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Abstract

HIDDEN MARKOV MODEL BASED SPECTRUM SENSING
FOR COGNITIVE RADIO

Thao Tran Nhu Nguyen, Ph.D.

George Mason University, 2013

Dissertation Co-director: Dr. Brian L. Mark

Dissertation Co-director: Dr. Yariv Ephraim

Cognitive radio is an emerging technology for sensing and opportunistic spectrum ac-

cess in wireless communication networks. It allows a secondary user to detect under-utilized

spectrum of a primary user and to dynamically access the spectrum without causing harm-

ful interference to the primary user. A number of spectrum sensing techniques has been

proposed in the literature to identify the state of the primary user in the temporal domain.

However, most of these techniques make instantaneous decisions based on current measure-

ment received at the cognitive radio, and they do not consider the transmission pattern of

the primary user which can be acquired from past measurements. Thus, sensing perfor-

mance can be improved by incorporating measurement history into the sensing decision.

Moreover, using all available data may enable prediction of the primary user activity, which

will allow a cognitive radio to better plan for its spectrum usage.



In this thesis, we utilize both current and past data to improve temporal spectrum

sensing performance for cognitive radio. We focus on sensing of a narrowband channel, and

assume that the primary user transmission pattern alternates between idle and active states.

We assume that time is slotted into sensing intervals. We formulate the temporal spectrum

sensing problem in the framework of hidden Markov models (HMMs), in which the primary

transmission pattern is modeled by a Markov chain and the signal power levels received at

the cognitive radio is presented by a state dependent Gaussian process. Furthermore, we

develop a new statistical model, namely hidden bivariate Markov chain model (HBMM),

and apply it to spectrum sensing for cognitive radio. The main advantage of using an

HBMM, compared to a standard HMM, is that it allows a non-geometric distribution of

the dwell time of the primary user in each state. This distribution, called phase-type, is far

more general than the geometric dwell time distribution of a standard HMM. We develop

an expectation-maximization (EM) algorithm, which extends the Baum re-estimation al-

gorithms for HMMs, for maximum likelihood estimation of the parameter of the HBMM.

We also develop an online recursion for estimation and prediction of the state of the cogni-

tive radio channel. We analyze the performance of our proposed approach using both real

spectrum occupancy data and simulated data derived from the spectrum measurements.

Our numerical results show that the proposed spectrum sensing approach, which uses the

new HBMM outperforms earlier approaches which rely on the standard HMM or a simple

energy detector. Performance enhancement is especially noted in scenarios with high path

loss and strong shadowing effects, which are characterized by low signal to noise ratio.



Chapter 1: Introduction

1.1 Motivation

Due to the rapid growth of applications and services in wireless communications, the demand

for access to additional frequency spectrum has been increasing dramatically. Given that

almost all frequency spectrum is allocated, responding to the demand has become one of

the major challenges in wireless communications. However, various spectrum occupancy

measurement surveys, conducted by the Federal Communications Commission (FCC) [16]

and Shared Spectrum Company (SSC) [37], have shown that most of the allocated spectrum

is either unused or under-utilized. Therefore, spectrum scarcity in wireless communications

is believed to be due to the inefficiency of static frequency allocation rather than the heavy

usage of the spectrum.

To better utilize the bandwidth, and thus accommodate an ever increasing demand,

cognitive radio and dynamic spectrum access have been proposed to solve the above prob-

lem. The two terms are often used interchangeably; but cognitive radio refers to a broader

paradigm compared to dynamic spectrum access. Cognitive radio, whose concept was first

introduced by Mitola [31], is often based on a software radio platform. It is defined as

an intelligent wireless communication system that is aware of its environment and uses

the methodology of understanding-by-building to learn from the environment and adapt to

statistical variations in the input stimuli, with two primary objectives: 1) highly reliable

communication whenever and wherever needed, and 2) efficient utilization of the radio spec-

trum [23]. Dynamic spectrum access, on the other hand, can be viewed as an important

application of cognitive radio that allows secondary users to access the available spectrum

in an opportunistic way under an interference constraint to the primary users [39]. In cog-

nitive radio terminology, primary users and secondary users are also referred to as licensed
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users and unlicensed users, respectively.

Since the concept was introduced, a wide range of applications has been developed for

cognitive radio and dynamic spectrum access [24]. The Federal Communications Commis-

sion (FCC) has adopted rules to allow unlicensed users to utilize white spaces, i.e., spectrum

not being used by a licensed service, in the TV bands [15]. Whereas in the neXt Generation

(XG) program sponsored by the Defense Advanced Research Projects Agency (DARPA),

the dynamic spectrum access technology is used to dynamically redistribute allocated spec-

trum in military communications networks [38]. Moreover, the cognitive radio has been

proposed for other applications such as inter-operability for public safety systems [36], fem-

tocells, smart grid communications, vehicular networks, cooperative relaying and networks,

etc. [24]. There are many standards committees, working groups, forums dedicated to the

development of the spectrum access technologies including the IEEE Dynamic Spectrum

Access Networks (DySPAN) [25], the Wireless Innovation (WInn) forum [45], the Cognitive

Wireless Technology (CWT) at Virginia Tech [43], and others.

1.2 Overview of Spectrum Sensing

There are three basic components in dynamic spectrum access consisting of spectrum sens-

ing, networking, and regulatory policy [51]. Among them, spectrum sensing is the most

important component, which provides the awareness of the spectrum usage and existence

of licensed users in a geographical area [48]. Performance of a sensing algorithm is often

characterized by the probability of missed detection Pmiss and the probability of false alarm

Pfa. The probability of missed detection Pmiss is the probability of failing to sense the

presence of the primary user, which leads to interference to the primary user. In contrast,

the probability of false alarm Pfa is the probability of falsely declaring that the primary

user is active, which leads to missing a spectrum opportunity for the secondary user [39].

There is always a tradeoff between Pmiss and Pfa, and the optimal operating point is chosen

depending on the capability of the cognitive radio node and the sensing requirements of a
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specific application.

Spectrum sensing with respect to a fixed frequency channel can be considered in both

the spatial and temporal domains. In spatial spectrum sensing, the cognitive radio node

estimates the location of the primary system, and then adjusts its transmit power so that it

causes no harmful interference to the primary system. The spatial sensing technique takes

advantage of the attenuation of radio signal, which capitalizes on the geographical distance

between the secondary user and primary system. An example of spatial spectrum sensing

method can be found in [28]. In temporal spectrum sensing, on the other hand, the cognitive

radio node senses the channel for idle time intervals of the primary transmitter and allows

a secondary user to temporarily access the channel during such intervals [42]; even if the

primary system is in close proximity to the secondary user. Clearly, finding the spectrum

opportunity in the temporal domain is practical only if the idle periods of the primary

user are long enough. General spectrum occupancy in the 30 MHz - 3 GHz band [16, 37]

and bursty transmission measurements in wireless Local Area Networks (WLANs) [18,

40] illustrate that in most cases, sufficient spectrum is available for secondary users to

exploit in the time domain. In addition to the spatial and temporal domains, the spectrum

opportunity can be discovered using code dimension and angle dimension [48]. The code

dimension space exploits the spread spectrum, time or frequency hopping codes; whereas

the angle dimension space utilizes the angle of arrivals feature provided in multi-antenna

technologies.

1.3 Problem Statement

In this work, we focus on spectrum sensing of a narrowband channel in the temporal domain.

More specifically, the cognitive radio node, which is located in the same vicinity of the

primary transmitter, operates on the same channel in such a way that it causes no harmful

interference to the primary system. The cognitive radio node first senses the activity of

the primary transmitter on the channel, and then determines whether to transmit or not.

The cognitive radio node only transmits when the primary transmitter is detected as idle;
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otherwise, it remains silent during busy periods of the primary user’s transmission.

To identify the presence of the primary transmitter, a number of spectrum sensing

schemes have been proposed in the literature [48]. Among them, energy detector based

sensing is the most common method, due to its low computational and implementation

complexities. In energy detection, the cognitive radio node compares its received signal

against a sensing threshold, which depends on the noise floor, to determine the transmission

state of the primary transmitter. The energy detector does not need any prior knowledge of

the primary user’s signal and it usually performs poorly in a low signal-to-noise ratio (SNR)

environment. If the primary user’s signal patterns are known at the cognitive radio node,

a more advanced method called waveform-based sensing can be used, which gives better

performance than energy-based sensing in terms of sensing sensitivity and reliability [41].

However, both energy-based sensing and waveform-based sensing do not take into account

the measurement history when estimating the state of the primary transmitter, and thus,

they can be viewed as “memoryless” sensing methods. Lacking the ability to correlate

among measurements, these sensing methods are unable to predict future activity of the

channel. In [48], the authors argue that in order to minimize interference to primary

users while making the most out of the opportunities, cognitive radios should keep track of

primary transmission patterns and should make predictions. Also, it is stated in [8] that

gathering statistical information about the primary transmission behavior, in an effort to

predict when the channel will be idle, will allow a cognitive radio node to better plan for

spectrum usage of the spectrum. Moreover, it is shown in [51] that if the observation history

is used optimally, approximately 40% improvement is achieved for the throughput of the

secondary user.

Responding to the above claims, we consider the problem of using measurement history

received at the cognitive radio node to improve the spectrum sensing in the temporal do-

main. We develop stochastic models to characterize the transmission pattern of the primary

transmitter. Building on these models, we introduce estimation and prediction algorithms

for the cognitive radio node. The proposed approach allows a cognitive radio node to achieve
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better channel state estimation and to predict future activity of the primary user.

1.4 Related Work

Using measurement history for modeling and prediction in spectrum sensing is a challenging

problem that has received a lot of attention in recent years. A survey of research related

to this problem can be found in [48]. In wireless communications, the transmission pattern

of the primary user can be classified into two categories: periodic and non-periodic. For

the periodic transmission pattern, e.g., patterns usually found in Time Division Multiple

Access (TDMA) networks or radar systems, the periodic feature can be extracted by using

a cyclostationary detector [8]. On the other hand, to model the non-periodic transmis-

sion pattern of the primary user, a more advanced model such as a hidden Markov model

(HMM) must be used [8,24,48]. Empirical measurements taken in the 928-948 MHz paging

band [19] and in 802.11b based wireless Local Area Network (WLAN) [17] have validated

a Markovian pattern in the spectrum occupancy of the primary user. Given that primary

user transmission patterns are likely to be non-periodic in most of the frequency spectrum

bands, we focus our work on HMM-based modeling and prediction.

In the HMM framework, the primary user transmission pattern can be modeled by ei-

ther a discrete-time Markov chain or a continuous-time Markov chain. In the discrete-time

chains, time is divided into slots and the m-step transition probabilities can be written in

matrix form and expressed in terms of the one-step transition matrix [21]. In continuous-

time, the one-step transition matrix is substituted by a matrix called generator, which

models the changes of state at the times of jumps. It can be easily proved that the state

duration of the discrete-time Markov chain is a geometric distribution; whereas, it is ex-

ponentially distributed in the continuous-time case. Depending on the user application, a

discrete-time or continuous-time Markov chain can be chosen appropriately. Models em-

ploying the discrete-time Markov chain are an important class of models that has been used
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successfully in speech recognition. Similarly, models with continuous-time Markov chain in-

tegrated have been applied in other applications such as modeling ion-channel currents [35]

or modeling delays and congestion in computer networks [44]. In [44], the continuous-time

process was sampled, and the Baum algorithm was applied for estimating its parameter.

This approach has some drawbacks which were detailed in [35]. An EM algorithm for esti-

mating the parameter of a continuous-time bivariate Markov chain was recently developed

in [27]. When applying these models to the spectrum sensing problem of cognitive radio,

we realize that the modeling the primary user activity by using a continuous-time Markov

chain only improves the performance when the primary user changes its state within a

sensing period of the secondary user. In this work, we assume that the sensing period is

much smaller than the average idle and active periods of the primary user; and thus, a

discrete-time Markov chain is adequate for this application.

In addition to those models described above, a hidden semi-Markov model, which is

considered as an extension to the standard HMM, is often used to model underlying process

that has dwell time in each state is not necessarily geometrically distributed. In the hidden

semi-Markov model framework, the dwell time can be represented more accurately with an

explicit durational distribution. However, this advantage is often hard to exploit since the

exact form of that distribution is usually not known in typical applications. An overview of

hidden semi-Markov models, including HMMs with explicit durational models, can be found

in [47]. In this work, we propose a new model which allows the dwell time distribution in each

state to follow a more general class of distributions, i.e., a discrete phase-type distribution.

The proposed model may be viewed as an instance of the hidden semi-Markov model. An

advantage of the model proposed here is that estimation of its parameter is done through

the Baum algorithm, which is significantly simpler than an algorithm for estimating an

explicit durational model.

1.5 Thesis Contributions

The main contributions of the thesis are summarized as follows:
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• We formulate the spectrum sensing problem in the temporal domain for cognitive

radio application in the framework of hidden Markov models (HMMs). We model

the transmission pattern of the primary user by a Markov chain, and represent the

signal power level received at the cognitive radio node by an observation process.

The Markov chain is assumed to have two states which represent the idle (OFF) and

active (ON) states of the primary transmitter. Whereas, the observable process is

characterized by a state dependent Gaussian process, which takes into account the

path loss and log-normal shadowing introduced by the wireless channel. The spectrum

sensing problem of measuring the signal level and estimating the status of the primary

transmitter now becomes a statistical problem of estimating a hidden state variable

from incomplete observations.

