalysis method [46] for palette-based

images used visual inspection or simple statistics for detection. Later, EzStego-specific ste-

ganalysis methods [27,47] explored color pairs, obtained after sorting the palette, that have

changed their patterns after the embedding.

The last group of steganalysis is designed with respect to embedding methods for JPEG

images. Due to emergence of many steganographic methods [21,22,48,49] employing JPEG
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images, many JPEG steganalysis methods have been proposed. Two steganalysis meth-

ods [50,51] have proposed to detect the F5 and Outguess algorithms using DCT coefficients

histogram and blockiness. F5 employs matrix encoding so as to decrease the number of

changes, and it increments (or decrements) the sample value to avoid chi-square attack;

however, F5 still alters the histogram of DCT coefficients in a noticeable way. The ste-

ganalysis technique in [50] proposed a method of estimating the cover image by cropping

the stego JPEG image by 4 columns and then encoding the cropped image using the same

quantization table. The histogram of the estimated cover image was compared to the one

of the stego image, and then the length of message was estimated.

The steganalysis technique to detect Outguess was proposed in [51]. Since Outguess

can preserve the original histogram of DCT coefficients, the technique of estimating the

original histogram is not effective. Instead, the steganalysis on Outguess used blockiness,

which refers the spatial discontinuities along the 8× 8 DCT blocks. When the length of the

embedding message increases, the blockiness also increases.

While the first group of steganalysis methods was designed for a specific embedding

method, the second type of steganalysis methods are designed to detect any embedding

algorithms, called Universal Steganalysis or Blind Steganalysis Technique [26]. Universal

steganalysis basically designs a classifier that can differentiate the cover images and stego

images. It is very important to find the features that can capture the statistical changes

introduced in the images after embedding.

A universal steganalysis method proposed in [52,53] decomposed an image using quadra-

ture mirror filters and then high order statistics were calculated from the high frequency

bands to be used as features for steganalysis. In [54], the authors used the low-low wavelet

subbands to calculate the statistical moments of characteristic functions for their steganal-

ysis.

Another steganalysis method [24] estimated a cover image of the JPEG format and the

statistics of the estimated cover image was used as the features to detect data embedded in

JPEG images.
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The methods in [55, 56] detected spread spectrum data hiding method using the inter-

pixel dependencies and a Markov chain model. The Morkov features were also applied

in [57,58] attacking JPEG steganography methods.

2.2 Fragile Watermarking Techniques

A fragile watermark refers a mark that is easily altered or destroyed when the cover image

is modified. Fragile watermarking is not suited for enforcing copyright ownership of digital

images. Fragile watermarking may be interesting to parties who want to verify that the

image has not been edited or altered since it was marked. The sensitivity of fragile marks

to modification leads to their use in image authentication. The information to be embedded

is a random message, image information (image id, camera id and time stamps) or image

summary.

The early fragile technique for authentication used the technique of inserting the mark

in the least significant bit (LSB) plane of image pixels [59,60] and the added watermark is

a pseudo random sequence, which is not related to the content of the image.

P. Wong describes another fragile marking technique in [61] that calculates a digest of

the image using a hash function and embeds it in the cover object. The image ID, image

size and user key are hashed and embedded by modifying the LSBs of pixels of the image.

The hybrid method in color images was proposed by Yeung and Mintzer [62]. A random

binary sequence was excluded-ORed with all three color channels’ hash values, which are

related to the image pixel values. In order to spread the modification out, the error diffusion

technique was used.

The improved version of the Yeung-Mintzer algorithm [62] was proposed in [63]. It used

the neighboring pixels information in generating the authentication code. This algorithm

is less localized but more sensitive in detecting alteration compared to the Yeung-Mintzer

algorithm.

Fragile watermarking systems using frequency domain data have an advantage that the

mark can be embedded in a compressed domain. Wu and Liu [64] described a technique
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of changing the quantized DCT coefficients. Kundur and Hatzinakos [65] and Xie and Arce

[66] describe techniques based on the wavelet transform. Kundur modified the Haar wavelet

transformation coefficients to embed a mark while Xie modified the SPIHT algorithm.
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Chapter 3: Background

As the thesis focuses on designing information hiding algorithms using JPEG image, overviews

of image based information hiding system and JPEG images are described in this chapter.

Information hiding refers to hide information in host signals such as images, audios, and

videos. Generally, information hiding methods modify a cover object to embed a message

and creates a stego object. A cover object refers to the original medium before information

has been embedded; a stego object refers to the medium after information is embedded in

it. The data to be embedded is called a message and the message length is called a payload.

3.1 Image Based Information Hiding System

Figure 3.1 shows an overview of the information hiding system. As the thesis designed

image based information hiding methods, X and X̂ in Figure 3.1 are images. A cover image

Key

Channel*

M

M’

f(X, M, k)

Embedding function

Extracting function

Key

X X̂

X̂
g(     , k)X̂

Figure 3.1: An overview of information hiding system.

(X) and a message (M) are sent to the embedding function with a secret key. Typically, the

message is assumed to be encrypted for security reasons, and the secret key and the embed-

ding function are assumed to be known to the receiver. An information hiding algorithm
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has a pair of functions f and g such that

X̂ = f(X,M), M = g(X̂).

The typical embedding function finds the insignificant part of the cover image for the

human visual system and modifies them to embed a message. The output of the embedding

function is the stego image (X̂). It is not easy to tell the stego image from the cover image

by the human visual system. The stego image is sent to the receiver through a channel.

The channel may modify the stego image by adding noises (e.g., compression, filtering, or

malicious modification.) The received image is sent to the extracting function with the key.

The extracting function retrieves a message from the stego image. The message may or

may not be the same to the message that the sender has sent. The usage of the extracted

message varies depending on the applications. For example, the message can be used for

content authentication to verify that the content of the image has not been altered: If the

extracted message is the same to the original, it verifies that the transferred image has not

been altered. Otherwise, the image is reviewed for possible modifications.

3.2 Information Hiding Using JPEG Images

Since the embedding schemes proposed in this thesis use the properties of JPEG encoding,

an overview of the JPEG format would help to explain the scheme. JPEG image formatting

removes some image details to obtain considerable saving of storage space without much loss

of image quality. The savings are based on the fact that humans are less sensitive to changes

of the high frequency components than of the low frequency components. Information

hiding techniques using JPEG files operate in the frequency domain. One of the benefits

of embedding in the frequency domain is that of not being affected by visual attacks [27].

When some stego images are examined by the visual attack technique, embedded messages

can be seen on the low-bit plane of the image; this usually happens when messages are
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embedded in BMP images using early information hiding techniques.

3.2.1 JPEG Image Format

Suppose a sender has an uncompressed image and wants to embed a message in a JPEG

format image. The sender can access every procedure of the JPEG encoder and see all the

intermediate data. Figure 3.2 illustrates the JPEG encoder and decoder. At the encoder

side each channel is divided into 8 × 8 blocks and transformed using the two-dimensional

discrete cosine transform (DCT). DCT converts spatial domain data (I(i, j)) into frequency

domain data (X(u, v)). The mathematical specifics on DCT are in [67]. Let I(i, j), i, j =

0, . . . , N − 1 be an N ×N image block in any of the color channels and let X(u, v), u, v =

0, . . . , N − 1 be its value after DCT. The relationship between I(i, j) and X(u, v) is given

by

X(u, v) =
2

N
C(u)C(v)

N−1
∑

i=0

N−1
∑

j=0

I(i, j) cos

(

πu(2i+ 1)

2N

)

cos

(

πv(2j + 1)

2N

)

I(i, j) =
2

N

N−1
∑

u=0

N−1
∑

v=0

C(u)C(v)X(u, v) cos

(

πu(2i+ 1)

2N

)

cos

(

πv(2j + 1)

2N

)

,

where C(u) = 1/
√

2 for u = 0 and C(u) = 1 otherwise. The coefficient X(0, 0) is called

DC and all others are called AC. The JPEG encoder uses the quantization operation and

rounding operation given by:

X̄(u, v) =
X(u, v)

Q(u, v)
,

X̃(u, v) = Round
(

X̄(u, v)
)

(3.1)
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Figure 3.2: JPEG encoder and decoder. The procedure related to information hiding is
involved after the quantization procedure and before the entropy coding procedure.
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to obtain integer-valued coefficients X̃(u, v). The process produces quantization errors and

rounding errors:

δ(u, v) = X̃(u, v)Q(u, v) −X(u, v),

R(u, v) = X̄(u, v)− X̃(u, v). (3.2)

A default quantization table [67] is given by

Q(u, v) =















































16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99















































.

Figure 3.3 shows that one channel (Y) of an image is divided into 8 × 8-sized blocks, and

Figure 3.4 illustrates how the image block is encoded as DCT coefficients. The first matrix

in Figure 3.4 is an example of the 8×8 image block; the second matrix is a result of the DCT,

the third matrix is a result of the quantization, and the forth matrix shows the rounded

DCT coefficients, which are the information saved in encoded JPEG files. As shown in the

forth matrix in Figure 3.4, usually many coefficients for higher values of u+ v become zero,

and only a fraction of all coefficients remains non-zero. The coefficients of X̃ are ordered

into a linear array by placing higher frequency coefficients (higher values of u + v) at the

end of the array. Those high frequency coefficients are most likely to be zeroes. Entropy

coding is applied to all non-zero coefficients from all blocks in the image; the zero-valued

coefficients are encoded separately using run-length encoding. A header that contains the
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information about image type, dimensions, compression parameters, and the quantization

table is attached to the entropy encoded coefficients. All is packed as a sequence of bits to

form a JPEG encoded image file.

On the decoder side, the integer valued coefficients are restored by entropy decoding.

The inverse DCT of the inverse-quantized data is performed to obtain the decoded image.

The decoded image is not the same with the original image because the rounding operation

in the quantization procedure is a lossy operation.

3.2.2 Distortion in JPEG Images

Distortion occurs when an image is encoded as a JPEG file. Figure 3.4 shows the original

image block on the top and the decoded image block in the bottom. Because the rounding

operation at the quantization stage is lossy, the decoded image block is different from the

original image block. In other words, because of δ in Eq. (3.2), the decoded image is not the

same as the image before encoded. As shown in Figure 3.2, information hiding techniques

for JPEG images modify DCT coefficients, which already contain errors caused from the

rounding operation. The process of embedding a message will introduce additional errors

to the images. Therefore, the stego image created by the sender in the JPEG format will

have distortion, which comes from the rounding operation as well as from the embedding

procedure.
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Figure 3.3: An image is divided into non-overlapped 8× 8 blocks before DCT. The picture
is from [68].
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After DCT 

Image pixels

After quantization

After rounding

Decoded image pixels

Figure 3.4: An image 8 × 8 block is transformed into JPEG coefficients using DCT. The
output of the DCT transformation is quantized and rounded to integers. The integer co-
efficients are stored in JPEG format file. The decoded image pixel values from the stored
JPEG coefficients are different from the original image pixel values.

23



Chapter 4: Minimizing Distortion in Information Hiding

using JPEG Images

Designing information hiding algorithms that minimize distortion is a goal of this thesis.

The fundamental scheme that we designed to minimize distortion for JPEG images is de-

scribed. This chapter describes the formal definition of distortion and rounding errors used

in the thesis, and then describes how the rounding errors are utilized for achieving minimal

distortion. Block-based coding techniques are also utilized for minimal distortion. Par-

ity coding and matrix coding techniques are two coding techniques used in the proposed

methods.

4.1 Distortion

Let X̄ and X̃ be the vectors of cover DCT coefficients before and after the rounding op-

eration and X̂ be the vector of stego DCT coefficients after embedding. Let R and R̂

be:

R = X̄ − X̃ = (r1, r2, . . . , rl), (4.1)

R̂ = X̄ − X̂ = (r̂1, r̂2, . . . , r̂l), (4.2)

where −0.5 ≤ ri < 0.5. We assume that if X̄ is given, the corresponding X̃ , R, and R̂ can

be calculated. Let distortion be D = ‖R̂‖1 and rounding error be R. Note that if X̂ = X̃

then R̂ = R. (i.e., if embedding requires no modification, the total error is equivalent to

the rounding error.) Since embedding any message almost always requires changing bits,

24



the best result that can be obtained is

D ≥ ‖R‖1.

Due to the JPEG encoding properties, embedding a message in a JPEG image yields dis-

tortion from two sources: rounding errors and modification due to embedding. The central

idea of utilizing rounding error comes from the following question: Can total distortion be

minimal by taking into account the rounding errors?

4.2 Rounding Biased Rule

We define Rounding biased rule, which is applied when JPEG coefficients are required

modification for embedding. By applying the rounding biased rule, the coefficient is changed

in a way that its value after embedding (x̂) is close to the original (x̄).

To introduce the rule, the unrounded coefficients are divided into X̄+ and X̄− depending

on their corresponding rounding errors:

X̄+ = {x̄i|x̄i ∈ X̄ and 0 ≤ ri < 0.5},

X̄− = {x̄i|x̄i ∈ X̄ and − 0.5 ≤ ri < 0}.
(4.3)

Figure 4.1 is a graphical description for X̄+ and X̄−. Now, the rule is defined based on the
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Figure 4.1: A graphical description for X̄+ and X̄−.
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X̄+ and X̄−. If a coefficient x̄i needs to be changed to x̂i in order to embed a message, the

modification follows the rounding-biased rule given by:

x̂i =











Round(x̄i + 0.5), if x̄i ∈ X̄+,

Round(x̄i − 0.5), if x̄i ∈ X̄−.
(4.4)

Since the rounding errors are taken into consideration, a pair of functions f and g in this

thesis is

X̂ = f(X̄,R,M), M = g(X̂), (4.5)

and we seek f and g such that ‖X̄ − X̂‖1 is minimized. With the rounding-biased rule, the

distance between x̄i and x̂i is always limited to 1−|r(x̄i)|, where r(x̄i) is the corresponding

rounding error when Round(x̄i) occurs. And the added distortion due to embedding (called

embedding error and denoted by ε in this thesis) is always limited to 1− 2|r(x̄i)|.

4.3 Block-based Coding Techniques

Distortion due to embedding can be minimized using block-based coding techniques. Block-

based coding techniques use several elements of cover data in order to embed a message

bit and it allows us to choose the minimum one among n (the block size) choices, where

minimization is achieved in a greedy way. We have applied two different block-based coding

techniques (parity coding and matrix coding) to our methods.

4.3.1 Parity Coding

Exploiting the parity coding technique for the least obtrusive embedding was suggested by

Anderson [69]. He suggested that parity coding can reduce the effect that the embedding

process has on the image statistics below any arbitrary threshold. Embedding methods

based on parity coding take several cover object’s elements for a single message bit and

embed the bit by matching the parity of the cover data to the message bit.
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The parity coding technique is modified in our minimizing distortion scheme. Rather

choosing an arbitrary cover coefficient, our methods examine the expected distortion due

to embedding based on rounding-biased rule and select the one that causes the minimum

distortion for modification. The following describes the detailed steps of embedding a mes-

sage bit in a n-sized block using parity coding in our rounding-biased rule based embedding

scheme.