• We develop a new statistical model, namely a hidden bivariate Markov chain model,

in solving the spectrum sensing problem. The hidden bivariate Markov chain model

is an extension of the standard HMM, in which the Markov chain is substituted by

a pair of random processes. The first process in the bivariate Markov chain has two

states representing the idle and active states of the primary user, while the second

process has several states whose number determines the statistical characteristics of

the dwell time distribution in each idle/active state. The advantage of employing the

bivariate Markov chain is that the dwell time in each state of the primary user can be

modeled by a discrete phase-type distribution, which is a mixture, a convolution, or a

combination of geometric distributions. This important property allows us to model

the transmission pattern of the primary user more accurately.

• We develop an expectation-maximization (EM), which extends the Baum re-estimation

algorithms for HMMs, for maximum likelihood (ML) estimation of the parameter of

the proposed model. Given the estimate of the model parameter, the dwell time

distribution in each state of the primary user can be easily obtained. Moreover, we

introduce an online recursion, based on the prediction and filtering recursions in [12],
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for estimating the states of the primary user at the current time and future time,

given an estimate of the model parameter. In most current dynamic spectrum ac-

cess schemes, the cognitive radio makes channel access decisions based on the state

estimate at the current time. If the cognitive radio is equipped with the state pre-

dictive information and dwell time distribution, it can make better decisions in order

to minimize interference caused to the primary user while maximizing its channel

utilization.

• We test the proposed model using real spectrum occupancy data collected by the

Shared Spectrum Company [37]. Since the true state sequence associated with the

observation sequence of the real data is not available, we simulate the real data using

a high order hidden bivariate Markov chain model. The parameter estimate of the

high order is considered as the true parameter of the real data and it is used to

generate training and testing data for further analysis. We use the training data to

estimate parameter of a low order hidden bivariate Markov chain. Then, we apply

the parameter of the low order model into the proposed detection scheme in order

to estimate and predict the state of the primary user from the test sequence. We

analyze the state estimation performance in terms of the probability of false alarm

Pfa and the probability of detection Pd. On the other hand, we evaluate the state

prediction performance in terms of the probability of prediction error Ppe for various

values of detection threshold γ. Our numerical studies show that when the dwell time

in each state of the primary transmitter is not geometrically distributed, employing

the hidden bivariate Markov chain model can significantly improve the accuracy of

channel state estimation and prediction, especially in scenarios with severe path loss

and shadowing effects.
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1.6 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, we provide a literature

review and compare our proposed approach with related work. In Chapter 3, we give an

overview of the real spectrum measurements which will be used to evaluate the perfor-

mance of our approach. We also formulate the temporal spectrum sensing problem and

discuss how the proposed spectrum sensing approach can be applied in a dynamic spec-

trum access scheme. In Chapter 4, we introduce a hidden Markov model and estimation

algorithms that will be served as background for our proposed approach. In particular, we

describe the hidden Markov chain observed through a Gaussian channel and present the

Expectation Maximization (EM) algorithm, the forward-backward recursions, the Baum

re-estimation algorithm, and state estimation and prediction algorithm. In Chapter 5, we

describe the hidden bivariate Markov process and discuss its useful properties for spectrum

sensing. We also extend the Baum algorithm for estimating the model parameter and show

the state estimation and prediction algorithm for the hidden bivariate Markov chain. In

Chapter 6, we describe the simulation setup and performance metrics, and then evaluate

the proposed model in spectrum sensing applications using data derived from real spectrum

measurements. In Chapter 7, we summarize the thesis contributions and provide some con-

cluding remarks. We also discuss future directions that can be extended from our proposed

approach.
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Chapter 2: Literature Review

A moderate amount of work has been done in applying hidden Markov models (HMMs) to

spectrum sensing in the temporal domain. While several researchers focus on modeling the

state of the primary user and the output process, others assume the models are available for

their applications. In either case, the model parameter is utilized to enhance the channel

state estimation, and more importantly, to predict future activity of the primary user in

order to dynamically access the available spectrum. In some papers, the terms “state

estimation” and “state prediction” are used interchangeably. However, we will use “state

estimation” and “state prediction” to denote the estimation of the true state at the current

time and the prediction of the true state at a future time, respectively.

In this chapter, we briefly review some of the related work and address the differences

compared to the proposed approach. Most of the existing work has shown that, in general,

discrete-time HMMs are sufficient for channel modeling. However, advanced models are

needed in some applications to better represent the channel occupancy of the primary

users.

2.1 Modeling Using Standard Hidden Markov Models

Modeling the spectrum sensing problem using a standard hidden Markov model signifies

the state of the primary user is modeled by either a discrete-time or a continuous-time

finite-state homogeneous Markov chain while the output process is modeled by either a

finite-alphabet or a general-alphabet process. With the finite-alphabet output process,

the number of observations observed in each hidden state is finite; and the probability

of an observation produced by a particular hidden state is characterized by a probability

mass function. On the other hand, with the general-alphabet output process, the number

10



of observations is not necessary finite and its distribution is usually characterized by a

probability density function [12].

In [19], empirical measurements taken in the 928−948 MHz paging band have validated

a Markovian pattern in the spectrum occupancy of the primary user. The main objective

of this paper is to recover the hidden state sequence given the observation sequence using

the Viterbi algorithm. The spectrum sensing problem was formulated using a simple HMP

with two hidden states and two observable states. If the primary user is active, the hidden

state is assigned to 0; otherwise, it is assigned to 1. The observation in this model is not the

received signal power, but rather, it is a binary value of 0 or 1 depending on the power is

higher or lower than a defined threshold, respectively. The probabilities of missed detection

and false alarm are used in expressing the observation probabilities given the state. This

model is quite simple and can not be generalized in many cases due to the dependence on

the threshold. Besides, the parameter estimation and the state prediction have not been

discussed in details.

In [1], an algorithm called Markov-based channel prediction algorithm is proposed for dy-

namic spectrum allocation in cognitive radio networks. The algorithm is based on a Markov

chain with a finite-state observable process, whose parameter is estimated online using the

forward part of the Baum-Welch algorithm. Using the estimated parameter, activity of the

primary user is estimated based on the joint probability between the observation sequence

and the state. The cognitive radio utilizes the likelihood of the state estimation to make

channel access decision. The proposed approach shows significant signal-to-interference

(SIR) performance compared to the traditional Carrier Sense Multiple Access (CSMA)

based approach, where the cognitive radio identifies an empty channel and operates on it

until the primary user’s signal is detected. The duration in each state of the primary user

is assumed to be Poisson distributed. Although prediction algorithm is mentioned in the

paper, only state estimation is actually performed. On the other hand, this approach is

only applicable to high SNR scenarios without considering the detection errors in modeling.

A channel status predictor based on a Markov chain with a finite-alphabet observable
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process was proposed in [34]. The parameter of the model is estimated from the training data

using the Baum-Welch algorithm. The observable process has two states, where 1 represents

the OFF state while 2 represents the ON state. The work here focuses on predicting m-

step channel state using the forward algorithm. Although the formulation of the model

is clearly defined, the performance analysis section in this paper is not well presented.

Another problem is that periodic patterns were used as inputs to test the performance of

the predictor, which diminishes the advantage of using HMM.

In [5], a modified HMM is proposed to predict the channel state of a single primary user

in order to minimize the negative impact of response delays caused by hardware platforms.

The modified HMM is developed by shifting the time indexes of the underlying state and the

observation to include the maximum possible response delay. Instead of using the Baum

re-estimation algorithm to estimate the parameter of the proposed model, the authors

of [5] estimate the parameter through a simple statistical process over training sequences.

The proposed model is then evaluated using real-world Wi-Fi signal collected in an indoor

environment. The performance of the proposed approach is improperly compared with

another prediction approach, which assumes the predicted state is the same as the current

state.

Unlike the above work, in [39], the spectrum sensing problem in the temporal domain is

modelled by a discrete-time Markov chain with general-alphabet observable process. Several

sequence detection algorithms derived from the Viterbi and forward-backward algorithms

were presented to uncover the state sequence of the primary transmitter given the entire

observation sequence observed at the cognitive radio node. The proposed detection sequence

algorithms incorporate the probabilities of missed detection and false alarm into the schemes

through the use of Bayesian cost factors. Part of our work in [32] is similar to [39] in

modeling the primary user’s transmission pattern and observation statistics. However,

instead of focusing on state sequence detection, we concern ourselves with online single

state detection. Although the Baum-Welch algorithm was mentioned in the paper, it has

not been implemented to estimate the model parameter. Furthermore, the problem of
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predicting future activity of the primary transmitter has not been considered in this work.

Arguing that slotted transmission assumption may not be valid for some practical sys-

tems, in [49], a continuous-time Markov chain is used to model the primary transmission

pattern. Thus, the dwell time of each state of the primary user is exponentially distributed.

The work in this paper mainly focuses on designing a periodic sensing scheme of a set of

primary channels in order to achieve an optimal spectrum access for the secondary user. In

this thesis, we only focus on single channel modeling and leave the spectrum access problem

for future work.

2.2 Modeling Using Extended Hidden Markov Models

Several researchers have argued that in some applications the channel occupancy of the

primary transmitter can not be properly described by a discrete-time or a continuous-time

Markov chain. Therefore, it is mandatory to extend the standard hidden Markov model

to a more advanced model such that it can accurately capture the statistics yet possess

tolerable computation complexity.

In [18], it has been shown that the idle and active periods of the bursty transmissions of a

wireless local area network (WLAN) are not geometrically distributed but rather have phase-

type distributions. In another paper [17], a generalized Pareto distribution has been used to

statistically model the WLAN data. In both cases, a continuous-time semi-Markov process

was proposed as a possibly suitable model for this application but no detailed estimation

algorithm was provided. The transition probabilities and the dwell time distributions are

approximated in a simple way by matching the statistics of the collected data. Since the

work here only focuses on modeling the activity of the primary transmitter, the observable

process has been eliminated. The idle and active states of the primary transmitter were

identified by using either an energy-based detection or a feature-based detection. It is

mentioned in [18] that the state prediction of one-step can be utilized by the secondary user

to better access the channel, but no procedure or algorithm was given.

In [40], practical primary user’s traffic, whose bursty nature is not properly described
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by a Markovian pattern, was considered for the opportunistic spectrum access in temporal

domain. In particular, two source traffic models were investigated for the primary user:

peer-to-peer (P2P) and interactive gaming. The work in this paper focuses on designing an

optimal spectrum access scheme which maximizes the spectrum utilization of the secondary

user while keeping the interference to the primary system below a given threshold. Nu-

merical results have shown that the channel access strategy of the secondary user depends

on both the elapsed time of idle period and the characteristics of the primary user traffic.

Therefore, it is very important to model the primary traffic accurately. The primary traffic

in this paper was not modeled by any hidden Markov model, but instead, by two specific

distributions with known parameters.

With a different approach, we propose a bivariate Markov chain to model the transmis-

sion pattern of the primary transmitter for cognitive radio application. The state durations

of the bivariate Markov chain have a discrete phase-type distribution. The parameter es-

timation algorithms in our approach are derived from the Baum re-estimation algorithm,

which seeks to maximize the likelihood of the observation data.
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Chapter 3: Formulation of Spectrum Sensing Problem

3.1 Overview of Spectrum Occupancy Measurements

Depending on the types of primary users and their transmission behavior, selection of

the model that best represents the idle and active states may be different. When the

transmission pattern tends to be bursty and reaches a steady-state, the idle/active state

can be modeled by a Markov process. However, when the transmission pattern is more

dynamic and fast varying, the Markov process may not be valid [46]. Studying various

transmission patterns of the primary users is beyond the scope of this work. The goal here

is to identify channels or bands, which have similar transmission characteristics with our

proposed model, and use them as real data for performance evaluation in Chapter 6.

In selecting the real data for this work, we have examined spectrum occupancy mea-

surements collected by Shared Spectrum Company during the first week of September 2009

[37]. The receiver’s antenna was located on the rooftop of a building in Vienna, Virginia.

The data was collected in the bandwidth from 30 MHz to 3 GHz, which was divided into

32 smaller well-known bands. A spectrum analyzer was used to sweep across all bands

until the collection process was terminated. Further details on the equipment setup and

measurement results can be found in [37].

As stated in the report and by analyzing the data, we observe that a) some bands have

very high measured spectrum occupancy, b) some bands have very low spectrum occupancy,

and c) most of the bands have mixed spectrum occupancy. We list the band names that

belong to each category as follows:

1. Very high measured spectrum occupancy bands:
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These spectrum bands were utilized by the primary users most of the time during the

collection period. Examining the data, we find some of these bands are

• FM channels (88− 108 MHz),

• TV channels (i.e., channels 7, 9, 11, 13, 15, 24, 33− 36, 38, 40, 42, 46, 48, 50, 55),

• Special Mobile Radio (SMR)/Cellular/Personal Communications Service (PCS)

downlinks (851− 866 MHz/869− 894 MHz/1930− 1990 MHz),

• Advanced Wireless Services (AWS) bands A/E (2110 − 2120 MHz/2140 − 2145

MHz),

• Private Companies (2182− 2184 MHz),

• Digital Audio Radio Service (DARS) (2320− 2345 MHz),

• Several channels in Instructional Television Fixed Service (IFTS)/Multipoint

Distribution Service (MDS) (2644− 2686 MHz),

• A number of narrowband channels existed in different bands spreading across

the spectrum below 1 GHz.