The embedding process divides X̃ (after rounding) into blocks of length n. To embed

a message bit mi, the ith block X̃i = {x̃n(i−1)+1, · · · , x̃ni} is considered. X̃i is the ith block

of X̃ , and so forth. If the parity of the LSB(X̃i) is equal to mi, no change is necessary,

X̂i = X̃i. On the other hand, if the result of parity is different from mi, the jth coefficient

of the block, X̃i,j = x̃n(i−1)+j (1 ≤ j ≤ n) needs to be changed so that the LSB’s of the

block have their parity equal to mi. Now, the question is which j should be chosen to

change. We are interested in minimizing distortion between X̄ (before rounding) and X̂

(after embedding), therefore, r̂j = 1− |r(X̄i,j)| for each X̃i,j is examined, and the one that

has the least distortion will be chosen to be changed. Algorithm 1 explains embedding mi

in X̃i and producing X̂i:
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Algorithm 1 Proposed embedding algorithm to minimize distortion in a single block using

parity coding.

inputs: X̄i,mi; |X̄i| = n;

X̃i ← Round(X̄i);

if Parity(LSB(X̃i)) = mi then

X̂i ← X̃i;

else

find j such that r̂j = min
1≤k≤n

{1 − |r(x̄n(i−1)+k)|};
for 1 ≤ k ≤ n do

if k = j then

x̂n(i−1)+k by the rounding-biased rule;

else

x̂n(i−1)+k = x̃n(i−1)+k;

end if

end for

end if

4.3.2 Matrix Coding

Matrix coding was proposed by Crandall [70] to improve embedding efficiency by decreasing

the number of required bit changes. Westfeld [21] proposed F5, a well known steganographic

algorithm in which matrix coding was implemented. In F5, cover data are the LSBs of

quantized DCT coefficients (X̃) after rounding. The notation (1, n, k), where n = 2k − 1,

denotes embedding k message bits into an n sized block by changing only one bit of it. Let

X̃i,j be the jth coefficient in the ith block of length n and Mi be the ith message block of

length k. The advantage of matrix coding is embedding several (k) bits by changing only

a single bit. A function b needs to be defined to find the bit position to change in matrix

coding:

b(X̃i) =

n
⊕

j=1

(LSB(X̃i,j)) · j, (4.6)
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where
⊕

is a bitwise exclusive OR operation. The bit position α that needs to be changed

is calculated by:

α = M ⊕ b(X̃i). (4.7)

If α 6= 0, the LSB of X̃i,α should be flipped, 1 to 0 or 0 to 1, to embed Mi. The modified

block is then given by

X̂i =











X̃i, if α = 0,

X̃i,1, . . . , X̂i,α, . . . , X̃i,n if α 6= 0,
(4.8)

where X̂i,α is produced by decrementing the absolute value of X̃i,α in the F5 implementation.

On the decoder’s side, k message bits are extracted from X̂i by calculating:

Mi = b(X̂i). (4.9)

4.3.3 Modified Matrix Coding

We modified matrix coding in order to be used in our minimizing distortion scheme. The

original matrix coding provides only one single choice for embedding k message bits. With

the single choice, our minimizing scheme based on rounding-biased rule (Section 4.3.1) can

not be utilized.

The modified matrix coding uses (t, n, k) codes, t ≥ 1, which embeds k messages bits

by changing at most t bits of n cover data. For example of t = 2, we find pairs of the

index number (β, γ) such that β⊕ γ = α. As a result, flipping the bits in the positions of β

and γ and flipping the bit in the positions of α produce the same extracted message using

Eq. (4.9). Note that for any α, there are n−1
2 such pairs which can be enumerated easily.

By increasing the number of choice, we can achieve minimization by choosing the one that

has the minimum value of expected distortion. The following describes the detailed steps

of embedding k message bits in a n-sized block using modified matrix coding (2, n, k) and
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rounding-biased rule.

With the given X̄i and Mi, the corresponding X̃i and Ri are calculated from them. We

compute α using Eq. (4.7) in the same way that the original matrix coding computes. If α 6=

0, we compute n−1
2 pairs (β1, γ1), ..., (βn−1

2

, γn−1

2

) such that βj ⊕ γj = α, j = {1, ..., n−1
2 }.

Modifying the LSBs of two coefficients in the positions of βj and γj will have the same

embedding result with when the α positioned coefficient is changed. Now, the question

is which case causes the smallest distortion. We are interested in minimizing distortion

between X̄i and X̂i, therefore, each expected distortion is examined, and the one that has

the least number will be chosen to change. For the case of changing the α position bit, the

expected distortion is 1−|Ri,α|. And for each of the pairs (βj , γj), the expected distortion is

a sum of individual distortion, (1−|Ri,βj
|)+ (1−|Ri,γj

|). Algorithm 2 describes embedding

Mi in X̄iand producing X̂i using modified matrix coding.

Algorithm 2 Proposed embedding algorithm to minimize distortion in a single block using
modified matrix coding (2, n, k).

inputs: X̄i,Mi; |X̄i| = n, |Mi| = k.

X̃i ← Round(X̄i);

X̂i ← X̃i;
calculate α using Eq. (4.7).
if α 6= 0 then

find (βk, γk) 1 ≤ k ≤ n−1
2 ;

find (βj , γj) corresponding to µ = min
1≤k≤n−1

2

(2− |Ri,βk
| − |Ri,γk

|);

if (1− |Ri,α|) ≤ µ then

create X̂i,α by the rounding-biased rule;

X̂i = {X̃i,1, . . . , X̂i,α, . . . , X̃i,n};
else

create X̂i,βj
by the rounding-biased rule;

create X̂i,γj
by the rounding-biased rule;

X̂i = {. . . , X̂i,βj
, . . . , X̂i,γj

, . . .};
end if

end if
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4.4 Discussion on Shrinkage

Shrinkage refers to the operation of changing a coefficient to 0. Westfeld introduced this

term in [21] because the set of coefficients available for embedding shrinks by the shrinkage

operation. Typical embedding algorithms using JPEG images avoid changing zero-valued

coefficients to non-zero coefficients because modification of zero-valued coefficients may have

effects on compression rates and image quality after embedding. Changing non-zero coeffi-

cients to 0s are not avoided but needs special care to synchronize the embedding function

with the extracting function. If the embedding function makes some coefficients become 0,

the extracting function cannot reveal the message bits embedded in the coefficients created

by shrinkage because only non-zero coefficients are considered in the extracting function.

F5 [21] proposed the repeat-embedding technique to synchronize embedding and extract-

ing functions even if the embedding function creates additional 0 coefficients. In F5, if a

coefficient becomes zero during embedding, the embedding of the message bit begins again

at the same position; this is repeated until the message bit is successfully embedded without

making a coefficient 0. The repeat-embedding technique solves the synchronization problem

between the embedding function and the extracting function; however, it results in not only

sacrificing capacity but also leaving a trail behind for the detection tool by increasing the

frequency of 0 coefficients. This noticeable change in histogram can be used by steganalysis

tools [50] to detect the F5 algorithm.

Our minimizing distortion scheme using the rounding-biased rule also encounters the

shrinkage problem. When such coefficients that x̃i = 1 and x̄i ∈ X̄− or x̃i = −1 and x̄i ∈

X̄+ are changed using the rounding-biased rule, they are changed to zero-valued coefficients.

Next two chapters will introduce our two embedding algorithms that solve the shrinkage

problem while utilizing our minimizing distortion scheme.
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Chapter 5: Shrinkage-avoiding Embedding Algorithms

Shrinkage is the operation of changing a non-zero coefficient to 0 and it needs special care

in synchronizing the embedding and extracting functions. Some techniques to deal with the

shrinkage may cause the increased risk of being detected. In this chapter, our embedding

methods that propose to avoid shrinkage and minimize distortion using parity coding and

modified matrix coding are described. The modified rounding-biased rule is also proposed.

Distortions due to embedding for both methods are formally derived. From the analysis,

the amount of embedding distortion is estimated with a given number of message. This

prediction may help a sender to choose the embedding rate with the given level of tolerable

distortion automatically.

5.1 Parity Coding: PB

We propose a parity-coding-based embedding method called PB that avoids shrinkage and

minimizes distortion.

5.1.1 Embedding Algorithm

After computing DCT, all non-zero AC coefficients are marked for possible embedding

and collected to form X̄. The corresponding rounding errors R and X̃ are calculated. The

embedding process collects non-zero AC coefficients of X̃ and divides it into blocks of length

n. To embed a message bit mi, the ith block X̃i = {x̃n(i−1)+1, · · · , x̃ni} is considered. X̃i is

the ith block of X̃, and so forth. If the parity of the LSB(X̃i) is equal to mi, no change is

necessary, X̂i = X̃i. On the other hand, if the parity is different from mi, the jth coefficient

of block X̃i, X̃i,j = x̃n(i−1)+j (1 ≤ j ≤ n) needs to be changed so that the LSB’s of block
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X̂i have parity equal to mi.

Since shrinkage should be avoided in this algorithm, the modified rounding-biased rule

is proposed. One exception applies to this algorithm when the selected coefficient belongs

to the shrinkable set S, which is defined by:

S = X̄(−1)+ ∪ X̄(1)−,

where X̄(c) = {x̄| x̄ ∈ X̄ and Round(x̄) = c}. Recall that the sign refers to the sign of

the corresponding rounding error. In order to avoid shrinkage, the modified rounding-biased

rule is proposed as:

x̂ =



































2, Round(x̄) = 1 & x̄ ∈ S

−2, Round(x̄) = −1 & x̄ ∈ S

Round(x̄− 0.5), x̄ ∈ X− & x̄ /∈ S

Round(x̄+ 0.5), x̄ ∈ X+ & x̄ /∈ S.

(5.1)

When x̄ is changed to x̂, the additional error due to embedding ε is given by:

ε =











1, x̄ ∈ S

1− 2|r(x̄)|, otherwise.
(5.2)

Since minimizing distortion is primary in this algorithm, each expected distortion with the

modified rounding-biased rule is examined, and the process will choose the one that causes

the least distortion.

To describe our method, two examples of images are used. We embedded random

messages with various parity block sizes in the images, whose rounding error distributions

are different, as shown in Figure 5.1. The images are color JPEG images: the left image

has the dimensions of 766× 1041, and its rounding errors have a Gaussian-like distribution;
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the right image is a size-reduced version of the left image, 536×729, and its rounding errors

have a uniform-like distribution as shown in Figure 5.2. Distortion is analyzed and can be

estimated from the probability distribution of the rounding errors.

5.1.2 Error Analysis

We have assumed that all ri are i.i.d. random variables and their probability density fr(x)

is known. We estimate the rounding error density by normalizing its histogram. The

distribution for ψ = |r| is given by

Fψ(x) =

∫ x

−x
fr(x)dx, x ∈ [0, 0.5]. (5.3)

Figure 5.2 and 5.3 show the normalized rounding error histograms and their probability

distributions for two test images of Figure 5.1. Based on the rounding error distribution,

we estimate the probability distribution of embedding error that is caused when a coefficient

is changed. In this embedding method, there are two kinds of embedding error. One is when

the coefficient belongs to S; the other is when the coefficient does not belong to S.

Let U denote a set of usable coefficients (non-zero AC coefficients in this method). Let

S be a shrinkable set and be Sc denote U − S. As mentioned previously, ε for x̄ ∈ S is

1− 2|r(x̄)| and ε for x̄ /∈ S is 1. Let p = |Sc|
|U | , (i.e., the relative proportion of all coefficients

that belong to Sc) and let q = 1− p (i.e., the relative proportion of S.)

First, the distortion for those that belong to Sc is analyzed. We are looking for a

coefficient that will cause the smallest embedding error within every block, X̄i. If there are

np > 0 coefficients from Sc in a given block, we will choose the coefficient corresponding to

the minimum error among the np coefficients. Since the error for the coefficients from S is

1, which is always greater than the errors caused by the coefficients from Sc, the remaining

(n− np) coefficients are not considered.

Probability distribution Fν(x) for the embedding errors of the coefficients in Sc is given
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(a) (b)

Figure 5.1: Images used in this experiment. They have different rounding error distribu-
tions. The height and the width of the right image are 75% of the left image dimensions.
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Figure 5.2: Normalized rounding error histograms of non-zero AC JPEG coefficients of the
test images in Figure 5.1a (left) and Figure 5.1b (right). We estimate the distribution of
the embedding error using the normalized histogram.
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Figure 5.3: Probability distribution of the rounding errors (Fψ(x)) of the test images in

Figure 5.1a (left) and Figure 5.1b (right).

by

Fν(x) = 1− Fψ(
1− x

2
), ν ∈ [0, 1], (5.4)

and is shown in Figure 5.4 for two test images of Figure 5.1.
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Figure 5.4: Probability distribution of embedding errors (Fν(x)) of the test images in Fig-
ure 5.1a (left) and Figure 5.1b (right).

We are interested in selecting the one that causes the smallest embedding error. We

estimate the probability distribution of the smallest embedding error by using order statis-

tics [71]. Given the probability distribution Fν(x), the distribution of the smallest distortion
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µ when np = s is given by

Fµ(x, s) = Ps{µ ≤ x|np = s} =











U(x− 1), s = 0

1− (1− Fν(x))s, s ≥ 1,
(5.5)

where

U(x− 1) = 0, x < 1

U(x− 1) = 1, x ≥ 1

and Fν(x) is given by Eq. (5.4).

The minimal additional error due to embedding is shown in Figure 5.5 in various block

sizes with two test images of Figure 5.1. Figure 5.6 shows distortion density with various
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Figure 5.5: Probability distribution of additional error due to embedding (Fµ(x, n)) of the

test images in Figure 5.1a (left) and Figure 5.1b (right).

values of n. It can be observed that when n > 8, densities look very similar to the density

with no embedding. This similarity of densities is shown for both test images, whose

distribution of rounding errors are different.

After taking account of all possible combinations of the coefficients, the distribution of
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Figure 5.6: Distortion density for various values of n using the test images in Figure 5.1a
(left) and Figure 5.1b (right).

additional error will be given by

Fµ(x) =
∑n

s=0

(

n
s

)

psqn−sFµ(x, s). (5.6)

The expected value of the embedding error will then be given by

E[µ] =
∑n

s=0

(

n
s

)

psqn−sE[µ|np = s], (5.7)

where

E[µ|np = s] =

∫ ∞

0
xdFµ(x, s), s ≥ 0.

Figure 5.7 shows the results of the error analysis indicating that the theoretically estimated

distortion matches closely to the actual distortion. Figure 5.8 depicts the theoretically esti-

mated error and 100 experimental errors (obtained from embedding 100 different messages

using the same image) using a box plot. The box plot indicates that the estimation is very

accurate.
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Figure 5.7: Embedding error analysis for the test images in Figure 5.1a (left) and Figure 5.1b
(right). The estimated distortion and experimental distortion are very close.
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Figure 5.8: We embedded 100 different messages to the test images in Figure 5.1a (left) and
Figure 5.1b (right), and compared the actual embedding errors with the predicted error in
box plots.
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5.1.3 Experimental Results

The extended experimental results using the PB algorithm are presented. Figure 5.9 shows

average embedding error per message bit with six different embedding rates. 100 images

from UCID [72] database were used to embed messages and the results are shown as a box

plot.
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Figure 5.9: Average embedding error per message bit using the PB method with six different
embedding rates. 100 images from UCID database were used to embed messages.

To verify accuracy of our error analysis, we repeated the test with 100 different messages

using another two images as shown in the first row of Figure 5.10. Figures 5.10 depicts the

theoretically-estimated error and 100 experimental errors (obtained from embedding 100

different messages using each image) using a box plot. The box plot shows the accuracy of

our estimation.

5.2 Modified Matrix Coding: MMx

We propose a modified-matrix-coding-based embedding method called MMx that avoids

shrinkage and minimizes distortion. The details of matrix coding and modified matrix

coding are described in Sections 4.3.2 and 4.3.3. As previously mentioned, in (t, n, k) codes
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Figure 5.10: Top row: test images; Bottom row: Theoretically estimated embedding error
with 100 experimental errors are displayed in a box plot.

where t ≥ 1, k message bits are embedded by changing at most t coefficients among n

coefficients. Depending on t, the number of choice for embedders are determined. For

example of t = 2 (called MM2), embedders will have additional n−1
2 choices in embedding

k message bit in n coefficients. If t is increased, the number of choices also is increased. We

denote MM3 and MM4 when t = 3 and t = 4.

5.2.1 Embedding Algorithm

We apply the modified-rounding-biased rule (Eq. (5.1)) to MMx as we did to PB. When the

chosen coefficient(s) belongs to the shrinkable set S, we change 1 to 2 or −1 to −2 in order

to avoid shrinkage. For example of MM2, two coefficients may change to embed k bits if

their changes cause smaller embedding error than the change of α-positioned coefficient.

To simplify notation, let X̄ be n-sized coefficients instead of a set of all usable coefficients.

Let ε0 denote the embedding error when the α-positioned coefficient designated by the
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original matrix coding is selected for a change, which will be 1 − 2|rα|, where rα denotes

the rounding error of α-positioned coefficient. On the other hand, when an alternative pair

to α is selected, the added error when changing (βi, γi)-positioned coefficients is one of four

cases:

εi =



































2, if x̄βi
∈ S & x̄γi

∈ S

2− |rβi
|, if x̄βi

/∈ S & x̄γi
∈ S

2− |rγi
|, if x̄βi

∈ S & x̄γi
/∈ S

2− 2(|rβi
|+ |rγi

|), otherwise.

(5.8)

In order to decide how to create X̂, we find

µ = min
i
{εi}, 0 ≤ i ≤ n− 1

2
.

Given µ, we compute X̂ by

X̂ =























X̃, if α = 0

{x̃1, . . . , x̂α, . . . , x̃n}, if µ = ε0

{x̃1, . . . , x̂βi
, . . . , x̂γi

, . . . , x̃n}, if µ = εi, i ∈ {1, . . . , n−1
2 }

(5.9)

where x̂ is obtained by the modified-rounding-biased rule.

5.2.2 Error Analysis

In MM2 (t = 2), we compare ε0 and εi for i = {1, . . . , n−1
2 } and select the coefficient(s)

that will cause the least added error. Sc and S, and their relative proportion p and q were

defined in Section 5.1.2.

For a given block of coefficients, {x̄1, . . . , x̄n} of size n, two cases we should care about
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are

x̄α /∈ S & x̄β /∈ S & x̄γ /∈ S,

x̄α ∈ S & x̄β /∈ S & x̄γ /∈ S.

For example, the case of {x̄α /∈ S & x̄β ∈ S & x̄γ ∈ S} does not need to be considered

because the embedding error caused by changing x̄α is always smaller than the one caused

by changing x̄β and x̄γ .

There are h(= n−1
2 ) alternative (x̄β, x̄γ) pairs to change x̄α in MM2. There will be np

pairs in which both x̄β and x̄γ are not from S, where 0 ≤ np ≤ h. The probability of a

single event that both coefficients are from Sc is p2. For any np, the probability of both

coefficients of the selected pair to be from Sc will be

P{np = s} =

(

h

s

)

(p2)s(1− p2)h−s. (5.10)

As we did in the PB algorithm, the embedding error when {x̄α, x̄β , x̄γ} /∈ S is first

analyzed. The embedding error when changing x̄α is 1− 2|rα| and the error when changing

the pair {x̄β , x̄γ} will be 2 − 2(|rβ | + |rγ |). Rounding errors are assumed to be random

variables for analysis. Probability density of rounding errors fr(x) is estimated from the

normalized rounding error histogram. Probability distribution for ψ = |r| is given by

Fψ(x) =

∫ x

−x
fr(x)dx, x ∈ [0, 0.5].

Probability density for z = |r1|+ |r2| is given by

fz(x) = fψ(x)
⊗

fψ(x), z ∈ [0, 1],
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where
⊗

stands for convolution. Probability distribution, Fz(x) is given by

Fz(x) =

∫ z

0
fz(x)dx, z ∈ [0, 1].

Probability distribution for ν = 1− 2ψ is given by

Fν(x) = 1− Fψ(
1− x

2
), ν ∈ [0, 1]. (5.11)

Probability distribution for ω = 2− 2z is given by

Fω(x) = 1− Fz(2− x), ω ∈ [0, 2]. (5.12)

Embedding error due to the change of x̄α ∈ Sc will follow the distribution of Fν(x) and the

changes of x̄β and x̄γ will follow the distribution of Fω(x).

In the MMx algorithm, the process will choose x̄α or one of the pairs of {x̄β , x̄γ} by

comparing their expected embedding errors. To estimate the probability distribution of

the error, order statistics [71] is applied. As the first approximation, the case of x̄α /∈ S is

analyzed. The distribution of a minimum embedding error µ when np = i for i ≥ 0 is given

by

Fµ(x, i, S
c) = Pi,Sc{µ ≤ x|np = i} = 1− (1− Fν(x))(1 − Fω(x))i, (5.13)

where Fν(x) and Fω(x) are given by Eq. (5.11) and Eq. (5.12).

On the other hand, the distribution of µ when np = i and xα ∈ S is given by

Fµ(x, i, S) = Pi,S{µ ≤ x|np = i} =











U(x− 1), i = 0

1− (1− Fω(x))i, i ≥ 1,
(5.14)
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where

U(x− 1) = 0, x < 1

U(x− 1) = 1, x ≥ 1.

After taking account of all possible combinations of the coefficients, the distribution of

additional error will be given by

Fµ(x) =

h
∑

i=0

(

h

i

)

p2i(1− p2)h−ip Fµ(x, i, S
c) + q Fµ(x, i, S). (5.15)

The expected value of distortion due to embedding, E[µ], is given by

E[µ] =

h
∑

i=0

(

h

i

)

p2i(1− p2)h−ipE[µ|np = i, Sc] qE[µ|np = i, S], (5.16)

where

E[µ|np = i, Sc] =

∫ ∞

0
xdFµ(x, i, S

c),

E[µ|np = i, S] =

∫ ∞

0
xdFµ(x, i, S).

Since changes occur in n
n+1 cases in any block, the expected embedding error per block is

n
n+1E[µ].

We embedded messages using the MM2 method in two examples of images shown in

Figure 5.11. The images are color JPEG images: the left image has the dimension of

427 × 278 and the right image has dimension of 330 × 222. Their normalized rounding

error histograms of non-zero AC coefficients are shown in the bottom row of Figure 5.11.

Figure 5.12 shows the plots of the predicted embedding error and the real experimental

embedding error. All tests were performed with six different block-size codes: (2, 2k−1, k),

k = 2, . . . , 7. The plot for each test image shows that the theoretical prediction accurately
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matches the actual embedding error. The theoretical error is calculated by Eq. (5.16).
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Figure 5.11: Left column: armadillo image. Right column: tiger image. Top row: test
images. Bottom row: normalized rounding error histograms of the non-zero AC JPEG
coefficients. The histogram is normalized to estimate a probability density of rounding
errors.

5.2.3 Experimental Results

The extended experimental results using the MMx algorithm are presented. We extend t

to 3 and 4, and denote them by MM3, MM4 respectively. MM3 additionally finds (β, γ, ζ)

such that β ⊕ γ ⊕ ζ = α besides finding (β, γ) such that β ⊕ γ = α. The embedding error

in MM3 is decreased compared to that in MM2; however, the embedding error in MM4 is

almost the same as the error in MM3, as illustrated in Figure 5.13. Hence we stopped the

extension at MM4.

Figure 5.14 shows the average embedding error per message bit caused by MM2 and

MM3. 100 images from UCID database were used to embed messages with six different

embedding rates and the results are shown as a box plot.
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Figure 5.12: Embedding error analysis for the test images in Figure 5.11a (left) and Fig-

ure 5.11b (right) for various block sizes, 2k−1 for k = 2, . . . , 7.

In order to verify our analysis on MM2, we estimated the expected values of embed-

ding errors from 100 images and compared them to experimentally obtained embedding

errors. Messages were embedded in six different embedding rates. Figure 5.15 shows the

absolute value of difference between the theoretically estimated embedding errors and the

experimentally obtained embedding errors and their results are shown as a box plot.
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Figure 5.13: Average embedding error per message bit for F5, MM2, MM3, and MM4 using
the test images in Figure 5.11a (top left) and Figure 5.11b (top right).
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Figure 5.14: Average embedding error per message bit using the MM2 and MM3 methods
with six different embedding rates. 100 images from UCID database were used to embed
messages.
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Figure 5.15: Accuracy of the error analysis on MM2. The absolute value of difference
between the theoretically estimated embedding errors and the experimentally obtained em-
bedding errors using 100 images from UCID database.
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Chapter 6: Shrinkage-permitting Embedding Algorithms

The shrinkage-avoiding embedding algorithm described in the previous chapter successfully

avoids shrinkage while utilizing our distortion minimization scheme.1 However, since the

coefficients 1 and −1 are always changed into 2 and −2, the algorithm possibly makes a

noticeable modification in the coefficient histogram especially with high embedding rates.

Figure. 6.1 shows frequencies of coefficients −10 through 10 for the cover image compared

with those for the PB stego image in the left graph and those for the MMx stego image

in the right graph. It is observable that the frequencies of the coefficients 1 and −1 are

decreased and the frequencies of the coefficients 2 and −2 are increased in both stego image

histograms. In addition to the modification in the histogram, the exceptional changes from

Figure 6.1: Histogram comparison of the cover image and the stego image. The armadillo
image (the left image of Figure. 5.11) is used with 0.4 bpc embedding rate. Left: Coefficient
histogram of the cover image and the PB stego image. Right: Coefficient histogram of the
cover image and the MM2 stego image.

1 and −1 to 2 and −2 cause larger distortion than changing them to 0. For example, the

coefficient x̃i = 1 and x̄i ∈ X−, x̂i will be 2, and the distance between x̄i and x̂i will be

1 + |ri| instead of 1− |ri|. Recall that when changing it to 0, the distance would be 1− |ri|.
1In order to avoid the shrinking operation, the algorithm proposed to change the coefficients 1 and −1

to 2 and −2 respectively. It did not reduce the embedding capacity and could also activate the block-based
minimization scheme without shrinkage.
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In this chapter, we propose a shrinkage-permitting embedding algorithm that makes the

modification of the coefficient histogram less noticeable while applying the rounding-biased

rule for minimal distortion. The proposed methods allow the shrinkage operation with

the repeat-embedding technique (See Section 4.4) proposed in F5; however, our methods

first compensate for the expected modification by shrinkage during the preprocessing stage

and then allow the shrinkage operation with the repeat-embedding technique during the

embedding stage. Since the repeat-embedding technique will lead to an increase in the

frequency of 0 coefficients, the initial compensation will be a decrease in the frequency

of 0 coefficients. Therefore, if enough coefficients of 0 have changed to non-zero-valued

coefficients in advance, the repeat-embedding caused by shrinkage will not increase the total

number of coefficients 0: There will be no net increase in the frequency of 0 coefficients.

The algorithm will be described using two coding techniques: parity coding and modified

matrix coding.

6.1 Parity Coding: PB-s

The proposed shrinkage-permitting embedding algorithm based on parity coding called PB-

s is described in this section. First, the amount of expected shrinkage is estimated. Second,

zero-valued coefficients are changed to non-zero coefficients. Third, a message is embedded

while permitting shrinkage.

6.1.1 Estimation of Shrinkage

Shrinkage is allowed but limited in the shrinkage-permitting embedding algorithm. In terms

of distortion per message bit, shrinkage with repeat-embedding causes larger distortion than

choosing an arbitrary coefficient to change even if the coefficient is not the best one in the

block. For this reason, shrinkage is allowed only when all elements in the block belong to the

shrinkable set S. Recall that the shrinkable set was defined as a union of X̄(−1)+ and X̄(1)−.

In other words, shrinkage will not occur if there is any coefficient in the block that does not

belong to the shrinkable set. Again, if the amount of shrinking was accurately estimated and
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the number of 0 coefficients has decreased by the accurately estimated number, the number

of 0 will not be significantly changed after finishing embedding, even though shrinkage

creates additional 0.

It is crucial to accurately estimate the amount of shrinkage. Let nb denote a block size

to embed a single message bit successfully including shrinkage. In the parity-coding based

algorithm of block size n, nb will be the same as n if any shrinkage does not occur; nb will

be greater than n if shrinkage occurs.

The estimation of nb is first described. If either Parity(LSB(X̃i)) = mi or shrinkage

does not occur, then nb = n. If more than n coefficients (x̄) from S appear consecutively

with no parity matching, nb will be greater than n. The first shrinkage will occur when

all n coefficients are from S. Since changing by the shrinkage operation is not considered

as embedding a message bit, after the first shrinkage has occurred, a new coefficient will

replace the newly created 0 coefficient, and then the parity will again be checked. If the

parity does not match mi and the newly-added coefficient is from S, the second shrinkage

will occur. This continues as described in Algorithm 3 below. And so nb will increase until

the message mi is successfully embedded without causing shrinking.

Let q = |S|
|U | , the relative proportion of the coefficients that belong to S over the usable

(non-zero AC) coefficients U , and p = 1− q. From p and q, the expected value of nb is given

by:

E[nb]q =
1

2
n+

1

2
((1 − qn)n+ (1− q)

∞
∑

i=0

qn+i(n+ i+ 1))

=
1

2
n+

1

2
((1 − qn)n+ (1− q)( qn

1− qn+
qn

(1− q)2 )). (6.1)

Indeed, E[nb]q − n is the expected amount of shrinkage that occurs per block. And the
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expected amount of total shrinkage in an image is:

Ns = Nb(E[nb]q − n), (6.2)

where Nb = |U |
E[nb]q

is the expected total number of blocks.

Suppose that the shrinkable set was increased in size by Np during the preprocessing

stage and shrinking occurs Ns times during the embedding stage. Our goal is to find the

Np that will be the same or close to Ns, so the total change would be zero or minimal.

Algorithm 3 describes the procedure to obtain the optimal Np. To calculate an optimal

Np, k is initially set to 1 and is gradually increased until it reaches the point that k ≃ Ns.

Increasing k will change p and q gradually, and Ns will need to be calculated with the

updated p and q using Eq. (6.1) and Eq. (6.2).

Algorithm 3 Finding the optimal Np in parity-based minimizing embedding method with
shrinkage

The original shrinkable set S0 and the usable coefficient set U0 are given.
Np = 0;Ns = |U0|.
for k = 1 to |U0| do

q = |S0|+k
|U0|+k

;

E[nb]q is calculated using Eq. (6.1);

Nb = |U0|+k
E[nb]

;

if Nb(E[nb]q − n)− k < Ns −Np then

Ns ← Nb(E[nb]q − n);
Np ← k;

end if

end for

6.1.2 Embedding Algorithm

The embedding algorithm of PB-s has two stages: the preprocessing stage and the embed-

ding stage. Let I be a color image and each color channel of I is divided into 8× 8 blocks.

While DCT is being done on the blocks, all AC coefficients before and after rounding are

collected in a set X̄ and X̃ , respectively. In order to allow shrinkage with less modification
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in a histogram, the proposed algorithm takes some coefficients from the set of 0 coefficients

(X̄(0)) and changes them to the coefficients that will belong to the shrinkable set S before

the embedding stage. This preprocessing will compensate for the reduction in the size of

usable (non-zero) coefficients caused by shrinking and make the modification in a histogram

less noticeable.

Preprocessing Stage: The embedding process starts with finding the optimal Np,

which was described in the previous section. Once Np is obtained, the process collects

the coefficients of X̄(0) in decreasing order by the absolute values of their rounding errors.

According to the rounding-biased rule, changing a coefficient that has a larger absolute

value of rounding error is beneficial in keeping a low distortion. To keep the size of X̄+

and X̄− balanced, X̄(0)− and X̄(0)+ are separately sorted in decreasing order of absolute

values of their rounding errors:

A = a1, a2, · · · , aN1
,

B = b1, b2, · · · , bN2
,

where ai ∈ X̄(0)− and |r(ai)| ≥ |r(ai+1)| for 1 ≤ i ≤ N1 − 1 and bi ∈ X̄(0)+ and |r(bi)| ≥

|r(bi+1)| for 1 ≤ i ≤ N2 − 1. We assume that N1 +N2 > Np.

The first
Np

2 coefficients ofA andB, denotedANp

2

andBNp

2

, are now selected for changing

their corresponding rounded coefficients: when x̄i ∈ ANp

2

, x̃i = −1, and when x̄i ∈ BNp

2

,

x̃i = 1. The corresponding rounding errors need to be updated using ri = x̄i − x̃i, which

produces |r| ≥ 0.5. This preprocessing has increased the size of S while decreasing the size

of X̄(0) by the size of Np. In other words, S = S1 ∪ S2; S1 denotes the original shrinkable

set, and S2 denotes the newly added shrinkable set at the preprocessing stage.

Embedding Stage: The embedding process continues with the preprocessed X̄. At

this point, X̄ can be rearranged for security in a random order, which is determined by a

secret key. As this algorithm embeds a message using non-zero AC coefficients and parity
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coding of block size n, n usable coefficients from X̄ are used for embedding a bit.