As an example, we show the spectrum occupancy measurements of the Special Mobile

Radio (851−866 MHz) and Cellular downlink (869−894 MHz) in Fig. 3.1. Note that

other neighboring bands are also displayed in Fig. 3.1. In the figure, three plots are

shown. The first plot, which is called max-hold plot, represents the maximum power

value measured for each frequency during the data collection period. The second plot,

which is called waterfall plot, shows frequency occupancy versus time. A frequency is

considered occupied when the power measured at that frequency exceeds a specified

threshold. The threshold value chosen for each band is determined based on the noise

floor for the band of interest. The third plot shows the fraction of time each frequency

is occupied. From the second and third plots, it is obvious that the Special Mobile

Radio and Cellular downlink bands are being used most of the time by the primary

users.
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Figure 3.1: Example of very high measured spectrum occupancy band.

Due to their high utilization by the primary users, it is not beneficial for consider-

ing these very high measured spectrum occupancy bands for spectrum sharing with

secondary users. Therefore, we will exclude these bands from our analysis.

2. Very low measured spectrum occupancy bands:

These spectrum bands have either very weak signals, highly under-utilized, or are

almost never been used. They include

• TV channels (i.e., channels 8, 10, 12, 16, 19−22, 26, 28, 31, 32, 39, 43, 45, 47, 49, 51−

54, 56− 60, 65− 69),

• 700 Band Up/Down (746−764 MHz/776−794 MHz) and Public Safety (794−806

MHz),

• Aviation (960− 1020 MHz), Amateur (1240− 1300 MHz),
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• Military (1350− 1390 MHz), Space/Satellite (1400− 1427 MHz),

• Fixed Mobile (1432− 1435 MHz),

• Telemetry (1435− 1525 MHz and 2360− 2390 MHz),

• Mobile Satellite/Meteorological (1525− 1710 MHz),

• Fixed/Fixed Mobile (1710− 1850 MHz),

• Mobile Satellite Service (MSS)/TV Auxiliary (1990− 2110 MHz),

• Space Operation/Fixed (2200− 2300 MHz),

• ITFS/Multichannel Multipoint Distribution Service (MMDS) (2500−2644 MHz),

• Surveillance Radar (2700− 2900 MHz),

• Weather Radar (2900− 3000 MHz).

Fig. 3.2 shows an example of the very low measured spectrum occupancy bands in the

bandwidth of 1400− 1525 MHz. As shown in all three plots, the spectrum is almost

empty except some very weak signals or noise were observed.

Due to the very low transmit duty cycle, these spectrum bands have great potential

for spectrum sharing of cognitive radio. Since these bands are empty most of the time,

spectrum sensing for cognitive radio is not an important issue. As a result, we will

not consider these bands in our analysis.

3. Mixed measured spectrum occupancy bands:

These spectrum bands have mixed transmit duty cycle ranging from 5% to 95%. Some

channels in these bands have long duration of the active state (i.e., in hours) while

the others have shorter transmission duration (i.e., in seconds or minutes). Based on

the measurement setup, the time resolution of the data is approximately 2 minutes.

Therefore, the active state of the primary transmitter could be captured with a single

measurement or multiple measurements. In this thesis, we focus on channels that

have average idle/active periods greater than 2 minutes. Fig. 3.3 shows an example

of the mixed measured spectrum occupancy band in the bandwidth of 928−941 MHz.
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Figure 3.2: Example of very low measured spectrum occupancy band.

We use measurements in the paging band to analyze the performance of our proposed

approach. Commercial paging is a Commercial Mobile Radio Service (CMRS), which is

provided for profit and available to the public [13]. Traditional commercial paging service

consists of one-way data communications sent to a mobile device that alerts the user when it

arrives. Narrowband Personal Communication Service (PCS) licensees offer more advanced

two-way paging type services. Commercial paging may operate in the 35 − 36, 43 − 44,

152 − 159, and 454 − 460 MHz bands, referred to as the “Lower Band”, and the 929 and

931 MHz bands, referred to as the “Upper Band”. Depending on the band of operation, the

channels are either paired or unpaired channels with 20 kHz bandwidth. In our analysis,

we focus on channels in the 931 MHz upper band since channels in lower bands have either

very low or very high measured spectrum occupancy. We show that the dwell time in each

state of the primary transmitter in the paging band is not always geometric distribution
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Figure 3.3: Example of mixed measured spectrum occupancy band.

and can be better modeled by a discrete-time phase-type distribution.

3.2 System Model

In this section, we describe the system model for spectrum sensing in cognitive radio. We

shall consider a simplified scenario where a single primary transmitter and a single cognitive

radio are operating on a single narrowband channel. The primary transmitter is active only

when it has data to transmit. The cognitive radio acts as a sensor to determine the state of

the primary transmitter. We assume that the locations of the primary transmitter and the

cognitive radio are fixed, and the primary transmitter is located within the detection range

of the cognitive radio. Fig. 3.4 illustrates the described scenario.

Since the primary user does not fully utilize the designated channel, the channel alter-

nates between idle and active periods of time. The state of the primary transmitter takes
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Figure 3.4: Illustration of operation scenario.

values in a finite set X = {1, . . . , d}. We shall focus on the case d = 2, such that state 1 (also

referred to as OFF state) corresponds to the idle state of the primary transmitter, whereas

state 2 (also referred to as ON state) corresponds to the active state. Nevertheless, the

model and estimation algorithms presented in this thesis will be stated for general values

of d ≥ 2.

We assume that the cognitive radio node senses the channel once every τ seconds.

The period τ is assumed to be much smaller than both the average idle period and the

average active period of the primary transmitter to ensure the probability that the primary

transmitter changes its state within τ is negligible. The state of the primary transmitter

can then be represented as a discrete-time random process {Xt, t = 0, 1, . . . }, where Xt

represents the idle/active state of the primary transmitter at time instant t.

We have used a log-distance path loss with shadowing model [29, pp. 40-41] to charac-

terize the wireless propagation environment. Let δ denote the distance from the primary

transmitter to the cognitive radio node. The overall log-distance path loss with shadowing

Lp(δ), measured in dB, is given by

Lp(δ) =

[
L̄p(δ0) + 10κ log10

(
δ

δ0

)]
+ ε(dB), δ ≥ δ0 (3.1)
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where δ0 denotes the close-in reference distance, L̄p(δ0) denotes the average log-distance

path loss at the reference distance δ0, κ denotes the path loss exponent, and ε(dB) rep-

resents random shadowing effects. The average log-distance path loss L̄p(δ0) is typically

calculated using the free space path loss formula or through field measurements. The path

loss exponent κ varies for different propagation environments. The random variable ε(dB)

is assumed normal with zero-mean and variance σ2ε .

Let {Yt, t = 0, 1, . . . } represent the logarithmic power signal, in units of dBm, received

at the cognitive radio node. Let N (µ, σ2) denote a Gaussian distribution with mean µ and

variance σ2. If Γ denotes the transmit power of the primary user and the distance separating

the primary user and the cognitive radio node is δ > δ0, then Yt ∼ N (Γ− L̄p(δ), σ2ε ), where

L̄p(δ) = L̄p(δ0) + 10κ log10

(
δ
δ0

)
is the mean path loss at the distance δ. According to (3.1),

as δ increases, the path loss Lp(δ) increases, and thus, the power received at the receiver Yt

decreases.

Fig. 3.5 illustrates the processes {Xt} and {Yt} at the primary transmitter and cognitive

radio node, respectively. The idle/active state of the primary transmitter Xt at an instant

of time t is unknown to the cognitive radio receiver, and thus, it is considered as the hidden

or underlying state. Sensing the activity of the primary transmitter at the cognitive radio

node is done by measuring the signal level Yt and estimating the status of the primary

transmitter as being active or idle. This formulation is amenable to estimating a state

variable from some given noisy and possibly incomplete observations. In addition to the

state estimate, utilizing the measurement history at the cognitive radio node allows us to

predict future activity of the primary user.

3.3 Dynamic Spectrum Access

In practice, the goal of the cognitive radio node is not only to sense the primary transmitter

but also to utilize the available white space. Fig. 3.6 shows a basic slot structure of

22



Figure 3.5: Illustration of operation scenario.

the cognitive radio node consisting of the sensing time, the transmission time, and the

time dedicated for data transmission acknowledgement. At the beginning of each slot, a

secondary user senses the channel and decides to transmit or not based on the sensing

outcome. It is assumed that the secondary user always has data to transmit. Given a fixed

time slot, the spectrum sensing time and transmission time should be adjusted in order to

maximize the throughput of the secondary user while limiting interference to the primary

system.

Figure 3.6: Basic slot structure.

In this thesis, we focus on solving the spectrum sensing problem, not the transmission

problem, of the cognitive radio. However, we briefly discuss how the proposed state es-

timation and prediction can be utilized in a dynamic spectrum access scheme for future

directions.

The state estimate can be used by a cognitive radio to determine whether or not the
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channel is occupied by a primary user during the current time slot t. In comparison with

an energy detector, which is frequently applied in dynamic spectrum access schemes, the

state estimate incorporates knowledge of the behavior of the cognitive radio channel. Under

conditions of severe path loss and shadowing effects, we would expect the proposed state es-

timate to outperform the energy detector in terms of false alarm and detection probabilities,

since the energy detector is based only on the received signal at time t.

One of the important features provided by the proposed models is the predictive capa-

bility. Given the status of the primary user can be predicted for the next m time slots,

the cognitive radio can better prepare for its operation. For example, knowing when the

primary user will re-occupy the channel, the cognitive radio can vacate the channel in ad-

vance in order to minimize interference caused to the primary user. Using prediction to

avoid collisions to the primary system has been investigated in [5, 6, 30]. Conversely, if the

cognitive radio seeks to access a given channel, it can predict when the channel will become

available and then make preparations to access the channel in advance. This will allow the

cognitive radio to make efficient use of the temporal spectrum opportunities on the channel.

Several spectrum access schemes that aim to maximize the transmission throughput under

interference constraints for the cognitive radio has been developed in [22,50].

In multi-channel scenario, a cognitive radio often senses a group of N channels simul-

taneously and selects a best channel to access based on the sensing outcome. It is obvious

that the cognitive radio can improve its channel selection process significantly if the dwell

time distribution in each state of the primary transmitter is available. Assume that our

spectrum sensing approach can be applied to each individual channel. Given the state esti-

mate for each channel at current time t, the cognitive radio may identify Ñ ≤ N channels

that are available. Instead of randomly choosing a channel from Ñ possible channels for

its transmission, the cognitive radio may rank the Ñ channels in decreasing order of the

predicted remaining idle time Trem and choose the channel with the largest value of Trem.

The remaining Ñ − 1 channels can be used as backup channels in case the selected chan-

nel is re-occupied by the primary user unexpectedly. On the other hand, if the cognitive
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radio knows the time Tacc it needs to access the channel, it could rank the Ñ channels in

decreasing order of the probability that each channel will remain idle at time t+ Tacc.

In [52], the dynamic spectrum access protocol was developed further in the framework

of Partially Observable Markov Decision Process (POMDP). The protocol, which is a cross-

layer protocol, integrates spectrum sensing at the physical layer with the spectrum access

at the MAC layer and traffic statistics determined by the application layer of the primary

network. Due to hardware and energy constraints, it is assumed that the secondary user may

not be able to perform full-spectrum sensing or may not be willing to monitor the spectrum

when it has no data to transmit. To overcome this problem, both optimal and suboptimal

strategies were proposed to assist the secondary user in selecting a set of channels to sense

and a set of channels to access based on the sensing outcome. Although we assume the

cognitive radio node has the ability to sense a wideband spectrum, which might include

more than one channels, our proposed spectrum sensing approach could be integrated in

the POMDP framework.
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Chapter 4: Background on Hidden Markov Model and

Estimation Algorithms

In this chapter, we provide background on the hidden Markov model (HMM) and estimation

algorithms. We describe the model and its parameter, and show the dwell time distribution

of the underlying process. We then present estimation algorithms related to the model con-

sisting of the Expectation Maximization (EM) algorithm, the forward-backward recursions,

the Baum re-estimation algorithms, and the state estimation and prediction algorithm.

In the literature, hidden Markov models (HMMs) are also referred to as hidden Markov

processes (HMPs) [12]. The two terms will be used interchangeably in this thesis.

4.1 Hidden Markov Model

Markov chains can be defined as a class of random processes possessing a specific form of

dependence among current and past samples [20]. A process is called a Markov process if

it satisfies the Markov property as follow: given the present event, future and past events

are independent [21].

An HMM is used to model statistical characteristics of signals that can be described as

Markov chains observed through memoryless channels [12]. An HMM is formed by incor-

porating an observable process with an underlying Markov chain. The underlying Markov

chain is said to be hidden, and it can be observed only through the observable process.

Given the underlying Markov chain, the observed process is conditionally independent.

HMMs consist of a rich family of parametric processes that has been applied in many

applications especially in speech recognition. The hidden process can be either discrete-time

or continuous-time finite-state homogeneous Markov chain. The output of the observable

26



process can have either finite-alphabet or general-alphabet; and thus, it can be charac-

terized by a probability mass function or a probability density function appropriately. In

this chapter, we describe a standard HMM with a discrete-time finite-state Markov chain

observed through a time-invariant Gaussian channel. The Gaussian channel is selected for

the observable process of this application because it takes into account the wireless channel

phenomena such as fading, shadowing, multipath, interference, etc.

In the following subsection, we describe the parameter of the model which consists of an

initial state distribution, a transition matrix of the underlying Markov chain, and param-

eters of the output probability distributions of the observable process. For the Gaussian

observable process, the parameters of the output are sets of means and variances.

In this thesis, we use capital letters to denote random variables and lower case letters

to denote their realizations. We use the notation vkl to denote a sequence {vl, vl+1, . . . , vk}.

We also use the generic notation of p(·) for a density or probability mass function (pmf) as

appropriate.

4.1.1 Hidden Markov Model Formulation

A hidden Markov chain with Gaussian densities is a baseline model considered in this

thesis. More detail of the model can be found in [12, 32]. The model can be represented

as a doubly stochastic process {(Xt, Yt), t = 0, 1, . . .}. The first process {Xt} is the hidden

process while the second process {Yt} is the observable process. The hidden process {Xt} is

a discrete-time finite-state homogeneous Markov chain. A chain {Xt} is called homogeneous

if P (Xt+1 = b | Xt = a) = P (X1 = b | X0 = a) for all t = 1, 2, . . . [21]. The number of

states of the hidden process constitutes the order of the HMM. The observable process {Yt}

is a sequence of conditionally independent random variables given the Markov chain {Xt},

i.e., the distribution of each random variable Yt depends on the Markov chain {Xt} only

through the value Xt at the current time t.

The hidden process {Xt} takes values in a finite set X = {1, . . . , d}, where X is called

the state space and d denotes the number of hidden states. Let πa = P (X0 = a), a ∈ X,
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denote the probability that the initial state is a. Let π = {πa, a ∈ X} denote a vector

representing the initial distribution of {Xt}. Let gab = P (Xt+1 = b | Xt = a), a, b ∈ X

denote the transition probability of {Xt} from state a to state b. Let G = {gab, a, b ∈ X}

denote the d× d transition matrix of {Xt}.

For each t, the observation Yt takes values in an observation space Y. Let p(yt | xt)

denote the probability density function of the observation yt given the state xt. The random

variables {Yt, t = 0, 1, . . .} are conditionally independent given {Xt, t = 0, 1, . . .}, i.e., for

any non-negative integer T ,

p(yT0 | xT0 ) =

T∏
t=0

p(yt | xt). (4.1)

We assume, in general, that the observation Yt is represented by a vector consisting of

K components. For any t, p(yt | xt) is the normal density with mean µxt and covariance

matrix Rxt . When Yt is a scalar random variable, then Rxt is referred to as σ2xt which is

the conditional variance of Yt given xt. In this work, yt represents the log-power spectral

density of the observed signal. Relying on asymptotic properties of the log-power spectral

density estimate [3], we assume that each Rxt is a diagonal matrix. Let µ = {µa, a ∈ X} and

R = {Ra, a ∈ X}. The hidden Markov chain with Gaussian densities can be represented by

a parameter φ = (π,G, µ,R).

4.1.2 Dwell Time Distribution of HMM

For the Markov chain {Xt}, the state duration of the dwell-time can be shown to follow

a geometric distribution [21]. Let ∆T denote the dwell-time of the underlying state {Xt}.

Then, given the model parameter φ and the state a, the probability that the primary

transmitter resides in state a for exactly m steps can be computed as:

P (∆T = m | Xt = a) = (gaa)
m−1(1− gaa), m = 1, 2, . . . . (4.2)
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The expected duration in a state, conditioned on starting in that state can be computed

as:

E [∆T | Xt = a] =
1

1− gaa
. (4.3)

4.2 EM Algorithm

The Expectation Maximization (EM) is an iterative algorithm that aims to maximize the

log-likelihood of a sequence by maximizing the expectation of log-likelihood of another

associated sequence. The EM algorithm presented in [10] can be summarized as follows.

In many applications, the underlying state of a model or a process might not be available

and only the data samples are observed. The observable data are called incomplete data

because they are missing the unobservable data. The set of unobservable and observable

data together are called the complete data.

Let X denote the underlying random variable and Y denote the observable random

variable. In this case, Y is the incomplete data and (X,Y ) is the complete data. Let x and

y denote realizations of X and Y , respectively.

Let p(x;φ) and p(y;φ) denote the pdf defined on X and Y , respectively, where φ is the

parameter of the density function. Let L(y, φ) = log p(y;φ) denote the log-likelihood of the

observable data. The goal is to find φ which maximizes the log-likelihood function L(y, φ).

Unfortunately, the data needed for the computation is not available. The EM algorithm

is an iterative algorithm which produces a sequence of estimates with increasing likelihood

values.

Suppose that φ is a current parameter estimate, and let φ̂ denote a new estimate. Define

Q(φ, φ̂) = E[log p(x, y; φ̂) | y;φ] =
∑
x

p(x | y;φ) log p(x, y; φ̂), (4.4)

H(φ, φ̂) = E[log p(x | y; φ̂) | y;φ] =
∑
x

p(x | y;φ) log p(x | y; φ̂), (4.5)
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where E[· | y;φ] denotes the conditional expectation given Y = y under parameter φ.

From (4.4) and (4.5), we have

L(y, φ̂) = Q(φ, φ̂)−H(φ, φ̂). (4.6)

The difference between the two log-likelihoods of the observable data can be expressed as

L(y, φ̂)− L(y, φ) = Q(φ, φ̂)−H(φ, φ̂)− [Q(φ, φ)−H(φ, φ)]

= Q(φ, φ̂)−Q(φ, φ) +
[
H(φ, φ)−H(φ, φ̂)

]
. (4.7)

From Jensen’s inequality [10], we have that H(φ, φ̂) ≤ H(φ, φ). So, if Q(φ, φ̂) is such that

Q(φ, φ̂) ≥ Q(φ, φ), then L(y, φ̂) ≥ L(y, φ). This implies that the incomplete log-likelihood

L(y, φ) increases monotonically on any iteration of parameter update from φ to φ̂, via

maximization of the Q-function which is the expectation of log-likelihood of the complete

data.

The EM algorithm can be summarized as follows. Given the observed data y and a

current estimate φ, the new parameter φ̂ can be computed by:

1. E-step. Compute Q(φ, φ̂) based on the given φ.

2. M-step. Choose φ̂ ∈ arg maxφ̂Q(φ, φ̂). Here, arg maxφ̂Q(φ, φ̂) denotes the set of

values φ̂ which maximize Q(φ, φ̂).

3. Set φ = φ̂, repeat the process until a stopping criterion is satisfied.

The EM algorithm is terminated when a certain stopping criterion is met, e.g., exceeding

maximum number of iterations or when the relative likelihood difference in consecutive

iterations falls below a specific value.
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4.3 Forward-backward Recursions

The forward-backward recursions were developed for HMMs by Chang and Hancock [4].

They are used to calculate the likelihood of the observed signal, and the conditional prob-

ability of a state given the observed process. In addition, the forward-backward recursions

can be used to estimate parameters of the Markov processes, as will be shown in the next

section. In this section, we describe the forward-backward recursions for the hidden Markov

chain with Gaussian densities.

Let {yT0 = y0, . . . , yT } denote the observation sequence for t = 0, . . . , T . Let φ =

(π,G, µ,R) denote the parameter of the model. We define the forward density as:

α(xt, y
t
0) = p(xt, y

t
0;φ) (4.8)

where yt0 is the partial observation sequence from time 0 to t. The forward density α(xt, y
t
0) is

the joint probability of the state xt and the sequence yt0 given the model φ. This probability

can be calculated inductively as follows:

Step 1: For t = 0, the initial probability is

α(x0, y0) = πx0p(y0 | x0). (4.9)

Step 2: For t = 1, . . . , T , the forward density α(xt, y
t
0) can be computed as

α(xt, y
t
0) =

 ∑
xt−1∈X

α(xt−1, y
t−1
0 )gxt−1xt

 p(yt | xt). (4.10)

Step 3: The likelihood of the observation sequence yT0 is given by

p(yT0 ;φ) =
∑
xT∈X

α(xT , y
T
0 ). (4.11)
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In the above forward iteration, Step 1 initializes the forward densities using the initial

probability and density of the observation given the state, for all states at time 0. Step 2 is

based on the fact that state xt can be reached at time t from all the possible states xt−1 at

time t − 1. Note that α(xt−1, y
t−1
0 ) is the probability of the joint event that the sequence

yt−10 is observed and the last state is xt−1. Thus, the product α(xt−1, y
t−1
0 )gxt−1xt is the

probability that yt−10 is observed and state xt is reached through state xt−1. Summing this

product over all possible states xt−1 results in the probability of state xt being reached and

the observation sequence yt−10 . Multiplication by p(yt | xt), which is pdf of the observation

yt given the state xt, results in α(xt, y
t
0). Step 3 gives the likelihood of the observation

sequence p(yT0 ;φ) as the sum of the forward densities α(xT , y
T
0 ) over all possible states at

time T .

Similarly, a backward density can be defined as:

β(yTt+1 | xt) = p(yTt+1 | xt;φ) (4.12)

where yTt+1 is the partial observation sequence from time t+ 1 to T . The backward density

β(yTt+1 | xt) is the probability of the partial observation sequence yTt+1, given state xt and

the model φ. This backward density can also be solved inductively in a manner similar to

the forward density as follows:

Step 1: For t = T , the initial probability is

β(yTT+1 | xT ) = 1. (4.13)

Step 2: For t = T − 1, . . . , 0, the backward density β(yTt+1 | xt) can be computed as

β(yTt+1 | xt) =
∑

xt+1∈X
β(yTt+2 | xt+1)gxtxt+1p(yt+1 | xt+1). (4.14)
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Step 3: The likelihood of the observation sequence yT0 is given by

p(yT0 ;φ) =
∑
x0∈X

πx0p(y0 | x0)β(y1 | x0). (4.15)

For the backward iteration, Step 1 defines the backward density to be 1 for all states

at time T . Step 2 shows that in order to have been in state xt at time t, a transition from

state xt to every state xt+1 must be made, which accounts for the observation symbol yt+1

given the state xt+1 and for the backward density of the remaining observation sequence

yTt+2. Step 3 computes p(yT0 ;φ) as the sum of the backward densities over all possible states

at time 0. The computational complexity of the backward recursion is equivalent to that

of the forward recursion.

The forward-backward recursions can be presented in the matrix form as shown in

[12, Section V-A]. Let αt denote the 1× d vector whose ath element is α(a, yt0), a ∈ X. Let

B(yt) denote an d × d diagonal matrix whose (a, a) element is p(yt | Xt = a), a ∈ X. The

forward recursion is given by

α0 = πB(y0), (4.16)

αt = αt−1GB(yt), t = 1, . . . , T. (4.17)

Similarly, let βt denote the 1× d vector whose ath element is β(yTt+1 | a), a ∈ X. Then,

the backward recursion is given by

βT = 1′, (4.18)

βt = βt+1B(yt+1)G
′, t = T − 1, . . . , 0, (4.19)

where 1 denotes a d× 1 vector of all ones and ·′ denotes matrix transpose.
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The likelihood of the observation sequence yT0 can be computed as

p(yT0 ;φ) = αT1 = πB(y0)
T∏
t=1

(GB(yt))1. (4.20)

To improve the numerical stability of the forward-backward recursions, an embedded

scaling procedure is implemented [12, Section V-A]. In particular, the forward vector αt

and backward vector βt are normalized by a factor ct = αt1 at each time t. Let ᾱt and β̄t

denote the scaled forward vector and the scaled backward vector, respectively. The scaled

forward recursion is given by

ᾱ0 =
πB(y0)

c0
, (4.21)

ᾱt =
ᾱt−1GB(yt)

ct
, t = 1, . . . , T. (4.22)

The scaled backward recursion is given by

β̄T = 1′, (4.23)

β̄t =
β̄(yt+1)B(yt+1)G

′

ct
, t = T − 1, . . . , 0. (4.24)

The computational complexity of the forward and backward recursions is O(d2) for

each step. The scaled and unscaled forward vectors are related by ᾱt = αt/
∏t
k=0 ck. The

likelihood in (4.20) can be computed in terms of the scaling coefficients as follows:

p(yT0 ;φ) = αT1 =

(
T∏
t=0

ct

)
ᾱT1 =

T∏
t=0

ct. (4.25)
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Therefore, the log-likelihood is given by

log p(yT0 ;φ) =
T∑
t=0

log ct. (4.26)

4.4 Baum Re-estimation Algorithm

The Baum re-estimation algorithm is the Expectation-Maximization (EM) algorithm de-

scribed in Section 4.2 when applied to the HMMs. The algorithm was developed and proved

to converge by Baum, Petrie, Soules, and Weiss [2]. It is an iterative algorithm that aims to

maximize the log-likelihood of a sequence of observations. The new parameter estimate in

each iteration is obtained from maximizing an auxiliary function. The maximization pro-

cess results in re-estimation formulas for the parameter of the model given the observation

sequence. In this section, we present the re-estimation equations for the hidden Markov

chain with Gaussian densities.

Let xT0 = {x0, x1, . . . , xT } denote the state sequence of the Markov chain. Let yT0 =

{y0, y1, . . . , yT } denote the sequence of observations. Let φ = (π,G, µ,R) denote the pa-

rameter of the model. The density of yT0 can be expressed as

p(yT0 ;φ) =
∑
xT0

p(xT0 , y
T
0 ;φ) =

∑
xT0

T∏
t=1

gxt−1xt(φ)p(yt | xt;φ). (4.27)

The maximum likelihood estimate φ̂ is obtained as

φ̂ = arg max
φ

log p(yT0 ;φ) = arg max
φ

log
∑
xT0

p(xT0 , y
T
0 ;φ). (4.28)

The Baum algorithm generates a sequence of parameter estimates with nondecreasing like-

lihood values. Each iteration of the Baum algorithm starts with a current parameter φι
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and estimates a new parameter φι+1 by maximizing the auxiliary function

∑
xT0

p(xT0 | yT0 ;φι) log p(xT0 , y
T
0 ;φι+1), (4.29)

over the parameter φι. The algorithm is terminated when a stopping criterion is satisfied,

e.g., a maximum number of iterations is executed or when the relative difference of the

log-likelihood values in consecutive iterations falls below a given threshold.