Algorithm 4 describes the detailed steps that the embedding process follows to embed

a single message bit, when shrinkage is permitted. First, it collects the next n available

coefficients to form Y = {y1, y2, · · · , yn}. Secondly, it checks the parity of LSB(Y ), and, if

the parity matches the message bit, the message bit is successfully embedded. Otherwise,

the embedding will change one or more coefficients. To examine whether shrinkage can be

avoided or not, the process counts how many coefficients belong to S in Y . If there is more

than one coefficient that does not belong to S, shrinkage can be avoided in Y . If shrinkage

can be avoided, the embedding error that the coefficients not in S would cause are examined.

The coefficient that will cause the smallest embedding error will be selected to change. The

modification of the selected coefficient follows the rounding-biased rule. In Algorithm 4, let

x̄k and x̂k be the coefficient corresponding to yj in X̄ and X̂, respectively. The if statement

embeds a message bit by changing a coefficient without shrinkage; However, if the process

is in the else statement, shrinkage occurs and this changing is not considered as embedding

a message bit. After shrinkage occurs, the 0 coefficient is removed from Y and the next

available coefficient comes to Y . Shrinkage can occur repeatedly before the message bit is

successfully embedded.
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Algorithm 4 Embedding a message bit in a block while permitting shrinkage.

Y ← next n available coefficients from X̃ .

while Parity(LSB(Y )) 6= m do
ns ← |{x|x ∈ S and x ∈ Y }|.
if ns < n then

find j such that |r(yj)| = max
1≤k≤n

|r(yk)|, where yj /∈ S;

find x̄k that is corresponding to yj;
produce x̂k by the rounding-biased rule;

else

find j such that |r(yj)| = max
k
|r(yk)|, where yj ∈ S;

find x̄k that is corresponding to yj;
x̂k ← 0;

replace yj in Y by the next available coefficient;
end if

end while

6.1.3 Error Analysis

In this section, embedding errors caused by the proposed algorithm is analyzed. Based on

this mathematical analysis, the message length to embed can be decided without typical

trial-error approach. Changing a coefficient from x̄j by the rounding-biased rule to x̂j adds

always 1− 2|r(x̄j)| on top of the distortion due to the rounding operation of JPEG.

With the proposed parity-based embedding algorithm, the total error due to embedding

is the sum of three kinds of errors (ε = εp + εs + εm):

(1) εp occurs when Np coefficients that belong to X̃(0) are changed to the X̄(−1) and X̄(1)

at the preprocessing stage.

(2) εs occurs when shrinking occurs at the embedding stage.

(3) εm occurs when coefficients are changed and the changes result in embedding message

bits at the embedding stage.

Expectation of εp: At the preprocessing stage, the Np coefficients from X̄(0) that

have the highest absolute values of rounding errors will be chosen to change into X̄(−1) or
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X̄(1) (see Eq. (6.3)). Let Rp be a set of the rounding errors correspondent to the chosen

coefficients: Rp = {ri|ri = r(x̄i), x̄i ∈ (ANp

2

∪BNp

2

)}, where A and B are defined in Eq. (6.3).

Let Φ(r) denote the absolute value of r, which can be expressed as Φ(Rp) =
√

(Rp)2. We

have a probability density fRp(x), and FΦ(x) is calculated by:

FΦ(x) =

∫ x

−x
fRpxdx, x ∈ [0, 0.5], (6.3)

then we get

E[Φ(Rp)] =

∫ ∞

0
xdFΦ(x). (6.4)

We then have

E[εp] = Np(1− 2E[Φ(Rp)]). (6.5)

Expectation of εs: Shrinking at the embedding stage will occur in two cases: (a)

coefficients that belong to the original shrinkable set S1 are turned to zero; (b) coefficients

that belong to the new shrinkable set S2, which was added to X̄ at the preprocessing stage.

When a coefficient in S1 causes shrinking, an error is added to εp; however, when a coefficient

in S2 causes shrinking, the error that was added in Eq. (6.5) should be subtracted. Because

the coefficients in S2 were originally zero, coming back to zero should not cause any error.

It is important to note that the coefficients in S2 always have higher priority in be-

ing selected than the coefficients in S1, because the embedding error caused by turning a

coefficient in S2 to zero is always smaller than by turning a coefficient in S1 to zero. As

previously mentioned, shrinking occurs only when all coefficients in the block belong to the

shrinkable set. Since we found Np as the closest to the expected amount of shrinkage Ns

for a given image, we assume that shrinking occurs Np times, hence the size of S2 is Np.

Shrinking in S1 will occur when all n coefficients of the block are from S1. Let q1 = |S1|
|U | ,

the relative proportion of S1 over usable coefficients denoted (U) in X̄. Let Rs1 be a set of
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rounding errors for the coefficients in S1. The expected total error caused by shrinking in

S1:

E[εs1 ] = Np(q1)
n(1− 2E[Φ(Rs1)]), (6.6)

where n is a block size. E[Φ(Rs1)] can be calculated in a similar way to E[Φ(Rp)] (see

Eq. (6.4)). On the other hand, shrinking in S2 will occur when any of the coefficients that

belong to S2 exists in the block. The expected total error caused by shrinkage in S2 is:

E[εs2 ] = −Np(1− qn1 )(1− 2E[Φ(Rp)]),

which has a negative sign because it should be subtracted from εp. Rp was defined when εp

was estimated. Now, the expected amount of the error from shrinkage is

E[εs] = E[εs1 ] + E[εs2 ].

Expectation of εm: This error occurs when the coefficients are changed due to em-

bedding a message, not due to shrinkage or preprocessing. In other words, εm occurs when

there is at least one coefficient that does not belong to S in a given block. The expected

error is

E[εm] =
1

2
NbE[µ],

where Nb is the number of blocks in U and µ is the minimum error among possible choices

when a coefficient changes. The following is a description of calculating E[µ]. Let q = |S|
|U | ,

i.e, the relative proportion of the shrinkable set and p = 1− q. Since we are considering em,

there will be 1 ≤ π ≤ n coefficients not in S among the n available coefficients. For any π,

the probability that the selected coefficient is not in S is

P{π = i} =

(

n

i

)

piqn−i. (6.7)
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R is a set of rounding errors of U , a set of usable coefficients. We have assumed that

rounding errors are i.i.d. random variables and that their probability density fr(x) is

known. As defined previously, Φ(R) =
√
R2 and let the distinct value in Φ(R) be listed in

any order as

{φ1, φ2, · · · , φl, · · · },

and the probability distribution for Φ(R) is given by the formula

Fφ(x) =

∫ x

−x
fr(x)dx, x ∈ [0, 0.5]. (6.8)

To estimate the amount of added distortion when a coefficient is changed, the probability

distribution for ν = 1− 2φ is obtained by

Fν(x) = 1− Fφ(
1− x

2
), x ∈ [0, 1]. (6.9)

If there are π coefficients not in S (π ≥ 1) in a given block, the algorithm will choose the

coefficient corresponding to the minimum embedding error among the π coefficients:

µ = min
1≤k≤π

{1− 2|rk|},

where rk indicates a corresponding rounding error of x̄k among π coefficients. The distri-

bution of µ when π = i is given by

Fµ(x, i) = Pr{µ ≤ x|π = i} = 1− (1− Fν(x))i, i ≥ 1, (6.10)

where Fν(x) is given by Eq. (7.2). After taking account of all possible combinations of the
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coefficients, the distribution of additional error will be given by

Fµ(x) =

n
∑

i=1

(

n

i

)

piqn−iFµ(x, i). (6.11)

The expected value of the embedding error will then be given by

E[µ] =

n
∑

i=1

(

n

i

)

piqn−iE[µ|π = i], (6.12)

where

E[µ|π = i] =

∫ ∞

0
xdFµ(x, i), i ≥ 1.

The estimation of total embedding error caused by the proposed parity-based algorithm

with shrinkage is completed as

E[ε] = E[εp] + E[εs] + E[εm]. (6.13)

6.1.4 Experimental Results

In this section, we demonstrate the experimental results of our method on two test images

whose rounding error distributions are different from each other. After computing DCT, all

AC coefficients form X̄ , and then X̄ is preprocessed by increasing the size of the shrinkable

set. The implementation follows the algorithm described in Section 6.1.2. Figure 6.2 shows

the test images, which are color JPEG images. Rounding error histograms for zero-valued

coefficients (Rp) is shown in the second row of Figure 6.2. We make a cumulative histogram

with the absolute values of the rounding errors. In the cumulative histogram, a range of the

horizontal axis is [0 0.5]. Take the
Np

2 below point from the maximum value on the vertical
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Figure 6.2: Histograms of rounding errors. The left column is for the market image and
the right column is for the amarillo image. (b) and (f): histograms of rounding errors for
the zero-valued coefficients. (c) and (g): histograms of rounding errors for the shrinkable
coefficients. (d) and (h): histograms of rounding errors for the non-zero AC coefficients.
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axis. The value of the horizontal axis corresponding to the point is estimated as E[Φ(Rp)]

for the estimation of εp in Eq. (6.3). Rounding error histograms for Rs are shown in the

third row, and again E[Φ(Rs1)] in Eq. (6.6) is estimated in a similar way to E[Φ(Rp)]. In the

forth row, rounding error histograms for non-zero AC coefficients are shown; we estimate

fr(x) in Eq. (6.8) by normalizing it.

Figure 6.3 shows the theoretical embedding error analysis for PB-s. It depicts the

average embedding error per message bit in 7 different block-sizes, and the theoretically

estimated values and experimental values are plotted in one graph for comparison. It shows

that the theoretical prediction is very close to the actual embedding errors. The tests were

accomplished with 7 different block-sizes 2k (k = 1, . . . , 7). Since the embedding rate bpc is

the number of embedded message bits divided by the number of non-zero AC coefficients,

the larger block size, the smaller bpc.

24 8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

E
m

be
dd

in
g 

E
rr

or
 P

er
 M

es
sa

ge
 b

it

Embedding Error Analysis

 

 
Experimental Error
Estimated Error

24 8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n

E
m

be
dd

in
g 

E
rr

or
 P

er
 M

es
sa

ge
 b

it

Embedding Error Analysis

 

 
Experimental Error
Estimated Error

Figure 6.3: Embedding error analysis for the PB-s method in various block sizes (n) using
the test images in Figure 6.2a (left) and Figure 6.2e (right). The theoretical embedding
errors obtained from our mathematical prediction in Eq. (6.13) and the experimental em-
bedding errors are very close.

In order to verify our analysis on PB-s, we estimated the expected values of embedding

errors from 100 images and compared them to experimentally obtained embedding errors.

Messages were embedded in six different embedding rates. Figure 6.4 shows the absolute

value of difference between the theoretically estimated embedding errors and the experi-

mentally obtained embedding errors. The result box plot shows that the differences are
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very small in various embedding rates.
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Figure 6.4: Accuracy of the PB-s error analysis. The absolute value of difference between
the theoretically estimated embedding errors and the experimentally obtained embedding
errors using 100 images from UCID database.

The extended experimental results using the PB-s algorithm are also presented. Fig-

ure 6.5 shows average embedding error per message bit with six different embedding rates.

100 images from UCID database were used to embed messages and the results are shown

as a box plot. Obviously the embedding errors increase as the embedding rate gets higher.

The result box plot illustrates that the distortion levels caused by PB-s are very low.

We investigated the embedding error caused by the PB-s method compared to other two

embedding methods: F5 [21] and PB [49]. Figure 6.6 shows the comparison in embedding

errors for those three methods with various embedding rates. The graphs plot the distortions

per embedding message bit in increasing embedding rates (bpc), where bpc is the total

number of the message bits divided by the usable coefficients (non-zero AC coefficients).

PB [49] is an algorithm of trying to minimize distortion due to embedding using parity

coding; however, PB proposed the modified-rounding-biased rule in order to avoid shrinkage.

The modified-rounding-biased rule contributes to maintain a low level of distortion but

leaves a trail in the coefficient histogram by changing the frequencies of the coefficient 2
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Figure 6.5: Average embedding error per message bit using the PB-s method with six
different embedding rates. 100 images from UCID database were used to embed messages.

and −2 in a predictable way. On the other hand, PB-s does not increase the frequencies of

2 or −2 as PB while maintain the low distortion as low as PB as shown in Figure 6.6. The

distortions due to both PB and PB-s are noticeably lower than the one due to F5 with the

same test images.

0.01 0.05 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

PB
PB−s
F5

0.01 0.05 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

PB
PB−s
F5

Figure 6.6: Embedding distortion per embedding message bit with various bpc ranging from
0.01 to 0.4 using the test images in Figure 6.2a (left) and Figure 6.2e (right).

We investigated how the PB-s algorithm has changed the distribution of DCT coeffi-

cients. For the JPEG steganographic applications, it is necessary to keep the distribution

of the stego image’s DCT coefficients as close as possible to the cover image in order to
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avoid the steganalysis attack; the modified distribution is possibly detected by statistical

steganalysis methods. Figure 6.7 shows the histogram modification from the PB-s method

with comparison to PB. The differences in the histograms between the stego image and the

cover image are shown in [-10, 10] coefficient range in Figure 6.7. These graphs show the

differences at various embedding rates: 0.4, 0.3, 0.2, and 0.1 bpc, from the top. The black

bars show the difference in the histogram between the PB-s stego image and the cover im-

age, while the white bars show the difference with PB. Note that the histogram modification

from PB-s is significantly lower, compared to PB, especially with a high embedding rate.

From the results of Figures 6.6 and 6.7, we found that the PB-s algorithm can be capable of

not only managing low embedding error in the similar level to PB as shown in Figure 6.6,

but also maintaining the statistical properties better than PB as shown in Figure 6.7, which

is one of the important requirements for secure steganographic applications.

6.2 Matrix Coding: MMx-s

The shrinkage-permitting embedding algorithm based on matrix coding called MMx-s is

proposed. We have applied the algorithm to MM1. The steps of the method are similar

to the ones of PB-s. First, the amount of expected shrinking is estimated. Second, zero-

valued coefficients are changed to non-zero coefficients. Third, a message is embedded while

permitting shrinkage.

6.2.1 Estimation of Shrinkage

The estimation of Np for the matrix-coding-based algorithm can be described in a similar

way to the estimation for the parity-coding-based algorithm. Again, the goal is to find Np

such that it would be the same to the number of actual shrinking, Ns. Let nb be the average

block size for k message bits to be successfully embedded in (1, n, k) matrix coding. The nb

will be the same to n if either α = 0 or shrinking does not occur while embedding k bits.

Let q = |S|
|U | (i.e., the relative proportion of the coefficients that belong to the shrinkable

66



Figure 6.7: Histogram modification from the PB-s method compared to the PB method
using the test images in Figure 6.2a (left) and Figure 6.2e (right). The embedding rates are
0.4, 0.3, 0.2, and 0.1 from the top.
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set S over the usable coefficients U), and p = 1− q. In the matrix coding, the probability

of α = 0, which is denoted as u in this section, is 1
n+1 , and let v denote 1− u. As shown in

Figure 6.8, nb can be obtained based on p, q, u and v. nb will be the same to n when either

α = 0 or shrinking does not occur. The probability of α = 0 is u, and the probability that

shrinking does not occur is p. Therefore, the probability of nb = n is un + vp. Otherwise,

the first shrinking will occur, whose probability is vqu. After the first shrinking occurs, α

is calculated again to check whether changing is needed or not. If the α is 0 or the newly

added coefficient is not a member of S, then no more shrinking will occur, resulting in

nb = n+ 1. The probability of nb = n+ 1 is vqu+ vqvp. Otherwise the next shrinking will

follow. From p, q, u and v, the expectation of nb is:

Figure 6.8: The expected block size for embedding a message bit using MM1 with allowing
shrinkage. q denotes the probability of shrinkable set over the usable set and p = 1− q. u
denotes the probability of α = 0 ( 1

n+1) in matrix coding, which is that no change needed

for embedding, v = 1− u.
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E[nb]q,n =
∞

∑

i=0

u(n+ i)(vq)i +
∞
∑

i=0

vp(n+ i)(vq)i

= un
∞
∑

i=0

(vq)i + u
∞
∑

i=0

(vq)ii+ vpn
∞

∑

i=0

(vq)i + vp
∞
∑

i=0

(vq)i

= un
1

1− vq + u
vq

(1− vq)2 + vpn
1

1− vq + vp
1

(1− vq)2

= n(u+ vp)
1

1− vq + (u+ vp)
vq

(1− vq)2 (6.14)

As a result, nb − n is the expected amount of shrinkage that occurs per k message bits and

the expected amount of total shrinkage in an image is:

E[nb]q,n = Nb(E[nb]q,n − n), (6.15)

where Nb = |U |
n

is the total number of blocks. We assume that the possible maximum

message bits are embedded in the image.