Let p(xt−1, xt | yT0 ;φ) denote the transition probability of {Xt} at time t − 1 to time t

given the observation sequence yT0 for t = 1, . . . , T . Then, the conditional probability can

be calculated using the scaled forward and backward densities as follows:

p(xt−1, xt | yT0 ;φ) =
ᾱ(xt−1, y

t−1
0 )β̄(yTt+1 | xt)gxt−1xtp(yt | xt)∑

xt−1,xt∈X ᾱ(xt−1, y
t−1
0 )β̄(yTt+1 | xt)gxt−1xtp(yt | xt)

. (4.30)

Note that (4.30) can be expressed in the matrix form as follows:

p(xt−1, xt | yT0 ;φ) =

[
(ᾱ′t−1β̄t)� (GB(yt))

1′[(ᾱ′t−1β̄t)� (GB(yt))]1

]
xt−1,xt

, (4.31)

where � denotes element-by-element matrix multiplication. Let p(xt | yT0 ;φ) denote the

state probability of {Xt} at time t given the observation sequence yT0 for t = 1, . . . , T . The

conditional probability is then given by

p(xt | yT0 ;φ) =
∑
a∈X

p(xt−1 = a, xt | yT0 ;φ). (4.32)

Let φ̂ = (π̂, Ĝ, µ̂, R̂) denote the new parameter estimate of the hidden Markov chain

model obtained during the current EM iteration. In terms of the conditional probabilities
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in (4.30) and (4.32), the re-estimation formulas are given by

π̂a = p(x0 = a | yT0 ;φ), (4.33)

ĝab =

∑T
t=1 p(xt−1 = a, xt = b | yT0 ;φ)∑

b∈X
∑T

t=1 p(xt−1 = a, xt = b | yT0 ;φ)
. (4.34)

The estimate parameters of the conditional density p(yt | xt = a) = N (µa, σ
2
a), a ∈ X,

are given by

µ̂a =

∑T
t=0 p(xt = a | yT0 ;φ) yt∑T
t=0 p(xt = a | yT0 ;φ)

, (4.35)

σ̂2a =

∑T
t=0 p(xt = a | yT0 ;φ) (yt − µ̂a)2∑T

t=0 p(xt = a | yT0 ;φ)
. (4.36)

For some applications, due to the relatively small numbers involved, the calculation of

each summand of the forward-backward formulas and of the probabilities p(xt−1, xt | yT0 ;φ)

is done in the log domain. To ensure the values of log p(yt | xt) remain valid, they are shifted

into the dynamic range of the computer prior to their summation, simply by replacing the

out of range values with the min and max values of the dynamic range.

4.5 State Estimation and Prediction

Suppose that the parameter of the hidden Markov model is φ = (π,G, µ,R) and that {Xt}

has two states, i.e., d = 2, such that Xt = 1 represents the idle state of the primary user

while Xt = 2 represents its active state. The parameter φ is either given or is the estimated

parameter. We observe that the conditional probabilities of state Xt given yt0 is equal to

the scaled forward density such as

p(xt | yt0;φ) = ᾱ(xt, y
t
0), t = 0, . . . , T. (4.37)
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Thus, the state probabilities of Xt can be computed recursively using (4.21) and (4.22).

More generally, we can compute the conditional m-step predicted state probabilities of

Xt+m given yt0 as follows:

p(xt+m | yt0;φ) =
∑
xt

p(xt | yt0;φ)p(xt+m | xt;φ) =
∑
xt

ᾱ(xt, y
t
0) [Gm]xt,xt+m

, (4.38)

for m ≥ 0 and t ≥ 0. The computational complexity of this forward recursion is O(md2),

or O(m) when d = 2.

Let X̂t+m|t denote the m-step predicted state estimate of {Xt} at time t+m given yt0.

When d = 2, X̂t+m|t can be determined as follows:

X̂t+m|t =

 1, if p(xt+m = 1 | yt0;φ) ≥ γ,

2, otherwise,
(4.39)

where 0 < γ < 1 is a decision threshold. By varying γ, a receiver operating characteristic

(ROC) curve and prediction curves can be generated. For γ = 0.5, the m-step predicted

state estimate can be computed as follows:

X̂t+m|t = arg max
a∈X

p(xt+m = a | yt0;φ). (4.40)

Note that the formula (4.40) is also applicable when d > 2.
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Chapter 5: Hidden Bivariate Markov Chain Model and

Estimation Algorithms

As shown in Chapter 4, the dwell time of the hidden state of the hidden Markov model is im-

plicitly a geometric distribution. This causes the hidden Markov model to have limitations

in some applications [47]. To overcome this problem, we propose a new model called hidden

bivariate Markov chain model, which allows for mixtures, convolutions, or combinations

of geometric distributions for the hidden state duration. The model is an extension of a

model used for network performance evaluation in [44] by adding the Gaussian observation

process to the bivariate Markov process. In this chapter, we describe the proposed model

and related estimation algorithms which were developed in details in [33].

5.1 Hidden Bivariate Markov Chain Model

The hidden bivariate Markov chain model can be described as a discrete-time bivariate

Markov chain observed through a memoryless Gaussian channel. The bivariate Markov

chain is formed by two random processes. The first process is referred to as a state process,

while the second process is referred to as an underlying process. In the spectrum sensing

problem, the state process is used to represent the idle and active states of the primary

transmitter, and the underlying process is exploited to model the dwell time in each state

with a discrete phase-type distribution. The discrete phase-type distribution generalizes

the geometric distribution. This important property of the bivariate Markov chain plays a

central role in our modeling.
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5.1.1 Hidden Bivariate Markov Chain Formulation

Let {Zt = (Xt, St), t = 0, 1, . . . } denote a discrete-time, finite-state, homogeneous bivariate

Markov chain. We assume that the state process {Xt} takes values in X = {1, . . . , d}, and

the underlying process {St} takes values in S = {1, . . . , r}. The bivariate Markov chain {Zt}

takes values in Z = X× S. In the context of spectrum sensing, the process {Xt} represents

the idle and active states of the primary transmitter and d = 2 in this case. The process

{St} affects the distribution of the dwell time of {Xt} in each state.

Let πa,i = P (Z0 = (a, i)) = P (X0 = a, S0 = i), a ∈ X, i ∈ S, denote the probability that

the initial state is (a, i). Let π = {πa,i, a ∈ X, i ∈ S} denote a 1 × dr vector representing

the initial distribution of {Zt}. Let gab(ij) = P (Zt+1 = (b, j) | Zt = (a, i)) be the transition

probability of Zt from state (a, i) to state (b, j) where a, b ∈ X and i, j ∈ S. LetG = {gab(ij)}

denote the dr × dr transition matrix of {Zt}. The transition matrix G can be written as a

block matrix G = {Gab, a, b ∈ X}, where Gab = {gab(ij), i, j ∈ S} is an r × r matrix. We

assume that G and {Gaa, a ∈ X} are irreducible.

We assume that the bivariate Markov chain {Zt} is observed through a Gaussian mem-

oryless channel with output {Yt}. The output process {Yt} takes values in Y, where Y in

general is a subset of R. The observation Yt represents the signal strength in logarithmic

units, i.e., dBm, received at the cognitive radio node. We assume that the observation Yt

depends only on Xt. If Yt had been assumed to depend on Zt, then the hidden bivari-

ate Markov chain model would have resulted in a standard HMM with a geometric dwell

time distribution in each state of Zt. In addition, we assume that the random variables

{Yt, t = 0, 1, . . .} are conditionally independent given {Xt, t = 0, 1, . . .}.

Let p(yt | xt) denote the probability density function of Yt given Xt. At any time t,

p(yt | xt) is a normal density with mean µxt and covariance matrix Rxt . Let µ = {µa, a =

1, . . . , d} and R = {Ra, a = 1, . . . , d}. The parameter of the hidden bivariate Markov chain

model is then given by φ = (π,G, µ,R).
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5.1.2 Dwell Time Distribution of Hidden Bivariate Markov Chain Model

The dwell time distribution of the process {Xt} in each of its states can be shown, similar

to [27], to be a discrete phase-type distribution. The discrete phase-type distribution can

approximate a large class of discrete probability distributions to any desired degree of accu-

racy [26]. Background on the discrete phase-type distribution is summarized in Appendix

A.1. In the remaining of this subsection, we describe how the dwell time distribution in

each state of the process {Xt} can be computed. Details on the theoretical derivation can

be found in [33].

Suppose that the process {Xt} jumps at times T0 < T1 < T2 < · · · < TN where T0 = 0

and TN = T . For n = 0, . . . , N , define the sampled state chain {X̃n = XTn}, the sampled

underlying chain {S̃n = STn}, and the sampled bivariate Markov chain {Z̃n = ZTn}. For

n = 1, . . . , N , let ∆Tn = Tn − Tn−1 denote the dwell time of the process in state X̃n−1. By

the Markov property of {Z̃n}, we have

P (Z̃n+1 = zn+1,∆Tn+1 = m | Z̃n = zn, . . . , Z̃0 = z0;Tn = tn, . . . , T0 = t0)

= P (Z̃n+1 = zn+1,∆Tn+1 = m | Z̃n = zn) (5.1)

for any positive integer m. Hence, {(Z̃n, Tn)} is a discrete-time Markov renewal process.

Let fab(m) = {fabij (m), i, j = 1, . . . , r} denote an r × r matrix with its (i, j) element given

by

fabij (m) = P (Z̃1 = (b, j),∆T1 = m | Z̃0 = (a, i)). (5.2)

It was shown in [33] that

fab(m) = Gm−1aa Gab. (5.3)

Let G̃ = {G̃ab, a, b ∈ X} denote the transition matrix of the sampled bivariate Markov
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chain {Z̃n}. Let I denote the r × r identity matrix. By summing fab(m) in (5.3) over all

positive integers m we obtain

G̃ab = (I −Gaa)−1Gab, a 6= b. (5.4)

By definition, G̃aa is a zero matrix. We assume that Gaa(i, i) > 0 for all (a, i) ∈ Z. As

shown in [33], we have

(I −Gaa)−1 =
∞∑
n=0

Gnaa > 0. (5.5)

Let a row vector ν denote the unique stationary distribution of {Z̃n}, then ν is the

unique solution of

νG̃ = ν, ν1 = 1, (5.6)

where 1 denotes a column vector of all ones. On the other hand, the stationary probability

distribution of {Zt} is given by a row vector π which is the unique solution of

πG = π, π1 = 1. (5.7)

The two stationary distributions are related by ν ∝ π · diag{(I −G11), . . . , (I −Gdd)}, see

[27].

The following proposition asserts that the conditional dwell time distribution of {X̃n}

in any of its states has a discrete phase-type distribution.

Proposition 1. Define the 1×r row vector ua(n) with the ith component given by P (S̃n =

i|X̃n = a). The conditional distribution of ∆Tn given X̃n−1 = a is given by

P (∆Tn = m | X̃n−1 = a) = ua(n− 1)Gm−1aa wa, m = 1, 2, . . . , (5.8)
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where wa =
∑

b:b 6=aGab1. This is a discrete phase-type distribution with r phases and

parameter (ua(n− 1), Gaa) [26, pp. 47-50].

Proof. We have

P (Z̃n = (b, j),∆Tn = m | Z̃n−1 = (a, i)) = fabij (m) =
{
Gm−1aa Gab

}
ij
. (5.9)

Summing both sides over all b 6= a and over all j, we have

P (∆Tn = m | X̃n−1 = a, S̃n−1 = i) =

Gm−1aa

∑
b:b6=a

Gab1


i

. (5.10)

Applying the law of total probability and the definition of wa, we have

P (∆Tn = m | X̃n−1 = a) =
r∑
i=1

P (S̃n−1 = i|X̃n−1 = a) · {Gm−1aa wa}i = ua(n− 1)Gm−1aa wa.

(5.11)

5.2 Forward-Backward Recursions

In this section, we describe the forward-backward recursions for the hidden bivariate Markov

chain with Gaussian densities model. The recursions are presented in the matrix form.

Similar recursions were given in [44].

For t = 0, . . . , T , let α(zt, y
t
0) denote the forward density of zt and yt0. Define the d · r

row vector of such densities as αt = {α((a, 1), yt0), . . . , α((a, r), yt0), a = 1, . . . , d}. Define an

rd× rd block diagonal matrix B(yt), with its diagonal blocks given by {p(yt | Xt = a)I, a ∈
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X}, where I is an r × r identity matrix. Then, the forward recursion is given by

α0 = πB(y0), (5.12)

αt = αt−1GB(yt), t = 1, . . . , T. (5.13)

Similarly, let β(yTt+1 | zt) denote the backward density of yTt+1 given Zt = zt. Define the

d · r row vector of such densities as βt = {β(yTt+1 | (a, 1)), . . . , β(yTt+1 | (a, r)), a = 1, . . . , d}.

Then the backward recursion is given by

βT = 1′, (5.14)

βt = βt+1B(yt+1)G
′, t = T − 1, . . . , 0, (5.15)

where ·′ denotes matrix transpose. The likelihood of the observed signal is given by

p(yT0 ) = αT1 = πB(y0)
T∏
t=1

(GB(yt))1. (5.16)

Similar to the standard HMM, an embedded scaling procedure is implemented to ensure

the numerical stability of the forward-backward recursions. The scaled forward recursion is

given by

ᾱ0 =
πB(y0)

c0
, (5.17)

ᾱt =
ᾱt−1GB(yt)

ct
, t = 1, . . . , T, (5.18)

where c0 = πB(y0)1, and ct = ᾱt−1GB(yt)1 for t = 1, . . . , T .
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The scaled backward recursion is given by

β̄T = 1′, (5.19)

β̄t =
β̄t+1B(yt+1)G

′

ct
, t = T − 1, . . . , 0. (5.20)

The computational complexity of the forward and backward recursions is O(d2r2), or O(r2)

when d = 2, for each step.

The scaled forward ᾱ(zt, y
t
0) can be interpreted as the conditional distribution of the

process {Zt} given the observable sample path up to time t such as

ᾱ(zt, y
t
0) = p(zt | yt0), t = 0, . . . , T. (5.21)

The scaled and unscaled forward vectors are related by ᾱt = αt/
∏t
k=0 ck. The likelihood

in (5.16) can be expressed in terms of the scaling coefficients as follows:

p(yT0 ) = αT1 =

(
T∏
t=0

ct

)
ᾱT1 =

T∏
t=0

ct. (5.22)

Therefore, the log-likelihood is given by

log p(yT0 ) =
T∑
t=0

log ct. (5.23)

5.3 Parameter Estimation

We extend the Baum re-estimation algorithm for estimating the parameter of the hidden

bivariate Markov chain model in this section, see [33].

Let zT0 = {xT0 , sT0 }, where xT0 = {x0, x1, . . . , xT } and sT0 = {s0, s1, . . . , sT }, denote the

sequence of the bivariate Markov chain. Let yT0 = {y0, y1, . . . , yT } denote the sequence of
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observations. Let φ = (π,G, µ,R) denote the parameter of the model. The density of yT0

can be expressed as

p(yT0 ;φ) =
∑
zT0

p(zT0 , y
T
0 ;φ) =

∑
zT0

T∏
t=1

gzt−1zt(φ)p(yt | xt;φ), (5.24)

Let p(zt−1, zt | yT0 ;φ) denote the transition probability of {Zt} at time t − 1 to time t

given the observation sequence yT0 for t = 1, . . . , T . Then, the conditional probability can

be calculated using the scaled forward and backward densities as follows:

p(zt−1, zt | yT0 ;φ) =
ᾱ(zt−1, y

t−1
0 )β̄(yTt+1 | zt)gzt−1ztp(yt | xt)∑

zt−1,zt∈Z ᾱ(zt−1, y
t−1
0 )β̄(yTt+1 | zt)gzt−1ztp(yt | xt)

. (5.25)

The conditional probability can also be expressed in the matrix form as follows:

p(zt−1, zt | yT0 ;φ) =

[
(ᾱ′t−1β̄t)� (GB(yt))

1′[(ᾱ′t−1β̄t)� (GB(yt))]1

]
zt−1,zt

. (5.26)

Let p(zt | yT0 ;φ) denote the state probability of {Zt} at time t given the observation

sequence yT0 for t = 1, . . . , T . The conditional probability is then given by

p(zt | yT0 ;φ) =
∑

(a,i)∈Z

p(Zt−1 = (a, i), zt | yT0 ;φ). (5.27)

Let φ̂ = (π̂, Ĝ, µ̂, R̂) denote the new parameter estimate of the hidden bivariate Markov

chain model obtained during the current iteration. In terms of the conditional probabilities
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in (5.25) and (5.27), the re-estimation formulas are given by

π̂a,i = p(z0 = (a, i) | yT0 ;φ), (5.28)

ĝab(ij) =

∑T
t=1 p(zt−1 = (a, i), zt = (b, j) | yT0 ;φ)∑

(b,j)∈Z
∑T

t=1 p(zt−1 = (a, i), zt = (b, j) | yT0 ;φ)
. (5.29)

When the bivariate Markov chain is observed through a noisy channel with conditional

density p(yt | xt) = N (µxt , σ
2
xt), then the estimate of {(µa, σ2a), a ∈ X} is given by

µ̂a =

∑T
t=0

∑r
i=1 p(zt = (a, i) | yT0 ;φ) yt∑T

t=0

∑r
i=1 p(zt = (a, i) | yT0 ;φ)

, (5.30)

σ̂2a =

∑T
t=0

∑r
i=1 p(zt = (a, i) | yT0 ;φ) (yt − µ̂a)2∑T
t=0

∑r
i=1 p(zt = (a, i) | yT0 ;φ)

. (5.31)

5.4 State Estimation and Prediction

Suppose that the parameter of the hidden bivariate Markov chain is φ = (π,G, µ,R) and

that {Xt} has two states. The parameter φ is either given or is the estimated parameter.

In this case, the idle and active dwell times of the hidden bivariate Markov chain form a

discrete-time alternating renewal process.

The state probabilities of Zt given yt0 is simply given by the scaled forward density, i.e.,

p(zt | yt0;φ) = ᾱ(zt, y
t
0), t = 0, . . . , T. (5.32)

Thus, the state probabilities of Zt can be computed recursively using (5.17) and (5.18).

The conditional m-step predicted state probabilities of Zt+m given yt0 can be computed as

follows:

p(zt+m | yt0;φ) =
∑
zt

p(zt | yt0;φ)p(zt+m | zt;φ) =
∑
zt

ᾱ(zt, y
t
0) [Gm]zt,zt+m

, (5.33)
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for m ≥ 0 and t ≥ 0. As mentioned above, the complexity of the forward recursion for

computing ᾱ(zt, y
t
0) is O(d2r2) per step. Since Gm can be pre-computed, the computational

complexity of the forward recursion (5.33) is also O(d2r2), or O(r2) when d = 2. The

conditional m-step predicted state probabilities of the bivariate Markov chain Xt given yt0

are then obtained as follows:

p(xt+m = a | yt0;φ) =
∑
i∈S

p(zt+m = (a, i) | yt0;φ), a ∈ X, t = 0, . . . , T. (5.34)

Let X̂t+m|t denote the m-step predicted state estimate of {Xt} at time t+m given yt0.

When d = 2, X̂t+m|t can be determined as follows:

X̂t+m|t =

 1, if p(xt+m = 1 | yt0;φ) ≥ γ,

2, otherwise,
(5.35)

where 0 < γ < 1 is a decision threshold. When γ = .5, this detector implements the

maximum a-posteriori (MAP) decision rule for testing whether X̂t+m|t = 1 or X̂t+m|t = 2

given yt0 and the estimated parameter φ.

48



Chapter 6: Spectrum Sensing Performance

In this chapter, we study the performance of the proposed approach when applied to spec-

trum sensing for cognitive radio. Since the HMM is a special case of the hidden bivariate

Markov chain model, we will not analyze the performance of the HMM in detail. More

information on the HMM and its performance can be found in our earlier work in [32].

Here, we evaluate the performance of the hidden bivariate Markov chain model in general

and use the HMM as a special case for comparison purposes. Most of the results presented

in this chapter were obtained from [33].

This chapter is organized as follows. In Section 6.1, we describe the simulation setup.

In Section 6.2, we discuss the performance metrics that will be used to assess the spectrum

sensing performance. Finally, in Section 6.3, we show the numerical results in details.

6.1 Simulation Setup

In this section, we describe the simulation setup that will be used assess the performance

of the proposed model. A hidden bivariate Markov chain model with a small value of r is

referred to as a low order model, while the one with a large value of r is referred to as a

high order model. Recall that r is the number of states of the underlying chain {St}.

Our approach to spectrum sensing of a cognitive radio channel consists of estimating

the parameter of a low order hidden bivariate Markov chain from training data, and incor-

porating that parameter into the proposed detection scheme in (5.35) in order to estimate

and predict the state of the primary user from any given test sequence. In order to be able

to assess the performance of this detector, the true state sequence of the channel must be

known. Since this sequence is usually not available for real data, we have simulated the
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real data using a high order hidden bivariate Markov chain. This was done by first estimat-

ing the parameter of the high order model from real data obtained from Shared Spectrum

Company [37], and then generating training and testing sequences using that parameter.

The corresponding state sequences for the simulated data are known.

We separate the analysis into two parts as follows:

1. In the first part, we model the real spectrum measurements using a high order with

d = 2 and r = 10. We apply the parameter estimation algorithm described in Section

5.3 to estimate the parameter of the model. Let φ = (π,G, µ,R) denote the estimated

parameter of the high order hidden bivariate Markov chain. Since the parameter φ

will be used to generate synthetic data for our subsequent analysis, we will consider

φ as the true model parameter. Block diagram of this part is depicted in Fig. 6.1.

Figure 6.1: Block diagram for channel modeling.

2. In the second part, we evaluate the performance of the low order model for r = 1, 2, 5

and d = 2 using the synthetic data generated from the parameter φ of the high order

hidden bivariate Markov chain in part 1. More specifically, the following steps were

carried out:

• We generate training data using the parameter φ. Then, we estimate the param-

eter of the low order hidden bivariate Markov chain from training data. Let φ̂

denote the estimated parameter of the low order hidden bivariate Markov chain.

Fig. 6.2 shows the block diagram of this step.

• We generate test data using the parameter φ. We then apply the detection
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Figure 6.2: Block diagram for the training phase.

scheme in (5.35) to estimate and predict the state of the primary user from the

test sequence. Finally, we compare the estimated and predicted states with the

true states. Note that the true states associated with the test data is available

for the simulated data. Fig. 6.3 shows the block diagram of this step.

Figure 6.3: Block diagram for testing phase.

For simplicity, we shall ignore the important tradeoff between computational effort and

accuracy with respect to spectrum sensing, which is beyond the scope of this work.

6.2 Performance Metrics

In this section, we discuss performance metrics that will be used to assess our proposed

detection scheme in (5.35). Let φ = (π,G, µ,R) denote the parameter of the hidden bivariate

Markov chain model. We assume that the process {Xt} has two states, i.e., d = 2, for which
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Xt = 1 and Xt = 2 represent the idle state and active state of the primary user, respectively.

Let yt0 denote the partial sequence observed from time 0 up to t. Let X̂t+m|t denote the

m-step predicted state estimate of {Xt} at time t + m given yt0. The performances of the

state estimation and the state prediction are evaluated as follows.

For the state estimation performance, i.e., m = 0, we consider two metrics consisting of

probability of false alarm Pfa and probability of detection Pd. The probability of false alarm

Pfa is defined as the probability that the active state is detected given that the channel is

actually idle. On the other hand, the probability of detection Pd is defined as the probability

that the active state is identified given that the channel is actually active. In particular,

these probabilities can be expressed as follows:

Pfa =
P (X̂t|t = 2, Xt = 1)

P (Xt = 1)
, (6.1)

Pd =
P (X̂t|t = 2, Xt = 2)

P (Xt = 2)
. (6.2)

Another performance metric which is often used interchangeably with probability of

detection Pd is probability of missed detection Pmiss. The probability of missed detection

Pmiss is simply the probability of failing to detect the active state of primary user and it

can be computed as

Pmiss = 1− Pd. (6.3)

Obviously, any detection method which provides lowest values of Pfa and Pmiss (or

highest Pd) is referred. However, there is always a trade-off between Pfa and Pmiss depending

on selection of the decision threshold γ. In the IEEE 802.22 standard, Pfa and Pmiss are

required to be smaller than 0.1 for both Wireless Microphones and TV detections [9]. Since

avoiding harmful interference to the primary user is more important than utilizing the

channel in cognitive radio, a higher Pfa value is more acceptable than a higher Pmiss value.
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For the state prediction performance, i.e., m > 0, we use probability of prediction

error Ppe as a single metric to access the proposed prediction scheme. The probability of

prediction error Ppe at mth step can be computed as follows:

Ppe(m) = P (X̂t+m|t = 2 | Xt+m = 1)P (Xt+m = 1) + P (X̂t+m|t = 1 | Xt+m = 2)P (Xt+m = 2),

(6.4)

where P (X̂t+m|t = 2 | Xt+m = 1) and P (X̂t+m|t = 1 | Xt+m = 2) are the conditional

probabilities of prediction error given idle state and active state; and P (Xt+m = 1) and

P (Xt+m = 2) are the probabilities of idle state and active state, respectively.

In addition to the state estimation and prediction performance, we also analyze the dwell

time distributions of the idle and active states of {Xt}. These distributions are computed

directly from the parameter estimate of the proposed model. A hidden bivariate Markov

chain model which provides good approximation of the dwell time distributions of the data

should provide better state estimation and prediction performance than a less accurate

model.

6.3 Numerical Results

In this section, we evaluate the performance of the proposed spectrum sensing approach.

We first estimate the parameter of the high order hidden bivariate Markov chain using real

spectrum measurement data. Then, we generate synthetic data from the high order model

parameter and analyze the performance of the low order hidden bivariate Markov chain

based on the synthetic data.