The detailed method of finding the optimal Np for matrix-coding-based algorithm is

described in Algorithm 5. Suppose that the shrinkable set has been increased by Np during

the preprocessing stage, and shrinking occurs Ns times during the embedding stage. Our

goal is to find Np such that it is the same or closest to Ns in order to make the total change

zero or minimal. To obtain the optimal Np, i is set to 1 at the beginning and gradually

increased until it reaches the point where i ≃ E[Ns]. Increasing i will change p and q

gradually, and E[Ns] will need to be calculated with updated p and q using Eq. (6.14) and

Eq. (6.15). Algorithm 5 describes the procedure to obtain the optimal Np.
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Algorithm 5 Finding the optimal Np for the matrix-coding-based algorithm

The original shrinkable set S0 and the usable coefficient set U0 are given.
Np = 0;Ns = |U0|;
for k = 1 to |U0| do

q = |S0|+k
|U0|+k

;

E[nb]q,n is calculated using Eq. (6.14);

Nb = |U0|+k
E[nb]q,n

;

if Nb(E[nb]q,n − n)− k < Ns −Np then

Ns ← Nb(E[nb]q,n − n);
Np ← k;

end if

end for

6.2.2 Embedding Algorithm

The shrinkage-permitting method for the matrix coding is very similar to the one of the

parity-coding-based algorithm. It has two stages, the preprocessing and the embedding

stage. The steps in the preprocessing stage are identical to the ones of the parity-based-

algorithm described in Section 6.1.2. In the embedding stage, the matrix-coding-based

algorithm checks the bit position to change α instead of checking a parity.

Algorithm 6 describes the detailed steps of embedding k message bits with shrinking

enabled. First, next n available coefficients are collected to form Y = {y1, y2, · · · , yn}.

Second, α in matrix coding is calculated using Eq. (4.7), and if α = 0, the k message

bits are successfully embedded. Otherwise, the coefficient x̄j that correspondent to yα is

changed by the rounding-biased rule. Since the matrix coding designates the bit position for

a change in a block, shrinking occurs if the designated coefficient belongs to the shrinkable

set S, which is different from the parity-based algorithm. If shrinking occurs, the message

M (k-bit sized) should be embedded again because the coefficients that became zero are

not counted as embedding. The embedding process repeats with new Y , which the shrunk

yα is removed and the next available coefficient is added.

In Algorithm 6, let x̄j be the coefficients corresponding to yα in X̄ . The if statement

embeds k message bits by changing a coefficient without shrinking; the else statement creates
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0 by shrinking x̂j, and this is not considered as embedding the message bits. After shrinking

occurs, the 0 coefficient is removed from Y and the next available coefficient comes to Y .

Depending on the newly added coefficient, shrinking can occur more than one time before

the message bits are successfully embedded.

Algorithm 6 Embedding k message bits in a block while permitting shrinkage.

Y ← next n available coefficients from X̄ ;

while α 6= 0, using Y do
if yα /∈ S then

find x̂j corresponding to yα;
x̂j by the rounding-biased rule;

else

find x̂j corresponding to yα;
x̂j ← 0;
replace yα in Y by the next available coefficient;

end if

end while

6.2.3 Error Analysis

Error analysis for the shrinkage enabled algorithm based on the matrix coding is almost

identical to the one of parity-based algorithm. With the shrinkage enabled algorithm based

on the matrix coding technique, three embedding errors are expected:

(1) εp will occur when Np coefficients are changed from X̄(0) to either X̄(−1)+ or X̄(1)−

at the preprocessing stage.

(2) εs will occur when shrinkage occurs at the embedding stage.

(3) εm will occur when coefficients are changed and the change results in embedding a

message rather than shrinkage at the embedding stage.

It is important to note that this estimation is performed before the preprocessing starts;

therefore, the estimation is based on the information obtained from the cover image. S

and U are collected from the image before any processing, and Np is calculated using the
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estimation described in Section 6.2.1. The methods to estimate εp and εs are identical to

the one of parity-based algorithm as described in Section 6.1.3. Estimation of εm of matrix-

based algorithm is described because it is different from one of parity-based algorithm.

Expectation of εm: This error is produced when k message bits are successfully em-

bedded with a coefficient changing in an n-sized block. The probability of α = 0 is n
n+1 .

Let q be
|S|+Np

|U |+Np
, and Ru be rounding errors of the coefficients that do not belong to S.

εm = Nb
n

n+ 1
(1− q)(1− 2E[Ru]),

where Nb is the number of times that the process executes the step of calculating α, which

is obtained by:

Nb =
|U |
n

+Np.

and E[Ru] is obtained in a similar way to obtain E[Rp] as described in Section 6.1.3.

6.2.4 Experimental Results

In this section, we demonstrate the experimental results of MM1-s on two test images shown

in Figure 6.2. First, we examined the accuracy of our theoretical analysis. Figure 6.9

depicts the average embedding error per message bit caused by the MM1-s method in six

different block-sizes, and the theoretically estimated values and experimental values are

plotted in one graph for comparison. It shows that the theoretical predictions are very close

to the actual embedding errors. The tests were accomplished with six different block-sizes,

2k − 1, k = 2, . . . , 7.

Figure 6.10 shows average embedding error per message bit using MM1-s in six different

embedding rates. 100 images from UCID database were used to embed messages and the

results are shown as a box plot. The result box plot shows that the distortion produced by

MM1-s is very low (below 0.25).
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Figure 6.9: Embedding error analysis of the MM1-s method in various block sizes, (1, n, k),
the test images in Figure 6.2a (left) and Figure 6.2e (right). The theoretical embedding
error obtained from our mathematical prediction as described in Section 6.2.3 and the
experimental embedding error are very close.
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Figure 6.10: Average embedding error per message bit using the MM1-s method with six
different embedding rates. 100 images from UCID database were used to embed messages.
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The embedding errors caused by the MM1-s method are compared with other two em-

bedding methods, F5 [21] and MMx (MM1) [49]. Figure 6.6 shows the comparisons of

the embedding errors for three algorithms at various embedding rates. The distortions per

embedding message bit are plotted in increasing embedding rates (bpc), where bpc is cal-

culated by the total number of message bits divided by the usable coefficients (non-zero AC

coefficients). MMx [49] is an algorithm that utilizes rounding errors for minimal distortion

using modified matrix coding with no shrinkage. Similar to MM1, the proposed algorithm

can keep low level of distortion due to embedding as shown in Figure 6.11. The distortions

due to both MM1 and MM1-s are noticeably lower than the one due to F5 with the same

test images. Figure 6.12 shows the coefficient histogram differences between the cover im-

ages and the stego images. The differences in the histograms are shown in the [-10, 10]

coefficient range and in various embedding rates: 0.4, 0.3, 0.2, and 0.1 bpc, from the top.

The black bars show the differences in the histogram between the MM1-s stego image and

the cover image, while the white bars show the differences in the histogram between the

stego image of MMx (MM1) and the cover image. MMx proposed an exceptional rule in

order to avoid shrinkage: changing coefficient 1 and −1 to coefficient 2 and −2 respectively,

no matter what their corresponding rounding errors are. By applying the exception rule,

MMx can avoid shrinkage but leaves a trail in the coefficient histogram, which produces a

noticeable change in the frequencies of coefficient 2 and −2.

The results indicate that the proposed shrinkage-permitting algorithm can be capable

of managing the low embedding error at the similar level to MMx, as shown in Figure 6.11,

as well as maintaining the statistical properties better than MMx, as shown in Figure 6.12,

fulfilling one of the important requirements for secure steganographic applications.
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Figure 6.11: Embedding error per embedding message bit using MM1-s in various bpc
ranging from 0.01 to 0.4 using the test images in Figure 6.2a (left) and Figure 6.2e (right).
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Figure 6.12: Histogram modification from the MM1-s method with comparison to MM1.
The embedding rates are 0.4, 0.3, 0.2, and 0.1 from the top using the test images in Fig-
ure 6.2a (left) and Figure 6.2e (right).
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Chapter 7: Preserving Statistics while Minimizing Distortion

Preserving statistical properties is one of the problems that many researchers have focused

on in steganography, because a noticeable modification in statistical properties may be de-

tected by steganalysis methods, which are interested in detecting the existence of hidden

information in objects. In this chapter, we propose a parity-coding based embedding al-

gorithm that employs weighted graph matching for preserving coefficient histograms while

minimizing distortion and call it PB-g.

7.1 Graph Matching

We employ weighted graph matching from graph theory to preserve coefficient histograms

while keeping distortion minimized during embedding. The central idea is to embed a mes-

sage by interchanging only those coefficients whose changes do not modify the histogram

and do guarantee a limited distortion. We have found that interchangeable pairs, which

result from changing by the rounding-biased rule, are well fitted for the purpose of pre-

serving statistics. The interchangeable pair refers to two adjacent coefficients that can be

interchanged without modifying the entire coefficient histogram.

Recall that X̄(c)+ and X̄(c)− are

X̄(c)+ = {x̄i|x̄i ∈ X̄ and Round(x̄i) = c and 0 ≤ r(x̄i) < 0.5},

X̄(c)− = {x̄i|x̄i ∈ X̄ and Round(x̄i) = c and − 0.5 ≤ r(x̄i) < 0}.

As a result of changing by the rounding-biased rule, the coefficient that belongs to X̄(c)+ is

always changed to the coefficient that belongs to X̄(c+ 1)−; the coefficient that belongs to

X̄(c + 1)− is always changed to the coefficient that belongs to X̄(c)+. These two adjacent
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coefficients can be paired as an interchangeable pair. As long as interchangeable pairs are

involved in embedding, their modifications do not change the coefficient histogram while

keeping low distortion by the rounding-biased rule. Given the coefficients, finding the

interchangeable pairs is posed as a matching problem.

First, we need to define our problem in terms of graph matching. We embed a message

using parity coding [1] with block size of n. We consider a set of n coefficients as a vertex

and a connection between the paired interchangeable coefficients as an edge. By assigning

a weight based on their rounding errors to each edge, we can achieve the goal of minimizing

distortion using weighted graph matching. The weight of an edge is assigned as a sum

of absolute values of the rounding errors of the connected coefficients. Since the added

distortion when changed by the rounding-biased rule is 1 − 2|r(x̄)|, choosing the largest

weighted edges will then lead to minimal distortion.

The proposed algorithm begins by creating a undirect graph, G = (V,E), which does

not have self-loops. V is a set of n-coefficient blocks that are units of the parity-coding-

based algorithm, and E is a set of edges that links interchangeable pairs. We say H ⊆ E g,

if no two edges of H are adjacent. A vertex v is matched if v is incident to an edge of H,

otherwise it is free. The weight of an edge is w({a, b}) = |r(a)| + |r(b)|. Figure 7.1 shows

a simple example of the graph. Given a weight function w : E → R, we want to find a

matching with the maximum weight.

7.1.1 Approximation Algorithm for Maximum Weighted Matching

Many algorithms [73, 74] for matching problems have been proposed, and many of them

focus on improving a time complexity for maximum cardinality matching and a maximum

weighted matching. However all optimal algorithms up to date have super-linear time

complexity and the running time is too costly. Therefore, approximation algorithms for

calculating a matching has recently drawn attentions. The approximation algorithms have

a smaller time complexity and provide suboptimal solutions.

In our proposed embedding method based on parity coding, the number of vertices
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and edges are quite large. For example, if the armadillo image (sized of 427 × 278, see

Figure 5.11) is used for a cover image, the number of vertices and edges for parity coding

n = 2 are |V | = 45, 961 and |E| = 193, 020, 048. The graph grows as the size of image

become larger. Hence, we employ a linear-time approximation algorithm with a performance

ratio of 1
2 considering two approximation algorithms: GREEDY-algorithm and Linear Time

Approximation algorithm.

Linear Time Approximation Algorithm (LAM)

Preis [75] developed a linear time 1
2 -approximation algorithm for maximum weighted match-

ing (LAM). LAM can achieve not only at least 1
2 of the edge weight of a maximum weighted

matching but also at least 1
2 of the cardinality of a maximum cardinality matching in linear

time. Algorithm 7 summarizes the LAM algorithm. The locally heaviest edge {a, b} is an

edge with the highest weight among all adjacent edges. After the locally heaviest edge is

found, the vertices incident to a matched edge are contracted.

Algorithm 7 LAM-Algorithm

MLAM := ∅
while (E 6= ∅) do

take locally heaviest edges {a, b} ∈ E;
add {a, b} to MLAM ;
remove all edges incidents to a or b from E;

end while

To find the locally heaviest edge, the LAM starts with an arbitrary edge and checks the

remaining adjacent edges. As long as an adjacent edge with higher weight can be found,

the algorithm switches to the new edge and repeats the checking procedure until a locally

heaviest edge is reached. The locally heaviest edge is added to the matching and all incident

edges to the matched vertices are removed. The algorithm terminates when there are no

remaining edges.

Even though LAM runs in time O(|E|), we chose GREEDY-algorithm [76] of O(|E| ·

log|V |) time. With our implementation, the proposed algorithm runs in O(|V | · log|V |)
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time with GREEDY-algorithm, which is better than O|E|, because the number of edges |E|

grows as O(|V |2) in our algorithm.

GREEDY-algorithm

We use the GREEDY-algorithm that can achieve at least 1
2 of the edge weight of a maximum

weighted matching. Avis [76] analyzed that if the edges are sorted by their weights in a

preprocessing step, the GREEDY-algorithm runs in O(|E| · log|V |) time. However, for our

graph, it runs in O(|V | · log|V |). Algorithm 8 describes the GREEDY-algorithm.

Algorithm 8 GREEDY-Algorithm

sort the edges in decreasing weight w;
MGREEDY := ∅;
while (E 6= ∅) do

take an edge {a, b} ∈ E with highest weight;
add {a, b} to MGREEDY ;
remove all edges incidents to a or b from E;

end while

7.1.2 Applying GREEDY-algorithm to Embed a Message

The goal of the use of weighted graph matching here is to preserve a coefficient histogram

after changing coefficients’ values and to keep low distortion by utilizing the rounding er-

rors. First, how to construct a graph for the parity-coding-based embedding algorithm will

be described followed by the description of how to achieve the maximum matching while

minimizing distortion.

Constructing a Graph

Since the proposed method is parity coding based, we consider each block of n coefficients

as a vertex in a graph. There are n coefficients of X̄ associated with a vertex. We make an

edge between two different vertices if each of the vertices has one half of an interchangeable

pair. Let {x̄a, x̄b} ∈ E be an edge. Each edge has a weight which is a sum of absolute

values of the rounding errors of the connected coefficients, |r(x̄a)|+ |r(x̄b)|. Let (x̄a,x̄b) be
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an interchangeable pair. Suppose that x̄a ∈ X̄+(c) and x̄b ∈ X̄−(c+ 1). If we change x̄a to

x̂a = c+ 1 and x̄b to x̂b = c as a result of the rounding-biased rule, the sum of embedding

errors caused by those two coefficients will be 2− 2(|r(x̄a)|+ |r(x̄b)|). We try to minimize

the errors by finding the maximum weight w({x̄a, x̄b}) for the edge {x̄a, x̄b}.