6.3.1 Channel Modeling Using Real Spectrum Measurement Data

We examine spectrum occupancy measurements collected by Shared Spectrum Company

[37] in order to select an appropriate data set for our analysis. In particular, we consider

measurements in a spectrum band with bandwidth ranging from 928 MHz to 1000 MHz.
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There are 500 frequency bins collected in this band. Thus, the frequency resolution of the

spectrum measurement is (1000 − 928) · 1000/500 = 144 kHz. The measurements in this

band were collected at every 137.83 seconds for a duration of 86.835 hours. Therefore, the

number of data samples for each frequency bin is 86.835 ·3600/137.83 ≈ 2268. The elevation

of the receiver’s antenna was 28.96 meters, with latitude of 38.9260 degrees, and longitude

of −77.2456 degrees.

Observing the data, we find that most of the channels have geometric dwell time dis-

tributions which can be modeled by a simple HMM as in [32]. However, we discover some

channels whose dwell time distributions are not geometric and can not be represented accu-

rately by an HMM. In order to demonstrate that our proposed approach can handle these

special cases, we will select measurement data from one of these channels for the analysis.

Within the bandwidth of 928 MHz to 1000 MHz, we select the spectrum measurements

in the paging band with center frequency of 931.888 MHz. Since the frequency resolution

is 144 kHz, the selected spectrum measurements contain all signals that have frequencies in

the range of 931.888−144/(1000 ·2) = 931.816 MHz and 931.888+144/(1000 ·2) = 931.960

MHz. By searching the paging database [7], we find only one registered paging tower in the

vicinity has an assigned frequency between 931.816 MHz and 931.960 MHz. The paging

tower has a call sign KNKI478 located in McLean, Virginia. The elevation of the tower’s

antenna is 57.6 meters, with 38.9223 degrees latitude and −77.2289 degrees longitude [14].

The assigned frequency for this tower is 931.9375 MHz and the channel bandwidth is 20

kHz. The maximum effective radiated power (ERP) of the transmitter is Γ = 690 watts.

The radius of the associated macro-cell ranges from 1 to 30 km.

Fig. 6.4 shows the spectrum occupancy measurements at the frequency bin centered

at 931.888 MHz. The plot shows the received power in dBm versus time in hours. To

provide a better view of the idle periods, we plot the first two hours of the measurements

in the zoom-out box located at the top of the plot. Fig. 6.5 shows a histogram of the

measurements, which can be easily interpreted as representative of two Gaussian pdfs for

the signals during idle and active periods of the channel. Since these signals were recorded
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using highly elevated antennas for the transmitter and receiver, over a line-of-sight path

of 1.5044 km, identifying the idle and active periods is trivial, and can be done using a

simple energy detector. The threshold for this detector is set based on the noise level of

the spectrum band and noise figure of the receiver. This threshold is shown in Fig. 6.5.

Applying the energy detector to the data, we identify the idle periods and calculate the

empirical distributions of the idle and active dwell time periods. These distributions are

shown in Fig. 6.6.

Figure 6.4: Spectrum measurement data from paging band.

We apply the parameter estimation algorithm of Section 5.3 to the spectrum occupancy

measurements of Fig. 6.4, in order to estimate the parameter φ of the high order hidden

bivariate Markov chain with d = 2 and r = 10 states. We use all available samples of

the real data, i.e., T = 2268 samples, for this estimation. The algorithm is initialized by

a parameter φinit = (πinit, Ginit, µinit, Rinit), where πinit is a 1 × dr vector with uniformly
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Figure 6.5: Histogram of power levels from paging band data.

distributed elements, Ginit is a dr × dr matrix with randomly chosen elements, and

µinit := (µ1 init, µ2 init) = (−120,−80),

Rinit := (σ21 init, σ
2
2 init) = (5, 5). (6.5)

The algorithm is terminated when the relative difference in consecutive log-likelihood values

is smaller than 10−5 or the number of iterations exceeds 1000.

The estimated initial distribution π is a 1 × 20 row vector with 19 zero elements and

π(2,4) = 1. The estimated transition matrix G is an 20×20 matrix and is given in Appendix

A.2. The estimated means and variances of the two Gaussian output distributions are given
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Figure 6.6: Dwell time distributions from paging band data.

by

µ := (µ1, µ2) = (−112.4026,−45.6073),

R := (σ21, σ
2
2) = (14.2279, 3.1357). (6.6)

The theoretical histogram of power levels generated using the estimated vectors (µ,R)

is plotted in Fig. 6.5. While the theoretical histogram of the active state fits the empirical

curve very well, the theoretical histogram of the idle state has larger width than the empirical

curve. This can be explained by the fact that the estimation algorithm incorporates a few

measurements with stronger power level in estimating the parameter associated with the

idle state. These unsuitable measurements are interference from adjacent channels or man

made noise.

We calculate the dwell time distribution as in (5.8) for the each state of {Xt} using the
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estimated vector (π,G). These distributions are depicted in Fig. 6.6 alongside the empirical

dwell time distributions. The empirical and model-based distributions appear to be in good

agreement.

6.3.2 Spectrum Sensing Based on Simulated Data

To evaluate the performance of the spectrum sensing scheme proposed in (5.35), we use the

parameter φ estimated in Section 6.3.1 to generate synthetic data representing the primary

user transmission pattern on the channel. We distinguish between two representative cases.

In the first case, there exists a line-of-sight between the primary user transmitter and the

cognitive radio receiver. We refer to this case as spectrum sensing under no shadowing. This

situation is the same as the one in which the real spectrum data was obtained. Here, state

estimation can be performed accurately with a simple energy detector. However, the energy

detector does not provide predictive information; it can only indicate that at the current

time the channel is busy, but such an indication may already be too late, as the secondary

user cannot instantaneously vacate the channel in practice. Thus, with an energy detector,

a secondary user can interfere with the primary user even in the absence of detection errors.

In the second case, we assume that the cognitive radio receiver is located farther away

from the primary transmitter. This results in higher path loss and shadowing effects in

the reception of the primary signal compared to the real data measurements under no

shadowing case. We refer to this case as spectrum sensing under shadowing effects. For this

situation, we modify the estimated parameter of the conditional Gaussian densities in the

high order hidden bivariate Markov chain, and generate new training and testing data. The

new training data is used to re-train the low order model, which is then tested on the new

testing data. In this case, the simple energy detector may suffer from severe inaccuracy

since it does not take the history of the observed data into account. In addition to the

prediction performance, we will compare the performance of the energy detector against

the model-based detector for the state estimation. We note that the bivariate Markov chain

parameter (π,G) for the synthetically generated data is the same in both cases.
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Spectrum Sensing: Under No Shadowing

We use the estimated parameter φ of the high order hidden bivariate Markov chain to

generate training and testing data, from which a low order hidden bivariate Markov chain

is estimated and evaluated, respectively. From the initial distribution π and the transition

matrix G, a state sequence of the bivariate Markov chain {Zt, t = 0, . . . , T} is generated,

and the state sequence {Xt, t = 0, . . . , T} can be obtained directly from {Zt}. The length

of the training data is chosen as T = 2268, which is similar to the length of the real data.

For each state of {Xt}, an observation yt is generated which represents the received log-

normal power at the cognitive radio node. If the state Xt is idle, i.e., only noise is observed,

the received signal sequence is generated from a Gaussian distribution with mean µ1 and

variance σ21; otherwise, when signal in noise is observed, it is generated from a Gaussian

distribution with mean µ2 and variance σ22.

In practical applications, low order models are preferable to reduce the computational

overhead but they may result in less accurate modeling of the state dwell time distribution.

We estimate three possible orders of the low order hidden bivariate Markov chain given by

r = 1, 2, 5 using the training data. When r = 1 the low order hidden bivariate Markov chain

becomes a standard hidden Markov model. This case is studied for comparison purposes.

The estimated parameter for r = 1, 2, 5 are shown in Tables 6.1, 6.2, and 6.3, respectively.

Note that the estimated parameter values of the conditional Gaussian densities are the same

in all cases, and they are very close to those values obtained for the high-order model in

(6.6).

Next, we use the test data generated from the high order hidden bivariate Markov chain

to study the performance of the low order model in detecting the state sequence of the

primary user using (5.35). Since the idle and active states can be easily distinguished in

this case, state estimation of all models provide excellent performance with Pfa and Pd close

to 0 and 1, respectively.

Fig. 6.7 shows the probability of error, as a function of the threshold γ in (5.35), of

the one-step prediction using parameter estimates obtained for d = 2 and r = 1, 2, 5. We
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Table 6.1: Under no shadowing: Parameter estimate for r = 1.

Model Parameter Estimate

HMM π̂ =
(

0 1
)

(r=1)
Ĝ =

(
0.3869 0.6131
0.1753 0.8247

)
µ̂ =

(
−112.5603, −45.6341

)
R̂ =

(
13.9720, 3.0123

)

Table 6.2: Under no shadowing: Parameter estimate for r = 2.

Bivariate π̂ =
(

0 0 0.9954 0.0046
)

(r=2)

Ĝ =


0.0002 0.0000 0.9998 0.0000
0.6556 0.0101 0.3343 0.0000
0.0000 0.0000 0.6498 0.3502
0.0217 0.3301 0.0001 0.6481


µ̂ = (−112.5603,−45.6341)

R̂ = (13.9720, 3.0123)

note that there is a significant performance improvement when using the hidden bivariate

Markov chain with r = 2 compared to using the standard HMM which corresponds to

r = 1. Improvement is also seen when the order r is increased from 2 to 5. When r = 5,

the performance is nearly as good as in the case where the high order model, i.e., r = 10,

is used to detect the state sequence of the primary user. This practically represents the

highest achievable performance, since the true parameter used to generate the test data φ

is applied in detecting the state sequence from this data.

In Fig. 6.8, the performance of m-step prediction for the bivariate model with r = 5 is

shown. The curves show the probability of prediction error vs. the detection threshold γ

for m = 1, 2, 5, 10. Consider the special case where γ = 0.5. We observe that the prediction

performances for m = 1 and m = 2 are similar. However, a major performance degradation

is observed when m = 5, and especially in the case m = 10, as would be expected. Although

not shown here, the m-step prediction performance when r = 2 is significantly worse than

60



Table 6.3: Under no shadowing: Parameter estimate for r = 5.

Model Parameter Estimate

Bivariate π̂ =
(

0 0 0 0 0 1 0 0 0 0
)

(r=5)

Ĝ11 =


0.0000 0.0000 0.0000 0.0317 0.2679
0.2049 0.0026 0.0439 0.1771 0.2022
0.0001 0.0000 0.0000 0.2522 0.5817
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000



Ĝ12 =


0.0000 0.6560 0.0444 0.0000 0.0000
0.2729 0.0859 0.0106 0.0000 0.0000
0.0001 0.0067 0.1592 0.0000 0.0000
0.0000 0.9988 0.0012 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000



Ĝ21 =


0.0000 0.0003 0.0071 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0003 0.0506 0.0032 0.0000 0.0000
0.0719 0.0042 0.5823 0.1118 0.0495



Ĝ22 =


0.1275 0.0000 0.0000 0.8569 0.0082
0.0032 0.1418 0.8548 0.0003 0.0000
0.8457 0.0000 0.1346 0.0017 0.0180
0.0000 0.0000 0.0000 0.0935 0.8524
0.0000 0.0464 0.0000 0.0000 0.1340


µ̂ =

(
−112.5603, −45.6341

)
R̂ =

(
13.9720, 3.0123

)

the case of r = 5 shown in Fig. 6.8. The best prediction performance is achieved when

r = 10.

In Fig. 6.9, the dwell time distributions of the process {Xt}, as calculated from (5.8)

using the estimate parameter, corresponding to the low order model with r = 1, 2, 5 and the

high order model with r = 10, are compared. These dwell time distributions are phase-type,

as stated in Proposition 1. Clearly, the exponential dwell time distribution of the HMM,

which corresponds to r = 1, does not provide a good approximation. When r = 2, the dwell

time distribution in the idle state lines up closely with the distribution corresponding to the

high order model, but the dwell time distribution in the active state is very far from that of
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Figure 6.7: Under no shadowing: One-step state prediction performance for r = 1, 2, 5, 10.

the high order model. When r = 5, the idle state dwell time distribution is indistinguishable

from that of the high order model, and a good approximation is obtained for the active state

dwell time distribution.

Spectrum Sensing: Under Shadowing Effects

To accommodate the effects of higher path loss and shadowing, we modify the estimated

parameter of the high order hidden bivariate Markov chain, and generate new training and

testing sequences that are subsequently used to train and test the low order hidden bivariate

Markov chain. The means and variances of the conditional Gaussian distributions of the

high order model are only affected, while the estimated initial distribution and transition

matrix are kept as in the no shadowing case. We ignore fast fading which can be reduced

effectively by an averaging filter [29].

We apply the log-distance path loss with shadowing model (3.1) to characterize the

wireless propagation environment in this case. We use δ = 15 km for the distance between

62



Figure 6.8: Under no shadowing: m-step state prediction performance for r = 5 and m =
1, 2, 5, 10.

the paging tower and cognitive radio receiver. We set the close-in reference distance δ0 =

1.5044 km, which is the original distance between the transmitter and receiver under no

shadowing case. We set the path loss exponent of κ = 5 and the standard deviation of the

shadowing noise to σ2ε = 64, which are appropriate values for the shadowed urban area of

McLean, Virginia. With these values, 10κ log10

(
δ
δ0

)
= 49.9364 dB. This loss affects the

mean of the received signal Yt at time t in the active state. Given µ2 = −45.6073 dBm at

distance δ0 in (6.6), this mean becomes µ2− 49.9364 = −95.5437 dBm at distance δ. Thus,

the received signal Yt in the active state in this case is normally distributed with mean

−95.5437 dBm, and variance given by σ22 +σ2ε = 3.1357 + 64 = 67.1357. To summarize, the

parameter of the conditional Gaussian densities is adjusted from (6.6) to

µ = {−112.4026, −95.5437}, R = {14.2279, 67.1357}, (6.7)
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Figure 6.9: Under no shadowing: Inferred dwell time distributions for r = 1, 2, 5, 10.

for the modified model, while the parameter of the underlying bivariate Markov chain are

kept the same.

Given the modified high order model (6.7), we generate new training data and use it

to estimate the low order hidden bivariate Markov chain with d = 2 and r = 1, 2, 5. The

estimated parameter for these models are shown in Tables 6.4, 6.5, and 6.6, respectively.

The estimated parameter values of the conditional Gaussian densities vary in three models;

but, they are still close to those values in (6.7).

Using the test data generated from the high order model (6.7), we obtain the perfor-

mance of the low order model. Fig. 6.10 shows ROC curves for state estimation using the

energy detector and the hidden bivariate Markov chain model with r = 1, 2, 5, and 10. We

observe that the HMM-based detector (r = 1) performs slightly better than the energy de-

tector. When r = 2, the detection performance improves significantly compared to the case

r = 1. A noticeable improvement is also seen in going from r = 2 to r = 5. The improved

performance with increasing value of r can be attributed to more accurate characterization
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Table 6.4: Under shadowing effects: Parameter estimate for r = 1.

Model Parameter Estimate

HMM π̂ =
(

0 1
)

(r=1)
Ĝ =

(
0.3534 0.6466
0.1923 0.8077

)
µ̂ =

(
−112.4677, −95.2042

)
R̂ =

(
13.7144, 68.2014

)

Table 6.5: Under shadowing effects: Parameter estimate for r = 2.

Bivariate π̂ =
(

0 0 1 0
)

(r=2)

Ĝ =


0.0008 0.8165 0.0871 0.0956
0.0172 0.0052 0.9776 0.0000
0.0000 0.0011 0.6297 0.3692
0.2886 0.0729 0.0008 0.6377


µ̂ = (−112.2583,−94.9714)

R̂ = (14.9889, 65.8092)

of the dwell time distributions via higher order phase-type distributions. We also note that

the ROC curve for r = 5 is very close to the ROC curve for r = 10, which is obtained by

using the true parameter for state estimation. Thus, very good performance can be reached

with relatively low order HBMM models.

Fig. 6.11 shows the probability of error of the one-step prediction for the low order

model with r = 1, 2, 5. The performance of the modified high order with r = 10 is plotted

for comparison purposes. It is observed that the one-step prediction performance of the

low order increases as the order r increases. When r = 5, the performance is very close to

the highest achievable performance which is obtained from the high order model. As we

compare Fig. 6.11 with Fig. 6.7, we notice that under shadowing effects, the prediction

performance of the low order model has degraded.

Fig. 6.12 shows the performance of m-step prediction for the bivariate model with r = 5.

Similar to the no shadowing case, the prediction performance decreases as the number of
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Table 6.6: Under shadowing effects: Parameter estimate for r = 5.

Model Parameter Estimate

Bivariate π̂ =
(

0 0 0 0 0 1 0 0 0 0
)

(r=5)

Ĝ11 =


0.0006 0.7503 0.0142 0.0007 0.0003
0.0012 0.0000 0.0002 0.0001 0.0005
0.0042 0.0604 0.0035 0.0001 0.0021
0.0006 0.3549 0.0752 0.0009 0.0025
0.0005 0.5560 0.0068 0.0012 0.0010



Ĝ12 =


0.0036 0.0157 0.1459 0.0687 0.0001
0.0000 0.0000 0.9802 0.0177 0.0000
0.0000 0.0160 0.9069 0.0067 0.0001
0.0146 0.1083 0.3106 0.1315 0.0008
0.0063 0.0397 0.2670 0.1210 0.0006



Ĝ21 =


0.0002 0.0000 0.0000 0.0001 0.0001
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.5414 0.0438 0.0146 0.0691 0.1078



Ĝ22 =


0.0304 0.0000 0.0002 0.0000 0.9689
0.8245 0.1521 0.0000 0.0000 0.0234
0.0227 0.0364 0.1328 0.8082 0.0000
0.0100 0.8653 0.0001 0.1245 0.0001
0.0000 0.0000 0.0319 0.0001 0.1913


µ̂ =

(
−112.4476, −95.2704

)
R̂ =

(
14.5121, 69.0175

)

steps m increases. Comparing Fig. 6.8 with Fig. 6.12, we again observe a small degradation

in the prediction performance under the shadowing effects case.

In Fig. 6.13, we show the dwell time distributions obtained from the estimate parameter

of the low order model with r = 1, 2, 5 and the high order model with r = 10. Similar to the

no shadowing case, with higher order r, the dwell time distributions of both idle and active

states can be modelled more accurately. Since Fig. 6.9 and Fig. 6.13 are indistinguishable,

we conclude that the shadowing effects has little impact on modeling the process {Xt} of

the bivariate Markov chain.
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Figure 6.10: Under shadowing effects: State estimation performance for r = 1, 2, 5, 10.

Figure 6.11: Under shadowing effects: One-step state prediction performance for r =
1, 2, 5, 10.
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Figure 6.12: Under shadowing effects: m-step prediction performance for r = 5 and m =
1, 2, 5, 10.

Figure 6.13: Under shadowing effects: Inferred dwell time distributions for r = 1, 2, 5, 10.
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Chapter 7: Conclusions and Future Directions

The main contribution of this thesis is that the primary transmission pattern can be modeled

more accurately by employing the hidden bivariate Markov chain model. In this concluding

chapter, we present a summary of the thesis main results followed by a discussion of future

research directions.

7.1 Summary

We have formulated the spectrum sensing problem in the temporal domain for cognitive

radio application in the HMM framework. We modeled the primary transmission pattern

by a Markov chain and represented the signal power levels received at the cognitive radio

by Gaussian densities. Although a Markov chain with two states has been a focus in our

work, the number of states can be extended to include other possibilities such as unknown

state (undecided whether the state is idle or active) or adjacent interference state, etc. The

parameter of the conditional Gaussian densities can be adjusted to accommodate for severe

path loss and shadowing effects in certain environments.

We applied the hidden bivariate Markov chain model to the spectrum sensing problem of

a narrowband radio signal. The signal was modeled as a bivariate Markov chain observed

through a memoryless Gaussian channel. It was shown that using the bivariate Markov

chain, the dwell time in each state of the primary user can be modeled by a discrete phase-

type distribution, which is more general than the geometric dwell time distribution of a

standard HMM.

In the context of spectrum sensing, we developed an EM algorithm for estimating the

parameter of the proposed model and applied an online recursion for state estimation and

prediction. Given the received signal, the idle/active state of the primary user was estimated
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using our proposed detection scheme. Prediction of the state of the primary user was

also studied in this work. Contrary to a simple energy detector, the proposed approach

incorporates the history of the signal in estimating the state at any time instant.

We evaluated the performance of the proposed spectrum sensing approach using both

real spectrum measurement data and simulated data derived from the spectrum measure-

ments. Our results for a single narrowband channel showed that the proposed approach

leads to more accurate state estimation than a standard HMM or an energy detector, par-

ticularly in scenarios with high path loss and/or severe shadowing effects. Also, when

the dwell time of each state of the primary user on a given channel is not geometrically

distributed, a higher order of the underlying chain results in better state estimation and

prediction performance at the expense of greater computation overhead.

7.2 Future Directions

In this thesis, we focused on spectrum sensing of a narrowband channel in the temporal

domain for cognitive radio. There are other potential research areas which can be extended

from our work.

First of all, enhanced dynamic spectrum access schemes, which allow cognitive radio

nodes to utilize the predictive knowledge provided by the proposed model, should be in-

vestigated. In a single channel network, the predictive knowledge can be used to overcome

the negative impact of response delays caused by hardware platforms. Whereas, in a sys-

tem with multiple channels, the advanced knowledge enables the cognitive radio network

to identify best channels, e.g., channels predicted to remain idle for the longest period of

time, for the operation. Overall, the goal is to access the available spectrum more efficiently

without causing harmful interference to primary users.

The approach can also be extended to support collaborative spectrum sensing (see,

e.g., [11]), whereby the observations of multiple cognitive radio receivers are combined to

improve sensing accuracy. In this case, each observation Yt in the hidden bivariate Markov

chain model is a vector random variable whose components correspond to the individual
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observations contributed by the cognitive radio receivers.

Another interesting research area is online estimation of the model parameter. In gen-

eral, the model parameter is estimated offline during the training phase in order to minimize

the computation time for the parameter estimation algorithm. If the transmission behavior

of the primary user does not vary with time, the parameter estimated offline should be

adequate for detection and prediction purposes. However, if the transmission pattern does

vary with time, the parameter estimate should be updated periodically by incorporating

new observations into the current estimate. This requires a new estimation algorithm that

can perform the updating quickly without putting a burden on the processing time.
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Appendix A: An Appendix

A.1 Background on the Discrete Phase-Type Distribution

Consider a discrete-time Markov chain {Xn} with r+1 states {1, . . . , r+1}. States 1, . . . , r

are transient states and called phases, while state r+1 is an absorbing state. The transition

probability matrix is given by

P =

 V w

0 1

 , (A.1)

where 0 is a row vector of zeros, V is an r× r matrix, and w is an r× 1 column vector such

that

V 1 + w = 1. (A.2)

Note that the transition probability matrix P is completely characterized by the submatrix

V . Let u denote a 1 × r row vector representing a probability distribution on {1, . . . , r}.

Let T denote the time to absorption of the Markov chain {Xn} with initial distribution

given by u. Then T is said have the discrete phase-type distribution with r phases and

parameter (u, V ) [26]. The probability mass function of T is given by

pT (m) = uV m−1w, m = 1, 2, . . . . (A.3)

The discrete phase-type distribution is a generalization of the geometric distribution. A

geometric distribution with parameter α ∈ (0, 1) may be seen as a phase-type distribution

with 1 phase and parameter (1, α). The discrete-time phase-type distribution also general-

izes mixtures and convolutions of a finite number of geometric distributions. As such, the
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discrete phase-type distribution can be used to approximate a large class of discrete prob-

ability distributions. Furthermore, the class of discrete phase-type distributions is dense in

the set of all distributions of discrete nonnegative random variables [26].

A.2 Estimated Transition Matrix of the High Order Hidden

Bivariate Markov Chain

Since the estimated transition matrix G is a large matrix of size 20 × 20, we express it in

smaller r × r (r = 10) block matrices Gab, a, b ∈ X as follows:

G11 =



0.0000 0.2568 0.4256 0.0000 0.0709 0.0000 0.1027 0.0000 0.1226 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0005 0.1505 0.1985 0.0000 0.0652 0.1775 0.1547 0.0154 0.0176 0.2195

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0094 0.0580 0.0000 0.0005 0.0000 0.1694 0.0000 0.0033 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.1171 0.3370 0.0000 0.1534 0.0000 0.1791 0.0000 0.0841 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0353 0.4173 0.0000 0.0512 0.0000 0.4628 0.0000 0.0059 0.0000


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G12 =



0.0214 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.9008 0.0031 0.0000 0.0000 0.0210 0.0000 0.0359 0.0000 0.0001 0.0390

0.9685 0.0003 0.0000 0.0000 0.0032 0.0000 0.0131 0.0000 0.0000 0.0148

0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.9146 0.0046 0.0000 0.0000 0.0455 0.0000 0.0021 0.0000 0.0000 0.0332

0.7594 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.9988 0.0000 0.0000 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0009

0.0057 0.0000 0.0000 0.0000 0.1228 0.0000 0.0003 0.0000 0.0000 0.0005

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0165 0.0000 0.0000 0.0000 0.0106 0.0000 0.0002 0.0000 0.0000 0.0001



G21 =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0374 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0003 0.0000 0.0000 0.0209 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2162 0.0005 0.0003 0.0024 0.0003 0.0057 0.0001 0.3794 0.0001 0.1558

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1308 0.0111 0.0469 0.0000 0.0207 0.3077 0.1174 0.0202 0.2828 0.0460

0.0060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


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G22 =



0.0000 0.0330 0.0002 0.0000 0.0253 0.0000 0.1454 0.0000 0.0007 0.7955

0.0000 0.0000 0.9568 0.0244 0.0000 0.0007 0.0000 0.0008 0.0173 0.0000

0.0000 0.0000 0.0000 0.8899 0.0000 0.0624 0.0000 0.0102 0.0000 0.0000

0.0008 0.0000 0.0000 0.0000 0.0000 0.7156 0.0000 0.2620 0.0000 0.0000

0.0000 0.0000 0.9349 0.0001 0.0000 0.0000 0.0000 0.0000 0.0651 0.0000

0.0345 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2046 0.0000 0.0001

0.0000 0.2868 0.1008 0.0282 0.1979 0.0004 0.0000 0.0000 0.3859 0.0000

0.0056 0.0001 0.0000 0.0000 0.0042 0.0000 0.0036 0.0000 0.0000 0.0030

0.0000 0.0000 0.0510 0.8746 0.0000 0.0021 0.0000 0.0663 0.0000 0.0000

0.0000 0.5373 0.0547 0.0047 0.0915 0.0151 0.0000 0.0000 0.2966 0.0000


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