Usable coefficients U are collected as forms of X̄(c)+ and X̄(c)−. {X̄(c)+, X̄(c + 1)−}

is a set of interchangeable pairs. To make a connection with heaviest weight, X̄(c)+ and

X̄(c+ 1)− are sorted in decreasing order of absolute values of their rounding errors, let the

sorted sets be A and B:

A = a1, a2, · · · , aN1
,

B = b1, b2, · · · , bN2
,

where ai ∈ X̄(c)+ and |r(ai)| ≥ |r(ai+1)| for 1 ≤ i ≤ N1 − 1 and bi ∈ X̄(c + 1)− and

|r(bi)| ≥ |r(bi+1)| for 1 ≤ i ≤ N2 − 1. An edge {ai, bi} ∈ E connects two vertices vj , vk

(ai ∈ vj and bi ∈ vk) and has a weight w({ai, bi}) = |r(ai)| + |r(bi)|. The number of edges

created in A and B is equal to min{N1,N2}. The procedure of creating edges terminates

when c reaches max (X̃). Now the graph is constructed and ready for a matching.

Matching

Let H ⊂ E be a matching. Our primary goal is to maximize |H| and the secondary goal

is to maximize W (H), which is the weight of H: W (H) :=
∑

{a,b}∈H w({a, b}). Since

distortion due to embedding can be written in terms of the rounding errors as mentioned

in the previous section, in order to try minimize the total errors due to embedding, the

highest weighted edges are added to a matching. We use the GREEDY-algorithm to find

the heaviest edges.

Figure7.2 a simple example to show how to find a matching using a block size of 2 given

by the graph of Figure 7.1. Final modification from X̄ to X̂ is also shown in the bottom of

Figure 7.2, and as a result of X̂ , four message bits have been embedded.
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X

X

Figure 7.1: Constructing a graph based on parity coding for the block size of 2. Each block
is a vertex. The interchangeable pair is linked in an edge. Each edge has a weight based on
the rounding errors of the coefficients.
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X

)(cX

X̂

Figure 7.2: Example of finding a highest weighted edge using the GREEDY-algorithm.
Choose the heaviest edge and remove all edges incident to the chosen vertices. Move the
edge to the matching H. In this figure, only the first matching is marked with in the thicker
line, but when the GREEDY-algorithm procedure finishes, one more matching will add to
H for this example.
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7.2 Embedding Algorithm

The parity coding based embedding algorithm that employs weighted graph matching is de-

scribed (PB-g). Data structures and detailed steps of the procedure for the implementation

is described in this section. For achieving low distortion, any change in the cover coefficient

value follows the rounding-biased rule. The graph matching is applied for embedding in

order to avoid a substantial modification in a histogram. Unlike other typical embedding

algorithms for JPEG images, PB-g uses all AC coefficients including 0. PB-g has three

phases. In the first phase, the block parity is compared with the corresponding message

bit. In the second phase, the GREEDY-algorithm procedure is activated to find a matching

for embedding. In the third phase, embedding is completed by applying the minimization

scheme to the unresolved blocks, i.e., those that need to be modified but were unmatched.

1st Phase: Checking Parities

The embedding process compares a parity of each block with the corresponding message bit.

The blocks whose parities are the same with the corresponding message bits are designated

Type 1 and kept unchanged. Those blocks automatically become message-containing blocks

without any changes. On the other hand, the remaining blocks are designated as Type 2

and collected for the next phase embedding.

2nd Phase: Embedding with a Matching

Each Type 2 block is considered as a vertex, and each interchangeable pair are connected

as an edge if each half of the pair is in the different vertex. The sum of the absolute values

of the connected coefficients’ rounding errors weighs the edge. The detailed description on

constructing the graph is explained in the previous section.

The following is the detailed description of the implementation. We use data structures

that allow us to find the heaviest edges efficiently. In our implementation, two data struc-

ture are constructed before matching has started: a coefficients-by-block array, A, and a

coefficients-by-value array, B. A stores all coefficients (in the form of x̄) of Type 2 blocks
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such that A(i, j) denotes jth coefficient of the ith block. B contains the same coefficients of

A but in a different arrangement. The coefficients in B are arranged by their after-rounding-

values and the signs of their rounding errors. For each value of c, there are two separate

columns, one is for X̄(c)− and the other is for X̄(c)+. The coefficients in the same column

are sorted in descending order of their absolute value of rounding errors. The constructing

of the two arrays in our implementation is illustrated in Figure 7.3 using the same example

of Figure 7.2. The interchangeable pairs {X̄(c)+, X̄(c + 1)−} are laid in adjacent columns

of this array. Each element of B is filled with the coefficients having the corresponding

c and sign from A. In other words, all coefficients located in the same column have the

same after-rounding-values and the same sign of the rounding error. Technically, elements

of B contains references to the coefficients in A. With the element of B, we can retrieve

index (i, j) in A, therefore we can retrieve the coefficient value as well as the information

on the block that the referenced coefficient belongs to. Sorting each column of B by the

corresponding absolute value of the rounding error in descending order allows us to find

the heaviest edges easily. In our implementation, the GREEDY-algorithm starts with the

arbitrary edge in the top row of the adjacent columns in B and then checks the adjacent

edges by referencing A. If other adjacent edge with higher weight is found, the GREEDY-

algorithm switches to the new edge until no adjacent edge has higher weight than the found

edge. Using the simple example of Figure 7.2, two coefficients connected with the heaviest

edge are marked as a circle in Figure 7.3.

Once the heaviest edge is found, the corresponding two coefficients are modified based

on the rounding-biased rule. Embedding is completed for those two blocks. Before searching

for another heaviest edge, the arrays A and B are updated by removing the resolved blocks

as shown in Figure 7.4. The following three steps are repeated until interchangeable pairs

cannot be found anymore in B: searching for the heaviest edge, changing the values of the

matched coefficients, and updating the arrays. Figures 7.3 and 7.4 illustrate the steps of

the second phase of our algorithm.
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3rd Phase: Embedding Based on the Rounding-Biased Rule

After the second phase of embedding have finished, there are some blocks that still remain

unresolved. For each such block, a message bit is embedded by choosing a coefficient that

will cause the least error and changing it based on the rounding-biased rule.

Suppose Ai = {A(i, 1), A(i, 2), · · · , A(i, n)} is an unresolved block. To embed a message

bit, the jth(j ∈ {1, · · · , n}) coefficient of Ai needs to be changed so that the LSB’s of the

block after embedding Âi would have parity equal to the message bit. Now, the question

is which j should be changed. We are interested in minimizing distortion, therefore, εj =

min
1≤k≤n

{1 − 2|r(A(i, k))|} is examined, and the corresponding coefficient that has εj will be

chosen to be changed as x̂k, where x̄k is the coefficient corresponding to εj . The modification

would be made using the rounding-biased rule.

In the next section, the PB-g algorithm will be evaluated in terms of the level of distor-

tion and modification of the histogram.

7.3 Error Analysis

Since the PB-g method focuses on finding the interchangeable pairs maximally, accurate

error analysis based on rounding error distribution is not possible. However, we performed

error analysis for showing the limits of distortion due to the PB-g method.

Error analysis for the PB-g method is only applied to those coefficients that are changed

during 3rd phase of PB-g. An additional error due to changing a coefficient is given by

εj = 1− 2|rj |. (7.1)

Since we use all AC coefficients for embedding, the R is formed from all AC coefficients.

We have assumed that r is an i.i.d. random variable and that its probability density fR(x)

is known. fR(x) is obtained by normalizing the rounding error histograms. The probability
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(1,1) (4,1) (3,2)

(5,2)

(2,1)(1,2)

(5,1)

(2,2)

(4,4)

-1.71.4

2.9-1.01

-1.41.6

2.310.1

-1.352.8

...3-2+2-1+...-1--2+...

|| r

Figure 7.3: Two data structures (A and B) used in our implementation. A stores all
coefficients (in the form of x̄) of Type 2 blocks. B contains the same coefficients of A, but
they are arranged by their after-rounding-values and the signs of their rounding errors. Each
column of B is sorted by the corresponding absolute values of rounding errors in descending
order.
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(1,1) (4,1) (3,2)
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(5,1)

(2,2)

(4,4)

|| r

Figure 7.4: The blocks that have made changes are marked as resolved. All coefficients
corresponding to the resolved blocks are removed from both arrays.
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distribution for ψ = |r| is given by

Fψ(x) =

∫ x

−x
fR(x)dx, x ∈ [0, 0.5].

Hence, the probability distribution for ν = 1− 2ψ is given by

Fν(x) = 1− Fψ(
1− x

2
), x ∈ [0, 1]. (7.2)

Given the probability distribution Fν(x) the minimum additional error due to embedding

is expressed by

µ = min
1≤j≤n

{εj}.

The distribution of µ is given by

Fµ(x) = P{µ ≤ x} = 1− (1− Fν(x))n, n ≥ 1, (7.3)

where Fν(x) is given by Eq. (7.2). Finally, the expected value of µ will then be

E[µ] =

∫ ∞

0
xdFµ(x). (7.4)

Figure 7.5 illustrates a comparison of the predicted errors due to embedding using PB-g

to the real experimental errors. As Figure 7.5 shows, the theoretical error analysis for the

PB-g method is not as accurate as our other algorithms focusing on minimizing distortion.

However, the above analysis shows the upper bound on distortion by the PB-g method.
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(a) Results for the armadillo image
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(b) Results for the tiger image

Figure 7.5: Error analysis of the PB-g method in various block size n using the test images in
Figure 5.11a (left) and Figure 5.11b (right). The graphs show comparison of the theoretical
error to the experimental error.

7.4 Experimental Results

In this section, we demonstrate the experimental results of the PB-g method. The em-

bedding rate bpc shown in the figures is measured by dividing total number of message

bits by the number of non-zero AC coefficients. (Even though our algorithm uses all AC

coefficients, the measurement based on the number of non-zero AC coefficients is used for

a comparison).

Matching Cardinality

To investigate the cardinalities of the matching, we calculated the ratios of resolved blocks

by matching among Type 2 blocks. As previously denoted, Type 2 block is a block that

needs to be modified for embedding. Figure 7.7 shows the cardinalities of the matching in a

box plot using the images shown in Figure 7.6 are used. For the embedding rate up to 0.02

bpc, more than 96% of Type 2 blocks succeed in embedding by matching. In other words,

up to 0.02 bpc, more than 99% of embedded message bits are embedded during the 1st and

2nd phases of the PB-g method without modifying the histogram. For the high embedding

rate of 0.4, 92% to 93% of embedded message bits are embedded without modifying the
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Figure 7.6: Examples of test images
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histogram in our experiments.
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Figure 7.7: Matching rates for six different embedding rates in bpc are shown in a box plot
graph. Test images are shown in Figure 7.6.

Distortion

Figure 7.8 shows the average embedding error per message bit caused by PB-g. 100 images

from UCID database were used to embed messages at six different embedding rates and the

results are shown as a box plot. The result box plot shows that the distortion levels are

significantly lowered in PB-g compared to other methods.

Coefficient Histograms

Figures 7.9 and 7.10 show the level of histogram modification caused by the PB-g method

compared to PB and F5. The differences of the histograms between the stego images

and the cover images are measured in the chi-square distance and the Euclidean distance,

respectively. If the distance is small, the method does not change the histogram much during

embedding. Note that the histogram modification from the PB-g method is significantly

lower compared to the other two methods. The measured difference of PB in the 0.4 bpc is

even higher than the ones of F5 as shown in Figure 7.9, which means that PB with the 0.4

bpc changes the histogram larger than F5 does. PB used the modified-rounding-biased rule
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Figure 7.8: Average embedding error per message bit using the PB-g method with six
different embedding rates in bpc. 100 images from UCID database were used to embed
messages

in order to avoid shrinkage. Because of the modified rule, PB leaves a trail in the coefficient

histogram–changing the frequencies for the specific coefficients in a predictable way.

We found that the PB-g algorithm can be capable of not only managing very low embed-

ding error, but also maintaining the statistical properties very well as shown in Figures 7.9

and 7.10, which is one of the important requirements for secure steganographic applications.
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(a) Results for the armadillo image (b) Results for for the tiger image

Figure 7.9: The Chi-square distance between the histogram of a cover image and the his-
togram of a stego image. Two embedding methods are compared with the PB-g method
at the various embedding rates (bpc) using the test images in Figure 5.11a (left) and Fig-
ure 5.11b (right).

(a) Results for the armadillo image (b) Results for the tiger image

Figure 7.10: The Euclidean distance between the histogram of a cover image and the
histogram of a stego image. Two embedding methods are compared with the PB-g method
in the various embedding rates (bpc) in the various embedding rates (bpc) using the test
images in Figure 5.11a (left) and Figure 5.11b (right).
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Chapter 8: Algorithm Achieving Absolute Lower Bounds on

Distortion

In this chapter, we propose an embedding method that increases the usable JPEG coeffi-

cients for embedding by including the zero-valued coefficients. The method will be described

using two coding techniques, parity coding and matrix coding, and called PB-z and MMx-z

respectively. The increase in usable coefficients leads to an increase of the block size in

block-based embedding algorithms, which ultimately results in a decrease in distortion with

a given message length for embedding.

8.1 Parity Coding: PB-z

In this section, we proposed an embedding method that uses all AC coefficients including

zero-valued coefficients for embedding. We call this method PB-z (using all AC coefficients

with parity coding).

8.1.1 Embedding Algorithm

Let I be a color image and each color channel of I is divided into 8× 8 blocks. While DCT

is being done on the blocks, all zigzag-ordered AC coefficients including 0 before and after

rounding are collected in a set X̄ and X̃, respectively. At this point, X̄ can be rearranged for

security reasons in a random order, which is determined by a secret key. The PB-z method

embeds a message using parity coding, n coefficients from X̄ are used for embedding a single

message bit.

Algorithm 9 describes the detailed steps that the embedding process follows to em-

bed a single message bit. First, it collects the next n available coefficients to form Y =
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{y1, y2, · · · , yn}. Second, it checks the parity of LSB(Round(Y )) (a set of the least sig-

nificant bits of rounded Y ), and if the parity matches the message bit, the message bit is

successfully embedded with no change. Otherwise, the method will examine the embedding

error for each of n coefficients. It will choose the coefficient that is expected to cause the

smallest embedding error and change it using the rounding-biased rule. In Algorithm 9, let

x̄k and x̂k be the coefficient corresponding to yj in X̄ and X̂ , respectively.

Algorithm 9 Embedding a message bit in a block using PB-z.

Y ← next n available coefficients from X̄ .

if Parity(LSB(Round(Y ))) 6= m then
find j such that |r(yj)| = max

1≤k≤n
|r(yk)|;

find x̄k that is corresponding to yj;
produce x̂k by the rounding-biased rule;

end if

The message extracting process is straight forward; it inverts the embedding process.

When the stego image is sent to a receiver in a JPEG format, coefficients of the image are

extracted. If the embedding process shuffled the coefficients before embedding for security

purposes, the decoded coefficients also need to be processed in the same order that the

embedding process used. This can be accomplished by using a secret key.

To extract the message correctly in the parity-coding-based embedding method, the

block size used for embedding should be known to the extracting process. As a way to

communicate the block size between a sender and a receiver, we used a 4-byte-sized header:

2 bytes for the block size and 2 bytes for the embedded message length in bytes. To extract

the block size and the length information, LSBs of the first 32 coefficients are examined.

Once the block size n is known to the extracting process, each block of n coefficients is

taken to extract the messages. The LSBs of the coefficients are extracted and the parity of

the LSBs of each block is the corresponding message bit.
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8.1.2 Error Analysis

When a sender decides the length of a message to embed, they may be interested in the

amount of distortion caused by the length of the message. The analysis described in this

section accurately predicts distortion due to embedding and therefore can be used to predict

the impact of the embedded message on the cover image before actual embedding. Because

we change a coefficient using the rounding-biased rule, the additional error due to changing

a coefficient is determined by its corresponding rounding error:

εj = 1− 2|rj |. (8.1)

We need to estimate the probability distribution for 1 − 2|r| using the rounding errors

given to an embedder. By normalizing the histogram of R, the embedder can estimate its

probability density fR(x). The probability distribution for ψ = |r| is given by

Fψ(x) =

∫ x

−x
fR(x)dx, x ∈ [0, 0.5]. (8.2)

Hence, the probability distribution for ν = 1− 2ψ is given by

Fν(x) = 1− Fψ(
1− x

2
), x ∈ [0, 1]. (8.3)

The additional distortion due to embedding is

µ = min
1≤j≤n

{εj}.

We use order statistic to obtain the distribution of µ, which is given by

Fµ(x) = P{µ ≤ x} = 1− (1− Fν(x))n, n ≥ 1, (8.4)
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where Fν(x) is given by Eq. (8.3). Finally, the expected value of µ will then be

E[µ] =

∫ ∞

0
xdFµ(x). (8.5)

Figure 8.1 shows the theoretical error analysis results for PB-z. Our theoretical analysis

performed for various block sizes. The embedding rate is determined by the block size. The

figure illustrates a comparison of the predicted errors due to embedding to the real exper-

imental data. The graphs show that the actual errors are very close to those theoretically

predicted for various block sizes for PB-z.
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Figure 8.1: Error analysis of PB-z for various block size n using the test images in Figure 8.2a
(left) and Figure 8.2b (right). Comparison of the theoretical error to the experimental error
is illustrated in the graph.

8.1.3 Experimental Results

The results of experiments using the images shown in Figure 8.2 are presented. The images

are color JPEG images and their sizes are 427×278 and 330×222. The quality factor of the

JPEG encoder is set to 80 in our methods. The normalized histograms of rounding error for

usable coefficients are shown in the bottom of Figure 8.2. It is important to note that their

distributions are different from the ones of non-zero AC coefficients, which are typically

usable coefficients in other embedding algorithms. The histograms for coefficients including
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0 show that there are many coefficients whose rounding errors are close to 0. Recall that

the coefficient whose rounding error is close to 0 produces the larger distortion than the

coefficient whose rounding error is close to 0.5 or -0.5.
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Figure 8.2: Test images used to illustrate PB-z and the normalized histograms of their
rounding errors of AC coefficients including zeros.

Distortion

Figure 8.3 presents comparisons of distortion due to embedding for three methods: PB-z,

PB and F5; PB-z shows the least error among them. The result box plot demonstrates that

the distortion due to embedding by PB-z is very low for all embedding rates. Figure 8.4

shows the average embedding error per message bit caused by PB-z. 100 images from UCID

database were used to embed messages at six different embedding rates and the results are

shown as a box plot.

Accuracy of Analysis

In order to verify our analysis on PB-z, we estimated the expected values of embedding

errors from 100 images and compared them to experimentally obtained embedding errors.

Messages were embedded in six different embedding rates. Figure 8.5 shows the absolute
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Figure 8.3: The average distortions caused by PB-z, PB, and F5 in various embedding rates
(bpc) using the test images in Figure 8.2a (left) and Figure 8.2b (right).
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Figure 8.4: Average embedding error per message bit using the PB-z method with six
different embedding rates in bpc. 100 images from UCID database were used to embed
messages
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value of difference between the theoretically estimated embedding errors and the experimen-

tally obtained embedding errors and their results present that our analysis is very accurate.

The difference between two error are mostly below 0.005 for all embedding rates as shown

in the box plots.
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Figure 8.5: Accuracy of the error analysis on PB-z. The absolute value of difference between
the theoretically estimated embedding errors and the experimentally obtained embedding
errors using 100 images from UCID database.

Coefficients Statistics

To demonstrate the histogram difference numerically, we measured the Chi-square and

Euclidean distances of JPEG coefficient histograms between the cover images and their

stego images. For the parity based algorithms, Figures 8.6 and 8.7 illustrate the Chi-square

distances and absolute distances between the stego and cover image histograms, respectively.

We compared three encoding algorithms: F5, PB (the parity-based-algorithm using non-

zero AC coefficients), and PB-z (the parity-based-algorithm using all AC coefficients). For

most embedding rates, the distance for PB-z is the smallest, which indicates that PB-z

keeps the histogram closer to the original than the other algorithms.
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Figure 8.6: The Chi-square distance of PB-z in various bpc using the test images in Fig-
ure 8.2a (left) and Figure 8.2b (right).
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Figure 8.7: The Euclidean distance of PB-z in various bpc using the test images in Fig-
ure 8.2a (left) and Figure 8.2b (right).
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8.2 Matrix Coding: MMx-z

Since the method proposed in this section uses zero-valued coefficients for embedding and

modified matrix coding, we call this method MMx-z. It is obvious that MMx-z can be

described as the same manner of MMx. Readers who have read the MMx description in

Section 4.3 can skip this section and go to 8.2.3. A full description including error analysis

for the MMx-z method are provided in this section for a self contained purpose.

The notation (1, n, k) of the original matrix coding, where n = 2k−1, denotes embedding

k message bits in an n-bit-sized block by changing a single bit of it. For a simple explanation,

the size of available coefficients (X̄) is assumed to be n and the size of the message (M)

is k. The least significant bits of X̄ are extracted to form L: L = LSB(Round(X̄)). A

function b needs to be defined in matrix coding:

b(L) =

n
⊕

i=1

(li) · i. (8.6)

To calculate the bit position α that needs to be changed for embedding M , we use

α = M ⊕ b(L). (8.7)

If α 6= 0, then the bit position α in the block L should be flipped, 1 to 0 or 0 to 1, which

means that αth coefficient of X̄ should be changed.

On the decoder’s side, k message bits are obtained from an n-bit-sized stego data by

computing the following:

M = b(X̂). (8.8)

Since a bit position to change is determined in matrix coding, utilizing our minimizing

distortion scheme is more constrained than when using parity coding. We proposed modified

matrix coding to increase the number of possible changes in each block. The modified matrix

coding use (t, n, k) codes. We change 1 to t bits to embed k-bit message in an n-sized-block.
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We describe the MMx-z embedding algorithm using the MM2-z example.

8.2.1 Embedding Algorithm

For an n-size-block, the number of bit-position pairs (β, γ) such that β ⊕ γ = α is n−1
2 .

First, we compute α using Eq. (8.7) as original matrix coding does. We then compute the

pairs (β1, γ1), ..., (βh, γh) such that βi ⊕ γi = α, where h = n−1
2 .

The embedding error by changing the α-positioned coefficient is given by ε0 = 1− 2|rα|

(see Eq. (8.1)). For each of the pairs (βi, γi), the embedding error is given by εi = 2 −

2(|rβi
|+ |rγi

|). In order to decide how to create X̂ , we find

µ = min
j
{εj}, 0 ≤ j ≤ h. (8.9)

Given µ, we compute X̂ by

X̂ =























X̃, if α = 0

x̃1, . . . , x̂α, . . . , x̃n, if µ = ε0

x̃1, . . . , x̂βi
, . . . , x̂γi

, . . . , x̃n, if µ = εi, i = 1, . . . , h.

(8.10)
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Algorithm 10 Embedding k message bits in a block using MM2-z.

Y ← next n available coefficients from X̄ .

A← next k available message bits from M .
Y ′ ← LSB(Round(Y )).
α = A⊕ b(Y ′) using Eq. (8.7).
if α 6= 0 then
ε0 = 1− 2|rα|;
find pairs βi ⊕ γi = α for i = 1, . . . , n−1

2 ;

compute εi = 2− 2(|rβi
|+ |rγi

|) for i = 1, . . . , n−1
2 ;

find j such that εj = min
0≤k≤n−1

2

εk;

if j = 0 then

find x̄k corresponding to yα;

produce x̂k by the rounding-biased rule;

else

find x̄k, x̄h corresponding to yβj
, yγj

;

produce x̂k, x̂h by the rounding-biased rule;

end if

end if

8.2.2 Error Analysis

We know the histogram of rounding errors R and predict their probability density fR(x)

from the histogram. In MMx-z, R is a set of rounding errors of all AC coefficients. Proba-

bility distribution for y = |r| is given by

Fy(x) =

∫ x

−x
fR(x)dx, y ∈ [0, 0.5].

The probability density for z = |r1|+ |r2| is given by

fz(x) = fy(x)
⊗

fy(x), z ∈ [0, 1],
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where
⊗

stands for convolution. The probability distribution is given by

Fz(x) =

∫ z

0
fz(x)dx, z ∈ [0, 1].

The probability distribution for ν = 1− 2y is given by

Fν(x) = 1− Fy(
1− x

2
), ν ∈ [0, 1]. (8.11)

The probability distribution for ω = 2− 2z is given by

Fω(x) = 1− Fz(2− x), ω ∈ [0, 2]. (8.12)

The embedding error due to the change of xα will follow the distribution of Fν(x) and the

changes of xβ and xγ will follow the distribution of Fω(x).

Now, we need to obtain distribution of the smallest error, which is µ in Eq. (8.9). The

distribution of µ is given by

Fµ(x) = P{µ ≤ x} = 1− (1− Fν(x))(1 − Fω(x))h, (8.13)

where Fν(x) and Fω(x) are given by Eq. (8.11) and (8.12). Finally, the expected value of µ

will then be

E[µ] =

∫ ∞

0
xdFµ(x). (8.14)

Since there is no change when α = 0, the expected embedding error per k message bits is

given by

E[µ]× n

n+ 1
,

where n
n+1 is a probability of α 6= 0.
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Figure 8.8 shows the theoretical error analysis results for MM2-z. Our theoretical anal-

ysis performed for various block sizes. The embedding rate is determined by the block

size. The figure illustrates a comparison of the predicted errors due to embedding to the

real experimental data. The graphs show that the actual errors are very close to those

theoretically predicted for various block sizes for MM2-z.
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Figure 8.8: Error analysis of MM2-z for various block size n using the test images in
Figure 8.2a (left) and Figure 8.2b (right). Comparison of the theoretical error to the ex-
perimental error is illustrated in the graph.

8.2.3 Experimental Results

Distortion

As given in Section 4.1, distortion is defined as a sum of distance between the original

coefficients before rounding and the coefficients after embedding, which are integers. Let

distortion due to embedding be De =
∑ |x̄− x̂| −∑ |r|. For comparison, we calculate the

average distortion due to embedding per message bit divided by the embedded message size:

De

|M | .

The distortion MMx-z method is presented using the images shown in Figure 8.2. Fig-

ure 8.9 presents comparisons of distortion due to embedding for three methods: MM2-z,

MM2 and F5. Using all AC coefficients leads to the least distortion for all tested em-

bedding rates. Figure 8.10 shows the average embedding error per message bit caused by
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MM2-z. 100 images from UCID database were used to embed messages with six differ-

ent embedding rates and the results are shown as a box plot. The box plot demonstrates

that the level of distortion due to MM2-z embedding is very low, below 0.1 for 0.4 bpc.

Figures 8.11 and 8.12 show the distortion levels by many embedding algorithms including

F5 proposed by Westfeld. These graphs demonstrate that the embedding algorithms includ-

ing zero-valued coefficients (MMx-z and PB-z) introduce lower level of distortion than the

shrinkage-avoiding algorithms (MMx and PB) and shrinkage-permitting algorithms (MMx-

s and PB-s); The MM3-z method introduces lower distortion than the MM2-z and PB-z

methods. All proposed algorithms in this thesis produces lower level of distortion compared

to the well-known embedding algorithm, F5.

Accuracy of Analysis

In order to verify our analysis on MM2-z, we estimated the expected values of embedding

errors from 100 images and compared them to experimentally obtained embedding errors.

Messages were embedded in six different embedding rates. Figure 8.13 shows the absolute

value of difference between the theoretically estimated embedding errors and the experimen-

tally obtained embedding errors and their results are shown as a box plot. The box plots

demonstrate that the predicted errors are very close to the actual errors for all embedding

rates; the differences are all below 0.005.

Coefficients Statistics

We have investigated how the MMx-z method changes the distribution of DCT coefficients.

Changed distributions may give some hints of that the object may contain hidden informa-

tion. Hence, preserving statistical properties is a very important requirement in steganogra-

phy applications. To demonstrate the comparison numerically, we measured the Chi-square

and Euclidean distances of JPEG coefficient histograms between the cover images and their

stego images. Figures 8.14 and 8.15 present the Chi-square and Euclidean distances be-

tween the stego and cover image histograms respectively. It is observable that the MMx-z
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Figure 8.9: Average errors when embedding a single message bit. F5 is compared with MM2
and MM2-z. Embedding distortion per embedding message bit with various bpc ranging
from 0.01 to 0.4 using the test images in Figure 8.2a (left) and Figure 8.2b (right).
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Figure 8.10: Average embedding error per message bit using the MM2-z method with six
different embedding rates in bpc. 100 images from UCID database were used to embed
messages.
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Figure 8.11: Comparison of distortion caused by various methods while embedding the same
number of message bits. To generate this graph, the armadillo image (see Figure 8.2) is
used. It is a JPEG color image and the number of AC coefficients is 183708.
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Figure 8.12: The median value of distortions obtained from 100 images of the UCID
database.
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Figure 8.13: Accuracy of the error analysis on MM2-z. The absolute value of difference
between the theoretically estimated embedding errors and the experimentally obtained em-
bedding errors using 100 images from UCID database.
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method has also improved in preserving coefficients statistics compared to MMx.
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Figure 8.14: Chi-square distance comparisons of the MM2, MM2-z, and F5 algorithms in
various bpc using the test images in Figure 8.2a (left) and Figure 8.2b (right).
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Figure 8.15: Euclidean distance comparisons of the MM2, MM2-z, and F5 algorithms in
various bpc using the test images in Figure 8.2a (left) and Figure 8.2b (right).

Steganalysis Tests

We have implemented a steganalysis method proposed by Shi et al. [57], which is well known

steganalysis algorithm to attack JPEG steganography. We used 1000 images from UCID

(Uncompressed Color Image Database) [72] for cover images. For comparison, we embedded

six different embedding rated message in 1000 images using our eight embedding algorithms

and two other embedding algorithms, F5 [21] and Model-based steganography [23] (MB).

The embedding rates were ranged from 0.01 to 0.4 bpc, where bpc is the number of embed-

ded message bits divided by the number of non-zero AC coefficients.
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Tables 8.1 and 8.1 list the detection rates for each algorithm with five embedding rates.

The detection rates are calculated in three ways: accurate rate (AC), true-negative rate

(TN), true-positive rate (TP). Recall that the detection rate of 50% means that the ste-

ganalysis can not distinguish the cover image and the stego image, therefore steganographic

methods aim at 50% detection rate in steganalysis tests. As illustrated in Figure 8.16, the

PB-z and MMx-z methods—MM3-z is the best—have the lower detection rates and thus

enhance a security compared to other compared algorithms.

8.3 Impact of Modifying Zero-valued Coefficients

A typical information-hiding algorithm for JPEG images excludes DC and zero-valued coef-

ficients (0 coefficients) for embedding. Altering DC coefficients may cause large distortion,

and changing many zero-valued coefficients to non-zeros values may have effects on com-

pression rates of JPEG files [26]. That is reason the number of bits that can be embedded

in JPEG images usually less than the one in raw images (e.g., BMP images). Depending

on the texture of JPEG images, the number of non-zero coefficients is various and then

the embedding capacity will vary. Rather than following the predetermined assumption,

this thesis have examined the disadvantages and advantages of including 0 coefficients for

embedding.

There are several benefits in using 0 coefficients for embedding [28]. First, we can

increase capacity of embedding for a given image by increasing the number of usable coeffi-

cients. The portion of 0 coefficients is relatively large compared to other valued coefficients.

For example, the portion of 0 coefficients is 68.7% for the armadillo image (in Figure 8.2)

and 68.9% for the tiger image (in Figure 8.2). Excluding 0 coefficients in the embedding

process results in a decrease in the number of usable coefficients significantly. The more

usable coefficients there are, the more messages can be carried or the less distortion can be

caused to carry the same amount of messages.

The second benefit is that we can decrease distortion for a given message length. For
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Table 8.1: Steganalysis test and detection rates (%).

Algorithm BPC AC TN TP

F5 0.01 56.78 52.84 60.95
0.05 61.22 62.23 60.13
0.1 71.78 68.35 75.63
0.2 90.33 87.14 93.57
0.4 98.11 96.17 100

MB 0.01 57.33 53.22 61.11
0.05 79.78 79.63 79.89
0.1 93.33 91.15 95.47
0.2 99.11 98.63 99.56
0.4 99.89 99.78 100

PB 0.01 57 54.86 59.12
0.05 53.56 55.10 52.16
0.1 64.67 61.72 67.38
0.2 81.89 82.04 81.75
0.4 99.56 99.11 100

PB-z 0.01 55.33 53.16 57.74
0.05 50.67 85.41 18.59
0.1 53.67 82.60 20.14
0.2 55.67 60.68 50.96
0.4 89.67 90.41 88.96

PB-s 0.01 50.2 86.85 13.25
0.05 58.40 55.78 61.04
0.1 58.60 64.26 52.99
0.2 82.80 79.75 85.66
0.4 99.80 99.60 100.00

PB-g 0.01 50.00 0 100.00
0.05 50.30 86.00 14.60
0.1 61.60 58.80 64.40
0.2 76.90 75.80 78.00
0.4 95.10 94.00 96.20
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Table 8.2: Steganalysis test and detection rates (continued).

Algorithm BPC AC TN TP

MM2 0.01 57.78 54.65 60.79
0.05 58.33 57.50 59.32
0.1 62.33 62.00 62.85
0.2 88.44 86.97 90.10
0.4 99.78 99.56 100

MM2-z 0.01 50.6 84.2 17.00
0.05 52.20 58.17 46.18
0.1 51.40 55.42 47.41
0.2 52.20 76.45 29.46
0.4 92.40 92.49 92.31

MM3 0.01 50.2 81.80 18.60
0.05 56.00 51.20 60.80
0.1 56.20 58.23 54.18
0.2 88.40 86.36 90.31
0.4 99.80 99.60 100.00

MM3-z 0.01 NA NA NA
0.05 50.50 64.40 36.60
0.1 54.20 45.42 63.05
0.2 60.40 59.84 60.98
0.4 86.60 86.06 87.15
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Figure 8.16: Comparison detection rates in accuracy(AC) of various steganographic algo-
rithms: F5, MB, MM2, MM2-z, MM3, MM3-z, PB, PB-z, PB-s and PB-g.
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example, in matrix coding [21], we can increase the efficiency of embedding per change

by increasing the block size. Therefore, it is very attractive to include 0 coefficients for

embedding in terms of distortion and payload.

The third benefit is that it will solve the shrinkage problem. Westfeld first used this

term to describe the operation when −1 and 1 coefficients are changed to 0 during the

embedding procedure. Because typical information hiding methods are designed not to

consider 0 coefficients for embedding a message, several methods were proposed to handle

those coefficients. For example, Westfeld proposed the repeat-embedding technique in F5

and we also proposed the shrinkage-avoiding algorithm and shrinkage-permitting algorithm

in Chapters 5 and 6. Those methods solve the desynchronizing problem caused by shrinkage

with an additional cost of distortion. However if we use 0 coefficients for embedding, the

shrinkage does not cause a problem any more.

It is valuable to find a parameter that controls the amount of usable coefficients (includ-

ing 0 coefficients) and to use the parameter for suppressing the disadvantages of using 0

and enhancing the advantages. We will use a predetermined threshold to limit the allowed

number of coefficients for embedding. This threshold does not limit the exact number of

0 coefficients; however, it does eventually control the amount of 0 due to the property of

JPEG encoding. After doing DCT in the JPEG encoder, all coefficients x̃(i,j) are scanned

in a zigzag order of the 8×8 block, where i and j are the indexes in the block (1 ≤ i, j ≤ 8).

The coefficients close to x̃(8,8) are more likely to be 0 coefficients. The number of usable

coefficient is determined by the threshold θ (1 ≤ θ ≤ 63). (Then the number of 0 coefficients

involved in the embedding process can be roughly determined.) For example, when θ = 63,

all AC coefficients are used for embedding. The larger the θ, the more 0 coefficients involved

in embedding.

To see possible risks of including 0 coefficients for embedding, entropy and compression

ratios are measured and compared to those of other methods that do not use 0 coefficients.

The file size and PSNR results show how including 0 coefficients affects the JPEG com-

pression ratio and visual quality of decoded images. From these experiments, we expect to
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evaluate benefits and limits of including 0 coefficients for embedding.

Entropy

Modifying 0 coefficients for embedding may cause some concerns including possible increase

in entropy of images; increased entropies may cause to being detected by steganalysis tools.

We have measured entropies of cover images and stego images. Figures 8.17 and 8.18 show

the entropy comparisons between cover images and stego images for the parity coding (PB

and PB-z) and matrix coding based algorithms (F5, MMx and MMx-z). Notice that the

entropies of PB-z and MMx-z have not changed much compared to PB, MMx, and F5.

The entropies of the MM2-z stego image are closer to those of the cover image than the

MM2 stego images. These entropy results indicate that including 0 coefficients as a useable

coefficients does not have a big impact on the entropy of the stego image with embedding

rates up to 0.4 bpc.

File Sizes

In this subsection, file sizes of stego images are measured to examine the effect of including

0 coefficients for embedding. There are concerns about the idea of changing 0 coefficients

for embedding that it would possibly decrease compression rates, and that it would increase

the file sizes. Table 8.3 lists the file size of the stego images created by three embedding

methods in bytes. For easy comparison, Table 8.4 calculates ratios of file sizes of the stego

image over the cover image. In F5 with 0.3 and 0.4 bpc, the file sizes are decreased because

the number of 0 are increased due to the shrinkage. The increased frequency in 0 will be

noticeable by the histogram attack. The results of file size indicate that the change of file

size is not very significant up to 0.4 bpc. For example, the change in a file size of PB-z stego

image (Armadillo; 32168 bytes for the cover image) is +3 bytes for 0.01 bpc; +17 bytes for

0.05 bpc; -47 bytes for 0.1 bpc; -52 bytes for 0.2 bpc; +192 bytes for 0.4 bpc.
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Figure 8.17: Entropy comparisons of PB stego, PB-z stego, and F5 stego in the various
embedding rates using the test images in Figure Figure 8.2a (left) and Figure Figure 8.2b.
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Figure 8.18: Entropy comparisons of MM2 stego, MM2-z stego, and F5 stego in the various
embedding rates ranging from 0.01 to 0.4 using the test images in Figure Figure 8.2a (left)
and Figure Figure 8.2b.

Table 8.3: File sizes of stego images in bytes

Image Algorithm 0.01 0.05 0.1 0.2 0.3 0.4

Armadillo

F5 32807 32747 32643 32281 31885 31574
PB 32857 32855 32869 32914 33046 33244
PB-z 32860 32872 32822 32862 33086 33436

(cover: MM2 32865 32871 32872 32941 33121 33167
32168) MM2-z 32860 32860 32915 33303 34424 34635

Tiger

F5 20783 20751 20666 20475 20237 20035
PB 20834 20837 20833 20848 20939 21067
PB-z 20824 20817 20798 20872 21010 21275

(cover: MM2 20838 20827 20833 20876 20961 21002
20349) MM2-z 20839 20829 20830 21051 21581 21861
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Table 8.4: The file size ratio between stego images and the corresponding cover images

Image Algorithm 0.01 0.05 0.1 0.2 0.3 0.4

Armadillo

F5 1.0199 1.0180 1.0148 1.0035 0.9912 0.9815
PB 1.0214 1.0214 1.0218 1.0232 1.0273 1.0334
PB-z 1.0215 1.0219 1.0203 1.0216 1.0285 1.0394
MM2 1.0217 1.0219 1.0219 1.0240 1.0296 1.0311
MM2-z 1.0215 1.0215 1.0232 1.0353 1.0701 1.0767

Tiger

F5 1.0213 1.0198 1.0156 1.0062 0.9945 0.9846
PB 1.0238 1.0240 1.0238 1.0245 1.0290 1.0353
PB-z 1.0233 1.0230 1.0221 1.0257 1.0325 1.0455
MM2 1.0240 1.0235 1.0238 1.0259 1.0301 1.0321
MM2-z 1.0241 1.0236 1.0236 1.0345 1.0605 1.0743

PSNR

To compare the decoded image quality, we measured PSNR of the stego images embedded

embedded using PB-z, MMx-z, PB, and MMx. Table 8.5 lists the PSNR of the stego images

created by the methods. The PSNR results of the stego images embedded by the algorithm

of including 0 coefficients (PB-z and MMx-z) are very similar to the stego images embedded

by the algorithm that use only non-zero coefficients.

Table 8.5: PSNR comparisons

Image Algorithm 0.01 0.05 0.1 0.2 0.3 0.4

Armadillo

F5 36.1147 35.9487 35.6524 34.9477 34.2080 33.7212
PB 36.1517 36.1286 36.0500 35.8122 35.3102 34.4333
PB-z 36.1498 36.1105 35.9630 35.5303 34.7713 34.1059
MM2 36.1546 36.1342 36.0390 35.6724 34.8988 34.6004
MM2-z 36.1536 36.0682 35.9368 35.2374 33.8699 33.4484

Tiger

F5 34.7265 34.5903 34.4038 33.8379 33.3397 32.9882
PB 34.7583 34.7410 34.7059 34.5691 34.2370 33.7476
PB-z 34.7527 34.7223 34.6370 34.2950 33.6637 32.9182
MM2 34.7578 34.7487 34.6963 34.5022 33.9553 33.7333
MM2-z 34.7625 34.7065 34.5816 34.0809 32.9725 32.5266
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Chapter 9: Summary

Information hiding refers to embedding additional digital data in host signals, and the host

signals are JPEG images in this thesis. The requirements of information hiding algorithm

are robustness, payload, imperceptibility and security. This thesis has focused on imper-

ceptibility by minimizing distortion and has also dealt with a tradeoff between payload and

security.

In the introduction, three goals for this thesis was set: minimizing distortion due to

embedding, preserving statistical properties during embedding, and predicting a message

length at a given distortion level. Distortion cannot be avoid in the information hiding pro-

cedure, but minimal distortion is preferable. Throughout the thesis, knowledge only being

available to senders is utilized to achieve minimal distortion. More specifically, information

is embedded by modifying JPEG coefficients in such a way that the introduced distortion is

minimal. Although the proposed schemes use JPEG images for experiments, other formats

can be used.

There is a a tradeoff between the amount of hidden information and distortion due to

embedding. The more hidden information, the more distortion. There has been very little

work on how to hide information optimally in terms of the tradeoff between distortion and

the amount of hidden information. We derive the expected value of the embedding error as

a function of the message length and the distribution of the rounding errors at the JPEG

quantization stage.

Distortion is defined as a distance between the original data and the modified data after

information has been embedded. Embedding messages in the JPEG format yields distortion

from two sources: rounding errors that occurs at the JPEG quantization procedure and

embedding errors that occurs at the modification of the cover data to embed messages.

We have designed embedding methods that use block-based coding techniques (parity
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coding and matrix coding) that allow more than one choice for embedding a single message

bit, and that utilize the rounding error for minimal distortion as a criteria for choosing one

among those choices. Specifically the modified matrix coding technique was proposed in

Chapter 4 to increase the number of choices to utilize the distortion minimization scheme.

There is one significant issue to consider when using JPEG images to embed messages:

How to handle zero-valued coefficients? Changing zeros to non-zero values in JPEG in-

formation hiding techniques has been avoided because of concerns of compression rates,

detectability and image quality, and as a consequence, changing non-zero values to zeros

needs a special care to extract correctly the message.

Three different approaches were proposed to handle those zero-valued coefficients in

this thesis. The first approach is changing ±1 coefficients to ±2 in a manner that avoided

creating additional zeros. Our embedding methods using this approach was named PB

(parity coding based) and MMx (modified matrix coding based) described in Chapter 5.

The second approach compensates by changing to some zero-valued coefficients in advance

and then allowing the operations to create new zeros. Our embedding methods using

this approach are named PB-s (parity coding based) and MMx-s (modified matrix coding

based) described in Chapter 6. The third approach is using all AC coefficients including

zeros. There may be a limitation on the payload that can be embedded without noticeable

modifications with this approach. We have tested the third approach in various embedding

rates ranging from 0.01 bpc to 0.4 bpc, and the experimental results showed that the

concerns regarding changing non-zeros to zeros may not cause a big problem with up to

a 0.4 bpc embedding rate, which is considered a large embedding rate in steganography

applications. Our embedding methods using this approach are named PB-z (parity coding

based) and MMx-z (modified matrix coding based) described in Chapter 8.

Preserving statistical properties is one of the problems on which many researchers have

focused, especially in the field of steganography. because noticeable modifications in statis-

tical properties will possibly be detected by steganalysis methods as an object of containing

hidden information. In the thesis, one algorithm that employs weighted graph matching
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to preserve a JPEG coefficient histogram while minimizing distortion was called PB-g. An

approximation algorithm for maximum weighted matching was implemented for the fast

matching method. The central idea of employing matching is that of embedding a message

by interchanging only those coefficients whose changes do not modify the histogram and

and do guarantee a limited distortion.

In this thesis, broadly two embedding schemes have been proposed: the first embed-

ding scheme aims to minimize distortion by utilizing JPEG rounding errors, and the second

scheme aims to preserve statistical properties during embedding. Depending on require-

ments of applications, implementation can vary by combining some methods from the each

proposed scheme. For almost every methods that we have proposed, we derived the expected

value of the embedding error as a function of the message length and the distribution of the

rounding errors at the JPEG quantization stage. We have presented a theoretical analysis

based on order statistics, which uses the rounding error distribution to predict the distortion

for a given embedding rate. Our experiments showed that our analysis predicted distortion

rates accurately.

We measured distortion and compared to other embedding algorithms. The results

demonstrated that our methods introduces a very low level of distortion and achieves a

high level of security in the blind steganalysis tests. All methods in this thesis have been

implemented in Java and employed a publicly available JPEG encoder/decoder.
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Chapter 10: Conclusion

The contribution of this thesis is the exploration of the limits of information hiding: how

low a level of distortion can be achieved with a given length of the embedded message. The

guiding belief of pursuing minimal distortion is that (a) minimizing distortion is preferable in

many applications, especially with current trends of favoring large size high quality pictures,

and (b) minimal distortion to stego objects would lead to their being less detectable.

Three goals were established in the introduction: minimizing distortion, predicting the

distortion associated with the message length, and preserving statistical properties dur-

ing embedding. Throughout the thesis, the three goals were successfully achieved. Using

data known to the sender (e.g., rounding errors of JPEG quantization and distributions

of cover data), a very low level of distortion is achieved. While completing of this thesis,

one of the minimizing distortion schemes proposed in the thesis (MM3) was published in

a peer-reviewed conference proceedings, and the work was evaluated [77] as currently the

best steganographic algorithm in terms of security. Several methods that have better per-

formance than the MM3 method also has been proposed and their experimental results are

included in this thesis.

In addition, the mathematical analysis shown in the thesis can be highlighted as a sig-

nificant contribution. We expect this analysis to be used to change how the message length

is chosen. Traditionally, the message length has been decided by trial-error in information

hiding methods; however, the thesis has shown that the distortion can be accurately pre-

dicted and, this analysis is the first known work for analyzing the distortion in the field

of information hiding. Our prediction methods can be easily applied to other embedding

algorithms, with some modifications.

Methods to preserve statistical properties were also proposed in the thesis. The methods

have successfully preserved the cover data’s statistics. Our experimental results showed that
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the methods causing less modification of the statistics are more likely to be less detectable

with the blind steganalysis tests.

The steganalysis tests showed that minimizing distortion contributes to preserve the

second order statistics such as blockiness and Markov features. Mathematical proof of

relationship of minimal distortion and second order statistics will be the subject of future

research. Additionally experimental proof that embedding methods using our algorithms

do not change image features such as edges and corners and that they do not introduce any

artifacts will be the subject of future research.

Limitations will also be studied further. Using the methods proposed in this thesis,

embedded messages do not not survive image processing methods such as recompression.

Investigating embedding schemes that survive recompression will be considered for possible

future research. In addition, the embedding methods with minimal distortion could be

used in image authentication systems. Based on the proposed framework, designing an

embedding algorithms that embed authentication data for detecting any tampering in videos

while maintaining high quality of the original images will be considered for future research.
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